1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 32 #include <trace/events/block.h> 33 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 45 46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 47 static void blk_mq_request_bypass_insert(struct request *rq, 48 blk_insert_t flags); 49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 50 struct list_head *list); 51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 52 struct io_comp_batch *iob, unsigned int flags); 53 54 /* 55 * Check if any of the ctx, dispatch list or elevator 56 * have pending work in this hardware queue. 57 */ 58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 59 { 60 return !list_empty_careful(&hctx->dispatch) || 61 sbitmap_any_bit_set(&hctx->ctx_map) || 62 blk_mq_sched_has_work(hctx); 63 } 64 65 /* 66 * Mark this ctx as having pending work in this hardware queue 67 */ 68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 69 struct blk_mq_ctx *ctx) 70 { 71 const int bit = ctx->index_hw[hctx->type]; 72 73 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 74 sbitmap_set_bit(&hctx->ctx_map, bit); 75 } 76 77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 sbitmap_clear_bit(&hctx->ctx_map, bit); 83 } 84 85 struct mq_inflight { 86 struct block_device *part; 87 unsigned int inflight[2]; 88 }; 89 90 static bool blk_mq_check_inflight(struct request *rq, void *priv) 91 { 92 struct mq_inflight *mi = priv; 93 94 if (rq->part && blk_do_io_stat(rq) && 95 (!mi->part->bd_partno || rq->part == mi->part) && 96 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 97 mi->inflight[rq_data_dir(rq)]++; 98 99 return true; 100 } 101 102 unsigned int blk_mq_in_flight(struct request_queue *q, 103 struct block_device *part) 104 { 105 struct mq_inflight mi = { .part = part }; 106 107 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 108 109 return mi.inflight[0] + mi.inflight[1]; 110 } 111 112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part }; 116 117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 118 inflight[0] = mi.inflight[0]; 119 inflight[1] = mi.inflight[1]; 120 } 121 122 void blk_freeze_queue_start(struct request_queue *q) 123 { 124 mutex_lock(&q->mq_freeze_lock); 125 if (++q->mq_freeze_depth == 1) { 126 percpu_ref_kill(&q->q_usage_counter); 127 mutex_unlock(&q->mq_freeze_lock); 128 if (queue_is_mq(q)) 129 blk_mq_run_hw_queues(q, false); 130 } else { 131 mutex_unlock(&q->mq_freeze_lock); 132 } 133 } 134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 135 136 void blk_mq_freeze_queue_wait(struct request_queue *q) 137 { 138 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 139 } 140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 141 142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 143 unsigned long timeout) 144 { 145 return wait_event_timeout(q->mq_freeze_wq, 146 percpu_ref_is_zero(&q->q_usage_counter), 147 timeout); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 150 151 /* 152 * Guarantee no request is in use, so we can change any data structure of 153 * the queue afterward. 154 */ 155 void blk_freeze_queue(struct request_queue *q) 156 { 157 /* 158 * In the !blk_mq case we are only calling this to kill the 159 * q_usage_counter, otherwise this increases the freeze depth 160 * and waits for it to return to zero. For this reason there is 161 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 162 * exported to drivers as the only user for unfreeze is blk_mq. 163 */ 164 blk_freeze_queue_start(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 179 { 180 mutex_lock(&q->mq_freeze_lock); 181 if (force_atomic) 182 q->q_usage_counter.data->force_atomic = true; 183 q->mq_freeze_depth--; 184 WARN_ON_ONCE(q->mq_freeze_depth < 0); 185 if (!q->mq_freeze_depth) { 186 percpu_ref_resurrect(&q->q_usage_counter); 187 wake_up_all(&q->mq_freeze_wq); 188 } 189 mutex_unlock(&q->mq_freeze_lock); 190 } 191 192 void blk_mq_unfreeze_queue(struct request_queue *q) 193 { 194 __blk_mq_unfreeze_queue(q, false); 195 } 196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 197 198 /* 199 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 200 * mpt3sas driver such that this function can be removed. 201 */ 202 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 203 { 204 unsigned long flags; 205 206 spin_lock_irqsave(&q->queue_lock, flags); 207 if (!q->quiesce_depth++) 208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 209 spin_unlock_irqrestore(&q->queue_lock, flags); 210 } 211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 212 213 /** 214 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 215 * @set: tag_set to wait on 216 * 217 * Note: it is driver's responsibility for making sure that quiesce has 218 * been started on or more of the request_queues of the tag_set. This 219 * function only waits for the quiesce on those request_queues that had 220 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 221 */ 222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 223 { 224 if (set->flags & BLK_MQ_F_BLOCKING) 225 synchronize_srcu(set->srcu); 226 else 227 synchronize_rcu(); 228 } 229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 230 231 /** 232 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 233 * @q: request queue. 234 * 235 * Note: this function does not prevent that the struct request end_io() 236 * callback function is invoked. Once this function is returned, we make 237 * sure no dispatch can happen until the queue is unquiesced via 238 * blk_mq_unquiesce_queue(). 239 */ 240 void blk_mq_quiesce_queue(struct request_queue *q) 241 { 242 blk_mq_quiesce_queue_nowait(q); 243 /* nothing to wait for non-mq queues */ 244 if (queue_is_mq(q)) 245 blk_mq_wait_quiesce_done(q->tag_set); 246 } 247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 248 249 /* 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 251 * @q: request queue. 252 * 253 * This function recovers queue into the state before quiescing 254 * which is done by blk_mq_quiesce_queue. 255 */ 256 void blk_mq_unquiesce_queue(struct request_queue *q) 257 { 258 unsigned long flags; 259 bool run_queue = false; 260 261 spin_lock_irqsave(&q->queue_lock, flags); 262 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 263 ; 264 } else if (!--q->quiesce_depth) { 265 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 266 run_queue = true; 267 } 268 spin_unlock_irqrestore(&q->queue_lock, flags); 269 270 /* dispatch requests which are inserted during quiescing */ 271 if (run_queue) 272 blk_mq_run_hw_queues(q, true); 273 } 274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 275 276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 277 { 278 struct request_queue *q; 279 280 mutex_lock(&set->tag_list_lock); 281 list_for_each_entry(q, &set->tag_list, tag_set_list) { 282 if (!blk_queue_skip_tagset_quiesce(q)) 283 blk_mq_quiesce_queue_nowait(q); 284 } 285 blk_mq_wait_quiesce_done(set); 286 mutex_unlock(&set->tag_list_lock); 287 } 288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 289 290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 291 { 292 struct request_queue *q; 293 294 mutex_lock(&set->tag_list_lock); 295 list_for_each_entry(q, &set->tag_list, tag_set_list) { 296 if (!blk_queue_skip_tagset_quiesce(q)) 297 blk_mq_unquiesce_queue(q); 298 } 299 mutex_unlock(&set->tag_list_lock); 300 } 301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 302 303 void blk_mq_wake_waiters(struct request_queue *q) 304 { 305 struct blk_mq_hw_ctx *hctx; 306 unsigned long i; 307 308 queue_for_each_hw_ctx(q, hctx, i) 309 if (blk_mq_hw_queue_mapped(hctx)) 310 blk_mq_tag_wakeup_all(hctx->tags, true); 311 } 312 313 void blk_rq_init(struct request_queue *q, struct request *rq) 314 { 315 memset(rq, 0, sizeof(*rq)); 316 317 INIT_LIST_HEAD(&rq->queuelist); 318 rq->q = q; 319 rq->__sector = (sector_t) -1; 320 INIT_HLIST_NODE(&rq->hash); 321 RB_CLEAR_NODE(&rq->rb_node); 322 rq->tag = BLK_MQ_NO_TAG; 323 rq->internal_tag = BLK_MQ_NO_TAG; 324 rq->start_time_ns = blk_time_get_ns(); 325 rq->part = NULL; 326 blk_crypto_rq_set_defaults(rq); 327 } 328 EXPORT_SYMBOL(blk_rq_init); 329 330 /* Set start and alloc time when the allocated request is actually used */ 331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 332 { 333 if (blk_mq_need_time_stamp(rq)) 334 rq->start_time_ns = blk_time_get_ns(); 335 else 336 rq->start_time_ns = 0; 337 338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 339 if (blk_queue_rq_alloc_time(rq->q)) 340 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 341 else 342 rq->alloc_time_ns = 0; 343 #endif 344 } 345 346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 347 struct blk_mq_tags *tags, unsigned int tag) 348 { 349 struct blk_mq_ctx *ctx = data->ctx; 350 struct blk_mq_hw_ctx *hctx = data->hctx; 351 struct request_queue *q = data->q; 352 struct request *rq = tags->static_rqs[tag]; 353 354 rq->q = q; 355 rq->mq_ctx = ctx; 356 rq->mq_hctx = hctx; 357 rq->cmd_flags = data->cmd_flags; 358 359 if (data->flags & BLK_MQ_REQ_PM) 360 data->rq_flags |= RQF_PM; 361 if (blk_queue_io_stat(q)) 362 data->rq_flags |= RQF_IO_STAT; 363 rq->rq_flags = data->rq_flags; 364 365 if (data->rq_flags & RQF_SCHED_TAGS) { 366 rq->tag = BLK_MQ_NO_TAG; 367 rq->internal_tag = tag; 368 } else { 369 rq->tag = tag; 370 rq->internal_tag = BLK_MQ_NO_TAG; 371 } 372 rq->timeout = 0; 373 374 rq->part = NULL; 375 rq->io_start_time_ns = 0; 376 rq->stats_sectors = 0; 377 rq->nr_phys_segments = 0; 378 #if defined(CONFIG_BLK_DEV_INTEGRITY) 379 rq->nr_integrity_segments = 0; 380 #endif 381 rq->end_io = NULL; 382 rq->end_io_data = NULL; 383 384 blk_crypto_rq_set_defaults(rq); 385 INIT_LIST_HEAD(&rq->queuelist); 386 /* tag was already set */ 387 WRITE_ONCE(rq->deadline, 0); 388 req_ref_set(rq, 1); 389 390 if (rq->rq_flags & RQF_USE_SCHED) { 391 struct elevator_queue *e = data->q->elevator; 392 393 INIT_HLIST_NODE(&rq->hash); 394 RB_CLEAR_NODE(&rq->rb_node); 395 396 if (e->type->ops.prepare_request) 397 e->type->ops.prepare_request(rq); 398 } 399 400 return rq; 401 } 402 403 static inline struct request * 404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 405 { 406 unsigned int tag, tag_offset; 407 struct blk_mq_tags *tags; 408 struct request *rq; 409 unsigned long tag_mask; 410 int i, nr = 0; 411 412 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 413 if (unlikely(!tag_mask)) 414 return NULL; 415 416 tags = blk_mq_tags_from_data(data); 417 for (i = 0; tag_mask; i++) { 418 if (!(tag_mask & (1UL << i))) 419 continue; 420 tag = tag_offset + i; 421 prefetch(tags->static_rqs[tag]); 422 tag_mask &= ~(1UL << i); 423 rq = blk_mq_rq_ctx_init(data, tags, tag); 424 rq_list_add(data->cached_rq, rq); 425 nr++; 426 } 427 if (!(data->rq_flags & RQF_SCHED_TAGS)) 428 blk_mq_add_active_requests(data->hctx, nr); 429 /* caller already holds a reference, add for remainder */ 430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 431 data->nr_tags -= nr; 432 433 return rq_list_pop(data->cached_rq); 434 } 435 436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 437 { 438 struct request_queue *q = data->q; 439 u64 alloc_time_ns = 0; 440 struct request *rq; 441 unsigned int tag; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = blk_time_get_ns(); 446 447 if (data->cmd_flags & REQ_NOWAIT) 448 data->flags |= BLK_MQ_REQ_NOWAIT; 449 450 if (q->elevator) { 451 /* 452 * All requests use scheduler tags when an I/O scheduler is 453 * enabled for the queue. 454 */ 455 data->rq_flags |= RQF_SCHED_TAGS; 456 457 /* 458 * Flush/passthrough requests are special and go directly to the 459 * dispatch list. 460 */ 461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 462 !blk_op_is_passthrough(data->cmd_flags)) { 463 struct elevator_mq_ops *ops = &q->elevator->type->ops; 464 465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 466 467 data->rq_flags |= RQF_USE_SCHED; 468 if (ops->limit_depth) 469 ops->limit_depth(data->cmd_flags, data); 470 } 471 } 472 473 retry: 474 data->ctx = blk_mq_get_ctx(q); 475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 476 if (!(data->rq_flags & RQF_SCHED_TAGS)) 477 blk_mq_tag_busy(data->hctx); 478 479 if (data->flags & BLK_MQ_REQ_RESERVED) 480 data->rq_flags |= RQF_RESV; 481 482 /* 483 * Try batched alloc if we want more than 1 tag. 484 */ 485 if (data->nr_tags > 1) { 486 rq = __blk_mq_alloc_requests_batch(data); 487 if (rq) { 488 blk_mq_rq_time_init(rq, alloc_time_ns); 489 return rq; 490 } 491 data->nr_tags = 1; 492 } 493 494 /* 495 * Waiting allocations only fail because of an inactive hctx. In that 496 * case just retry the hctx assignment and tag allocation as CPU hotplug 497 * should have migrated us to an online CPU by now. 498 */ 499 tag = blk_mq_get_tag(data); 500 if (tag == BLK_MQ_NO_TAG) { 501 if (data->flags & BLK_MQ_REQ_NOWAIT) 502 return NULL; 503 /* 504 * Give up the CPU and sleep for a random short time to 505 * ensure that thread using a realtime scheduling class 506 * are migrated off the CPU, and thus off the hctx that 507 * is going away. 508 */ 509 msleep(3); 510 goto retry; 511 } 512 513 if (!(data->rq_flags & RQF_SCHED_TAGS)) 514 blk_mq_inc_active_requests(data->hctx); 515 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 516 blk_mq_rq_time_init(rq, alloc_time_ns); 517 return rq; 518 } 519 520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 521 struct blk_plug *plug, 522 blk_opf_t opf, 523 blk_mq_req_flags_t flags) 524 { 525 struct blk_mq_alloc_data data = { 526 .q = q, 527 .flags = flags, 528 .cmd_flags = opf, 529 .nr_tags = plug->nr_ios, 530 .cached_rq = &plug->cached_rq, 531 }; 532 struct request *rq; 533 534 if (blk_queue_enter(q, flags)) 535 return NULL; 536 537 plug->nr_ios = 1; 538 539 rq = __blk_mq_alloc_requests(&data); 540 if (unlikely(!rq)) 541 blk_queue_exit(q); 542 return rq; 543 } 544 545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_plug *plug = current->plug; 550 struct request *rq; 551 552 if (!plug) 553 return NULL; 554 555 if (rq_list_empty(plug->cached_rq)) { 556 if (plug->nr_ios == 1) 557 return NULL; 558 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 559 if (!rq) 560 return NULL; 561 } else { 562 rq = rq_list_peek(&plug->cached_rq); 563 if (!rq || rq->q != q) 564 return NULL; 565 566 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 567 return NULL; 568 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 569 return NULL; 570 571 plug->cached_rq = rq_list_next(rq); 572 blk_mq_rq_time_init(rq, 0); 573 } 574 575 rq->cmd_flags = opf; 576 INIT_LIST_HEAD(&rq->queuelist); 577 return rq; 578 } 579 580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 581 blk_mq_req_flags_t flags) 582 { 583 struct request *rq; 584 585 rq = blk_mq_alloc_cached_request(q, opf, flags); 586 if (!rq) { 587 struct blk_mq_alloc_data data = { 588 .q = q, 589 .flags = flags, 590 .cmd_flags = opf, 591 .nr_tags = 1, 592 }; 593 int ret; 594 595 ret = blk_queue_enter(q, flags); 596 if (ret) 597 return ERR_PTR(ret); 598 599 rq = __blk_mq_alloc_requests(&data); 600 if (!rq) 601 goto out_queue_exit; 602 } 603 rq->__data_len = 0; 604 rq->__sector = (sector_t) -1; 605 rq->bio = rq->biotail = NULL; 606 return rq; 607 out_queue_exit: 608 blk_queue_exit(q); 609 return ERR_PTR(-EWOULDBLOCK); 610 } 611 EXPORT_SYMBOL(blk_mq_alloc_request); 612 613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 614 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 615 { 616 struct blk_mq_alloc_data data = { 617 .q = q, 618 .flags = flags, 619 .cmd_flags = opf, 620 .nr_tags = 1, 621 }; 622 u64 alloc_time_ns = 0; 623 struct request *rq; 624 unsigned int cpu; 625 unsigned int tag; 626 int ret; 627 628 /* alloc_time includes depth and tag waits */ 629 if (blk_queue_rq_alloc_time(q)) 630 alloc_time_ns = blk_time_get_ns(); 631 632 /* 633 * If the tag allocator sleeps we could get an allocation for a 634 * different hardware context. No need to complicate the low level 635 * allocator for this for the rare use case of a command tied to 636 * a specific queue. 637 */ 638 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 639 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 640 return ERR_PTR(-EINVAL); 641 642 if (hctx_idx >= q->nr_hw_queues) 643 return ERR_PTR(-EIO); 644 645 ret = blk_queue_enter(q, flags); 646 if (ret) 647 return ERR_PTR(ret); 648 649 /* 650 * Check if the hardware context is actually mapped to anything. 651 * If not tell the caller that it should skip this queue. 652 */ 653 ret = -EXDEV; 654 data.hctx = xa_load(&q->hctx_table, hctx_idx); 655 if (!blk_mq_hw_queue_mapped(data.hctx)) 656 goto out_queue_exit; 657 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 658 if (cpu >= nr_cpu_ids) 659 goto out_queue_exit; 660 data.ctx = __blk_mq_get_ctx(q, cpu); 661 662 if (q->elevator) 663 data.rq_flags |= RQF_SCHED_TAGS; 664 else 665 blk_mq_tag_busy(data.hctx); 666 667 if (flags & BLK_MQ_REQ_RESERVED) 668 data.rq_flags |= RQF_RESV; 669 670 ret = -EWOULDBLOCK; 671 tag = blk_mq_get_tag(&data); 672 if (tag == BLK_MQ_NO_TAG) 673 goto out_queue_exit; 674 if (!