1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_in_driver(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->rq_flags & RQF_IO_STAT && 97 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2]) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver, 109 &mi); 110 inflight[READ] = mi.inflight[READ]; 111 inflight[WRITE] = mi.inflight[WRITE]; 112 } 113 114 #ifdef CONFIG_LOCKDEP 115 static bool blk_freeze_set_owner(struct request_queue *q, 116 struct task_struct *owner) 117 { 118 if (!owner) 119 return false; 120 121 if (!q->mq_freeze_depth) { 122 q->mq_freeze_owner = owner; 123 q->mq_freeze_owner_depth = 1; 124 q->mq_freeze_disk_dead = !q->disk || 125 test_bit(GD_DEAD, &q->disk->state) || 126 !blk_queue_registered(q); 127 q->mq_freeze_queue_dying = blk_queue_dying(q); 128 return true; 129 } 130 131 if (owner == q->mq_freeze_owner) 132 q->mq_freeze_owner_depth += 1; 133 return false; 134 } 135 136 /* verify the last unfreeze in owner context */ 137 static bool blk_unfreeze_check_owner(struct request_queue *q) 138 { 139 if (q->mq_freeze_owner != current) 140 return false; 141 if (--q->mq_freeze_owner_depth == 0) { 142 q->mq_freeze_owner = NULL; 143 return true; 144 } 145 return false; 146 } 147 148 #else 149 150 static bool blk_freeze_set_owner(struct request_queue *q, 151 struct task_struct *owner) 152 { 153 return false; 154 } 155 156 static bool blk_unfreeze_check_owner(struct request_queue *q) 157 { 158 return false; 159 } 160 #endif 161 162 bool __blk_freeze_queue_start(struct request_queue *q, 163 struct task_struct *owner) 164 { 165 bool freeze; 166 167 mutex_lock(&q->mq_freeze_lock); 168 freeze = blk_freeze_set_owner(q, owner); 169 if (++q->mq_freeze_depth == 1) { 170 percpu_ref_kill(&q->q_usage_counter); 171 mutex_unlock(&q->mq_freeze_lock); 172 if (queue_is_mq(q)) 173 blk_mq_run_hw_queues(q, false); 174 } else { 175 mutex_unlock(&q->mq_freeze_lock); 176 } 177 178 return freeze; 179 } 180 181 void blk_freeze_queue_start(struct request_queue *q) 182 { 183 if (__blk_freeze_queue_start(q, current)) 184 blk_freeze_acquire_lock(q); 185 } 186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 187 188 void blk_mq_freeze_queue_wait(struct request_queue *q) 189 { 190 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 193 194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 195 unsigned long timeout) 196 { 197 return wait_event_timeout(q->mq_freeze_wq, 198 percpu_ref_is_zero(&q->q_usage_counter), 199 timeout); 200 } 201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 202 203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q) 204 { 205 blk_freeze_queue_start(q); 206 blk_mq_freeze_queue_wait(q); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave); 209 210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 211 { 212 bool unfreeze; 213 214 mutex_lock(&q->mq_freeze_lock); 215 if (force_atomic) 216 q->q_usage_counter.data->force_atomic = true; 217 q->mq_freeze_depth--; 218 WARN_ON_ONCE(q->mq_freeze_depth < 0); 219 if (!q->mq_freeze_depth) { 220 percpu_ref_resurrect(&q->q_usage_counter); 221 wake_up_all(&q->mq_freeze_wq); 222 } 223 unfreeze = blk_unfreeze_check_owner(q); 224 mutex_unlock(&q->mq_freeze_lock); 225 226 return unfreeze; 227 } 228 229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q) 230 { 231 if (__blk_mq_unfreeze_queue(q, false)) 232 blk_unfreeze_release_lock(q); 233 } 234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore); 235 236 /* 237 * non_owner variant of blk_freeze_queue_start 238 * 239 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 240 * by the same task. This is fragile and should not be used if at all 241 * possible. 242 */ 243 void blk_freeze_queue_start_non_owner(struct request_queue *q) 244 { 245 __blk_freeze_queue_start(q, NULL); 246 } 247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 248 249 /* non_owner variant of blk_mq_unfreeze_queue */ 250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 251 { 252 __blk_mq_unfreeze_queue(q, false); 253 } 254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 255 256 /* 257 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 258 * mpt3sas driver such that this function can be removed. 259 */ 260 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 261 { 262 unsigned long flags; 263 264 spin_lock_irqsave(&q->queue_lock, flags); 265 if (!q->quiesce_depth++) 266 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 267 spin_unlock_irqrestore(&q->queue_lock, flags); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 270 271 /** 272 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 273 * @set: tag_set to wait on 274 * 275 * Note: it is driver's responsibility for making sure that quiesce has 276 * been started on or more of the request_queues of the tag_set. This 277 * function only waits for the quiesce on those request_queues that had 278 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 279 */ 280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 281 { 282 if (set->flags & BLK_MQ_F_BLOCKING) 283 synchronize_srcu(set->srcu); 284 else 285 synchronize_rcu(); 286 } 287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 288 289 /** 290 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 291 * @q: request queue. 292 * 293 * Note: this function does not prevent that the struct request end_io() 294 * callback function is invoked. Once this function is returned, we make 295 * sure no dispatch can happen until the queue is unquiesced via 296 * blk_mq_unquiesce_queue(). 297 */ 298 void blk_mq_quiesce_queue(struct request_queue *q) 299 { 300 blk_mq_quiesce_queue_nowait(q); 301 /* nothing to wait for non-mq queues */ 302 if (queue_is_mq(q)) 303 blk_mq_wait_quiesce_done(q->tag_set); 304 } 305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 306 307 /* 308 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 309 * @q: request queue. 310 * 311 * This function recovers queue into the state before quiescing 312 * which is done by blk_mq_quiesce_queue. 313 */ 314 void blk_mq_unquiesce_queue(struct request_queue *q) 315 { 316 unsigned long flags; 317 bool run_queue = false; 318 319 spin_lock_irqsave(&q->queue_lock, flags); 320 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 321 ; 322 } else if (!--q->quiesce_depth) { 323 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 324 run_queue = true; 325 } 326 spin_unlock_irqrestore(&q->queue_lock, flags); 327 328 /* dispatch requests which are inserted during quiescing */ 329 if (run_queue) 330 blk_mq_run_hw_queues(q, true); 331 } 332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 333 334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 335 { 336 struct request_queue *q; 337 338 mutex_lock(&set->tag_list_lock); 339 list_for_each_entry(q, &set->tag_list, tag_set_list) { 340 if (!blk_queue_skip_tagset_quiesce(q)) 341 blk_mq_quiesce_queue_nowait(q); 342 } 343 mutex_unlock(&set->tag_list_lock); 344 345 blk_mq_wait_quiesce_done(set); 346 } 347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 348 349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 350 { 351 struct request_queue *q; 352 353 mutex_lock(&set->tag_list_lock); 354 list_for_each_entry(q, &set->tag_list, tag_set_list) { 355 if (!blk_queue_skip_tagset_quiesce(q)) 356 blk_mq_unquiesce_queue(q); 357 } 358 mutex_unlock(&set->tag_list_lock); 359 } 360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 361 362 void blk_mq_wake_waiters(struct request_queue *q) 363 { 364 struct blk_mq_hw_ctx *hctx; 365 unsigned long i; 366 367 queue_for_each_hw_ctx(q, hctx, i) 368 if (blk_mq_hw_queue_mapped(hctx)) 369 blk_mq_tag_wakeup_all(hctx->tags, true); 370 } 371 372 void blk_rq_init(struct request_queue *q, struct request *rq) 373 { 374 memset(rq, 0, sizeof(*rq)); 375 376 INIT_LIST_HEAD(&rq->queuelist); 377 rq->q = q; 378 rq->__sector = (sector_t) -1; 379 INIT_HLIST_NODE(&rq->hash); 380 RB_CLEAR_NODE(&rq->rb_node); 381 rq->tag = BLK_MQ_NO_TAG; 382 rq->internal_tag = BLK_MQ_NO_TAG; 383 rq->start_time_ns = blk_time_get_ns(); 384 blk_crypto_rq_set_defaults(rq); 385 } 386 EXPORT_SYMBOL(blk_rq_init); 387 388 /* Set start and alloc time when the allocated request is actually used */ 389 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 390 { 391 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 392 if (blk_queue_rq_alloc_time(rq->q)) 393 rq->alloc_time_ns = alloc_time_ns; 394 else 395 rq->alloc_time_ns = 0; 396 #endif 397 } 398 399 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 400 struct blk_mq_tags *tags, unsigned int tag) 401 { 402 struct blk_mq_ctx *ctx = data->ctx; 403 struct blk_mq_hw_ctx *hctx = data->hctx; 404 struct request_queue *q = data->q; 405 struct request *rq = tags->static_rqs[tag]; 406 407 rq->q = q; 408 rq->mq_ctx = ctx; 409 rq->mq_hctx = hctx; 410 rq->cmd_flags = data->cmd_flags; 411 412 if (data->flags & BLK_MQ_REQ_PM) 413 data->rq_flags |= RQF_PM; 414 rq->rq_flags = data->rq_flags; 415 416 if (data->rq_flags & RQF_SCHED_TAGS) { 417 rq->tag = BLK_MQ_NO_TAG; 418 rq->internal_tag = tag; 419 } else { 420 rq->tag = tag; 421 rq->internal_tag = BLK_MQ_NO_TAG; 422 } 423 rq->timeout = 0; 424 425 rq->part = NULL; 426 rq->io_start_time_ns = 0; 427 rq->stats_sectors = 0; 428 rq->nr_phys_segments = 0; 429 rq->nr_integrity_segments = 0; 430 rq->end_io = NULL; 431 rq->end_io_data = NULL; 432 433 blk_crypto_rq_set_defaults(rq); 434 INIT_LIST_HEAD(&rq->queuelist); 435 /* tag was already set */ 436 WRITE_ONCE(rq->deadline, 0); 437 req_ref_set(rq, 1); 438 439 if (rq->rq_flags & RQF_USE_SCHED) { 440 struct elevator_queue *e = data->q->elevator; 441 442 INIT_HLIST_NODE(&rq->hash); 443 RB_CLEAR_NODE(&rq->rb_node); 444 445 if (e->type->ops.prepare_request) 446 e->type->ops.prepare_request(rq); 447 } 448 449 return rq; 450 } 451 452 static inline struct request * 453 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 454 { 455 unsigned int tag, tag_offset; 456 struct blk_mq_tags *tags; 457 struct request *rq; 458 unsigned long tag_mask; 459 int i, nr = 0; 460 461 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 462 if (unlikely(!tag_mask)) 463 return NULL; 464 465 tags = blk_mq_tags_from_data(data); 466 for (i = 0; tag_mask; i++) { 467 if (!(tag_mask & (1UL << i))) 468 continue; 469 tag = tag_offset + i; 470 prefetch(tags->static_rqs[tag]); 471 tag_mask &= ~(1UL << i); 472 rq = blk_mq_rq_ctx_init(data, tags, tag); 473 rq_list_add_head(data->cached_rqs, rq); 474 nr++; 475 } 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_add_active_requests(data->hctx, nr); 478 /* caller already holds a reference, add for remainder */ 479 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 480 data->nr_tags -= nr; 481 482 return rq_list_pop(data->cached_rqs); 483 } 484 485 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 486 { 487 struct request_queue *q = data->q; 488 u64 alloc_time_ns = 0; 489 struct request *rq; 490 unsigned int tag; 491 492 /* alloc_time includes depth and tag waits */ 493 if (blk_queue_rq_alloc_time(q)) 494 alloc_time_ns = blk_time_get_ns(); 495 496 if (data->cmd_flags & REQ_NOWAIT) 497 data->flags |= BLK_MQ_REQ_NOWAIT; 498 499 retry: 500 data->ctx = blk_mq_get_ctx(q); 501 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx); 502 503 if (q->elevator) { 504 /* 505 * All requests use scheduler tags when an I/O scheduler is 506 * enabled for the queue. 507 */ 508 data->rq_flags |= RQF_SCHED_TAGS; 509 510 /* 511 * Flush/passthrough requests are special and go directly to the 512 * dispatch list. 513 */ 514 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 515 !blk_op_is_passthrough(data->cmd_flags)) { 516 struct elevator_mq_ops *ops = &q->elevator->type->ops; 517 518 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 519 520 data->rq_flags |= RQF_USE_SCHED; 521 if (ops->limit_depth) 522 ops->limit_depth(data->cmd_flags, data); 523 } 524 } else { 525 blk_mq_tag_busy(data->hctx); 526 } 527 528 if (data->flags & BLK_MQ_REQ_RESERVED) 529 data->rq_flags |= RQF_RESV; 530 531 /* 532 * Try batched alloc if we want more than 1 tag. 533 */ 534 if (data->nr_tags > 1) { 535 rq = __blk_mq_alloc_requests_batch(data); 536 if (rq) { 537 blk_mq_rq_time_init(rq, alloc_time_ns); 538 return rq; 539 } 540 data->nr_tags = 1; 541 } 542 543 /* 544 * Waiting allocations only fail because of an inactive hctx. In that 545 * case just retry the hctx assignment and tag allocation as CPU hotplug 546 * should have migrated us to an online CPU by now. 547 */ 548 tag = blk_mq_get_tag(data); 549 if (tag == BLK_MQ_NO_TAG) { 550 if (data->flags & BLK_MQ_REQ_NOWAIT) 551 return NULL; 552 /* 553 * Give up the CPU and sleep for a random short time to 554 * ensure that thread using a realtime scheduling class 555 * are migrated off the CPU, and thus off the hctx that 556 * is going away. 557 */ 558 msleep(3); 559 goto retry; 560 } 561 562 if (!(data->rq_flags & RQF_SCHED_TAGS)) 563 blk_mq_inc_active_requests(data->hctx); 564 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 565 blk_mq_rq_time_init(rq, alloc_time_ns); 566 return rq; 567 } 568 569 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 570 struct blk_plug *plug, 571 blk_opf_t opf, 572 blk_mq_req_flags_t flags) 573 { 574 struct blk_mq_alloc_data data = { 575 .q = q, 576 .flags = flags, 577 .shallow_depth = 0, 578 .cmd_flags = opf, 579 .rq_flags = 0, 580 .nr_tags = plug->nr_ios, 581 .cached_rqs = &plug->cached_rqs, 582 .ctx = NULL, 583 .hctx = NULL 584 }; 585 struct request *rq; 586 587 if (blk_queue_enter(q, flags)) 588 return NULL; 589 590 plug->nr_ios = 1; 591 592 rq = __blk_mq_alloc_requests(&data); 593 if (unlikely(!rq)) 594 blk_queue_exit(q); 595 return rq; 596 } 597 598 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 599 blk_opf_t opf, 600 blk_mq_req_flags_t flags) 601 { 602 struct blk_plug *plug = current->plug; 603 struct request *rq; 604 605 if (!plug) 606 return NULL; 607 608 if (rq_list_empty(&plug->cached_rqs)) { 609 if (plug->nr_ios == 1) 610 return NULL; 611 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 612 if (!rq) 613 return NULL; 614 } else { 615 rq = rq_list_peek(&plug->cached_rqs); 616 if (!rq || rq->q != q) 617 return NULL; 618 619 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 620 return NULL; 621 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 622 return NULL; 623 624 rq_list_pop(&plug->cached_rqs); 625 blk_mq_rq_time_init(rq, blk_time_get_ns()); 626 } 627 628 rq->cmd_flags = opf; 629 INIT_LIST_HEAD(&rq->queuelist); 630 return rq; 631 } 632 633 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 634 blk_mq_req_flags_t flags) 635 { 636 struct request *rq; 637 638 rq = blk_mq_alloc_cached_request(q, opf, flags); 639 if (!rq) { 640 struct blk_mq_alloc_data data = { 641 .q = q, 642 .flags = flags, 643 .shallow_depth = 0, 644 .cmd_flags = opf, 645 .rq_flags = 0, 646 .nr_tags = 1, 647 .cached_rqs = NULL, 648 .ctx = NULL, 649 .hctx = NULL 650 }; 651 int ret; 652 653 ret = blk_queue_enter(q, flags); 654 if (ret) 655 return ERR_PTR(ret); 656 657 rq = __blk_mq_alloc_requests(&data); 658 if (!rq) 659 goto out_queue_exit; 660 } 661 rq->__data_len = 0; 662 rq->__sector = (sector_t) -1; 663 rq->bio = rq->biotail = NULL; 664 return rq; 665 out_queue_exit: 666 blk_queue_exit(q); 667 return ERR_PTR(-EWOULDBLOCK); 668 } 669 EXPORT_SYMBOL(blk_mq_alloc_request); 670 671 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 672 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 673 { 674 struct blk_mq_alloc_data data = { 675 .q = q, 676 .flags = flags, 677 .shallow_depth = 0, 678 .cmd_flags = opf, 679 .rq_flags = 0, 680 .nr_tags = 1, 681 .cached_rqs = NULL, 682 .ctx = NULL, 683 .hctx = NULL 684 }; 685 u64 alloc_time_ns = 0; 686 struct request *rq; 687 unsigned int cpu; 688 unsigned int tag; 689 int ret; 690 691 /* alloc_time includes depth and tag waits */ 692 if (blk_queue_rq_alloc_time(q)) 693 alloc_time_ns = blk_time_get_ns(); 694 695 /* 696 * If the tag allocator sleeps we could get an allocation for a 697 * different hardware context. No need to complicate the low level 698 * allocator for this for the rare use case of a command tied to 699 * a specific queue. 700 */ 701 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 702 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 703 return ERR_PTR(-EINVAL); 704 705 if (hctx_idx >= q->nr_hw_queues) 706 return ERR_PTR(-EIO); 707 708 ret = blk_queue_enter(q, flags); 709 if (ret) 710 return ERR_PTR(ret); 711 712 /* 713 * Check if the hardware context is actually mapped to anything. 714 * If not tell the caller that it should skip this queue. 715 */ 716 ret = -EXDEV; 717 data.hctx = xa_load(&q->hctx_table, hctx_idx); 718 if (!blk_mq_hw_queue_mapped(data.hctx)) 719 goto out_queue_exit; 720 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 721 if (cpu >= nr_cpu_ids) 722 goto out_queue_exit; 723 data.ctx = __blk_mq_get_ctx(q, cpu); 724 725 if (q->elevator) 726 data.rq_flags |= RQF_SCHED_TAGS; 727 else 728 blk_mq_tag_busy(data.hctx); 729 730 if (flags & BLK_MQ_REQ_RESERVED) 731 data.rq_flags |= RQF_RESV; 732 733 ret = -EWOULDBLOCK; 734 tag = blk_mq_get_tag(&data); 735 if (tag == BLK_MQ_NO_TAG) 736 goto out_queue_exit; 737 if (!