xref: /linux/block/blk-mq.c (revision da6f8320d58623eae9b6fa2f09b1b4f60a772ce9)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 		/*
101 		 * index[0] counts the specific partition that was asked
102 		 * for. index[1] counts the ones that are active on the
103 		 * whole device, so increment that if mi->part is indeed
104 		 * a partition, and not a whole device.
105 		 */
106 		if (rq->part == mi->part)
107 			mi->inflight[0]++;
108 		if (mi->part->partno)
109 			mi->inflight[1]++;
110 	}
111 }
112 
113 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 		      unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 
118 	inflight[0] = inflight[1] = 0;
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 }
121 
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 	int freeze_depth;
125 
126 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
127 	if (freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		if (q->mq_ops)
130 			blk_mq_run_hw_queues(q, false);
131 	}
132 }
133 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134 
135 void blk_mq_freeze_queue_wait(struct request_queue *q)
136 {
137 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138 }
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140 
141 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
142 				     unsigned long timeout)
143 {
144 	return wait_event_timeout(q->mq_freeze_wq,
145 					percpu_ref_is_zero(&q->q_usage_counter),
146 					timeout);
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149 
150 /*
151  * Guarantee no request is in use, so we can change any data structure of
152  * the queue afterward.
153  */
154 void blk_freeze_queue(struct request_queue *q)
155 {
156 	/*
157 	 * In the !blk_mq case we are only calling this to kill the
158 	 * q_usage_counter, otherwise this increases the freeze depth
159 	 * and waits for it to return to zero.  For this reason there is
160 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
161 	 * exported to drivers as the only user for unfreeze is blk_mq.
162 	 */
163 	blk_freeze_queue_start(q);
164 	if (!q->mq_ops)
165 		blk_drain_queue(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void blk_mq_unfreeze_queue(struct request_queue *q)
180 {
181 	int freeze_depth;
182 
183 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
184 	WARN_ON_ONCE(freeze_depth < 0);
185 	if (!freeze_depth) {
186 		percpu_ref_reinit(&q->q_usage_counter);
187 		wake_up_all(&q->mq_freeze_wq);
188 	}
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
191 
192 /*
193  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
194  * mpt3sas driver such that this function can be removed.
195  */
196 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
197 {
198 	unsigned long flags;
199 
200 	spin_lock_irqsave(q->queue_lock, flags);
201 	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
202 	spin_unlock_irqrestore(q->queue_lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
205 
206 /**
207  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
208  * @q: request queue.
209  *
210  * Note: this function does not prevent that the struct request end_io()
211  * callback function is invoked. Once this function is returned, we make
212  * sure no dispatch can happen until the queue is unquiesced via
213  * blk_mq_unquiesce_queue().
214  */
215 void blk_mq_quiesce_queue(struct request_queue *q)
216 {
217 	struct blk_mq_hw_ctx *hctx;
218 	unsigned int i;
219 	bool rcu = false;
220 
221 	blk_mq_quiesce_queue_nowait(q);
222 
223 	queue_for_each_hw_ctx(q, hctx, i) {
224 		if (hctx->flags & BLK_MQ_F_BLOCKING)
225 			synchronize_srcu(hctx->queue_rq_srcu);
226 		else
227 			rcu = true;
228 	}
229 	if (rcu)
230 		synchronize_rcu();
231 }
232 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
233 
234 /*
235  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
236  * @q: request queue.
237  *
238  * This function recovers queue into the state before quiescing
239  * which is done by blk_mq_quiesce_queue.
240  */
241 void blk_mq_unquiesce_queue(struct request_queue *q)
242 {
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(q->queue_lock, flags);
246 	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
247 	spin_unlock_irqrestore(q->queue_lock, flags);
248 
249 	/* dispatch requests which are inserted during quiescing */
250 	blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 	struct blk_mq_hw_ctx *hctx;
257 	unsigned int i;
258 
259 	queue_for_each_hw_ctx(q, hctx, i)
260 		if (blk_mq_hw_queue_mapped(hctx))
261 			blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263 
264 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
265 {
266 	return blk_mq_has_free_tags(hctx->tags);
267 }
268 EXPORT_SYMBOL(blk_mq_can_queue);
269 
270 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
271 		unsigned int tag, unsigned int op)
272 {
273 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
274 	struct request *rq = tags->static_rqs[tag];
275 
276 	rq->rq_flags = 0;
277 
278 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
279 		rq->tag = -1;
280 		rq->internal_tag = tag;
281 	} else {
282 		if (blk_mq_tag_busy(data->hctx)) {
283 			rq->rq_flags = RQF_MQ_INFLIGHT;
284 			atomic_inc(&data->hctx->nr_active);
285 		}
286 		rq->tag = tag;
287 		rq->internal_tag = -1;
288 		data->hctx->tags->rqs[rq->tag] = rq;
289 	}
290 
291 	INIT_LIST_HEAD(&rq->queuelist);
292 	/* csd/requeue_work/fifo_time is initialized before use */
293 	rq->q = data->q;
294 	rq->mq_ctx = data->ctx;
295 	rq->cmd_flags = op;
296 	if (data->flags & BLK_MQ_REQ_PREEMPT)
297 		rq->rq_flags |= RQF_PREEMPT;
298 	if (blk_queue_io_stat(data->q))
299 		rq->rq_flags |= RQF_IO_STAT;
300 	/* do not touch atomic flags, it needs atomic ops against the timer */
301 	rq->cpu = -1;
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 	rq->start_time = jiffies;
307 #ifdef CONFIG_BLK_CGROUP
308 	rq->rl = NULL;
309 	set_start_time_ns(rq);
310 	rq->io_start_time_ns = 0;
311 #endif
312 	rq->nr_phys_segments = 0;
313 #if defined(CONFIG_BLK_DEV_INTEGRITY)
314 	rq->nr_integrity_segments = 0;
315 #endif
316 	rq->special = NULL;
317 	/* tag was already set */
318 	rq->extra_len = 0;
319 
320 	INIT_LIST_HEAD(&rq->timeout_list);
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 	rq->next_rq = NULL;
326 
327 	data->ctx->rq_dispatched[op_is_sync(op)]++;
328 	return rq;
329 }
330 
331 static struct request *blk_mq_get_request(struct request_queue *q,
332 		struct bio *bio, unsigned int op,
333 		struct blk_mq_alloc_data *data)
334 {
335 	struct elevator_queue *e = q->elevator;
336 	struct request *rq;
337 	unsigned int tag;
338 	bool put_ctx_on_error = false;
339 
340 	blk_queue_enter_live(q);
341 	data->q = q;
342 	if (likely(!data->ctx)) {
343 		data->ctx = blk_mq_get_ctx(q);
344 		put_ctx_on_error = true;
345 	}
346 	if (likely(!data->hctx))
347 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
348 	if (op & REQ_NOWAIT)
349 		data->flags |= BLK_MQ_REQ_NOWAIT;
350 
351 	if (e) {
352 		data->flags |= BLK_MQ_REQ_INTERNAL;
353 
354 		/*
355 		 * Flush requests are special and go directly to the
356 		 * dispatch list.
357 		 */
358 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
359 			e->type->ops.mq.limit_depth(op, data);
360 	}
361 
362 	tag = blk_mq_get_tag(data);
363 	if (tag == BLK_MQ_TAG_FAIL) {
364 		if (put_ctx_on_error) {
365 			blk_mq_put_ctx(data->ctx);
366 			data->ctx = NULL;
367 		}
368 		blk_queue_exit(q);
369 		return NULL;
370 	}
371 
372 	rq = blk_mq_rq_ctx_init(data, tag, op);
373 	if (!op_is_flush(op)) {
374 		rq->elv.icq = NULL;
375 		if (e && e->type->ops.mq.prepare_request) {
376 			if (e->type->icq_cache && rq_ioc(bio))
377 				blk_mq_sched_assign_ioc(rq, bio);
378 
379 			e->type->ops.mq.prepare_request(rq, bio);
380 			rq->rq_flags |= RQF_ELVPRIV;
381 		}
382 	}
383 	data->hctx->queued++;
384 	return rq;
385 }
386 
387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
388 		blk_mq_req_flags_t flags)
389 {
390 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
391 	struct request *rq;
392 	int ret;
393 
394 	ret = blk_queue_enter(q, flags);
395 	if (ret)
396 		return ERR_PTR(ret);
397 
398 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
399 	blk_queue_exit(q);
400 
401 	if (!rq)
402 		return ERR_PTR(-EWOULDBLOCK);
403 
404 	blk_mq_put_ctx(alloc_data.ctx);
405 
406 	rq->__data_len = 0;
407 	rq->__sector = (sector_t) -1;
408 	rq->bio = rq->biotail = NULL;
409 	return rq;
410 }
411 EXPORT_SYMBOL(blk_mq_alloc_request);
412 
413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
414 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
415 {
416 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
417 	struct request *rq;
418 	unsigned int cpu;
419 	int ret;
420 
421 	/*
422 	 * If the tag allocator sleeps we could get an allocation for a
423 	 * different hardware context.  No need to complicate the low level
424 	 * allocator for this for the rare use case of a command tied to
425 	 * a specific queue.
426 	 */
427 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
428 		return ERR_PTR(-EINVAL);
429 
430 	if (hctx_idx >= q->nr_hw_queues)
431 		return ERR_PTR(-EIO);
432 
433 	ret = blk_queue_enter(q, flags);
434 	if (ret)
435 		return ERR_PTR(ret);
436 
437 	/*
438 	 * Check if the hardware context is actually mapped to anything.
439 	 * If not tell the caller that it should skip this queue.
