1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static void blk_mq_poll_stats_start(struct request_queue *q); 45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 46 47 static int blk_mq_poll_stats_bkt(const struct request *rq) 48 { 49 int ddir, sectors, bucket; 50 51 ddir = rq_data_dir(rq); 52 sectors = blk_rq_stats_sectors(rq); 53 54 bucket = ddir + 2 * ilog2(sectors); 55 56 if (bucket < 0) 57 return -1; 58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 60 61 return bucket; 62 } 63 64 /* 65 * Check if any of the ctx, dispatch list or elevator 66 * have pending work in this hardware queue. 67 */ 68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 69 { 70 return !list_empty_careful(&hctx->dispatch) || 71 sbitmap_any_bit_set(&hctx->ctx_map) || 72 blk_mq_sched_has_work(hctx); 73 } 74 75 /* 76 * Mark this ctx as having pending work in this hardware queue 77 */ 78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 84 sbitmap_set_bit(&hctx->ctx_map, bit); 85 } 86 87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 88 struct blk_mq_ctx *ctx) 89 { 90 const int bit = ctx->index_hw[hctx->type]; 91 92 sbitmap_clear_bit(&hctx->ctx_map, bit); 93 } 94 95 struct mq_inflight { 96 struct hd_struct *part; 97 unsigned int inflight[2]; 98 }; 99 100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 101 struct request *rq, void *priv, 102 bool reserved) 103 { 104 struct mq_inflight *mi = priv; 105 106 if (rq->part == mi->part) 107 mi->inflight[rq_data_dir(rq)]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 113 { 114 struct mq_inflight mi = { .part = part }; 115 116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 117 118 return mi.inflight[0] + mi.inflight[1]; 119 } 120 121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 122 unsigned int inflight[2]) 123 { 124 struct mq_inflight mi = { .part = part }; 125 126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 127 inflight[0] = mi.inflight[0]; 128 inflight[1] = mi.inflight[1]; 129 } 130 131 void blk_freeze_queue_start(struct request_queue *q) 132 { 133 mutex_lock(&q->mq_freeze_lock); 134 if (++q->mq_freeze_depth == 1) { 135 percpu_ref_kill(&q->q_usage_counter); 136 mutex_unlock(&q->mq_freeze_lock); 137 if (queue_is_mq(q)) 138 blk_mq_run_hw_queues(q, false); 139 } else { 140 mutex_unlock(&q->mq_freeze_lock); 141 } 142 } 143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 144 145 void blk_mq_freeze_queue_wait(struct request_queue *q) 146 { 147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 150 151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 152 unsigned long timeout) 153 { 154 return wait_event_timeout(q->mq_freeze_wq, 155 percpu_ref_is_zero(&q->q_usage_counter), 156 timeout); 157 } 158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 159 160 /* 161 * Guarantee no request is in use, so we can change any data structure of 162 * the queue afterward. 163 */ 164 void blk_freeze_queue(struct request_queue *q) 165 { 166 /* 167 * In the !blk_mq case we are only calling this to kill the 168 * q_usage_counter, otherwise this increases the freeze depth 169 * and waits for it to return to zero. For this reason there is 170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 171 * exported to drivers as the only user for unfreeze is blk_mq. 172 */ 173 blk_freeze_queue_start(q); 174 blk_mq_freeze_queue_wait(q); 175 } 176 177 void blk_mq_freeze_queue(struct request_queue *q) 178 { 179 /* 180 * ...just an alias to keep freeze and unfreeze actions balanced 181 * in the blk_mq_* namespace 182 */ 183 blk_freeze_queue(q); 184 } 185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 186 187 void blk_mq_unfreeze_queue(struct request_queue *q) 188 { 189 mutex_lock(&q->mq_freeze_lock); 190 q->mq_freeze_depth--; 191 WARN_ON_ONCE(q->mq_freeze_depth < 0); 192 if (!q->mq_freeze_depth) { 193 percpu_ref_resurrect(&q->q_usage_counter); 194 wake_up_all(&q->mq_freeze_wq); 195 } 196 mutex_unlock(&q->mq_freeze_lock); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 209 210 /** 211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 212 * @q: request queue. 213 * 214 * Note: this function does not prevent that the struct request end_io() 215 * callback function is invoked. Once this function is returned, we make 216 * sure no dispatch can happen until the queue is unquiesced via 217 * blk_mq_unquiesce_queue(). 218 */ 219 void blk_mq_quiesce_queue(struct request_queue *q) 220 { 221 struct blk_mq_hw_ctx *hctx; 222 unsigned int i; 223 bool rcu = false; 224 225 blk_mq_quiesce_queue_nowait(q); 226 227 queue_for_each_hw_ctx(q, hctx, i) { 228 if (hctx->flags & BLK_MQ_F_BLOCKING) 229 synchronize_srcu(hctx->srcu); 230 else 231 rcu = true; 232 } 233 if (rcu) 234 synchronize_rcu(); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 237 238 /* 239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 240 * @q: request queue. 241 * 242 * This function recovers queue into the state before quiescing 243 * which is done by blk_mq_quiesce_queue. 244 */ 245 void blk_mq_unquiesce_queue(struct request_queue *q) 246 { 247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 248 249 /* dispatch requests which are inserted during quiescing */ 250 blk_mq_run_hw_queues(q, true); 251 } 252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 253 254 void blk_mq_wake_waiters(struct request_queue *q) 255 { 256 struct blk_mq_hw_ctx *hctx; 257 unsigned int i; 258 259 queue_for_each_hw_ctx(q, hctx, i) 260 if (blk_mq_hw_queue_mapped(hctx)) 261 blk_mq_tag_wakeup_all(hctx->tags, true); 262 } 263 264 /* 265 * Only need start/end time stamping if we have iostat or 266 * blk stats enabled, or using an IO scheduler. 267 */ 268 static inline bool blk_mq_need_time_stamp(struct request *rq) 269 { 270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 271 } 272 273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 274 unsigned int tag, u64 alloc_time_ns) 275 { 276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 277 struct request *rq = tags->static_rqs[tag]; 278 req_flags_t rq_flags = 0; 279 280 if (data->flags & BLK_MQ_REQ_INTERNAL) { 281 rq->tag = BLK_MQ_NO_TAG; 282 rq->internal_tag = tag; 283 } else { 284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 285 rq_flags = RQF_MQ_INFLIGHT; 286 atomic_inc(&data->hctx->nr_active); 287 } 288 rq->tag = tag; 289 rq->internal_tag = BLK_MQ_NO_TAG; 290 data->hctx->tags->rqs[rq->tag] = rq; 291 } 292 293 /* csd/requeue_work/fifo_time is initialized before use */ 294 rq->q = data->q; 295 rq->mq_ctx = data->ctx; 296 rq->mq_hctx = data->hctx; 297 rq->rq_flags = rq_flags; 298 rq->cmd_flags = data->cmd_flags; 299 if (data->flags & BLK_MQ_REQ_PREEMPT) 300 rq->rq_flags |= RQF_PREEMPT; 301 if (blk_queue_io_stat(data->q)) 302 rq->rq_flags |= RQF_IO_STAT; 303 INIT_LIST_HEAD(&rq->queuelist); 304 INIT_HLIST_NODE(&rq->hash); 305 RB_CLEAR_NODE(&rq->rb_node); 306 rq->rq_disk = NULL; 307 rq->part = NULL; 308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 309 rq->alloc_time_ns = alloc_time_ns; 310 #endif 311 if (blk_mq_need_time_stamp(rq)) 312 rq->start_time_ns = ktime_get_ns(); 313 else 314 rq->start_time_ns = 0; 315 rq->io_start_time_ns = 0; 316 rq->stats_sectors = 0; 317 rq->nr_phys_segments = 0; 318 #if defined(CONFIG_BLK_DEV_INTEGRITY) 319 rq->nr_integrity_segments = 0; 320 #endif 321 blk_crypto_rq_set_defaults(rq); 322 /* tag was already set */ 323 WRITE_ONCE(rq->deadline, 0); 324 325 rq->timeout = 0; 326 327 rq->end_io = NULL; 328 rq->end_io_data = NULL; 329 330 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 331 refcount_set(&rq->ref, 1); 332 333 if (!op_is_flush(data->cmd_flags)) { 334 struct elevator_queue *e = data->q->elevator; 335 336 rq->elv.icq = NULL; 337 if (e && e->type->ops.prepare_request) { 338 if (e->type->icq_cache) 339 blk_mq_sched_assign_ioc(rq); 340 341 e->type->ops.prepare_request(rq); 342 rq->rq_flags |= RQF_ELVPRIV; 343 } 344 } 345 346 data->hctx->queued++; 347 return rq; 348 } 349 350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 351 { 352 struct request_queue *q = data->q; 353 struct elevator_queue *e = q->elevator; 354 u64 alloc_time_ns = 0; 355 unsigned int tag; 356 357 /* alloc_time includes depth and tag waits */ 358 if (blk_queue_rq_alloc_time(q)) 359 alloc_time_ns = ktime_get_ns(); 360 361 if (data->cmd_flags & REQ_NOWAIT) 362 data->flags |= BLK_MQ_REQ_NOWAIT; 363 364 if (e) { 365 data->flags |= BLK_MQ_REQ_INTERNAL; 366 367 /* 368 * Flush requests are special and go directly to the 369 * dispatch list. Don't include reserved tags in the 370 * limiting, as it isn't useful. 371 */ 372 if (!op_is_flush(data->cmd_flags) && 373 e->type->ops.limit_depth && 374 !(data->flags & BLK_MQ_REQ_RESERVED)) 375 e->type->ops.limit_depth(data->cmd_flags, data); 376 } 377 378 retry: 379 data->ctx = blk_mq_get_ctx(q); 380 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 381 if (!(data->flags & BLK_MQ_REQ_INTERNAL)) 382 blk_mq_tag_busy(data->hctx); 383 384 /* 385 * Waiting allocations only fail because of an inactive hctx. In that 386 * case just retry the hctx assignment and tag allocation as CPU hotplug 387 * should have migrated us to an online CPU by now. 388 */ 389 tag = blk_mq_get_tag(data); 390 if (tag == BLK_MQ_NO_TAG) { 391 if (data->flags & BLK_MQ_REQ_NOWAIT) 392 return NULL; 393 394 /* 395 * Give up the CPU and sleep for a random short time to ensure 396 * that thread using a realtime scheduling class are migrated 397 * off the the CPU, and thus off the hctx that is going away. 398 */ 399 msleep(3); 400 goto retry; 401 } 402 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 403 } 404 405 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 406 blk_mq_req_flags_t flags) 407 { 408 struct blk_mq_alloc_data data = { 409 .q = q, 410 .flags = flags, 411 .cmd_flags = op, 412 }; 413 struct request *rq; 414 int ret; 415 416 ret = blk_queue_enter(q, flags); 417 if (ret) 418 return ERR_PTR(ret); 419 420 rq = __blk_mq_alloc_request(&data); 421 if (!rq) 422 goto out_queue_exit; 423 rq->__data_len = 0; 424 rq->__sector = (sector_t) -1; 425 rq->bio = rq->biotail = NULL; 426 return rq; 427 out_queue_exit: 428 blk_queue_exit(q); 429 return ERR_PTR(-EWOULDBLOCK); 430 } 431 EXPORT_SYMBOL(blk_mq_alloc_request); 432 433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 434 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 435 { 436 struct blk_mq_alloc_data data = { 437 .q = q, 438 .flags = flags, 439 .cmd_flags = op, 440 }; 441 u64 alloc_time_ns = 0; 442 unsigned int cpu; 443 unsigned int tag; 444 int ret; 445 446 /* alloc_time includes depth and tag waits */ 447 if (blk_queue_rq_alloc_time(q)) 448 alloc_time_ns = ktime_get_ns(); 449 450 /* 451 * If the tag allocator sleeps we could get an allocation for a 452 * different hardware context. No need to complicate the low level 453 * allocator for this for the rare use case of a command tied to 454 * a specific queue. 455 */ 456 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 457 return ERR_PTR(-EINVAL); 458 459 if (hctx_idx >= q->nr_hw_queues) 460 return ERR_PTR(-EIO); 461 462 ret = blk_queue_enter(q, flags); 463 if (ret) 464 return ERR_PTR(ret); 465 466 /* 467 * Check if the hardware context is actually mapped to anything. 468 * If not tell the caller that it should skip this queue. 469 */ 470 ret = -EXDEV; 471 data.hctx = q->queue_hw_ctx[hctx_idx]; 472 if (!blk_mq_hw_queue_mapped(data.hctx)) 473 goto out_queue_exit; 474 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 475 data.ctx = __blk_mq_get_ctx(q, cpu); 476 477 if (q->elevator) 478 data.flags |= BLK_MQ_REQ_INTERNAL; 479 else 480 blk_mq_tag_busy(data.hctx); 481 482 ret = -EWOULDBLOCK; 483 tag = blk_mq_get_tag(&data); 484 if (tag == BLK_MQ_NO_TAG) 485 goto out_queue_exit; 486 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 487 488 out_queue_exit: 489 blk_queue_exit(q); 490 return ERR_PTR(ret); 491 } 492 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 493 494 static void __blk_mq_free_request(struct request *rq) 495 { 496 struct request_queue *q = rq->q; 497 struct blk_mq_ctx *ctx = rq->mq_ctx; 498 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 499 const int sched_tag = rq->internal_tag; 500 501 blk_crypto_free_request(rq); 502 blk_pm_mark_last_busy(rq); 503 rq->mq_hctx = NULL; 504 if (rq->tag != BLK_MQ_NO_TAG) 505 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 506 if (sched_tag != BLK_MQ_NO_TAG) 507 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 508 blk_mq_sched_restart(hctx); 509 blk_queue_exit(q); 510 } 511 512 void blk_mq_free_request(struct request *rq) 513 { 514 struct request_queue *q = rq->q; 515 struct elevator_queue *e = q->elevator; 516 struct blk_mq_ctx *ctx = rq->mq_ctx; 517 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 518 519 if (rq->rq_flags & RQF_ELVPRIV) { 520 if (e && e->type->ops.finish_request) 521 e->type->ops.finish_request(rq); 522 if (rq->elv.icq) { 523 put_io_context(rq->elv.icq->ioc); 524 rq->elv.icq = NULL; 525 } 526 } 527 528 ctx->rq_completed[rq_is_sync(rq)]++; 529 if (rq->rq_flags & RQF_MQ_INFLIGHT) 530 atomic_dec(&hctx->nr_active); 531 532 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 533 laptop_io_completion(q->backing_dev_info); 534 535 rq_qos_done(q, rq); 536 537 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 538 if (refcount_dec_and_test(&rq->ref)) 539 __blk_mq_free_request(rq); 540 } 541 EXPORT_SYMBOL_GPL(blk_mq_free_request); 542 543 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 544 { 545 u64 now = 0; 546 547 if (blk_mq_need_time_stamp(rq)) 548 now = ktime_get_ns(); 549 550 if (rq->rq_flags & RQF_STATS) { 551 blk_mq_poll_stats_start(rq->q); 552 blk_stat_add(rq, now); 553 } 554 555 if (rq->internal_tag != BLK_MQ_NO_TAG) 556 blk_mq_sched_completed_request(rq, now); 557 558 blk_account_io_done(rq, now); 559 560 if (rq->end_io) { 561 rq_qos_done(rq->q, rq); 562 rq->end_io(rq, error); 563 } else { 564 blk_mq_free_request(rq); 565 } 566 } 567 EXPORT_SYMBOL(__blk_mq_end_request); 568 569 void blk_mq_end_request(struct request *rq, blk_status_t error) 570 { 571 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 572 BUG(); 573 __blk_mq_end_request(rq, error); 574 } 575 EXPORT_SYMBOL(blk_mq_end_request); 576 577 static void __blk_mq_complete_request_remote(void *data) 578 { 579 struct request *rq = data; 580 struct request_queue *q = rq->q; 581 582 q->mq_ops->complete(rq); 583 } 584 585 /** 586 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error 587 * injection that could drop the completion. 