(data.rq_flags & RQF_SCHED_TAGS)) 738 blk_mq_inc_active_requests(data.hctx); 739 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 740 blk_mq_rq_time_init(rq, alloc_time_ns); 741 rq->__data_len = 0; 742 rq->__sector = (sector_t) -1; 743 rq->bio = rq->biotail = NULL; 744 return rq; 745 746 out_queue_exit: 747 blk_queue_exit(q); 748 return ERR_PTR(ret); 749 } 750 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 751 752 static void blk_mq_finish_request(struct request *rq) 753 { 754 struct request_queue *q = rq->q; 755 756 blk_zone_finish_request(rq); 757 758 if (rq->rq_flags & RQF_USE_SCHED) { 759 q->elevator->type->ops.finish_request(rq); 760 /* 761 * For postflush request that may need to be 762 * completed twice, we should clear this flag 763 * to avoid double finish_request() on the rq. 764 */ 765 rq->rq_flags &= ~RQF_USE_SCHED; 766 } 767 } 768 769 static void __blk_mq_free_request(struct request *rq) 770 { 771 struct request_queue *q = rq->q; 772 struct blk_mq_ctx *ctx = rq->mq_ctx; 773 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 774 const int sched_tag = rq->internal_tag; 775 776 blk_crypto_free_request(rq); 777 blk_pm_mark_last_busy(rq); 778 rq->mq_hctx = NULL; 779 780 if (rq->tag != BLK_MQ_NO_TAG) { 781 blk_mq_dec_active_requests(hctx); 782 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 783 } 784 if (sched_tag != BLK_MQ_NO_TAG) 785 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 786 blk_mq_sched_restart(hctx); 787 blk_queue_exit(q); 788 } 789 790 void blk_mq_free_request(struct request *rq) 791 { 792 struct request_queue *q = rq->q; 793 794 blk_mq_finish_request(rq); 795 796 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 797 laptop_io_completion(q->disk->bdi); 798 799 rq_qos_done(q, rq); 800 801 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 802 if (req_ref_put_and_test(rq)) 803 __blk_mq_free_request(rq); 804 } 805 EXPORT_SYMBOL_GPL(blk_mq_free_request); 806 807 void blk_mq_free_plug_rqs(struct blk_plug *plug) 808 { 809 struct request *rq; 810 811 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 812 blk_mq_free_request(rq); 813 } 814 815 void blk_dump_rq_flags(struct request *rq, char *msg) 816 { 817 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 818 rq->q->disk ? rq->q->disk->disk_name : "?", 819 (__force unsigned long long) rq->cmd_flags); 820 821 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 822 (unsigned long long)blk_rq_pos(rq), 823 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 824 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 825 rq->bio, rq->biotail, blk_rq_bytes(rq)); 826 } 827 EXPORT_SYMBOL(blk_dump_rq_flags); 828 829 static void blk_account_io_completion(struct request *req, unsigned int bytes) 830 { 831 if (req->rq_flags & RQF_IO_STAT) { 832 const int sgrp = op_stat_group(req_op(req)); 833 834 part_stat_lock(); 835 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 836 part_stat_unlock(); 837 } 838 } 839 840 static void blk_print_req_error(struct request *req, blk_status_t status) 841 { 842 printk_ratelimited(KERN_ERR 843 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 844 "phys_seg %u prio class %u\n", 845 blk_status_to_str(status), 846 req->q->disk ? req->q->disk->disk_name : "?", 847 blk_rq_pos(req), (__force u32)req_op(req), 848 blk_op_str(req_op(req)), 849 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 850 req->nr_phys_segments, 851 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 852 } 853 854 /* 855 * Fully end IO on a request. Does not support partial completions, or 856 * errors. 857 */ 858 static void blk_complete_request(struct request *req) 859 { 860 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 861 int total_bytes = blk_rq_bytes(req); 862 struct bio *bio = req->bio; 863 864 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 865 866 if (!bio) 867 return; 868 869 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 870 blk_integrity_complete(req, total_bytes); 871 872 /* 873 * Upper layers may call blk_crypto_evict_key() anytime after the last 874 * bio_endio(). Therefore, the keyslot must be released before that. 875 */ 876 blk_crypto_rq_put_keyslot(req); 877 878 blk_account_io_completion(req, total_bytes); 879 880 do { 881 struct bio *next = bio->bi_next; 882 883 /* Completion has already been traced */ 884 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 885 886 blk_zone_update_request_bio(req, bio); 887 888 if (!is_flush) 889 bio_endio(bio); 890 bio = next; 891 } while (bio); 892 893 /* 894 * Reset counters so that the request stacking driver 895 * can find how many bytes remain in the request 896 * later. 897 */ 898 if (!req->end_io) { 899 req->bio = NULL; 900 req->__data_len = 0; 901 } 902 } 903 904 /** 905 * blk_update_request - Complete multiple bytes without completing the request 906 * @req: the request being processed 907 * @error: block status code 908 * @nr_bytes: number of bytes to complete for @req 909 * 910 * Description: 911 * Ends I/O on a number of bytes attached to @req, but doesn't complete 912 * the request structure even if @req doesn't have leftover. 913 * If @req has leftover, sets it up for the next range of segments. 914 * 915 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 916 * %false return from this function. 917 * 918 * Note: 919 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 920 * except in the consistency check at the end of this function. 921 * 922 * Return: 923 * %false - this request doesn't have any more data 924 * %true - this request has more data 925 **/ 926 bool blk_update_request(struct request *req, blk_status_t error, 927 unsigned int nr_bytes) 928 { 929 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 930 bool quiet = req->rq_flags & RQF_QUIET; 931 int total_bytes; 932 933 trace_block_rq_complete(req, error, nr_bytes); 934 935 if (!req->bio) 936 return false; 937 938 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 939 error == BLK_STS_OK) 940 blk_integrity_complete(req, nr_bytes); 941 942 /* 943 * Upper layers may call blk_crypto_evict_key() anytime after the last 944 * bio_endio(). Therefore, the keyslot must be released before that. 945 */ 946 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 947 __blk_crypto_rq_put_keyslot(req); 948 949 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 950 !test_bit(GD_DEAD, &req->q->disk->state)) { 951 blk_print_req_error(req, error); 952 trace_block_rq_error(req, error, nr_bytes); 953 } 954 955 blk_account_io_completion(req, nr_bytes); 956 957 total_bytes = 0; 958 while (req->bio) { 959 struct bio *bio = req->bio; 960 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 961 962 if (unlikely(error)) 963 bio->bi_status = error; 964 965 if (bio_bytes == bio->bi_iter.bi_size) { 966 req->bio = bio->bi_next; 967 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 968 /* 969 * Partial zone append completions cannot be supported 970 * as the BIO fragments may end up not being written 971 * sequentially. 972 */ 973 bio->bi_status = BLK_STS_IOERR; 974 } 975 976 /* Completion has already been traced */ 977 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 978 if (unlikely(quiet)) 979 bio_set_flag(bio, BIO_QUIET); 980 981 bio_advance(bio, bio_bytes); 982 983 /* Don't actually finish bio if it's part of flush sequence */ 984 if (!bio->bi_iter.bi_size) { 985 blk_zone_update_request_bio(req, bio); 986 if (!is_flush) 987 bio_endio(bio); 988 } 989 990 total_bytes += bio_bytes; 991 nr_bytes -= bio_bytes; 992 993 if (!nr_bytes) 994 break; 995 } 996 997 /* 998 * completely done 999 */ 1000 if (!req->bio) { 1001 /* 1002 * Reset counters so that the request stacking driver 1003 * can find how many bytes remain in the request 1004 * later. 1005 */ 1006 req->__data_len = 0; 1007 return false; 1008 } 1009 1010 req->__data_len -= total_bytes; 1011 1012 /* update sector only for requests with clear definition of sector */ 1013 if (!blk_rq_is_passthrough(req)) 1014 req->__sector += total_bytes >> 9; 1015 1016 /* mixed attributes always follow the first bio */ 1017 if (req->rq_flags & RQF_MIXED_MERGE) { 1018 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1019 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1020 } 1021 1022 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1023 /* 1024 * If total number of sectors is less than the first segment 1025 * size, something has gone terribly wrong. 1026 */ 1027 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1028 blk_dump_rq_flags(req, "request botched"); 1029 req->__data_len = blk_rq_cur_bytes(req); 1030 } 1031 1032 /* recalculate the number of segments */ 1033 req->nr_phys_segments = blk_recalc_rq_segments(req); 1034 } 1035 1036 return true; 1037 } 1038 EXPORT_SYMBOL_GPL(blk_update_request); 1039 1040 static inline void blk_account_io_done(struct request *req, u64 now) 1041 { 1042 trace_block_io_done(req); 1043 1044 /* 1045 * Account IO completion. flush_rq isn't accounted as a 1046 * normal IO on queueing nor completion. Accounting the 1047 * containing request is enough. 1048 */ 1049 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1050 const int sgrp = op_stat_group(req_op(req)); 1051 1052 part_stat_lock(); 1053 update_io_ticks(req->part, jiffies, true); 1054 part_stat_inc(req->part, ios[sgrp]); 1055 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1056 part_stat_local_dec(req->part, 1057 in_flight[op_is_write(req_op(req))]); 1058 part_stat_unlock(); 1059 } 1060 } 1061 1062 static inline bool blk_rq_passthrough_stats(struct request *req) 1063 { 1064 struct bio *bio = req->bio; 1065 1066 if (!blk_queue_passthrough_stat(req->q)) 1067 return false; 1068 1069 /* Requests without a bio do not transfer data. */ 1070 if (!bio) 1071 return false; 1072 1073 /* 1074 * Stats are accumulated in the bdev, so must have one attached to a 1075 * bio to track stats. Most drivers do not set the bdev for passthrough 1076 * requests, but nvme is one that will set it. 1077 */ 1078 if (!bio->bi_bdev) 1079 return false; 1080 1081 /* 1082 * We don't know what a passthrough command does, but we know the 1083 * payload size and data direction. Ensuring the size is aligned to the 1084 * block size filters out most commands with payloads that don't 1085 * represent sector access. 1086 */ 1087 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1088 return false; 1089 return true; 1090 } 1091 1092 static inline void blk_account_io_start(struct request *req) 1093 { 1094 trace_block_io_start(req); 1095 1096 if (!blk_queue_io_stat(req->q)) 1097 return; 1098 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1099 return; 1100 1101 req->rq_flags |= RQF_IO_STAT; 1102 req->start_time_ns = blk_time_get_ns(); 1103 1104 /* 1105 * All non-passthrough requests are created from a bio with one 1106 * exception: when a flush command that is part of a flush sequence 1107 * generated by the state machine in blk-flush.c is cloned onto the 1108 * lower device by dm-multipath we can get here without a bio. 1109 */ 1110 if (req->bio) 1111 req->part = req->bio->bi_bdev; 1112 else 1113 req->part = req->q->disk->part0; 1114 1115 part_stat_lock(); 1116 update_io_ticks(req->part, jiffies, false); 1117 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1118 part_stat_unlock(); 1119 } 1120 1121 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1122 { 1123 if (rq->rq_flags & RQF_STATS) 1124 blk_stat_add(rq, now); 1125 1126 blk_mq_sched_completed_request(rq, now); 1127 blk_account_io_done(rq, now); 1128 } 1129 1130 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1131 { 1132 if (blk_mq_need_time_stamp(rq)) 1133 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1134 1135 blk_mq_finish_request(rq); 1136 1137 if (rq->end_io) { 1138 rq_qos_done(rq->q, rq); 1139 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1140 blk_mq_free_request(rq); 1141 } else { 1142 blk_mq_free_request(rq); 1143 } 1144 } 1145 EXPORT_SYMBOL(__blk_mq_end_request); 1146 1147 void blk_mq_end_request(struct request *rq, blk_status_t error) 1148 { 1149 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1150 BUG(); 1151 __blk_mq_end_request(rq, error); 1152 } 1153 EXPORT_SYMBOL(blk_mq_end_request); 1154 1155 #define TAG_COMP_BATCH 32 1156 1157 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1158 int *tag_array, int nr_tags) 1159 { 1160 struct request_queue *q = hctx->queue; 1161 1162 blk_mq_sub_active_requests(hctx, nr_tags); 1163 1164 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1165 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1166 } 1167 1168 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1169 { 1170 int tags[TAG_COMP_BATCH], nr_tags = 0; 1171 struct blk_mq_hw_ctx *cur_hctx = NULL; 1172 struct request *rq; 1173 u64 now = 0; 1174 1175 if (iob->need_ts) 1176 now = blk_time_get_ns(); 1177 1178 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1179 prefetch(rq->bio); 1180 prefetch(rq->rq_next); 1181 1182 blk_complete_request(rq); 1183 if (iob->need_ts) 1184 __blk_mq_end_request_acct(rq, now); 1185 1186 blk_mq_finish_request(rq); 1187 1188 rq_qos_done(rq->q, rq); 1189 1190 /* 1191 * If end_io handler returns NONE, then it still has 1192 * ownership of the request. 1193 */ 1194 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1195 continue; 1196 1197 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1198 if (!req_ref_put_and_test(rq)) 1199 continue; 1200 1201 blk_crypto_free_request(rq); 1202 blk_pm_mark_last_busy(rq); 1203 1204 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1205 if (cur_hctx) 1206 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1207 nr_tags = 0; 1208 cur_hctx = rq->mq_hctx; 1209 } 1210 tags[nr_tags++] = rq->tag; 1211 } 1212 1213 if (nr_tags) 1214 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1215 } 1216 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1217 1218 static void blk_complete_reqs(struct llist_head *list) 1219 { 1220 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1221 struct request *rq, *next; 1222 1223 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1224 rq->q->mq_ops->complete(rq); 1225 } 1226 1227 static __latent_entropy void blk_done_softirq(void) 1228 { 1229 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1230 } 1231 1232 static int blk_softirq_cpu_dead(unsigned int cpu) 1233 { 1234 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1235 return 0; 1236 } 1237 1238 static void __blk_mq_complete_request_remote(void *data) 1239 { 1240 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1241 } 1242 1243 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1244 { 1245 int cpu = raw_smp_processor_id(); 1246 1247 if (!IS_ENABLED(CONFIG_SMP) || 1248 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1249 return false; 1250 /* 1251 * With force threaded interrupts enabled, raising softirq from an SMP 1252 * function call will always result in waking the ksoftirqd thread. 1253 * This is probably worse than completing the request on a different 1254 * cache domain. 1255 */ 1256 if (force_irqthreads()) 1257 return false; 1258 1259 /* same CPU or cache domain and capacity? Complete locally */ 1260 if (cpu == rq->mq_ctx->cpu || 1261 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1262 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1263 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1264 return false; 1265 1266 /* don't try to IPI to an offline CPU */ 1267 return cpu_online(rq->mq_ctx->cpu); 1268 } 1269 1270 static void blk_mq_complete_send_ipi(struct request *rq) 1271 { 1272 unsigned int cpu; 1273 1274 cpu = rq->mq_ctx->cpu; 1275 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1276 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1277 } 1278 1279 static void blk_mq_raise_softirq(struct request *rq) 1280 { 1281 struct llist_head *list; 1282 1283 preempt_disable(); 1284 list = this_cpu_ptr(&blk_cpu_done); 1285 if (llist_add(&rq->ipi_list, list)) 1286 raise_softirq(BLOCK_SOFTIRQ); 1287 preempt_enable(); 1288 } 1289 1290 bool blk_mq_complete_request_remote(struct request *rq) 1291 { 1292 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1293 1294 /* 1295 * For request which hctx has only one ctx mapping, 1296 * or a polled request, always complete locally, 1297 * it's pointless to redirect the completion. 1298 */ 1299 if ((rq->mq_hctx->nr_ctx == 1 && 1300 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1301 rq->cmd_flags & REQ_POLLED) 1302 return false; 1303 1304 if (blk_mq_complete_need_ipi(rq)) { 1305 blk_mq_complete_send_ipi(rq); 1306 return true; 1307 } 1308 1309 if (rq->q->nr_hw_queues == 1) { 1310 blk_mq_raise_softirq(rq); 1311 return true; 1312 } 1313 return false; 1314 } 1315 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1316 1317 /** 1318 * blk_mq_complete_request - end I/O on a request 1319 * @rq: the request being processed 1320 * 1321 * Description: 1322 * Complete a request by scheduling the ->complete_rq operation. 1323 **/ 1324 void blk_mq_complete_request(struct request *rq) 1325 { 1326 if (!blk_mq_complete_request_remote(rq)) 1327 rq->q->mq_ops->complete(rq); 1328 } 1329 EXPORT_SYMBOL(blk_mq_complete_request); 1330 1331 /** 1332 * blk_mq_start_request - Start processing a request 1333 * @rq: Pointer to request to be started 1334 * 1335 * Function used by device drivers to notify the block layer that a request 1336 * is going to be processed now, so blk layer can do proper initializations 1337 * such as starting the timeout timer. 1338 */ 1339 void blk_mq_start_request(struct request *rq) 1340 { 1341 struct request_queue *q = rq->q; 1342 1343 trace_block_rq_issue(rq); 1344 1345 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1346 !blk_rq_is_passthrough(rq)) { 1347 rq->io_start_time_ns = blk_time_get_ns(); 1348 rq->stats_sectors = blk_rq_sectors(rq); 1349 rq->rq_flags |= RQF_STATS; 1350 rq_qos_issue(q, rq); 1351 } 1352 1353 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1354 1355 blk_add_timer(rq); 1356 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1357 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1358 1359 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1360 blk_integrity_prepare(rq); 1361 1362 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1363 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1364 } 1365 EXPORT_SYMBOL(blk_mq_start_request); 1366 1367 /* 1368 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1369 * queues. This is important for md arrays to benefit from merging 1370 * requests. 