(data.rq_flags & RQF_SCHED_TAGS)) 675 blk_mq_inc_active_requests(data.hctx); 676 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 677 blk_mq_rq_time_init(rq, alloc_time_ns); 678 rq->__data_len = 0; 679 rq->__sector = (sector_t) -1; 680 rq->bio = rq->biotail = NULL; 681 return rq; 682 683 out_queue_exit: 684 blk_queue_exit(q); 685 return ERR_PTR(ret); 686 } 687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 688 689 static void blk_mq_finish_request(struct request *rq) 690 { 691 struct request_queue *q = rq->q; 692 693 if (rq->rq_flags & RQF_USE_SCHED) { 694 q->elevator->type->ops.finish_request(rq); 695 /* 696 * For postflush request that may need to be 697 * completed twice, we should clear this flag 698 * to avoid double finish_request() on the rq. 699 */ 700 rq->rq_flags &= ~RQF_USE_SCHED; 701 } 702 } 703 704 static void __blk_mq_free_request(struct request *rq) 705 { 706 struct request_queue *q = rq->q; 707 struct blk_mq_ctx *ctx = rq->mq_ctx; 708 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 709 const int sched_tag = rq->internal_tag; 710 711 blk_crypto_free_request(rq); 712 blk_pm_mark_last_busy(rq); 713 rq->mq_hctx = NULL; 714 715 if (rq->tag != BLK_MQ_NO_TAG) { 716 blk_mq_dec_active_requests(hctx); 717 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 718 } 719 if (sched_tag != BLK_MQ_NO_TAG) 720 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 721 blk_mq_sched_restart(hctx); 722 blk_queue_exit(q); 723 } 724 725 void blk_mq_free_request(struct request *rq) 726 { 727 struct request_queue *q = rq->q; 728 729 blk_mq_finish_request(rq); 730 731 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 732 laptop_io_completion(q->disk->bdi); 733 734 rq_qos_done(q, rq); 735 736 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 737 if (req_ref_put_and_test(rq)) 738 __blk_mq_free_request(rq); 739 } 740 EXPORT_SYMBOL_GPL(blk_mq_free_request); 741 742 void blk_mq_free_plug_rqs(struct blk_plug *plug) 743 { 744 struct request *rq; 745 746 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 747 blk_mq_free_request(rq); 748 } 749 750 void blk_dump_rq_flags(struct request *rq, char *msg) 751 { 752 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 753 rq->q->disk ? rq->q->disk->disk_name : "?", 754 (__force unsigned long long) rq->cmd_flags); 755 756 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 757 (unsigned long long)blk_rq_pos(rq), 758 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 759 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 760 rq->bio, rq->biotail, blk_rq_bytes(rq)); 761 } 762 EXPORT_SYMBOL(blk_dump_rq_flags); 763 764 static void req_bio_endio(struct request *rq, struct bio *bio, 765 unsigned int nbytes, blk_status_t error) 766 { 767 if (unlikely(error)) { 768 bio->bi_status = error; 769 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 770 /* 771 * Partial zone append completions cannot be supported as the 772 * BIO fragments may end up not being written sequentially. 773 */ 774 if (bio->bi_iter.bi_size != nbytes) 775 bio->bi_status = BLK_STS_IOERR; 776 else 777 bio->bi_iter.bi_sector = rq->__sector; 778 } 779 780 bio_advance(bio, nbytes); 781 782 if (unlikely(rq->rq_flags & RQF_QUIET)) 783 bio_set_flag(bio, BIO_QUIET); 784 /* don't actually finish bio if it's part of flush sequence */ 785 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 786 bio_endio(bio); 787 } 788 789 static void blk_account_io_completion(struct request *req, unsigned int bytes) 790 { 791 if (req->part && blk_do_io_stat(req)) { 792 const int sgrp = op_stat_group(req_op(req)); 793 794 part_stat_lock(); 795 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 796 part_stat_unlock(); 797 } 798 } 799 800 static void blk_print_req_error(struct request *req, blk_status_t status) 801 { 802 printk_ratelimited(KERN_ERR 803 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 804 "phys_seg %u prio class %u\n", 805 blk_status_to_str(status), 806 req->q->disk ? req->q->disk->disk_name : "?", 807 blk_rq_pos(req), (__force u32)req_op(req), 808 blk_op_str(req_op(req)), 809 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 810 req->nr_phys_segments, 811 IOPRIO_PRIO_CLASS(req->ioprio)); 812 } 813 814 /* 815 * Fully end IO on a request. Does not support partial completions, or 816 * errors. 817 */ 818 static void blk_complete_request(struct request *req) 819 { 820 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 821 int total_bytes = blk_rq_bytes(req); 822 struct bio *bio = req->bio; 823 824 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 825 826 if (!bio) 827 return; 828 829 #ifdef CONFIG_BLK_DEV_INTEGRITY 830 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 831 req->q->integrity.profile->complete_fn(req, total_bytes); 832 #endif 833 834 /* 835 * Upper layers may call blk_crypto_evict_key() anytime after the last 836 * bio_endio(). Therefore, the keyslot must be released before that. 837 */ 838 blk_crypto_rq_put_keyslot(req); 839 840 blk_account_io_completion(req, total_bytes); 841 842 do { 843 struct bio *next = bio->bi_next; 844 845 /* Completion has already been traced */ 846 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 847 848 if (req_op(req) == REQ_OP_ZONE_APPEND) 849 bio->bi_iter.bi_sector = req->__sector; 850 851 if (!is_flush) 852 bio_endio(bio); 853 bio = next; 854 } while (bio); 855 856 /* 857 * Reset counters so that the request stacking driver 858 * can find how many bytes remain in the request 859 * later. 860 */ 861 if (!req->end_io) { 862 req->bio = NULL; 863 req->__data_len = 0; 864 } 865 } 866 867 /** 868 * blk_update_request - Complete multiple bytes without completing the request 869 * @req: the request being processed 870 * @error: block status code 871 * @nr_bytes: number of bytes to complete for @req 872 * 873 * Description: 874 * Ends I/O on a number of bytes attached to @req, but doesn't complete 875 * the request structure even if @req doesn't have leftover. 876 * If @req has leftover, sets it up for the next range of segments. 877 * 878 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 879 * %false return from this function. 880 * 881 * Note: 882 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 883 * except in the consistency check at the end of this function. 884 * 885 * Return: 886 * %false - this request doesn't have any more data 887 * %true - this request has more data 888 **/ 889 bool blk_update_request(struct request *req, blk_status_t error, 890 unsigned int nr_bytes) 891 { 892 int total_bytes; 893 894 trace_block_rq_complete(req, error, nr_bytes); 895 896 if (!req->bio) 897 return false; 898 899 #ifdef CONFIG_BLK_DEV_INTEGRITY 900 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 901 error == BLK_STS_OK) 902 req->q->integrity.profile->complete_fn(req, nr_bytes); 903 #endif 904 905 /* 906 * Upper layers may call blk_crypto_evict_key() anytime after the last 907 * bio_endio(). Therefore, the keyslot must be released before that. 908 */ 909 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 910 __blk_crypto_rq_put_keyslot(req); 911 912 if (unlikely(error && !blk_rq_is_passthrough(req) && 913 !(req->rq_flags & RQF_QUIET)) && 914 !test_bit(GD_DEAD, &req->q->disk->state)) { 915 blk_print_req_error(req, error); 916 trace_block_rq_error(req, error, nr_bytes); 917 } 918 919 blk_account_io_completion(req, nr_bytes); 920 921 total_bytes = 0; 922 while (req->bio) { 923 struct bio *bio = req->bio; 924 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 925 926 if (bio_bytes == bio->bi_iter.bi_size) 927 req->bio = bio->bi_next; 928 929 /* Completion has already been traced */ 930 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 931 req_bio_endio(req, bio, bio_bytes, error); 932 933 total_bytes += bio_bytes; 934 nr_bytes -= bio_bytes; 935 936 if (!nr_bytes) 937 break; 938 } 939 940 /* 941 * completely done 942 */ 943 if (!req->bio) { 944 /* 945 * Reset counters so that the request stacking driver 946 * can find how many bytes remain in the request 947 * later. 948 */ 949 req->__data_len = 0; 950 return false; 951 } 952 953 req->__data_len -= total_bytes; 954 955 /* update sector only for requests with clear definition of sector */ 956 if (!blk_rq_is_passthrough(req)) 957 req->__sector += total_bytes >> 9; 958 959 /* mixed attributes always follow the first bio */ 960 if (req->rq_flags & RQF_MIXED_MERGE) { 961 req->cmd_flags &= ~REQ_FAILFAST_MASK; 962 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 963 } 964 965 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 966 /* 967 * If total number of sectors is less than the first segment 968 * size, something has gone terribly wrong. 969 */ 970 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 971 blk_dump_rq_flags(req, "request botched"); 972 req->__data_len = blk_rq_cur_bytes(req); 973 } 974 975 /* recalculate the number of segments */ 976 req->nr_phys_segments = blk_recalc_rq_segments(req); 977 } 978 979 return true; 980 } 981 EXPORT_SYMBOL_GPL(blk_update_request); 982 983 static inline void blk_account_io_done(struct request *req, u64 now) 984 { 985 trace_block_io_done(req); 986 987 /* 988 * Account IO completion. flush_rq isn't accounted as a 989 * normal IO on queueing nor completion. Accounting the 990 * containing request is enough. 991 */ 992 if (blk_do_io_stat(req) && req->part && 993 !(req->rq_flags & RQF_FLUSH_SEQ)) { 994 const int sgrp = op_stat_group(req_op(req)); 995 996 part_stat_lock(); 997 update_io_ticks(req->part, jiffies, true); 998 part_stat_inc(req->part, ios[sgrp]); 999 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1000 part_stat_unlock(); 1001 } 1002 } 1003 1004 static inline void blk_account_io_start(struct request *req) 1005 { 1006 trace_block_io_start(req); 1007 1008 if (blk_do_io_stat(req)) { 1009 /* 1010 * All non-passthrough requests are created from a bio with one 1011 * exception: when a flush command that is part of a flush sequence 1012 * generated by the state machine in blk-flush.c is cloned onto the 1013 * lower device by dm-multipath we can get here without a bio. 1014 */ 1015 if (req->bio) 1016 req->part = req->bio->bi_bdev; 1017 else 1018 req->part = req->q->disk->part0; 1019 1020 part_stat_lock(); 1021 update_io_ticks(req->part, jiffies, false); 1022 part_stat_unlock(); 1023 } 1024 } 1025 1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1027 { 1028 if (rq->rq_flags & RQF_STATS) 1029 blk_stat_add(rq, now); 1030 1031 blk_mq_sched_completed_request(rq, now); 1032 blk_account_io_done(rq, now); 1033 } 1034 1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1036 { 1037 if (blk_mq_need_time_stamp(rq)) 1038 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1039 1040 blk_mq_finish_request(rq); 1041 1042 if (rq->end_io) { 1043 rq_qos_done(rq->q, rq); 1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1045 blk_mq_free_request(rq); 1046 } else { 1047 blk_mq_free_request(rq); 1048 } 1049 } 1050 EXPORT_SYMBOL(__blk_mq_end_request); 1051 1052 void blk_mq_end_request(struct request *rq, blk_status_t error) 1053 { 1054 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1055 BUG(); 1056 __blk_mq_end_request(rq, error); 1057 } 1058 EXPORT_SYMBOL(blk_mq_end_request); 1059 1060 #define TAG_COMP_BATCH 32 1061 1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1063 int *tag_array, int nr_tags) 1064 { 1065 struct request_queue *q = hctx->queue; 1066 1067 blk_mq_sub_active_requests(hctx, nr_tags); 1068 1069 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1070 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1071 } 1072 1073 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1074 { 1075 int tags[TAG_COMP_BATCH], nr_tags = 0; 1076 struct blk_mq_hw_ctx *cur_hctx = NULL; 1077 struct request *rq; 1078 u64 now = 0; 1079 1080 if (iob->need_ts) 1081 now = blk_time_get_ns(); 1082 1083 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1084 prefetch(rq->bio); 1085 prefetch(rq->rq_next); 1086 1087 blk_complete_request(rq); 1088 if (iob->need_ts) 1089 __blk_mq_end_request_acct(rq, now); 1090 1091 blk_mq_finish_request(rq); 1092 1093 rq_qos_done(rq->q, rq); 1094 1095 /* 1096 * If end_io handler returns NONE, then it still has 1097 * ownership of the request. 1098 */ 1099 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1100 continue; 1101 1102 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1103 if (!req_ref_put_and_test(rq)) 1104 continue; 1105 1106 blk_crypto_free_request(rq); 1107 blk_pm_mark_last_busy(rq); 1108 1109 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1110 if (cur_hctx) 1111 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1112 nr_tags = 0; 1113 cur_hctx = rq->mq_hctx; 1114 } 1115 tags[nr_tags++] = rq->tag; 1116 } 1117 1118 if (nr_tags) 1119 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1120 } 1121 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1122 1123 static void blk_complete_reqs(struct llist_head *list) 1124 { 1125 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1126 struct request *rq, *next; 1127 1128 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1129 rq->q->mq_ops->complete(rq); 1130 } 1131 1132 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1133 { 1134 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1135 } 1136 1137 static int blk_softirq_cpu_dead(unsigned int cpu) 1138 { 1139 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1140 return 0; 1141 } 1142 1143 static void __blk_mq_complete_request_remote(void *data) 1144 { 1145 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1146 } 1147 1148 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1149 { 1150 int cpu = raw_smp_processor_id(); 1151 1152 if (!IS_ENABLED(CONFIG_SMP) || 1153 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1154 return false; 1155 /* 1156 * With force threaded interrupts enabled, raising softirq from an SMP 1157 * function call will always result in waking the ksoftirqd thread. 1158 * This is probably worse than completing the request on a different 1159 * cache domain. 1160 */ 1161 if (force_irqthreads()) 1162 return false; 1163 1164 /* same CPU or cache domain and capacity? Complete locally */ 1165 if (cpu == rq->mq_ctx->cpu || 1166 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1167 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1168 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1169 return false; 1170 1171 /* don't try to IPI to an offline CPU */ 1172 return cpu_online(rq->mq_ctx->cpu); 1173 } 1174 1175 static void blk_mq_complete_send_ipi(struct request *rq) 1176 { 1177 unsigned int cpu; 1178 1179 cpu = rq->mq_ctx->cpu; 1180 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1181 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1182 } 1183 1184 static void blk_mq_raise_softirq(struct request *rq) 1185 { 1186 struct llist_head *list; 1187 1188 preempt_disable(); 1189 list = this_cpu_ptr(&blk_cpu_done); 1190 if (llist_add(&rq->ipi_list, list)) 1191 raise_softirq(BLOCK_SOFTIRQ); 1192 preempt_enable(); 1193 } 1194 1195 bool blk_mq_complete_request_remote(struct request *rq) 1196 { 1197 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1198 1199 /* 1200 * For request which hctx has only one ctx mapping, 1201 * or a polled request, always complete locally, 1202 * it's pointless to redirect the completion. 1203 */ 1204 if ((rq->mq_hctx->nr_ctx == 1 && 1205 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1206 rq->cmd_flags & REQ_POLLED) 1207 return false; 1208 1209 if (blk_mq_complete_need_ipi(rq)) { 1210 blk_mq_complete_send_ipi(rq); 1211 return true; 1212 } 1213 1214 if (rq->q->nr_hw_queues == 1) { 1215 blk_mq_raise_softirq(rq); 1216 return true; 1217 } 1218 return false; 1219 } 1220 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1221 1222 /** 1223 * blk_mq_complete_request - end I/O on a request 1224 * @rq: the request being processed 1225 * 1226 * Description: 1227 * Complete a request by scheduling the ->complete_rq operation. 1228 **/ 1229 void blk_mq_complete_request(struct request *rq) 1230 { 1231 if (!blk_mq_complete_request_remote(rq)) 1232 rq->q->mq_ops->complete(rq); 1233 } 1234 EXPORT_SYMBOL(blk_mq_complete_request); 1235 1236 /** 1237 * blk_mq_start_request - Start processing a request 1238 * @rq: Pointer to request to be started 1239 * 1240 * Function used by device drivers to notify the block layer that a request 1241 * is going to be processed now, so blk layer can do proper initializations 1242 * such as starting the timeout timer. 1243 */ 1244 void blk_mq_start_request(struct request *rq) 1245 { 1246 struct request_queue *q = rq->q; 1247 1248 trace_block_rq_issue(rq); 1249 1250 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1251 !blk_rq_is_passthrough(rq)) { 1252 rq->io_start_time_ns = blk_time_get_ns(); 1253 rq->stats_sectors = blk_rq_sectors(rq); 1254 rq->rq_flags |= RQF_STATS; 1255 rq_qos_issue(q, rq); 1256 } 1257 1258 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1259 1260 blk_add_timer(rq); 1261 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1262 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1263 1264 #ifdef CONFIG_BLK_DEV_INTEGRITY 1265 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1266 q->integrity.profile->prepare_fn(rq); 1267 #endif 1268 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1269 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1270 } 1271 EXPORT_SYMBOL(blk_mq_start_request); 1272 1273 /* 1274 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1275 * queues. This is important for md arrays to benefit from merging 1276 * requests. 