1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include <linux/t10-pi.h> 34 #include "blk.h" 35 #include "blk-mq.h" 36 #include "blk-mq-debugfs.h" 37 #include "blk-mq-tag.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static void blk_mq_poll_stats_start(struct request_queue *q); 44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 45 46 static int blk_mq_poll_stats_bkt(const struct request *rq) 47 { 48 int ddir, sectors, bucket; 49 50 ddir = rq_data_dir(rq); 51 sectors = blk_rq_stats_sectors(rq); 52 53 bucket = ddir + 2 * ilog2(sectors); 54 55 if (bucket < 0) 56 return -1; 57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 59 60 return bucket; 61 } 62 63 /* 64 * Check if any of the ctx, dispatch list or elevator 65 * have pending work in this hardware queue. 66 */ 67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 68 { 69 return !list_empty_careful(&hctx->dispatch) || 70 sbitmap_any_bit_set(&hctx->ctx_map) || 71 blk_mq_sched_has_work(hctx); 72 } 73 74 /* 75 * Mark this ctx as having pending work in this hardware queue 76 */ 77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 83 sbitmap_set_bit(&hctx->ctx_map, bit); 84 } 85 86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 87 struct blk_mq_ctx *ctx) 88 { 89 const int bit = ctx->index_hw[hctx->type]; 90 91 sbitmap_clear_bit(&hctx->ctx_map, bit); 92 } 93 94 struct mq_inflight { 95 struct hd_struct *part; 96 unsigned int inflight[2]; 97 }; 98 99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 100 struct request *rq, void *priv, 101 bool reserved) 102 { 103 struct mq_inflight *mi = priv; 104 105 if (rq->part == mi->part) 106 mi->inflight[rq_data_dir(rq)]++; 107 108 return true; 109 } 110 111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 112 { 113 struct mq_inflight mi = { .part = part }; 114 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 117 return mi.inflight[0] + mi.inflight[1]; 118 } 119 120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 121 unsigned int inflight[2]) 122 { 123 struct mq_inflight mi = { .part = part }; 124 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 126 inflight[0] = mi.inflight[0]; 127 inflight[1] = mi.inflight[1]; 128 } 129 130 void blk_freeze_queue_start(struct request_queue *q) 131 { 132 mutex_lock(&q->mq_freeze_lock); 133 if (++q->mq_freeze_depth == 1) { 134 percpu_ref_kill(&q->q_usage_counter); 135 mutex_unlock(&q->mq_freeze_lock); 136 if (queue_is_mq(q)) 137 blk_mq_run_hw_queues(q, false); 138 } else { 139 mutex_unlock(&q->mq_freeze_lock); 140 } 141 } 142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 143 144 void blk_mq_freeze_queue_wait(struct request_queue *q) 145 { 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 149 150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 151 unsigned long timeout) 152 { 153 return wait_event_timeout(q->mq_freeze_wq, 154 percpu_ref_is_zero(&q->q_usage_counter), 155 timeout); 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 158 159 /* 160 * Guarantee no request is in use, so we can change any data structure of 161 * the queue afterward. 162 */ 163 void blk_freeze_queue(struct request_queue *q) 164 { 165 /* 166 * In the !blk_mq case we are only calling this to kill the 167 * q_usage_counter, otherwise this increases the freeze depth 168 * and waits for it to return to zero. For this reason there is 169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 170 * exported to drivers as the only user for unfreeze is blk_mq. 171 */ 172 blk_freeze_queue_start(q); 173 blk_mq_freeze_queue_wait(q); 174 } 175 176 void blk_mq_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * ...just an alias to keep freeze and unfreeze actions balanced 180 * in the blk_mq_* namespace 181 */ 182 blk_freeze_queue(q); 183 } 184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 185 186 void blk_mq_unfreeze_queue(struct request_queue *q) 187 { 188 mutex_lock(&q->mq_freeze_lock); 189 q->mq_freeze_depth--; 190 WARN_ON_ONCE(q->mq_freeze_depth < 0); 191 if (!q->mq_freeze_depth) { 192 percpu_ref_resurrect(&q->q_usage_counter); 193 wake_up_all(&q->mq_freeze_wq); 194 } 195 mutex_unlock(&q->mq_freeze_lock); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 206 } 207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 208 209 /** 210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 211 * @q: request queue. 212 * 213 * Note: this function does not prevent that the struct request end_io() 214 * callback function is invoked. Once this function is returned, we make 215 * sure no dispatch can happen until the queue is unquiesced via 216 * blk_mq_unquiesce_queue(). 217 */ 218 void blk_mq_quiesce_queue(struct request_queue *q) 219 { 220 struct blk_mq_hw_ctx *hctx; 221 unsigned int i; 222 bool rcu = false; 223 224 blk_mq_quiesce_queue_nowait(q); 225 226 queue_for_each_hw_ctx(q, hctx, i) { 227 if (hctx->flags & BLK_MQ_F_BLOCKING) 228 synchronize_srcu(hctx->srcu); 229 else 230 rcu = true; 231 } 232 if (rcu) 233 synchronize_rcu(); 234 } 235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 236 237 /* 238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 239 * @q: request queue. 240 * 241 * This function recovers queue into the state before quiescing 242 * which is done by blk_mq_quiesce_queue. 243 */ 244 void blk_mq_unquiesce_queue(struct request_queue *q) 245 { 246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 /* 264 * Only need start/end time stamping if we have iostat or 265 * blk stats enabled, or using an IO scheduler. 