440 	 */
441 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
442 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
443 		blk_queue_exit(q);
444 		return ERR_PTR(-EXDEV);
445 	}
446 	cpu = cpumask_first(alloc_data.hctx->cpumask);
447 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
448 
449 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
450 	blk_queue_exit(q);
451 
452 	if (!rq)
453 		return ERR_PTR(-EWOULDBLOCK);
454 
455 	return rq;
456 }
457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
458 
459 void blk_mq_free_request(struct request *rq)
460 {
461 	struct request_queue *q = rq->q;
462 	struct elevator_queue *e = q->elevator;
463 	struct blk_mq_ctx *ctx = rq->mq_ctx;
464 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
465 	const int sched_tag = rq->internal_tag;
466 
467 	if (rq->rq_flags & RQF_ELVPRIV) {
468 		if (e && e->type->ops.mq.finish_request)
469 			e->type->ops.mq.finish_request(rq);
470 		if (rq->elv.icq) {
471 			put_io_context(rq->elv.icq->ioc);
472 			rq->elv.icq = NULL;
473 		}
474 	}
475 
476 	ctx->rq_completed[rq_is_sync(rq)]++;
477 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
478 		atomic_dec(&hctx->nr_active);
479 
480 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
481 		laptop_io_completion(q->backing_dev_info);
482 
483 	wbt_done(q->rq_wb, &rq->issue_stat);
484 
485 	if (blk_rq_rl(rq))
486 		blk_put_rl(blk_rq_rl(rq));
487 
488 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
489 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
490 	if (rq->tag != -1)
491 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 	if (sched_tag != -1)
493 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 	blk_mq_sched_restart(hctx);
495 	blk_queue_exit(q);
496 }
497 EXPORT_SYMBOL_GPL(blk_mq_free_request);
498 
499 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
500 {
501 	blk_account_io_done(rq);
502 
503 	if (rq->end_io) {
504 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
505 		rq->end_io(rq, error);
506 	} else {
507 		if (unlikely(blk_bidi_rq(rq)))
508 			blk_mq_free_request(rq->next_rq);
509 		blk_mq_free_request(rq);
510 	}
511 }
512 EXPORT_SYMBOL(__blk_mq_end_request);
513 
514 void blk_mq_end_request(struct request *rq, blk_status_t error)
515 {
516 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
517 		BUG();
518 	__blk_mq_end_request(rq, error);
519 }
520 EXPORT_SYMBOL(blk_mq_end_request);
521 
522 static void __blk_mq_complete_request_remote(void *data)
523 {
524 	struct request *rq = data;
525 
526 	rq->q->softirq_done_fn(rq);
527 }
528 
529 static void __blk_mq_complete_request(struct request *rq)
530 {
531 	struct blk_mq_ctx *ctx = rq->mq_ctx;
532 	bool shared = false;
533 	int cpu;
534 
535 	if (rq->internal_tag != -1)
536 		blk_mq_sched_completed_request(rq);
537 	if (rq->rq_flags & RQF_STATS) {
538 		blk_mq_poll_stats_start(rq->q);
539 		blk_stat_add(rq);
540 	}
541 
542 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 		rq->q->softirq_done_fn(rq);
544 		return;
545 	}
546 
547 	cpu = get_cpu();
548 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 		shared = cpus_share_cache(cpu, ctx->cpu);
550 
551 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 		rq->csd.func = __blk_mq_complete_request_remote;
553 		rq->csd.info = rq;
554 		rq->csd.flags = 0;
555 		smp_call_function_single_async(ctx->cpu, &rq->csd);
556 	} else {
557 		rq->q->softirq_done_fn(rq);
558 	}
559 	put_cpu();
560 }
561 
562 /**
563  * blk_mq_complete_request - end I/O on a request
564  * @rq:		the request being processed
565  *
566  * Description:
567  *	Ends all I/O on a request. It does not handle partial completions.
568  *	The actual completion happens out-of-order, through a IPI handler.
569  **/
570 void blk_mq_complete_request(struct request *rq)
571 {
572 	struct request_queue *q = rq->q;
573 
574 	if (unlikely(blk_should_fake_timeout(q)))
575 		return;
576 	if (!blk_mark_rq_complete(rq))
577 		__blk_mq_complete_request(rq);
578 }
579 EXPORT_SYMBOL(blk_mq_complete_request);
580 
581 int blk_mq_request_started(struct request *rq)
582 {
583 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
584 }
585 EXPORT_SYMBOL_GPL(blk_mq_request_started);
586 
587 void blk_mq_start_request(struct request *rq)
588 {
589 	struct request_queue *q = rq->q;
590 
591 	blk_mq_sched_started_request(rq);
592 
593 	trace_block_rq_issue(q, rq);
594 
595 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
596 		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
597 		rq->rq_flags |= RQF_STATS;
598 		wbt_issue(q->rq_wb, &rq->issue_stat);
599 	}
600 
601 	blk_add_timer(rq);
602 
603 	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
604 
605 	/*
606 	 * Mark us as started and clear complete. Complete might have been
607 	 * set if requeue raced with timeout, which then marked it as
608 	 * complete. So be sure to clear complete again when we start
609 	 * the request, otherwise we'll ignore the completion event.
610 	 *
611 	 * Ensure that ->deadline is visible before we set STARTED, such that
612 	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
613 	 * it observes STARTED.
614 	 */
615 	smp_wmb();
616 	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
617 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
618 		/*
619 		 * Coherence order guarantees these consecutive stores to a
620 		 * single variable propagate in the specified order. Thus the
621 		 * clear_bit() is ordered _after_ the set bit. See
622 		 * blk_mq_check_expired().
623 		 *
624 		 * (the bits must be part of the same byte for this to be
625 		 * true).
626 		 */
627 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
628 	}
629 
630 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
631 		/*
632 		 * Make sure space for the drain appears.  We know we can do
633 		 * this because max_hw_segments has been adjusted to be one
634 		 * fewer than the device can handle.
635 		 */
636 		rq->nr_phys_segments++;
637 	}
638 }
639 EXPORT_SYMBOL(blk_mq_start_request);
640 
641 /*
642  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
643  * flag isn't set yet, so there may be race with timeout handler,
644  * but given rq->deadline is just set in .queue_rq() under
645  * this situation, the race won't be possible in reality because
646  * rq->timeout should be set as big enough to cover the window
647  * between blk_mq_start_request() called from .queue_rq() and
648  * clearing REQ_ATOM_STARTED here.
649  */
650 static void __blk_mq_requeue_request(struct request *rq)
651 {
652 	struct request_queue *q = rq->q;
653 
654 	blk_mq_put_driver_tag(rq);
655 
656 	trace_block_rq_requeue(q, rq);
657 	wbt_requeue(q->rq_wb, &rq->issue_stat);
658 	blk_mq_sched_requeue_request(rq);
659 
660 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
661 		if (q->dma_drain_size && blk_rq_bytes(rq))
662 			rq->nr_phys_segments--;
663 	}
664 }
665 
666 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
667 {
668 	__blk_mq_requeue_request(rq);
669 
670 	BUG_ON(blk_queued_rq(rq));
671 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
672 }
673 EXPORT_SYMBOL(blk_mq_requeue_request);
674 
675 static void blk_mq_requeue_work(struct work_struct *work)
676 {
677 	struct request_queue *q =
678 		container_of(work, struct request_queue, requeue_work.work);
679 	LIST_HEAD(rq_list);
680 	struct request *rq, *next;
681 
682 	spin_lock_irq(&q->requeue_lock);
683 	list_splice_init(&q->requeue_list, &rq_list);
684 	spin_unlock_irq(&q->requeue_lock);
685 
686 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
687 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
688 			continue;
689 
690 		rq->rq_flags &= ~RQF_SOFTBARRIER;
691 		list_del_init(&rq->queuelist);
692 		blk_mq_sched_insert_request(rq, true, false, false, true);
693 	}
694 
695 	while (!list_empty(&rq_list)) {
696 		rq = list_entry(rq_list.next, struct request, queuelist);
697 		list_del_init(&rq->queuelist);
698 		blk_mq_sched_insert_request(rq, false, false, false, true);
699 	}
700 
701 	blk_mq_run_hw_queues(q, false);
702 }
703 
704 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
705 				bool kick_requeue_list)
706 {
707 	struct request_queue *q = rq->q;
708 	unsigned long flags;
709 
710 	/*
711 	 * We abuse this flag that is otherwise used by the I/O scheduler to
712 	 * request head insertion from the workqueue.
713 	 */
714 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
715 
716 	spin_lock_irqsave(&q->requeue_lock, flags);
717 	if (at_head) {
718 		rq->rq_flags |= RQF_SOFTBARRIER;
719 		list_add(&rq->queuelist, &q->requeue_list);
720 	} else {
721 		list_add_tail(&rq->queuelist, &q->requeue_list);
722 	}
723 	spin_unlock_irqrestore(&q->requeue_lock, flags);
724 
725 	if (kick_requeue_list)
726 		blk_mq_kick_requeue_list(q);
727 }
728 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
729 
730 void blk_mq_kick_requeue_list(struct request_queue *q)
731 {
732 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
733 }
734 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
735 
736 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
737 				    unsigned long msecs)
738 {
739 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
740 				    msecs_to_jiffies(msecs));
741 }
742 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
743 
744 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
745 {
746 	if (tag < tags->nr_tags) {
747 		prefetch(tags->rqs[tag]);
748 		return tags->rqs[tag];
749 	}
750 
751 	return NULL;
752 }
753 EXPORT_SYMBOL(blk_mq_tag_to_rq);
754 
755 struct blk_mq_timeout_data {
756 	unsigned long next;
757 	unsigned int next_set;
758 };
759 
760 void blk_mq_rq_timed_out(struct request *req, bool reserved)
761 {
762 	const struct blk_mq_ops *ops = req->q->mq_ops;
763 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
764 
765 	/*
766 	 * We know that complete is set at this point. If STARTED isn't set
767 	 * anymore, then the request isn't active and the "timeout" should
768 	 * just be ignored. This can happen due to the bitflag ordering.
769 	 * Timeout first checks if STARTED is set, and if it is, assumes
770 	 * the request is active. But if we race with completion, then
771 	 * both flags will get cleared. So check here again, and ignore
772 	 * a timeout event with a request that isn't active.
773 	 */
774 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
775 		return;
776 
777 	if (ops->timeout)
778 		ret = ops->timeout(req, reserved);
779 
780 	switch (ret) {
781 	case BLK_EH_HANDLED:
782 		__blk_mq_complete_request(req);
783 		break;
784 	case BLK_EH_RESET_TIMER:
785 		blk_add_timer(req);
786 		blk_clear_rq_complete(req);
787 		break;
788 	case BLK_EH_NOT_HANDLED:
789 		break;
790 	default:
791 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
792 		break;
793 	}
794 }
795 
796 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
797 		struct request *rq, void *priv, bool reserved)
798 {
799 	struct blk_mq_timeout_data *data = priv;
800 	unsigned long deadline;
801 
802 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
803 		return;
804 
805 	/*
806 	 * Ensures that if we see STARTED we must also see our
807 	 * up-to-date deadline, see blk_mq_start_request().
808 	 */
809 	smp_rmb();
810 
811 	deadline = READ_ONCE(rq->deadline);
812 
813 	/*
814 	 * The rq being checked may have been freed and reallocated
815 	 * out already here, we avoid this race by checking rq->deadline
816 	 * and REQ_ATOM_COMPLETE flag together:
817 	 *
818 	 * - if rq->deadline is observed as new value because of
819 	 *   reusing, the rq won't be timed out because of timing.
820 	 * - if rq->deadline is observed as previous value,
821 	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
822 	 *   because we put a barrier between setting rq->deadline
823 	 *   and clearing the flag in blk_mq_start_request(), so
824 	 *   this rq won't be timed out too.