1277 */ 1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1279 { 1280 if (plug->multiple_queues) 1281 return BLK_MAX_REQUEST_COUNT * 2; 1282 return BLK_MAX_REQUEST_COUNT; 1283 } 1284 1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1286 { 1287 struct request *last = rq_list_peek(&plug->mq_list); 1288 1289 if (!plug->rq_count) { 1290 trace_block_plug(rq->q); 1291 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1292 (!blk_queue_nomerges(rq->q) && 1293 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1294 blk_mq_flush_plug_list(plug, false); 1295 last = NULL; 1296 trace_block_plug(rq->q); 1297 } 1298 1299 if (!plug->multiple_queues && last && last->q != rq->q) 1300 plug->multiple_queues = true; 1301 /* 1302 * Any request allocated from sched tags can't be issued to 1303 * ->queue_rqs() directly 1304 */ 1305 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1306 plug->has_elevator = true; 1307 rq->rq_next = NULL; 1308 rq_list_add(&plug->mq_list, rq); 1309 plug->rq_count++; 1310 } 1311 1312 /** 1313 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1314 * @rq: request to insert 1315 * @at_head: insert request at head or tail of queue 1316 * 1317 * Description: 1318 * Insert a fully prepared request at the back of the I/O scheduler queue 1319 * for execution. Don't wait for completion. 1320 * 1321 * Note: 1322 * This function will invoke @done directly if the queue is dead. 1323 */ 1324 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1325 { 1326 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1327 1328 WARN_ON(irqs_disabled()); 1329 WARN_ON(!blk_rq_is_passthrough(rq)); 1330 1331 blk_account_io_start(rq); 1332 1333 /* 1334 * As plugging can be enabled for passthrough requests on a zoned 1335 * device, directly accessing the plug instead of using blk_mq_plug() 1336 * should not have any consequences. 1337 */ 1338 if (current->plug && !at_head) { 1339 blk_add_rq_to_plug(current->plug, rq); 1340 return; 1341 } 1342 1343 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1344 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1345 } 1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1347 1348 struct blk_rq_wait { 1349 struct completion done; 1350 blk_status_t ret; 1351 }; 1352 1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1354 { 1355 struct blk_rq_wait *wait = rq->end_io_data; 1356 1357 wait->ret = ret; 1358 complete(&wait->done); 1359 return RQ_END_IO_NONE; 1360 } 1361 1362 bool blk_rq_is_poll(struct request *rq) 1363 { 1364 if (!rq->mq_hctx) 1365 return false; 1366 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1367 return false; 1368 return true; 1369 } 1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1371 1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1373 { 1374 do { 1375 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1376 cond_resched(); 1377 } while (!completion_done(wait)); 1378 } 1379 1380 /** 1381 * blk_execute_rq - insert a request into queue for execution 1382 * @rq: request to insert 1383 * @at_head: insert request at head or tail of queue 1384 * 1385 * Description: 1386 * Insert a fully prepared request at the back of the I/O scheduler queue 1387 * for execution and wait for completion. 1388 * Return: The blk_status_t result provided to blk_mq_end_request(). 1389 */ 1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1391 { 1392 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1393 struct blk_rq_wait wait = { 1394 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1395 }; 1396 1397 WARN_ON(irqs_disabled()); 1398 WARN_ON(!blk_rq_is_passthrough(rq)); 1399 1400 rq->end_io_data = &wait; 1401 rq->end_io = blk_end_sync_rq; 1402 1403 blk_account_io_start(rq); 1404 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1405 blk_mq_run_hw_queue(hctx, false); 1406 1407 if (blk_rq_is_poll(rq)) 1408 blk_rq_poll_completion(rq, &wait.done); 1409 else 1410 blk_wait_io(&wait.done); 1411 1412 return wait.ret; 1413 } 1414 EXPORT_SYMBOL(blk_execute_rq); 1415 1416 static void __blk_mq_requeue_request(struct request *rq) 1417 { 1418 struct request_queue *q = rq->q; 1419 1420 blk_mq_put_driver_tag(rq); 1421 1422 trace_block_rq_requeue(rq); 1423 rq_qos_requeue(q, rq); 1424 1425 if (blk_mq_request_started(rq)) { 1426 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1427 rq->rq_flags &= ~RQF_TIMED_OUT; 1428 } 1429 } 1430 1431 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1432 { 1433 struct request_queue *q = rq->q; 1434 unsigned long flags; 1435 1436 __blk_mq_requeue_request(rq); 1437 1438 /* this request will be re-inserted to io scheduler queue */ 1439 blk_mq_sched_requeue_request(rq); 1440 1441 spin_lock_irqsave(&q->requeue_lock, flags); 1442 list_add_tail(&rq->queuelist, &q->requeue_list); 1443 spin_unlock_irqrestore(&q->requeue_lock, flags); 1444 1445 if (kick_requeue_list) 1446 blk_mq_kick_requeue_list(q); 1447 } 1448 EXPORT_SYMBOL(blk_mq_requeue_request); 1449 1450 static void blk_mq_requeue_work(struct work_struct *work) 1451 { 1452 struct request_queue *q = 1453 container_of(work, struct request_queue, requeue_work.work); 1454 LIST_HEAD(rq_list); 1455 LIST_HEAD(flush_list); 1456 struct request *rq; 1457 1458 spin_lock_irq(&q->requeue_lock); 1459 list_splice_init(&q->requeue_list, &rq_list); 1460 list_splice_init(&q->flush_list, &flush_list); 1461 spin_unlock_irq(&q->requeue_lock); 1462 1463 while (!list_empty(&rq_list)) { 1464 rq = list_entry(rq_list.next, struct request, queuelist); 1465 /* 1466 * If RQF_DONTPREP ist set, the request has been started by the 1467 * driver already and might have driver-specific data allocated 1468 * already. Insert it into the hctx dispatch list to avoid 1469 * block layer merges for the request. 1470 */ 1471 if (rq->rq_flags & RQF_DONTPREP) { 1472 list_del_init(&rq->queuelist); 1473 blk_mq_request_bypass_insert(rq, 0); 1474 } else { 1475 list_del_init(&rq->queuelist); 1476 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1477 } 1478 } 1479 1480 while (!list_empty(&flush_list)) { 1481 rq = list_entry(flush_list.next, struct request, queuelist); 1482 list_del_init(&rq->queuelist); 1483 blk_mq_insert_request(rq, 0); 1484 } 1485 1486 blk_mq_run_hw_queues(q, false); 1487 } 1488 1489 void blk_mq_kick_requeue_list(struct request_queue *q) 1490 { 1491 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1492 } 1493 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1494 1495 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1496 unsigned long msecs) 1497 { 1498 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1499 msecs_to_jiffies(msecs)); 1500 } 1501 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1502 1503 static bool blk_is_flush_data_rq(struct request *rq) 1504 { 1505 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1506 } 1507 1508 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1509 { 1510 /* 1511 * If we find a request that isn't idle we know the queue is busy 1512 * as it's checked in the iter. 1513 * Return false to stop the iteration. 1514 * 1515 * In case of queue quiesce, if one flush data request is completed, 1516 * don't count it as inflight given the flush sequence is suspended, 1517 * and the original flush data request is invisible to driver, just 1518 * like other pending requests because of quiesce 1519 */ 1520 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1521 blk_is_flush_data_rq(rq) && 1522 blk_mq_request_completed(rq))) { 1523 bool *busy = priv; 1524 1525 *busy = true; 1526 return false; 1527 } 1528 1529 return true; 1530 } 1531 1532 bool blk_mq_queue_inflight(struct request_queue *q) 1533 { 1534 bool busy = false; 1535 1536 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1537 return busy; 1538 } 1539 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1540 1541 static void blk_mq_rq_timed_out(struct request *req) 1542 { 1543 req->rq_flags |= RQF_TIMED_OUT; 1544 if (req->q->mq_ops->timeout) { 1545 enum blk_eh_timer_return ret; 1546 1547 ret = req->q->mq_ops->timeout(req); 1548 if (ret == BLK_EH_DONE) 1549 return; 1550 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1551 } 1552 1553 blk_add_timer(req); 1554 } 1555 1556 struct blk_expired_data { 1557 bool has_timedout_rq; 1558 unsigned long next; 1559 unsigned long timeout_start; 1560 }; 1561 1562 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1563 { 1564 unsigned long deadline; 1565 1566 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1567 return false; 1568 if (rq->rq_flags & RQF_TIMED_OUT) 1569 return false; 1570 1571 deadline = READ_ONCE(rq->deadline); 1572 if (time_after_eq(expired->timeout_start, deadline)) 1573 return true; 1574 1575 if (expired->next == 0) 1576 expired->next = deadline; 1577 else if (time_after(expired->next, deadline)) 1578 expired->next = deadline; 1579 return false; 1580 } 1581 1582 void blk_mq_put_rq_ref(struct request *rq) 1583 { 1584 if (is_flush_rq(rq)) { 1585 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1586 blk_mq_free_request(rq); 1587 } else if (req_ref_put_and_test(rq)) { 1588 __blk_mq_free_request(rq); 1589 } 1590 } 1591 1592 static bool blk_mq_check_expired(struct request *rq, void *priv) 1593 { 1594 struct blk_expired_data *expired = priv; 1595 1596 /* 1597 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1598 * be reallocated underneath the timeout handler's processing, then 1599 * the expire check is reliable. If the request is not expired, then 1600 * it was completed and reallocated as a new request after returning 1601 * from blk_mq_check_expired(). 1602 */ 1603 if (blk_mq_req_expired(rq, expired)) { 1604 expired->has_timedout_rq = true; 1605 return false; 1606 } 1607 return true; 1608 } 1609 1610 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1611 { 1612 struct blk_expired_data *expired = priv; 1613 1614 if (blk_mq_req_expired(rq, expired)) 1615 blk_mq_rq_timed_out(rq); 1616 return true; 1617 } 1618 1619 static void blk_mq_timeout_work(struct work_struct *work) 1620 { 1621 struct request_queue *q = 1622 container_of(work, struct request_queue, timeout_work); 1623 struct blk_expired_data expired = { 1624 .timeout_start = jiffies, 1625 }; 1626 struct blk_mq_hw_ctx *hctx; 1627 unsigned long i; 1628 1629 /* A deadlock might occur if a request is stuck requiring a 1630 * timeout at the same time a queue freeze is waiting 1631 * completion, since the timeout code would not be able to 1632 * acquire the queue reference here. 1633 * 1634 * That's why we don't use blk_queue_enter here; instead, we use 1635 * percpu_ref_tryget directly, because we need to be able to 1636 * obtain a reference even in the short window between the queue 1637 * starting to freeze, by dropping the first reference in 1638 * blk_freeze_queue_start, and the moment the last request is 1639 * consumed, marked by the instant q_usage_counter reaches 1640 * zero. 1641 */ 1642 if (!percpu_ref_tryget(&q->q_usage_counter)) 1643 return; 1644 1645 /* check if there is any timed-out request */ 1646 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1647 if (expired.has_timedout_rq) { 1648 /* 1649 * Before walking tags, we must ensure any submit started 1650 * before the current time has finished. Since the submit 1651 * uses srcu or rcu, wait for a synchronization point to 1652 * ensure all running submits have finished 1653 */ 1654 blk_mq_wait_quiesce_done(q->tag_set); 1655 1656 expired.next = 0; 1657 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1658 } 1659 1660 if (expired.next != 0) { 1661 mod_timer(&q->timeout, expired.next); 1662 } else { 1663 /* 1664 * Request timeouts are handled as a forward rolling timer. If 1665 * we end up here it means that no requests are pending and 1666 * also that no request has been pending for a while. Mark 1667 * each hctx as idle. 1668 */ 1669 queue_for_each_hw_ctx(q, hctx, i) { 1670 /* the hctx may be unmapped, so check it here */ 1671 if (blk_mq_hw_queue_mapped(hctx)) 1672 blk_mq_tag_idle(hctx); 1673 } 1674 } 1675 blk_queue_exit(q); 1676 } 1677 1678 struct flush_busy_ctx_data { 1679 struct blk_mq_hw_ctx *hctx; 1680 struct list_head *list; 1681 }; 1682 1683 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1684 { 1685 struct flush_busy_ctx_data *flush_data = data; 1686 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1687 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1688 enum hctx_type type = hctx->type; 1689 1690 spin_lock(&ctx->lock); 1691 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1692 sbitmap_clear_bit(sb, bitnr); 1693 spin_unlock(&ctx->lock); 1694 return true; 1695 } 1696 1697 /* 1698 * Process software queues that have been marked busy, splicing them 1699 * to the for-dispatch 1700 */ 1701 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1702 { 1703 struct flush_busy_ctx_data data = { 1704 .hctx = hctx, 1705 .list = list, 1706 }; 1707 1708 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1709 } 1710 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1711 1712 struct dispatch_rq_data { 1713 struct blk_mq_hw_ctx *hctx; 1714 struct request *rq; 1715 }; 1716 1717 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1718 void *data) 1719 { 1720 struct dispatch_rq_data *dispatch_data = data; 1721 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1722 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1723 enum hctx_type type = hctx->type; 1724 1725 spin_lock(&ctx->lock); 1726 if (!list_empty(&ctx->rq_lists[type])) { 1727 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1728 list_del_init(&dispatch_data->rq->queuelist); 1729 if (list_empty(&ctx->rq_lists[type])) 1730 sbitmap_clear_bit(sb, bitnr); 1731 } 1732 spin_unlock(&ctx->lock); 1733 1734 return !dispatch_data->rq; 1735 } 1736 1737 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1738 struct blk_mq_ctx *start) 1739 { 1740 unsigned off = start ? start->index_hw[hctx->type] : 0; 1741 struct dispatch_rq_data data = { 1742 .hctx = hctx, 1743 .rq = NULL, 1744 }; 1745 1746 __sbitmap_for_each_set(&hctx->ctx_map, off, 1747 dispatch_rq_from_ctx, &data); 1748 1749 return data.rq; 1750 } 1751 1752 bool __blk_mq_alloc_driver_tag(struct request *rq) 1753 { 1754 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1755 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1756 int tag; 1757 1758 blk_mq_tag_busy(rq->mq_hctx); 1759 1760 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1761 bt = &rq->mq_hctx->tags->breserved_tags; 1762 tag_offset = 0; 1763 } else { 1764 if (!hctx_may_queue(rq->mq_hctx, bt)) 1765 return false; 1766 } 1767 1768 tag = __sbitmap_queue_get(bt); 1769 if (tag == BLK_MQ_NO_TAG) 1770 return false; 1771 1772 rq->tag = tag + tag_offset; 1773 blk_mq_inc_active_requests(rq->mq_hctx); 1774 return true; 1775 } 1776 1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1778 int flags, void *key) 1779 { 1780 struct blk_mq_hw_ctx *hctx; 1781 1782 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1783 1784 spin_lock(&hctx->dispatch_wait_lock); 1785 if (!list_empty(&wait->entry)) { 1786 struct sbitmap_queue *sbq; 1787 1788 list_del_init(&wait->entry); 1789 sbq = &hctx->tags->bitmap_tags; 1790 atomic_dec(&sbq->ws_active); 1791 } 1792 spin_unlock(&hctx->dispatch_wait_lock); 1793 1794 blk_mq_run_hw_queue(hctx, true); 1795 return 1; 1796 } 1797 1798 /* 1799 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1800 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1801 * restart. For both cases, take care to check the condition again after 1802 * marking us as waiting. 1803 */ 1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1805 struct request *rq) 1806 { 1807 struct sbitmap_queue *sbq; 1808 struct wait_queue_head *wq; 1809 wait_queue_entry_t *wait; 1810 bool ret; 1811 1812 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1813 !(blk_mq_is_shared_tags(hctx->flags))) { 1814 blk_mq_sched_mark_restart_hctx(hctx); 1815 1816 /* 1817 * It's possible that a tag was freed in the window between the 1818 * allocation failure and adding the hardware queue to the wait 1819 * queue. 1820 * 1821 * Don't clear RESTART here, someone else could have set it. 1822 * At most this will cost an extra queue run. 1823 */ 1824 return blk_mq_get_driver_tag(rq); 1825 } 1826 1827 wait = &hctx->dispatch_wait; 1828 if (!list_empty_careful(&wait->entry)) 1829 return false; 1830 1831 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1832 sbq = &hctx->tags->breserved_tags; 1833 else 1834 sbq = &hctx->tags->bitmap_tags; 1835 wq = &bt_wait_ptr(sbq, hctx)->wait; 1836 1837 spin_lock_irq(&wq->lock); 1838 spin_lock(&hctx->dispatch_wait_lock); 1839 if (!list_empty(&wait->entry)) { 1840 spin_unlock(&hctx->dispatch_wait_lock); 1841 spin_unlock_irq(&wq->lock); 1842 return false; 1843 } 1844 1845 atomic_inc(&sbq->ws_active); 1846 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1847 __add_wait_queue(wq, wait); 1848 1849 /* 1850 * Add one explicit barrier since blk_mq_get_driver_tag() may 1851 * not imply barrier in case of failure. 1852 * 1853 * Order adding us to wait queue and allocating driver tag. 1854 * 1855 * The pair is the one implied in sbitmap_queue_wake_up() which 1856 * orders clearing sbitmap tag bits and waitqueue_active() in 1857 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1858 * 1859 * Otherwise, re-order of adding wait queue and getting driver tag 1860 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1861 * the waitqueue_active() may not observe us in wait queue. 