266 */ 267 static inline bool blk_mq_need_time_stamp(struct request *rq) 268 { 269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 270 } 271 272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 273 unsigned int tag, unsigned int op, u64 alloc_time_ns) 274 { 275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 276 struct request *rq = tags->static_rqs[tag]; 277 req_flags_t rq_flags = 0; 278 279 if (data->flags & BLK_MQ_REQ_INTERNAL) { 280 rq->tag = -1; 281 rq->internal_tag = tag; 282 } else { 283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 284 rq_flags = RQF_MQ_INFLIGHT; 285 atomic_inc(&data->hctx->nr_active); 286 } 287 rq->tag = tag; 288 rq->internal_tag = -1; 289 data->hctx->tags->rqs[rq->tag] = rq; 290 } 291 292 /* csd/requeue_work/fifo_time is initialized before use */ 293 rq->q = data->q; 294 rq->mq_ctx = data->ctx; 295 rq->mq_hctx = data->hctx; 296 rq->rq_flags = rq_flags; 297 rq->cmd_flags = op; 298 if (data->flags & BLK_MQ_REQ_PREEMPT) 299 rq->rq_flags |= RQF_PREEMPT; 300 if (blk_queue_io_stat(data->q)) 301 rq->rq_flags |= RQF_IO_STAT; 302 INIT_LIST_HEAD(&rq->queuelist); 303 INIT_HLIST_NODE(&rq->hash); 304 RB_CLEAR_NODE(&rq->rb_node); 305 rq->rq_disk = NULL; 306 rq->part = NULL; 307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 308 rq->alloc_time_ns = alloc_time_ns; 309 #endif 310 if (blk_mq_need_time_stamp(rq)) 311 rq->start_time_ns = ktime_get_ns(); 312 else 313 rq->start_time_ns = 0; 314 rq->io_start_time_ns = 0; 315 rq->stats_sectors = 0; 316 rq->nr_phys_segments = 0; 317 #if defined(CONFIG_BLK_DEV_INTEGRITY) 318 rq->nr_integrity_segments = 0; 319 #endif 320 /* tag was already set */ 321 rq->extra_len = 0; 322 WRITE_ONCE(rq->deadline, 0); 323 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 329 data->ctx->rq_dispatched[op_is_sync(op)]++; 330 refcount_set(&rq->ref, 1); 331 return rq; 332 } 333 334 static struct request *blk_mq_get_request(struct request_queue *q, 335 struct bio *bio, 336 struct blk_mq_alloc_data *data) 337 { 338 struct elevator_queue *e = q->elevator; 339 struct request *rq; 340 unsigned int tag; 341 bool clear_ctx_on_error = false; 342 u64 alloc_time_ns = 0; 343 344 blk_queue_enter_live(q); 345 346 /* alloc_time includes depth and tag waits */ 347 if (blk_queue_rq_alloc_time(q)) 348 alloc_time_ns = ktime_get_ns(); 349 350 data->q = q; 351 if (likely(!data->ctx)) { 352 data->ctx = blk_mq_get_ctx(q); 353 clear_ctx_on_error = true; 354 } 355 if (likely(!data->hctx)) 356 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 357 data->ctx); 358 if (data->cmd_flags & REQ_NOWAIT) 359 data->flags |= BLK_MQ_REQ_NOWAIT; 360 361 if (e) { 362 data->flags |= BLK_MQ_REQ_INTERNAL; 363 364 /* 365 * Flush requests are special and go directly to the 366 * dispatch list. Don't include reserved tags in the 367 * limiting, as it isn't useful. 368 */ 369 if (!op_is_flush(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } else { 374 blk_mq_tag_busy(data->hctx); 375 } 376 377 tag = blk_mq_get_tag(data); 378 if (tag == BLK_MQ_TAG_FAIL) { 379 if (clear_ctx_on_error) 380 data->ctx = NULL; 381 blk_queue_exit(q); 382 return NULL; 383 } 384 385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 386 if (!op_is_flush(data->cmd_flags)) { 387 rq->elv.icq = NULL; 388 if (e && e->type->ops.prepare_request) { 389 if (e->type->icq_cache) 390 blk_mq_sched_assign_ioc(rq); 391 392 e->type->ops.prepare_request(rq, bio); 393 rq->rq_flags |= RQF_ELVPRIV; 394 } 395 } 396 data->hctx->queued++; 397 return rq; 398 } 399 400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 401 blk_mq_req_flags_t flags) 402 { 403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 404 struct request *rq; 405 int ret; 406 407 ret = blk_queue_enter(q, flags); 408 if (ret) 409 return ERR_PTR(ret); 410 411 rq = blk_mq_get_request(q, NULL, &alloc_data); 412 blk_queue_exit(q); 413 414 if (!rq) 415 return ERR_PTR(-EWOULDBLOCK); 416 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 } 422 EXPORT_SYMBOL(blk_mq_alloc_request); 423 424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 426 { 427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 428 struct request *rq; 429 unsigned int cpu; 430 int ret; 431 432 /* 433 * If the tag allocator sleeps we could get an allocation for a 434 * different hardware context. No need to complicate the low level 435 * allocator for this for the rare use case of a command tied to 436 * a specific queue. 437 */ 438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 439 return ERR_PTR(-EINVAL); 440 441 if (hctx_idx >= q->nr_hw_queues) 442 return ERR_PTR(-EIO); 443 444 ret = blk_queue_enter(q, flags); 445 if (ret) 446 return ERR_PTR(ret); 447 448 /* 449 * Check if the hardware context is actually mapped to anything. 450 * If not tell the caller that it should skip this queue. 