1371 */ 1372 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1373 { 1374 if (plug->multiple_queues) 1375 return BLK_MAX_REQUEST_COUNT * 2; 1376 return BLK_MAX_REQUEST_COUNT; 1377 } 1378 1379 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1380 { 1381 struct request *last = rq_list_peek(&plug->mq_list); 1382 1383 if (!plug->rq_count) { 1384 trace_block_plug(rq->q); 1385 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1386 (!blk_queue_nomerges(rq->q) && 1387 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1388 blk_mq_flush_plug_list(plug, false); 1389 last = NULL; 1390 trace_block_plug(rq->q); 1391 } 1392 1393 if (!plug->multiple_queues && last && last->q != rq->q) 1394 plug->multiple_queues = true; 1395 /* 1396 * Any request allocated from sched tags can't be issued to 1397 * ->queue_rqs() directly 1398 */ 1399 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1400 plug->has_elevator = true; 1401 rq_list_add_tail(&plug->mq_list, rq); 1402 plug->rq_count++; 1403 } 1404 1405 /** 1406 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1407 * @rq: request to insert 1408 * @at_head: insert request at head or tail of queue 1409 * 1410 * Description: 1411 * Insert a fully prepared request at the back of the I/O scheduler queue 1412 * for execution. Don't wait for completion. 1413 * 1414 * Note: 1415 * This function will invoke @done directly if the queue is dead. 1416 */ 1417 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1418 { 1419 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1420 1421 WARN_ON(irqs_disabled()); 1422 WARN_ON(!blk_rq_is_passthrough(rq)); 1423 1424 blk_account_io_start(rq); 1425 1426 if (current->plug && !at_head) { 1427 blk_add_rq_to_plug(current->plug, rq); 1428 return; 1429 } 1430 1431 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1432 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1433 } 1434 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1435 1436 struct blk_rq_wait { 1437 struct completion done; 1438 blk_status_t ret; 1439 }; 1440 1441 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1442 { 1443 struct blk_rq_wait *wait = rq->end_io_data; 1444 1445 wait->ret = ret; 1446 complete(&wait->done); 1447 return RQ_END_IO_NONE; 1448 } 1449 1450 bool blk_rq_is_poll(struct request *rq) 1451 { 1452 if (!rq->mq_hctx) 1453 return false; 1454 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1455 return false; 1456 return true; 1457 } 1458 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1459 1460 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1461 { 1462 do { 1463 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1464 cond_resched(); 1465 } while (!completion_done(wait)); 1466 } 1467 1468 /** 1469 * blk_execute_rq - insert a request into queue for execution 1470 * @rq: request to insert 1471 * @at_head: insert request at head or tail of queue 1472 * 1473 * Description: 1474 * Insert a fully prepared request at the back of the I/O scheduler queue 1475 * for execution and wait for completion. 1476 * Return: The blk_status_t result provided to blk_mq_end_request(). 1477 */ 1478 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1479 { 1480 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1481 struct blk_rq_wait wait = { 1482 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1483 }; 1484 1485 WARN_ON(irqs_disabled()); 1486 WARN_ON(!blk_rq_is_passthrough(rq)); 1487 1488 rq->end_io_data = &wait; 1489 rq->end_io = blk_end_sync_rq; 1490 1491 blk_account_io_start(rq); 1492 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1493 blk_mq_run_hw_queue(hctx, false); 1494 1495 if (blk_rq_is_poll(rq)) 1496 blk_rq_poll_completion(rq, &wait.done); 1497 else 1498 blk_wait_io(&wait.done); 1499 1500 return wait.ret; 1501 } 1502 EXPORT_SYMBOL(blk_execute_rq); 1503 1504 static void __blk_mq_requeue_request(struct request *rq) 1505 { 1506 struct request_queue *q = rq->q; 1507 1508 blk_mq_put_driver_tag(rq); 1509 1510 trace_block_rq_requeue(rq); 1511 rq_qos_requeue(q, rq); 1512 1513 if (blk_mq_request_started(rq)) { 1514 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1515 rq->rq_flags &= ~RQF_TIMED_OUT; 1516 } 1517 } 1518 1519 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1520 { 1521 struct request_queue *q = rq->q; 1522 unsigned long flags; 1523 1524 __blk_mq_requeue_request(rq); 1525 1526 /* this request will be re-inserted to io scheduler queue */ 1527 blk_mq_sched_requeue_request(rq); 1528 1529 spin_lock_irqsave(&q->requeue_lock, flags); 1530 list_add_tail(&rq->queuelist, &q->requeue_list); 1531 spin_unlock_irqrestore(&q->requeue_lock, flags); 1532 1533 if (kick_requeue_list) 1534 blk_mq_kick_requeue_list(q); 1535 } 1536 EXPORT_SYMBOL(blk_mq_requeue_request); 1537 1538 static void blk_mq_requeue_work(struct work_struct *work) 1539 { 1540 struct request_queue *q = 1541 container_of(work, struct request_queue, requeue_work.work); 1542 LIST_HEAD(rq_list); 1543 LIST_HEAD(flush_list); 1544 struct request *rq; 1545 1546 spin_lock_irq(&q->requeue_lock); 1547 list_splice_init(&q->requeue_list, &rq_list); 1548 list_splice_init(&q->flush_list, &flush_list); 1549 spin_unlock_irq(&q->requeue_lock); 1550 1551 while (!list_empty(&rq_list)) { 1552 rq = list_entry(rq_list.next, struct request, queuelist); 1553 list_del_init(&rq->queuelist); 1554 /* 1555 * If RQF_DONTPREP is set, the request has been started by the 1556 * driver already and might have driver-specific data allocated 1557 * already. Insert it into the hctx dispatch list to avoid 1558 * block layer merges for the request. 1559 */ 1560 if (rq->rq_flags & RQF_DONTPREP) 1561 blk_mq_request_bypass_insert(rq, 0); 1562 else 1563 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1564 } 1565 1566 while (!list_empty(&flush_list)) { 1567 rq = list_entry(flush_list.next, struct request, queuelist); 1568 list_del_init(&rq->queuelist); 1569 blk_mq_insert_request(rq, 0); 1570 } 1571 1572 blk_mq_run_hw_queues(q, false); 1573 } 1574 1575 void blk_mq_kick_requeue_list(struct request_queue *q) 1576 { 1577 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1578 } 1579 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1580 1581 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1582 unsigned long msecs) 1583 { 1584 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1585 msecs_to_jiffies(msecs)); 1586 } 1587 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1588 1589 static bool blk_is_flush_data_rq(struct request *rq) 1590 { 1591 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1592 } 1593 1594 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1595 { 1596 /* 1597 * If we find a request that isn't idle we know the queue is busy 1598 * as it's checked in the iter. 1599 * Return false to stop the iteration. 1600 * 1601 * In case of queue quiesce, if one flush data request is completed, 1602 * don't count it as inflight given the flush sequence is suspended, 1603 * and the original flush data request is invisible to driver, just 1604 * like other pending requests because of quiesce 1605 */ 1606 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1607 blk_is_flush_data_rq(rq) && 1608 blk_mq_request_completed(rq))) { 1609 bool *busy = priv; 1610 1611 *busy = true; 1612 return false; 1613 } 1614 1615 return true; 1616 } 1617 1618 bool blk_mq_queue_inflight(struct request_queue *q) 1619 { 1620 bool busy = false; 1621 1622 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1623 return busy; 1624 } 1625 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1626 1627 static void blk_mq_rq_timed_out(struct request *req) 1628 { 1629 req->rq_flags |= RQF_TIMED_OUT; 1630 if (req->q->mq_ops->timeout) { 1631 enum blk_eh_timer_return ret; 1632 1633 ret = req->q->mq_ops->timeout(req); 1634 if (ret == BLK_EH_DONE) 1635 return; 1636 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1637 } 1638 1639 blk_add_timer(req); 1640 } 1641 1642 struct blk_expired_data { 1643 bool has_timedout_rq; 1644 unsigned long next; 1645 unsigned long timeout_start; 1646 }; 1647 1648 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1649 { 1650 unsigned long deadline; 1651 1652 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1653 return false; 1654 if (rq->rq_flags & RQF_TIMED_OUT) 1655 return false; 1656 1657 deadline = READ_ONCE(rq->deadline); 1658 if (time_after_eq(expired->timeout_start, deadline)) 1659 return true; 1660 1661 if (expired->next == 0) 1662 expired->next = deadline; 1663 else if (time_after(expired->next, deadline)) 1664 expired->next = deadline; 1665 return false; 1666 } 1667 1668 void blk_mq_put_rq_ref(struct request *rq) 1669 { 1670 if (is_flush_rq(rq)) { 1671 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1672 blk_mq_free_request(rq); 1673 } else if (req_ref_put_and_test(rq)) { 1674 __blk_mq_free_request(rq); 1675 } 1676 } 1677 1678 static bool blk_mq_check_expired(struct request *rq, void *priv) 1679 { 1680 struct blk_expired_data *expired = priv; 1681 1682 /* 1683 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1684 * be reallocated underneath the timeout handler's processing, then 1685 * the expire check is reliable. If the request is not expired, then 1686 * it was completed and reallocated as a new request after returning 1687 * from blk_mq_check_expired(). 1688 */ 1689 if (blk_mq_req_expired(rq, expired)) { 1690 expired->has_timedout_rq = true; 1691 return false; 1692 } 1693 return true; 1694 } 1695 1696 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1697 { 1698 struct blk_expired_data *expired = priv; 1699 1700 if (blk_mq_req_expired(rq, expired)) 1701 blk_mq_rq_timed_out(rq); 1702 return true; 1703 } 1704 1705 static void blk_mq_timeout_work(struct work_struct *work) 1706 { 1707 struct request_queue *q = 1708 container_of(work, struct request_queue, timeout_work); 1709 struct blk_expired_data expired = { 1710 .timeout_start = jiffies, 1711 }; 1712 struct blk_mq_hw_ctx *hctx; 1713 unsigned long i; 1714 1715 /* A deadlock might occur if a request is stuck requiring a 1716 * timeout at the same time a queue freeze is waiting 1717 * completion, since the timeout code would not be able to 1718 * acquire the queue reference here. 1719 * 1720 * That's why we don't use blk_queue_enter here; instead, we use 1721 * percpu_ref_tryget directly, because we need to be able to 1722 * obtain a reference even in the short window between the queue 1723 * starting to freeze, by dropping the first reference in 1724 * blk_freeze_queue_start, and the moment the last request is 1725 * consumed, marked by the instant q_usage_counter reaches 1726 * zero. 1727 */ 1728 if (!percpu_ref_tryget(&q->q_usage_counter)) 1729 return; 1730 1731 /* check if there is any timed-out request */ 1732 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1733 if (expired.has_timedout_rq) { 1734 /* 1735 * Before walking tags, we must ensure any submit started 1736 * before the current time has finished. Since the submit 1737 * uses srcu or rcu, wait for a synchronization point to 1738 * ensure all running submits have finished 1739 */ 1740 blk_mq_wait_quiesce_done(q->tag_set); 1741 1742 expired.next = 0; 1743 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1744 } 1745 1746 if (expired.next != 0) { 1747 mod_timer(&q->timeout, expired.next); 1748 } else { 1749 /* 1750 * Request timeouts are handled as a forward rolling timer. If 1751 * we end up here it means that no requests are pending and 1752 * also that no request has been pending for a while. Mark 1753 * each hctx as idle. 1754 */ 1755 queue_for_each_hw_ctx(q, hctx, i) { 1756 /* the hctx may be unmapped, so check it here */ 1757 if (blk_mq_hw_queue_mapped(hctx)) 1758 blk_mq_tag_idle(hctx); 1759 } 1760 } 1761 blk_queue_exit(q); 1762 } 1763 1764 struct flush_busy_ctx_data { 1765 struct blk_mq_hw_ctx *hctx; 1766 struct list_head *list; 1767 }; 1768 1769 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1770 { 1771 struct flush_busy_ctx_data *flush_data = data; 1772 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1773 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1774 enum hctx_type type = hctx->type; 1775 1776 spin_lock(&ctx->lock); 1777 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1778 sbitmap_clear_bit(sb, bitnr); 1779 spin_unlock(&ctx->lock); 1780 return true; 1781 } 1782 1783 /* 1784 * Process software queues that have been marked busy, splicing them 1785 * to the for-dispatch 1786 */ 1787 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1788 { 1789 struct flush_busy_ctx_data data = { 1790 .hctx = hctx, 1791 .list = list, 1792 }; 1793 1794 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1795 } 1796 1797 struct dispatch_rq_data { 1798 struct blk_mq_hw_ctx *hctx; 1799 struct request *rq; 1800 }; 1801 1802 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1803 void *data) 1804 { 1805 struct dispatch_rq_data *dispatch_data = data; 1806 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1808 enum hctx_type type = hctx->type; 1809 1810 spin_lock(&ctx->lock); 1811 if (!list_empty(&ctx->rq_lists[type])) { 1812 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1813 list_del_init(&dispatch_data->rq->queuelist); 1814 if (list_empty(&ctx->rq_lists[type])) 1815 sbitmap_clear_bit(sb, bitnr); 1816 } 1817 spin_unlock(&ctx->lock); 1818 1819 return !dispatch_data->rq; 1820 } 1821 1822 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1823 struct blk_mq_ctx *start) 1824 { 1825 unsigned off = start ? start->index_hw[hctx->type] : 0; 1826 struct dispatch_rq_data data = { 1827 .hctx = hctx, 1828 .rq = NULL, 1829 }; 1830 1831 __sbitmap_for_each_set(&hctx->ctx_map, off, 1832 dispatch_rq_from_ctx, &data); 1833 1834 return data.rq; 1835 } 1836 1837 bool __blk_mq_alloc_driver_tag(struct request *rq) 1838 { 1839 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1840 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1841 int tag; 1842 1843 blk_mq_tag_busy(rq->mq_hctx); 1844 1845 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1846 bt = &rq->mq_hctx->tags->breserved_tags; 1847 tag_offset = 0; 1848 } else { 1849 if (!hctx_may_queue(rq->mq_hctx, bt)) 1850 return false; 1851 } 1852 1853 tag = __sbitmap_queue_get(bt); 1854 if (tag == BLK_MQ_NO_TAG) 1855 return false; 1856 1857 rq->tag = tag + tag_offset; 1858 blk_mq_inc_active_requests(rq->mq_hctx); 1859 return true; 1860 } 1861 1862 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1863 int flags, void *key) 1864 { 1865 struct blk_mq_hw_ctx *hctx; 1866 1867 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1868 1869 spin_lock(&hctx->dispatch_wait_lock); 1870 if (!list_empty(&wait->entry)) { 1871 struct sbitmap_queue *sbq; 1872 1873 list_del_init(&wait->entry); 1874 sbq = &hctx->tags->bitmap_tags; 1875 atomic_dec(&sbq->ws_active); 1876 } 1877 spin_unlock(&hctx->dispatch_wait_lock); 1878 1879 blk_mq_run_hw_queue(hctx, true); 1880 return 1; 1881 } 1882 1883 /* 1884 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1885 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1886 * restart. For both cases, take care to check the condition again after 1887 * marking us as waiting. 1888 */ 1889 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1890 struct request *rq) 1891 { 1892 struct sbitmap_queue *sbq; 1893 struct wait_queue_head *wq; 1894 wait_queue_entry_t *wait; 1895 bool ret; 1896 1897 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1898 !(blk_mq_is_shared_tags(hctx->flags))) { 1899 blk_mq_sched_mark_restart_hctx(hctx); 1900 1901 /* 1902 * It's possible that a tag was freed in the window between the 1903 * allocation failure and adding the hardware queue to the wait 1904 * queue. 1905 * 1906 * Don't clear RESTART here, someone else could have set it. 1907 * At most this will cost an extra queue run. 1908 */ 1909 return blk_mq_get_driver_tag(rq); 1910 } 1911 1912 wait = &hctx->dispatch_wait; 1913 if (!list_empty_careful(&wait->entry)) 1914 return false; 1915 1916 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1917 sbq = &hctx->tags->breserved_tags; 1918 else 1919 sbq = &hctx->tags->bitmap_tags; 1920 wq = &bt_wait_ptr(sbq, hctx)->wait; 1921 1922 spin_lock_irq(&wq->lock); 1923 spin_lock(&hctx->dispatch_wait_lock); 1924 if (!list_empty(&wait->entry)) { 1925 spin_unlock(&hctx->dispatch_wait_lock); 1926 spin_unlock_irq(&wq->lock); 1927 return false; 1928 } 1929 1930 atomic_inc(&sbq->ws_active); 1931 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1932 __add_wait_queue(wq, wait); 1933 1934 /* 1935 * Add one explicit barrier since blk_mq_get_driver_tag() may 1936 * not imply barrier in case of failure. 1937 * 1938 * Order adding us to wait queue and allocating driver tag. 1939 * 1940 * The pair is the one implied in sbitmap_queue_wake_up() which 1941 * orders clearing sbitmap tag bits and waitqueue_active() in 1942 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1943 * 1944 * Otherwise, re-order of adding wait queue and getting driver tag 1945 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1946 * the waitqueue_active() may not observe us in wait queue. 1947 */ 1948 smp_mb(); 1949 1950 /* 1951 * It's possible that a tag was freed in the window between the 1952 * allocation failure and adding the hardware queue to the wait 1953 * queue. 1954 */ 1955 ret = blk_mq_get_driver_tag(rq); 1956 if (!ret) { 1957 spin_unlock(&hctx->dispatch_wait_lock); 1958 spin_unlock_irq(&wq->lock); 1959 return false; 1960 } 1961 1962 /* 1963 * We got a tag, remove ourselves from the wait queue to ensure 1964 * someone else gets the wakeup. 