588 * @rq: Request to be force completed 589 * 590 * Drivers should use blk_mq_complete_request() to complete requests in their 591 * normal IO path. For timeout error recovery, drivers may call this forced 592 * completion routine after they've reclaimed timed out requests to bypass 593 * potentially subsequent fake timeouts. 594 */ 595 void blk_mq_force_complete_rq(struct request *rq) 596 { 597 struct blk_mq_ctx *ctx = rq->mq_ctx; 598 struct request_queue *q = rq->q; 599 bool shared = false; 600 int cpu; 601 602 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 603 /* 604 * Most of single queue controllers, there is only one irq vector 605 * for handling IO completion, and the only irq's affinity is set 606 * as all possible CPUs. On most of ARCHs, this affinity means the 607 * irq is handled on one specific CPU. 608 * 609 * So complete IO reqeust in softirq context in case of single queue 610 * for not degrading IO performance by irqsoff latency. 611 */ 612 if (q->nr_hw_queues == 1) { 613 __blk_complete_request(rq); 614 return; 615 } 616 617 /* 618 * For a polled request, always complete locallly, it's pointless 619 * to redirect the completion. 620 */ 621 if ((rq->cmd_flags & REQ_HIPRI) || 622 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 623 q->mq_ops->complete(rq); 624 return; 625 } 626 627 cpu = get_cpu(); 628 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 629 shared = cpus_share_cache(cpu, ctx->cpu); 630 631 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 632 rq->csd.func = __blk_mq_complete_request_remote; 633 rq->csd.info = rq; 634 rq->csd.flags = 0; 635 smp_call_function_single_async(ctx->cpu, &rq->csd); 636 } else { 637 q->mq_ops->complete(rq); 638 } 639 put_cpu(); 640 } 641 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq); 642 643 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 644 __releases(hctx->srcu) 645 { 646 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 647 rcu_read_unlock(); 648 else 649 srcu_read_unlock(hctx->srcu, srcu_idx); 650 } 651 652 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 653 __acquires(hctx->srcu) 654 { 655 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 656 /* shut up gcc false positive */ 657 *srcu_idx = 0; 658 rcu_read_lock(); 659 } else 660 *srcu_idx = srcu_read_lock(hctx->srcu); 661 } 662 663 /** 664 * blk_mq_complete_request - end I/O on a request 665 * @rq: the request being processed 666 * 667 * Description: 668 * Ends all I/O on a request. It does not handle partial completions. 669 * The actual completion happens out-of-order, through a IPI handler. 670 **/ 671 bool blk_mq_complete_request(struct request *rq) 672 { 673 if (unlikely(blk_should_fake_timeout(rq->q))) 674 return false; 675 blk_mq_force_complete_rq(rq); 676 return true; 677 } 678 EXPORT_SYMBOL(blk_mq_complete_request); 679 680 /** 681 * blk_mq_start_request - Start processing a request 682 * @rq: Pointer to request to be started 683 * 684 * Function used by device drivers to notify the block layer that a request 685 * is going to be processed now, so blk layer can do proper initializations 686 * such as starting the timeout timer. 687 */ 688 void blk_mq_start_request(struct request *rq) 689 { 690 struct request_queue *q = rq->q; 691 692 trace_block_rq_issue(q, rq); 693 694 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 695 rq->io_start_time_ns = ktime_get_ns(); 696 rq->stats_sectors = blk_rq_sectors(rq); 697 rq->rq_flags |= RQF_STATS; 698 rq_qos_issue(q, rq); 699 } 700 701 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 702 703 blk_add_timer(rq); 704 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 705 706 #ifdef CONFIG_BLK_DEV_INTEGRITY 707 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 708 q->integrity.profile->prepare_fn(rq); 709 #endif 710 } 711 EXPORT_SYMBOL(blk_mq_start_request); 712 713 static void __blk_mq_requeue_request(struct request *rq) 714 { 715 struct request_queue *q = rq->q; 716 717 blk_mq_put_driver_tag(rq); 718 719 trace_block_rq_requeue(q, rq); 720 rq_qos_requeue(q, rq); 721 722 if (blk_mq_request_started(rq)) { 723 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 724 rq->rq_flags &= ~RQF_TIMED_OUT; 725 } 726 } 727 728 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 729 { 730 __blk_mq_requeue_request(rq); 731 732 /* this request will be re-inserted to io scheduler queue */ 733 blk_mq_sched_requeue_request(rq); 734 735 BUG_ON(!list_empty(&rq->queuelist)); 736 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 737 } 738 EXPORT_SYMBOL(blk_mq_requeue_request); 739 740 static void blk_mq_requeue_work(struct work_struct *work) 741 { 742 struct request_queue *q = 743 container_of(work, struct request_queue, requeue_work.work); 744 LIST_HEAD(rq_list); 745 struct request *rq, *next; 746 747 spin_lock_irq(&q->requeue_lock); 748 list_splice_init(&q->requeue_list, &rq_list); 749 spin_unlock_irq(&q->requeue_lock); 750 751 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 752 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 753 continue; 754 755 rq->rq_flags &= ~RQF_SOFTBARRIER; 756 list_del_init(&rq->queuelist); 757 /* 758 * If RQF_DONTPREP, rq has contained some driver specific 759 * data, so insert it to hctx dispatch list to avoid any 760 * merge. 761 */ 762 if (rq->rq_flags & RQF_DONTPREP) 763 blk_mq_request_bypass_insert(rq, false, false); 764 else 765 blk_mq_sched_insert_request(rq, true, false, false); 766 } 767 768 while (!list_empty(&rq_list)) { 769 rq = list_entry(rq_list.next, struct request, queuelist); 770 list_del_init(&rq->queuelist); 771 blk_mq_sched_insert_request(rq, false, false, false); 772 } 773 774 blk_mq_run_hw_queues(q, false); 775 } 776 777 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 778 bool kick_requeue_list) 779 { 780 struct request_queue *q = rq->q; 781 unsigned long flags; 782 783 /* 784 * We abuse this flag that is otherwise used by the I/O scheduler to 785 * request head insertion from the workqueue. 786 */ 787 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 788 789 spin_lock_irqsave(&q->requeue_lock, flags); 790 if (at_head) { 791 rq->rq_flags |= RQF_SOFTBARRIER; 792 list_add(&rq->queuelist, &q->requeue_list); 793 } else { 794 list_add_tail(&rq->queuelist, &q->requeue_list); 795 } 796 spin_unlock_irqrestore(&q->requeue_lock, flags); 797 798 if (kick_requeue_list) 799 blk_mq_kick_requeue_list(q); 800 } 801 802 void blk_mq_kick_requeue_list(struct request_queue *q) 803 { 804 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 805 } 806 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 807 808 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 809 unsigned long msecs) 810 { 811 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 812 msecs_to_jiffies(msecs)); 813 } 814 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 815 816 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 817 { 818 if (tag < tags->nr_tags) { 819 prefetch(tags->rqs[tag]); 820 return tags->rqs[tag]; 821 } 822 823 return NULL; 824 } 825 EXPORT_SYMBOL(blk_mq_tag_to_rq); 826 827 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 828 void *priv, bool reserved) 829 { 830 /* 831 * If we find a request that is inflight and the queue matches, 832 * we know the queue is busy. Return false to stop the iteration. 833 */ 834 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 835 bool *busy = priv; 836 837 *busy = true; 838 return false; 839 } 840 841 return true; 842 } 843 844 bool blk_mq_queue_inflight(struct request_queue *q) 845 { 846 bool busy = false; 847 848 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 849 return busy; 850 } 851 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 852 853 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 854 { 855 req->rq_flags |= RQF_TIMED_OUT; 856 if (req->q->mq_ops->timeout) { 857 enum blk_eh_timer_return ret; 858 859 ret = req->q->mq_ops->timeout(req, reserved); 860 if (ret == BLK_EH_DONE) 861 return; 862 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 863 } 864 865 blk_add_timer(req); 866 } 867 868 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 869 { 870 unsigned long deadline; 871 872 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 873 return false; 874 if (rq->rq_flags & RQF_TIMED_OUT) 875 return false; 876 877 deadline = READ_ONCE(rq->deadline); 878 if (time_after_eq(jiffies, deadline)) 879 return true; 880 881 if (*next == 0) 882 *next = deadline; 883 else if (time_after(*next, deadline)) 884 *next = deadline; 885 return false; 886 } 887 888 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 889 struct request *rq, void *priv, bool reserved) 890 { 891 unsigned long *next = priv; 892 893 /* 894 * Just do a quick check if it is expired before locking the request in 895 * so we're not unnecessarilly synchronizing across CPUs. 896 */ 897 if (!blk_mq_req_expired(rq, next)) 898 return true; 899 900 /* 901 * We have reason to believe the request may be expired. Take a 902 * reference on the request to lock this request lifetime into its 903 * currently allocated context to prevent it from being reallocated in 904 * the event the completion by-passes this timeout handler. 905 * 906 * If the reference was already released, then the driver beat the 907 * timeout handler to posting a natural completion. 908 */ 909 if (!refcount_inc_not_zero(&rq->ref)) 910 return true; 911 912 /* 913 * The request is now locked and cannot be reallocated underneath the 914 * timeout handler's processing. Re-verify this exact request is truly 915 * expired; if it is not expired, then the request was completed and 916 * reallocated as a new request. 917 */ 918 if (blk_mq_req_expired(rq, next)) 919 blk_mq_rq_timed_out(rq, reserved); 920 921 if (is_flush_rq(rq, hctx)) 922 rq->end_io(rq, 0); 923 else if (refcount_dec_and_test(&rq->ref)) 924 __blk_mq_free_request(rq); 925 926 return true; 927 } 928 929 static void blk_mq_timeout_work(struct work_struct *work) 930 { 931 struct request_queue *q = 932 container_of(work, struct request_queue, timeout_work); 933 unsigned long next = 0; 934 struct blk_mq_hw_ctx *hctx; 935 int i; 936 937 /* A deadlock might occur if a request is stuck requiring a 938 * timeout at the same time a queue freeze is waiting 939 * completion, since the timeout code would not be able to 940 * acquire the queue reference here. 941 * 942 * That's why we don't use blk_queue_enter here; instead, we use 943 * percpu_ref_tryget directly, because we need to be able to 944 * obtain a reference even in the short window between the queue 945 * starting to freeze, by dropping the first reference in 946 * blk_freeze_queue_start, and the moment the last request is 947 * consumed, marked by the instant q_usage_counter reaches 948 * zero. 949 */ 950 if (!percpu_ref_tryget(&q->q_usage_counter)) 951 return; 952 953 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 954 955 if (next != 0) { 956 mod_timer(&q->timeout, next); 957 } else { 958 /* 959 * Request timeouts are handled as a forward rolling timer. If 960 * we end up here it means that no requests are pending and 961 * also that no request has been pending for a while. Mark 962 * each hctx as idle. 963 */ 964 queue_for_each_hw_ctx(q, hctx, i) { 965 /* the hctx may be unmapped, so check it here */ 966 if (blk_mq_hw_queue_mapped(hctx)) 967 blk_mq_tag_idle(hctx); 968 } 969 } 970 blk_queue_exit(q); 971 } 972 973 struct flush_busy_ctx_data { 974 struct blk_mq_hw_ctx *hctx; 975 struct list_head *list; 976 }; 977 978 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 979 { 980 struct flush_busy_ctx_data *flush_data = data; 981 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 