451 */ 452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 454 blk_queue_exit(q); 455 return ERR_PTR(-EXDEV); 456 } 457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 459 460 rq = blk_mq_get_request(q, NULL, &alloc_data); 461 blk_queue_exit(q); 462 463 if (!rq) 464 return ERR_PTR(-EWOULDBLOCK); 465 466 return rq; 467 } 468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 469 470 static void __blk_mq_free_request(struct request *rq) 471 { 472 struct request_queue *q = rq->q; 473 struct blk_mq_ctx *ctx = rq->mq_ctx; 474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 475 const int sched_tag = rq->internal_tag; 476 477 blk_pm_mark_last_busy(rq); 478 rq->mq_hctx = NULL; 479 if (rq->tag != -1) 480 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 481 if (sched_tag != -1) 482 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 483 blk_mq_sched_restart(hctx); 484 blk_queue_exit(q); 485 } 486 487 void blk_mq_free_request(struct request *rq) 488 { 489 struct request_queue *q = rq->q; 490 struct elevator_queue *e = q->elevator; 491 struct blk_mq_ctx *ctx = rq->mq_ctx; 492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 493 494 if (rq->rq_flags & RQF_ELVPRIV) { 495 if (e && e->type->ops.finish_request) 496 e->type->ops.finish_request(rq); 497 if (rq->elv.icq) { 498 put_io_context(rq->elv.icq->ioc); 499 rq->elv.icq = NULL; 500 } 501 } 502 503 ctx->rq_completed[rq_is_sync(rq)]++; 504 if (rq->rq_flags & RQF_MQ_INFLIGHT) 505 atomic_dec(&hctx->nr_active); 506 507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 508 laptop_io_completion(q->backing_dev_info); 509 510 rq_qos_done(q, rq); 511 512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 513 if (refcount_dec_and_test(&rq->ref)) 514 __blk_mq_free_request(rq); 515 } 516 EXPORT_SYMBOL_GPL(blk_mq_free_request); 517 518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 519 { 520 u64 now = 0; 521 522 if (blk_mq_need_time_stamp(rq)) 523 now = ktime_get_ns(); 524 525 if (rq->rq_flags & RQF_STATS) { 526 blk_mq_poll_stats_start(rq->q); 527 blk_stat_add(rq, now); 528 } 529 530 if (rq->internal_tag != -1) 531 blk_mq_sched_completed_request(rq, now); 532 533 blk_account_io_done(rq, now); 534 535 if (rq->end_io) { 536 rq_qos_done(rq->q, rq); 537 rq->end_io(rq, error); 538 } else { 539 blk_mq_free_request(rq); 540 } 541 } 542 EXPORT_SYMBOL(__blk_mq_end_request); 543 544 void blk_mq_end_request(struct request *rq, blk_status_t error) 545 { 546 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 547 BUG(); 548 __blk_mq_end_request(rq, error); 549 } 550 EXPORT_SYMBOL(blk_mq_end_request); 551 552 static void __blk_mq_complete_request_remote(void *data) 553 { 554 struct request *rq = data; 555 struct request_queue *q = rq->q; 556 557 q->mq_ops->complete(rq); 558 } 559 560 static void __blk_mq_complete_request(struct request *rq) 561 { 562 struct blk_mq_ctx *ctx = rq->mq_ctx; 563 struct request_queue *q = rq->q; 564 bool shared = false; 565 int cpu; 566 567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 568 /* 569 * Most of single queue controllers, there is only one irq vector 570 * for handling IO completion, and the only irq's affinity is set 571 * as all possible CPUs. On most of ARCHs, this affinity means the 572 * irq is handled on one specific CPU. 573 * 574 * So complete IO reqeust in softirq context in case of single queue 575 * for not degrading IO performance by irqsoff latency. 576 */ 577 if (q->nr_hw_queues == 1) { 578 __blk_complete_request(rq); 579 return; 580 } 581 582 /* 583 * For a polled request, always complete locallly, it's pointless 584 * to redirect the completion. 585 */ 586 if ((rq->cmd_flags & REQ_HIPRI) || 587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 588 q->mq_ops->complete(rq); 589 return; 590 } 591 592 cpu = get_cpu(); 593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 594 shared = cpus_share_cache(cpu, ctx->cpu); 595 596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 597 rq->csd.func = __blk_mq_complete_request_remote; 598 rq->csd.info = rq; 599 rq->csd.flags = 0; 600 smp_call_function_single_async(ctx->cpu, &rq->csd); 601 } else { 602 q->mq_ops->complete(rq); 603 } 604 put_cpu(); 605 } 606 607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 608 __releases(hctx->srcu) 609 { 610 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 611 rcu_read_unlock(); 612 else 613 srcu_read_unlock(hctx->srcu, srcu_idx); 614 } 615 616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 617 __acquires(hctx->srcu) 618 { 619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 620 /* shut up gcc false positive */ 621 *srcu_idx = 0; 622 rcu_read_lock(); 623 } else 624 *srcu_idx = srcu_read_lock(hctx->srcu); 625 } 626 627 /** 628 * blk_mq_complete_request - end I/O on a request 629 * @rq: the request being processed 630 * 631 * Description: 632 * Ends all I/O on a request. It does not handle partial completions. 633 * The actual completion happens out-of-order, through a IPI handler. 634 **/ 635 bool blk_mq_complete_request(struct request *rq) 636 { 637 if (unlikely(blk_should_fake_timeout(rq->q))) 638 return false; 639 __blk_mq_complete_request(rq); 640 return true; 641 } 642 EXPORT_SYMBOL(blk_mq_complete_request); 643 644 /** 645 * blk_mq_start_request - Start processing a request 646 * @rq: Pointer to request to be started 647 * 648 * Function used by device drivers to notify the block layer that a request 649 * is going to be processed now, so blk layer can do proper initializations 650 * such as starting the timeout timer. 651 */ 652 void blk_mq_start_request(struct request *rq) 653 { 654 struct request_queue *q = rq->q; 655 656 trace_block_rq_issue(q, rq); 657 658 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 659 rq->io_start_time_ns = ktime_get_ns(); 660 rq->stats_sectors = blk_rq_sectors(rq); 661 rq->rq_flags |= RQF_STATS; 662 rq_qos_issue(q, rq); 663 } 664 665 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 666 667 blk_add_timer(rq); 668 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 669 670 if (q->dma_drain_size && blk_rq_bytes(rq)) { 671 /* 672 * Make sure space for the drain appears. We know we can do 673 * this because max_hw_segments has been adjusted to be one 674 * fewer than the device can handle. 