1965 */ 1966 list_del_init(&wait->entry); 1967 atomic_dec(&sbq->ws_active); 1968 spin_unlock(&hctx->dispatch_wait_lock); 1969 spin_unlock_irq(&wq->lock); 1970 1971 return true; 1972 } 1973 1974 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1975 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1976 /* 1977 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1978 * - EWMA is one simple way to compute running average value 1979 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1980 * - take 4 as factor for avoiding to get too small(0) result, and this 1981 * factor doesn't matter because EWMA decreases exponentially 1982 */ 1983 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1984 { 1985 unsigned int ewma; 1986 1987 ewma = hctx->dispatch_busy; 1988 1989 if (!ewma && !busy) 1990 return; 1991 1992 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1993 if (busy) 1994 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1995 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1996 1997 hctx->dispatch_busy = ewma; 1998 } 1999 2000 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 2001 2002 static void blk_mq_handle_dev_resource(struct request *rq, 2003 struct list_head *list) 2004 { 2005 list_add(&rq->queuelist, list); 2006 __blk_mq_requeue_request(rq); 2007 } 2008 2009 enum prep_dispatch { 2010 PREP_DISPATCH_OK, 2011 PREP_DISPATCH_NO_TAG, 2012 PREP_DISPATCH_NO_BUDGET, 2013 }; 2014 2015 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2016 bool need_budget) 2017 { 2018 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2019 int budget_token = -1; 2020 2021 if (need_budget) { 2022 budget_token = blk_mq_get_dispatch_budget(rq->q); 2023 if (budget_token < 0) { 2024 blk_mq_put_driver_tag(rq); 2025 return PREP_DISPATCH_NO_BUDGET; 2026 } 2027 blk_mq_set_rq_budget_token(rq, budget_token); 2028 } 2029 2030 if (!blk_mq_get_driver_tag(rq)) { 2031 /* 2032 * The initial allocation attempt failed, so we need to 2033 * rerun the hardware queue when a tag is freed. The 2034 * waitqueue takes care of that. If the queue is run 2035 * before we add this entry back on the dispatch list, 2036 * we'll re-run it below. 2037 */ 2038 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2039 /* 2040 * All budgets not got from this function will be put 2041 * together during handling partial dispatch 2042 */ 2043 if (need_budget) 2044 blk_mq_put_dispatch_budget(rq->q, budget_token); 2045 return PREP_DISPATCH_NO_TAG; 2046 } 2047 } 2048 2049 return PREP_DISPATCH_OK; 2050 } 2051 2052 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2053 static void blk_mq_release_budgets(struct request_queue *q, 2054 struct list_head *list) 2055 { 2056 struct request *rq; 2057 2058 list_for_each_entry(rq, list, queuelist) { 2059 int budget_token = blk_mq_get_rq_budget_token(rq); 2060 2061 if (budget_token >= 0) 2062 blk_mq_put_dispatch_budget(q, budget_token); 2063 } 2064 } 2065 2066 /* 2067 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2068 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2069 * details) 2070 * Attention, we should explicitly call this in unusual cases: 2071 * 1) did not queue everything initially scheduled to queue 2072 * 2) the last attempt to queue a request failed 2073 */ 2074 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2075 bool from_schedule) 2076 { 2077 if (hctx->queue->mq_ops->commit_rqs && queued) { 2078 trace_block_unplug(hctx->queue, queued, !from_schedule); 2079 hctx->queue->mq_ops->commit_rqs(hctx); 2080 } 2081 } 2082 2083 /* 2084 * Returns true if we did some work AND can potentially do more. 2085 */ 2086 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2087 bool get_budget) 2088 { 2089 enum prep_dispatch prep; 2090 struct request_queue *q = hctx->queue; 2091 struct request *rq; 2092 int queued; 2093 blk_status_t ret = BLK_STS_OK; 2094 bool needs_resource = false; 2095 2096 if (list_empty(list)) 2097 return false; 2098 2099 /* 2100 * Now process all the entries, sending them to the driver. 2101 */ 2102 queued = 0; 2103 do { 2104 struct blk_mq_queue_data bd; 2105 2106 rq = list_first_entry(list, struct request, queuelist); 2107 2108 WARN_ON_ONCE(hctx != rq->mq_hctx); 2109 prep = blk_mq_prep_dispatch_rq(rq, get_budget); 2110 if (prep != PREP_DISPATCH_OK) 2111 break; 2112 2113 list_del_init(&rq->queuelist); 2114 2115 bd.rq = rq; 2116 bd.last = list_empty(list); 2117 2118 ret = q->mq_ops->queue_rq(hctx, &bd); 2119 switch (ret) { 2120 case BLK_STS_OK: 2121 queued++; 2122 break; 2123 case BLK_STS_RESOURCE: 2124 needs_resource = true; 2125 fallthrough; 2126 case BLK_STS_DEV_RESOURCE: 2127 blk_mq_handle_dev_resource(rq, list); 2128 goto out; 2129 default: 2130 blk_mq_end_request(rq, ret); 2131 } 2132 } while (!list_empty(list)); 2133 out: 2134 /* If we didn't flush the entire list, we could have told the driver 2135 * there was more coming, but that turned out to be a lie. 2136 */ 2137 if (!list_empty(list) || ret != BLK_STS_OK) 2138 blk_mq_commit_rqs(hctx, queued, false); 2139 2140 /* 2141 * Any items that need requeuing? Stuff them into hctx->dispatch, 2142 * that is where we will continue on next queue run. 2143 */ 2144 if (!list_empty(list)) { 2145 bool needs_restart; 2146 /* For non-shared tags, the RESTART check will suffice */ 2147 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2148 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2149 blk_mq_is_shared_tags(hctx->flags)); 2150 2151 /* 2152 * If the caller allocated budgets, free the budgets of the 2153 * requests that have not yet been passed to the block driver. 2154 */ 2155 if (!get_budget) 2156 blk_mq_release_budgets(q, list); 2157 2158 spin_lock(&hctx->lock); 2159 list_splice_tail_init(list, &hctx->dispatch); 2160 spin_unlock(&hctx->lock); 2161 2162 /* 2163 * Order adding requests to hctx->dispatch and checking 2164 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2165 * in blk_mq_sched_restart(). Avoid restart code path to 2166 * miss the new added requests to hctx->dispatch, meantime 2167 * SCHED_RESTART is observed here. 2168 */ 2169 smp_mb(); 2170 2171 /* 2172 * If SCHED_RESTART was set by the caller of this function and 2173 * it is no longer set that means that it was cleared by another 2174 * thread and hence that a queue rerun is needed. 2175 * 2176 * If 'no_tag' is set, that means that we failed getting 2177 * a driver tag with an I/O scheduler attached. If our dispatch 2178 * waitqueue is no longer active, ensure that we run the queue 2179 * AFTER adding our entries back to the list. 2180 * 2181 * If no I/O scheduler has been configured it is possible that 2182 * the hardware queue got stopped and restarted before requests 2183 * were pushed back onto the dispatch list. Rerun the queue to 2184 * avoid starvation. Notes: 2185 * - blk_mq_run_hw_queue() checks whether or not a queue has 2186 * been stopped before rerunning a queue. 2187 * - Some but not all block drivers stop a queue before 2188 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2189 * and dm-rq. 2190 * 2191 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2192 * bit is set, run queue after a delay to avoid IO stalls 2193 * that could otherwise occur if the queue is idle. We'll do 2194 * similar if we couldn't get budget or couldn't lock a zone 2195 * and SCHED_RESTART is set. 2196 */ 2197 needs_restart = blk_mq_sched_needs_restart(hctx); 2198 if (prep == PREP_DISPATCH_NO_BUDGET) 2199 needs_resource = true; 2200 if (!needs_restart || 2201 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2202 blk_mq_run_hw_queue(hctx, true); 2203 else if (needs_resource) 2204 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2205 2206 blk_mq_update_dispatch_busy(hctx, true); 2207 return false; 2208 } 2209 2210 blk_mq_update_dispatch_busy(hctx, false); 2211 return true; 2212 } 2213 2214 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2215 { 2216 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2217 2218 if (cpu >= nr_cpu_ids) 2219 cpu = cpumask_first(hctx->cpumask); 2220 return cpu; 2221 } 2222 2223 /* 2224 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2225 * it for speeding up the check 2226 */ 2227 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2228 { 2229 return hctx->next_cpu >= nr_cpu_ids; 2230 } 2231 2232 /* 2233 * It'd be great if the workqueue API had a way to pass 2234 * in a mask and had some smarts for more clever placement. 2235 * For now we just round-robin here, switching for every 2236 * BLK_MQ_CPU_WORK_BATCH queued items. 2237 */ 2238 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2239 { 2240 bool tried = false; 2241 int next_cpu = hctx->next_cpu; 2242 2243 /* Switch to unbound if no allowable CPUs in this hctx */ 2244 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2245 return WORK_CPU_UNBOUND; 2246 2247 if (--hctx->next_cpu_batch <= 0) { 2248 select_cpu: 2249 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2250 cpu_online_mask); 2251 if (next_cpu >= nr_cpu_ids) 2252 next_cpu = blk_mq_first_mapped_cpu(hctx); 2253 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2254 } 2255 2256 /* 2257 * Do unbound schedule if we can't find a online CPU for this hctx, 2258 * and it should only happen in the path of handling CPU DEAD. 2259 */ 2260 if (!cpu_online(next_cpu)) { 2261 if (!tried) { 2262 tried = true; 2263 goto select_cpu; 2264 } 2265 2266 /* 2267 * Make sure to re-select CPU next time once after CPUs 2268 * in hctx->cpumask become online again. 2269 */ 2270 hctx->next_cpu = next_cpu; 2271 hctx->next_cpu_batch = 1; 2272 return WORK_CPU_UNBOUND; 2273 } 2274 2275 hctx->next_cpu = next_cpu; 2276 return next_cpu; 2277 } 2278 2279 /** 2280 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2281 * @hctx: Pointer to the hardware queue to run. 2282 * @msecs: Milliseconds of delay to wait before running the queue. 2283 * 2284 * Run a hardware queue asynchronously with a delay of @msecs. 2285 */ 2286 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2287 { 2288 if (unlikely(blk_mq_hctx_stopped(hctx))) 2289 return; 2290 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2291 msecs_to_jiffies(msecs)); 2292 } 2293 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2294 2295 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2296 { 2297 bool need_run; 2298 2299 /* 2300 * When queue is quiesced, we may be switching io scheduler, or 2301 * updating nr_hw_queues, or other things, and we can't run queue 2302 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2303 * 2304 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2305 * quiesced. 2306 */ 2307 __blk_mq_run_dispatch_ops(hctx->queue, false, 2308 need_run = !blk_queue_quiesced(hctx->queue) && 2309 blk_mq_hctx_has_pending(hctx)); 2310 return need_run; 2311 } 2312 2313 /** 2314 * blk_mq_run_hw_queue - Start to run a hardware queue. 2315 * @hctx: Pointer to the hardware queue to run. 2316 * @async: If we want to run the queue asynchronously. 2317 * 2318 * Check if the request queue is not in a quiesced state and if there are 2319 * pending requests to be sent. If this is true, run the queue to send requests 2320 * to hardware. 2321 */ 2322 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2323 { 2324 bool need_run; 2325 2326 /* 2327 * We can't run the queue inline with interrupts disabled. 2328 */ 2329 WARN_ON_ONCE(!async && in_interrupt()); 2330 2331 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2332 2333 need_run = blk_mq_hw_queue_need_run(hctx); 2334 if (!need_run) { 2335 unsigned long flags; 2336 2337 /* 2338 * Synchronize with blk_mq_unquiesce_queue(), because we check 2339 * if hw queue is quiesced locklessly above, we need the use 2340 * ->queue_lock to make sure we see the up-to-date status to 2341 * not miss rerunning the hw queue. 2342 */ 2343 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2344 need_run = blk_mq_hw_queue_need_run(hctx); 2345 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2346 2347 if (!need_run) 2348 return; 2349 } 2350 2351 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2352 blk_mq_delay_run_hw_queue(hctx, 0); 2353 return; 2354 } 2355 2356 blk_mq_run_dispatch_ops(hctx->queue, 2357 blk_mq_sched_dispatch_requests(hctx)); 2358 } 2359 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2360 2361 /* 2362 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2363 * scheduler. 2364 */ 2365 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2366 { 2367 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2368 /* 2369 * If the IO scheduler does not respect hardware queues when 2370 * dispatching, we just don't bother with multiple HW queues and 2371 * dispatch from hctx for the current CPU since running multiple queues 2372 * just causes lock contention inside the scheduler and pointless cache 2373 * bouncing. 2374 */ 2375 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2376 2377 if (!blk_mq_hctx_stopped(hctx)) 2378 return hctx; 2379 return NULL; 2380 } 2381 2382 /** 2383 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2384 * @q: Pointer to the request queue to run. 2385 * @async: If we want to run the queue asynchronously. 2386 */ 2387 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2388 { 2389 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2390 unsigned long i; 2391 2392 sq_hctx = NULL; 2393 if (blk_queue_sq_sched(q)) 2394 sq_hctx = blk_mq_get_sq_hctx(q); 2395 queue_for_each_hw_ctx(q, hctx, i) { 2396 if (blk_mq_hctx_stopped(hctx)) 2397 continue; 2398 /* 2399 * Dispatch from this hctx either if there's no hctx preferred 2400 * by IO scheduler or if it has requests that bypass the 2401 * scheduler. 2402 */ 2403 if (!sq_hctx || sq_hctx == hctx || 2404 !list_empty_careful(&hctx->dispatch)) 2405 blk_mq_run_hw_queue(hctx, async); 2406 } 2407 } 2408 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2409 2410 /** 2411 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2412 * @q: Pointer to the request queue to run. 2413 * @msecs: Milliseconds of delay to wait before running the queues. 2414 */ 2415 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2416 { 2417 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2418 unsigned long i; 2419 2420 sq_hctx = NULL; 2421 if (blk_queue_sq_sched(q)) 2422 sq_hctx = blk_mq_get_sq_hctx(q); 2423 queue_for_each_hw_ctx(q, hctx, i) { 2424 if (blk_mq_hctx_stopped(hctx)) 2425 continue; 2426 /* 2427 * If there is already a run_work pending, leave the 2428 * pending delay untouched. Otherwise, a hctx can stall 2429 * if another hctx is re-delaying the other's work 2430 * before the work executes. 2431 */ 2432 if (delayed_work_pending(&hctx->run_work)) 2433 continue; 2434 /* 2435 * Dispatch from this hctx either if there's no hctx preferred 2436 * by IO scheduler or if it has requests that bypass the 2437 * scheduler. 2438 */ 2439 if (!sq_hctx || sq_hctx == hctx || 2440 !list_empty_careful(&hctx->dispatch)) 2441 blk_mq_delay_run_hw_queue(hctx, msecs); 2442 } 2443 } 2444 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2445 2446 /* 2447 * This function is often used for pausing .queue_rq() by driver when 2448 * there isn't enough resource or some conditions aren't satisfied, and 2449 * BLK_STS_RESOURCE is usually returned. 2450 * 2451 * We do not guarantee that dispatch can be drained or blocked 2452 * after blk_mq_stop_hw_queue() returns. Please use 2453 * blk_mq_quiesce_queue() for that requirement. 2454 */ 2455 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2456 { 2457 cancel_delayed_work(&hctx->run_work); 2458 2459 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2460 } 2461 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2462 2463 /* 2464 * This function is often used for pausing .queue_rq() by driver when 2465 * there isn't enough resource or some conditions aren't satisfied, and 2466 * BLK_STS_RESOURCE is usually returned. 2467 * 2468 * We do not guarantee that dispatch can be drained or blocked 2469 * after blk_mq_stop_hw_queues() returns. Please use 2470 * blk_mq_quiesce_queue() for that requirement. 2471 */ 2472 void blk_mq_stop_hw_queues(struct request_queue *q) 2473 { 2474 struct blk_mq_hw_ctx *hctx; 2475 unsigned long i; 2476 2477 queue_for_each_hw_ctx(q, hctx, i) 2478 blk_mq_stop_hw_queue(hctx); 2479 } 2480 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2481 2482 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2483 { 2484 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2485 2486 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2487 } 2488 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2489 2490 void blk_mq_start_hw_queues(struct request_queue *q) 2491 { 2492 struct blk_mq_hw_ctx *hctx; 2493 unsigned long i; 2494 2495 queue_for_each_hw_ctx(q, hctx, i) 2496 blk_mq_start_hw_queue(hctx); 2497 } 2498 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2499 2500 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2501 { 2502 if (!blk_mq_hctx_stopped(hctx)) 2503 return; 2504 2505 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2506 /* 2507 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2508 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2509 * list in the subsequent routine. 2510 */ 2511 smp_mb__after_atomic(); 2512 blk_mq_run_hw_queue(hctx, async); 2513 } 2514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2515 2516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2517 { 2518 struct blk_mq_hw_ctx *hctx; 2519 unsigned long i; 2520 2521 queue_for_each_hw_ctx(q, hctx, i) 2522 blk_mq_start_stopped_hw_queue(hctx, async || 2523 (hctx->flags & BLK_MQ_F_BLOCKING)); 2524 } 2525 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2526 2527 static void blk_mq_run_work_fn(struct work_struct *work) 2528 { 2529 struct blk_mq_hw_ctx *hctx = 2530 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2531 2532 blk_mq_run_dispatch_ops(hctx->queue, 2533 blk_mq_sched_dispatch_requests(hctx)); 2534 } 2535 2536 /** 2537 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2538 * @rq: Pointer to request to be inserted. 2539 * @flags: BLK_MQ_INSERT_* 2540 * 2541 * Should only be used carefully, when the caller knows we want to 2542 * bypass a potential IO scheduler on the target device. 2543 */ 2544 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2545 { 2546 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2547 2548 spin_lock(&hctx->lock); 2549 if (flags & BLK_MQ_INSERT_AT_HEAD) 2550 list_add(&rq->queuelist, &hctx->dispatch); 2551 else 2552 list_add_tail(&rq->queuelist, &hctx->dispatch); 2553 spin_unlock(&hctx->lock); 2554 } 2555 2556 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2557 struct blk_mq_ctx *ctx, struct list_head *list, 2558 bool run_queue_async) 2559 { 2560 struct request *rq; 2561 enum hctx_type type = hctx->type; 2562 2563 /* 2564 * Try to issue requests directly if the hw queue isn't busy to save an 2565 * extra enqueue & dequeue to the sw queue. 