825 	 */
826 	if (time_after_eq(jiffies, deadline)) {
827 		if (!blk_mark_rq_complete(rq)) {
828 			/*
829 			 * Again coherence order ensures that consecutive reads
830 			 * from the same variable must be in that order. This
831 			 * ensures that if we see COMPLETE clear, we must then
832 			 * see STARTED set and we'll ignore this timeout.
833 			 *
834 			 * (There's also the MB implied by the test_and_clear())
835 			 */
836 			blk_mq_rq_timed_out(rq, reserved);
837 		}
838 	} else if (!data->next_set || time_after(data->next, deadline)) {
839 		data->next = deadline;
840 		data->next_set = 1;
841 	}
842 }
843 
844 static void blk_mq_timeout_work(struct work_struct *work)
845 {
846 	struct request_queue *q =
847 		container_of(work, struct request_queue, timeout_work);
848 	struct blk_mq_timeout_data data = {
849 		.next		= 0,
850 		.next_set	= 0,
851 	};
852 	int i;
853 
854 	/* A deadlock might occur if a request is stuck requiring a
855 	 * timeout at the same time a queue freeze is waiting
856 	 * completion, since the timeout code would not be able to
857 	 * acquire the queue reference here.
858 	 *
859 	 * That's why we don't use blk_queue_enter here; instead, we use
860 	 * percpu_ref_tryget directly, because we need to be able to
861 	 * obtain a reference even in the short window between the queue
862 	 * starting to freeze, by dropping the first reference in
863 	 * blk_freeze_queue_start, and the moment the last request is
864 	 * consumed, marked by the instant q_usage_counter reaches
865 	 * zero.
866 	 */
867 	if (!percpu_ref_tryget(&q->q_usage_counter))
868 		return;
869 
870 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
871 
872 	if (data.next_set) {
873 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
874 		mod_timer(&q->timeout, data.next);
875 	} else {
876 		struct blk_mq_hw_ctx *hctx;
877 
878 		queue_for_each_hw_ctx(q, hctx, i) {
879 			/* the hctx may be unmapped, so check it here */
880 			if (blk_mq_hw_queue_mapped(hctx))
881 				blk_mq_tag_idle(hctx);
882 		}
883 	}
884 	blk_queue_exit(q);
885 }
886 
887 struct flush_busy_ctx_data {
888 	struct blk_mq_hw_ctx *hctx;
889 	struct list_head *list;
890 };
891 
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
893 {
894 	struct flush_busy_ctx_data *flush_data = data;
895 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
897 
898 	sbitmap_clear_bit(sb, bitnr);
899 	spin_lock(&ctx->lock);
900 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
901 	spin_unlock(&ctx->lock);
902 	return true;
903 }
904 
905 /*
906  * Process software queues that have been marked busy, splicing them
907  * to the for-dispatch
908  */
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
910 {
911 	struct flush_busy_ctx_data data = {
912 		.hctx = hctx,
913 		.list = list,
914 	};
915 
916 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
917 }
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
919 
920 struct dispatch_rq_data {
921 	struct blk_mq_hw_ctx *hctx;
922 	struct request *rq;
923 };
924 
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
926 		void *data)
927 {
928 	struct dispatch_rq_data *dispatch_data = data;
929 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
931 
932 	spin_lock(&ctx->lock);
933 	if (unlikely(!list_empty(&ctx->rq_list))) {
934 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 		list_del_init(&dispatch_data->rq->queuelist);
936 		if (list_empty(&ctx->rq_list))
937 			sbitmap_clear_bit(sb, bitnr);
938 	}
939 	spin_unlock(&ctx->lock);
940 
941 	return !dispatch_data->rq;
942 }
943 
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 					struct blk_mq_ctx *start)
946 {
947 	unsigned off = start ? start->index_hw : 0;
948 	struct dispatch_rq_data data = {
949 		.hctx = hctx,
950 		.rq   = NULL,
951 	};
952 
953 	__sbitmap_for_each_set(&hctx->ctx_map, off,
954 			       dispatch_rq_from_ctx, &data);
955 
956 	return data.rq;
957 }
958 
959 static inline unsigned int queued_to_index(unsigned int queued)
960 {
961 	if (!queued)
962 		return 0;
963 
964 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
965 }
966 
967 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
968 			   bool wait)
969 {
970 	struct blk_mq_alloc_data data = {
971 		.q = rq->q,
972 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
973 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
974 	};
975 
976 	might_sleep_if(wait);
977 
978 	if (rq->tag != -1)
979 		goto done;
980 
981 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
982 		data.flags |= BLK_MQ_REQ_RESERVED;
983 
984 	rq->tag = blk_mq_get_tag(&data);
985 	if (rq->tag >= 0) {
986 		if (blk_mq_tag_busy(data.hctx)) {
987 			rq->rq_flags |= RQF_MQ_INFLIGHT;
988 			atomic_inc(&data.hctx->nr_active);
989 		}
990 		data.hctx->tags->rqs[rq->tag] = rq;
991 	}
992 
993 done:
994 	if (hctx)
995 		*hctx = data.hctx;
996 	return rq->tag != -1;
997 }
998 
999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1000 				int flags, void *key)
1001 {
1002 	struct blk_mq_hw_ctx *hctx;
1003 
1004 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1005 
1006 	list_del_init(&wait->entry);
1007 	blk_mq_run_hw_queue(hctx, true);
1008 	return 1;
1009 }
1010 
1011 /*
1012  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013  * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1014  * restart. For both caes, take care to check the condition again after
1015  * marking us as waiting.
1016  */
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1018 				 struct request *rq)
1019 {
1020 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1021 	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1022 	struct sbq_wait_state *ws;
1023 	wait_queue_entry_t *wait;
1024 	bool ret;
1025 
1026 	if (!shared_tags) {
1027 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1028 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1029 	} else {
1030 		wait = &this_hctx->dispatch_wait;
1031 		if (!list_empty_careful(&wait->entry))
1032 			return false;
1033 
1034 		spin_lock(&this_hctx->lock);
1035 		if (!list_empty(&wait->entry)) {
1036 			spin_unlock(&this_hctx->lock);
1037 			return false;
1038 		}
1039 
1040 		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1041 		add_wait_queue(&ws->wait, wait);
1042 	}
1043 
1044 	/*
1045 	 * It's possible that a tag was freed in the window between the
1046 	 * allocation failure and adding the hardware queue to the wait
1047 	 * queue.
1048 	 */
1049 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1050 
1051 	if (!shared_tags) {
1052 		/*
1053 		 * Don't clear RESTART here, someone else could have set it.
1054 		 * At most this will cost an extra queue run.
1055 		 */
1056 		return ret;
1057 	} else {
1058 		if (!ret) {
1059 			spin_unlock(&this_hctx->lock);
1060 			return false;
1061 		}
1062 
1063 		/*
1064 		 * We got a tag, remove ourselves from the wait queue to ensure
1065 		 * someone else gets the wakeup.
1066 		 */
1067 		spin_lock_irq(&ws->wait.lock);
1068 		list_del_init(&wait->entry);
1069 		spin_unlock_irq(&ws->wait.lock);
1070 		spin_unlock(&this_hctx->lock);
1071 		return true;
1072 	}
1073 }
1074 
1075 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1076 			     bool got_budget)
1077 {
1078 	struct blk_mq_hw_ctx *hctx;
1079 	struct request *rq, *nxt;
1080 	bool no_tag = false;
1081 	int errors, queued;
1082 
1083 	if (list_empty(list))
1084 		return false;
1085 
1086 	WARN_ON(!list_is_singular(list) && got_budget);
1087 
1088 	/*
1089 	 * Now process all the entries, sending them to the driver.
1090 	 */
1091 	errors = queued = 0;
1092 	do {
1093 		struct blk_mq_queue_data bd;
1094 		blk_status_t ret;
1095 
1096 		rq = list_first_entry(list, struct request, queuelist);
1097 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1098 			/*
1099 			 * The initial allocation attempt failed, so we need to
1100 			 * rerun the hardware queue when a tag is freed. The
1101 			 * waitqueue takes care of that. If the queue is run
1102 			 * before we add this entry back on the dispatch list,
1103 			 * we'll re-run it below.
1104 			 */
1105 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1106 				if (got_budget)
1107 					blk_mq_put_dispatch_budget(hctx);
1108 				/*
1109 				 * For non-shared tags, the RESTART check
1110 				 * will suffice.
1111 				 */
1112 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1113 					no_tag = true;
1114 				break;
1115 			}
1116 		}
1117 
1118 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1119 			blk_mq_put_driver_tag(rq);
1120 			break;
1121 		}
1122 
1123 		list_del_init(&rq->queuelist);
1124 
1125 		bd.rq = rq;
1126 
1127 		/*
1128 		 * Flag last if we have no more requests, or if we have more
1129 		 * but can't assign a driver tag to it.
1130 		 */
1131 		if (list_empty(list))
1132 			bd.last = true;
1133 		else {
1134 			nxt = list_first_entry(list, struct request, queuelist);
1135 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1136 		}
1137 
1138 		ret = q->mq_ops->queue_rq(hctx, &bd);
1139 		if (ret == BLK_STS_RESOURCE) {
1140 			/*
1141 			 * If an I/O scheduler has been configured and we got a
1142 			 * driver tag for the next request already, free it
1143 			 * again.
1144 			 */
1145 			if (!list_empty(list)) {
1146 				nxt = list_first_entry(list, struct request, queuelist);
1147 				blk_mq_put_driver_tag(nxt);
1148 			}
1149 			list_add(&rq->queuelist, list);
1150 			__blk_mq_requeue_request(rq);
1151 			break;
1152 		}
1153 
1154 		if (unlikely(ret != BLK_STS_OK)) {
1155 			errors++;
1156 			blk_mq_end_request(rq, BLK_STS_IOERR);
1157 			continue;
1158 		}
1159 
1160 		queued++;
1161 	} while (!list_empty(list));
1162 
1163 	hctx->dispatched[queued_to_index(queued)]++;
1164 
1165 	/*
1166 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1167 	 * that is where we will continue on next queue run.
1168 	 */
1169 	if (!list_empty(list)) {
1170 		spin_lock(&hctx->lock);
1171 		list_splice_init(list, &hctx->dispatch);
1172 		spin_unlock(&hctx->lock);
1173 
1174 		/*
1175 		 * If SCHED_RESTART was set by the caller of this function and
1176 		 * it is no longer set that means that it was cleared by another
1177 		 * thread and hence that a queue rerun is needed.
1178 		 *
1179 		 * If 'no_tag' is set, that means that we failed getting
1180 		 * a driver tag with an I/O scheduler attached. If our dispatch
1181 		 * waitqueue is no longer active, ensure that we run the queue
1182 		 * AFTER adding our entries back to the list.