982 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 983 enum hctx_type type = hctx->type; 984 985 spin_lock(&ctx->lock); 986 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 987 sbitmap_clear_bit(sb, bitnr); 988 spin_unlock(&ctx->lock); 989 return true; 990 } 991 992 /* 993 * Process software queues that have been marked busy, splicing them 994 * to the for-dispatch 995 */ 996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 997 { 998 struct flush_busy_ctx_data data = { 999 .hctx = hctx, 1000 .list = list, 1001 }; 1002 1003 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1004 } 1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1006 1007 struct dispatch_rq_data { 1008 struct blk_mq_hw_ctx *hctx; 1009 struct request *rq; 1010 }; 1011 1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1013 void *data) 1014 { 1015 struct dispatch_rq_data *dispatch_data = data; 1016 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1017 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1018 enum hctx_type type = hctx->type; 1019 1020 spin_lock(&ctx->lock); 1021 if (!list_empty(&ctx->rq_lists[type])) { 1022 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1023 list_del_init(&dispatch_data->rq->queuelist); 1024 if (list_empty(&ctx->rq_lists[type])) 1025 sbitmap_clear_bit(sb, bitnr); 1026 } 1027 spin_unlock(&ctx->lock); 1028 1029 return !dispatch_data->rq; 1030 } 1031 1032 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1033 struct blk_mq_ctx *start) 1034 { 1035 unsigned off = start ? start->index_hw[hctx->type] : 0; 1036 struct dispatch_rq_data data = { 1037 .hctx = hctx, 1038 .rq = NULL, 1039 }; 1040 1041 __sbitmap_for_each_set(&hctx->ctx_map, off, 1042 dispatch_rq_from_ctx, &data); 1043 1044 return data.rq; 1045 } 1046 1047 static inline unsigned int queued_to_index(unsigned int queued) 1048 { 1049 if (!queued) 1050 return 0; 1051 1052 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1053 } 1054 1055 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1056 int flags, void *key) 1057 { 1058 struct blk_mq_hw_ctx *hctx; 1059 1060 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1061 1062 spin_lock(&hctx->dispatch_wait_lock); 1063 if (!list_empty(&wait->entry)) { 1064 struct sbitmap_queue *sbq; 1065 1066 list_del_init(&wait->entry); 1067 sbq = &hctx->tags->bitmap_tags; 1068 atomic_dec(&sbq->ws_active); 1069 } 1070 spin_unlock(&hctx->dispatch_wait_lock); 1071 1072 blk_mq_run_hw_queue(hctx, true); 1073 return 1; 1074 } 1075 1076 /* 1077 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1078 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1079 * restart. For both cases, take care to check the condition again after 1080 * marking us as waiting. 1081 */ 1082 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1083 struct request *rq) 1084 { 1085 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1086 struct wait_queue_head *wq; 1087 wait_queue_entry_t *wait; 1088 bool ret; 1089 1090 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1091 blk_mq_sched_mark_restart_hctx(hctx); 1092 1093 /* 1094 * It's possible that a tag was freed in the window between the 1095 * allocation failure and adding the hardware queue to the wait 1096 * queue. 1097 * 1098 * Don't clear RESTART here, someone else could have set it. 1099 * At most this will cost an extra queue run. 1100 */ 1101 return blk_mq_get_driver_tag(rq); 1102 } 1103 1104 wait = &hctx->dispatch_wait; 1105 if (!list_empty_careful(&wait->entry)) 1106 return false; 1107 1108 wq = &bt_wait_ptr(sbq, hctx)->wait; 1109 1110 spin_lock_irq(&wq->lock); 1111 spin_lock(&hctx->dispatch_wait_lock); 1112 if (!list_empty(&wait->entry)) { 1113 spin_unlock(&hctx->dispatch_wait_lock); 1114 spin_unlock_irq(&wq->lock); 1115 return false; 1116 } 1117 1118 atomic_inc(&sbq->ws_active); 1119 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1120 __add_wait_queue(wq, wait); 1121 1122 /* 1123 * It's possible that a tag was freed in the window between the 1124 * allocation failure and adding the hardware queue to the wait 1125 * queue. 1126 */ 1127 ret = blk_mq_get_driver_tag(rq); 1128 if (!ret) { 1129 spin_unlock(&hctx->dispatch_wait_lock); 1130 spin_unlock_irq(&wq->lock); 1131 return false; 1132 } 1133 1134 /* 1135 * We got a tag, remove ourselves from the wait queue to ensure 1136 * someone else gets the wakeup. 1137 */ 1138 list_del_init(&wait->entry); 1139 atomic_dec(&sbq->ws_active); 1140 spin_unlock(&hctx->dispatch_wait_lock); 1141 spin_unlock_irq(&wq->lock); 1142 1143 return true; 1144 } 1145 1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1148 /* 1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1150 * - EWMA is one simple way to compute running average value 1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1152 * - take 4 as factor for avoiding to get too small(0) result, and this 1153 * factor doesn't matter because EWMA decreases exponentially 1154 */ 1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1156 { 1157 unsigned int ewma; 1158 1159 if (hctx->queue->elevator) 1160 return; 1161 1162 ewma = hctx->dispatch_busy; 1163 1164 if (!ewma && !busy) 1165 return; 1166 1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1168 if (busy) 1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1171 1172 hctx->dispatch_busy = ewma; 1173 } 1174 1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1176 1177 static void blk_mq_handle_dev_resource(struct request *rq, 1178 struct list_head *list) 1179 { 1180 struct request *next = 1181 list_first_entry_or_null(list, struct request, queuelist); 1182 1183 /* 1184 * If an I/O scheduler has been configured and we got a driver tag for 1185 * the next request already, free it. 1186 */ 1187 if (next) 1188 blk_mq_put_driver_tag(next); 1189 1190 list_add(&rq->queuelist, list); 1191 __blk_mq_requeue_request(rq); 1192 } 1193 1194 static void blk_mq_handle_zone_resource(struct request *rq, 1195 struct list_head *zone_list) 1196 { 1197 /* 1198 * If we end up here it is because we cannot dispatch a request to a 1199 * specific zone due to LLD level zone-write locking or other zone 1200 * related resource not being available. In this case, set the request 1201 * aside in zone_list for retrying it later. 1202 */ 1203 list_add(&rq->queuelist, zone_list); 1204 __blk_mq_requeue_request(rq); 1205 } 1206 1207 /* 1208 * Returns true if we did some work AND can potentially do more. 1209 */ 1210 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1211 bool got_budget) 1212 { 1213 struct blk_mq_hw_ctx *hctx; 1214 struct request *rq, *nxt; 1215 bool no_tag = false; 1216 int errors, queued; 1217 blk_status_t ret = BLK_STS_OK; 1218 bool no_budget_avail = false; 1219 LIST_HEAD(zone_list); 1220 1221 if (list_empty(list)) 1222 return false; 1223 1224 WARN_ON(!list_is_singular(list) && got_budget); 1225 1226 /* 1227 * Now process all the entries, sending them to the driver. 1228 */ 1229 errors = queued = 0; 1230 do { 1231 struct blk_mq_queue_data bd; 1232 1233 rq = list_first_entry(list, struct request, queuelist); 1234 1235 hctx = rq->mq_hctx; 1236 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1237 blk_mq_put_driver_tag(rq); 1238 no_budget_avail = true; 1239 break; 1240 } 1241 1242 if (!blk_mq_get_driver_tag(rq)) { 1243 /* 1244 * The initial allocation attempt failed, so we need to 1245 * rerun the hardware queue when a tag is freed. The 1246 * waitqueue takes care of that. If the queue is run 1247 * before we add this entry back on the dispatch list, 1248 * we'll re-run it below. 1249 */ 1250 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1251 blk_mq_put_dispatch_budget(hctx); 1252 /* 1253 * For non-shared tags, the RESTART check 1254 * will suffice. 1255 */ 1256 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1257 no_tag = true; 1258 break; 1259 } 1260 } 1261 1262 list_del_init(&rq->queuelist); 1263 1264 bd.rq = rq; 1265 1266 /* 1267 * Flag last if we have no more requests, or if we have more 1268 * but can't assign a driver tag to it. 1269 */ 1270 if (list_empty(list)) 1271 bd.last = true; 1272 else { 1273 nxt = list_first_entry(list, struct request, queuelist); 1274 bd.last = !blk_mq_get_driver_tag(nxt); 1275 } 1276 1277 ret = q->mq_ops->queue_rq(hctx, &bd); 1278 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1279 blk_mq_handle_dev_resource(rq, list); 1280 break; 1281 } else if (ret == BLK_STS_ZONE_RESOURCE) { 1282 /* 1283 * Move the request to zone_list and keep going through 1284 * the dispatch list to find more requests the drive can 1285 * accept. 1286 */ 1287 blk_mq_handle_zone_resource(rq, &zone_list); 1288 if (list_empty(list)) 1289 break; 1290 continue; 1291 } 1292 1293 if (unlikely(ret != BLK_STS_OK)) { 1294 errors++; 1295 blk_mq_end_request(rq, BLK_STS_IOERR); 1296 continue; 1297 } 1298 1299 queued++; 1300 } while (!list_empty(list)); 1301 1302 if (!list_empty(&zone_list)) 1303 list_splice_tail_init(&zone_list, list); 1304 1305 hctx->dispatched[queued_to_index(queued)]++; 1306 1307 /* 1308 * Any items that need requeuing? Stuff them into hctx->dispatch, 1309 * that is where we will continue on next queue run. 1310 */ 1311 if (!list_empty(list)) { 1312 bool needs_restart; 1313 1314 /* 1315 * If we didn't flush the entire list, we could have told 1316 * the driver there was more coming, but that turned out to 1317 * be a lie. 1318 */ 1319 if (q->mq_ops->commit_rqs && queued) 1320 q->mq_ops->commit_rqs(hctx); 1321 1322 spin_lock(&hctx->lock); 1323 list_splice_tail_init(list, &hctx->dispatch); 1324 spin_unlock(&hctx->lock); 1325 1326 /* 1327 * If SCHED_RESTART was set by the caller of this function and 1328 * it is no longer set that means that it was cleared by another 1329 * thread and hence that a queue rerun is needed. 1330 * 1331 * If 'no_tag' is set, that means that we failed getting 1332 * a driver tag with an I/O scheduler attached. If our dispatch 1333 * waitqueue is no longer active, ensure that we run the queue 1334 * AFTER adding our entries back to the list. 1335 * 1336 * If no I/O scheduler has been configured it is possible that 1337 * the hardware queue got stopped and restarted before requests 1338 * were pushed back onto the dispatch list. Rerun the queue to 1339 * avoid starvation. Notes: 1340 * - blk_mq_run_hw_queue() checks whether or not a queue has 1341 * been stopped before rerunning a queue. 1342 * - Some but not all block drivers stop a queue before 1343 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1344 * and dm-rq. 1345 * 1346 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1347 * bit is set, run queue after a delay to avoid IO stalls 1348 * that could otherwise occur if the queue is idle. We'll do 1349 * similar if we couldn't get budget and SCHED_RESTART is set. 1350 */ 1351 needs_restart = blk_mq_sched_needs_restart(hctx); 1352 if (!needs_restart || 1353 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1354 blk_mq_run_hw_queue(hctx, true); 1355 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1356 no_budget_avail)) 1357 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1358 1359 blk_mq_update_dispatch_busy(hctx, true); 1360 return false; 1361 } else 1362 blk_mq_update_dispatch_busy(hctx, false); 1363 1364 /* 1365 * If the host/device is unable to accept more work, inform the 1366 * caller of that. 1367 */ 1368 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1369 return false; 1370 1371 return (queued + errors) != 0; 1372 } 1373 1374 /** 1375 * __blk_mq_run_hw_queue - Run a hardware queue. 1376 * @hctx: Pointer to the hardware queue to run. 1377 * 1378 * Send pending requests to the hardware. 1379 */ 1380 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1381 { 1382 int srcu_idx; 1383 1384 /* 1385 * We should be running this queue from one of the CPUs that 1386 * are mapped to it. 1387 * 1388 * There are at least two related races now between setting 1389 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1390 * __blk_mq_run_hw_queue(): 1391 * 1392 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1393 * but later it becomes online, then this warning is harmless 1394 * at all 1395 * 1396 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1397 * but later it becomes offline, then the warning can't be 1398 * triggered, and we depend on blk-mq timeout handler to 1399 * handle dispatched requests to this hctx 1400 */ 1401 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1402 cpu_online(hctx->next_cpu)) { 1403 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1404 raw_smp_processor_id(), 1405 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1406 dump_stack(); 1407 } 1408 1409 /* 1410 * We can't run the queue inline with ints disabled. Ensure that 1411 * we catch bad users of this early. 1412 */ 1413 WARN_ON_ONCE(in_interrupt()); 1414 1415 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1416 1417 hctx_lock(hctx, &srcu_idx); 1418 blk_mq_sched_dispatch_requests(hctx); 1419 hctx_unlock(hctx, srcu_idx); 1420 } 1421 1422 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1423 { 1424 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1425 1426 if (cpu >= nr_cpu_ids) 1427 cpu = cpumask_first(hctx->cpumask); 1428 return cpu; 1429 } 1430 1431 /* 1432 * It'd be great if the workqueue API had a way to pass 1433 * in a mask and had some smarts for more clever placement. 