2566 */ 2567 if (!hctx->dispatch_busy && !run_queue_async) { 2568 blk_mq_run_dispatch_ops(hctx->queue, 2569 blk_mq_try_issue_list_directly(hctx, list)); 2570 if (list_empty(list)) 2571 goto out; 2572 } 2573 2574 /* 2575 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2576 * offline now 2577 */ 2578 list_for_each_entry(rq, list, queuelist) { 2579 BUG_ON(rq->mq_ctx != ctx); 2580 trace_block_rq_insert(rq); 2581 if (rq->cmd_flags & REQ_NOWAIT) 2582 run_queue_async = true; 2583 } 2584 2585 spin_lock(&ctx->lock); 2586 list_splice_tail_init(list, &ctx->rq_lists[type]); 2587 blk_mq_hctx_mark_pending(hctx, ctx); 2588 spin_unlock(&ctx->lock); 2589 out: 2590 blk_mq_run_hw_queue(hctx, run_queue_async); 2591 } 2592 2593 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2594 { 2595 struct request_queue *q = rq->q; 2596 struct blk_mq_ctx *ctx = rq->mq_ctx; 2597 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2598 2599 if (blk_rq_is_passthrough(rq)) { 2600 /* 2601 * Passthrough request have to be added to hctx->dispatch 2602 * directly. The device may be in a situation where it can't 2603 * handle FS request, and always returns BLK_STS_RESOURCE for 2604 * them, which gets them added to hctx->dispatch. 2605 * 2606 * If a passthrough request is required to unblock the queues, 2607 * and it is added to the scheduler queue, there is no chance to 2608 * dispatch it given we prioritize requests in hctx->dispatch. 2609 */ 2610 blk_mq_request_bypass_insert(rq, flags); 2611 } else if (req_op(rq) == REQ_OP_FLUSH) { 2612 /* 2613 * Firstly normal IO request is inserted to scheduler queue or 2614 * sw queue, meantime we add flush request to dispatch queue( 2615 * hctx->dispatch) directly and there is at most one in-flight 2616 * flush request for each hw queue, so it doesn't matter to add 2617 * flush request to tail or front of the dispatch queue. 2618 * 2619 * Secondly in case of NCQ, flush request belongs to non-NCQ 2620 * command, and queueing it will fail when there is any 2621 * in-flight normal IO request(NCQ command). When adding flush 2622 * rq to the front of hctx->dispatch, it is easier to introduce 2623 * extra time to flush rq's latency because of S_SCHED_RESTART 2624 * compared with adding to the tail of dispatch queue, then 2625 * chance of flush merge is increased, and less flush requests 2626 * will be issued to controller. It is observed that ~10% time 2627 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2628 * drive when adding flush rq to the front of hctx->dispatch. 2629 * 2630 * Simply queue flush rq to the front of hctx->dispatch so that 2631 * intensive flush workloads can benefit in case of NCQ HW. 2632 */ 2633 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2634 } else if (q->elevator) { 2635 LIST_HEAD(list); 2636 2637 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2638 2639 list_add(&rq->queuelist, &list); 2640 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2641 } else { 2642 trace_block_rq_insert(rq); 2643 2644 spin_lock(&ctx->lock); 2645 if (flags & BLK_MQ_INSERT_AT_HEAD) 2646 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2647 else 2648 list_add_tail(&rq->queuelist, 2649 &ctx->rq_lists[hctx->type]); 2650 blk_mq_hctx_mark_pending(hctx, ctx); 2651 spin_unlock(&ctx->lock); 2652 } 2653 } 2654 2655 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2656 unsigned int nr_segs) 2657 { 2658 int err; 2659 2660 if (bio->bi_opf & REQ_RAHEAD) 2661 rq->cmd_flags |= REQ_FAILFAST_MASK; 2662 2663 rq->bio = rq->biotail = bio; 2664 rq->__sector = bio->bi_iter.bi_sector; 2665 rq->__data_len = bio->bi_iter.bi_size; 2666 rq->nr_phys_segments = nr_segs; 2667 if (bio_integrity(bio)) 2668 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2669 bio); 2670 2671 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2672 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2673 WARN_ON_ONCE(err); 2674 2675 blk_account_io_start(rq); 2676 } 2677 2678 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2679 struct request *rq, bool last) 2680 { 2681 struct request_queue *q = rq->q; 2682 struct blk_mq_queue_data bd = { 2683 .rq = rq, 2684 .last = last, 2685 }; 2686 blk_status_t ret; 2687 2688 /* 2689 * For OK queue, we are done. For error, caller may kill it. 2690 * Any other error (busy), just add it to our list as we 2691 * previously would have done. 2692 */ 2693 ret = q->mq_ops->queue_rq(hctx, &bd); 2694 switch (ret) { 2695 case BLK_STS_OK: 2696 blk_mq_update_dispatch_busy(hctx, false); 2697 break; 2698 case BLK_STS_RESOURCE: 2699 case BLK_STS_DEV_RESOURCE: 2700 blk_mq_update_dispatch_busy(hctx, true); 2701 __blk_mq_requeue_request(rq); 2702 break; 2703 default: 2704 blk_mq_update_dispatch_busy(hctx, false); 2705 break; 2706 } 2707 2708 return ret; 2709 } 2710 2711 static bool blk_mq_get_budget_and_tag(struct request *rq) 2712 { 2713 int budget_token; 2714 2715 budget_token = blk_mq_get_dispatch_budget(rq->q); 2716 if (budget_token < 0) 2717 return false; 2718 blk_mq_set_rq_budget_token(rq, budget_token); 2719 if (!blk_mq_get_driver_tag(rq)) { 2720 blk_mq_put_dispatch_budget(rq->q, budget_token); 2721 return false; 2722 } 2723 return true; 2724 } 2725 2726 /** 2727 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2728 * @hctx: Pointer of the associated hardware queue. 2729 * @rq: Pointer to request to be sent. 2730 * 2731 * If the device has enough resources to accept a new request now, send the 2732 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2733 * we can try send it another time in the future. Requests inserted at this 2734 * queue have higher priority. 2735 */ 2736 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2737 struct request *rq) 2738 { 2739 blk_status_t ret; 2740 2741 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2742 blk_mq_insert_request(rq, 0); 2743 blk_mq_run_hw_queue(hctx, false); 2744 return; 2745 } 2746 2747 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2748 blk_mq_insert_request(rq, 0); 2749 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2750 return; 2751 } 2752 2753 ret = __blk_mq_issue_directly(hctx, rq, true); 2754 switch (ret) { 2755 case BLK_STS_OK: 2756 break; 2757 case BLK_STS_RESOURCE: 2758 case BLK_STS_DEV_RESOURCE: 2759 blk_mq_request_bypass_insert(rq, 0); 2760 blk_mq_run_hw_queue(hctx, false); 2761 break; 2762 default: 2763 blk_mq_end_request(rq, ret); 2764 break; 2765 } 2766 } 2767 2768 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2769 { 2770 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2771 2772 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2773 blk_mq_insert_request(rq, 0); 2774 blk_mq_run_hw_queue(hctx, false); 2775 return BLK_STS_OK; 2776 } 2777 2778 if (!blk_mq_get_budget_and_tag(rq)) 2779 return BLK_STS_RESOURCE; 2780 return __blk_mq_issue_directly(hctx, rq, last); 2781 } 2782 2783 static void blk_mq_issue_direct(struct rq_list *rqs) 2784 { 2785 struct blk_mq_hw_ctx *hctx = NULL; 2786 struct request *rq; 2787 int queued = 0; 2788 blk_status_t ret = BLK_STS_OK; 2789 2790 while ((rq = rq_list_pop(rqs))) { 2791 bool last = rq_list_empty(rqs); 2792 2793 if (hctx != rq->mq_hctx) { 2794 if (hctx) { 2795 blk_mq_commit_rqs(hctx, queued, false); 2796 queued = 0; 2797 } 2798 hctx = rq->mq_hctx; 2799 } 2800 2801 ret = blk_mq_request_issue_directly(rq, last); 2802 switch (ret) { 2803 case BLK_STS_OK: 2804 queued++; 2805 break; 2806 case BLK_STS_RESOURCE: 2807 case BLK_STS_DEV_RESOURCE: 2808 blk_mq_request_bypass_insert(rq, 0); 2809 blk_mq_run_hw_queue(hctx, false); 2810 goto out; 2811 default: 2812 blk_mq_end_request(rq, ret); 2813 break; 2814 } 2815 } 2816 2817 out: 2818 if (ret != BLK_STS_OK) 2819 blk_mq_commit_rqs(hctx, queued, false); 2820 } 2821 2822 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs) 2823 { 2824 if (blk_queue_quiesced(q)) 2825 return; 2826 q->mq_ops->queue_rqs(rqs); 2827 } 2828 2829 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs, 2830 struct rq_list *queue_rqs) 2831 { 2832 struct request *rq = rq_list_pop(rqs); 2833 struct request_queue *this_q = rq->q; 2834 struct request **prev = &rqs->head; 2835 struct rq_list matched_rqs = {}; 2836 struct request *last = NULL; 2837 unsigned depth = 1; 2838 2839 rq_list_add_tail(&matched_rqs, rq); 2840 while ((rq = *prev)) { 2841 if (rq->q == this_q) { 2842 /* move rq from rqs to matched_rqs */ 2843 *prev = rq->rq_next; 2844 rq_list_add_tail(&matched_rqs, rq); 2845 depth++; 2846 } else { 2847 /* leave rq in rqs */ 2848 prev = &rq->rq_next; 2849 last = rq; 2850 } 2851 } 2852 2853 rqs->tail = last; 2854 *queue_rqs = matched_rqs; 2855 return depth; 2856 } 2857 2858 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth) 2859 { 2860 struct request_queue *q = rq_list_peek(rqs)->q; 2861 2862 trace_block_unplug(q, depth, true); 2863 2864 /* 2865 * Peek first request and see if we have a ->queue_rqs() hook. 2866 * If we do, we can dispatch the whole list in one go. 2867 * We already know at this point that all requests belong to the 2868 * same queue, caller must ensure that's the case. 2869 */ 2870 if (q->mq_ops->queue_rqs) { 2871 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs)); 2872 if (rq_list_empty(rqs)) 2873 return; 2874 } 2875 2876 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs)); 2877 } 2878 2879 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched) 2880 { 2881 struct blk_mq_hw_ctx *this_hctx = NULL; 2882 struct blk_mq_ctx *this_ctx = NULL; 2883 struct rq_list requeue_list = {}; 2884 unsigned int depth = 0; 2885 bool is_passthrough = false; 2886 LIST_HEAD(list); 2887 2888 do { 2889 struct request *rq = rq_list_pop(rqs); 2890 2891 if (!this_hctx) { 2892 this_hctx = rq->mq_hctx; 2893 this_ctx = rq->mq_ctx; 2894 is_passthrough = blk_rq_is_passthrough(rq); 2895 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2896 is_passthrough != blk_rq_is_passthrough(rq)) { 2897 rq_list_add_tail(&requeue_list, rq); 2898 continue; 2899 } 2900 list_add_tail(&rq->queuelist, &list); 2901 depth++; 2902 } while (!rq_list_empty(rqs)); 2903 2904 *rqs = requeue_list; 2905 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2906 2907 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2908 /* passthrough requests should never be issued to the I/O scheduler */ 2909 if (is_passthrough) { 2910 spin_lock(&this_hctx->lock); 2911 list_splice_tail_init(&list, &this_hctx->dispatch); 2912 spin_unlock(&this_hctx->lock); 2913 blk_mq_run_hw_queue(this_hctx, from_sched); 2914 } else if (this_hctx->queue->elevator) { 2915 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2916 &list, 0); 2917 blk_mq_run_hw_queue(this_hctx, from_sched); 2918 } else { 2919 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2920 } 2921 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2922 } 2923 2924 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs) 2925 { 2926 do { 2927 struct rq_list queue_rqs; 2928 unsigned depth; 2929 2930 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs); 2931 blk_mq_dispatch_queue_requests(&queue_rqs, depth); 2932 while (!rq_list_empty(&queue_rqs)) 2933 blk_mq_dispatch_list(&queue_rqs, false); 2934 } while (!rq_list_empty(rqs)); 2935 } 2936 2937 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2938 { 2939 unsigned int depth; 2940 2941 /* 2942 * We may have been called recursively midway through handling 2943 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2944 * To avoid mq_list changing under our feet, clear rq_count early and 2945 * bail out specifically if rq_count is 0 rather than checking 2946 * whether the mq_list is empty. 2947 */ 2948 if (plug->rq_count == 0) 2949 return; 2950 depth = plug->rq_count; 2951 plug->rq_count = 0; 2952 2953 if (!plug->has_elevator && !from_schedule) { 2954 if (plug->multiple_queues) { 2955 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list); 2956 return; 2957 } 2958 2959 blk_mq_dispatch_queue_requests(&plug->mq_list, depth); 2960 if (rq_list_empty(&plug->mq_list)) 2961 return; 2962 } 2963 2964 do { 2965 blk_mq_dispatch_list(&plug->mq_list, from_schedule); 2966 } while (!rq_list_empty(&plug->mq_list)); 2967 } 2968 2969 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2970 struct list_head *list) 2971 { 2972 int queued = 0; 2973 blk_status_t ret = BLK_STS_OK; 2974 2975 while (!list_empty(list)) { 2976 struct request *rq = list_first_entry(list, struct request, 2977 queuelist); 2978 2979 list_del_init(&rq->queuelist); 2980 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2981 switch (ret) { 2982 case BLK_STS_OK: 2983 queued++; 2984 break; 2985 case BLK_STS_RESOURCE: 2986 case BLK_STS_DEV_RESOURCE: 2987 blk_mq_request_bypass_insert(rq, 0); 2988 if (list_empty(list)) 2989 blk_mq_run_hw_queue(hctx, false); 2990 goto out; 2991 default: 2992 blk_mq_end_request(rq, ret); 2993 break; 2994 } 2995 } 2996 2997 out: 2998 if (ret != BLK_STS_OK) 2999 blk_mq_commit_rqs(hctx, queued, false); 3000 } 3001 3002 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 3003 struct bio *bio, unsigned int nr_segs) 3004 { 3005 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 3006 if (blk_attempt_plug_merge(q, bio, nr_segs)) 3007 return true; 3008 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 3009 return true; 3010 } 3011 return false; 3012 } 3013 3014 static struct request *blk_mq_get_new_requests(struct request_queue *q, 3015 struct blk_plug *plug, 3016 struct bio *bio) 3017 { 3018 struct blk_mq_alloc_data data = { 3019 .q = q, 3020 .flags = 0, 3021 .shallow_depth = 0, 3022 .cmd_flags = bio->bi_opf, 3023 .rq_flags = 0, 3024 .nr_tags = 1, 3025 .cached_rqs = NULL, 3026 .ctx = NULL, 3027 .hctx = NULL 3028 }; 3029 struct request *rq; 3030 3031 rq_qos_throttle(q, bio); 3032 3033 if (plug) { 3034 data.nr_tags = plug->nr_ios; 3035 plug->nr_ios = 1; 3036 data.cached_rqs = &plug->cached_rqs; 3037 } 3038 3039 rq = __blk_mq_alloc_requests(&data); 3040 if (unlikely(!rq)) 3041 rq_qos_cleanup(q, bio); 3042 return rq; 3043 } 3044 3045 /* 3046 * Check if there is a suitable cached request and return it. 3047 */ 3048 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 3049 struct request_queue *q, blk_opf_t opf) 3050 { 3051 enum hctx_type type = blk_mq_get_hctx_type(opf); 3052 struct request *rq; 3053 3054 if (!plug) 3055 return NULL; 3056 rq = rq_list_peek(&plug->cached_rqs); 3057 if (!rq || rq->q != q) 3058 return NULL; 3059 if (type != rq->mq_hctx->type && 3060 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3061 return NULL; 3062 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3063 return NULL; 3064 return rq; 3065 } 3066 3067 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3068 struct bio *bio) 3069 { 3070 if (rq_list_pop(&plug->cached_rqs) != rq) 3071 WARN_ON_ONCE(1); 3072 3073 /* 3074 * If any qos ->throttle() end up blocking, we will have flushed the 3075 * plug and hence killed the cached_rq list as well. Pop this entry 3076 * before we throttle. 3077 */ 3078 rq_qos_throttle(rq->q, bio); 3079 3080 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3081 rq->cmd_flags = bio->bi_opf; 3082 INIT_LIST_HEAD(&rq->queuelist); 3083 } 3084 3085 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3086 { 3087 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3088 3089 /* .bi_sector of any zero sized bio need to be initialized */ 3090 if ((bio->bi_iter.bi_size & bs_mask) || 3091 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3092 return true; 3093 return false; 3094 } 3095 3096 /** 3097 * blk_mq_submit_bio - Create and send a request to block device. 3098 * @bio: Bio pointer. 3099 * 3100 * Builds up a request structure from @q and @bio and send to the device. The 3101 * request may not be queued directly to hardware if: 3102 * * This request can be merged with another one 3103 * * We want to place request at plug queue for possible future merging 3104 * * There is an IO scheduler active at this queue 3105 * 3106 * It will not queue the request if there is an error with the bio, or at the 3107 * request creation. 