1862 */ 1863 smp_mb(); 1864 1865 /* 1866 * It's possible that a tag was freed in the window between the 1867 * allocation failure and adding the hardware queue to the wait 1868 * queue. 1869 */ 1870 ret = blk_mq_get_driver_tag(rq); 1871 if (!ret) { 1872 spin_unlock(&hctx->dispatch_wait_lock); 1873 spin_unlock_irq(&wq->lock); 1874 return false; 1875 } 1876 1877 /* 1878 * We got a tag, remove ourselves from the wait queue to ensure 1879 * someone else gets the wakeup. 1880 */ 1881 list_del_init(&wait->entry); 1882 atomic_dec(&sbq->ws_active); 1883 spin_unlock(&hctx->dispatch_wait_lock); 1884 spin_unlock_irq(&wq->lock); 1885 1886 return true; 1887 } 1888 1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1891 /* 1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1893 * - EWMA is one simple way to compute running average value 1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1895 * - take 4 as factor for avoiding to get too small(0) result, and this 1896 * factor doesn't matter because EWMA decreases exponentially 1897 */ 1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1899 { 1900 unsigned int ewma; 1901 1902 ewma = hctx->dispatch_busy; 1903 1904 if (!ewma && !busy) 1905 return; 1906 1907 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1908 if (busy) 1909 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1910 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1911 1912 hctx->dispatch_busy = ewma; 1913 } 1914 1915 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1916 1917 static void blk_mq_handle_dev_resource(struct request *rq, 1918 struct list_head *list) 1919 { 1920 list_add(&rq->queuelist, list); 1921 __blk_mq_requeue_request(rq); 1922 } 1923 1924 static void blk_mq_handle_zone_resource(struct request *rq, 1925 struct list_head *zone_list) 1926 { 1927 /* 1928 * If we end up here it is because we cannot dispatch a request to a 1929 * specific zone due to LLD level zone-write locking or other zone 1930 * related resource not being available. In this case, set the request 1931 * aside in zone_list for retrying it later. 1932 */ 1933 list_add(&rq->queuelist, zone_list); 1934 __blk_mq_requeue_request(rq); 1935 } 1936 1937 enum prep_dispatch { 1938 PREP_DISPATCH_OK, 1939 PREP_DISPATCH_NO_TAG, 1940 PREP_DISPATCH_NO_BUDGET, 1941 }; 1942 1943 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1944 bool need_budget) 1945 { 1946 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1947 int budget_token = -1; 1948 1949 if (need_budget) { 1950 budget_token = blk_mq_get_dispatch_budget(rq->q); 1951 if (budget_token < 0) { 1952 blk_mq_put_driver_tag(rq); 1953 return PREP_DISPATCH_NO_BUDGET; 1954 } 1955 blk_mq_set_rq_budget_token(rq, budget_token); 1956 } 1957 1958 if (!blk_mq_get_driver_tag(rq)) { 1959 /* 1960 * The initial allocation attempt failed, so we need to 1961 * rerun the hardware queue when a tag is freed. The 1962 * waitqueue takes care of that. If the queue is run 1963 * before we add this entry back on the dispatch list, 1964 * we'll re-run it below. 1965 */ 1966 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1967 /* 1968 * All budgets not got from this function will be put 1969 * together during handling partial dispatch 1970 */ 1971 if (need_budget) 1972 blk_mq_put_dispatch_budget(rq->q, budget_token); 1973 return PREP_DISPATCH_NO_TAG; 1974 } 1975 } 1976 1977 return PREP_DISPATCH_OK; 1978 } 1979 1980 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1981 static void blk_mq_release_budgets(struct request_queue *q, 1982 struct list_head *list) 1983 { 1984 struct request *rq; 1985 1986 list_for_each_entry(rq, list, queuelist) { 1987 int budget_token = blk_mq_get_rq_budget_token(rq); 1988 1989 if (budget_token >= 0) 1990 blk_mq_put_dispatch_budget(q, budget_token); 1991 } 1992 } 1993 1994 /* 1995 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1996 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1997 * details) 1998 * Attention, we should explicitly call this in unusual cases: 1999 * 1) did not queue everything initially scheduled to queue 2000 * 2) the last attempt to queue a request failed 2001 */ 2002 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2003 bool from_schedule) 2004 { 2005 if (hctx->queue->mq_ops->commit_rqs && queued) { 2006 trace_block_unplug(hctx->queue, queued, !from_schedule); 2007 hctx->queue->mq_ops->commit_rqs(hctx); 2008 } 2009 } 2010 2011 /* 2012 * Returns true if we did some work AND can potentially do more. 2013 */ 2014 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2015 unsigned int nr_budgets) 2016 { 2017 enum prep_dispatch prep; 2018 struct request_queue *q = hctx->queue; 2019 struct request *rq; 2020 int queued; 2021 blk_status_t ret = BLK_STS_OK; 2022 LIST_HEAD(zone_list); 2023 bool needs_resource = false; 2024 2025 if (list_empty(list)) 2026 return false; 2027 2028 /* 2029 * Now process all the entries, sending them to the driver. 2030 */ 2031 queued = 0; 2032 do { 2033 struct blk_mq_queue_data bd; 2034 2035 rq = list_first_entry(list, struct request, queuelist); 2036 2037 WARN_ON_ONCE(hctx != rq->mq_hctx); 2038 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2039 if (prep != PREP_DISPATCH_OK) 2040 break; 2041 2042 list_del_init(&rq->queuelist); 2043 2044 bd.rq = rq; 2045 bd.last = list_empty(list); 2046 2047 /* 2048 * once the request is queued to lld, no need to cover the 2049 * budget any more 2050 */ 2051 if (nr_budgets) 2052 nr_budgets--; 2053 ret = q->mq_ops->queue_rq(hctx, &bd); 2054 switch (ret) { 2055 case BLK_STS_OK: 2056 queued++; 2057 break; 2058 case BLK_STS_RESOURCE: 2059 needs_resource = true; 2060 fallthrough; 2061 case BLK_STS_DEV_RESOURCE: 2062 blk_mq_handle_dev_resource(rq, list); 2063 goto out; 2064 case BLK_STS_ZONE_RESOURCE: 2065 /* 2066 * Move the request to zone_list and keep going through 2067 * the dispatch list to find more requests the drive can 2068 * accept. 2069 */ 2070 blk_mq_handle_zone_resource(rq, &zone_list); 2071 needs_resource = true; 2072 break; 2073 default: 2074 blk_mq_end_request(rq, ret); 2075 } 2076 } while (!list_empty(list)); 2077 out: 2078 if (!list_empty(&zone_list)) 2079 list_splice_tail_init(&zone_list, list); 2080 2081 /* If we didn't flush the entire list, we could have told the driver 2082 * there was more coming, but that turned out to be a lie. 2083 */ 2084 if (!list_empty(list) || ret != BLK_STS_OK) 2085 blk_mq_commit_rqs(hctx, queued, false); 2086 2087 /* 2088 * Any items that need requeuing? Stuff them into hctx->dispatch, 2089 * that is where we will continue on next queue run. 2090 */ 2091 if (!list_empty(list)) { 2092 bool needs_restart; 2093 /* For non-shared tags, the RESTART check will suffice */ 2094 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2095 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2096 blk_mq_is_shared_tags(hctx->flags)); 2097 2098 if (nr_budgets) 2099 blk_mq_release_budgets(q, list); 2100 2101 spin_lock(&hctx->lock); 2102 list_splice_tail_init(list, &hctx->dispatch); 2103 spin_unlock(&hctx->lock); 2104 2105 /* 2106 * Order adding requests to hctx->dispatch and checking 2107 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2108 * in blk_mq_sched_restart(). Avoid restart code path to 2109 * miss the new added requests to hctx->dispatch, meantime 2110 * SCHED_RESTART is observed here. 2111 */ 2112 smp_mb(); 2113 2114 /* 2115 * If SCHED_RESTART was set by the caller of this function and 2116 * it is no longer set that means that it was cleared by another 2117 * thread and hence that a queue rerun is needed. 2118 * 2119 * If 'no_tag' is set, that means that we failed getting 2120 * a driver tag with an I/O scheduler attached. If our dispatch 2121 * waitqueue is no longer active, ensure that we run the queue 2122 * AFTER adding our entries back to the list. 2123 * 2124 * If no I/O scheduler has been configured it is possible that 2125 * the hardware queue got stopped and restarted before requests 2126 * were pushed back onto the dispatch list. Rerun the queue to 2127 * avoid starvation. Notes: 2128 * - blk_mq_run_hw_queue() checks whether or not a queue has 2129 * been stopped before rerunning a queue. 2130 * - Some but not all block drivers stop a queue before 2131 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2132 * and dm-rq. 2133 * 2134 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2135 * bit is set, run queue after a delay to avoid IO stalls 2136 * that could otherwise occur if the queue is idle. We'll do 2137 * similar if we couldn't get budget or couldn't lock a zone 2138 * and SCHED_RESTART is set. 2139 */ 2140 needs_restart = blk_mq_sched_needs_restart(hctx); 2141 if (prep == PREP_DISPATCH_NO_BUDGET) 2142 needs_resource = true; 2143 if (!needs_restart || 2144 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2145 blk_mq_run_hw_queue(hctx, true); 2146 else if (needs_resource) 2147 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2148 2149 blk_mq_update_dispatch_busy(hctx, true); 2150 return false; 2151 } 2152 2153 blk_mq_update_dispatch_busy(hctx, false); 2154 return true; 2155 } 2156 2157 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2158 { 2159 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2160 2161 if (cpu >= nr_cpu_ids) 2162 cpu = cpumask_first(hctx->cpumask); 2163 return cpu; 2164 } 2165 2166 /* 2167 * It'd be great if the workqueue API had a way to pass 2168 * in a mask and had some smarts for more clever placement. 2169 * For now we just round-robin here, switching for every 2170 * BLK_MQ_CPU_WORK_BATCH queued items. 2171 */ 2172 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2173 { 2174 bool tried = false; 2175 int next_cpu = hctx->next_cpu; 2176 2177 if (hctx->queue->nr_hw_queues == 1) 2178 return WORK_CPU_UNBOUND; 2179 2180 if (--hctx->next_cpu_batch <= 0) { 2181 select_cpu: 2182 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2183 cpu_online_mask); 2184 if (next_cpu >= nr_cpu_ids) 2185 next_cpu = blk_mq_first_mapped_cpu(hctx); 2186 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2187 } 2188 2189 /* 2190 * Do unbound schedule if we can't find a online CPU for this hctx, 2191 * and it should only happen in the path of handling CPU DEAD. 2192 */ 2193 if (!cpu_online(next_cpu)) { 2194 if (!tried) { 2195 tried = true; 2196 goto select_cpu; 2197 } 2198 2199 /* 2200 * Make sure to re-select CPU next time once after CPUs 2201 * in hctx->cpumask become online again. 2202 */ 2203 hctx->next_cpu = next_cpu; 2204 hctx->next_cpu_batch = 1; 2205 return WORK_CPU_UNBOUND; 2206 } 2207 2208 hctx->next_cpu = next_cpu; 2209 return next_cpu; 2210 } 2211 2212 /** 2213 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2214 * @hctx: Pointer to the hardware queue to run. 2215 * @msecs: Milliseconds of delay to wait before running the queue. 2216 * 2217 * Run a hardware queue asynchronously with a delay of @msecs. 2218 */ 2219 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2220 { 2221 if (unlikely(blk_mq_hctx_stopped(hctx))) 2222 return; 2223 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2224 msecs_to_jiffies(msecs)); 2225 } 2226 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2227 2228 /** 2229 * blk_mq_run_hw_queue - Start to run a hardware queue. 2230 * @hctx: Pointer to the hardware queue to run. 2231 * @async: If we want to run the queue asynchronously. 2232 * 2233 * Check if the request queue is not in a quiesced state and if there are 2234 * pending requests to be sent. If this is true, run the queue to send requests 2235 * to hardware. 2236 */ 2237 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2238 { 2239 bool need_run; 2240 2241 /* 2242 * We can't run the queue inline with interrupts disabled. 2243 */ 2244 WARN_ON_ONCE(!async && in_interrupt()); 2245 2246 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2247 2248 /* 2249 * When queue is quiesced, we may be switching io scheduler, or 2250 * updating nr_hw_queues, or other things, and we can't run queue 2251 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2252 * 2253 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2254 * quiesced. 2255 */ 2256 __blk_mq_run_dispatch_ops(hctx->queue, false, 2257 need_run = !blk_queue_quiesced(hctx->queue) && 2258 blk_mq_hctx_has_pending(hctx)); 2259 2260 if (!need_run) 2261 return; 2262 2263 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2264 blk_mq_delay_run_hw_queue(hctx, 0); 2265 return; 2266 } 2267 2268 blk_mq_run_dispatch_ops(hctx->queue, 2269 blk_mq_sched_dispatch_requests(hctx)); 2270 } 2271 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2272 2273 /* 2274 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2275 * scheduler. 2276 */ 2277 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2278 { 2279 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2280 /* 2281 * If the IO scheduler does not respect hardware queues when 2282 * dispatching, we just don't bother with multiple HW queues and 2283 * dispatch from hctx for the current CPU since running multiple queues 2284 * just causes lock contention inside the scheduler and pointless cache 2285 * bouncing. 2286 */ 2287 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2288 2289 if (!blk_mq_hctx_stopped(hctx)) 2290 return hctx; 2291 return NULL; 2292 } 2293 2294 /** 2295 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2296 * @q: Pointer to the request queue to run. 2297 * @async: If we want to run the queue asynchronously. 2298 */ 2299 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2300 { 2301 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2302 unsigned long i; 2303 2304 sq_hctx = NULL; 2305 if (blk_queue_sq_sched(q)) 2306 sq_hctx = blk_mq_get_sq_hctx(q); 2307 queue_for_each_hw_ctx(q, hctx, i) { 2308 if (blk_mq_hctx_stopped(hctx)) 2309 continue; 2310 /* 2311 * Dispatch from this hctx either if there's no hctx preferred 2312 * by IO scheduler or if it has requests that bypass the 2313 * scheduler. 2314 */ 2315 if (!sq_hctx || sq_hctx == hctx || 2316 !list_empty_careful(&hctx->dispatch)) 2317 blk_mq_run_hw_queue(hctx, async); 2318 } 2319 } 2320 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2321 2322 /** 2323 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2324 * @q: Pointer to the request queue to run. 2325 * @msecs: Milliseconds of delay to wait before running the queues. 2326 */ 2327 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2328 { 2329 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2330 unsigned long i; 2331 2332 sq_hctx = NULL; 2333 if (blk_queue_sq_sched(q)) 2334 sq_hctx = blk_mq_get_sq_hctx(q); 2335 queue_for_each_hw_ctx(q, hctx, i) { 2336 if (blk_mq_hctx_stopped(hctx)) 2337 continue; 2338 /* 2339 * If there is already a run_work pending, leave the 2340 * pending delay untouched. Otherwise, a hctx can stall 2341 * if another hctx is re-delaying the other's work 2342 * before the work executes. 2343 */ 2344 if (delayed_work_pending(&hctx->run_work)) 2345 continue; 2346 /* 2347 * Dispatch from this hctx either if there's no hctx preferred 2348 * by IO scheduler or if it has requests that bypass the 2349 * scheduler. 2350 */ 2351 if (!sq_hctx || sq_hctx == hctx || 2352 !list_empty_careful(&hctx->dispatch)) 2353 blk_mq_delay_run_hw_queue(hctx, msecs); 2354 } 2355 } 2356 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2357 2358 /* 2359 * This function is often used for pausing .queue_rq() by driver when 2360 * there isn't enough resource or some conditions aren't satisfied, and 2361 * BLK_STS_RESOURCE is usually returned. 2362 * 2363 * We do not guarantee that dispatch can be drained or blocked 2364 * after blk_mq_stop_hw_queue() returns. Please use 2365 * blk_mq_quiesce_queue() for that requirement. 2366 */ 2367 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2368 { 2369 cancel_delayed_work(&hctx->run_work); 2370 2371 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2372 } 2373 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2374 2375 /* 2376 * This function is often used for pausing .queue_rq() by driver when 2377 * there isn't enough resource or some conditions aren't satisfied, and 2378 * BLK_STS_RESOURCE is usually returned. 2379 * 2380 * We do not guarantee that dispatch can be drained or blocked 2381 * after blk_mq_stop_hw_queues() returns. Please use 2382 * blk_mq_quiesce_queue() for that requirement. 