1434 * For now we just round-robin here, switching for every 1435 * BLK_MQ_CPU_WORK_BATCH queued items. 1436 */ 1437 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1438 { 1439 bool tried = false; 1440 int next_cpu = hctx->next_cpu; 1441 1442 if (hctx->queue->nr_hw_queues == 1) 1443 return WORK_CPU_UNBOUND; 1444 1445 if (--hctx->next_cpu_batch <= 0) { 1446 select_cpu: 1447 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1448 cpu_online_mask); 1449 if (next_cpu >= nr_cpu_ids) 1450 next_cpu = blk_mq_first_mapped_cpu(hctx); 1451 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1452 } 1453 1454 /* 1455 * Do unbound schedule if we can't find a online CPU for this hctx, 1456 * and it should only happen in the path of handling CPU DEAD. 1457 */ 1458 if (!cpu_online(next_cpu)) { 1459 if (!tried) { 1460 tried = true; 1461 goto select_cpu; 1462 } 1463 1464 /* 1465 * Make sure to re-select CPU next time once after CPUs 1466 * in hctx->cpumask become online again. 1467 */ 1468 hctx->next_cpu = next_cpu; 1469 hctx->next_cpu_batch = 1; 1470 return WORK_CPU_UNBOUND; 1471 } 1472 1473 hctx->next_cpu = next_cpu; 1474 return next_cpu; 1475 } 1476 1477 /** 1478 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1479 * @hctx: Pointer to the hardware queue to run. 1480 * @async: If we want to run the queue asynchronously. 1481 * @msecs: Microseconds of delay to wait before running the queue. 1482 * 1483 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1484 * with a delay of @msecs. 1485 */ 1486 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1487 unsigned long msecs) 1488 { 1489 if (unlikely(blk_mq_hctx_stopped(hctx))) 1490 return; 1491 1492 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1493 int cpu = get_cpu(); 1494 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1495 __blk_mq_run_hw_queue(hctx); 1496 put_cpu(); 1497 return; 1498 } 1499 1500 put_cpu(); 1501 } 1502 1503 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1504 msecs_to_jiffies(msecs)); 1505 } 1506 1507 /** 1508 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1509 * @hctx: Pointer to the hardware queue to run. 1510 * @msecs: Microseconds of delay to wait before running the queue. 1511 * 1512 * Run a hardware queue asynchronously with a delay of @msecs. 1513 */ 1514 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1515 { 1516 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1517 } 1518 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1519 1520 /** 1521 * blk_mq_run_hw_queue - Start to run a hardware queue. 1522 * @hctx: Pointer to the hardware queue to run. 1523 * @async: If we want to run the queue asynchronously. 1524 * 1525 * Check if the request queue is not in a quiesced state and if there are 1526 * pending requests to be sent. If this is true, run the queue to send requests 1527 * to hardware. 1528 */ 1529 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1530 { 1531 int srcu_idx; 1532 bool need_run; 1533 1534 /* 1535 * When queue is quiesced, we may be switching io scheduler, or 1536 * updating nr_hw_queues, or other things, and we can't run queue 1537 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1538 * 1539 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1540 * quiesced. 1541 */ 1542 hctx_lock(hctx, &srcu_idx); 1543 need_run = !blk_queue_quiesced(hctx->queue) && 1544 blk_mq_hctx_has_pending(hctx); 1545 hctx_unlock(hctx, srcu_idx); 1546 1547 if (need_run) 1548 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1549 } 1550 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1551 1552 /** 1553 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1554 * @q: Pointer to the request queue to run. 1555 * @async: If we want to run the queue asynchronously. 1556 */ 1557 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1558 { 1559 struct blk_mq_hw_ctx *hctx; 1560 int i; 1561 1562 queue_for_each_hw_ctx(q, hctx, i) { 1563 if (blk_mq_hctx_stopped(hctx)) 1564 continue; 1565 1566 blk_mq_run_hw_queue(hctx, async); 1567 } 1568 } 1569 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1570 1571 /** 1572 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1573 * @q: Pointer to the request queue to run. 1574 * @msecs: Microseconds of delay to wait before running the queues. 1575 */ 1576 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1577 { 1578 struct blk_mq_hw_ctx *hctx; 1579 int i; 1580 1581 queue_for_each_hw_ctx(q, hctx, i) { 1582 if (blk_mq_hctx_stopped(hctx)) 1583 continue; 1584 1585 blk_mq_delay_run_hw_queue(hctx, msecs); 1586 } 1587 } 1588 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1589 1590 /** 1591 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1592 * @q: request queue. 1593 * 1594 * The caller is responsible for serializing this function against 1595 * blk_mq_{start,stop}_hw_queue(). 1596 */ 1597 bool blk_mq_queue_stopped(struct request_queue *q) 1598 { 1599 struct blk_mq_hw_ctx *hctx; 1600 int i; 1601 1602 queue_for_each_hw_ctx(q, hctx, i) 1603 if (blk_mq_hctx_stopped(hctx)) 1604 return true; 1605 1606 return false; 1607 } 1608 EXPORT_SYMBOL(blk_mq_queue_stopped); 1609 1610 /* 1611 * This function is often used for pausing .queue_rq() by driver when 1612 * there isn't enough resource or some conditions aren't satisfied, and 1613 * BLK_STS_RESOURCE is usually returned. 1614 * 1615 * We do not guarantee that dispatch can be drained or blocked 1616 * after blk_mq_stop_hw_queue() returns. Please use 1617 * blk_mq_quiesce_queue() for that requirement. 1618 */ 1619 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1620 { 1621 cancel_delayed_work(&hctx->run_work); 1622 1623 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1624 } 1625 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1626 1627 /* 1628 * This function is often used for pausing .queue_rq() by driver when 1629 * there isn't enough resource or some conditions aren't satisfied, and 1630 * BLK_STS_RESOURCE is usually returned. 1631 * 1632 * We do not guarantee that dispatch can be drained or blocked 1633 * after blk_mq_stop_hw_queues() returns. Please use 1634 * blk_mq_quiesce_queue() for that requirement. 1635 */ 1636 void blk_mq_stop_hw_queues(struct request_queue *q) 1637 { 1638 struct blk_mq_hw_ctx *hctx; 1639 int i; 1640 1641 queue_for_each_hw_ctx(q, hctx, i) 1642 blk_mq_stop_hw_queue(hctx); 1643 } 1644 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1645 1646 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1647 { 1648 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1649 1650 blk_mq_run_hw_queue(hctx, false); 1651 } 1652 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1653 1654 void blk_mq_start_hw_queues(struct request_queue *q) 1655 { 1656 struct blk_mq_hw_ctx *hctx; 1657 int i; 1658 1659 queue_for_each_hw_ctx(q, hctx, i) 1660 blk_mq_start_hw_queue(hctx); 1661 } 1662 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1663 1664 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1665 { 1666 if (!blk_mq_hctx_stopped(hctx)) 1667 return; 1668 1669 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1670 blk_mq_run_hw_queue(hctx, async); 1671 } 1672 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1673 1674 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1675 { 1676 struct blk_mq_hw_ctx *hctx; 1677 int i; 1678 1679 queue_for_each_hw_ctx(q, hctx, i) 1680 blk_mq_start_stopped_hw_queue(hctx, async); 1681 } 1682 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1683 1684 static void blk_mq_run_work_fn(struct work_struct *work) 1685 { 1686 struct blk_mq_hw_ctx *hctx; 1687 1688 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1689 1690 /* 1691 * If we are stopped, don't run the queue. 1692 */ 1693 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1694 return; 1695 1696 __blk_mq_run_hw_queue(hctx); 1697 } 1698 1699 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1700 struct request *rq, 1701 bool at_head) 1702 { 1703 struct blk_mq_ctx *ctx = rq->mq_ctx; 1704 enum hctx_type type = hctx->type; 1705 1706 lockdep_assert_held(&ctx->lock); 1707 1708 trace_block_rq_insert(hctx->queue, rq); 1709 1710 if (at_head) 1711 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1712 else 1713 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1714 } 1715 1716 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1717 bool at_head) 1718 { 1719 struct blk_mq_ctx *ctx = rq->mq_ctx; 1720 1721 lockdep_assert_held(&ctx->lock); 1722 1723 __blk_mq_insert_req_list(hctx, rq, at_head); 1724 blk_mq_hctx_mark_pending(hctx, ctx); 1725 } 1726 1727 /** 1728 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1729 * @rq: Pointer to request to be inserted. 1730 * @run_queue: If we should run the hardware queue after inserting the request. 1731 * 1732 * Should only be used carefully, when the caller knows we want to 1733 * bypass a potential IO scheduler on the target device. 1734 */ 1735 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1736 bool run_queue) 1737 { 1738 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1739 1740 spin_lock(&hctx->lock); 1741 if (at_head) 1742 list_add(&rq->queuelist, &hctx->dispatch); 1743 else 1744 list_add_tail(&rq->queuelist, &hctx->dispatch); 1745 spin_unlock(&hctx->lock); 1746 1747 if (run_queue) 1748 blk_mq_run_hw_queue(hctx, false); 1749 } 1750 1751 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1752 struct list_head *list) 1753 1754 { 1755 struct request *rq; 1756 enum hctx_type type = hctx->type; 1757 1758 /* 1759 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1760 * offline now 1761 */ 1762 list_for_each_entry(rq, list, queuelist) { 1763 BUG_ON(rq->mq_ctx != ctx); 1764 trace_block_rq_insert(hctx->queue, rq); 1765 } 1766 1767 spin_lock(&ctx->lock); 1768 list_splice_tail_init(list, &ctx->rq_lists[type]); 1769 blk_mq_hctx_mark_pending(hctx, ctx); 1770 spin_unlock(&ctx->lock); 1771 } 1772 1773 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1774 { 1775 struct request *rqa = container_of(a, struct request, queuelist); 1776 struct request *rqb = container_of(b, struct request, queuelist); 1777 1778 if (rqa->mq_ctx != rqb->mq_ctx) 1779 return rqa->mq_ctx > rqb->mq_ctx; 1780 if (rqa->mq_hctx != rqb->mq_hctx) 1781 return rqa->mq_hctx > rqb->mq_hctx; 1782 1783 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1784 } 1785 1786 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1787 { 1788 LIST_HEAD(list); 1789 1790 if (list_empty(&plug->mq_list)) 1791 return; 1792 list_splice_init(&plug->mq_list, &list); 1793 1794 if (plug->rq_count > 2 && plug->multiple_queues) 1795 list_sort(NULL, &list, plug_rq_cmp); 1796 1797 plug->rq_count = 0; 1798 1799 do { 1800 struct list_head rq_list; 1801 struct request *rq, *head_rq = list_entry_rq(list.next); 1802 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1803 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1804 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1805 unsigned int depth = 1; 1806 1807 list_for_each_continue(pos, &list) { 1808 rq = list_entry_rq(pos); 1809 BUG_ON(!rq->q); 1810 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1811 break; 1812 depth++; 1813 } 1814 1815 list_cut_before(&rq_list, &list, pos); 1816 trace_block_unplug(head_rq->q, depth, !from_schedule); 1817 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1818 from_schedule); 1819 } while(!list_empty(&list)); 1820 } 1821 1822 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1823 unsigned int nr_segs) 1824 { 1825 if (bio->bi_opf & REQ_RAHEAD) 1826 rq->cmd_flags |= REQ_FAILFAST_MASK; 1827 1828 rq->__sector = bio->bi_iter.bi_sector; 1829 rq->write_hint = bio->bi_write_hint; 1830 blk_rq_bio_prep(rq, bio, nr_segs); 1831 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1832 1833 blk_account_io_start(rq); 1834 } 1835 1836 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1837 struct request *rq, 1838 blk_qc_t *cookie, bool last) 1839 { 1840 struct request_queue *q = rq->q; 1841 struct blk_mq_queue_data bd = { 1842 .rq = rq, 1843 .last = last, 1844 }; 1845 blk_qc_t new_cookie; 1846 blk_status_t ret; 1847 1848 new_cookie = request_to_qc_t(hctx, rq); 1849 1850 /* 1851 * For OK queue, we are done. For error, caller may kill it. 1852 * Any other error (busy), just add it to our list as we 1853 * previously would have done. 1854 */ 1855 ret = q->mq_ops->queue_rq(hctx, &bd); 1856 switch (ret) { 1857 case BLK_STS_OK: 1858 blk_mq_update_dispatch_busy(hctx, false); 1859 *cookie = new_cookie; 1860 break; 1861 case BLK_STS_RESOURCE: 1862 case BLK_STS_DEV_RESOURCE: 1863 blk_mq_update_dispatch_busy(hctx, true); 1864 __blk_mq_requeue_request(rq); 1865 break; 1866 default: 1867 blk_mq_update_dispatch_busy(hctx, false); 1868 *cookie = BLK_QC_T_NONE; 1869 break; 1870 } 1871 1872 return ret; 1873 } 1874 1875 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1876 struct request *rq, 1877 blk_qc_t *cookie, 1878 bool bypass_insert, bool last) 1879 { 1880 struct request_queue *q = rq->q; 1881 bool run_queue = true; 1882 1883 /* 1884 * RCU or SRCU read lock is needed before checking quiesced flag. 1885 * 1886 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1887 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1888 * and avoid driver to try to dispatch again. 