3108 */ 3109 void blk_mq_submit_bio(struct bio *bio) 3110 { 3111 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3112 struct blk_plug *plug = current->plug; 3113 const int is_sync = op_is_sync(bio->bi_opf); 3114 struct blk_mq_hw_ctx *hctx; 3115 unsigned int nr_segs; 3116 struct request *rq; 3117 blk_status_t ret; 3118 3119 /* 3120 * If the plug has a cached request for this queue, try to use it. 3121 */ 3122 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3123 3124 /* 3125 * A BIO that was released from a zone write plug has already been 3126 * through the preparation in this function, already holds a reference 3127 * on the queue usage counter, and is the only write BIO in-flight for 3128 * the target zone. Go straight to preparing a request for it. 3129 */ 3130 if (bio_zone_write_plugging(bio)) { 3131 nr_segs = bio->__bi_nr_segments; 3132 if (rq) 3133 blk_queue_exit(q); 3134 goto new_request; 3135 } 3136 3137 /* 3138 * The cached request already holds a q_usage_counter reference and we 3139 * don't have to acquire a new one if we use it. 3140 */ 3141 if (!rq) { 3142 if (unlikely(bio_queue_enter(bio))) 3143 return; 3144 } 3145 3146 /* 3147 * Device reconfiguration may change logical block size or reduce the 3148 * number of poll queues, so the checks for alignment and poll support 3149 * have to be done with queue usage counter held. 3150 */ 3151 if (unlikely(bio_unaligned(bio, q))) { 3152 bio_io_error(bio); 3153 goto queue_exit; 3154 } 3155 3156 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) { 3157 bio->bi_status = BLK_STS_NOTSUPP; 3158 bio_endio(bio); 3159 goto queue_exit; 3160 } 3161 3162 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3163 if (!bio) 3164 goto queue_exit; 3165 3166 if (!bio_integrity_prep(bio)) 3167 goto queue_exit; 3168 3169 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3170 goto queue_exit; 3171 3172 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 3173 goto queue_exit; 3174 3175 new_request: 3176 if (rq) { 3177 blk_mq_use_cached_rq(rq, plug, bio); 3178 } else { 3179 rq = blk_mq_get_new_requests(q, plug, bio); 3180 if (unlikely(!rq)) { 3181 if (bio->bi_opf & REQ_NOWAIT) 3182 bio_wouldblock_error(bio); 3183 goto queue_exit; 3184 } 3185 } 3186 3187 trace_block_getrq(bio); 3188 3189 rq_qos_track(q, rq, bio); 3190 3191 blk_mq_bio_to_request(rq, bio, nr_segs); 3192 3193 ret = blk_crypto_rq_get_keyslot(rq); 3194 if (ret != BLK_STS_OK) { 3195 bio->bi_status = ret; 3196 bio_endio(bio); 3197 blk_mq_free_request(rq); 3198 return; 3199 } 3200 3201 if (bio_zone_write_plugging(bio)) 3202 blk_zone_write_plug_init_request(rq); 3203 3204 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3205 return; 3206 3207 if (plug) { 3208 blk_add_rq_to_plug(plug, rq); 3209 return; 3210 } 3211 3212 hctx = rq->mq_hctx; 3213 if ((rq->rq_flags & RQF_USE_SCHED) || 3214 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3215 blk_mq_insert_request(rq, 0); 3216 blk_mq_run_hw_queue(hctx, true); 3217 } else { 3218 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3219 } 3220 return; 3221 3222 queue_exit: 3223 /* 3224 * Don't drop the queue reference if we were trying to use a cached 3225 * request and thus didn't acquire one. 3226 */ 3227 if (!rq) 3228 blk_queue_exit(q); 3229 } 3230 3231 #ifdef CONFIG_BLK_MQ_STACKING 3232 /** 3233 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3234 * @rq: the request being queued 3235 */ 3236 blk_status_t blk_insert_cloned_request(struct request *rq) 3237 { 3238 struct request_queue *q = rq->q; 3239 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3240 unsigned int max_segments = blk_rq_get_max_segments(rq); 3241 blk_status_t ret; 3242 3243 if (blk_rq_sectors(rq) > max_sectors) { 3244 /* 3245 * SCSI device does not have a good way to return if 3246 * Write Same/Zero is actually supported. If a device rejects 3247 * a non-read/write command (discard, write same,etc.) the 3248 * low-level device driver will set the relevant queue limit to 3249 * 0 to prevent blk-lib from issuing more of the offending 3250 * operations. Commands queued prior to the queue limit being 3251 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3252 * errors being propagated to upper layers. 3253 */ 3254 if (max_sectors == 0) 3255 return BLK_STS_NOTSUPP; 3256 3257 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3258 __func__, blk_rq_sectors(rq), max_sectors); 3259 return BLK_STS_IOERR; 3260 } 3261 3262 /* 3263 * The queue settings related to segment counting may differ from the 3264 * original queue. 3265 */ 3266 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3267 if (rq->nr_phys_segments > max_segments) { 3268 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3269 __func__, rq->nr_phys_segments, max_segments); 3270 return BLK_STS_IOERR; 3271 } 3272 3273 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3274 return BLK_STS_IOERR; 3275 3276 ret = blk_crypto_rq_get_keyslot(rq); 3277 if (ret != BLK_STS_OK) 3278 return ret; 3279 3280 blk_account_io_start(rq); 3281 3282 /* 3283 * Since we have a scheduler attached on the top device, 3284 * bypass a potential scheduler on the bottom device for 3285 * insert. 3286 */ 3287 blk_mq_run_dispatch_ops(q, 3288 ret = blk_mq_request_issue_directly(rq, true)); 3289 if (ret) 3290 blk_account_io_done(rq, blk_time_get_ns()); 3291 return ret; 3292 } 3293 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3294 3295 /** 3296 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3297 * @rq: the clone request to be cleaned up 3298 * 3299 * Description: 3300 * Free all bios in @rq for a cloned request. 3301 */ 3302 void blk_rq_unprep_clone(struct request *rq) 3303 { 3304 struct bio *bio; 3305 3306 while ((bio = rq->bio) != NULL) { 3307 rq->bio = bio->bi_next; 3308 3309 bio_put(bio); 3310 } 3311 } 3312 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3313 3314 /** 3315 * blk_rq_prep_clone - Helper function to setup clone request 3316 * @rq: the request to be setup 3317 * @rq_src: original request to be cloned 3318 * @bs: bio_set that bios for clone are allocated from 3319 * @gfp_mask: memory allocation mask for bio 3320 * @bio_ctr: setup function to be called for each clone bio. 3321 * Returns %0 for success, non %0 for failure. 3322 * @data: private data to be passed to @bio_ctr 3323 * 3324 * Description: 3325 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3326 * Also, pages which the original bios are pointing to are not copied 3327 * and the cloned bios just point same pages. 3328 * So cloned bios must be completed before original bios, which means 3329 * the caller must complete @rq before @rq_src. 3330 */ 3331 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3332 struct bio_set *bs, gfp_t gfp_mask, 3333 int (*bio_ctr)(struct bio *, struct bio *, void *), 3334 void *data) 3335 { 3336 struct bio *bio_src; 3337 3338 if (!bs) 3339 bs = &fs_bio_set; 3340 3341 __rq_for_each_bio(bio_src, rq_src) { 3342 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3343 gfp_mask, bs); 3344 if (!bio) 3345 goto free_and_out; 3346 3347 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3348 bio_put(bio); 3349 goto free_and_out; 3350 } 3351 3352 if (rq->bio) { 3353 rq->biotail->bi_next = bio; 3354 rq->biotail = bio; 3355 } else { 3356 rq->bio = rq->biotail = bio; 3357 } 3358 } 3359 3360 /* Copy attributes of the original request to the clone request. */ 3361 rq->__sector = blk_rq_pos(rq_src); 3362 rq->__data_len = blk_rq_bytes(rq_src); 3363 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3364 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3365 rq->special_vec = rq_src->special_vec; 3366 } 3367 rq->nr_phys_segments = rq_src->nr_phys_segments; 3368 rq->nr_integrity_segments = rq_src->nr_integrity_segments; 3369 3370 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3371 goto free_and_out; 3372 3373 return 0; 3374 3375 free_and_out: 3376 blk_rq_unprep_clone(rq); 3377 3378 return -ENOMEM; 3379 } 3380 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3381 #endif /* CONFIG_BLK_MQ_STACKING */ 3382 3383 /* 3384 * Steal bios from a request and add them to a bio list. 3385 * The request must not have been partially completed before. 3386 */ 3387 void blk_steal_bios(struct bio_list *list, struct request *rq) 3388 { 3389 if (rq->bio) { 3390 if (list->tail) 3391 list->tail->bi_next = rq->bio; 3392 else 3393 list->head = rq->bio; 3394 list->tail = rq->biotail; 3395 3396 rq->bio = NULL; 3397 rq->biotail = NULL; 3398 } 3399 3400 rq->__data_len = 0; 3401 } 3402 EXPORT_SYMBOL_GPL(blk_steal_bios); 3403 3404 static size_t order_to_size(unsigned int order) 3405 { 3406 return (size_t)PAGE_SIZE << order; 3407 } 3408 3409 /* called before freeing request pool in @tags */ 3410 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3411 struct blk_mq_tags *tags) 3412 { 3413 struct page *page; 3414 unsigned long flags; 3415 3416 /* 3417 * There is no need to clear mapping if driver tags is not initialized 3418 * or the mapping belongs to the driver tags. 3419 */ 3420 if (!drv_tags || drv_tags == tags) 3421 return; 3422 3423 list_for_each_entry(page, &tags->page_list, lru) { 3424 unsigned long start = (unsigned long)page_address(page); 3425 unsigned long end = start + order_to_size(page->private); 3426 int i; 3427 3428 for (i = 0; i < drv_tags->nr_tags; i++) { 3429 struct request *rq = drv_tags->rqs[i]; 3430 unsigned long rq_addr = (unsigned long)rq; 3431 3432 if (rq_addr >= start && rq_addr < end) { 3433 WARN_ON_ONCE(req_ref_read(rq) != 0); 3434 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3435 } 3436 } 3437 } 3438 3439 /* 3440 * Wait until all pending iteration is done. 3441 * 3442 * Request reference is cleared and it is guaranteed to be observed 3443 * after the ->lock is released. 3444 */ 3445 spin_lock_irqsave(&drv_tags->lock, flags); 3446 spin_unlock_irqrestore(&drv_tags->lock, flags); 3447 } 3448 3449 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3450 unsigned int hctx_idx) 3451 { 3452 struct blk_mq_tags *drv_tags; 3453 struct page *page; 3454 3455 if (list_empty(&tags->page_list)) 3456 return; 3457 3458 if (blk_mq_is_shared_tags(set->flags)) 3459 drv_tags = set->shared_tags; 3460 else 3461 drv_tags = set->tags[hctx_idx]; 3462 3463 if (tags->static_rqs && set->ops->exit_request) { 3464 int i; 3465 3466 for (i = 0; i < tags->nr_tags; i++) { 3467 struct request *rq = tags->static_rqs[i]; 3468 3469 if (!rq) 3470 continue; 3471 set->ops->exit_request(set, rq, hctx_idx); 3472 tags->static_rqs[i] = NULL; 3473 } 3474 } 3475 3476 blk_mq_clear_rq_mapping(drv_tags, tags); 3477 3478 while (!list_empty(&tags->page_list)) { 3479 page = list_first_entry(&tags->page_list, struct page, lru); 3480 list_del_init(&page->lru); 3481 /* 3482 * Remove kmemleak object previously allocated in 3483 * blk_mq_alloc_rqs(). 3484 */ 3485 kmemleak_free(page_address(page)); 3486 __free_pages(page, page->private); 3487 } 3488 } 3489 3490 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3491 { 3492 kfree(tags->rqs); 3493 tags->rqs = NULL; 3494 kfree(tags->static_rqs); 3495 tags->static_rqs = NULL; 3496 3497 blk_mq_free_tags(tags); 3498 } 3499 3500 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3501 unsigned int hctx_idx) 3502 { 3503 int i; 3504 3505 for (i = 0; i < set->nr_maps; i++) { 3506 unsigned int start = set->map[i].queue_offset; 3507 unsigned int end = start + set->map[i].nr_queues; 3508 3509 if (hctx_idx >= start && hctx_idx < end) 3510 break; 3511 } 3512 3513 if (i >= set->nr_maps) 3514 i = HCTX_TYPE_DEFAULT; 3515 3516 return i; 3517 } 3518 3519 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3520 unsigned int hctx_idx) 3521 { 3522 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3523 3524 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3525 } 3526 3527 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3528 unsigned int hctx_idx, 3529 unsigned int nr_tags, 3530 unsigned int reserved_tags) 3531 { 3532 int node = blk_mq_get_hctx_node(set, hctx_idx); 3533 struct blk_mq_tags *tags; 3534 3535 if (node == NUMA_NO_NODE) 3536 node = set->numa_node; 3537 3538 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node); 3539 if (!tags) 3540 return NULL; 3541 3542 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3543 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3544 node); 3545 if (!tags->rqs) 3546 goto err_free_tags; 3547 3548 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3549 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3550 node); 3551 if (!tags->static_rqs) 3552 goto err_free_rqs; 3553 3554 return tags; 3555 3556 err_free_rqs: 3557 kfree(tags->rqs); 3558 err_free_tags: 3559 blk_mq_free_tags(tags); 3560 return NULL; 3561 } 3562 3563 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3564 unsigned int hctx_idx, int node) 3565 { 3566 int ret; 3567 3568 if (set->ops->init_request) { 3569 ret = set->ops->init_request(set, rq, hctx_idx, node); 3570 if (ret) 3571 return ret; 3572 } 3573 3574 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3575 return 0; 3576 } 3577 3578 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3579 struct blk_mq_tags *tags, 3580 unsigned int hctx_idx, unsigned int depth) 3581 { 3582 unsigned int i, j, entries_per_page, max_order = 4; 3583 int node = blk_mq_get_hctx_node(set, hctx_idx); 3584 size_t rq_size, left; 3585 3586 if (node == NUMA_NO_NODE) 3587 node = set->numa_node; 3588 3589 INIT_LIST_HEAD(&tags->page_list); 3590 3591 /* 3592 * rq_size is the size of the request plus driver payload, rounded 3593 * to the cacheline size 3594 */ 3595 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3596 cache_line_size()); 3597 left = rq_size * depth; 3598 3599 for (i = 0; i < depth; ) { 3600 int this_order = max_order; 3601 struct page *page; 3602 int to_do; 3603 void *p; 3604 3605 while (this_order && left < order_to_size(this_order - 1)) 3606 this_order--; 3607 3608 do { 3609 page = alloc_pages_node(node, 3610 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3611 this_order); 3612 if (page) 3613 break; 3614 if (!this_order--) 3615 break; 3616 if (order_to_size(this_order) < rq_size) 3617 break; 3618 } while (1); 3619 3620 if (!page) 3621 goto fail; 3622 3623 page->private = this_order; 3624 list_add_tail(&page->lru, &tags->page_list); 3625 3626 p = page_address(page); 3627 /* 3628 * Allow kmemleak to scan these pages as they contain pointers 3629 * to additional allocations like via ops->init_request(). 3630 */ 3631 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3632 entries_per_page = order_to_size(this_order) / rq_size; 3633 to_do = min(entries_per_page, depth - i); 3634 left -= to_do * rq_size; 3635 for (j = 0; j < to_do; j++) { 3636 struct request *rq = p; 3637 3638 tags->static_rqs[i] = rq; 3639 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3640 tags->static_rqs[i] = NULL; 3641 goto fail; 3642 } 3643 3644 p += rq_size; 3645 i++; 3646 } 3647 } 3648 return 0; 3649 3650 fail: 3651 blk_mq_free_rqs(set, tags, hctx_idx); 3652 return -ENOMEM; 3653 } 3654 3655 struct rq_iter_data { 3656 struct blk_mq_hw_ctx *hctx; 3657 bool has_rq; 3658 }; 3659 3660 static bool blk_mq_has_request(struct request *rq, void *data) 3661 { 3662 struct rq_iter_data *iter_data = data; 3663 3664 if (rq->mq_hctx != iter_data->hctx) 3665 return true; 3666 iter_data->has_rq = true; 3667 return false; 3668 } 3669 3670 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3671 { 3672 struct blk_mq_tags *tags = hctx->sched_tags ? 3673 hctx->sched_tags : hctx->tags; 3674 struct rq_iter_data data = { 3675 .hctx = hctx, 3676 }; 3677 3678 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3679 return data.has_rq; 3680 } 3681 3682 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3683 unsigned int this_cpu) 3684 { 3685 enum hctx_type type = hctx->type; 3686 int cpu; 3687 3688 /* 3689 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3690 * might submit IOs on these isolated CPUs, so use the queue map to 3691 * check if all CPUs mapped to this hctx are offline 3692 */ 3693 for_each_online_cpu(cpu) { 3694 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3695 type, cpu); 3696 3697 if (h != hctx) 3698 continue; 3699 3700 /* this hctx has at least one online CPU */ 3701 if (this_cpu != cpu) 3702 return true; 3703 } 3704 3705 return false; 3706 } 3707 3708 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3709 { 3710 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3711 struct blk_mq_hw_ctx, cpuhp_online); 3712 3713 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3714 return 0; 3715 3716 /* 3717 * Prevent new request from being allocated on the current hctx. 3718 * 3719 * The smp_mb__after_atomic() Pairs with the implied barrier in 3720 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3721 * seen once we return from the tag allocator. 3722 */ 3723 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3724 smp_mb__after_atomic(); 3725 3726 /* 3727 * Try to grab a reference to the queue and wait for any outstanding 3728 * requests. If we could not grab a reference the queue has been 3729 * frozen and there are no requests. 3730 */ 3731 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3732 while (blk_mq_hctx_has_requests(hctx)) 3733 msleep(5); 3734 percpu_ref_put(&hctx->queue->q_usage_counter); 3735 } 3736 3737 return 0; 3738 } 3739 3740 /* 3741 * Check if one CPU is mapped to the specified hctx 3742 * 3743 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3744 * to be used for scheduling kworker only. For other usage, please call this 3745 * helper for checking if one CPU belongs to the specified hctx 3746 */ 3747 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3748 const struct blk_mq_hw_ctx *hctx) 3749 { 3750 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3751 hctx->type, cpu); 3752 3753 return mapped_hctx == hctx; 3754 } 3755 3756 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3757 { 3758 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3759 struct blk_mq_hw_ctx, cpuhp_online); 3760 3761 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3762 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3763 return 0; 3764 } 3765 3766 /* 3767 * 'cpu' is going away. splice any existing rq_list entries from this 3768 * software queue to the hw queue dispatch list, and ensure that it 3769 * gets run. 3770 */ 3771 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3772 { 3773 struct blk_mq_hw_ctx *hctx; 3774 struct blk_mq_ctx *ctx; 3775 LIST_HEAD(tmp); 3776 enum hctx_type type; 3777 3778 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3779 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3780 return 0; 3781 3782 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3783 type = hctx->type; 3784 3785 spin_lock(&ctx->lock); 3786 if (!list_empty(&ctx->rq_lists[type])) { 3787 list_splice_init(&ctx->rq_lists[type], &tmp); 3788 blk_mq_hctx_clear_pending(hctx, ctx); 3789 } 3790 spin_unlock(&ctx->lock); 3791 3792 if (list_empty(&tmp)) 3793 return 0; 3794 3795 spin_lock(&hctx->lock); 3796 list_splice_tail_init(&tmp, &hctx->dispatch); 3797 spin_unlock(&hctx->lock); 3798 3799 blk_mq_run_hw_queue(hctx, true); 3800 return 0; 3801 } 3802 3803 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3804 { 3805 lockdep_assert_held(&blk_mq_cpuhp_lock); 3806 3807 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3808 !hlist_unhashed(&hctx->cpuhp_online)) { 3809 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3810 &hctx->cpuhp_online); 3811 INIT_HLIST_NODE(&hctx->cpuhp_online); 3812 } 3813 3814 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3815 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3816 &hctx->cpuhp_dead); 3817 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3818 } 3819 } 3820 3821 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3822 { 3823 mutex_lock(&blk_mq_cpuhp_lock); 3824 __blk_mq_remove_cpuhp(hctx); 3825 mutex_unlock(&blk_mq_cpuhp_lock); 3826 } 3827 3828 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3829 { 3830 lockdep_assert_held(&blk_mq_cpuhp_lock); 3831 3832 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3833 hlist_unhashed(&hctx->cpuhp_online)) 3834 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3835 &hctx->cpuhp_online); 3836 3837 if (hlist_unhashed(&hctx->cpuhp_dead)) 3838 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3839 &hctx->cpuhp_dead); 3840 } 3841 3842 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3843 { 3844 struct blk_mq_hw_ctx *hctx; 3845 3846 lockdep_assert_held(&blk_mq_cpuhp_lock); 3847 3848 list_for_each_entry(hctx, head, hctx_list) 3849 __blk_mq_remove_cpuhp(hctx); 3850 } 3851 3852 /* 3853 * Unregister cpuhp callbacks from exited hw queues 3854 * 3855 * Safe to call if this `request_queue` is live 3856 */ 3857 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3858 { 3859 LIST_HEAD(hctx_list); 3860 3861 spin_lock(&q->unused_hctx_lock); 3862 list_splice_init(&q->unused_hctx_list, &hctx_list); 3863 spin_unlock(&q->unused_hctx_lock); 3864 3865 mutex_lock(&blk_mq_cpuhp_lock); 3866 __blk_mq_remove_cpuhp_list(&hctx_list); 3867 mutex_unlock(&blk_mq_cpuhp_lock); 3868 3869 spin_lock(&q->unused_hctx_lock); 3870 list_splice(&hctx_list, &q->unused_hctx_list); 3871 spin_unlock(&q->unused_hctx_lock); 3872 } 3873 3874 /* 3875 * Register cpuhp callbacks from all hw queues 3876 * 3877 * Safe to call if this `request_queue` is live 3878 */ 3879 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3880 { 3881 struct blk_mq_hw_ctx *hctx; 3882 unsigned long i; 3883 3884 mutex_lock(&blk_mq_cpuhp_lock); 3885 queue_for_each_hw_ctx(q, hctx, i) 3886 __blk_mq_add_cpuhp(hctx); 3887 mutex_unlock(&blk_mq_cpuhp_lock); 3888 } 3889 3890 /* 3891 * Before freeing hw queue, clearing the flush request reference in 3892 * tags->rqs[] for avoiding potential UAF. 3893 */ 3894 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3895 unsigned int queue_depth, struct request *flush_rq) 3896 { 3897 int i; 3898 unsigned long flags; 3899 3900 /* The hw queue may not be mapped yet */ 3901 if (!tags) 3902 return; 3903 3904 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3905 3906 for (i = 0; i < queue_depth; i++) 3907 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3908 3909 /* 3910 * Wait until all pending iteration is done. 3911 * 3912 * Request reference is cleared and it is guaranteed to be observed 3913 * after the ->lock is released. 