2383 */ 2384 void blk_mq_stop_hw_queues(struct request_queue *q) 2385 { 2386 struct blk_mq_hw_ctx *hctx; 2387 unsigned long i; 2388 2389 queue_for_each_hw_ctx(q, hctx, i) 2390 blk_mq_stop_hw_queue(hctx); 2391 } 2392 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2393 2394 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2395 { 2396 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2397 2398 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2399 } 2400 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2401 2402 void blk_mq_start_hw_queues(struct request_queue *q) 2403 { 2404 struct blk_mq_hw_ctx *hctx; 2405 unsigned long i; 2406 2407 queue_for_each_hw_ctx(q, hctx, i) 2408 blk_mq_start_hw_queue(hctx); 2409 } 2410 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2411 2412 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2413 { 2414 if (!blk_mq_hctx_stopped(hctx)) 2415 return; 2416 2417 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2418 blk_mq_run_hw_queue(hctx, async); 2419 } 2420 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2421 2422 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2423 { 2424 struct blk_mq_hw_ctx *hctx; 2425 unsigned long i; 2426 2427 queue_for_each_hw_ctx(q, hctx, i) 2428 blk_mq_start_stopped_hw_queue(hctx, async || 2429 (hctx->flags & BLK_MQ_F_BLOCKING)); 2430 } 2431 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2432 2433 static void blk_mq_run_work_fn(struct work_struct *work) 2434 { 2435 struct blk_mq_hw_ctx *hctx = 2436 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2437 2438 blk_mq_run_dispatch_ops(hctx->queue, 2439 blk_mq_sched_dispatch_requests(hctx)); 2440 } 2441 2442 /** 2443 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2444 * @rq: Pointer to request to be inserted. 2445 * @flags: BLK_MQ_INSERT_* 2446 * 2447 * Should only be used carefully, when the caller knows we want to 2448 * bypass a potential IO scheduler on the target device. 2449 */ 2450 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2451 { 2452 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2453 2454 spin_lock(&hctx->lock); 2455 if (flags & BLK_MQ_INSERT_AT_HEAD) 2456 list_add(&rq->queuelist, &hctx->dispatch); 2457 else 2458 list_add_tail(&rq->queuelist, &hctx->dispatch); 2459 spin_unlock(&hctx->lock); 2460 } 2461 2462 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2463 struct blk_mq_ctx *ctx, struct list_head *list, 2464 bool run_queue_async) 2465 { 2466 struct request *rq; 2467 enum hctx_type type = hctx->type; 2468 2469 /* 2470 * Try to issue requests directly if the hw queue isn't busy to save an 2471 * extra enqueue & dequeue to the sw queue. 2472 */ 2473 if (!hctx->dispatch_busy && !run_queue_async) { 2474 blk_mq_run_dispatch_ops(hctx->queue, 2475 blk_mq_try_issue_list_directly(hctx, list)); 2476 if (list_empty(list)) 2477 goto out; 2478 } 2479 2480 /* 2481 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2482 * offline now 2483 */ 2484 list_for_each_entry(rq, list, queuelist) { 2485 BUG_ON(rq->mq_ctx != ctx); 2486 trace_block_rq_insert(rq); 2487 if (rq->cmd_flags & REQ_NOWAIT) 2488 run_queue_async = true; 2489 } 2490 2491 spin_lock(&ctx->lock); 2492 list_splice_tail_init(list, &ctx->rq_lists[type]); 2493 blk_mq_hctx_mark_pending(hctx, ctx); 2494 spin_unlock(&ctx->lock); 2495 out: 2496 blk_mq_run_hw_queue(hctx, run_queue_async); 2497 } 2498 2499 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2500 { 2501 struct request_queue *q = rq->q; 2502 struct blk_mq_ctx *ctx = rq->mq_ctx; 2503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2504 2505 if (blk_rq_is_passthrough(rq)) { 2506 /* 2507 * Passthrough request have to be added to hctx->dispatch 2508 * directly. The device may be in a situation where it can't 2509 * handle FS request, and always returns BLK_STS_RESOURCE for 2510 * them, which gets them added to hctx->dispatch. 2511 * 2512 * If a passthrough request is required to unblock the queues, 2513 * and it is added to the scheduler queue, there is no chance to 2514 * dispatch it given we prioritize requests in hctx->dispatch. 2515 */ 2516 blk_mq_request_bypass_insert(rq, flags); 2517 } else if (req_op(rq) == REQ_OP_FLUSH) { 2518 /* 2519 * Firstly normal IO request is inserted to scheduler queue or 2520 * sw queue, meantime we add flush request to dispatch queue( 2521 * hctx->dispatch) directly and there is at most one in-flight 2522 * flush request for each hw queue, so it doesn't matter to add 2523 * flush request to tail or front of the dispatch queue. 2524 * 2525 * Secondly in case of NCQ, flush request belongs to non-NCQ 2526 * command, and queueing it will fail when there is any 2527 * in-flight normal IO request(NCQ command). When adding flush 2528 * rq to the front of hctx->dispatch, it is easier to introduce 2529 * extra time to flush rq's latency because of S_SCHED_RESTART 2530 * compared with adding to the tail of dispatch queue, then 2531 * chance of flush merge is increased, and less flush requests 2532 * will be issued to controller. It is observed that ~10% time 2533 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2534 * drive when adding flush rq to the front of hctx->dispatch. 2535 * 2536 * Simply queue flush rq to the front of hctx->dispatch so that 2537 * intensive flush workloads can benefit in case of NCQ HW. 2538 */ 2539 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2540 } else if (q->elevator) { 2541 LIST_HEAD(list); 2542 2543 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2544 2545 list_add(&rq->queuelist, &list); 2546 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2547 } else { 2548 trace_block_rq_insert(rq); 2549 2550 spin_lock(&ctx->lock); 2551 if (flags & BLK_MQ_INSERT_AT_HEAD) 2552 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2553 else 2554 list_add_tail(&rq->queuelist, 2555 &ctx->rq_lists[hctx->type]); 2556 blk_mq_hctx_mark_pending(hctx, ctx); 2557 spin_unlock(&ctx->lock); 2558 } 2559 } 2560 2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2562 unsigned int nr_segs) 2563 { 2564 int err; 2565 2566 if (bio->bi_opf & REQ_RAHEAD) 2567 rq->cmd_flags |= REQ_FAILFAST_MASK; 2568 2569 rq->__sector = bio->bi_iter.bi_sector; 2570 rq->write_hint = bio->bi_write_hint; 2571 blk_rq_bio_prep(rq, bio, nr_segs); 2572 2573 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2574 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2575 WARN_ON_ONCE(err); 2576 2577 blk_account_io_start(rq); 2578 } 2579 2580 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2581 struct request *rq, bool last) 2582 { 2583 struct request_queue *q = rq->q; 2584 struct blk_mq_queue_data bd = { 2585 .rq = rq, 2586 .last = last, 2587 }; 2588 blk_status_t ret; 2589 2590 /* 2591 * For OK queue, we are done. For error, caller may kill it. 2592 * Any other error (busy), just add it to our list as we 2593 * previously would have done. 2594 */ 2595 ret = q->mq_ops->queue_rq(hctx, &bd); 2596 switch (ret) { 2597 case BLK_STS_OK: 2598 blk_mq_update_dispatch_busy(hctx, false); 2599 break; 2600 case BLK_STS_RESOURCE: 2601 case BLK_STS_DEV_RESOURCE: 2602 blk_mq_update_dispatch_busy(hctx, true); 2603 __blk_mq_requeue_request(rq); 2604 break; 2605 default: 2606 blk_mq_update_dispatch_busy(hctx, false); 2607 break; 2608 } 2609 2610 return ret; 2611 } 2612 2613 static bool blk_mq_get_budget_and_tag(struct request *rq) 2614 { 2615 int budget_token; 2616 2617 budget_token = blk_mq_get_dispatch_budget(rq->q); 2618 if (budget_token < 0) 2619 return false; 2620 blk_mq_set_rq_budget_token(rq, budget_token); 2621 if (!blk_mq_get_driver_tag(rq)) { 2622 blk_mq_put_dispatch_budget(rq->q, budget_token); 2623 return false; 2624 } 2625 return true; 2626 } 2627 2628 /** 2629 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2630 * @hctx: Pointer of the associated hardware queue. 2631 * @rq: Pointer to request to be sent. 2632 * 2633 * If the device has enough resources to accept a new request now, send the 2634 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2635 * we can try send it another time in the future. Requests inserted at this 2636 * queue have higher priority. 2637 */ 2638 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2639 struct request *rq) 2640 { 2641 blk_status_t ret; 2642 2643 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2644 blk_mq_insert_request(rq, 0); 2645 return; 2646 } 2647 2648 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2649 blk_mq_insert_request(rq, 0); 2650 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2651 return; 2652 } 2653 2654 ret = __blk_mq_issue_directly(hctx, rq, true); 2655 switch (ret) { 2656 case BLK_STS_OK: 2657 break; 2658 case BLK_STS_RESOURCE: 2659 case BLK_STS_DEV_RESOURCE: 2660 blk_mq_request_bypass_insert(rq, 0); 2661 blk_mq_run_hw_queue(hctx, false); 2662 break; 2663 default: 2664 blk_mq_end_request(rq, ret); 2665 break; 2666 } 2667 } 2668 2669 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2670 { 2671 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2672 2673 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2674 blk_mq_insert_request(rq, 0); 2675 return BLK_STS_OK; 2676 } 2677 2678 if (!blk_mq_get_budget_and_tag(rq)) 2679 return BLK_STS_RESOURCE; 2680 return __blk_mq_issue_directly(hctx, rq, last); 2681 } 2682 2683 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2684 { 2685 struct blk_mq_hw_ctx *hctx = NULL; 2686 struct request *rq; 2687 int queued = 0; 2688 blk_status_t ret = BLK_STS_OK; 2689 2690 while ((rq = rq_list_pop(&plug->mq_list))) { 2691 bool last = rq_list_empty(plug->mq_list); 2692 2693 if (hctx != rq->mq_hctx) { 2694 if (hctx) { 2695 blk_mq_commit_rqs(hctx, queued, false); 2696 queued = 0; 2697 } 2698 hctx = rq->mq_hctx; 2699 } 2700 2701 ret = blk_mq_request_issue_directly(rq, last); 2702 switch (ret) { 2703 case BLK_STS_OK: 2704 queued++; 2705 break; 2706 case BLK_STS_RESOURCE: 2707 case BLK_STS_DEV_RESOURCE: 2708 blk_mq_request_bypass_insert(rq, 0); 2709 blk_mq_run_hw_queue(hctx, false); 2710 goto out; 2711 default: 2712 blk_mq_end_request(rq, ret); 2713 break; 2714 } 2715 } 2716 2717 out: 2718 if (ret != BLK_STS_OK) 2719 blk_mq_commit_rqs(hctx, queued, false); 2720 } 2721 2722 static void __blk_mq_flush_plug_list(struct request_queue *q, 2723 struct blk_plug *plug) 2724 { 2725 if (blk_queue_quiesced(q)) 2726 return; 2727 q->mq_ops->queue_rqs(&plug->mq_list); 2728 } 2729 2730 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2731 { 2732 struct blk_mq_hw_ctx *this_hctx = NULL; 2733 struct blk_mq_ctx *this_ctx = NULL; 2734 struct request *requeue_list = NULL; 2735 struct request **requeue_lastp = &requeue_list; 2736 unsigned int depth = 0; 2737 bool is_passthrough = false; 2738 LIST_HEAD(list); 2739 2740 do { 2741 struct request *rq = rq_list_pop(&plug->mq_list); 2742 2743 if (!this_hctx) { 2744 this_hctx = rq->mq_hctx; 2745 this_ctx = rq->mq_ctx; 2746 is_passthrough = blk_rq_is_passthrough(rq); 2747 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2748 is_passthrough != blk_rq_is_passthrough(rq)) { 2749 rq_list_add_tail(&requeue_lastp, rq); 2750 continue; 2751 } 2752 list_add(&rq->queuelist, &list); 2753 depth++; 2754 } while (!rq_list_empty(plug->mq_list)); 2755 2756 plug->mq_list = requeue_list; 2757 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2758 2759 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2760 /* passthrough requests should never be issued to the I/O scheduler */ 2761 if (is_passthrough) { 2762 spin_lock(&this_hctx->lock); 2763 list_splice_tail_init(&list, &this_hctx->dispatch); 2764 spin_unlock(&this_hctx->lock); 2765 blk_mq_run_hw_queue(this_hctx, from_sched); 2766 } else if (this_hctx->queue->elevator) { 2767 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2768 &list, 0); 2769 blk_mq_run_hw_queue(this_hctx, from_sched); 2770 } else { 2771 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2772 } 2773 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2774 } 2775 2776 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2777 { 2778 struct request *rq; 2779 2780 /* 2781 * We may have been called recursively midway through handling 2782 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2783 * To avoid mq_list changing under our feet, clear rq_count early and 2784 * bail out specifically if rq_count is 0 rather than checking 2785 * whether the mq_list is empty. 2786 */ 2787 if (plug->rq_count == 0) 2788 return; 2789 plug->rq_count = 0; 2790 2791 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2792 struct request_queue *q; 2793 2794 rq = rq_list_peek(&plug->mq_list); 2795 q = rq->q; 2796 2797 /* 2798 * Peek first request and see if we have a ->queue_rqs() hook. 2799 * If we do, we can dispatch the whole plug list in one go. We 2800 * already know at this point that all requests belong to the 2801 * same queue, caller must ensure that's the case. 2802 */ 2803 if (q->mq_ops->queue_rqs) { 2804 blk_mq_run_dispatch_ops(q, 2805 __blk_mq_flush_plug_list(q, plug)); 2806 if (rq_list_empty(plug->mq_list)) 2807 return; 2808 } 2809 2810 blk_mq_run_dispatch_ops(q, 2811 blk_mq_plug_issue_direct(plug)); 2812 if (rq_list_empty(plug->mq_list)) 2813 return; 2814 } 2815 2816 do { 2817 blk_mq_dispatch_plug_list(plug, from_schedule); 2818 } while (!rq_list_empty(plug->mq_list)); 2819 } 2820 2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2822 struct list_head *list) 2823 { 2824 int queued = 0; 2825 blk_status_t ret = BLK_STS_OK; 2826 2827 while (!list_empty(list)) { 2828 struct request *rq = list_first_entry(list, struct request, 2829 queuelist); 2830 2831 list_del_init(&rq->queuelist); 2832 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2833 switch (ret) { 2834 case BLK_STS_OK: 2835 queued++; 2836 break; 2837 case BLK_STS_RESOURCE: 2838 case BLK_STS_DEV_RESOURCE: 2839 blk_mq_request_bypass_insert(rq, 0); 2840 if (list_empty(list)) 2841 blk_mq_run_hw_queue(hctx, false); 2842 goto out; 2843 default: 2844 blk_mq_end_request(rq, ret); 2845 break; 2846 } 2847 } 2848 2849 out: 2850 if (ret != BLK_STS_OK) 2851 blk_mq_commit_rqs(hctx, queued, false); 2852 } 2853 2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2855 struct bio *bio, unsigned int nr_segs) 2856 { 2857 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2858 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2859 return true; 2860 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2861 return true; 2862 } 2863 return false; 2864 } 2865 2866 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2867 struct blk_plug *plug, 2868 struct bio *bio, 2869 unsigned int nsegs) 2870 { 2871 struct blk_mq_alloc_data data = { 2872 .q = q, 2873 .nr_tags = 1, 2874 .cmd_flags = bio->bi_opf, 2875 }; 2876 struct request *rq; 2877 2878 rq_qos_throttle(q, bio); 2879 2880 if (plug) { 2881 data.nr_tags = plug->nr_ios; 2882 plug->nr_ios = 1; 2883 data.cached_rq = &plug->cached_rq; 2884 } 2885 2886 rq = __blk_mq_alloc_requests(&data); 2887 if (rq) 2888 return rq; 2889 rq_qos_cleanup(q, bio); 2890 if (bio->bi_opf & REQ_NOWAIT) 2891 bio_wouldblock_error(bio); 2892 return NULL; 2893 } 2894 2895 /* 2896 * Check if there is a suitable cached request and return it. 2897 */ 2898 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2899 struct request_queue *q, blk_opf_t opf) 2900 { 2901 enum hctx_type type = blk_mq_get_hctx_type(opf); 2902 struct request *rq; 2903 2904 if (!plug) 2905 return NULL; 2906 rq = rq_list_peek(&plug->cached_rq); 2907 if (!rq || rq->q != q) 2908 return NULL; 2909 if (type != rq->mq_hctx->type && 2910 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 2911 return NULL; 2912 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 2913 return NULL; 2914 return rq; 2915 } 2916 2917 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2918 struct bio *bio) 2919 { 2920 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2921 2922 /* 2923 * If any qos ->throttle() end up blocking, we will have flushed the 2924 * plug and hence killed the cached_rq list as well. Pop this entry 2925 * before we throttle. 2926 */ 2927 plug->cached_rq = rq_list_next(rq); 2928 rq_qos_throttle(rq->q, bio); 2929 2930 blk_mq_rq_time_init(rq, 0); 2931 rq->cmd_flags = bio->bi_opf; 2932 INIT_LIST_HEAD(&rq->queuelist); 2933 } 2934 2935 /** 2936 * blk_mq_submit_bio - Create and send a request to block device. 2937 * @bio: Bio pointer. 2938 * 2939 * Builds up a request structure from @q and @bio and send to the device. The 2940 * request may not be queued directly to hardware if: 2941 * * This request can be merged with another one 2942 * * We want to place request at plug queue for possible future merging 2943 * * There is an IO scheduler active at this queue 2944 * 2945 * It will not queue the request if there is an error with the bio, or at the 2946 * request creation. 