675 */ 676 rq->nr_phys_segments++; 677 } 678 679 #ifdef CONFIG_BLK_DEV_INTEGRITY 680 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 681 q->integrity.profile->prepare_fn(rq); 682 #endif 683 } 684 EXPORT_SYMBOL(blk_mq_start_request); 685 686 static void __blk_mq_requeue_request(struct request *rq) 687 { 688 struct request_queue *q = rq->q; 689 690 blk_mq_put_driver_tag(rq); 691 692 trace_block_rq_requeue(q, rq); 693 rq_qos_requeue(q, rq); 694 695 if (blk_mq_request_started(rq)) { 696 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 697 rq->rq_flags &= ~RQF_TIMED_OUT; 698 if (q->dma_drain_size && blk_rq_bytes(rq)) 699 rq->nr_phys_segments--; 700 } 701 } 702 703 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 704 { 705 __blk_mq_requeue_request(rq); 706 707 /* this request will be re-inserted to io scheduler queue */ 708 blk_mq_sched_requeue_request(rq); 709 710 BUG_ON(!list_empty(&rq->queuelist)); 711 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 712 } 713 EXPORT_SYMBOL(blk_mq_requeue_request); 714 715 static void blk_mq_requeue_work(struct work_struct *work) 716 { 717 struct request_queue *q = 718 container_of(work, struct request_queue, requeue_work.work); 719 LIST_HEAD(rq_list); 720 struct request *rq, *next; 721 722 spin_lock_irq(&q->requeue_lock); 723 list_splice_init(&q->requeue_list, &rq_list); 724 spin_unlock_irq(&q->requeue_lock); 725 726 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 727 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 728 continue; 729 730 rq->rq_flags &= ~RQF_SOFTBARRIER; 731 list_del_init(&rq->queuelist); 732 /* 733 * If RQF_DONTPREP, rq has contained some driver specific 734 * data, so insert it to hctx dispatch list to avoid any 735 * merge. 736 */ 737 if (rq->rq_flags & RQF_DONTPREP) 738 blk_mq_request_bypass_insert(rq, false, false); 739 else 740 blk_mq_sched_insert_request(rq, true, false, false); 741 } 742 743 while (!list_empty(&rq_list)) { 744 rq = list_entry(rq_list.next, struct request, queuelist); 745 list_del_init(&rq->queuelist); 746 blk_mq_sched_insert_request(rq, false, false, false); 747 } 748 749 blk_mq_run_hw_queues(q, false); 750 } 751 752 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 753 bool kick_requeue_list) 754 { 755 struct request_queue *q = rq->q; 756 unsigned long flags; 757 758 /* 759 * We abuse this flag that is otherwise used by the I/O scheduler to 760 * request head insertion from the workqueue. 761 */ 762 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 763 764 spin_lock_irqsave(&q->requeue_lock, flags); 765 if (at_head) { 766 rq->rq_flags |= RQF_SOFTBARRIER; 767 list_add(&rq->queuelist, &q->requeue_list); 768 } else { 769 list_add_tail(&rq->queuelist, &q->requeue_list); 770 } 771 spin_unlock_irqrestore(&q->requeue_lock, flags); 772 773 if (kick_requeue_list) 774 blk_mq_kick_requeue_list(q); 775 } 776 777 void blk_mq_kick_requeue_list(struct request_queue *q) 778 { 779 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 780 } 781 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 782 783 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 784 unsigned long msecs) 785 { 786 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 787 msecs_to_jiffies(msecs)); 788 } 789 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 790 791 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 792 { 793 if (tag < tags->nr_tags) { 794 prefetch(tags->rqs[tag]); 795 return tags->rqs[tag]; 796 } 797 798 return NULL; 799 } 800 EXPORT_SYMBOL(blk_mq_tag_to_rq); 801 802 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 803 void *priv, bool reserved) 804 { 805 /* 806 * If we find a request that is inflight and the queue matches, 807 * we know the queue is busy. Return false to stop the iteration. 808 */ 809 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 810 bool *busy = priv; 811 812 *busy = true; 813 return false; 814 } 815 816 return true; 817 } 818 819 bool blk_mq_queue_inflight(struct request_queue *q) 820 { 821 bool busy = false; 822 823 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 824 return busy; 825 } 826 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 827 828 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 829 { 830 req->rq_flags |= RQF_TIMED_OUT; 831 if (req->q->mq_ops->timeout) { 832 enum blk_eh_timer_return ret; 833 834 ret = req->q->mq_ops->timeout(req, reserved); 835 if (ret == BLK_EH_DONE) 836 return; 837 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 838 } 839 840 blk_add_timer(req); 841 } 842 843 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 844 { 845 unsigned long deadline; 846 847 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 848 return false; 849 if (rq->rq_flags & RQF_TIMED_OUT) 850 return false; 851 852 deadline = READ_ONCE(rq->deadline); 853 if (time_after_eq(jiffies, deadline)) 854 return true; 855 856 if (*next == 0) 857 *next = deadline; 858 else if (time_after(*next, deadline)) 859 *next = deadline; 860 return false; 861 } 862 863 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 864 struct request *rq, void *priv, bool reserved) 865 { 866 unsigned long *next = priv; 867 868 /* 869 * Just do a quick check if it is expired before locking the request in 870 * so we're not unnecessarilly synchronizing across CPUs. 871 */ 872 if (!blk_mq_req_expired(rq, next)) 873 return true; 874 875 /* 876 * We have reason to believe the request may be expired. Take a 877 * reference on the request to lock this request lifetime into its 878 * currently allocated context to prevent it from being reallocated in 879 * the event the completion by-passes this timeout handler. 