1183 		 *
1184 		 * If no I/O scheduler has been configured it is possible that
1185 		 * the hardware queue got stopped and restarted before requests
1186 		 * were pushed back onto the dispatch list. Rerun the queue to
1187 		 * avoid starvation. Notes:
1188 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1189 		 *   been stopped before rerunning a queue.
1190 		 * - Some but not all block drivers stop a queue before
1191 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1192 		 *   and dm-rq.
1193 		 */
1194 		if (!blk_mq_sched_needs_restart(hctx) ||
1195 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1196 			blk_mq_run_hw_queue(hctx, true);
1197 	}
1198 
1199 	return (queued + errors) != 0;
1200 }
1201 
1202 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1203 {
1204 	int srcu_idx;
1205 
1206 	/*
1207 	 * We should be running this queue from one of the CPUs that
1208 	 * are mapped to it.
1209 	 */
1210 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1211 		cpu_online(hctx->next_cpu));
1212 
1213 	/*
1214 	 * We can't run the queue inline with ints disabled. Ensure that
1215 	 * we catch bad users of this early.
1216 	 */
1217 	WARN_ON_ONCE(in_interrupt());
1218 
1219 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1220 		rcu_read_lock();
1221 		blk_mq_sched_dispatch_requests(hctx);
1222 		rcu_read_unlock();
1223 	} else {
1224 		might_sleep();
1225 
1226 		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1227 		blk_mq_sched_dispatch_requests(hctx);
1228 		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1229 	}
1230 }
1231 
1232 /*
1233  * It'd be great if the workqueue API had a way to pass
1234  * in a mask and had some smarts for more clever placement.
1235  * For now we just round-robin here, switching for every
1236  * BLK_MQ_CPU_WORK_BATCH queued items.
1237  */
1238 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1239 {
1240 	if (hctx->queue->nr_hw_queues == 1)
1241 		return WORK_CPU_UNBOUND;
1242 
1243 	if (--hctx->next_cpu_batch <= 0) {
1244 		int next_cpu;
1245 
1246 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1247 		if (next_cpu >= nr_cpu_ids)
1248 			next_cpu = cpumask_first(hctx->cpumask);
1249 
1250 		hctx->next_cpu = next_cpu;
1251 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1252 	}
1253 
1254 	return hctx->next_cpu;
1255 }
1256 
1257 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1258 					unsigned long msecs)
1259 {
1260 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1261 		return;
1262 
1263 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1264 		return;
1265 
1266 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1267 		int cpu = get_cpu();
1268 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1269 			__blk_mq_run_hw_queue(hctx);
1270 			put_cpu();
1271 			return;
1272 		}
1273 
1274 		put_cpu();
1275 	}
1276 
1277 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1278 					 &hctx->run_work,
1279 					 msecs_to_jiffies(msecs));
1280 }
1281 
1282 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1283 {
1284 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1285 }
1286 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1287 
1288 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1289 {
1290 	if (blk_mq_hctx_has_pending(hctx)) {
1291 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1292 		return true;
1293 	}
1294 
1295 	return false;
1296 }
1297 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1298 
1299 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1300 {
1301 	struct blk_mq_hw_ctx *hctx;
1302 	int i;
1303 
1304 	queue_for_each_hw_ctx(q, hctx, i) {
1305 		if (blk_mq_hctx_stopped(hctx))
1306 			continue;
1307 
1308 		blk_mq_run_hw_queue(hctx, async);
1309 	}
1310 }
1311 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1312 
1313 /**
1314  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1315  * @q: request queue.
1316  *
1317  * The caller is responsible for serializing this function against
1318  * blk_mq_{start,stop}_hw_queue().
1319  */
1320 bool blk_mq_queue_stopped(struct request_queue *q)
1321 {
1322 	struct blk_mq_hw_ctx *hctx;
1323 	int i;
1324 
1325 	queue_for_each_hw_ctx(q, hctx, i)
1326 		if (blk_mq_hctx_stopped(hctx))
1327 			return true;
1328 
1329 	return false;
1330 }
1331 EXPORT_SYMBOL(blk_mq_queue_stopped);
1332 
1333 /*
1334  * This function is often used for pausing .queue_rq() by driver when
1335  * there isn't enough resource or some conditions aren't satisfied, and
1336  * BLK_STS_RESOURCE is usually returned.
1337  *
1338  * We do not guarantee that dispatch can be drained or blocked
1339  * after blk_mq_stop_hw_queue() returns. Please use
1340  * blk_mq_quiesce_queue() for that requirement.
1341  */
1342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1343 {
1344 	cancel_delayed_work(&hctx->run_work);
1345 
1346 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1347 }
1348 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1349 
1350 /*
1351  * This function is often used for pausing .queue_rq() by driver when
1352  * there isn't enough resource or some conditions aren't satisfied, and
1353  * BLK_STS_RESOURCE is usually returned.
1354  *
1355  * We do not guarantee that dispatch can be drained or blocked
1356  * after blk_mq_stop_hw_queues() returns. Please use
1357  * blk_mq_quiesce_queue() for that requirement.
1358  */
1359 void blk_mq_stop_hw_queues(struct request_queue *q)
1360 {
1361 	struct blk_mq_hw_ctx *hctx;
1362 	int i;
1363 
1364 	queue_for_each_hw_ctx(q, hctx, i)
1365 		blk_mq_stop_hw_queue(hctx);
1366 }
1367 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1368 
1369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1370 {
1371 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1372 
1373 	blk_mq_run_hw_queue(hctx, false);
1374 }
1375 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1376 
1377 void blk_mq_start_hw_queues(struct request_queue *q)
1378 {
1379 	struct blk_mq_hw_ctx *hctx;
1380 	int i;
1381 
1382 	queue_for_each_hw_ctx(q, hctx, i)
1383 		blk_mq_start_hw_queue(hctx);
1384 }
1385 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1386 
1387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1388 {
1389 	if (!blk_mq_hctx_stopped(hctx))
1390 		return;
1391 
1392 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1393 	blk_mq_run_hw_queue(hctx, async);
1394 }
1395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1396 
1397 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1398 {
1399 	struct blk_mq_hw_ctx *hctx;
1400 	int i;
1401 
1402 	queue_for_each_hw_ctx(q, hctx, i)
1403 		blk_mq_start_stopped_hw_queue(hctx, async);
1404 }
1405 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1406 
1407 static void blk_mq_run_work_fn(struct work_struct *work)
1408 {
1409 	struct blk_mq_hw_ctx *hctx;
1410 
1411 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1412 
1413 	/*
1414 	 * If we are stopped, don't run the queue. The exception is if
1415 	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1416 	 * the STOPPED bit and run it.
1417 	 */
1418 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1419 		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1420 			return;
1421 
1422 		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1423 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1424 	}
1425 
1426 	__blk_mq_run_hw_queue(hctx);
1427 }
1428 
1429 
1430 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431 {
1432 	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1433 		return;
1434 
1435 	/*
1436 	 * Stop the hw queue, then modify currently delayed work.
1437 	 * This should prevent us from running the queue prematurely.
1438 	 * Mark the queue as auto-clearing STOPPED when it runs.
1439 	 */
1440 	blk_mq_stop_hw_queue(hctx);
1441 	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1442 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1443 					&hctx->run_work,
1444 					msecs_to_jiffies(msecs));
1445 }
1446 EXPORT_SYMBOL(blk_mq_delay_queue);
1447 
1448 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1449 					    struct request *rq,
1450 					    bool at_head)
1451 {
1452 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1453 
1454 	lockdep_assert_held(&ctx->lock);
1455 
1456 	trace_block_rq_insert(hctx->queue, rq);
1457 
1458 	if (at_head)
1459 		list_add(&rq->queuelist, &ctx->rq_list);
1460 	else
1461 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1462 }
1463 
1464 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1465 			     bool at_head)
1466 {
1467 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1468 
1469 	lockdep_assert_held(&ctx->lock);
1470 
1471 	__blk_mq_insert_req_list(hctx, rq, at_head);
1472 	blk_mq_hctx_mark_pending(hctx, ctx);
1473 }
1474 
1475 /*
1476  * Should only be used carefully, when the caller knows we want to
1477  * bypass a potential IO scheduler on the target device.
1478  */
1479 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1480 {
1481 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1482 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1483 
1484 	spin_lock(&hctx->lock);
1485 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1486 	spin_unlock(&hctx->lock);
1487 
1488 	if (run_queue)
1489 		blk_mq_run_hw_queue(hctx, false);
1490 }
1491 
1492 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1493 			    struct list_head *list)
1494 
1495 {
1496 	/*
1497 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1498 	 * offline now
1499 	 */
1500 	spin_lock(&ctx->lock);
1501 	while (!list_empty(list)) {
1502 		struct request *rq;
1503 
1504 		rq = list_first_entry(list, struct request, queuelist);
1505 		BUG_ON(rq->mq_ctx != ctx);
1506 		list_del_init(&rq->queuelist);
1507 		__blk_mq_insert_req_list(hctx, rq, false);
1508 	}
1509 	blk_mq_hctx_mark_pending(hctx, ctx);
1510 	spin_unlock(&ctx->lock);
1511 }
1512 
1513 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1514 {
1515 	struct request *rqa = container_of(a, struct request, queuelist);
1516 	struct request *rqb = container_of(b, struct request, queuelist);
1517 
1518 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1519 		 (rqa->mq_ctx == rqb->mq_ctx &&
1520 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1521 }
1522 
1523 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1524 {
1525 	struct blk_mq_ctx *this_ctx;
1526 	struct request_queue *this_q;
1527 	struct request *rq;
1528 	LIST_HEAD(list);
1529 	LIST_HEAD(ctx_list);
1530 	unsigned int depth;
1531 
1532 	list_splice_init(&plug->mq_list, &list);
1533 
1534 	list_sort(NULL, &list, plug_ctx_cmp);
1535 
1536 	this_q = NULL;
1537 	this_ctx = NULL;
1538 	depth = 0;
1539 
1540 	while (!list_empty(&list)) {
1541 		rq = list_entry_rq(list.next);
1542 		list_del_init(&rq->queuelist);
1543 		BUG_ON(!rq->q);
1544 		if (rq->mq_ctx != this_ctx) {
1545 			if (this_ctx) {
1546 				trace_block_unplug(this_q, depth, from_schedule);
1547 				blk_mq_sched_insert_requests(this_q, this_ctx,
1548 								&ctx_list,
1549 								from_schedule);
1550 			}
1551 
1552 			this_ctx = rq->mq_ctx;
1553 			this_q = rq->q;
1554 			depth = 0;
1555 		}
1556 
1557 		depth++;
1558 		list_add_tail(&rq->queuelist, &ctx_list);
1559 	}
1560 
1561 	/*
1562 	 * If 'this_ctx' is set, we know we have entries to complete
1563 	 * on 'ctx_list'. Do those.