2947 */ 2948 void blk_mq_submit_bio(struct bio *bio) 2949 { 2950 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2951 struct blk_plug *plug = blk_mq_plug(bio); 2952 const int is_sync = op_is_sync(bio->bi_opf); 2953 struct blk_mq_hw_ctx *hctx; 2954 unsigned int nr_segs = 1; 2955 struct request *rq; 2956 blk_status_t ret; 2957 2958 bio = blk_queue_bounce(bio, q); 2959 2960 /* 2961 * If the plug has a cached request for this queue, try use it. 2962 * 2963 * The cached request already holds a q_usage_counter reference and we 2964 * don't have to acquire a new one if we use it. 2965 */ 2966 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 2967 if (!rq) { 2968 if (unlikely(bio_queue_enter(bio))) 2969 return; 2970 } 2971 2972 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2973 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2974 if (!bio) 2975 goto queue_exit; 2976 } 2977 if (!bio_integrity_prep(bio)) 2978 goto queue_exit; 2979 2980 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2981 goto queue_exit; 2982 2983 if (!rq) { 2984 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2985 if (unlikely(!rq)) 2986 goto queue_exit; 2987 } else { 2988 blk_mq_use_cached_rq(rq, plug, bio); 2989 } 2990 2991 trace_block_getrq(bio); 2992 2993 rq_qos_track(q, rq, bio); 2994 2995 blk_mq_bio_to_request(rq, bio, nr_segs); 2996 2997 ret = blk_crypto_rq_get_keyslot(rq); 2998 if (ret != BLK_STS_OK) { 2999 bio->bi_status = ret; 3000 bio_endio(bio); 3001 blk_mq_free_request(rq); 3002 return; 3003 } 3004 3005 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3006 return; 3007 3008 if (plug) { 3009 blk_add_rq_to_plug(plug, rq); 3010 return; 3011 } 3012 3013 hctx = rq->mq_hctx; 3014 if ((rq->rq_flags & RQF_USE_SCHED) || 3015 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3016 blk_mq_insert_request(rq, 0); 3017 blk_mq_run_hw_queue(hctx, true); 3018 } else { 3019 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3020 } 3021 return; 3022 3023 queue_exit: 3024 /* 3025 * Don't drop the queue reference if we were trying to use a cached 3026 * request and thus didn't acquire one. 3027 */ 3028 if (!rq) 3029 blk_queue_exit(q); 3030 } 3031 3032 #ifdef CONFIG_BLK_MQ_STACKING 3033 /** 3034 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3035 * @rq: the request being queued 3036 */ 3037 blk_status_t blk_insert_cloned_request(struct request *rq) 3038 { 3039 struct request_queue *q = rq->q; 3040 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3041 unsigned int max_segments = blk_rq_get_max_segments(rq); 3042 blk_status_t ret; 3043 3044 if (blk_rq_sectors(rq) > max_sectors) { 3045 /* 3046 * SCSI device does not have a good way to return if 3047 * Write Same/Zero is actually supported. If a device rejects 3048 * a non-read/write command (discard, write same,etc.) the 3049 * low-level device driver will set the relevant queue limit to 3050 * 0 to prevent blk-lib from issuing more of the offending 3051 * operations. Commands queued prior to the queue limit being 3052 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3053 * errors being propagated to upper layers. 3054 */ 3055 if (max_sectors == 0) 3056 return BLK_STS_NOTSUPP; 3057 3058 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3059 __func__, blk_rq_sectors(rq), max_sectors); 3060 return BLK_STS_IOERR; 3061 } 3062 3063 /* 3064 * The queue settings related to segment counting may differ from the 3065 * original queue. 3066 */ 3067 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3068 if (rq->nr_phys_segments > max_segments) { 3069 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3070 __func__, rq->nr_phys_segments, max_segments); 3071 return BLK_STS_IOERR; 3072 } 3073 3074 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3075 return BLK_STS_IOERR; 3076 3077 ret = blk_crypto_rq_get_keyslot(rq); 3078 if (ret != BLK_STS_OK) 3079 return ret; 3080 3081 blk_account_io_start(rq); 3082 3083 /* 3084 * Since we have a scheduler attached on the top device, 3085 * bypass a potential scheduler on the bottom device for 3086 * insert. 3087 */ 3088 blk_mq_run_dispatch_ops(q, 3089 ret = blk_mq_request_issue_directly(rq, true)); 3090 if (ret) 3091 blk_account_io_done(rq, blk_time_get_ns()); 3092 return ret; 3093 } 3094 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3095 3096 /** 3097 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3098 * @rq: the clone request to be cleaned up 3099 * 3100 * Description: 3101 * Free all bios in @rq for a cloned request. 3102 */ 3103 void blk_rq_unprep_clone(struct request *rq) 3104 { 3105 struct bio *bio; 3106 3107 while ((bio = rq->bio) != NULL) { 3108 rq->bio = bio->bi_next; 3109 3110 bio_put(bio); 3111 } 3112 } 3113 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3114 3115 /** 3116 * blk_rq_prep_clone - Helper function to setup clone request 3117 * @rq: the request to be setup 3118 * @rq_src: original request to be cloned 3119 * @bs: bio_set that bios for clone are allocated from 3120 * @gfp_mask: memory allocation mask for bio 3121 * @bio_ctr: setup function to be called for each clone bio. 3122 * Returns %0 for success, non %0 for failure. 3123 * @data: private data to be passed to @bio_ctr 3124 * 3125 * Description: 3126 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3127 * Also, pages which the original bios are pointing to are not copied 3128 * and the cloned bios just point same pages. 3129 * So cloned bios must be completed before original bios, which means 3130 * the caller must complete @rq before @rq_src. 3131 */ 3132 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3133 struct bio_set *bs, gfp_t gfp_mask, 3134 int (*bio_ctr)(struct bio *, struct bio *, void *), 3135 void *data) 3136 { 3137 struct bio *bio, *bio_src; 3138 3139 if (!bs) 3140 bs = &fs_bio_set; 3141 3142 __rq_for_each_bio(bio_src, rq_src) { 3143 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3144 bs); 3145 if (!bio) 3146 goto free_and_out; 3147 3148 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3149 goto free_and_out; 3150 3151 if (rq->bio) { 3152 rq->biotail->bi_next = bio; 3153 rq->biotail = bio; 3154 } else { 3155 rq->bio = rq->biotail = bio; 3156 } 3157 bio = NULL; 3158 } 3159 3160 /* Copy attributes of the original request to the clone request. */ 3161 rq->__sector = blk_rq_pos(rq_src); 3162 rq->__data_len = blk_rq_bytes(rq_src); 3163 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3164 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3165 rq->special_vec = rq_src->special_vec; 3166 } 3167 rq->nr_phys_segments = rq_src->nr_phys_segments; 3168 rq->ioprio = rq_src->ioprio; 3169 rq->write_hint = rq_src->write_hint; 3170 3171 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3172 goto free_and_out; 3173 3174 return 0; 3175 3176 free_and_out: 3177 if (bio) 3178 bio_put(bio); 3179 blk_rq_unprep_clone(rq); 3180 3181 return -ENOMEM; 3182 } 3183 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3184 #endif /* CONFIG_BLK_MQ_STACKING */ 3185 3186 /* 3187 * Steal bios from a request and add them to a bio list. 3188 * The request must not have been partially completed before. 3189 */ 3190 void blk_steal_bios(struct bio_list *list, struct request *rq) 3191 { 3192 if (rq->bio) { 3193 if (list->tail) 3194 list->tail->bi_next = rq->bio; 3195 else 3196 list->head = rq->bio; 3197 list->tail = rq->biotail; 3198 3199 rq->bio = NULL; 3200 rq->biotail = NULL; 3201 } 3202 3203 rq->__data_len = 0; 3204 } 3205 EXPORT_SYMBOL_GPL(blk_steal_bios); 3206 3207 static size_t order_to_size(unsigned int order) 3208 { 3209 return (size_t)PAGE_SIZE << order; 3210 } 3211 3212 /* called before freeing request pool in @tags */ 3213 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3214 struct blk_mq_tags *tags) 3215 { 3216 struct page *page; 3217 unsigned long flags; 3218 3219 /* 3220 * There is no need to clear mapping if driver tags is not initialized 3221 * or the mapping belongs to the driver tags. 3222 */ 3223 if (!drv_tags || drv_tags == tags) 3224 return; 3225 3226 list_for_each_entry(page, &tags->page_list, lru) { 3227 unsigned long start = (unsigned long)page_address(page); 3228 unsigned long end = start + order_to_size(page->private); 3229 int i; 3230 3231 for (i = 0; i < drv_tags->nr_tags; i++) { 3232 struct request *rq = drv_tags->rqs[i]; 3233 unsigned long rq_addr = (unsigned long)rq; 3234 3235 if (rq_addr >= start && rq_addr < end) { 3236 WARN_ON_ONCE(req_ref_read(rq) != 0); 3237 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3238 } 3239 } 3240 } 3241 3242 /* 3243 * Wait until all pending iteration is done. 3244 * 3245 * Request reference is cleared and it is guaranteed to be observed 3246 * after the ->lock is released. 3247 */ 3248 spin_lock_irqsave(&drv_tags->lock, flags); 3249 spin_unlock_irqrestore(&drv_tags->lock, flags); 3250 } 3251 3252 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3253 unsigned int hctx_idx) 3254 { 3255 struct blk_mq_tags *drv_tags; 3256 struct page *page; 3257 3258 if (list_empty(&tags->page_list)) 3259 return; 3260 3261 if (blk_mq_is_shared_tags(set->flags)) 3262 drv_tags = set->shared_tags; 3263 else 3264 drv_tags = set->tags[hctx_idx]; 3265 3266 if (tags->static_rqs && set->ops->exit_request) { 3267 int i; 3268 3269 for (i = 0; i < tags->nr_tags; i++) { 3270 struct request *rq = tags->static_rqs[i]; 3271 3272 if (!rq) 3273 continue; 3274 set->ops->exit_request(set, rq, hctx_idx); 3275 tags->static_rqs[i] = NULL; 3276 } 3277 } 3278 3279 blk_mq_clear_rq_mapping(drv_tags, tags); 3280 3281 while (!list_empty(&tags->page_list)) { 3282 page = list_first_entry(&tags->page_list, struct page, lru); 3283 list_del_init(&page->lru); 3284 /* 3285 * Remove kmemleak object previously allocated in 3286 * blk_mq_alloc_rqs(). 3287 */ 3288 kmemleak_free(page_address(page)); 3289 __free_pages(page, page->private); 3290 } 3291 } 3292 3293 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3294 { 3295 kfree(tags->rqs); 3296 tags->rqs = NULL; 3297 kfree(tags->static_rqs); 3298 tags->static_rqs = NULL; 3299 3300 blk_mq_free_tags(tags); 3301 } 3302 3303 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3304 unsigned int hctx_idx) 3305 { 3306 int i; 3307 3308 for (i = 0; i < set->nr_maps; i++) { 3309 unsigned int start = set->map[i].queue_offset; 3310 unsigned int end = start + set->map[i].nr_queues; 3311 3312 if (hctx_idx >= start && hctx_idx < end) 3313 break; 3314 } 3315 3316 if (i >= set->nr_maps) 3317 i = HCTX_TYPE_DEFAULT; 3318 3319 return i; 3320 } 3321 3322 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3323 unsigned int hctx_idx) 3324 { 3325 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3326 3327 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3328 } 3329 3330 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3331 unsigned int hctx_idx, 3332 unsigned int nr_tags, 3333 unsigned int reserved_tags) 3334 { 3335 int node = blk_mq_get_hctx_node(set, hctx_idx); 3336 struct blk_mq_tags *tags; 3337 3338 if (node == NUMA_NO_NODE) 3339 node = set->numa_node; 3340 3341 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3342 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3343 if (!tags) 3344 return NULL; 3345 3346 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3347 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3348 node); 3349 if (!tags->rqs) 3350 goto err_free_tags; 3351 3352 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3353 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3354 node); 3355 if (!tags->static_rqs) 3356 goto err_free_rqs; 3357 3358 return tags; 3359 3360 err_free_rqs: 3361 kfree(tags->rqs); 3362 err_free_tags: 3363 blk_mq_free_tags(tags); 3364 return NULL; 3365 } 3366 3367 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3368 unsigned int hctx_idx, int node) 3369 { 3370 int ret; 3371 3372 if (set->ops->init_request) { 3373 ret = set->ops->init_request(set, rq, hctx_idx, node); 3374 if (ret) 3375 return ret; 3376 } 3377 3378 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3379 return 0; 3380 } 3381 3382 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3383 struct blk_mq_tags *tags, 3384 unsigned int hctx_idx, unsigned int depth) 3385 { 3386 unsigned int i, j, entries_per_page, max_order = 4; 3387 int node = blk_mq_get_hctx_node(set, hctx_idx); 3388 size_t rq_size, left; 3389 3390 if (node == NUMA_NO_NODE) 3391 node = set->numa_node; 3392 3393 INIT_LIST_HEAD(&tags->page_list); 3394 3395 /* 3396 * rq_size is the size of the request plus driver payload, rounded 3397 * to the cacheline size 3398 */ 3399 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3400 cache_line_size()); 3401 left = rq_size * depth; 3402 3403 for (i = 0; i < depth; ) { 3404 int this_order = max_order; 3405 struct page *page; 3406 int to_do; 3407 void *p; 3408 3409 while (this_order && left < order_to_size(this_order - 1)) 3410 this_order--; 3411 3412 do { 3413 page = alloc_pages_node(node, 3414 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3415 this_order); 3416 if (page) 3417 break; 3418 if (!this_order--) 3419 break; 3420 if (order_to_size(this_order) < rq_size) 3421 break; 3422 } while (1); 3423 3424 if (!page) 3425 goto fail; 3426 3427 page->private = this_order; 3428 list_add_tail(&page->lru, &tags->page_list); 3429 3430 p = page_address(page); 3431 /* 3432 * Allow kmemleak to scan these pages as they contain pointers 3433 * to additional allocations like via ops->init_request(). 3434 */ 3435 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3436 entries_per_page = order_to_size(this_order) / rq_size; 3437 to_do = min(entries_per_page, depth - i); 3438 left -= to_do * rq_size; 3439 for (j = 0; j < to_do; j++) { 3440 struct request *rq = p; 3441 3442 tags->static_rqs[i] = rq; 3443 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3444 tags->static_rqs[i] = NULL; 3445 goto fail; 3446 } 3447 3448 p += rq_size; 3449 i++; 3450 } 3451 } 3452 return 0; 3453 3454 fail: 3455 blk_mq_free_rqs(set, tags, hctx_idx); 3456 return -ENOMEM; 3457 } 3458 3459 struct rq_iter_data { 3460 struct blk_mq_hw_ctx *hctx; 3461 bool has_rq; 3462 }; 3463 3464 static bool blk_mq_has_request(struct request *rq, void *data) 3465 { 3466 struct rq_iter_data *iter_data = data; 3467 3468 if (rq->mq_hctx != iter_data->hctx) 3469 return true; 3470 iter_data->has_rq = true; 3471 return false; 3472 } 3473 3474 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3475 { 3476 struct blk_mq_tags *tags = hctx->sched_tags ? 3477 hctx->sched_tags : hctx->tags; 3478 struct rq_iter_data data = { 3479 .hctx = hctx, 3480 }; 3481 3482 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3483 return data.has_rq; 3484 } 3485 3486 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3487 struct blk_mq_hw_ctx *hctx) 3488 { 3489 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3490 return false; 3491 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3492 return false; 3493 return true; 3494 } 3495 3496 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3497 { 3498 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3499 struct blk_mq_hw_ctx, cpuhp_online); 3500 3501 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3502 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3503 return 0; 3504 3505 /* 3506 * Prevent new request from being allocated on the current hctx. 3507 * 3508 * The smp_mb__after_atomic() Pairs with the implied barrier in 3509 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3510 * seen once we return from the tag allocator. 3511 */ 3512 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3513 smp_mb__after_atomic(); 3514 3515 /* 3516 * Try to grab a reference to the queue and wait for any outstanding 3517 * requests. If we could not grab a reference the queue has been 3518 * frozen and there are no requests. 3519 */ 3520 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3521 while (blk_mq_hctx_has_requests(hctx)) 3522 msleep(5); 3523 percpu_ref_put(&hctx->queue->q_usage_counter); 3524 } 3525 3526 return 0; 3527 } 3528 3529 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3530 { 3531 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3532 struct blk_mq_hw_ctx, cpuhp_online); 3533 3534 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3535 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3536 return 0; 3537 } 3538 3539 /* 3540 * 'cpu' is going away. splice any existing rq_list entries from this 3541 * software queue to the hw queue dispatch list, and ensure that it 3542 * gets run. 3543 */ 3544 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3545 { 3546 struct blk_mq_hw_ctx *hctx; 3547 struct blk_mq_ctx *ctx; 3548 LIST_HEAD(tmp); 3549 enum hctx_type type; 3550 3551 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3552 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3553 return 0; 3554 3555 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3556 type = hctx->type; 3557 3558 spin_lock(&ctx->lock); 3559 if (!list_empty(&ctx->rq_lists[type])) { 3560 list_splice_init(&ctx->rq_lists[type], &tmp); 3561 blk_mq_hctx_clear_pending(hctx, ctx); 3562 } 3563 spin_unlock(&ctx->lock); 3564 3565 if (list_empty(&tmp)) 3566 return 0; 3567 3568 spin_lock(&hctx->lock); 3569 list_splice_tail_init(&tmp, &hctx->dispatch); 3570 spin_unlock(&hctx->lock); 3571 3572 blk_mq_run_hw_queue(hctx, true); 3573 return 0; 3574 } 3575 3576 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3577 { 3578 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3579 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3580 &hctx->cpuhp_online); 3581 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3582 &hctx->cpuhp_dead); 3583 } 3584 3585 /* 3586 * Before freeing hw queue, clearing the flush request reference in 3587 * tags->rqs[] for avoiding potential UAF. 3588 */ 3589 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3590 unsigned int queue_depth, struct request *flush_rq) 3591 { 3592 int i; 3593 unsigned long flags; 3594 3595 /* The hw queue may not be mapped yet */ 3596 if (!tags) 3597 return; 3598 3599 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3600 3601 for (i = 0; i < queue_depth; i++) 3602 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3603 3604 /* 3605 * Wait until all pending iteration is done. 3606 * 3607 * Request reference is cleared and it is guaranteed to be observed 3608 * after the ->lock is released. 