3914 */ 3915 spin_lock_irqsave(&tags->lock, flags); 3916 spin_unlock_irqrestore(&tags->lock, flags); 3917 } 3918 3919 /* hctx->ctxs will be freed in queue's release handler */ 3920 static void blk_mq_exit_hctx(struct request_queue *q, 3921 struct blk_mq_tag_set *set, 3922 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3923 { 3924 struct request *flush_rq = hctx->fq->flush_rq; 3925 3926 if (blk_mq_hw_queue_mapped(hctx)) 3927 blk_mq_tag_idle(hctx); 3928 3929 if (blk_queue_init_done(q)) 3930 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3931 set->queue_depth, flush_rq); 3932 if (set->ops->exit_request) 3933 set->ops->exit_request(set, flush_rq, hctx_idx); 3934 3935 if (set->ops->exit_hctx) 3936 set->ops->exit_hctx(hctx, hctx_idx); 3937 3938 xa_erase(&q->hctx_table, hctx_idx); 3939 3940 spin_lock(&q->unused_hctx_lock); 3941 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3942 spin_unlock(&q->unused_hctx_lock); 3943 } 3944 3945 static void blk_mq_exit_hw_queues(struct request_queue *q, 3946 struct blk_mq_tag_set *set, int nr_queue) 3947 { 3948 struct blk_mq_hw_ctx *hctx; 3949 unsigned long i; 3950 3951 queue_for_each_hw_ctx(q, hctx, i) { 3952 if (i == nr_queue) 3953 break; 3954 blk_mq_remove_cpuhp(hctx); 3955 blk_mq_exit_hctx(q, set, hctx, i); 3956 } 3957 } 3958 3959 static int blk_mq_init_hctx(struct request_queue *q, 3960 struct blk_mq_tag_set *set, 3961 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3962 { 3963 hctx->queue_num = hctx_idx; 3964 3965 hctx->tags = set->tags[hctx_idx]; 3966 3967 if (set->ops->init_hctx && 3968 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3969 goto fail; 3970 3971 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3972 hctx->numa_node)) 3973 goto exit_hctx; 3974 3975 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3976 goto exit_flush_rq; 3977 3978 return 0; 3979 3980 exit_flush_rq: 3981 if (set->ops->exit_request) 3982 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3983 exit_hctx: 3984 if (set->ops->exit_hctx) 3985 set->ops->exit_hctx(hctx, hctx_idx); 3986 fail: 3987 return -1; 3988 } 3989 3990 static struct blk_mq_hw_ctx * 3991 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3992 int node) 3993 { 3994 struct blk_mq_hw_ctx *hctx; 3995 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3996 3997 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3998 if (!hctx) 3999 goto fail_alloc_hctx; 4000 4001 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 4002 goto free_hctx; 4003 4004 atomic_set(&hctx->nr_active, 0); 4005 if (node == NUMA_NO_NODE) 4006 node = set->numa_node; 4007 hctx->numa_node = node; 4008 4009 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 4010 spin_lock_init(&hctx->lock); 4011 INIT_LIST_HEAD(&hctx->dispatch); 4012 INIT_HLIST_NODE(&hctx->cpuhp_dead); 4013 INIT_HLIST_NODE(&hctx->cpuhp_online); 4014 hctx->queue = q; 4015 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 4016 4017 INIT_LIST_HEAD(&hctx->hctx_list); 4018 4019 /* 4020 * Allocate space for all possible cpus to avoid allocation at 4021 * runtime 4022 */ 4023 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 4024 gfp, node); 4025 if (!hctx->ctxs) 4026 goto free_cpumask; 4027 4028 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 4029 gfp, node, false, false)) 4030 goto free_ctxs; 4031 hctx->nr_ctx = 0; 4032 4033 spin_lock_init(&hctx->dispatch_wait_lock); 4034 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 4035 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 4036 4037 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 4038 if (!hctx->fq) 4039 goto free_bitmap; 4040 4041 blk_mq_hctx_kobj_init(hctx); 4042 4043 return hctx; 4044 4045 free_bitmap: 4046 sbitmap_free(&hctx->ctx_map); 4047 free_ctxs: 4048 kfree(hctx->ctxs); 4049 free_cpumask: 4050 free_cpumask_var(hctx->cpumask); 4051 free_hctx: 4052 kfree(hctx); 4053 fail_alloc_hctx: 4054 return NULL; 4055 } 4056 4057 static void blk_mq_init_cpu_queues(struct request_queue *q, 4058 unsigned int nr_hw_queues) 4059 { 4060 struct blk_mq_tag_set *set = q->tag_set; 4061 unsigned int i, j; 4062 4063 for_each_possible_cpu(i) { 4064 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 4065 struct blk_mq_hw_ctx *hctx; 4066 int k; 4067 4068 __ctx->cpu = i; 4069 spin_lock_init(&__ctx->lock); 4070 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 4071 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 4072 4073 __ctx->queue = q; 4074 4075 /* 4076 * Set local node, IFF we have more than one hw queue. If 4077 * not, we remain on the home node of the device 4078 */ 4079 for (j = 0; j < set->nr_maps; j++) { 4080 hctx = blk_mq_map_queue_type(q, j, i); 4081 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 4082 hctx->numa_node = cpu_to_node(i); 4083 } 4084 } 4085 } 4086 4087 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4088 unsigned int hctx_idx, 4089 unsigned int depth) 4090 { 4091 struct blk_mq_tags *tags; 4092 int ret; 4093 4094 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 4095 if (!tags) 4096 return NULL; 4097 4098 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 4099 if (ret) { 4100 blk_mq_free_rq_map(tags); 4101 return NULL; 4102 } 4103 4104 return tags; 4105 } 4106 4107 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4108 int hctx_idx) 4109 { 4110 if (blk_mq_is_shared_tags(set->flags)) { 4111 set->tags[hctx_idx] = set->shared_tags; 4112 4113 return true; 4114 } 4115 4116 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 4117 set->queue_depth); 4118 4119 return set->tags[hctx_idx]; 4120 } 4121 4122 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4123 struct blk_mq_tags *tags, 4124 unsigned int hctx_idx) 4125 { 4126 if (tags) { 4127 blk_mq_free_rqs(set, tags, hctx_idx); 4128 blk_mq_free_rq_map(tags); 4129 } 4130 } 4131 4132 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4133 unsigned int hctx_idx) 4134 { 4135 if (!blk_mq_is_shared_tags(set->flags)) 4136 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4137 4138 set->tags[hctx_idx] = NULL; 4139 } 4140 4141 static void blk_mq_map_swqueue(struct request_queue *q) 4142 { 4143 unsigned int j, hctx_idx; 4144 unsigned long i; 4145 struct blk_mq_hw_ctx *hctx; 4146 struct blk_mq_ctx *ctx; 4147 struct blk_mq_tag_set *set = q->tag_set; 4148 4149 queue_for_each_hw_ctx(q, hctx, i) { 4150 cpumask_clear(hctx->cpumask); 4151 hctx->nr_ctx = 0; 4152 hctx->dispatch_from = NULL; 4153 } 4154 4155 /* 4156 * Map software to hardware queues. 4157 * 4158 * If the cpu isn't present, the cpu is mapped to first hctx. 4159 */ 4160 for_each_possible_cpu(i) { 4161 4162 ctx = per_cpu_ptr(q->queue_ctx, i); 4163 for (j = 0; j < set->nr_maps; j++) { 4164 if (!set->map[j].nr_queues) { 4165 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4166 HCTX_TYPE_DEFAULT, i); 4167 continue; 4168 } 4169 hctx_idx = set->map[j].mq_map[i]; 4170 /* unmapped hw queue can be remapped after CPU topo changed */ 4171 if (!set->tags[hctx_idx] && 4172 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4173 /* 4174 * If tags initialization fail for some hctx, 4175 * that hctx won't be brought online. In this 4176 * case, remap the current ctx to hctx[0] which 4177 * is guaranteed to always have tags allocated 4178 */ 4179 set->map[j].mq_map[i] = 0; 4180 } 4181 4182 hctx = blk_mq_map_queue_type(q, j, i); 4183 ctx->hctxs[j] = hctx; 4184 /* 4185 * If the CPU is already set in the mask, then we've 4186 * mapped this one already. This can happen if 4187 * devices share queues across queue maps. 4188 */ 4189 if (cpumask_test_cpu(i, hctx->cpumask)) 4190 continue; 4191 4192 cpumask_set_cpu(i, hctx->cpumask); 4193 hctx->type = j; 4194 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4195 hctx->ctxs[hctx->nr_ctx++] = ctx; 4196 4197 /* 4198 * If the nr_ctx type overflows, we have exceeded the 4199 * amount of sw queues we can support. 4200 */ 4201 BUG_ON(!hctx->nr_ctx); 4202 } 4203 4204 for (; j < HCTX_MAX_TYPES; j++) 4205 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4206 HCTX_TYPE_DEFAULT, i); 4207 } 4208 4209 queue_for_each_hw_ctx(q, hctx, i) { 4210 int cpu; 4211 4212 /* 4213 * If no software queues are mapped to this hardware queue, 4214 * disable it and free the request entries. 4215 */ 4216 if (!hctx->nr_ctx) { 4217 /* Never unmap queue 0. We need it as a 4218 * fallback in case of a new remap fails 4219 * allocation 4220 */ 4221 if (i) 4222 __blk_mq_free_map_and_rqs(set, i); 4223 4224 hctx->tags = NULL; 4225 continue; 4226 } 4227 4228 hctx->tags = set->tags[i]; 4229 WARN_ON(!hctx->tags); 4230 4231 /* 4232 * Set the map size to the number of mapped software queues. 4233 * This is more accurate and more efficient than looping 4234 * over all possibly mapped software queues. 4235 */ 4236 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4237 4238 /* 4239 * Rule out isolated CPUs from hctx->cpumask to avoid 4240 * running block kworker on isolated CPUs 4241 */ 4242 for_each_cpu(cpu, hctx->cpumask) { 4243 if (cpu_is_isolated(cpu)) 4244 cpumask_clear_cpu(cpu, hctx->cpumask); 4245 } 4246 4247 /* 4248 * Initialize batch roundrobin counts 4249 */ 4250 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4251 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4252 } 4253 } 4254 4255 /* 4256 * Caller needs to ensure that we're either frozen/quiesced, or that 4257 * the queue isn't live yet. 4258 */ 4259 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4260 { 4261 struct blk_mq_hw_ctx *hctx; 4262 unsigned long i; 4263 4264 queue_for_each_hw_ctx(q, hctx, i) { 4265 if (shared) { 4266 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4267 } else { 4268 blk_mq_tag_idle(hctx); 4269 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4270 } 4271 } 4272 } 4273 4274 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4275 bool shared) 4276 { 4277 struct request_queue *q; 4278 unsigned int memflags; 4279 4280 lockdep_assert_held(&set->tag_list_lock); 4281 4282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4283 memflags = blk_mq_freeze_queue(q); 4284 queue_set_hctx_shared(q, shared); 4285 blk_mq_unfreeze_queue(q, memflags); 4286 } 4287 } 4288 4289 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4290 { 4291 struct blk_mq_tag_set *set = q->tag_set; 4292 4293 mutex_lock(&set->tag_list_lock); 4294 list_del(&q->tag_set_list); 4295 if (list_is_singular(&set->tag_list)) { 4296 /* just transitioned to unshared */ 4297 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4298 /* update existing queue */ 4299 blk_mq_update_tag_set_shared(set, false); 4300 } 4301 mutex_unlock(&set->tag_list_lock); 4302 INIT_LIST_HEAD(&q->tag_set_list); 4303 } 4304 4305 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4306 struct request_queue *q) 4307 { 4308 mutex_lock(&set->tag_list_lock); 4309 4310 /* 4311 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4312 */ 4313 if (!list_empty(&set->tag_list) && 4314 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4315 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4316 /* update existing queue */ 4317 blk_mq_update_tag_set_shared(set, true); 4318 } 4319 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4320 queue_set_hctx_shared(q, true); 4321 list_add_tail(&q->tag_set_list, &set->tag_list); 4322 4323 mutex_unlock(&set->tag_list_lock); 4324 } 4325 4326 /* All allocations will be freed in release handler of q->mq_kobj */ 4327 static int blk_mq_alloc_ctxs(struct request_queue *q) 4328 { 4329 struct blk_mq_ctxs *ctxs; 4330 int cpu; 4331 4332 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4333 if (!ctxs) 4334 return -ENOMEM; 4335 4336 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4337 if (!ctxs->queue_ctx) 4338 goto fail; 4339 4340 for_each_possible_cpu(cpu) { 4341 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4342 ctx->ctxs = ctxs; 4343 } 4344 4345 q->mq_kobj = &ctxs->kobj; 4346 q->queue_ctx = ctxs->queue_ctx; 4347 4348 return 0; 4349 fail: 4350 kfree(ctxs); 4351 return -ENOMEM; 4352 } 4353 4354 /* 4355 * It is the actual release handler for mq, but we do it from 4356 * request queue's release handler for avoiding use-after-free 4357 * and headache because q->mq_kobj shouldn't have been introduced, 4358 * but we can't group ctx/kctx kobj without it. 4359 */ 4360 void blk_mq_release(struct request_queue *q) 4361 { 4362 struct blk_mq_hw_ctx *hctx, *next; 4363 unsigned long i; 4364 4365 queue_for_each_hw_ctx(q, hctx, i) 4366 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4367 4368 /* all hctx are in .unused_hctx_list now */ 4369 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4370 list_del_init(&hctx->hctx_list); 4371 kobject_put(&hctx->kobj); 4372 } 4373 4374 xa_destroy(&q->hctx_table); 4375 4376 /* 4377 * release .mq_kobj and sw queue's kobject now because 4378 * both share lifetime with request queue. 4379 */ 4380 blk_mq_sysfs_deinit(q); 4381 } 4382 4383 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4384 struct queue_limits *lim, void *queuedata) 4385 { 4386 struct queue_limits default_lim = { }; 4387 struct request_queue *q; 4388 int ret; 4389 4390 if (!lim) 4391 lim = &default_lim; 4392 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4393 if (set->nr_maps > HCTX_TYPE_POLL) 4394 lim->features |= BLK_FEAT_POLL; 4395 4396 q = blk_alloc_queue(lim, set->numa_node); 4397 if (IS_ERR(q)) 4398 return q; 4399 q->queuedata = queuedata; 4400 ret = blk_mq_init_allocated_queue(set, q); 4401 if (ret) { 4402 blk_put_queue(q); 4403 return ERR_PTR(ret); 4404 } 4405 return q; 4406 } 4407 EXPORT_SYMBOL(blk_mq_alloc_queue); 4408 4409 /** 4410 * blk_mq_destroy_queue - shutdown a request queue 4411 * @q: request queue to shutdown 4412 * 4413 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4414 * requests will be failed with -ENODEV. The caller is responsible for dropping 4415 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4416 * 4417 * Context: can sleep 4418 */ 4419 void blk_mq_destroy_queue(struct request_queue *q) 4420 { 4421 WARN_ON_ONCE(!queue_is_mq(q)); 4422 WARN_ON_ONCE(blk_queue_registered(q)); 4423 4424 might_sleep(); 4425 4426 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4427 blk_queue_start_drain(q); 4428 blk_mq_freeze_queue_wait(q); 4429 4430 blk_sync_queue(q); 4431 blk_mq_cancel_work_sync(q); 4432 blk_mq_exit_queue(q); 4433 } 4434 EXPORT_SYMBOL(blk_mq_destroy_queue); 4435 4436 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4437 struct queue_limits *lim, void *queuedata, 4438 struct lock_class_key *lkclass) 4439 { 4440 struct request_queue *q; 4441 struct gendisk *disk; 4442 4443 q = blk_mq_alloc_queue(set, lim, queuedata); 4444 if (IS_ERR(q)) 4445 return ERR_CAST(q); 4446 4447 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4448 if (!disk) { 4449 blk_mq_destroy_queue(q); 4450 blk_put_queue(q); 4451 return ERR_PTR(-ENOMEM); 4452 } 4453 set_bit(GD_OWNS_QUEUE, &disk->state); 4454 return disk; 4455 } 4456 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4457 4458 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4459 struct lock_class_key *lkclass) 4460 { 4461 struct gendisk *disk; 4462 4463 if (!blk_get_queue(q)) 4464 return NULL; 4465 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4466 if (!disk) 4467 blk_put_queue(q); 4468 return disk; 4469 } 4470 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4471 4472 /* 4473 * Only hctx removed from cpuhp list can be reused 4474 */ 4475 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx) 4476 { 4477 return hlist_unhashed(&hctx->cpuhp_online) && 4478 hlist_unhashed(&hctx->cpuhp_dead); 4479 } 4480 4481 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4482 struct blk_mq_tag_set *set, struct request_queue *q, 4483 int hctx_idx, int node) 4484 { 4485 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4486 4487 /* reuse dead hctx first */ 4488 spin_lock(&q->unused_hctx_lock); 4489 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4490 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) { 4491 hctx = tmp; 4492 break; 4493 } 4494 } 4495 if (hctx) 4496 list_del_init(&hctx->hctx_list); 4497 spin_unlock(&q->unused_hctx_lock); 4498 4499 if (!hctx) 4500 hctx = blk_mq_alloc_hctx(q, set, node); 4501 if (!hctx) 4502 goto fail; 4503 4504 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4505 goto free_hctx; 4506 4507 return hctx; 4508 4509 free_hctx: 4510 kobject_put(&hctx->kobj); 4511 fail: 4512 return NULL; 4513 } 4514 4515 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4516 struct request_queue *q) 4517 { 4518 struct blk_mq_hw_ctx *hctx; 4519 unsigned long i, j; 4520 4521 for (i = 0; i < set->nr_hw_queues; i++) { 4522 int old_node; 4523 int node = blk_mq_get_hctx_node(set, i); 4524 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4525 4526 if (old_hctx) { 4527 old_node = old_hctx->numa_node; 4528 blk_mq_exit_hctx(q, set, old_hctx, i); 4529 } 4530 4531 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4532 if (!old_hctx) 4533 break; 4534 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4535 node, old_node); 4536 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4537 WARN_ON_ONCE(!hctx); 4538 } 4539 } 4540 /* 4541 * Increasing nr_hw_queues fails. Free the newly allocated 4542 * hctxs and keep the previous q->nr_hw_queues. 