1889 */ 1890 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1891 run_queue = false; 1892 bypass_insert = false; 1893 goto insert; 1894 } 1895 1896 if (q->elevator && !bypass_insert) 1897 goto insert; 1898 1899 if (!blk_mq_get_dispatch_budget(hctx)) 1900 goto insert; 1901 1902 if (!blk_mq_get_driver_tag(rq)) { 1903 blk_mq_put_dispatch_budget(hctx); 1904 goto insert; 1905 } 1906 1907 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1908 insert: 1909 if (bypass_insert) 1910 return BLK_STS_RESOURCE; 1911 1912 blk_mq_request_bypass_insert(rq, false, run_queue); 1913 return BLK_STS_OK; 1914 } 1915 1916 /** 1917 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 1918 * @hctx: Pointer of the associated hardware queue. 1919 * @rq: Pointer to request to be sent. 1920 * @cookie: Request queue cookie. 1921 * 1922 * If the device has enough resources to accept a new request now, send the 1923 * request directly to device driver. Else, insert at hctx->dispatch queue, so 1924 * we can try send it another time in the future. Requests inserted at this 1925 * queue have higher priority. 1926 */ 1927 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1928 struct request *rq, blk_qc_t *cookie) 1929 { 1930 blk_status_t ret; 1931 int srcu_idx; 1932 1933 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1934 1935 hctx_lock(hctx, &srcu_idx); 1936 1937 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1938 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1939 blk_mq_request_bypass_insert(rq, false, true); 1940 else if (ret != BLK_STS_OK) 1941 blk_mq_end_request(rq, ret); 1942 1943 hctx_unlock(hctx, srcu_idx); 1944 } 1945 1946 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1947 { 1948 blk_status_t ret; 1949 int srcu_idx; 1950 blk_qc_t unused_cookie; 1951 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1952 1953 hctx_lock(hctx, &srcu_idx); 1954 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1955 hctx_unlock(hctx, srcu_idx); 1956 1957 return ret; 1958 } 1959 1960 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1961 struct list_head *list) 1962 { 1963 int queued = 0; 1964 1965 while (!list_empty(list)) { 1966 blk_status_t ret; 1967 struct request *rq = list_first_entry(list, struct request, 1968 queuelist); 1969 1970 list_del_init(&rq->queuelist); 1971 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1972 if (ret != BLK_STS_OK) { 1973 if (ret == BLK_STS_RESOURCE || 1974 ret == BLK_STS_DEV_RESOURCE) { 1975 blk_mq_request_bypass_insert(rq, false, 1976 list_empty(list)); 1977 break; 1978 } 1979 blk_mq_end_request(rq, ret); 1980 } else 1981 queued++; 1982 } 1983 1984 /* 1985 * If we didn't flush the entire list, we could have told 1986 * the driver there was more coming, but that turned out to 1987 * be a lie. 1988 */ 1989 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 1990 hctx->queue->mq_ops->commit_rqs(hctx); 1991 } 1992 1993 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1994 { 1995 list_add_tail(&rq->queuelist, &plug->mq_list); 1996 plug->rq_count++; 1997 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1998 struct request *tmp; 1999 2000 tmp = list_first_entry(&plug->mq_list, struct request, 2001 queuelist); 2002 if (tmp->q != rq->q) 2003 plug->multiple_queues = true; 2004 } 2005 } 2006 2007 /** 2008 * blk_mq_make_request - Create and send a request to block device. 2009 * @q: Request queue pointer. 2010 * @bio: Bio pointer. 2011 * 2012 * Builds up a request structure from @q and @bio and send to the device. The 2013 * request may not be queued directly to hardware if: 2014 * * This request can be merged with another one 2015 * * We want to place request at plug queue for possible future merging 2016 * * There is an IO scheduler active at this queue 2017 * 2018 * It will not queue the request if there is an error with the bio, or at the 2019 * request creation. 2020 * 2021 * Returns: Request queue cookie. 2022 */ 2023 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 2024 { 2025 const int is_sync = op_is_sync(bio->bi_opf); 2026 const int is_flush_fua = op_is_flush(bio->bi_opf); 2027 struct blk_mq_alloc_data data = { 2028 .q = q, 2029 }; 2030 struct request *rq; 2031 struct blk_plug *plug; 2032 struct request *same_queue_rq = NULL; 2033 unsigned int nr_segs; 2034 blk_qc_t cookie; 2035 blk_status_t ret; 2036 2037 blk_queue_bounce(q, &bio); 2038 __blk_queue_split(q, &bio, &nr_segs); 2039 2040 if (!bio_integrity_prep(bio)) 2041 goto queue_exit; 2042 2043 if (!is_flush_fua && !blk_queue_nomerges(q) && 2044 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2045 goto queue_exit; 2046 2047 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2048 goto queue_exit; 2049 2050 rq_qos_throttle(q, bio); 2051 2052 data.cmd_flags = bio->bi_opf; 2053 rq = __blk_mq_alloc_request(&data); 2054 if (unlikely(!rq)) { 2055 rq_qos_cleanup(q, bio); 2056 if (bio->bi_opf & REQ_NOWAIT) 2057 bio_wouldblock_error(bio); 2058 goto queue_exit; 2059 } 2060 2061 trace_block_getrq(q, bio, bio->bi_opf); 2062 2063 rq_qos_track(q, rq, bio); 2064 2065 cookie = request_to_qc_t(data.hctx, rq); 2066 2067 blk_mq_bio_to_request(rq, bio, nr_segs); 2068 2069 ret = blk_crypto_init_request(rq); 2070 if (ret != BLK_STS_OK) { 2071 bio->bi_status = ret; 2072 bio_endio(bio); 2073 blk_mq_free_request(rq); 2074 return BLK_QC_T_NONE; 2075 } 2076 2077 plug = blk_mq_plug(q, bio); 2078 if (unlikely(is_flush_fua)) { 2079 /* Bypass scheduler for flush requests */ 2080 blk_insert_flush(rq); 2081 blk_mq_run_hw_queue(data.hctx, true); 2082 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2083 !blk_queue_nonrot(q))) { 2084 /* 2085 * Use plugging if we have a ->commit_rqs() hook as well, as 2086 * we know the driver uses bd->last in a smart fashion. 2087 * 2088 * Use normal plugging if this disk is slow HDD, as sequential 2089 * IO may benefit a lot from plug merging. 2090 */ 2091 unsigned int request_count = plug->rq_count; 2092 struct request *last = NULL; 2093 2094 if (!request_count) 2095 trace_block_plug(q); 2096 else 2097 last = list_entry_rq(plug->mq_list.prev); 2098 2099 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2100 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2101 blk_flush_plug_list(plug, false); 2102 trace_block_plug(q); 2103 } 2104 2105 blk_add_rq_to_plug(plug, rq); 2106 } else if (q->elevator) { 2107 /* Insert the request at the IO scheduler queue */ 2108 blk_mq_sched_insert_request(rq, false, true, true); 2109 } else if (plug && !blk_queue_nomerges(q)) { 2110 /* 2111 * We do limited plugging. If the bio can be merged, do that. 2112 * Otherwise the existing request in the plug list will be 2113 * issued. So the plug list will have one request at most 2114 * The plug list might get flushed before this. If that happens, 2115 * the plug list is empty, and same_queue_rq is invalid. 2116 */ 2117 if (list_empty(&plug->mq_list)) 2118 same_queue_rq = NULL; 2119 if (same_queue_rq) { 2120 list_del_init(&same_queue_rq->queuelist); 2121 plug->rq_count--; 2122 } 2123 blk_add_rq_to_plug(plug, rq); 2124 trace_block_plug(q); 2125 2126 if (same_queue_rq) { 2127 data.hctx = same_queue_rq->mq_hctx; 2128 trace_block_unplug(q, 1, true); 2129 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2130 &cookie); 2131 } 2132 } else if ((q->nr_hw_queues > 1 && is_sync) || 2133 !data.hctx->dispatch_busy) { 2134 /* 2135 * There is no scheduler and we can try to send directly 2136 * to the hardware. 2137 */ 2138 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2139 } else { 2140 /* Default case. */ 2141 blk_mq_sched_insert_request(rq, false, true, true); 2142 } 2143 2144 return cookie; 2145 queue_exit: 2146 blk_queue_exit(q); 2147 return BLK_QC_T_NONE; 2148 } 2149 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */ 2150 2151 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2152 unsigned int hctx_idx) 2153 { 2154 struct page *page; 2155 2156 if (tags->rqs && set->ops->exit_request) { 2157 int i; 2158 2159 for (i = 0; i < tags->nr_tags; i++) { 2160 struct request *rq = tags->static_rqs[i]; 2161 2162 if (!rq) 2163 continue; 2164 set->ops->exit_request(set, rq, hctx_idx); 2165 tags->static_rqs[i] = NULL; 2166 } 2167 } 2168 2169 while (!list_empty(&tags->page_list)) { 2170 page = list_first_entry(&tags->page_list, struct page, lru); 2171 list_del_init(&page->lru); 2172 /* 2173 * Remove kmemleak object previously allocated in 2174 * blk_mq_alloc_rqs(). 2175 */ 2176 kmemleak_free(page_address(page)); 2177 __free_pages(page, page->private); 2178 } 2179 } 2180 2181 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2182 { 2183 kfree(tags->rqs); 2184 tags->rqs = NULL; 2185 kfree(tags->static_rqs); 2186 tags->static_rqs = NULL; 2187 2188 blk_mq_free_tags(tags); 2189 } 2190 2191 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2192 unsigned int hctx_idx, 2193 unsigned int nr_tags, 2194 unsigned int reserved_tags) 2195 { 2196 struct blk_mq_tags *tags; 2197 int node; 2198 2199 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2200 if (node == NUMA_NO_NODE) 2201 node = set->numa_node; 2202 2203 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2204 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2205 if (!tags) 2206 return NULL; 2207 2208 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2209 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2210 node); 2211 if (!tags->rqs) { 2212 blk_mq_free_tags(tags); 2213 return NULL; 2214 } 2215 2216 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2217 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2218 node); 2219 if (!tags->static_rqs) { 2220 kfree(tags->rqs); 2221 blk_mq_free_tags(tags); 2222 return NULL; 2223 } 2224 2225 return tags; 2226 } 2227 2228 static size_t order_to_size(unsigned int order) 2229 { 2230 return (size_t)PAGE_SIZE << order; 2231 } 2232 2233 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2234 unsigned int hctx_idx, int node) 2235 { 2236 int ret; 2237 2238 if (set->ops->init_request) { 2239 ret = set->ops->init_request(set, rq, hctx_idx, node); 2240 if (ret) 2241 return ret; 2242 } 2243 2244 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2245 return 0; 2246 } 2247 2248 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2249 unsigned int hctx_idx, unsigned int depth) 2250 { 2251 unsigned int i, j, entries_per_page, max_order = 4; 2252 size_t rq_size, left; 2253 int node; 2254 2255 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2256 if (node == NUMA_NO_NODE) 2257 node = set->numa_node; 2258 2259 INIT_LIST_HEAD(&tags->page_list); 2260 2261 /* 2262 * rq_size is the size of the request plus driver payload, rounded 2263 * to the cacheline size 2264 */ 2265 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2266 cache_line_size()); 2267 left = rq_size * depth; 2268 2269 for (i = 0; i < depth; ) { 2270 int this_order = max_order; 2271 struct page *page; 2272 int to_do; 2273 void *p; 2274 2275 while (this_order && left < order_to_size(this_order - 1)) 2276 this_order--; 2277 2278 do { 2279 page = alloc_pages_node(node, 2280 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2281 this_order); 2282 if (page) 2283 break; 2284 if (!this_order--) 2285 break; 2286 if (order_to_size(this_order) < rq_size) 2287 break; 2288 } while (1); 2289 2290 if (!page) 2291 goto fail; 2292 2293 page->private = this_order; 2294 list_add_tail(&page->lru, &tags->page_list); 2295 2296 p = page_address(page); 2297 /* 2298 * Allow kmemleak to scan these pages as they contain pointers 2299 * to additional allocations like via ops->init_request(). 2300 */ 2301 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2302 entries_per_page = order_to_size(this_order) / rq_size; 2303 to_do = min(entries_per_page, depth - i); 2304 left -= to_do * rq_size; 2305 for (j = 0; j < to_do; j++) { 2306 struct request *rq = p; 2307 2308 tags->static_rqs[i] = rq; 2309 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2310 tags->static_rqs[i] = NULL; 2311 goto fail; 2312 } 2313 2314 p += rq_size; 2315 i++; 2316 } 2317 } 2318 return 0; 2319 2320 fail: 2321 blk_mq_free_rqs(set, tags, hctx_idx); 2322 return -ENOMEM; 2323 } 2324 2325 struct rq_iter_data { 2326 struct blk_mq_hw_ctx *hctx; 2327 bool has_rq; 2328 }; 2329 2330 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2331 { 2332 struct rq_iter_data *iter_data = data; 2333 2334 if (rq->mq_hctx != iter_data->hctx) 2335 return true; 2336 iter_data->has_rq = true; 2337 return false; 2338 } 2339 2340 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2341 { 2342 struct blk_mq_tags *tags = hctx->sched_tags ? 