880 * 881 * If the reference was already released, then the driver beat the 882 * timeout handler to posting a natural completion. 883 */ 884 if (!refcount_inc_not_zero(&rq->ref)) 885 return true; 886 887 /* 888 * The request is now locked and cannot be reallocated underneath the 889 * timeout handler's processing. Re-verify this exact request is truly 890 * expired; if it is not expired, then the request was completed and 891 * reallocated as a new request. 892 */ 893 if (blk_mq_req_expired(rq, next)) 894 blk_mq_rq_timed_out(rq, reserved); 895 896 if (is_flush_rq(rq, hctx)) 897 rq->end_io(rq, 0); 898 else if (refcount_dec_and_test(&rq->ref)) 899 __blk_mq_free_request(rq); 900 901 return true; 902 } 903 904 static void blk_mq_timeout_work(struct work_struct *work) 905 { 906 struct request_queue *q = 907 container_of(work, struct request_queue, timeout_work); 908 unsigned long next = 0; 909 struct blk_mq_hw_ctx *hctx; 910 int i; 911 912 /* A deadlock might occur if a request is stuck requiring a 913 * timeout at the same time a queue freeze is waiting 914 * completion, since the timeout code would not be able to 915 * acquire the queue reference here. 916 * 917 * That's why we don't use blk_queue_enter here; instead, we use 918 * percpu_ref_tryget directly, because we need to be able to 919 * obtain a reference even in the short window between the queue 920 * starting to freeze, by dropping the first reference in 921 * blk_freeze_queue_start, and the moment the last request is 922 * consumed, marked by the instant q_usage_counter reaches 923 * zero. 924 */ 925 if (!percpu_ref_tryget(&q->q_usage_counter)) 926 return; 927 928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 929 930 if (next != 0) { 931 mod_timer(&q->timeout, next); 932 } else { 933 /* 934 * Request timeouts are handled as a forward rolling timer. If 935 * we end up here it means that no requests are pending and 936 * also that no request has been pending for a while. Mark 937 * each hctx as idle. 938 */ 939 queue_for_each_hw_ctx(q, hctx, i) { 940 /* the hctx may be unmapped, so check it here */ 941 if (blk_mq_hw_queue_mapped(hctx)) 942 blk_mq_tag_idle(hctx); 943 } 944 } 945 blk_queue_exit(q); 946 } 947 948 struct flush_busy_ctx_data { 949 struct blk_mq_hw_ctx *hctx; 950 struct list_head *list; 951 }; 952 953 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 954 { 955 struct flush_busy_ctx_data *flush_data = data; 956 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 957 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 958 enum hctx_type type = hctx->type; 959 960 spin_lock(&ctx->lock); 961 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 962 sbitmap_clear_bit(sb, bitnr); 963 spin_unlock(&ctx->lock); 964 return true; 965 } 966 967 /* 968 * Process software queues that have been marked busy, splicing them 969 * to the for-dispatch 970 */ 971 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 972 { 973 struct flush_busy_ctx_data data = { 974 .hctx = hctx, 975 .list = list, 976 }; 977 978 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 979 } 980 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 981 982 struct dispatch_rq_data { 983 struct blk_mq_hw_ctx *hctx; 984 struct request *rq; 985 }; 986 987 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 988 void *data) 989 { 990 struct dispatch_rq_data *dispatch_data = data; 991 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 992 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 993 enum hctx_type type = hctx->type; 994 995 spin_lock(&ctx->lock); 996 if (!list_empty(&ctx->rq_lists[type])) { 997 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 998 list_del_init(&dispatch_data->rq->queuelist); 999 if (list_empty(&ctx->rq_lists[type])) 1000 sbitmap_clear_bit(sb, bitnr); 1001 } 1002 spin_unlock(&ctx->lock); 1003 1004 return !dispatch_data->rq; 1005 } 1006 1007 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1008 struct blk_mq_ctx *start) 1009 { 1010 unsigned off = start ? start->index_hw[hctx->type] : 0; 1011 struct dispatch_rq_data data = { 1012 .hctx = hctx, 1013 .rq = NULL, 1014 }; 1015 1016 __sbitmap_for_each_set(&hctx->ctx_map, off, 1017 dispatch_rq_from_ctx, &data); 1018 1019 return data.rq; 1020 } 1021 1022 static inline unsigned int queued_to_index(unsigned int queued) 1023 { 1024 if (!queued) 1025 return 0; 1026 1027 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1028 } 1029 1030 bool blk_mq_get_driver_tag(struct request *rq) 1031 { 1032 struct blk_mq_alloc_data data = { 1033 .q = rq->q, 1034 .hctx = rq->mq_hctx, 1035 .flags = BLK_MQ_REQ_NOWAIT, 1036 .cmd_flags = rq->cmd_flags, 1037 }; 1038 bool shared; 1039 1040 if (rq->tag != -1) 1041 return true; 1042 1043 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1044 data.flags |= BLK_MQ_REQ_RESERVED; 1045 1046 shared = blk_mq_tag_busy(data.hctx); 1047 rq->tag = blk_mq_get_tag(&data); 1048 if (rq->tag >= 0) { 1049 if (shared) { 1050 rq->rq_flags |= RQF_MQ_INFLIGHT; 1051 atomic_inc(&data.hctx->nr_active); 1052 } 1053 data.hctx->tags->rqs[rq->tag] = rq; 1054 } 1055 1056 return rq->tag != -1; 1057 } 1058 1059 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1060 int flags, void *key) 1061 { 1062 struct blk_mq_hw_ctx *hctx; 1063 1064 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1065 1066 spin_lock(&hctx->dispatch_wait_lock); 1067 if (!list_empty(&wait->entry)) { 1068 struct sbitmap_queue *sbq; 1069 1070 list_del_init(&wait->entry); 1071 sbq = &hctx->tags->bitmap_tags; 1072 atomic_dec(&sbq->ws_active); 1073 } 1074 spin_unlock(&hctx->dispatch_wait_lock); 1075 1076 blk_mq_run_hw_queue(hctx, true); 1077 return 1; 1078 } 1079 1080 /* 1081 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1082 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1083 * restart. For both cases, take care to check the condition again after 1084 * marking us as waiting. 