3609 */ 3610 spin_lock_irqsave(&tags->lock, flags); 3611 spin_unlock_irqrestore(&tags->lock, flags); 3612 } 3613 3614 /* hctx->ctxs will be freed in queue's release handler */ 3615 static void blk_mq_exit_hctx(struct request_queue *q, 3616 struct blk_mq_tag_set *set, 3617 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3618 { 3619 struct request *flush_rq = hctx->fq->flush_rq; 3620 3621 if (blk_mq_hw_queue_mapped(hctx)) 3622 blk_mq_tag_idle(hctx); 3623 3624 if (blk_queue_init_done(q)) 3625 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3626 set->queue_depth, flush_rq); 3627 if (set->ops->exit_request) 3628 set->ops->exit_request(set, flush_rq, hctx_idx); 3629 3630 if (set->ops->exit_hctx) 3631 set->ops->exit_hctx(hctx, hctx_idx); 3632 3633 blk_mq_remove_cpuhp(hctx); 3634 3635 xa_erase(&q->hctx_table, hctx_idx); 3636 3637 spin_lock(&q->unused_hctx_lock); 3638 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3639 spin_unlock(&q->unused_hctx_lock); 3640 } 3641 3642 static void blk_mq_exit_hw_queues(struct request_queue *q, 3643 struct blk_mq_tag_set *set, int nr_queue) 3644 { 3645 struct blk_mq_hw_ctx *hctx; 3646 unsigned long i; 3647 3648 queue_for_each_hw_ctx(q, hctx, i) { 3649 if (i == nr_queue) 3650 break; 3651 blk_mq_exit_hctx(q, set, hctx, i); 3652 } 3653 } 3654 3655 static int blk_mq_init_hctx(struct request_queue *q, 3656 struct blk_mq_tag_set *set, 3657 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3658 { 3659 hctx->queue_num = hctx_idx; 3660 3661 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3662 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3663 &hctx->cpuhp_online); 3664 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3665 3666 hctx->tags = set->tags[hctx_idx]; 3667 3668 if (set->ops->init_hctx && 3669 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3670 goto unregister_cpu_notifier; 3671 3672 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3673 hctx->numa_node)) 3674 goto exit_hctx; 3675 3676 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3677 goto exit_flush_rq; 3678 3679 return 0; 3680 3681 exit_flush_rq: 3682 if (set->ops->exit_request) 3683 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3684 exit_hctx: 3685 if (set->ops->exit_hctx) 3686 set->ops->exit_hctx(hctx, hctx_idx); 3687 unregister_cpu_notifier: 3688 blk_mq_remove_cpuhp(hctx); 3689 return -1; 3690 } 3691 3692 static struct blk_mq_hw_ctx * 3693 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3694 int node) 3695 { 3696 struct blk_mq_hw_ctx *hctx; 3697 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3698 3699 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3700 if (!hctx) 3701 goto fail_alloc_hctx; 3702 3703 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3704 goto free_hctx; 3705 3706 atomic_set(&hctx->nr_active, 0); 3707 if (node == NUMA_NO_NODE) 3708 node = set->numa_node; 3709 hctx->numa_node = node; 3710 3711 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3712 spin_lock_init(&hctx->lock); 3713 INIT_LIST_HEAD(&hctx->dispatch); 3714 hctx->queue = q; 3715 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3716 3717 INIT_LIST_HEAD(&hctx->hctx_list); 3718 3719 /* 3720 * Allocate space for all possible cpus to avoid allocation at 3721 * runtime 3722 */ 3723 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3724 gfp, node); 3725 if (!hctx->ctxs) 3726 goto free_cpumask; 3727 3728 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3729 gfp, node, false, false)) 3730 goto free_ctxs; 3731 hctx->nr_ctx = 0; 3732 3733 spin_lock_init(&hctx->dispatch_wait_lock); 3734 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3735 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3736 3737 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3738 if (!hctx->fq) 3739 goto free_bitmap; 3740 3741 blk_mq_hctx_kobj_init(hctx); 3742 3743 return hctx; 3744 3745 free_bitmap: 3746 sbitmap_free(&hctx->ctx_map); 3747 free_ctxs: 3748 kfree(hctx->ctxs); 3749 free_cpumask: 3750 free_cpumask_var(hctx->cpumask); 3751 free_hctx: 3752 kfree(hctx); 3753 fail_alloc_hctx: 3754 return NULL; 3755 } 3756 3757 static void blk_mq_init_cpu_queues(struct request_queue *q, 3758 unsigned int nr_hw_queues) 3759 { 3760 struct blk_mq_tag_set *set = q->tag_set; 3761 unsigned int i, j; 3762 3763 for_each_possible_cpu(i) { 3764 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3765 struct blk_mq_hw_ctx *hctx; 3766 int k; 3767 3768 __ctx->cpu = i; 3769 spin_lock_init(&__ctx->lock); 3770 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3771 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3772 3773 __ctx->queue = q; 3774 3775 /* 3776 * Set local node, IFF we have more than one hw queue. If 3777 * not, we remain on the home node of the device 3778 */ 3779 for (j = 0; j < set->nr_maps; j++) { 3780 hctx = blk_mq_map_queue_type(q, j, i); 3781 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3782 hctx->numa_node = cpu_to_node(i); 3783 } 3784 } 3785 } 3786 3787 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3788 unsigned int hctx_idx, 3789 unsigned int depth) 3790 { 3791 struct blk_mq_tags *tags; 3792 int ret; 3793 3794 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3795 if (!tags) 3796 return NULL; 3797 3798 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3799 if (ret) { 3800 blk_mq_free_rq_map(tags); 3801 return NULL; 3802 } 3803 3804 return tags; 3805 } 3806 3807 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3808 int hctx_idx) 3809 { 3810 if (blk_mq_is_shared_tags(set->flags)) { 3811 set->tags[hctx_idx] = set->shared_tags; 3812 3813 return true; 3814 } 3815 3816 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3817 set->queue_depth); 3818 3819 return set->tags[hctx_idx]; 3820 } 3821 3822 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3823 struct blk_mq_tags *tags, 3824 unsigned int hctx_idx) 3825 { 3826 if (tags) { 3827 blk_mq_free_rqs(set, tags, hctx_idx); 3828 blk_mq_free_rq_map(tags); 3829 } 3830 } 3831 3832 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3833 unsigned int hctx_idx) 3834 { 3835 if (!blk_mq_is_shared_tags(set->flags)) 3836 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3837 3838 set->tags[hctx_idx] = NULL; 3839 } 3840 3841 static void blk_mq_map_swqueue(struct request_queue *q) 3842 { 3843 unsigned int j, hctx_idx; 3844 unsigned long i; 3845 struct blk_mq_hw_ctx *hctx; 3846 struct blk_mq_ctx *ctx; 3847 struct blk_mq_tag_set *set = q->tag_set; 3848 3849 queue_for_each_hw_ctx(q, hctx, i) { 3850 cpumask_clear(hctx->cpumask); 3851 hctx->nr_ctx = 0; 3852 hctx->dispatch_from = NULL; 3853 } 3854 3855 /* 3856 * Map software to hardware queues. 3857 * 3858 * If the cpu isn't present, the cpu is mapped to first hctx. 3859 */ 3860 for_each_possible_cpu(i) { 3861 3862 ctx = per_cpu_ptr(q->queue_ctx, i); 3863 for (j = 0; j < set->nr_maps; j++) { 3864 if (!set->map[j].nr_queues) { 3865 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3866 HCTX_TYPE_DEFAULT, i); 3867 continue; 3868 } 3869 hctx_idx = set->map[j].mq_map[i]; 3870 /* unmapped hw queue can be remapped after CPU topo changed */ 3871 if (!set->tags[hctx_idx] && 3872 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3873 /* 3874 * If tags initialization fail for some hctx, 3875 * that hctx won't be brought online. In this 3876 * case, remap the current ctx to hctx[0] which 3877 * is guaranteed to always have tags allocated 3878 */ 3879 set->map[j].mq_map[i] = 0; 3880 } 3881 3882 hctx = blk_mq_map_queue_type(q, j, i); 3883 ctx->hctxs[j] = hctx; 3884 /* 3885 * If the CPU is already set in the mask, then we've 3886 * mapped this one already. This can happen if 3887 * devices share queues across queue maps. 3888 */ 3889 if (cpumask_test_cpu(i, hctx->cpumask)) 3890 continue; 3891 3892 cpumask_set_cpu(i, hctx->cpumask); 3893 hctx->type = j; 3894 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3895 hctx->ctxs[hctx->nr_ctx++] = ctx; 3896 3897 /* 3898 * If the nr_ctx type overflows, we have exceeded the 3899 * amount of sw queues we can support. 3900 */ 3901 BUG_ON(!hctx->nr_ctx); 3902 } 3903 3904 for (; j < HCTX_MAX_TYPES; j++) 3905 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3906 HCTX_TYPE_DEFAULT, i); 3907 } 3908 3909 queue_for_each_hw_ctx(q, hctx, i) { 3910 /* 3911 * If no software queues are mapped to this hardware queue, 3912 * disable it and free the request entries. 3913 */ 3914 if (!hctx->nr_ctx) { 3915 /* Never unmap queue 0. We need it as a 3916 * fallback in case of a new remap fails 3917 * allocation 3918 */ 3919 if (i) 3920 __blk_mq_free_map_and_rqs(set, i); 3921 3922 hctx->tags = NULL; 3923 continue; 3924 } 3925 3926 hctx->tags = set->tags[i]; 3927 WARN_ON(!hctx->tags); 3928 3929 /* 3930 * Set the map size to the number of mapped software queues. 3931 * This is more accurate and more efficient than looping 3932 * over all possibly mapped software queues. 3933 */ 3934 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3935 3936 /* 3937 * Initialize batch roundrobin counts 3938 */ 3939 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3940 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3941 } 3942 } 3943 3944 /* 3945 * Caller needs to ensure that we're either frozen/quiesced, or that 3946 * the queue isn't live yet. 3947 */ 3948 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3949 { 3950 struct blk_mq_hw_ctx *hctx; 3951 unsigned long i; 3952 3953 queue_for_each_hw_ctx(q, hctx, i) { 3954 if (shared) { 3955 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3956 } else { 3957 blk_mq_tag_idle(hctx); 3958 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3959 } 3960 } 3961 } 3962 3963 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3964 bool shared) 3965 { 3966 struct request_queue *q; 3967 3968 lockdep_assert_held(&set->tag_list_lock); 3969 3970 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3971 blk_mq_freeze_queue(q); 3972 queue_set_hctx_shared(q, shared); 3973 blk_mq_unfreeze_queue(q); 3974 } 3975 } 3976 3977 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3978 { 3979 struct blk_mq_tag_set *set = q->tag_set; 3980 3981 mutex_lock(&set->tag_list_lock); 3982 list_del(&q->tag_set_list); 3983 if (list_is_singular(&set->tag_list)) { 3984 /* just transitioned to unshared */ 3985 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3986 /* update existing queue */ 3987 blk_mq_update_tag_set_shared(set, false); 3988 } 3989 mutex_unlock(&set->tag_list_lock); 3990 INIT_LIST_HEAD(&q->tag_set_list); 3991 } 3992 3993 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3994 struct request_queue *q) 3995 { 3996 mutex_lock(&set->tag_list_lock); 3997 3998 /* 3999 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4000 */ 4001 if (!list_empty(&set->tag_list) && 4002 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4003 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4004 /* update existing queue */ 4005 blk_mq_update_tag_set_shared(set, true); 4006 } 4007 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4008 queue_set_hctx_shared(q, true); 4009 list_add_tail(&q->tag_set_list, &set->tag_list); 4010 4011 mutex_unlock(&set->tag_list_lock); 4012 } 4013 4014 /* All allocations will be freed in release handler of q->mq_kobj */ 4015 static int blk_mq_alloc_ctxs(struct request_queue *q) 4016 { 4017 struct blk_mq_ctxs *ctxs; 4018 int cpu; 4019 4020 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4021 if (!ctxs) 4022 return -ENOMEM; 4023 4024 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4025 if (!ctxs->queue_ctx) 4026 goto fail; 4027 4028 for_each_possible_cpu(cpu) { 4029 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4030 ctx->ctxs = ctxs; 4031 } 4032 4033 q->mq_kobj = &ctxs->kobj; 4034 q->queue_ctx = ctxs->queue_ctx; 4035 4036 return 0; 4037 fail: 4038 kfree(ctxs); 4039 return -ENOMEM; 4040 } 4041 4042 /* 4043 * It is the actual release handler for mq, but we do it from 4044 * request queue's release handler for avoiding use-after-free 4045 * and headache because q->mq_kobj shouldn't have been introduced, 4046 * but we can't group ctx/kctx kobj without it. 4047 */ 4048 void blk_mq_release(struct request_queue *q) 4049 { 4050 struct blk_mq_hw_ctx *hctx, *next; 4051 unsigned long i; 4052 4053 queue_for_each_hw_ctx(q, hctx, i) 4054 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4055 4056 /* all hctx are in .unused_hctx_list now */ 4057 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4058 list_del_init(&hctx->hctx_list); 4059 kobject_put(&hctx->kobj); 4060 } 4061 4062 xa_destroy(&q->hctx_table); 4063 4064 /* 4065 * release .mq_kobj and sw queue's kobject now because 4066 * both share lifetime with request queue. 4067 */ 4068 blk_mq_sysfs_deinit(q); 4069 } 4070 4071 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4072 struct queue_limits *lim, void *queuedata) 4073 { 4074 struct queue_limits default_lim = { }; 4075 struct request_queue *q; 4076 int ret; 4077 4078 q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node); 4079 if (IS_ERR(q)) 4080 return q; 4081 q->queuedata = queuedata; 4082 ret = blk_mq_init_allocated_queue(set, q); 4083 if (ret) { 4084 blk_put_queue(q); 4085 return ERR_PTR(ret); 4086 } 4087 return q; 4088 } 4089 EXPORT_SYMBOL(blk_mq_alloc_queue); 4090 4091 /** 4092 * blk_mq_destroy_queue - shutdown a request queue 4093 * @q: request queue to shutdown 4094 * 4095 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4096 * requests will be failed with -ENODEV. The caller is responsible for dropping 4097 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4098 * 4099 * Context: can sleep 4100 */ 4101 void blk_mq_destroy_queue(struct request_queue *q) 4102 { 4103 WARN_ON_ONCE(!queue_is_mq(q)); 4104 WARN_ON_ONCE(blk_queue_registered(q)); 4105 4106 might_sleep(); 4107 4108 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4109 blk_queue_start_drain(q); 4110 blk_mq_freeze_queue_wait(q); 4111 4112 blk_sync_queue(q); 4113 blk_mq_cancel_work_sync(q); 4114 blk_mq_exit_queue(q); 4115 } 4116 EXPORT_SYMBOL(blk_mq_destroy_queue); 4117 4118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4119 struct queue_limits *lim, void *queuedata, 4120 struct lock_class_key *lkclass) 4121 { 4122 struct request_queue *q; 4123 struct gendisk *disk; 4124 4125 q = blk_mq_alloc_queue(set, lim, queuedata); 4126 if (IS_ERR(q)) 4127 return ERR_CAST(q); 4128 4129 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4130 if (!disk) { 4131 blk_mq_destroy_queue(q); 4132 blk_put_queue(q); 4133 return ERR_PTR(-ENOMEM); 4134 } 4135 set_bit(GD_OWNS_QUEUE, &disk->state); 4136 return disk; 4137 } 4138 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4139 4140 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4141 struct lock_class_key *lkclass) 4142 { 4143 struct gendisk *disk; 4144 4145 if (!blk_get_queue(q)) 4146 return NULL; 4147 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4148 if (!disk) 4149 blk_put_queue(q); 4150 return disk; 4151 } 4152 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4153 4154 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4155 struct blk_mq_tag_set *set, struct request_queue *q, 4156 int hctx_idx, int node) 4157 { 4158 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4159 4160 /* reuse dead hctx first */ 4161 spin_lock(&q->unused_hctx_lock); 4162 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4163 if (tmp->numa_node == node) { 4164 hctx = tmp; 4165 break; 4166 } 4167 } 4168 if (hctx) 4169 list_del_init(&hctx->hctx_list); 4170 spin_unlock(&q->unused_hctx_lock); 4171 4172 if (!hctx) 4173 hctx = blk_mq_alloc_hctx(q, set, node); 4174 if (!hctx) 4175 goto fail; 4176 4177 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4178 goto free_hctx; 4179 4180 return hctx; 4181 4182 free_hctx: 4183 kobject_put(&hctx->kobj); 4184 fail: 4185 return NULL; 4186 } 4187 4188 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4189 struct request_queue *q) 4190 { 4191 struct blk_mq_hw_ctx *hctx; 4192 unsigned long i, j; 4193 4194 /* protect against switching io scheduler */ 4195 mutex_lock(&q->sysfs_lock); 4196 for (i = 0; i < set->nr_hw_queues; i++) { 4197 int old_node; 4198 int node = blk_mq_get_hctx_node(set, i); 4199 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4200 4201 if (old_hctx) { 4202 old_node = old_hctx->numa_node; 4203 blk_mq_exit_hctx(q, set, old_hctx, i); 4204 } 4205 4206 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4207 if (!old_hctx) 4208 break; 4209 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4210 node, old_node); 4211 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4212 WARN_ON_ONCE(!hctx); 4213 } 4214 } 4215 /* 4216 * Increasing nr_hw_queues fails. Free the newly allocated 4217 * hctxs and keep the previous q->nr_hw_queues. 