2343 hctx->sched_tags : hctx->tags; 2344 struct rq_iter_data data = { 2345 .hctx = hctx, 2346 }; 2347 2348 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2349 return data.has_rq; 2350 } 2351 2352 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2353 struct blk_mq_hw_ctx *hctx) 2354 { 2355 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2356 return false; 2357 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2358 return false; 2359 return true; 2360 } 2361 2362 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2363 { 2364 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2365 struct blk_mq_hw_ctx, cpuhp_online); 2366 2367 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2368 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2369 return 0; 2370 2371 /* 2372 * Prevent new request from being allocated on the current hctx. 2373 * 2374 * The smp_mb__after_atomic() Pairs with the implied barrier in 2375 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2376 * seen once we return from the tag allocator. 2377 */ 2378 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2379 smp_mb__after_atomic(); 2380 2381 /* 2382 * Try to grab a reference to the queue and wait for any outstanding 2383 * requests. If we could not grab a reference the queue has been 2384 * frozen and there are no requests. 2385 */ 2386 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2387 while (blk_mq_hctx_has_requests(hctx)) 2388 msleep(5); 2389 percpu_ref_put(&hctx->queue->q_usage_counter); 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2396 { 2397 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2398 struct blk_mq_hw_ctx, cpuhp_online); 2399 2400 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2401 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2402 return 0; 2403 } 2404 2405 /* 2406 * 'cpu' is going away. splice any existing rq_list entries from this 2407 * software queue to the hw queue dispatch list, and ensure that it 2408 * gets run. 2409 */ 2410 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2411 { 2412 struct blk_mq_hw_ctx *hctx; 2413 struct blk_mq_ctx *ctx; 2414 LIST_HEAD(tmp); 2415 enum hctx_type type; 2416 2417 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2418 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2419 return 0; 2420 2421 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2422 type = hctx->type; 2423 2424 spin_lock(&ctx->lock); 2425 if (!list_empty(&ctx->rq_lists[type])) { 2426 list_splice_init(&ctx->rq_lists[type], &tmp); 2427 blk_mq_hctx_clear_pending(hctx, ctx); 2428 } 2429 spin_unlock(&ctx->lock); 2430 2431 if (list_empty(&tmp)) 2432 return 0; 2433 2434 spin_lock(&hctx->lock); 2435 list_splice_tail_init(&tmp, &hctx->dispatch); 2436 spin_unlock(&hctx->lock); 2437 2438 blk_mq_run_hw_queue(hctx, true); 2439 return 0; 2440 } 2441 2442 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2443 { 2444 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2445 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2446 &hctx->cpuhp_online); 2447 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2448 &hctx->cpuhp_dead); 2449 } 2450 2451 /* hctx->ctxs will be freed in queue's release handler */ 2452 static void blk_mq_exit_hctx(struct request_queue *q, 2453 struct blk_mq_tag_set *set, 2454 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2455 { 2456 if (blk_mq_hw_queue_mapped(hctx)) 2457 blk_mq_tag_idle(hctx); 2458 2459 if (set->ops->exit_request) 2460 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2461 2462 if (set->ops->exit_hctx) 2463 set->ops->exit_hctx(hctx, hctx_idx); 2464 2465 blk_mq_remove_cpuhp(hctx); 2466 2467 spin_lock(&q->unused_hctx_lock); 2468 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2469 spin_unlock(&q->unused_hctx_lock); 2470 } 2471 2472 static void blk_mq_exit_hw_queues(struct request_queue *q, 2473 struct blk_mq_tag_set *set, int nr_queue) 2474 { 2475 struct blk_mq_hw_ctx *hctx; 2476 unsigned int i; 2477 2478 queue_for_each_hw_ctx(q, hctx, i) { 2479 if (i == nr_queue) 2480 break; 2481 blk_mq_debugfs_unregister_hctx(hctx); 2482 blk_mq_exit_hctx(q, set, hctx, i); 2483 } 2484 } 2485 2486 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2487 { 2488 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2489 2490 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2491 __alignof__(struct blk_mq_hw_ctx)) != 2492 sizeof(struct blk_mq_hw_ctx)); 2493 2494 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2495 hw_ctx_size += sizeof(struct srcu_struct); 2496 2497 return hw_ctx_size; 2498 } 2499 2500 static int blk_mq_init_hctx(struct request_queue *q, 2501 struct blk_mq_tag_set *set, 2502 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2503 { 2504 hctx->queue_num = hctx_idx; 2505 2506 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2507 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2508 &hctx->cpuhp_online); 2509 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2510 2511 hctx->tags = set->tags[hctx_idx]; 2512 2513 if (set->ops->init_hctx && 2514 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2515 goto unregister_cpu_notifier; 2516 2517 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2518 hctx->numa_node)) 2519 goto exit_hctx; 2520 return 0; 2521 2522 exit_hctx: 2523 if (set->ops->exit_hctx) 2524 set->ops->exit_hctx(hctx, hctx_idx); 2525 unregister_cpu_notifier: 2526 blk_mq_remove_cpuhp(hctx); 2527 return -1; 2528 } 2529 2530 static struct blk_mq_hw_ctx * 2531 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2532 int node) 2533 { 2534 struct blk_mq_hw_ctx *hctx; 2535 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2536 2537 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2538 if (!hctx) 2539 goto fail_alloc_hctx; 2540 2541 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2542 goto free_hctx; 2543 2544 atomic_set(&hctx->nr_active, 0); 2545 if (node == NUMA_NO_NODE) 2546 node = set->numa_node; 2547 hctx->numa_node = node; 2548 2549 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2550 spin_lock_init(&hctx->lock); 2551 INIT_LIST_HEAD(&hctx->dispatch); 2552 hctx->queue = q; 2553 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2554 2555 INIT_LIST_HEAD(&hctx->hctx_list); 2556 2557 /* 2558 * Allocate space for all possible cpus to avoid allocation at 2559 * runtime 2560 */ 2561 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2562 gfp, node); 2563 if (!hctx->ctxs) 2564 goto free_cpumask; 2565 2566 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2567 gfp, node)) 2568 goto free_ctxs; 2569 hctx->nr_ctx = 0; 2570 2571 spin_lock_init(&hctx->dispatch_wait_lock); 2572 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2573 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2574 2575 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2576 if (!hctx->fq) 2577 goto free_bitmap; 2578 2579 if (hctx->flags & BLK_MQ_F_BLOCKING) 2580 init_srcu_struct(hctx->srcu); 2581 blk_mq_hctx_kobj_init(hctx); 2582 2583 return hctx; 2584 2585 free_bitmap: 2586 sbitmap_free(&hctx->ctx_map); 2587 free_ctxs: 2588 kfree(hctx->ctxs); 2589 free_cpumask: 2590 free_cpumask_var(hctx->cpumask); 2591 free_hctx: 2592 kfree(hctx); 2593 fail_alloc_hctx: 2594 return NULL; 2595 } 2596 2597 static void blk_mq_init_cpu_queues(struct request_queue *q, 2598 unsigned int nr_hw_queues) 2599 { 2600 struct blk_mq_tag_set *set = q->tag_set; 2601 unsigned int i, j; 2602 2603 for_each_possible_cpu(i) { 2604 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2605 struct blk_mq_hw_ctx *hctx; 2606 int k; 2607 2608 __ctx->cpu = i; 2609 spin_lock_init(&__ctx->lock); 2610 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2611 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2612 2613 __ctx->queue = q; 2614 2615 /* 2616 * Set local node, IFF we have more than one hw queue. If 2617 * not, we remain on the home node of the device 2618 */ 2619 for (j = 0; j < set->nr_maps; j++) { 2620 hctx = blk_mq_map_queue_type(q, j, i); 2621 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2622 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2623 } 2624 } 2625 } 2626 2627 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2628 int hctx_idx) 2629 { 2630 int ret = 0; 2631 2632 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2633 set->queue_depth, set->reserved_tags); 2634 if (!set->tags[hctx_idx]) 2635 return false; 2636 2637 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2638 set->queue_depth); 2639 if (!ret) 2640 return true; 2641 2642 blk_mq_free_rq_map(set->tags[hctx_idx]); 2643 set->tags[hctx_idx] = NULL; 2644 return false; 2645 } 2646 2647 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2648 unsigned int hctx_idx) 2649 { 2650 if (set->tags && set->tags[hctx_idx]) { 2651 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2652 blk_mq_free_rq_map(set->tags[hctx_idx]); 2653 set->tags[hctx_idx] = NULL; 2654 } 2655 } 2656 2657 static void blk_mq_map_swqueue(struct request_queue *q) 2658 { 2659 unsigned int i, j, hctx_idx; 2660 struct blk_mq_hw_ctx *hctx; 2661 struct blk_mq_ctx *ctx; 2662 struct blk_mq_tag_set *set = q->tag_set; 2663 2664 queue_for_each_hw_ctx(q, hctx, i) { 2665 cpumask_clear(hctx->cpumask); 2666 hctx->nr_ctx = 0; 2667 hctx->dispatch_from = NULL; 2668 } 2669 2670 /* 2671 * Map software to hardware queues. 2672 * 2673 * If the cpu isn't present, the cpu is mapped to first hctx. 2674 */ 2675 for_each_possible_cpu(i) { 2676 2677 ctx = per_cpu_ptr(q->queue_ctx, i); 2678 for (j = 0; j < set->nr_maps; j++) { 2679 if (!set->map[j].nr_queues) { 2680 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2681 HCTX_TYPE_DEFAULT, i); 2682 continue; 2683 } 2684 hctx_idx = set->map[j].mq_map[i]; 2685 /* unmapped hw queue can be remapped after CPU topo changed */ 2686 if (!set->tags[hctx_idx] && 2687 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2688 /* 2689 * If tags initialization fail for some hctx, 2690 * that hctx won't be brought online. In this 2691 * case, remap the current ctx to hctx[0] which 2692 * is guaranteed to always have tags allocated 2693 */ 2694 set->map[j].mq_map[i] = 0; 2695 } 2696 2697 hctx = blk_mq_map_queue_type(q, j, i); 2698 ctx->hctxs[j] = hctx; 2699 /* 2700 * If the CPU is already set in the mask, then we've 2701 * mapped this one already. This can happen if 2702 * devices share queues across queue maps. 2703 */ 2704 if (cpumask_test_cpu(i, hctx->cpumask)) 2705 continue; 2706 2707 cpumask_set_cpu(i, hctx->cpumask); 2708 hctx->type = j; 2709 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2710 hctx->ctxs[hctx->nr_ctx++] = ctx; 2711 2712 /* 2713 * If the nr_ctx type overflows, we have exceeded the 2714 * amount of sw queues we can support. 2715 */ 2716 BUG_ON(!hctx->nr_ctx); 2717 } 2718 2719 for (; j < HCTX_MAX_TYPES; j++) 2720 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2721 HCTX_TYPE_DEFAULT, i); 2722 } 2723 2724 queue_for_each_hw_ctx(q, hctx, i) { 2725 /* 2726 * If no software queues are mapped to this hardware queue, 2727 * disable it and free the request entries. 2728 */ 2729 if (!hctx->nr_ctx) { 2730 /* Never unmap queue 0. We need it as a 2731 * fallback in case of a new remap fails 2732 * allocation 2733 */ 2734 if (i && set->tags[i]) 2735 blk_mq_free_map_and_requests(set, i); 2736 2737 hctx->tags = NULL; 2738 continue; 2739 } 2740 2741 hctx->tags = set->tags[i]; 2742 WARN_ON(!hctx->tags); 2743 2744 /* 2745 * Set the map size to the number of mapped software queues. 2746 * This is more accurate and more efficient than looping 2747 * over all possibly mapped software queues. 