1085 */ 1086 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1087 struct request *rq) 1088 { 1089 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1090 struct wait_queue_head *wq; 1091 wait_queue_entry_t *wait; 1092 bool ret; 1093 1094 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1095 blk_mq_sched_mark_restart_hctx(hctx); 1096 1097 /* 1098 * It's possible that a tag was freed in the window between the 1099 * allocation failure and adding the hardware queue to the wait 1100 * queue. 1101 * 1102 * Don't clear RESTART here, someone else could have set it. 1103 * At most this will cost an extra queue run. 1104 */ 1105 return blk_mq_get_driver_tag(rq); 1106 } 1107 1108 wait = &hctx->dispatch_wait; 1109 if (!list_empty_careful(&wait->entry)) 1110 return false; 1111 1112 wq = &bt_wait_ptr(sbq, hctx)->wait; 1113 1114 spin_lock_irq(&wq->lock); 1115 spin_lock(&hctx->dispatch_wait_lock); 1116 if (!list_empty(&wait->entry)) { 1117 spin_unlock(&hctx->dispatch_wait_lock); 1118 spin_unlock_irq(&wq->lock); 1119 return false; 1120 } 1121 1122 atomic_inc(&sbq->ws_active); 1123 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1124 __add_wait_queue(wq, wait); 1125 1126 /* 1127 * It's possible that a tag was freed in the window between the 1128 * allocation failure and adding the hardware queue to the wait 1129 * queue. 1130 */ 1131 ret = blk_mq_get_driver_tag(rq); 1132 if (!ret) { 1133 spin_unlock(&hctx->dispatch_wait_lock); 1134 spin_unlock_irq(&wq->lock); 1135 return false; 1136 } 1137 1138 /* 1139 * We got a tag, remove ourselves from the wait queue to ensure 1140 * someone else gets the wakeup. 1141 */ 1142 list_del_init(&wait->entry); 1143 atomic_dec(&sbq->ws_active); 1144 spin_unlock(&hctx->dispatch_wait_lock); 1145 spin_unlock_irq(&wq->lock); 1146 1147 return true; 1148 } 1149 1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1151 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1152 /* 1153 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1154 * - EWMA is one simple way to compute running average value 1155 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1156 * - take 4 as factor for avoiding to get too small(0) result, and this 1157 * factor doesn't matter because EWMA decreases exponentially 1158 */ 1159 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1160 { 1161 unsigned int ewma; 1162 1163 if (hctx->queue->elevator) 1164 return; 1165 1166 ewma = hctx->dispatch_busy; 1167 1168 if (!ewma && !busy) 1169 return; 1170 1171 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1172 if (busy) 1173 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1174 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1175 1176 hctx->dispatch_busy = ewma; 1177 } 1178 1179 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1180 1181 static void blk_mq_handle_dev_resource(struct request *rq, 1182 struct list_head *list) 1183 { 1184 struct request *next = 1185 list_first_entry_or_null(list, struct request, queuelist); 1186 1187 /* 1188 * If an I/O scheduler has been configured and we got a driver tag for 1189 * the next request already, free it. 1190 */ 1191 if (next) 1192 blk_mq_put_driver_tag(next); 1193 1194 list_add(&rq->queuelist, list); 1195 __blk_mq_requeue_request(rq); 1196 } 1197 1198 /* 1199 * Returns true if we did some work AND can potentially do more. 1200 */ 1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1202 bool got_budget) 1203 { 1204 struct blk_mq_hw_ctx *hctx; 1205 struct request *rq, *nxt; 1206 bool no_tag = false; 1207 int errors, queued; 1208 blk_status_t ret = BLK_STS_OK; 1209 1210 if (list_empty(list)) 1211 return false; 1212 1213 WARN_ON(!list_is_singular(list) && got_budget); 1214 1215 /* 1216 * Now process all the entries, sending them to the driver. 1217 */ 1218 errors = queued = 0; 1219 do { 1220 struct blk_mq_queue_data bd; 1221 1222 rq = list_first_entry(list, struct request, queuelist); 1223 1224 hctx = rq->mq_hctx; 1225 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1226 break; 1227 1228 if (!blk_mq_get_driver_tag(rq)) { 1229 /* 1230 * The initial allocation attempt failed, so we need to 1231 * rerun the hardware queue when a tag is freed. The 1232 * waitqueue takes care of that. If the queue is run 1233 * before we add this entry back on the dispatch list, 1234 * we'll re-run it below. 1235 */ 1236 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1237 blk_mq_put_dispatch_budget(hctx); 1238 /* 1239 * For non-shared tags, the RESTART check 1240 * will suffice. 