4543 */ 4544 if (i != set->nr_hw_queues) { 4545 j = q->nr_hw_queues; 4546 } else { 4547 j = i; 4548 q->nr_hw_queues = set->nr_hw_queues; 4549 } 4550 4551 xa_for_each_start(&q->hctx_table, j, hctx, j) 4552 blk_mq_exit_hctx(q, set, hctx, j); 4553 } 4554 4555 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4556 struct request_queue *q) 4557 { 4558 __blk_mq_realloc_hw_ctxs(set, q); 4559 4560 /* unregister cpuhp callbacks for exited hctxs */ 4561 blk_mq_remove_hw_queues_cpuhp(q); 4562 4563 /* register cpuhp for new initialized hctxs */ 4564 blk_mq_add_hw_queues_cpuhp(q); 4565 } 4566 4567 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4568 struct request_queue *q) 4569 { 4570 /* mark the queue as mq asap */ 4571 q->mq_ops = set->ops; 4572 4573 /* 4574 * ->tag_set has to be setup before initialize hctx, which cpuphp 4575 * handler needs it for checking queue mapping 4576 */ 4577 q->tag_set = set; 4578 4579 if (blk_mq_alloc_ctxs(q)) 4580 goto err_exit; 4581 4582 /* init q->mq_kobj and sw queues' kobjects */ 4583 blk_mq_sysfs_init(q); 4584 4585 INIT_LIST_HEAD(&q->unused_hctx_list); 4586 spin_lock_init(&q->unused_hctx_lock); 4587 4588 xa_init(&q->hctx_table); 4589 4590 blk_mq_realloc_hw_ctxs(set, q); 4591 if (!q->nr_hw_queues) 4592 goto err_hctxs; 4593 4594 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4595 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4596 4597 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4598 4599 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4600 INIT_LIST_HEAD(&q->flush_list); 4601 INIT_LIST_HEAD(&q->requeue_list); 4602 spin_lock_init(&q->requeue_lock); 4603 4604 q->nr_requests = set->queue_depth; 4605 4606 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4607 blk_mq_map_swqueue(q); 4608 blk_mq_add_queue_tag_set(set, q); 4609 return 0; 4610 4611 err_hctxs: 4612 blk_mq_release(q); 4613 err_exit: 4614 q->mq_ops = NULL; 4615 return -ENOMEM; 4616 } 4617 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4618 4619 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4620 void blk_mq_exit_queue(struct request_queue *q) 4621 { 4622 struct blk_mq_tag_set *set = q->tag_set; 4623 4624 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4625 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4626 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4627 blk_mq_del_queue_tag_set(q); 4628 } 4629 4630 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4631 { 4632 int i; 4633 4634 if (blk_mq_is_shared_tags(set->flags)) { 4635 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4636 BLK_MQ_NO_HCTX_IDX, 4637 set->queue_depth); 4638 if (!set->shared_tags) 4639 return -ENOMEM; 4640 } 4641 4642 for (i = 0; i < set->nr_hw_queues; i++) { 4643 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4644 goto out_unwind; 4645 cond_resched(); 4646 } 4647 4648 return 0; 4649 4650 out_unwind: 4651 while (--i >= 0) 4652 __blk_mq_free_map_and_rqs(set, i); 4653 4654 if (blk_mq_is_shared_tags(set->flags)) { 4655 blk_mq_free_map_and_rqs(set, set->shared_tags, 4656 BLK_MQ_NO_HCTX_IDX); 4657 } 4658 4659 return -ENOMEM; 4660 } 4661 4662 /* 4663 * Allocate the request maps associated with this tag_set. Note that this 4664 * may reduce the depth asked for, if memory is tight. set->queue_depth 4665 * will be updated to reflect the allocated depth. 4666 */ 4667 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4668 { 4669 unsigned int depth; 4670 int err; 4671 4672 depth = set->queue_depth; 4673 do { 4674 err = __blk_mq_alloc_rq_maps(set); 4675 if (!err) 4676 break; 4677 4678 set->queue_depth >>= 1; 4679 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4680 err = -ENOMEM; 4681 break; 4682 } 4683 } while (set->queue_depth); 4684 4685 if (!set->queue_depth || err) { 4686 pr_err("blk-mq: failed to allocate request map\n"); 4687 return -ENOMEM; 4688 } 4689 4690 if (depth != set->queue_depth) 4691 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4692 depth, set->queue_depth); 4693 4694 return 0; 4695 } 4696 4697 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4698 { 4699 /* 4700 * blk_mq_map_queues() and multiple .map_queues() implementations 4701 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4702 * number of hardware queues. 4703 */ 4704 if (set->nr_maps == 1) 4705 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4706 4707 if (set->ops->map_queues) { 4708 int i; 4709 4710 /* 4711 * transport .map_queues is usually done in the following 4712 * way: 4713 * 4714 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4715 * mask = get_cpu_mask(queue) 4716 * for_each_cpu(cpu, mask) 4717 * set->map[x].mq_map[cpu] = queue; 4718 * } 4719 * 4720 * When we need to remap, the table has to be cleared for 4721 * killing stale mapping since one CPU may not be mapped 4722 * to any hw queue. 4723 */ 4724 for (i = 0; i < set->nr_maps; i++) 4725 blk_mq_clear_mq_map(&set->map[i]); 4726 4727 set->ops->map_queues(set); 4728 } else { 4729 BUG_ON(set->nr_maps > 1); 4730 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4731 } 4732 } 4733 4734 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4735 int new_nr_hw_queues) 4736 { 4737 struct blk_mq_tags **new_tags; 4738 int i; 4739 4740 if (set->nr_hw_queues >= new_nr_hw_queues) 4741 goto done; 4742 4743 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4744 GFP_KERNEL, set->numa_node); 4745 if (!new_tags) 4746 return -ENOMEM; 4747 4748 if (set->tags) 4749 memcpy(new_tags, set->tags, set->nr_hw_queues * 4750 sizeof(*set->tags)); 4751 kfree(set->tags); 4752 set->tags = new_tags; 4753 4754 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4755 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4756 while (--i >= set->nr_hw_queues) 4757 __blk_mq_free_map_and_rqs(set, i); 4758 return -ENOMEM; 4759 } 4760 cond_resched(); 4761 } 4762 4763 done: 4764 set->nr_hw_queues = new_nr_hw_queues; 4765 return 0; 4766 } 4767 4768 /* 4769 * Alloc a tag set to be associated with one or more request queues. 4770 * May fail with EINVAL for various error conditions. May adjust the 4771 * requested depth down, if it's too large. In that case, the set 4772 * value will be stored in set->queue_depth. 4773 */ 4774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4775 { 4776 int i, ret; 4777 4778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4779 4780 if (!set->nr_hw_queues) 4781 return -EINVAL; 4782 if (!set->queue_depth) 4783 return -EINVAL; 4784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4785 return -EINVAL; 4786 4787 if (!set->ops->queue_rq) 4788 return -EINVAL; 4789 4790 if (!set->ops->get_budget ^ !set->ops->put_budget) 4791 return -EINVAL; 4792 4793 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4794 pr_info("blk-mq: reduced tag depth to %u\n", 4795 BLK_MQ_MAX_DEPTH); 4796 set->queue_depth = BLK_MQ_MAX_DEPTH; 4797 } 4798 4799 if (!set->nr_maps) 4800 set->nr_maps = 1; 4801 else if (set->nr_maps > HCTX_MAX_TYPES) 4802 return -EINVAL; 4803 4804 /* 4805 * If a crashdump is active, then we are potentially in a very 4806 * memory constrained environment. Limit us to 64 tags to prevent 4807 * using too much memory. 4808 */ 4809 if (is_kdump_kernel()) 4810 set->queue_depth = min(64U, set->queue_depth); 4811 4812 /* 4813 * There is no use for more h/w queues than cpus if we just have 4814 * a single map 4815 */ 4816 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4817 set->nr_hw_queues = nr_cpu_ids; 4818 4819 if (set->flags & BLK_MQ_F_BLOCKING) { 4820 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4821 if (!set->srcu) 4822 return -ENOMEM; 4823 ret = init_srcu_struct(set->srcu); 4824 if (ret) 4825 goto out_free_srcu; 4826 } 4827 4828 init_rwsem(&set->update_nr_hwq_lock); 4829 4830 ret = -ENOMEM; 4831 set->tags = kcalloc_node(set->nr_hw_queues, 4832 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4833 set->numa_node); 4834 if (!set->tags) 4835 goto out_cleanup_srcu; 4836 4837 for (i = 0; i < set->nr_maps; i++) { 4838 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4839 sizeof(set->map[i].mq_map[0]), 4840 GFP_KERNEL, set->numa_node); 4841 if (!set->map[i].mq_map) 4842 goto out_free_mq_map; 4843 set->map[i].nr_queues = set->nr_hw_queues; 4844 } 4845 4846 blk_mq_update_queue_map(set); 4847 4848 ret = blk_mq_alloc_set_map_and_rqs(set); 4849 if (ret) 4850 goto out_free_mq_map; 4851 4852 mutex_init(&set->tag_list_lock); 4853 INIT_LIST_HEAD(&set->tag_list); 4854 4855 return 0; 4856 4857 out_free_mq_map: 4858 for (i = 0; i < set->nr_maps; i++) { 4859 kfree(set->map[i].mq_map); 4860 set->map[i].mq_map = NULL; 4861 } 4862 kfree(set->tags); 4863 set->tags = NULL; 4864 out_cleanup_srcu: 4865 if (set->flags & BLK_MQ_F_BLOCKING) 4866 cleanup_srcu_struct(set->srcu); 4867 out_free_srcu: 4868 if (set->flags & BLK_MQ_F_BLOCKING) 4869 kfree(set->srcu); 4870 return ret; 4871 } 4872 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4873 4874 /* allocate and initialize a tagset for a simple single-queue device */ 4875 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4876 const struct blk_mq_ops *ops, unsigned int queue_depth, 4877 unsigned int set_flags) 4878 { 4879 memset(set, 0, sizeof(*set)); 4880 set->ops = ops; 4881 set->nr_hw_queues = 1; 4882 set->nr_maps = 1; 4883 set->queue_depth = queue_depth; 4884 set->numa_node = NUMA_NO_NODE; 4885 set->flags = set_flags; 4886 return blk_mq_alloc_tag_set(set); 4887 } 4888 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4889 4890 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4891 { 4892 int i, j; 4893 4894 for (i = 0; i < set->nr_hw_queues; i++) 4895 __blk_mq_free_map_and_rqs(set, i); 4896 4897 if (blk_mq_is_shared_tags(set->flags)) { 4898 blk_mq_free_map_and_rqs(set, set->shared_tags, 4899 BLK_MQ_NO_HCTX_IDX); 4900 } 4901 4902 for (j = 0; j < set->nr_maps; j++) { 4903 kfree(set->map[j].mq_map); 4904 set->map[j].mq_map = NULL; 4905 } 4906 4907 kfree(set->tags); 4908 set->tags = NULL; 4909 if (set->flags & BLK_MQ_F_BLOCKING) { 4910 cleanup_srcu_struct(set->srcu); 4911 kfree(set->srcu); 4912 } 4913 } 4914 EXPORT_SYMBOL(blk_mq_free_tag_set); 4915 4916 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4917 { 4918 struct blk_mq_tag_set *set = q->tag_set; 4919 struct blk_mq_hw_ctx *hctx; 4920 int ret; 4921 unsigned long i; 4922 4923 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4924 return -EINVAL; 4925 4926 if (!set) 4927 return -EINVAL; 4928 4929 if (q->nr_requests == nr) 4930 return 0; 4931 4932 blk_mq_quiesce_queue(q); 4933 4934 ret = 0; 4935 queue_for_each_hw_ctx(q, hctx, i) { 4936 if (!hctx->tags) 4937 continue; 4938 /* 4939 * If we're using an MQ scheduler, just update the scheduler 4940 * queue depth. This is similar to what the old code would do. 4941 */ 4942 if (hctx->sched_tags) { 4943 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4944 nr, true); 4945 } else { 4946 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4947 false); 4948 } 4949 if (ret) 4950 break; 4951 if (q->elevator && q->elevator->type->ops.depth_updated) 4952 q->elevator->type->ops.depth_updated(hctx); 4953 } 4954 if (!ret) { 4955 q->nr_requests = nr; 4956 if (blk_mq_is_shared_tags(set->flags)) { 4957 if (q->elevator) 4958 blk_mq_tag_update_sched_shared_tags(q); 4959 else 4960 blk_mq_tag_resize_shared_tags(set, nr); 4961 } 4962 } 4963 4964 blk_mq_unquiesce_queue(q); 4965 4966 return ret; 4967 } 4968 4969 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4970 int nr_hw_queues) 4971 { 4972 struct request_queue *q; 4973 int prev_nr_hw_queues = set->nr_hw_queues; 4974 unsigned int memflags; 4975 int i; 4976 4977 lockdep_assert_held(&set->tag_list_lock); 4978 4979 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4980 nr_hw_queues = nr_cpu_ids; 4981 if (nr_hw_queues < 1) 4982 return; 4983 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4984 return; 4985 4986 memflags = memalloc_noio_save(); 4987 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4988 blk_mq_debugfs_unregister_hctxs(q); 4989 blk_mq_sysfs_unregister_hctxs(q); 4990 } 4991 4992 list_for_each_entry(q, &set->tag_list, tag_set_list) 4993 blk_mq_freeze_queue_nomemsave(q); 4994 4995 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) { 4996 list_for_each_entry(q, &set->tag_list, tag_set_list) 4997 blk_mq_unfreeze_queue_nomemrestore(q); 4998 goto reregister; 4999 } 5000 5001 fallback: 5002 blk_mq_update_queue_map(set); 5003 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5004 __blk_mq_realloc_hw_ctxs(set, q); 5005 5006 if (q->nr_hw_queues != set->nr_hw_queues) { 5007 int i = prev_nr_hw_queues; 5008 5009 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 5010 nr_hw_queues, prev_nr_hw_queues); 5011 for (; i < set->nr_hw_queues; i++) 5012 __blk_mq_free_map_and_rqs(set, i); 5013 5014 set->nr_hw_queues = prev_nr_hw_queues; 5015 goto fallback; 5016 } 5017 blk_mq_map_swqueue(q); 5018 } 5019 5020 /* elv_update_nr_hw_queues() unfreeze queue for us */ 5021 list_for_each_entry(q, &set->tag_list, tag_set_list) 5022 elv_update_nr_hw_queues(q); 5023 5024 reregister: 5025 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5026 blk_mq_sysfs_register_hctxs(q); 5027 blk_mq_debugfs_register_hctxs(q); 5028 5029 blk_mq_remove_hw_queues_cpuhp(q); 5030 blk_mq_add_hw_queues_cpuhp(q); 5031 } 5032 memalloc_noio_restore(memflags); 5033 5034 /* Free the excess tags when nr_hw_queues shrink. */ 5035 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 5036 __blk_mq_free_map_and_rqs(set, i); 5037 } 5038 5039 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 5040 { 5041 down_write(&set->update_nr_hwq_lock); 5042 mutex_lock(&set->tag_list_lock); 5043 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 5044 mutex_unlock(&set->tag_list_lock); 5045 up_write(&set->update_nr_hwq_lock); 5046 } 5047 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 5048 5049 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 5050 struct io_comp_batch *iob, unsigned int flags) 5051 { 5052 long state = get_current_state(); 5053 int ret; 5054 5055 do { 5056 ret = q->mq_ops->poll(hctx, iob); 5057 if (ret > 0) { 5058 __set_current_state(TASK_RUNNING); 5059 return ret; 5060 } 5061 5062 if (signal_pending_state(state, current)) 5063 __set_current_state(TASK_RUNNING); 5064 if (task_is_running(current)) 5065 return 1; 5066 5067 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5068 break; 5069 cpu_relax(); 5070 } while (!need_resched()); 5071 5072 __set_current_state(TASK_RUNNING); 5073 return 0; 5074 } 5075 5076 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5077 struct io_comp_batch *iob, unsigned int flags) 5078 { 5079 if (!blk_mq_can_poll(q)) 5080 return 0; 5081 return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags); 5082 } 5083 5084 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5085 unsigned int poll_flags) 5086 { 5087 struct request_queue *q = rq->q; 5088 int ret; 5089 5090 if (!blk_rq_is_poll(rq)) 5091 return 0; 5092 if (!percpu_ref_tryget(&q->q_usage_counter)) 5093 return 0; 5094 5095 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5096 blk_queue_exit(q); 5097 5098 return ret; 5099 } 5100 EXPORT_SYMBOL_GPL(blk_rq_poll); 5101 5102 unsigned int blk_mq_rq_cpu(struct request *rq) 5103 { 5104 return rq->mq_ctx->cpu; 5105 } 5106 EXPORT_SYMBOL(blk_mq_rq_cpu); 5107 5108 void blk_mq_cancel_work_sync(struct request_queue *q) 5109 { 5110 struct blk_mq_hw_ctx *hctx; 5111 unsigned long i; 5112 5113 cancel_delayed_work_sync(&q->requeue_work); 5114 5115 queue_for_each_hw_ctx(q, hctx, i) 5116 cancel_delayed_work_sync(&hctx->run_work); 5117 } 5118 5119 static int __init blk_mq_init(void) 5120 { 5121 int i; 5122 5123 for_each_possible_cpu(i) 5124 init_llist_head(&per_cpu(blk_cpu_done, i)); 5125 for_each_possible_cpu(i) 5126 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5127 __blk_mq_complete_request_remote, NULL); 5128 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5129 5130 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5131 "block/softirq:dead", NULL, 5132 blk_softirq_cpu_dead); 5133 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5134 blk_mq_hctx_notify_dead); 5135 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5136 blk_mq_hctx_notify_online, 5137 blk_mq_hctx_notify_offline); 5138 return 0; 5139 } 5140 subsys_initcall(blk_mq_init); 5141