2748 */ 2749 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2750 2751 /* 2752 * Initialize batch roundrobin counts 2753 */ 2754 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2755 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2756 } 2757 } 2758 2759 /* 2760 * Caller needs to ensure that we're either frozen/quiesced, or that 2761 * the queue isn't live yet. 2762 */ 2763 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2764 { 2765 struct blk_mq_hw_ctx *hctx; 2766 int i; 2767 2768 queue_for_each_hw_ctx(q, hctx, i) { 2769 if (shared) 2770 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2771 else 2772 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2773 } 2774 } 2775 2776 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2777 bool shared) 2778 { 2779 struct request_queue *q; 2780 2781 lockdep_assert_held(&set->tag_list_lock); 2782 2783 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2784 blk_mq_freeze_queue(q); 2785 queue_set_hctx_shared(q, shared); 2786 blk_mq_unfreeze_queue(q); 2787 } 2788 } 2789 2790 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2791 { 2792 struct blk_mq_tag_set *set = q->tag_set; 2793 2794 mutex_lock(&set->tag_list_lock); 2795 list_del_rcu(&q->tag_set_list); 2796 if (list_is_singular(&set->tag_list)) { 2797 /* just transitioned to unshared */ 2798 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2799 /* update existing queue */ 2800 blk_mq_update_tag_set_depth(set, false); 2801 } 2802 mutex_unlock(&set->tag_list_lock); 2803 INIT_LIST_HEAD(&q->tag_set_list); 2804 } 2805 2806 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2807 struct request_queue *q) 2808 { 2809 mutex_lock(&set->tag_list_lock); 2810 2811 /* 2812 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2813 */ 2814 if (!list_empty(&set->tag_list) && 2815 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2816 set->flags |= BLK_MQ_F_TAG_SHARED; 2817 /* update existing queue */ 2818 blk_mq_update_tag_set_depth(set, true); 2819 } 2820 if (set->flags & BLK_MQ_F_TAG_SHARED) 2821 queue_set_hctx_shared(q, true); 2822 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2823 2824 mutex_unlock(&set->tag_list_lock); 2825 } 2826 2827 /* All allocations will be freed in release handler of q->mq_kobj */ 2828 static int blk_mq_alloc_ctxs(struct request_queue *q) 2829 { 2830 struct blk_mq_ctxs *ctxs; 2831 int cpu; 2832 2833 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2834 if (!ctxs) 2835 return -ENOMEM; 2836 2837 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2838 if (!ctxs->queue_ctx) 2839 goto fail; 2840 2841 for_each_possible_cpu(cpu) { 2842 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2843 ctx->ctxs = ctxs; 2844 } 2845 2846 q->mq_kobj = &ctxs->kobj; 2847 q->queue_ctx = ctxs->queue_ctx; 2848 2849 return 0; 2850 fail: 2851 kfree(ctxs); 2852 return -ENOMEM; 2853 } 2854 2855 /* 2856 * It is the actual release handler for mq, but we do it from 2857 * request queue's release handler for avoiding use-after-free 2858 * and headache because q->mq_kobj shouldn't have been introduced, 2859 * but we can't group ctx/kctx kobj without it. 2860 */ 2861 void blk_mq_release(struct request_queue *q) 2862 { 2863 struct blk_mq_hw_ctx *hctx, *next; 2864 int i; 2865 2866 queue_for_each_hw_ctx(q, hctx, i) 2867 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2868 2869 /* all hctx are in .unused_hctx_list now */ 2870 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2871 list_del_init(&hctx->hctx_list); 2872 kobject_put(&hctx->kobj); 2873 } 2874 2875 kfree(q->queue_hw_ctx); 2876 2877 /* 2878 * release .mq_kobj and sw queue's kobject now because 2879 * both share lifetime with request queue. 2880 */ 2881 blk_mq_sysfs_deinit(q); 2882 } 2883 2884 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 2885 void *queuedata) 2886 { 2887 struct request_queue *uninit_q, *q; 2888 2889 uninit_q = __blk_alloc_queue(set->numa_node); 2890 if (!uninit_q) 2891 return ERR_PTR(-ENOMEM); 2892 uninit_q->queuedata = queuedata; 2893 2894 /* 2895 * Initialize the queue without an elevator. device_add_disk() will do 2896 * the initialization. 2897 */ 2898 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2899 if (IS_ERR(q)) 2900 blk_cleanup_queue(uninit_q); 2901 2902 return q; 2903 } 2904 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 2905 2906 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2907 { 2908 return blk_mq_init_queue_data(set, NULL); 2909 } 2910 EXPORT_SYMBOL(blk_mq_init_queue); 2911 2912 /* 2913 * Helper for setting up a queue with mq ops, given queue depth, and 2914 * the passed in mq ops flags. 2915 */ 2916 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2917 const struct blk_mq_ops *ops, 2918 unsigned int queue_depth, 2919 unsigned int set_flags) 2920 { 2921 struct request_queue *q; 2922 int ret; 2923 2924 memset(set, 0, sizeof(*set)); 2925 set->ops = ops; 2926 set->nr_hw_queues = 1; 2927 set->nr_maps = 1; 2928 set->queue_depth = queue_depth; 2929 set->numa_node = NUMA_NO_NODE; 2930 set->flags = set_flags; 2931 2932 ret = blk_mq_alloc_tag_set(set); 2933 if (ret) 2934 return ERR_PTR(ret); 2935 2936 q = blk_mq_init_queue(set); 2937 if (IS_ERR(q)) { 2938 blk_mq_free_tag_set(set); 2939 return q; 2940 } 2941 2942 return q; 2943 } 2944 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2945 2946 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2947 struct blk_mq_tag_set *set, struct request_queue *q, 2948 int hctx_idx, int node) 2949 { 2950 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2951 2952 /* reuse dead hctx first */ 2953 spin_lock(&q->unused_hctx_lock); 2954 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2955 if (tmp->numa_node == node) { 2956 hctx = tmp; 2957 break; 2958 } 2959 } 2960 if (hctx) 2961 list_del_init(&hctx->hctx_list); 2962 spin_unlock(&q->unused_hctx_lock); 2963 2964 if (!hctx) 2965 hctx = blk_mq_alloc_hctx(q, set, node); 2966 if (!hctx) 2967 goto fail; 2968 2969 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2970 goto free_hctx; 2971 2972 return hctx; 2973 2974 free_hctx: 2975 kobject_put(&hctx->kobj); 2976 fail: 2977 return NULL; 2978 } 2979 2980 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2981 struct request_queue *q) 2982 { 2983 int i, j, end; 2984 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2985 2986 if (q->nr_hw_queues < set->nr_hw_queues) { 2987 struct blk_mq_hw_ctx **new_hctxs; 2988 2989 new_hctxs = kcalloc_node(set->nr_hw_queues, 2990 sizeof(*new_hctxs), GFP_KERNEL, 2991 set->numa_node); 2992 if (!new_hctxs) 2993 return; 2994 if (hctxs) 2995 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 2996 sizeof(*hctxs)); 2997 q->queue_hw_ctx = new_hctxs; 2998 kfree(hctxs); 2999 hctxs = new_hctxs; 3000 } 3001 3002 /* protect against switching io scheduler */ 3003 mutex_lock(&q->sysfs_lock); 3004 for (i = 0; i < set->nr_hw_queues; i++) { 3005 int node; 3006 struct blk_mq_hw_ctx *hctx; 3007 3008 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3009 /* 3010 * If the hw queue has been mapped to another numa node, 3011 * we need to realloc the hctx. If allocation fails, fallback 3012 * to use the previous one. 3013 */ 3014 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3015 continue; 3016 3017 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3018 if (hctx) { 3019 if (hctxs[i]) 3020 blk_mq_exit_hctx(q, set, hctxs[i], i); 3021 hctxs[i] = hctx; 3022 } else { 3023 if (hctxs[i]) 3024 pr_warn("Allocate new hctx on node %d fails,\ 3025 fallback to previous one on node %d\n", 3026 node, hctxs[i]->numa_node); 3027 else 3028 break; 3029 } 3030 } 3031 /* 3032 * Increasing nr_hw_queues fails. Free the newly allocated 3033 * hctxs and keep the previous q->nr_hw_queues. 3034 */ 3035 if (i != set->nr_hw_queues) { 3036 j = q->nr_hw_queues; 3037 end = i; 3038 } else { 3039 j = i; 3040 end = q->nr_hw_queues; 3041 q->nr_hw_queues = set->nr_hw_queues; 3042 } 3043 3044 for (; j < end; j++) { 3045 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3046 3047 if (hctx) { 3048 if (hctx->tags) 3049 blk_mq_free_map_and_requests(set, j); 3050 blk_mq_exit_hctx(q, set, hctx, j); 3051 hctxs[j] = NULL; 3052 } 3053 } 3054 mutex_unlock(&q->sysfs_lock); 3055 } 3056 3057 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3058 struct request_queue *q, 3059 bool elevator_init) 3060 { 3061 /* mark the queue as mq asap */ 3062 q->mq_ops = set->ops; 3063 3064 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3065 blk_mq_poll_stats_bkt, 3066 BLK_MQ_POLL_STATS_BKTS, q); 3067 if (!q->poll_cb) 3068 goto err_exit; 3069 3070 if (blk_mq_alloc_ctxs(q)) 3071 goto err_poll; 3072 3073 /* init q->mq_kobj and sw queues' kobjects */ 3074 blk_mq_sysfs_init(q); 3075 3076 INIT_LIST_HEAD(&q->unused_hctx_list); 3077 spin_lock_init(&q->unused_hctx_lock); 3078 3079 blk_mq_realloc_hw_ctxs(set, q); 3080 if (!q->nr_hw_queues) 3081 goto err_hctxs; 3082 3083 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3084 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3085 3086 q->tag_set = set; 3087 3088 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3089 if (set->nr_maps > HCTX_TYPE_POLL && 3090 set->map[HCTX_TYPE_POLL].nr_queues) 3091 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3092 3093 q->sg_reserved_size = INT_MAX; 3094 3095 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3096 INIT_LIST_HEAD(&q->requeue_list); 3097 spin_lock_init(&q->requeue_lock); 3098 3099 q->nr_requests = set->queue_depth; 3100 3101 /* 3102 * Default to classic polling 3103 */ 3104 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3105 3106 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3107 blk_mq_add_queue_tag_set(set, q); 3108 blk_mq_map_swqueue(q); 3109 3110 if (elevator_init) 3111 elevator_init_mq(q); 3112 3113 return q; 3114 3115 err_hctxs: 3116 kfree(q->queue_hw_ctx); 3117 q->nr_hw_queues = 0; 3118 blk_mq_sysfs_deinit(q); 3119 err_poll: 3120 blk_stat_free_callback(q->poll_cb); 3121 q->poll_cb = NULL; 3122 err_exit: 3123 q->mq_ops = NULL; 3124 return ERR_PTR(-ENOMEM); 3125 } 3126 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3127 3128 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3129 void blk_mq_exit_queue(struct request_queue *q) 3130 { 3131 struct blk_mq_tag_set *set = q->tag_set; 3132 3133 blk_mq_del_queue_tag_set(q); 3134 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3135 } 3136 3137 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3138 { 3139 int i; 3140 3141 for (i = 0; i < set->nr_hw_queues; i++) 3142 if (!__blk_mq_alloc_map_and_request(set, i)) 3143 goto out_unwind; 3144 3145 return 0; 3146 3147 out_unwind: 3148 while (--i >= 0) 3149 blk_mq_free_map_and_requests(set, i); 3150 3151 return -ENOMEM; 3152 } 3153 3154 /* 3155 * Allocate the request maps associated with this tag_set. Note that this 3156 * may reduce the depth asked for, if memory is tight. set->queue_depth 3157 * will be updated to reflect the allocated depth. 3158 */ 3159 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3160 { 3161 unsigned int depth; 3162 int err; 3163 3164 depth = set->queue_depth; 3165 do { 3166 err = __blk_mq_alloc_rq_maps(set); 3167 if (!err) 3168 break; 3169 3170 set->queue_depth >>= 1; 3171 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3172 err = -ENOMEM; 3173 break; 3174 } 3175 } while (set->queue_depth); 3176 3177 if (!set->queue_depth || err) { 3178 pr_err("blk-mq: failed to allocate request map\n"); 3179 return -ENOMEM; 3180 } 3181 3182 if (depth != set->queue_depth) 3183 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3184 depth, set->queue_depth); 3185 3186 return 0; 3187 } 3188 3189 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3190 { 3191 /* 3192 * blk_mq_map_queues() and multiple .map_queues() implementations 3193 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3194 * number of hardware queues. 3195 */ 3196 if (set->nr_maps == 1) 3197 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3198 3199 if (set->ops->map_queues && !is_kdump_kernel()) { 3200 int i; 3201 3202 /* 3203 * transport .map_queues is usually done in the following 3204 * way: 3205 * 3206 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3207 * mask = get_cpu_mask(queue) 3208 * for_each_cpu(cpu, mask) 3209 * set->map[x].mq_map[cpu] = queue; 3210 * } 3211 * 3212 * When we need to remap, the table has to be cleared for 3213 * killing stale mapping since one CPU may not be mapped 3214 * to any hw queue. 3215 */ 3216 for (i = 0; i < set->nr_maps; i++) 3217 blk_mq_clear_mq_map(&set->map[i]); 3218 3219 return set->ops->map_queues(set); 3220 } else { 3221 BUG_ON(set->nr_maps > 1); 3222 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3223 } 3224 } 3225 3226 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3227 int cur_nr_hw_queues, int new_nr_hw_queues) 3228 { 3229 struct blk_mq_tags **new_tags; 3230 3231 if (cur_nr_hw_queues >= new_nr_hw_queues) 3232 return 0; 3233 3234 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3235 GFP_KERNEL, set->numa_node); 3236 if (!new_tags) 3237 return -ENOMEM; 3238 3239 if (set->tags) 3240 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3241 sizeof(*set->tags)); 3242 kfree(set->tags); 3243 set->tags = new_tags; 3244 set->nr_hw_queues = new_nr_hw_queues; 3245 3246 return 0; 3247 } 3248 3249 /* 3250 * Alloc a tag set to be associated with one or more request queues. 3251 * May fail with EINVAL for various error conditions. May adjust the 3252 * requested depth down, if it's too large. In that case, the set 3253 * value will be stored in set->queue_depth. 3254 */ 3255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3256 { 3257 int i, ret; 3258 3259 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3260 3261 if (!set->nr_hw_queues) 3262 return -EINVAL; 3263 if (!set->queue_depth) 3264 return -EINVAL; 3265 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3266 return -EINVAL; 3267 3268 if (!set->ops->queue_rq) 3269 return -EINVAL; 3270 3271 if (!set->ops->get_budget ^ !set->ops->put_budget) 3272 return -EINVAL; 3273 3274 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3275 pr_info("blk-mq: reduced tag depth to %u\n", 3276 BLK_MQ_MAX_DEPTH); 3277 set->queue_depth = BLK_MQ_MAX_DEPTH; 3278 } 3279 3280 if (!set->nr_maps) 3281 set->nr_maps = 1; 3282 else if (set->nr_maps > HCTX_MAX_TYPES) 3283 return -EINVAL; 3284 3285 /* 3286 * If a crashdump is active, then we are potentially in a very 3287 * memory constrained environment. Limit us to 1 queue and 3288 * 64 tags to prevent using too much memory. 