1564 	 */
1565 	if (this_ctx) {
1566 		trace_block_unplug(this_q, depth, from_schedule);
1567 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1568 						from_schedule);
1569 	}
1570 }
1571 
1572 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1573 {
1574 	blk_init_request_from_bio(rq, bio);
1575 
1576 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1577 
1578 	blk_account_io_start(rq, true);
1579 }
1580 
1581 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1582 				   struct blk_mq_ctx *ctx,
1583 				   struct request *rq)
1584 {
1585 	spin_lock(&ctx->lock);
1586 	__blk_mq_insert_request(hctx, rq, false);
1587 	spin_unlock(&ctx->lock);
1588 }
1589 
1590 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1591 {
1592 	if (rq->tag != -1)
1593 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1594 
1595 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1596 }
1597 
1598 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1599 					struct request *rq,
1600 					blk_qc_t *cookie, bool may_sleep)
1601 {
1602 	struct request_queue *q = rq->q;
1603 	struct blk_mq_queue_data bd = {
1604 		.rq = rq,
1605 		.last = true,
1606 	};
1607 	blk_qc_t new_cookie;
1608 	blk_status_t ret;
1609 	bool run_queue = true;
1610 
1611 	/* RCU or SRCU read lock is needed before checking quiesced flag */
1612 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1613 		run_queue = false;
1614 		goto insert;
1615 	}
1616 
1617 	if (q->elevator)
1618 		goto insert;
1619 
1620 	if (!blk_mq_get_driver_tag(rq, NULL, false))
1621 		goto insert;
1622 
1623 	if (!blk_mq_get_dispatch_budget(hctx)) {
1624 		blk_mq_put_driver_tag(rq);
1625 		goto insert;
1626 	}
1627 
1628 	new_cookie = request_to_qc_t(hctx, rq);
1629 
1630 	/*
1631 	 * For OK queue, we are done. For error, kill it. Any other
1632 	 * error (busy), just add it to our list as we previously
1633 	 * would have done
1634 	 */
1635 	ret = q->mq_ops->queue_rq(hctx, &bd);
1636 	switch (ret) {
1637 	case BLK_STS_OK:
1638 		*cookie = new_cookie;
1639 		return;
1640 	case BLK_STS_RESOURCE:
1641 		__blk_mq_requeue_request(rq);
1642 		goto insert;
1643 	default:
1644 		*cookie = BLK_QC_T_NONE;
1645 		blk_mq_end_request(rq, ret);
1646 		return;
1647 	}
1648 
1649 insert:
1650 	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1651 }
1652 
1653 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1654 		struct request *rq, blk_qc_t *cookie)
1655 {
1656 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1657 		rcu_read_lock();
1658 		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1659 		rcu_read_unlock();
1660 	} else {
1661 		unsigned int srcu_idx;
1662 
1663 		might_sleep();
1664 
1665 		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1666 		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1667 		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1668 	}
1669 }
1670 
1671 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1672 {
1673 	const int is_sync = op_is_sync(bio->bi_opf);
1674 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1675 	struct blk_mq_alloc_data data = { .flags = 0 };
1676 	struct request *rq;
1677 	unsigned int request_count = 0;
1678 	struct blk_plug *plug;
1679 	struct request *same_queue_rq = NULL;
1680 	blk_qc_t cookie;
1681 	unsigned int wb_acct;
1682 
1683 	blk_queue_bounce(q, &bio);
1684 
1685 	blk_queue_split(q, &bio);
1686 
1687 	if (!bio_integrity_prep(bio))
1688 		return BLK_QC_T_NONE;
1689 
1690 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1691 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1692 		return BLK_QC_T_NONE;
1693 
1694 	if (blk_mq_sched_bio_merge(q, bio))
1695 		return BLK_QC_T_NONE;
1696 
1697 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1698 
1699 	trace_block_getrq(q, bio, bio->bi_opf);
1700 
1701 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1702 	if (unlikely(!rq)) {
1703 		__wbt_done(q->rq_wb, wb_acct);
1704 		if (bio->bi_opf & REQ_NOWAIT)
1705 			bio_wouldblock_error(bio);
1706 		return BLK_QC_T_NONE;
1707 	}
1708 
1709 	wbt_track(&rq->issue_stat, wb_acct);
1710 
1711 	cookie = request_to_qc_t(data.hctx, rq);
1712 
1713 	plug = current->plug;
1714 	if (unlikely(is_flush_fua)) {
1715 		blk_mq_put_ctx(data.ctx);
1716 		blk_mq_bio_to_request(rq, bio);
1717 
1718 		/* bypass scheduler for flush rq */
1719 		blk_insert_flush(rq);
1720 		blk_mq_run_hw_queue(data.hctx, true);
1721 	} else if (plug && q->nr_hw_queues == 1) {
1722 		struct request *last = NULL;
1723 
1724 		blk_mq_put_ctx(data.ctx);
1725 		blk_mq_bio_to_request(rq, bio);
1726 
1727 		/*
1728 		 * @request_count may become stale because of schedule
1729 		 * out, so check the list again.
1730 		 */
1731 		if (list_empty(&plug->mq_list))
1732 			request_count = 0;
1733 		else if (blk_queue_nomerges(q))
1734 			request_count = blk_plug_queued_count(q);
1735 
1736 		if (!request_count)
1737 			trace_block_plug(q);
1738 		else
1739 			last = list_entry_rq(plug->mq_list.prev);
1740 
1741 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1742 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1743 			blk_flush_plug_list(plug, false);
1744 			trace_block_plug(q);
1745 		}
1746 
1747 		list_add_tail(&rq->queuelist, &plug->mq_list);
1748 	} else if (plug && !blk_queue_nomerges(q)) {
1749 		blk_mq_bio_to_request(rq, bio);
1750 
1751 		/*
1752 		 * We do limited plugging. If the bio can be merged, do that.
1753 		 * Otherwise the existing request in the plug list will be
1754 		 * issued. So the plug list will have one request at most
1755 		 * The plug list might get flushed before this. If that happens,
1756 		 * the plug list is empty, and same_queue_rq is invalid.
1757 		 */
1758 		if (list_empty(&plug->mq_list))
1759 			same_queue_rq = NULL;
1760 		if (same_queue_rq)
1761 			list_del_init(&same_queue_rq->queuelist);
1762 		list_add_tail(&rq->queuelist, &plug->mq_list);
1763 
1764 		blk_mq_put_ctx(data.ctx);
1765 
1766 		if (same_queue_rq) {
1767 			data.hctx = blk_mq_map_queue(q,
1768 					same_queue_rq->mq_ctx->cpu);
1769 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1770 					&cookie);
1771 		}
1772 	} else if (q->nr_hw_queues > 1 && is_sync) {
1773 		blk_mq_put_ctx(data.ctx);
1774 		blk_mq_bio_to_request(rq, bio);
1775 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1776 	} else if (q->elevator) {
1777 		blk_mq_put_ctx(data.ctx);
1778 		blk_mq_bio_to_request(rq, bio);
1779 		blk_mq_sched_insert_request(rq, false, true, true, true);
1780 	} else {
1781 		blk_mq_put_ctx(data.ctx);
1782 		blk_mq_bio_to_request(rq, bio);
1783 		blk_mq_queue_io(data.hctx, data.ctx, rq);
1784 		blk_mq_run_hw_queue(data.hctx, true);
1785 	}
1786 
1787 	return cookie;
1788 }
1789 
1790 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1791 		     unsigned int hctx_idx)
1792 {
1793 	struct page *page;
1794 
1795 	if (tags->rqs && set->ops->exit_request) {
1796 		int i;
1797 
1798 		for (i = 0; i < tags->nr_tags; i++) {
1799 			struct request *rq = tags->static_rqs[i];
1800 
1801 			if (!rq)
1802 				continue;
1803 			set->ops->exit_request(set, rq, hctx_idx);
1804 			tags->static_rqs[i] = NULL;
1805 		}
1806 	}
1807 
1808 	while (!list_empty(&tags->page_list)) {
1809 		page = list_first_entry(&tags->page_list, struct page, lru);
1810 		list_del_init(&page->lru);
1811 		/*
1812 		 * Remove kmemleak object previously allocated in
1813 		 * blk_mq_init_rq_map().
1814 		 */
1815 		kmemleak_free(page_address(page));
1816 		__free_pages(page, page->private);
1817 	}
1818 }
1819 
1820 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1821 {
1822 	kfree(tags->rqs);
1823 	tags->rqs = NULL;
1824 	kfree(tags->static_rqs);
1825 	tags->static_rqs = NULL;
1826 
1827 	blk_mq_free_tags(tags);
1828 }
1829 
1830 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1831 					unsigned int hctx_idx,
1832 					unsigned int nr_tags,
1833 					unsigned int reserved_tags)
1834 {
1835 	struct blk_mq_tags *tags;
1836 	int node;
1837 
1838 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1839 	if (node == NUMA_NO_NODE)
1840 		node = set->numa_node;
1841 
1842 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1843 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1844 	if (!tags)
1845 		return NULL;
1846 
1847 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1848 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1849 				 node);
1850 	if (!tags->rqs) {
1851 		blk_mq_free_tags(tags);
1852 		return NULL;
1853 	}
1854 
1855 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1856 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1857 				 node);
1858 	if (!tags->static_rqs) {
1859 		kfree(tags->rqs);
1860 		blk_mq_free_tags(tags);
1861 		return NULL;
1862 	}
1863 
1864 	return tags;
1865 }
1866 
1867 static size_t order_to_size(unsigned int order)
1868 {
1869 	return (size_t)PAGE_SIZE << order;
1870 }
1871 
1872 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1873 		     unsigned int hctx_idx, unsigned int depth)
1874 {
1875 	unsigned int i, j, entries_per_page, max_order = 4;
1876 	size_t rq_size, left;
1877 	int node;
1878 
1879 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1880 	if (node == NUMA_NO_NODE)
1881 		node = set->numa_node;
1882 
1883 	INIT_LIST_HEAD(&tags->page_list);
1884 
1885 	/*
1886 	 * rq_size is the size of the request plus driver payload, rounded
1887 	 * to the cacheline size
1888 	 */
1889 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1890 				cache_line_size());
1891 	left = rq_size * depth;
1892 
1893 	for (i = 0; i < depth; ) {
1894 		int this_order = max_order;
1895 		struct page *page;
1896 		int to_do;
1897 		void *p;
1898 
1899 		while (this_order && left < order_to_size(this_order - 1))
1900 			this_order--;
1901 
1902 		do {
1903 			page = alloc_pages_node(node,
1904 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1905 				this_order);
1906 			if (page)
1907 				break;
1908 			if (!this_order--)
1909 				break;
1910 			if (order_to_size(this_order) < rq_size)
1911 				break;
1912 		} while (1);
1913 
1914 		if (!page)
1915 			goto fail;
1916 
1917 		page->private = this_order;
1918 		list_add_tail(&page->lru, &tags->page_list);
1919 
1920 		p = page_address(page);
1921 		/*
1922 		 * Allow kmemleak to scan these pages as they contain pointers
1923 		 * to additional allocations like via ops->init_request().