1241 */ 1242 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1243 no_tag = true; 1244 break; 1245 } 1246 } 1247 1248 list_del_init(&rq->queuelist); 1249 1250 bd.rq = rq; 1251 1252 /* 1253 * Flag last if we have no more requests, or if we have more 1254 * but can't assign a driver tag to it. 1255 */ 1256 if (list_empty(list)) 1257 bd.last = true; 1258 else { 1259 nxt = list_first_entry(list, struct request, queuelist); 1260 bd.last = !blk_mq_get_driver_tag(nxt); 1261 } 1262 1263 ret = q->mq_ops->queue_rq(hctx, &bd); 1264 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1265 blk_mq_handle_dev_resource(rq, list); 1266 break; 1267 } 1268 1269 if (unlikely(ret != BLK_STS_OK)) { 1270 errors++; 1271 blk_mq_end_request(rq, BLK_STS_IOERR); 1272 continue; 1273 } 1274 1275 queued++; 1276 } while (!list_empty(list)); 1277 1278 hctx->dispatched[queued_to_index(queued)]++; 1279 1280 /* 1281 * Any items that need requeuing? Stuff them into hctx->dispatch, 1282 * that is where we will continue on next queue run. 1283 */ 1284 if (!list_empty(list)) { 1285 bool needs_restart; 1286 1287 /* 1288 * If we didn't flush the entire list, we could have told 1289 * the driver there was more coming, but that turned out to 1290 * be a lie. 1291 */ 1292 if (q->mq_ops->commit_rqs && queued) 1293 q->mq_ops->commit_rqs(hctx); 1294 1295 spin_lock(&hctx->lock); 1296 list_splice_tail_init(list, &hctx->dispatch); 1297 spin_unlock(&hctx->lock); 1298 1299 /* 1300 * If SCHED_RESTART was set by the caller of this function and 1301 * it is no longer set that means that it was cleared by another 1302 * thread and hence that a queue rerun is needed. 1303 * 1304 * If 'no_tag' is set, that means that we failed getting 1305 * a driver tag with an I/O scheduler attached. If our dispatch 1306 * waitqueue is no longer active, ensure that we run the queue 1307 * AFTER adding our entries back to the list. 1308 * 1309 * If no I/O scheduler has been configured it is possible that 1310 * the hardware queue got stopped and restarted before requests 1311 * were pushed back onto the dispatch list. Rerun the queue to 1312 * avoid starvation. Notes: 1313 * - blk_mq_run_hw_queue() checks whether or not a queue has 1314 * been stopped before rerunning a queue. 1315 * - Some but not all block drivers stop a queue before 1316 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1317 * and dm-rq. 1318 * 1319 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1320 * bit is set, run queue after a delay to avoid IO stalls 1321 * that could otherwise occur if the queue is idle. 1322 */ 1323 needs_restart = blk_mq_sched_needs_restart(hctx); 1324 if (!needs_restart || 1325 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1326 blk_mq_run_hw_queue(hctx, true); 1327 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1328 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1329 1330 blk_mq_update_dispatch_busy(hctx, true); 1331 return false; 1332 } else 1333 blk_mq_update_dispatch_busy(hctx, false); 1334 1335 /* 1336 * If the host/device is unable to accept more work, inform the 1337 * caller of that. 1338 */ 1339 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1340 return false; 1341 1342 return (queued + errors) != 0; 1343 } 1344 1345 /** 1346 * __blk_mq_run_hw_queue - Run a hardware queue. 1347 * @hctx: Pointer to the hardware queue to run. 1348 * 1349 * Send pending requests to the hardware. 1350 */ 1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1352 { 1353 int srcu_idx; 1354 1355 /* 1356 * We should be running this queue from one of the CPUs that 1357 * are mapped to it. 1358 * 1359 * There are at least two related races now between setting 1360 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1361 * __blk_mq_run_hw_queue(): 1362 * 1363 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1364 * but later it becomes online, then this warning is harmless 1365 * at all 1366 * 1367 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1368 * but later it becomes offline, then the warning can't be 1369 * triggered, and we depend on blk-mq timeout handler to 1370 * handle dispatched requests to this hctx 1371 */ 1372 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1373 cpu_online(hctx->next_cpu)) { 1374 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1375 raw_smp_processor_id(), 1376 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1377 dump_stack(); 1378 } 1379 1380 /* 1381 * We can't run the queue inline with ints disabled. Ensure that 1382 * we catch bad users of this early. 1383 */ 1384 WARN_ON_ONCE(in_interrupt()); 1385 1386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1387 1388 hctx_lock(hctx, &srcu_idx); 1389 blk_mq_sched_dispatch_requests(hctx); 1390 hctx_unlock(hctx, srcu_idx); 1391 } 1392 1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1394 { 1395 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1396 1397 if (cpu >= nr_cpu_ids) 1398 cpu = cpumask_first(hctx->cpumask); 1399 return cpu; 1400 } 1401 1402 /* 1403 * It'd be great if the workqueue API had a way to pass 1404 * in a mask and had some smarts for more clever placement. 1405 * For now we just round-robin here, switching for every 1406 * BLK_MQ_CPU_WORK_BATCH queued items. 1407 */ 1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1409 { 1410 bool tried = false; 1411 int next_cpu = hctx->next_cpu; 1412 1413 if (hctx->queue->nr_hw_queues == 1) 1414 return WORK_CPU_UNBOUND; 1415 1416 if (--hctx->next_cpu_batch <= 0) { 1417 select_cpu: 1418 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1419 cpu_online_mask); 1420 if (next_cpu >= nr_cpu_ids) 1421 next_cpu = blk_mq_first_mapped_cpu(hctx); 1422 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1423 } 1424 1425 /* 1426 * Do unbound schedule if we can't find a online CPU for this hctx, 1427 * and it should only happen in the path of handling CPU DEAD. 1428 */ 1429 if (!cpu_online(next_cpu)) { 1430 if (!tried) { 1431 tried = true; 1432 goto select_cpu; 1433 } 1434 1435 /* 1436 * Make sure to re-select CPU next time once after CPUs 1437 * in hctx->cpumask become online again. 