3289 */ 3290 if (is_kdump_kernel()) { 3291 set->nr_hw_queues = 1; 3292 set->nr_maps = 1; 3293 set->queue_depth = min(64U, set->queue_depth); 3294 } 3295 /* 3296 * There is no use for more h/w queues than cpus if we just have 3297 * a single map 3298 */ 3299 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3300 set->nr_hw_queues = nr_cpu_ids; 3301 3302 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3303 return -ENOMEM; 3304 3305 ret = -ENOMEM; 3306 for (i = 0; i < set->nr_maps; i++) { 3307 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3308 sizeof(set->map[i].mq_map[0]), 3309 GFP_KERNEL, set->numa_node); 3310 if (!set->map[i].mq_map) 3311 goto out_free_mq_map; 3312 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3313 } 3314 3315 ret = blk_mq_update_queue_map(set); 3316 if (ret) 3317 goto out_free_mq_map; 3318 3319 ret = blk_mq_alloc_map_and_requests(set); 3320 if (ret) 3321 goto out_free_mq_map; 3322 3323 mutex_init(&set->tag_list_lock); 3324 INIT_LIST_HEAD(&set->tag_list); 3325 3326 return 0; 3327 3328 out_free_mq_map: 3329 for (i = 0; i < set->nr_maps; i++) { 3330 kfree(set->map[i].mq_map); 3331 set->map[i].mq_map = NULL; 3332 } 3333 kfree(set->tags); 3334 set->tags = NULL; 3335 return ret; 3336 } 3337 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3338 3339 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3340 { 3341 int i, j; 3342 3343 for (i = 0; i < set->nr_hw_queues; i++) 3344 blk_mq_free_map_and_requests(set, i); 3345 3346 for (j = 0; j < set->nr_maps; j++) { 3347 kfree(set->map[j].mq_map); 3348 set->map[j].mq_map = NULL; 3349 } 3350 3351 kfree(set->tags); 3352 set->tags = NULL; 3353 } 3354 EXPORT_SYMBOL(blk_mq_free_tag_set); 3355 3356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3357 { 3358 struct blk_mq_tag_set *set = q->tag_set; 3359 struct blk_mq_hw_ctx *hctx; 3360 int i, ret; 3361 3362 if (!set) 3363 return -EINVAL; 3364 3365 if (q->nr_requests == nr) 3366 return 0; 3367 3368 blk_mq_freeze_queue(q); 3369 blk_mq_quiesce_queue(q); 3370 3371 ret = 0; 3372 queue_for_each_hw_ctx(q, hctx, i) { 3373 if (!hctx->tags) 3374 continue; 3375 /* 3376 * If we're using an MQ scheduler, just update the scheduler 3377 * queue depth. This is similar to what the old code would do. 3378 */ 3379 if (!hctx->sched_tags) { 3380 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3381 false); 3382 } else { 3383 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3384 nr, true); 3385 } 3386 if (ret) 3387 break; 3388 if (q->elevator && q->elevator->type->ops.depth_updated) 3389 q->elevator->type->ops.depth_updated(hctx); 3390 } 3391 3392 if (!ret) 3393 q->nr_requests = nr; 3394 3395 blk_mq_unquiesce_queue(q); 3396 blk_mq_unfreeze_queue(q); 3397 3398 return ret; 3399 } 3400 3401 /* 3402 * request_queue and elevator_type pair. 3403 * It is just used by __blk_mq_update_nr_hw_queues to cache 3404 * the elevator_type associated with a request_queue. 3405 */ 3406 struct blk_mq_qe_pair { 3407 struct list_head node; 3408 struct request_queue *q; 3409 struct elevator_type *type; 3410 }; 3411 3412 /* 3413 * Cache the elevator_type in qe pair list and switch the 3414 * io scheduler to 'none' 3415 */ 3416 static bool blk_mq_elv_switch_none(struct list_head *head, 3417 struct request_queue *q) 3418 { 3419 struct blk_mq_qe_pair *qe; 3420 3421 if (!q->elevator) 3422 return true; 3423 3424 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3425 if (!qe) 3426 return false; 3427 3428 INIT_LIST_HEAD(&qe->node); 3429 qe->q = q; 3430 qe->type = q->elevator->type; 3431 list_add(&qe->node, head); 3432 3433 mutex_lock(&q->sysfs_lock); 3434 /* 3435 * After elevator_switch_mq, the previous elevator_queue will be 3436 * released by elevator_release. The reference of the io scheduler 3437 * module get by elevator_get will also be put. So we need to get 3438 * a reference of the io scheduler module here to prevent it to be 3439 * removed. 3440 */ 3441 __module_get(qe->type->elevator_owner); 3442 elevator_switch_mq(q, NULL); 3443 mutex_unlock(&q->sysfs_lock); 3444 3445 return true; 3446 } 3447 3448 static void blk_mq_elv_switch_back(struct list_head *head, 3449 struct request_queue *q) 3450 { 3451 struct blk_mq_qe_pair *qe; 3452 struct elevator_type *t = NULL; 3453 3454 list_for_each_entry(qe, head, node) 3455 if (qe->q == q) { 3456 t = qe->type; 3457 break; 3458 } 3459 3460 if (!t) 3461 return; 3462 3463 list_del(&qe->node); 3464 kfree(qe); 3465 3466 mutex_lock(&q->sysfs_lock); 3467 elevator_switch_mq(q, t); 3468 mutex_unlock(&q->sysfs_lock); 3469 } 3470 3471 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3472 int nr_hw_queues) 3473 { 3474 struct request_queue *q; 3475 LIST_HEAD(head); 3476 int prev_nr_hw_queues; 3477 3478 lockdep_assert_held(&set->tag_list_lock); 3479 3480 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3481 nr_hw_queues = nr_cpu_ids; 3482 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3483 return; 3484 3485 list_for_each_entry(q, &set->tag_list, tag_set_list) 3486 blk_mq_freeze_queue(q); 3487 /* 3488 * Switch IO scheduler to 'none', cleaning up the data associated 3489 * with the previous scheduler. We will switch back once we are done 3490 * updating the new sw to hw queue mappings. 3491 */ 3492 list_for_each_entry(q, &set->tag_list, tag_set_list) 3493 if (!blk_mq_elv_switch_none(&head, q)) 3494 goto switch_back; 3495 3496 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3497 blk_mq_debugfs_unregister_hctxs(q); 3498 blk_mq_sysfs_unregister(q); 3499 } 3500 3501 prev_nr_hw_queues = set->nr_hw_queues; 3502 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3503 0) 3504 goto reregister; 3505 3506 set->nr_hw_queues = nr_hw_queues; 3507 fallback: 3508 blk_mq_update_queue_map(set); 3509 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3510 blk_mq_realloc_hw_ctxs(set, q); 3511 if (q->nr_hw_queues != set->nr_hw_queues) { 3512 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3513 nr_hw_queues, prev_nr_hw_queues); 3514 set->nr_hw_queues = prev_nr_hw_queues; 3515 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3516 goto fallback; 3517 } 3518 blk_mq_map_swqueue(q); 3519 } 3520 3521 reregister: 3522 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3523 blk_mq_sysfs_register(q); 3524 blk_mq_debugfs_register_hctxs(q); 3525 } 3526 3527 switch_back: 3528 list_for_each_entry(q, &set->tag_list, tag_set_list) 3529 blk_mq_elv_switch_back(&head, q); 3530 3531 list_for_each_entry(q, &set->tag_list, tag_set_list) 3532 blk_mq_unfreeze_queue(q); 3533 } 3534 3535 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3536 { 3537 mutex_lock(&set->tag_list_lock); 3538 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3539 mutex_unlock(&set->tag_list_lock); 3540 } 3541 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3542 3543 /* Enable polling stats and return whether they were already enabled. */ 3544 static bool blk_poll_stats_enable(struct request_queue *q) 3545 { 3546 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3547 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3548 return true; 3549 blk_stat_add_callback(q, q->poll_cb); 3550 return false; 3551 } 3552 3553 static void blk_mq_poll_stats_start(struct request_queue *q) 3554 { 3555 /* 3556 * We don't arm the callback if polling stats are not enabled or the 3557 * callback is already active. 3558 */ 3559 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3560 blk_stat_is_active(q->poll_cb)) 3561 return; 3562 3563 blk_stat_activate_msecs(q->poll_cb, 100); 3564 } 3565 3566 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3567 { 3568 struct request_queue *q = cb->data; 3569 int bucket; 3570 3571 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3572 if (cb->stat[bucket].nr_samples) 3573 q->poll_stat[bucket] = cb->stat[bucket]; 3574 } 3575 } 3576 3577 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3578 struct request *rq) 3579 { 3580 unsigned long ret = 0; 3581 int bucket; 3582 3583 /* 3584 * If stats collection isn't on, don't sleep but turn it on for 3585 * future users 3586 */ 3587 if (!blk_poll_stats_enable(q)) 3588 return 0; 3589 3590 /* 3591 * As an optimistic guess, use half of the mean service time 3592 * for this type of request. We can (and should) make this smarter. 3593 * For instance, if the completion latencies are tight, we can 3594 * get closer than just half the mean. This is especially 3595 * important on devices where the completion latencies are longer 3596 * than ~10 usec. We do use the stats for the relevant IO size 3597 * if available which does lead to better estimates. 3598 */ 3599 bucket = blk_mq_poll_stats_bkt(rq); 3600 if (bucket < 0) 3601 return ret; 3602 3603 if (q->poll_stat[bucket].nr_samples) 3604 ret = (q->poll_stat[bucket].mean + 1) / 2; 3605 3606 return ret; 3607 } 3608 3609 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3610 struct request *rq) 3611 { 3612 struct hrtimer_sleeper hs; 3613 enum hrtimer_mode mode; 3614 unsigned int nsecs; 3615 ktime_t kt; 3616 3617 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3618 return false; 3619 3620 /* 3621 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3622 * 3623 * 0: use half of prev avg 3624 * >0: use this specific value 3625 */ 3626 if (q->poll_nsec > 0) 3627 nsecs = q->poll_nsec; 3628 else 3629 nsecs = blk_mq_poll_nsecs(q, rq); 3630 3631 if (!nsecs) 3632 return false; 3633 3634 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3635 3636 /* 3637 * This will be replaced with the stats tracking code, using 3638 * 'avg_completion_time / 2' as the pre-sleep target. 3639 */ 3640 kt = nsecs; 3641 3642 mode = HRTIMER_MODE_REL; 3643 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3644 hrtimer_set_expires(&hs.timer, kt); 3645 3646 do { 3647 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3648 break; 3649 set_current_state(TASK_UNINTERRUPTIBLE); 3650 hrtimer_sleeper_start_expires(&hs, mode); 3651 if (hs.task) 3652 io_schedule(); 3653 hrtimer_cancel(&hs.timer); 3654 mode = HRTIMER_MODE_ABS; 3655 } while (hs.task && !signal_pending(current)); 3656 3657 __set_current_state(TASK_RUNNING); 3658 destroy_hrtimer_on_stack(&hs.timer); 3659 return true; 3660 } 3661 3662 static bool blk_mq_poll_hybrid(struct request_queue *q, 3663 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3664 { 3665 struct request *rq; 3666 3667 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3668 return false; 3669 3670 if (!blk_qc_t_is_internal(cookie)) 3671 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3672 else { 3673 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3674 /* 3675 * With scheduling, if the request has completed, we'll 3676 * get a NULL return here, as we clear the sched tag when 3677 * that happens. The request still remains valid, like always, 3678 * so we should be safe with just the NULL check. 3679 */ 3680 if (!rq) 3681 return false; 3682 } 3683 3684 return blk_mq_poll_hybrid_sleep(q, rq); 3685 } 3686 3687 /** 3688 * blk_poll - poll for IO completions 3689 * @q: the queue 3690 * @cookie: cookie passed back at IO submission time 3691 * @spin: whether to spin for completions 3692 * 3693 * Description: 3694 * Poll for completions on the passed in queue. Returns number of 3695 * completed entries found. If @spin is true, then blk_poll will continue 3696 * looping until at least one completion is found, unless the task is 3697 * otherwise marked running (or we need to reschedule). 3698 */ 3699 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3700 { 3701 struct blk_mq_hw_ctx *hctx; 3702 long state; 3703 3704 if (!blk_qc_t_valid(cookie) || 3705 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3706 return 0; 3707 3708 if (current->plug) 3709 blk_flush_plug_list(current->plug, false); 3710 3711 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3712 3713 /* 3714 * If we sleep, have the caller restart the poll loop to reset 3715 * the state. Like for the other success return cases, the 3716 * caller is responsible for checking if the IO completed. If 3717 * the IO isn't complete, we'll get called again and will go 3718 * straight to the busy poll loop. 3719 */ 3720 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3721 return 1; 3722 3723 hctx->poll_considered++; 3724 3725 state = current->state; 3726 do { 3727 int ret; 3728 3729 hctx->poll_invoked++; 3730 3731 ret = q->mq_ops->poll(hctx); 3732 if (ret > 0) { 3733 hctx->poll_success++; 3734 __set_current_state(TASK_RUNNING); 3735 return ret; 3736 } 3737 3738 if (signal_pending_state(state, current)) 3739 __set_current_state(TASK_RUNNING); 3740 3741 if (current->state == TASK_RUNNING) 3742 return 1; 3743 if (ret < 0 || !spin) 3744 break; 3745 cpu_relax(); 3746 } while (!need_resched()); 3747 3748 __set_current_state(TASK_RUNNING); 3749 return 0; 3750 } 3751 EXPORT_SYMBOL_GPL(blk_poll); 3752 3753 unsigned int blk_mq_rq_cpu(struct request *rq) 3754 { 3755 return rq->mq_ctx->cpu; 3756 } 3757 EXPORT_SYMBOL(blk_mq_rq_cpu); 3758 3759 static int __init blk_mq_init(void) 3760 { 3761 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3762 blk_mq_hctx_notify_dead); 3763 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3764 blk_mq_hctx_notify_online, 3765 blk_mq_hctx_notify_offline); 3766 return 0; 3767 } 3768 subsys_initcall(blk_mq_init); 3769