1924 		 */
1925 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1926 		entries_per_page = order_to_size(this_order) / rq_size;
1927 		to_do = min(entries_per_page, depth - i);
1928 		left -= to_do * rq_size;
1929 		for (j = 0; j < to_do; j++) {
1930 			struct request *rq = p;
1931 
1932 			tags->static_rqs[i] = rq;
1933 			if (set->ops->init_request) {
1934 				if (set->ops->init_request(set, rq, hctx_idx,
1935 						node)) {
1936 					tags->static_rqs[i] = NULL;
1937 					goto fail;
1938 				}
1939 			}
1940 
1941 			p += rq_size;
1942 			i++;
1943 		}
1944 	}
1945 	return 0;
1946 
1947 fail:
1948 	blk_mq_free_rqs(set, tags, hctx_idx);
1949 	return -ENOMEM;
1950 }
1951 
1952 /*
1953  * 'cpu' is going away. splice any existing rq_list entries from this
1954  * software queue to the hw queue dispatch list, and ensure that it
1955  * gets run.
1956  */
1957 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1958 {
1959 	struct blk_mq_hw_ctx *hctx;
1960 	struct blk_mq_ctx *ctx;
1961 	LIST_HEAD(tmp);
1962 
1963 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1964 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1965 
1966 	spin_lock(&ctx->lock);
1967 	if (!list_empty(&ctx->rq_list)) {
1968 		list_splice_init(&ctx->rq_list, &tmp);
1969 		blk_mq_hctx_clear_pending(hctx, ctx);
1970 	}
1971 	spin_unlock(&ctx->lock);
1972 
1973 	if (list_empty(&tmp))
1974 		return 0;
1975 
1976 	spin_lock(&hctx->lock);
1977 	list_splice_tail_init(&tmp, &hctx->dispatch);
1978 	spin_unlock(&hctx->lock);
1979 
1980 	blk_mq_run_hw_queue(hctx, true);
1981 	return 0;
1982 }
1983 
1984 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1985 {
1986 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1987 					    &hctx->cpuhp_dead);
1988 }
1989 
1990 /* hctx->ctxs will be freed in queue's release handler */
1991 static void blk_mq_exit_hctx(struct request_queue *q,
1992 		struct blk_mq_tag_set *set,
1993 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1994 {
1995 	blk_mq_debugfs_unregister_hctx(hctx);
1996 
1997 	blk_mq_tag_idle(hctx);
1998 
1999 	if (set->ops->exit_request)
2000 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2001 
2002 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2003 
2004 	if (set->ops->exit_hctx)
2005 		set->ops->exit_hctx(hctx, hctx_idx);
2006 
2007 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2008 		cleanup_srcu_struct(hctx->queue_rq_srcu);
2009 
2010 	blk_mq_remove_cpuhp(hctx);
2011 	blk_free_flush_queue(hctx->fq);
2012 	sbitmap_free(&hctx->ctx_map);
2013 }
2014 
2015 static void blk_mq_exit_hw_queues(struct request_queue *q,
2016 		struct blk_mq_tag_set *set, int nr_queue)
2017 {
2018 	struct blk_mq_hw_ctx *hctx;
2019 	unsigned int i;
2020 
2021 	queue_for_each_hw_ctx(q, hctx, i) {
2022 		if (i == nr_queue)
2023 			break;
2024 		blk_mq_exit_hctx(q, set, hctx, i);
2025 	}
2026 }
2027 
2028 static int blk_mq_init_hctx(struct request_queue *q,
2029 		struct blk_mq_tag_set *set,
2030 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2031 {
2032 	int node;
2033 
2034 	node = hctx->numa_node;
2035 	if (node == NUMA_NO_NODE)
2036 		node = hctx->numa_node = set->numa_node;
2037 
2038 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2039 	spin_lock_init(&hctx->lock);
2040 	INIT_LIST_HEAD(&hctx->dispatch);
2041 	hctx->queue = q;
2042 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2043 
2044 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2045 
2046 	hctx->tags = set->tags[hctx_idx];
2047 
2048 	/*
2049 	 * Allocate space for all possible cpus to avoid allocation at
2050 	 * runtime
2051 	 */
2052 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2053 					GFP_KERNEL, node);
2054 	if (!hctx->ctxs)
2055 		goto unregister_cpu_notifier;
2056 
2057 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2058 			      node))
2059 		goto free_ctxs;
2060 
2061 	hctx->nr_ctx = 0;
2062 
2063 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2064 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2065 
2066 	if (set->ops->init_hctx &&
2067 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2068 		goto free_bitmap;
2069 
2070 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2071 		goto exit_hctx;
2072 
2073 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2074 	if (!hctx->fq)
2075 		goto sched_exit_hctx;
2076 
2077 	if (set->ops->init_request &&
2078 	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2079 				   node))
2080 		goto free_fq;
2081 
2082 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2083 		init_srcu_struct(hctx->queue_rq_srcu);
2084 
2085 	blk_mq_debugfs_register_hctx(q, hctx);
2086 
2087 	return 0;
2088 
2089  free_fq:
2090 	kfree(hctx->fq);
2091  sched_exit_hctx:
2092 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2093  exit_hctx:
2094 	if (set->ops->exit_hctx)
2095 		set->ops->exit_hctx(hctx, hctx_idx);
2096  free_bitmap:
2097 	sbitmap_free(&hctx->ctx_map);
2098  free_ctxs:
2099 	kfree(hctx->ctxs);
2100  unregister_cpu_notifier:
2101 	blk_mq_remove_cpuhp(hctx);
2102 	return -1;
2103 }
2104 
2105 static void blk_mq_init_cpu_queues(struct request_queue *q,
2106 				   unsigned int nr_hw_queues)
2107 {
2108 	unsigned int i;
2109 
2110 	for_each_possible_cpu(i) {
2111 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2112 		struct blk_mq_hw_ctx *hctx;
2113 
2114 		__ctx->cpu = i;
2115 		spin_lock_init(&__ctx->lock);
2116 		INIT_LIST_HEAD(&__ctx->rq_list);
2117 		__ctx->queue = q;
2118 
2119 		/* If the cpu isn't present, the cpu is mapped to first hctx */
2120 		if (!cpu_present(i))
2121 			continue;
2122 
2123 		hctx = blk_mq_map_queue(q, i);
2124 
2125 		/*
2126 		 * Set local node, IFF we have more than one hw queue. If
2127 		 * not, we remain on the home node of the device
2128 		 */
2129 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2130 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2131 	}
2132 }
2133 
2134 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2135 {
2136 	int ret = 0;
2137 
2138 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2139 					set->queue_depth, set->reserved_tags);
2140 	if (!set->tags[hctx_idx])
2141 		return false;
2142 
2143 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2144 				set->queue_depth);
2145 	if (!ret)
2146 		return true;
2147 
2148 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2149 	set->tags[hctx_idx] = NULL;
2150 	return false;
2151 }
2152 
2153 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2154 					 unsigned int hctx_idx)
2155 {
2156 	if (set->tags[hctx_idx]) {
2157 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2158 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2159 		set->tags[hctx_idx] = NULL;
2160 	}
2161 }
2162 
2163 static void blk_mq_map_swqueue(struct request_queue *q)
2164 {
2165 	unsigned int i, hctx_idx;
2166 	struct blk_mq_hw_ctx *hctx;
2167 	struct blk_mq_ctx *ctx;
2168 	struct blk_mq_tag_set *set = q->tag_set;
2169 
2170 	/*
2171 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2172 	 */
2173 	mutex_lock(&q->sysfs_lock);
2174 
2175 	queue_for_each_hw_ctx(q, hctx, i) {
2176 		cpumask_clear(hctx->cpumask);
2177 		hctx->nr_ctx = 0;
2178 	}
2179 
2180 	/*
2181 	 * Map software to hardware queues.
2182 	 *
2183 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2184 	 */
2185 	for_each_present_cpu(i) {
2186 		hctx_idx = q->mq_map[i];
2187 		/* unmapped hw queue can be remapped after CPU topo changed */
2188 		if (!set->tags[hctx_idx] &&
2189 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2190 			/*
2191 			 * If tags initialization fail for some hctx,
2192 			 * that hctx won't be brought online.  In this
2193 			 * case, remap the current ctx to hctx[0] which
2194 			 * is guaranteed to always have tags allocated
2195 			 */
2196 			q->mq_map[i] = 0;
2197 		}
2198 
2199 		ctx = per_cpu_ptr(q->queue_ctx, i);
2200 		hctx = blk_mq_map_queue(q, i);
2201 
2202 		cpumask_set_cpu(i, hctx->cpumask);
2203 		ctx->index_hw = hctx->nr_ctx;
2204 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2205 	}
2206 
2207 	mutex_unlock(&q->sysfs_lock);
2208 
2209 	queue_for_each_hw_ctx(q, hctx, i) {
2210 		/*
2211 		 * If no software queues are mapped to this hardware queue,
2212 		 * disable it and free the request entries.
2213 		 */
2214 		if (!hctx->nr_ctx) {
2215 			/* Never unmap queue 0.  We need it as a
2216 			 * fallback in case of a new remap fails
2217 			 * allocation
2218 			 */
2219 			if (i && set->tags[i])
2220 				blk_mq_free_map_and_requests(set, i);
2221 
2222 			hctx->tags = NULL;
2223 			continue;
2224 		}
2225 
2226 		hctx->tags = set->tags[i];
2227 		WARN_ON(!hctx->tags);
2228 
2229 		/*
2230 		 * Set the map size to the number of mapped software queues.
2231 		 * This is more accurate and more efficient than looping
2232 		 * over all possibly mapped software queues.
2233 		 */
2234 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2235 
2236 		/*
2237 		 * Initialize batch roundrobin counts
2238 		 */
2239 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2240 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2241 	}
2242 }
2243 
2244 /*
2245  * Caller needs to ensure that we're either frozen/quiesced, or that
2246  * the queue isn't live yet.