4218 */ 4219 if (i != set->nr_hw_queues) { 4220 j = q->nr_hw_queues; 4221 } else { 4222 j = i; 4223 q->nr_hw_queues = set->nr_hw_queues; 4224 } 4225 4226 xa_for_each_start(&q->hctx_table, j, hctx, j) 4227 blk_mq_exit_hctx(q, set, hctx, j); 4228 mutex_unlock(&q->sysfs_lock); 4229 } 4230 4231 static void blk_mq_update_poll_flag(struct request_queue *q) 4232 { 4233 struct blk_mq_tag_set *set = q->tag_set; 4234 4235 if (set->nr_maps > HCTX_TYPE_POLL && 4236 set->map[HCTX_TYPE_POLL].nr_queues) 4237 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4238 else 4239 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4240 } 4241 4242 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4243 struct request_queue *q) 4244 { 4245 /* mark the queue as mq asap */ 4246 q->mq_ops = set->ops; 4247 4248 if (blk_mq_alloc_ctxs(q)) 4249 goto err_exit; 4250 4251 /* init q->mq_kobj and sw queues' kobjects */ 4252 blk_mq_sysfs_init(q); 4253 4254 INIT_LIST_HEAD(&q->unused_hctx_list); 4255 spin_lock_init(&q->unused_hctx_lock); 4256 4257 xa_init(&q->hctx_table); 4258 4259 blk_mq_realloc_hw_ctxs(set, q); 4260 if (!q->nr_hw_queues) 4261 goto err_hctxs; 4262 4263 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4264 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4265 4266 q->tag_set = set; 4267 4268 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4269 blk_mq_update_poll_flag(q); 4270 4271 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4272 INIT_LIST_HEAD(&q->flush_list); 4273 INIT_LIST_HEAD(&q->requeue_list); 4274 spin_lock_init(&q->requeue_lock); 4275 4276 q->nr_requests = set->queue_depth; 4277 4278 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4279 blk_mq_add_queue_tag_set(set, q); 4280 blk_mq_map_swqueue(q); 4281 return 0; 4282 4283 err_hctxs: 4284 blk_mq_release(q); 4285 err_exit: 4286 q->mq_ops = NULL; 4287 return -ENOMEM; 4288 } 4289 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4290 4291 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4292 void blk_mq_exit_queue(struct request_queue *q) 4293 { 4294 struct blk_mq_tag_set *set = q->tag_set; 4295 4296 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4297 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4298 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4299 blk_mq_del_queue_tag_set(q); 4300 } 4301 4302 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4303 { 4304 int i; 4305 4306 if (blk_mq_is_shared_tags(set->flags)) { 4307 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4308 BLK_MQ_NO_HCTX_IDX, 4309 set->queue_depth); 4310 if (!set->shared_tags) 4311 return -ENOMEM; 4312 } 4313 4314 for (i = 0; i < set->nr_hw_queues; i++) { 4315 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4316 goto out_unwind; 4317 cond_resched(); 4318 } 4319 4320 return 0; 4321 4322 out_unwind: 4323 while (--i >= 0) 4324 __blk_mq_free_map_and_rqs(set, i); 4325 4326 if (blk_mq_is_shared_tags(set->flags)) { 4327 blk_mq_free_map_and_rqs(set, set->shared_tags, 4328 BLK_MQ_NO_HCTX_IDX); 4329 } 4330 4331 return -ENOMEM; 4332 } 4333 4334 /* 4335 * Allocate the request maps associated with this tag_set. Note that this 4336 * may reduce the depth asked for, if memory is tight. set->queue_depth 4337 * will be updated to reflect the allocated depth. 4338 */ 4339 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4340 { 4341 unsigned int depth; 4342 int err; 4343 4344 depth = set->queue_depth; 4345 do { 4346 err = __blk_mq_alloc_rq_maps(set); 4347 if (!err) 4348 break; 4349 4350 set->queue_depth >>= 1; 4351 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4352 err = -ENOMEM; 4353 break; 4354 } 4355 } while (set->queue_depth); 4356 4357 if (!set->queue_depth || err) { 4358 pr_err("blk-mq: failed to allocate request map\n"); 4359 return -ENOMEM; 4360 } 4361 4362 if (depth != set->queue_depth) 4363 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4364 depth, set->queue_depth); 4365 4366 return 0; 4367 } 4368 4369 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4370 { 4371 /* 4372 * blk_mq_map_queues() and multiple .map_queues() implementations 4373 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4374 * number of hardware queues. 4375 */ 4376 if (set->nr_maps == 1) 4377 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4378 4379 if (set->ops->map_queues) { 4380 int i; 4381 4382 /* 4383 * transport .map_queues is usually done in the following 4384 * way: 4385 * 4386 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4387 * mask = get_cpu_mask(queue) 4388 * for_each_cpu(cpu, mask) 4389 * set->map[x].mq_map[cpu] = queue; 4390 * } 4391 * 4392 * When we need to remap, the table has to be cleared for 4393 * killing stale mapping since one CPU may not be mapped 4394 * to any hw queue. 4395 */ 4396 for (i = 0; i < set->nr_maps; i++) 4397 blk_mq_clear_mq_map(&set->map[i]); 4398 4399 set->ops->map_queues(set); 4400 } else { 4401 BUG_ON(set->nr_maps > 1); 4402 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4403 } 4404 } 4405 4406 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4407 int new_nr_hw_queues) 4408 { 4409 struct blk_mq_tags **new_tags; 4410 int i; 4411 4412 if (set->nr_hw_queues >= new_nr_hw_queues) 4413 goto done; 4414 4415 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4416 GFP_KERNEL, set->numa_node); 4417 if (!new_tags) 4418 return -ENOMEM; 4419 4420 if (set->tags) 4421 memcpy(new_tags, set->tags, set->nr_hw_queues * 4422 sizeof(*set->tags)); 4423 kfree(set->tags); 4424 set->tags = new_tags; 4425 4426 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4427 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4428 while (--i >= set->nr_hw_queues) 4429 __blk_mq_free_map_and_rqs(set, i); 4430 return -ENOMEM; 4431 } 4432 cond_resched(); 4433 } 4434 4435 done: 4436 set->nr_hw_queues = new_nr_hw_queues; 4437 return 0; 4438 } 4439 4440 /* 4441 * Alloc a tag set to be associated with one or more request queues. 4442 * May fail with EINVAL for various error conditions. May adjust the 4443 * requested depth down, if it's too large. In that case, the set 4444 * value will be stored in set->queue_depth. 4445 */ 4446 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4447 { 4448 int i, ret; 4449 4450 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4451 4452 if (!set->nr_hw_queues) 4453 return -EINVAL; 4454 if (!set->queue_depth) 4455 return -EINVAL; 4456 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4457 return -EINVAL; 4458 4459 if (!set->ops->queue_rq) 4460 return -EINVAL; 4461 4462 if (!set->ops->get_budget ^ !set->ops->put_budget) 4463 return -EINVAL; 4464 4465 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4466 pr_info("blk-mq: reduced tag depth to %u\n", 4467 BLK_MQ_MAX_DEPTH); 4468 set->queue_depth = BLK_MQ_MAX_DEPTH; 4469 } 4470 4471 if (!set->nr_maps) 4472 set->nr_maps = 1; 4473 else if (set->nr_maps > HCTX_MAX_TYPES) 4474 return -EINVAL; 4475 4476 /* 4477 * If a crashdump is active, then we are potentially in a very 4478 * memory constrained environment. Limit us to 64 tags to prevent 4479 * using too much memory. 4480 */ 4481 if (is_kdump_kernel()) 4482 set->queue_depth = min(64U, set->queue_depth); 4483 4484 /* 4485 * There is no use for more h/w queues than cpus if we just have 4486 * a single map 4487 */ 4488 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4489 set->nr_hw_queues = nr_cpu_ids; 4490 4491 if (set->flags & BLK_MQ_F_BLOCKING) { 4492 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4493 if (!set->srcu) 4494 return -ENOMEM; 4495 ret = init_srcu_struct(set->srcu); 4496 if (ret) 4497 goto out_free_srcu; 4498 } 4499 4500 ret = -ENOMEM; 4501 set->tags = kcalloc_node(set->nr_hw_queues, 4502 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4503 set->numa_node); 4504 if (!set->tags) 4505 goto out_cleanup_srcu; 4506 4507 for (i = 0; i < set->nr_maps; i++) { 4508 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4509 sizeof(set->map[i].mq_map[0]), 4510 GFP_KERNEL, set->numa_node); 4511 if (!set->map[i].mq_map) 4512 goto out_free_mq_map; 4513 set->map[i].nr_queues = set->nr_hw_queues; 4514 } 4515 4516 blk_mq_update_queue_map(set); 4517 4518 ret = blk_mq_alloc_set_map_and_rqs(set); 4519 if (ret) 4520 goto out_free_mq_map; 4521 4522 mutex_init(&set->tag_list_lock); 4523 INIT_LIST_HEAD(&set->tag_list); 4524 4525 return 0; 4526 4527 out_free_mq_map: 4528 for (i = 0; i < set->nr_maps; i++) { 4529 kfree(set->map[i].mq_map); 4530 set->map[i].mq_map = NULL; 4531 } 4532 kfree(set->tags); 4533 set->tags = NULL; 4534 out_cleanup_srcu: 4535 if (set->flags & BLK_MQ_F_BLOCKING) 4536 cleanup_srcu_struct(set->srcu); 4537 out_free_srcu: 4538 if (set->flags & BLK_MQ_F_BLOCKING) 4539 kfree(set->srcu); 4540 return ret; 4541 } 4542 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4543 4544 /* allocate and initialize a tagset for a simple single-queue device */ 4545 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4546 const struct blk_mq_ops *ops, unsigned int queue_depth, 4547 unsigned int set_flags) 4548 { 4549 memset(set, 0, sizeof(*set)); 4550 set->ops = ops; 4551 set->nr_hw_queues = 1; 4552 set->nr_maps = 1; 4553 set->queue_depth = queue_depth; 4554 set->numa_node = NUMA_NO_NODE; 4555 set->flags = set_flags; 4556 return blk_mq_alloc_tag_set(set); 4557 } 4558 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4559 4560 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4561 { 4562 int i, j; 4563 4564 for (i = 0; i < set->nr_hw_queues; i++) 4565 __blk_mq_free_map_and_rqs(set, i); 4566 4567 if (blk_mq_is_shared_tags(set->flags)) { 4568 blk_mq_free_map_and_rqs(set, set->shared_tags, 4569 BLK_MQ_NO_HCTX_IDX); 4570 } 4571 4572 for (j = 0; j < set->nr_maps; j++) { 4573 kfree(set->map[j].mq_map); 4574 set->map[j].mq_map = NULL; 4575 } 4576 4577 kfree(set->tags); 4578 set->tags = NULL; 4579 if (set->flags & BLK_MQ_F_BLOCKING) { 4580 cleanup_srcu_struct(set->srcu); 4581 kfree(set->srcu); 4582 } 4583 } 4584 EXPORT_SYMBOL(blk_mq_free_tag_set); 4585 4586 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4587 { 4588 struct blk_mq_tag_set *set = q->tag_set; 4589 struct blk_mq_hw_ctx *hctx; 4590 int ret; 4591 unsigned long i; 4592 4593 if (!set) 4594 return -EINVAL; 4595 4596 if (q->nr_requests == nr) 4597 return 0; 4598 4599 blk_mq_freeze_queue(q); 4600 blk_mq_quiesce_queue(q); 4601 4602 ret = 0; 4603 queue_for_each_hw_ctx(q, hctx, i) { 4604 if (!hctx->tags) 4605 continue; 4606 /* 4607 * If we're using an MQ scheduler, just update the scheduler 4608 * queue depth. This is similar to what the old code would do. 4609 */ 4610 if (hctx->sched_tags) { 4611 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4612 nr, true); 4613 } else { 4614 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4615 false); 4616 } 4617 if (ret) 4618 break; 4619 if (q->elevator && q->elevator->type->ops.depth_updated) 4620 q->elevator->type->ops.depth_updated(hctx); 4621 } 4622 if (!ret) { 4623 q->nr_requests = nr; 4624 if (blk_mq_is_shared_tags(set->flags)) { 4625 if (q->elevator) 4626 blk_mq_tag_update_sched_shared_tags(q); 4627 else 4628 blk_mq_tag_resize_shared_tags(set, nr); 4629 } 4630 } 4631 4632 blk_mq_unquiesce_queue(q); 4633 blk_mq_unfreeze_queue(q); 4634 4635 return ret; 4636 } 4637 4638 /* 4639 * request_queue and elevator_type pair. 4640 * It is just used by __blk_mq_update_nr_hw_queues to cache 4641 * the elevator_type associated with a request_queue. 4642 */ 4643 struct blk_mq_qe_pair { 4644 struct list_head node; 4645 struct request_queue *q; 4646 struct elevator_type *type; 4647 }; 4648 4649 /* 4650 * Cache the elevator_type in qe pair list and switch the 4651 * io scheduler to 'none' 4652 */ 4653 static bool blk_mq_elv_switch_none(struct list_head *head, 4654 struct request_queue *q) 4655 { 4656 struct blk_mq_qe_pair *qe; 4657 4658 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4659 if (!qe) 4660 return false; 4661 4662 /* q->elevator needs protection from ->sysfs_lock */ 4663 mutex_lock(&q->sysfs_lock); 4664 4665 /* the check has to be done with holding sysfs_lock */ 4666 if (!q->elevator) { 4667 kfree(qe); 4668 goto unlock; 4669 } 4670 4671 INIT_LIST_HEAD(&qe->node); 4672 qe->q = q; 4673 qe->type = q->elevator->type; 4674 /* keep a reference to the elevator module as we'll switch back */ 4675 __elevator_get(qe->type); 4676 list_add(&qe->node, head); 4677 elevator_disable(q); 4678 unlock: 4679 mutex_unlock(&q->sysfs_lock); 4680 4681 return true; 4682 } 4683 4684 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4685 struct request_queue *q) 4686 { 4687 struct blk_mq_qe_pair *qe; 4688 4689 list_for_each_entry(qe, head, node) 4690 if (qe->q == q) 4691 return qe; 4692 4693 return NULL; 4694 } 4695 4696 static void blk_mq_elv_switch_back(struct list_head *head, 4697 struct request_queue *q) 4698 { 4699 struct blk_mq_qe_pair *qe; 4700 struct elevator_type *t; 4701 4702 qe = blk_lookup_qe_pair(head, q); 4703 if (!qe) 4704 return; 4705 t = qe->type; 4706 list_del(&qe->node); 4707 kfree(qe); 4708 4709 mutex_lock(&q->sysfs_lock); 4710 elevator_switch(q, t); 4711 /* drop the reference acquired in blk_mq_elv_switch_none */ 4712 elevator_put(t); 4713 mutex_unlock(&q->sysfs_lock); 4714 } 4715 4716 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4717 int nr_hw_queues) 4718 { 4719 struct request_queue *q; 4720 LIST_HEAD(head); 4721 int prev_nr_hw_queues = set->nr_hw_queues; 4722 int i; 4723 4724 lockdep_assert_held(&set->tag_list_lock); 4725 4726 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4727 nr_hw_queues = nr_cpu_ids; 4728 if (nr_hw_queues < 1) 4729 return; 4730 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4731 return; 4732 4733 list_for_each_entry(q, &set->tag_list, tag_set_list) 4734 blk_mq_freeze_queue(q); 4735 /* 4736 * Switch IO scheduler to 'none', cleaning up the data associated 4737 * with the previous scheduler. We will switch back once we are done 4738 * updating the new sw to hw queue mappings. 4739 */ 4740 list_for_each_entry(q, &set->tag_list, tag_set_list) 4741 if (!blk_mq_elv_switch_none(&head, q)) 4742 goto switch_back; 4743 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4745 blk_mq_debugfs_unregister_hctxs(q); 4746 blk_mq_sysfs_unregister_hctxs(q); 4747 } 4748 4749 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4750 goto reregister; 4751 4752 fallback: 4753 blk_mq_update_queue_map(set); 4754 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4755 blk_mq_realloc_hw_ctxs(set, q); 4756 blk_mq_update_poll_flag(q); 4757 if (q->nr_hw_queues != set->nr_hw_queues) { 4758 int i = prev_nr_hw_queues; 4759 4760 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4761 nr_hw_queues, prev_nr_hw_queues); 4762 for (; i < set->nr_hw_queues; i++) 4763 __blk_mq_free_map_and_rqs(set, i); 4764 4765 set->nr_hw_queues = prev_nr_hw_queues; 4766 goto fallback; 4767 } 4768 blk_mq_map_swqueue(q); 4769 } 4770 4771 reregister: 4772 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4773 blk_mq_sysfs_register_hctxs(q); 4774 blk_mq_debugfs_register_hctxs(q); 4775 } 4776 4777 switch_back: 4778 list_for_each_entry(q, &set->tag_list, tag_set_list) 4779 blk_mq_elv_switch_back(&head, q); 4780 4781 list_for_each_entry(q, &set->tag_list, tag_set_list) 4782 blk_mq_unfreeze_queue(q); 4783 4784 /* Free the excess tags when nr_hw_queues shrink. */ 4785 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4786 __blk_mq_free_map_and_rqs(set, i); 4787 } 4788 4789 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4790 { 4791 mutex_lock(&set->tag_list_lock); 4792 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4793 mutex_unlock(&set->tag_list_lock); 4794 } 4795 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4796 4797 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4798 struct io_comp_batch *iob, unsigned int flags) 4799 { 4800 long state = get_current_state(); 4801 int ret; 4802 4803 do { 4804 ret = q->mq_ops->poll(hctx, iob); 4805 if (ret > 0) { 4806 __set_current_state(TASK_RUNNING); 4807 return ret; 4808 } 4809 4810 if (signal_pending_state(state, current)) 4811 __set_current_state(TASK_RUNNING); 4812 if (task_is_running(current)) 4813 return 1; 4814 4815 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4816 break; 4817 cpu_relax(); 4818 } while (!need_resched()); 4819 4820 __set_current_state(TASK_RUNNING); 4821 return 0; 4822 } 4823 4824 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4825 struct io_comp_batch *iob, unsigned int flags) 4826 { 4827 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4828 4829 return blk_hctx_poll(q, hctx, iob, flags); 4830 } 4831 4832 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4833 unsigned int poll_flags) 4834 { 4835 struct request_queue *q = rq->q; 4836 int ret; 4837 4838 if (!blk_rq_is_poll(rq)) 4839 return 0; 4840 if (!percpu_ref_tryget(&q->q_usage_counter)) 4841 return 0; 4842 4843 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4844 blk_queue_exit(q); 4845 4846 return ret; 4847 } 4848 EXPORT_SYMBOL_GPL(blk_rq_poll); 4849 4850 unsigned int blk_mq_rq_cpu(struct request *rq) 4851 { 4852 return rq->mq_ctx->cpu; 4853 } 4854 EXPORT_SYMBOL(blk_mq_rq_cpu); 4855 4856 void blk_mq_cancel_work_sync(struct request_queue *q) 4857 { 4858 struct blk_mq_hw_ctx *hctx; 4859 unsigned long i; 4860 4861 cancel_delayed_work_sync(&q->requeue_work); 4862 4863 queue_for_each_hw_ctx(q, hctx, i) 4864 cancel_delayed_work_sync(&hctx->run_work); 4865 } 4866 4867 static int __init blk_mq_init(void) 4868 { 4869 int i; 4870 4871 for_each_possible_cpu(i) 4872 init_llist_head(&per_cpu(blk_cpu_done, i)); 4873 for_each_possible_cpu(i) 4874 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4875 __blk_mq_complete_request_remote, NULL); 4876 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4877 4878 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4879 "block/softirq:dead", NULL, 4880 blk_softirq_cpu_dead); 4881 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4882 blk_mq_hctx_notify_dead); 4883 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4884 blk_mq_hctx_notify_online, 4885 blk_mq_hctx_notify_offline); 4886 return 0; 4887 } 4888 subsys_initcall(blk_mq_init); 4889