2247  */
2248 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2249 {
2250 	struct blk_mq_hw_ctx *hctx;
2251 	int i;
2252 
2253 	queue_for_each_hw_ctx(q, hctx, i) {
2254 		if (shared) {
2255 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2256 				atomic_inc(&q->shared_hctx_restart);
2257 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2258 		} else {
2259 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2260 				atomic_dec(&q->shared_hctx_restart);
2261 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2262 		}
2263 	}
2264 }
2265 
2266 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2267 					bool shared)
2268 {
2269 	struct request_queue *q;
2270 
2271 	lockdep_assert_held(&set->tag_list_lock);
2272 
2273 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2274 		blk_mq_freeze_queue(q);
2275 		queue_set_hctx_shared(q, shared);
2276 		blk_mq_unfreeze_queue(q);
2277 	}
2278 }
2279 
2280 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2281 {
2282 	struct blk_mq_tag_set *set = q->tag_set;
2283 
2284 	mutex_lock(&set->tag_list_lock);
2285 	list_del_rcu(&q->tag_set_list);
2286 	INIT_LIST_HEAD(&q->tag_set_list);
2287 	if (list_is_singular(&set->tag_list)) {
2288 		/* just transitioned to unshared */
2289 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2290 		/* update existing queue */
2291 		blk_mq_update_tag_set_depth(set, false);
2292 	}
2293 	mutex_unlock(&set->tag_list_lock);
2294 
2295 	synchronize_rcu();
2296 }
2297 
2298 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2299 				     struct request_queue *q)
2300 {
2301 	q->tag_set = set;
2302 
2303 	mutex_lock(&set->tag_list_lock);
2304 
2305 	/*
2306 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2307 	 */
2308 	if (!list_empty(&set->tag_list) &&
2309 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2310 		set->flags |= BLK_MQ_F_TAG_SHARED;
2311 		/* update existing queue */
2312 		blk_mq_update_tag_set_depth(set, true);
2313 	}
2314 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2315 		queue_set_hctx_shared(q, true);
2316 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2317 
2318 	mutex_unlock(&set->tag_list_lock);
2319 }
2320 
2321 /*
2322  * It is the actual release handler for mq, but we do it from
2323  * request queue's release handler for avoiding use-after-free
2324  * and headache because q->mq_kobj shouldn't have been introduced,
2325  * but we can't group ctx/kctx kobj without it.
2326  */
2327 void blk_mq_release(struct request_queue *q)
2328 {
2329 	struct blk_mq_hw_ctx *hctx;
2330 	unsigned int i;
2331 
2332 	/* hctx kobj stays in hctx */
2333 	queue_for_each_hw_ctx(q, hctx, i) {
2334 		if (!hctx)
2335 			continue;
2336 		kobject_put(&hctx->kobj);
2337 	}
2338 
2339 	q->mq_map = NULL;
2340 
2341 	kfree(q->queue_hw_ctx);
2342 
2343 	/*
2344 	 * release .mq_kobj and sw queue's kobject now because
2345 	 * both share lifetime with request queue.
2346 	 */
2347 	blk_mq_sysfs_deinit(q);
2348 
2349 	free_percpu(q->queue_ctx);
2350 }
2351 
2352 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2353 {
2354 	struct request_queue *uninit_q, *q;
2355 
2356 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2357 	if (!uninit_q)
2358 		return ERR_PTR(-ENOMEM);
2359 
2360 	q = blk_mq_init_allocated_queue(set, uninit_q);
2361 	if (IS_ERR(q))
2362 		blk_cleanup_queue(uninit_q);
2363 
2364 	return q;
2365 }
2366 EXPORT_SYMBOL(blk_mq_init_queue);
2367 
2368 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2369 {
2370 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2371 
2372 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2373 			   __alignof__(struct blk_mq_hw_ctx)) !=
2374 		     sizeof(struct blk_mq_hw_ctx));
2375 
2376 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2377 		hw_ctx_size += sizeof(struct srcu_struct);
2378 
2379 	return hw_ctx_size;
2380 }
2381 
2382 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2383 						struct request_queue *q)
2384 {
2385 	int i, j;
2386 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2387 
2388 	blk_mq_sysfs_unregister(q);
2389 	for (i = 0; i < set->nr_hw_queues; i++) {
2390 		int node;
2391 
2392 		if (hctxs[i])
2393 			continue;
2394 
2395 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2396 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2397 					GFP_KERNEL, node);
2398 		if (!hctxs[i])
2399 			break;
2400 
2401 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2402 						node)) {
2403 			kfree(hctxs[i]);
2404 			hctxs[i] = NULL;
2405 			break;
2406 		}
2407 
2408 		atomic_set(&hctxs[i]->nr_active, 0);
2409 		hctxs[i]->numa_node = node;
2410 		hctxs[i]->queue_num = i;
2411 
2412 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2413 			free_cpumask_var(hctxs[i]->cpumask);
2414 			kfree(hctxs[i]);
2415 			hctxs[i] = NULL;
2416 			break;
2417 		}
2418 		blk_mq_hctx_kobj_init(hctxs[i]);
2419 	}
2420 	for (j = i; j < q->nr_hw_queues; j++) {
2421 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2422 
2423 		if (hctx) {
2424 			if (hctx->tags)
2425 				blk_mq_free_map_and_requests(set, j);
2426 			blk_mq_exit_hctx(q, set, hctx, j);
2427 			kobject_put(&hctx->kobj);
2428 			hctxs[j] = NULL;
2429 
2430 		}
2431 	}
2432 	q->nr_hw_queues = i;
2433 	blk_mq_sysfs_register(q);
2434 }
2435 
2436 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2437 						  struct request_queue *q)
2438 {
2439 	/* mark the queue as mq asap */
2440 	q->mq_ops = set->ops;
2441 
2442 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2443 					     blk_mq_poll_stats_bkt,
2444 					     BLK_MQ_POLL_STATS_BKTS, q);
2445 	if (!q->poll_cb)
2446 		goto err_exit;
2447 
2448 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2449 	if (!q->queue_ctx)
2450 		goto err_exit;
2451 
2452 	/* init q->mq_kobj and sw queues' kobjects */
2453 	blk_mq_sysfs_init(q);
2454 
2455 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2456 						GFP_KERNEL, set->numa_node);
2457 	if (!q->queue_hw_ctx)
2458 		goto err_percpu;
2459 
2460 	q->mq_map = set->mq_map;
2461 
2462 	blk_mq_realloc_hw_ctxs(set, q);
2463 	if (!q->nr_hw_queues)
2464 		goto err_hctxs;
2465 
2466 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2467 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2468 
2469 	q->nr_queues = nr_cpu_ids;
2470 
2471 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2472 
2473 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2474 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2475 
2476 	q->sg_reserved_size = INT_MAX;
2477 
2478 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2479 	INIT_LIST_HEAD(&q->requeue_list);
2480 	spin_lock_init(&q->requeue_lock);
2481 
2482 	blk_queue_make_request(q, blk_mq_make_request);
2483 	if (q->mq_ops->poll)
2484 		q->poll_fn = blk_mq_poll;
2485 
2486 	/*
2487 	 * Do this after blk_queue_make_request() overrides it...
2488 	 */
2489 	q->nr_requests = set->queue_depth;
2490 
2491 	/*
2492 	 * Default to classic polling
2493 	 */
2494 	q->poll_nsec = -1;
2495 
2496 	if (set->ops->complete)
2497 		blk_queue_softirq_done(q, set->ops->complete);
2498 
2499 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2500 	blk_mq_add_queue_tag_set(set, q);
2501 	blk_mq_map_swqueue(q);
2502 
2503 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2504 		int ret;
2505 
2506 		ret = blk_mq_sched_init(q);
2507 		if (ret)
2508 			return ERR_PTR(ret);
2509 	}
2510 
2511 	return q;
2512 
2513 err_hctxs:
2514 	kfree(q->queue_hw_ctx);
2515 err_percpu:
2516 	free_percpu(q->queue_ctx);
2517 err_exit:
2518 	q->mq_ops = NULL;
2519 	return ERR_PTR(-ENOMEM);
2520 }
2521 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2522 
2523 void blk_mq_free_queue(struct request_queue *q)
2524 {
2525 	struct blk_mq_tag_set	*set = q->tag_set;
2526 
2527 	blk_mq_del_queue_tag_set(q);
2528 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2529 }
2530 
2531 /* Basically redo blk_mq_init_queue with queue frozen */
2532 static void blk_mq_queue_reinit(struct request_queue *q)
2533 {
2534 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2535 
2536 	blk_mq_debugfs_unregister_hctxs(q);
2537 	blk_mq_sysfs_unregister(q);
2538 
2539 	/*
2540 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2541 	 * we should change hctx numa_node according to the new topology (this
2542 	 * involves freeing and re-allocating memory, worth doing?)
2543 	 */
2544 	blk_mq_map_swqueue(q);
2545 
2546 	blk_mq_sysfs_register(q);
2547 	blk_mq_debugfs_register_hctxs(q);
2548 }
2549 
2550 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2551 {
2552 	int i;
2553 
2554 	for (i = 0; i < set->nr_hw_queues; i++)
2555 		if (!__blk_mq_alloc_rq_map(set, i))
2556 			goto out_unwind;
2557 
2558 	return 0;
2559 
2560 out_unwind:
2561 	while (--i >= 0)
2562 		blk_mq_free_rq_map(set->tags[i]);
2563 
2564 	return -ENOMEM;
2565 }
2566 
2567 /*
2568  * Allocate the request maps associated with this tag_set. Note that this
2569  * may reduce the depth asked for, if memory is tight. set->queue_depth
2570  * will be updated to reflect the allocated depth.
2571  */
2572 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2573 {
2574 	unsigned int depth;
2575 	int err;
2576 
2577 	depth = set->queue_depth;
2578 	do {
2579 		err = __blk_mq_alloc_rq_maps(set);
2580 		if (!err)
2581 			break;
2582 
2583 		set->queue_depth >>= 1;
2584 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2585 			err = -ENOMEM;
2586 			break;
2587 		}
2588 	} while (set->queue_depth);
2589 
2590 	if (!set->queue_depth || err) {
2591 		pr_err("blk-mq: failed to allocate request map\n");
2592 		return -ENOMEM;
2593 	}
2594 
2595 	if (depth != set->queue_depth)
2596 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2597 						depth, set->queue_depth);
2598 
2599 	return 0;
2600 }
2601 
2602 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2603 {
2604 	if (set->ops->map_queues)
2605 		return set->ops->map_queues(set);
2606 	else
2607 		return blk_mq_map_queues(set);
2608 }
2609 
2610 /*
2611  * Alloc a tag set to be associated with one or more request queues.
2612  * May fail with EINVAL for various error conditions. May adjust the
2613  * requested depth down, if if it too large. In that case, the set
2614  * value will be stored in set->queue_depth.
2615  */
2616 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2617 {
2618 	int ret;
2619 
2620 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2621 
2622 	if (!set->nr_hw_queues)
2623 		return -EINVAL;
2624 	if (!set->queue_depth)
2625 		return -EINVAL;
2626 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2627 		return -EINVAL;
2628 
2629 	if (!set->ops->queue_rq)
2630 		return -EINVAL;
2631 
2632 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2633 		return -EINVAL;
2634 
2635 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2636 		pr_info("blk-mq: reduced tag depth to %u\n",
2637 			BLK_MQ_MAX_DEPTH);
2638 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2639 	}
2640 
2641 	/*
2642 	 * If a crashdump is active, then we are potentially in a very
2643 	 * memory constrained environment. Limit us to 1 queue and
2644 	 * 64 tags to prevent using too much memory.
2645 	 */
2646 	if (is_kdump_kernel()) {
2647 		set->nr_hw_queues = 1;
2648 		set->queue_depth = min(64U, set->queue_depth);
2649 	}
2650 	/*
2651 	 * There is no use for more h/w queues than cpus.
2652 	 */
2653 	if (set->nr_hw_queues > nr_cpu_ids)
2654 		set->nr_hw_queues = nr_cpu_ids;
2655 
2656 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2657 				 GFP_KERNEL, set->numa_node);
2658 	if (!set->tags)
2659 		return -ENOMEM;
2660 
2661 	ret = -ENOMEM;
2662 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2663 			GFP_KERNEL, set->numa_node);
2664 	if (!set->mq_map)
2665 		goto out_free_tags;
2666 
2667 	ret = blk_mq_update_queue_map(set);
2668 	if (ret)
2669 		goto out_free_mq_map;
2670 
2671 	ret = blk_mq_alloc_rq_maps(set);
2672 	if (ret)
2673 		goto out_free_mq_map;
2674 
2675 	mutex_init(&set->tag_list_lock);
2676 	INIT_LIST_HEAD(&set->tag_list);
2677 
2678 	return 0;
2679 
2680 out_free_mq_map:
2681 	kfree(set->mq_map);
2682 	set->mq_map = NULL;
2683 out_free_tags:
2684 	kfree(set->tags);
2685 	set->tags = NULL;
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2689 
2690 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2691 {
2692 	int i;
2693 
2694 	for (i = 0; i < nr_cpu_ids; i++)
2695 		blk_mq_free_map_and_requests(set, i);
2696 
2697 	kfree(set->mq_map);
2698 	set->mq_map = NULL;
2699 
2700 	kfree(set->tags);
2701 	set->tags = NULL;
2702 }
2703 EXPORT_SYMBOL(blk_mq_free_tag_set);
2704 
2705 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2706 {
2707 	struct blk_mq_tag_set *set = q->tag_set;
2708 	struct blk_mq_hw_ctx *hctx;
2709 	int i, ret;
2710 
2711 	if (!set)
2712 		return -EINVAL;
2713 
2714 	blk_mq_freeze_queue(q);
2715 
2716 	ret = 0;
2717 	queue_for_each_hw_ctx(q, hctx, i) {
2718 		if (!hctx->tags)
2719 			continue;
2720 		/*
2721 		 * If we're using an MQ scheduler, just update the scheduler
2722 		 * queue depth. This is similar to what the old code would do.
2723 		 */
2724 		if (!hctx->sched_tags) {
2725 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2726 							false);
2727 		} else {
2728 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2729 							nr, true);
2730 		}
2731 		if (ret)
2732 			break;
2733 	}
2734 
2735 	if (!ret)
2736 		q->nr_requests = nr;
2737 
2738 	blk_mq_unfreeze_queue(q);
2739 
2740 	return ret;
2741 }
2742 
2743 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2744 							int nr_hw_queues)
2745 {
2746 	struct request_queue *q;
2747 
2748 	lockdep_assert_held(&set->tag_list_lock);
2749 
2750 	if (nr_hw_queues > nr_cpu_ids)
2751 		nr_hw_queues = nr_cpu_ids;
2752 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2753 		return;
2754 
2755 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2756 		blk_mq_freeze_queue(q);
2757 
2758 	set->nr_hw_queues = nr_hw_queues;
2759 	blk_mq_update_queue_map(set);
2760 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2761 		blk_mq_realloc_hw_ctxs(set, q);
2762 		blk_mq_queue_reinit(q);
2763 	}
2764 
2765 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2766 		blk_mq_unfreeze_queue(q);
2767 }
2768 
2769 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2770 {
2771 	mutex_lock(&set->tag_list_lock);
2772 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2773 	mutex_unlock(&set->tag_list_lock);
2774 }
2775 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2776 
2777 /* Enable polling stats and return whether they were already enabled. */
2778 static bool blk_poll_stats_enable(struct request_queue *q)
2779 {
2780 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2781 	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2782 		return true;
2783 	blk_stat_add_callback(q, q->poll_cb);
2784 	return false;
2785 }
2786 
2787 static void blk_mq_poll_stats_start(struct request_queue *q)
2788 {
2789 	/*
2790 	 * We don't arm the callback if polling stats are not enabled or the
2791 	 * callback is already active.
2792 	 */
2793 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2794 	    blk_stat_is_active(q->poll_cb))
2795 		return;
2796 
2797 	blk_stat_activate_msecs(q->poll_cb, 100);
2798 }
2799 
2800 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2801 {
2802 	struct request_queue *q = cb->data;
2803 	int bucket;
2804 
2805 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2806 		if (cb->stat[bucket].nr_samples)
2807 			q->poll_stat[bucket] = cb->stat[bucket];
2808 	}
2809 }
2810 
2811 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2812 				       struct blk_mq_hw_ctx *hctx,
2813 				       struct request *rq)
2814 {
2815 	unsigned long ret = 0;
2816 	int bucket;
2817 
2818 	/*
2819 	 * If stats collection isn't on, don't sleep but turn it on for
2820 	 * future users
2821 	 */
2822 	if (!blk_poll_stats_enable(q))
2823 		return 0;
2824 
2825 	/*
2826 	 * As an optimistic guess, use half of the mean service time
2827 	 * for this type of request. We can (and should) make this smarter.
2828 	 * For instance, if the completion latencies are tight, we can
2829 	 * get closer than just half the mean. This is especially
2830 	 * important on devices where the completion latencies are longer
2831 	 * than ~10 usec. We do use the stats for the relevant IO size
2832 	 * if available which does lead to better estimates.
2833 	 */
2834 	bucket = blk_mq_poll_stats_bkt(rq);
2835 	if (bucket < 0)
2836 		return ret;
2837 
2838 	if (q->poll_stat[bucket].nr_samples)
2839 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2840 
2841 	return ret;
2842 }
2843 
2844 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2845 				     struct blk_mq_hw_ctx *hctx,
2846 				     struct request *rq)
2847 {
2848 	struct hrtimer_sleeper hs;
2849 	enum hrtimer_mode mode;
2850 	unsigned int nsecs;
2851 	ktime_t kt;
2852 
2853 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2854 		return false;
2855 
2856 	/*
2857 	 * poll_nsec can be:
2858 	 *
2859 	 * -1:	don't ever hybrid sleep
2860 	 *  0:	use half of prev avg
2861 	 * >0:	use this specific value
2862 	 */
2863 	if (q->poll_nsec == -1)
2864 		return false;
2865 	else if (q->poll_nsec > 0)
2866 		nsecs = q->poll_nsec;
2867 	else
2868 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2869 
2870 	if (!nsecs)
2871 		return false;
2872 
2873 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2874 
2875 	/*
2876 	 * This will be replaced with the stats tracking code, using
2877 	 * 'avg_completion_time / 2' as the pre-sleep target.
2878 	 */
2879 	kt = nsecs;
2880 
2881 	mode = HRTIMER_MODE_REL;
2882 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2883 	hrtimer_set_expires(&hs.timer, kt);
2884 
2885 	hrtimer_init_sleeper(&hs, current);
2886 	do {
2887 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2888 			break;
2889 		set_current_state(TASK_UNINTERRUPTIBLE);
2890 		hrtimer_start_expires(&hs.timer, mode);
2891 		if (hs.task)
2892 			io_schedule();
2893 		hrtimer_cancel(&hs.timer);
2894 		mode = HRTIMER_MODE_ABS;
2895 	} while (hs.task && !signal_pending(current));
2896 
2897 	__set_current_state(TASK_RUNNING);
2898 	destroy_hrtimer_on_stack(&hs.timer);
2899 	return true;
2900 }
2901 
2902 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2903 {
2904 	struct request_queue *q = hctx->queue;
2905 	long state;
2906 
2907 	/*
2908 	 * If we sleep, have the caller restart the poll loop to reset
2909 	 * the state. Like for the other success return cases, the
2910 	 * caller is responsible for checking if the IO completed. If
2911 	 * the IO isn't complete, we'll get called again and will go
2912 	 * straight to the busy poll loop.
2913 	 */
2914 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2915 		return true;
2916 
2917 	hctx->poll_considered++;
2918 
2919 	state = current->state;
2920 	while (!need_resched()) {
2921 		int ret;
2922 
2923 		hctx->poll_invoked++;
2924 
2925 		ret = q->mq_ops->poll(hctx, rq->tag);
2926 		if (ret > 0) {
2927 			hctx->poll_success++;
2928 			set_current_state(TASK_RUNNING);
2929 			return true;
2930 		}
2931 
2932 		if (signal_pending_state(state, current))
2933 			set_current_state(TASK_RUNNING);
2934 
2935 		if (current->state == TASK_RUNNING)
2936 			return true;
2937 		if (ret < 0)
2938 			break;
2939 		cpu_relax();
2940 	}
2941 
2942 	return false;
2943 }
2944 
2945 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2946 {
2947 	struct blk_mq_hw_ctx *hctx;
2948 	struct request *rq;
2949 
2950 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2951 		return false;
2952 
2953 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2954 	if (!blk_qc_t_is_internal(cookie))
2955 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2956 	else {
2957 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2958 		/*
2959 		 * With scheduling, if the request has completed, we'll
2960 		 * get a NULL return here, as we clear the sched tag when
2961 		 * that happens. The request still remains valid, like always,
2962 		 * so we should be safe with just the NULL check.
2963 		 */
2964 		if (!rq)
2965 			return false;
2966 	}
2967 
2968 	return __blk_mq_poll(hctx, rq);
2969 }
2970 
2971 static int __init blk_mq_init(void)
2972 {
2973 	/*
2974 	 * See comment in block/blk.h rq_atomic_flags enum
2975 	 */
2976 	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
2977 			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));
2978 
2979 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2980 				blk_mq_hctx_notify_dead);
2981 	return 0;
2982 }
2983 subsys_initcall(blk_mq_init);
2984