1438 */ 1439 hctx->next_cpu = next_cpu; 1440 hctx->next_cpu_batch = 1; 1441 return WORK_CPU_UNBOUND; 1442 } 1443 1444 hctx->next_cpu = next_cpu; 1445 return next_cpu; 1446 } 1447 1448 /** 1449 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1450 * @hctx: Pointer to the hardware queue to run. 1451 * @async: If we want to run the queue asynchronously. 1452 * @msecs: Microseconds of delay to wait before running the queue. 1453 * 1454 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1455 * with a delay of @msecs. 1456 */ 1457 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1458 unsigned long msecs) 1459 { 1460 if (unlikely(blk_mq_hctx_stopped(hctx))) 1461 return; 1462 1463 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1464 int cpu = get_cpu(); 1465 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1466 __blk_mq_run_hw_queue(hctx); 1467 put_cpu(); 1468 return; 1469 } 1470 1471 put_cpu(); 1472 } 1473 1474 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1475 msecs_to_jiffies(msecs)); 1476 } 1477 1478 /** 1479 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1480 * @hctx: Pointer to the hardware queue to run. 1481 * @msecs: Microseconds of delay to wait before running the queue. 1482 * 1483 * Run a hardware queue asynchronously with a delay of @msecs. 1484 */ 1485 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1486 { 1487 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1488 } 1489 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1490 1491 /** 1492 * blk_mq_run_hw_queue - Start to run a hardware queue. 1493 * @hctx: Pointer to the hardware queue to run. 1494 * @async: If we want to run the queue asynchronously. 1495 * 1496 * Check if the request queue is not in a quiesced state and if there are 1497 * pending requests to be sent. If this is true, run the queue to send requests 1498 * to hardware. 1499 */ 1500 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1501 { 1502 int srcu_idx; 1503 bool need_run; 1504 1505 /* 1506 * When queue is quiesced, we may be switching io scheduler, or 1507 * updating nr_hw_queues, or other things, and we can't run queue 1508 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1509 * 1510 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1511 * quiesced. 1512 */ 1513 hctx_lock(hctx, &srcu_idx); 1514 need_run = !blk_queue_quiesced(hctx->queue) && 1515 blk_mq_hctx_has_pending(hctx); 1516 hctx_unlock(hctx, srcu_idx); 1517 1518 if (need_run) 1519 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1520 } 1521 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1522 1523 /** 1524 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1525 * @q: Pointer to the request queue to run. 1526 * @async: If we want to run the queue asynchronously. 1527 */ 1528 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1529 { 1530 struct blk_mq_hw_ctx *hctx; 1531 int i; 1532 1533 queue_for_each_hw_ctx(q, hctx, i) { 1534 if (blk_mq_hctx_stopped(hctx)) 1535 continue; 1536 1537 blk_mq_run_hw_queue(hctx, async); 1538 } 1539 } 1540 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1541 1542 /** 1543 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1544 * @q: request queue. 1545 * 1546 * The caller is responsible for serializing this function against 1547 * blk_mq_{start,stop}_hw_queue(). 1548 */ 1549 bool blk_mq_queue_stopped(struct request_queue *q) 1550 { 1551 struct blk_mq_hw_ctx *hctx; 1552 int i; 1553 1554 queue_for_each_hw_ctx(q, hctx, i) 1555 if (blk_mq_hctx_stopped(hctx)) 1556 return true; 1557 1558 return false; 1559 } 1560 EXPORT_SYMBOL(blk_mq_queue_stopped); 1561 1562 /* 1563 * This function is often used for pausing .queue_rq() by driver when 1564 * there isn't enough resource or some conditions aren't satisfied, and 1565 * BLK_STS_RESOURCE is usually returned. 1566 * 1567 * We do not guarantee that dispatch can be drained or blocked 1568 * after blk_mq_stop_hw_queue() returns. Please use 1569 * blk_mq_quiesce_queue() for that requirement. 1570 */ 1571 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1572 { 1573 cancel_delayed_work(&hctx->run_work); 1574 1575 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1576 } 1577 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1578 1579 /* 1580 * This function is often used for pausing .queue_rq() by driver when 1581 * there isn't enough resource or some conditions aren't satisfied, and 1582 * BLK_STS_RESOURCE is usually returned. 1583 * 1584 * We do not guarantee that dispatch can be drained or blocked 1585 * after blk_mq_stop_hw_queues() returns. Please use 1586 * blk_mq_quiesce_queue() for that requirement. 1587 */ 1588 void blk_mq_stop_hw_queues(struct request_queue *q) 1589 { 1590 struct blk_mq_hw_ctx *hctx; 1591 int i; 1592 1593 queue_for_each_hw_ctx(q, hctx, i) 1594 blk_mq_stop_hw_queue(hctx); 1595 } 1596 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1597 1598 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1599 { 1600 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1601 1602 blk_mq_run_hw_queue(hctx, false); 1603 } 1604 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1605 1606 void blk_mq_start_hw_queues(struct request_queue *q) 1607 { 1608 struct blk_mq_hw_ctx *hctx; 1609 int i; 1610 1611 queue_for_each_hw_ctx(q, hctx, i) 1612 blk_mq_start_hw_queue(hctx); 1613 } 1614 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1615 1616 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1617 { 1618 if (!blk_mq_hctx_stopped(hctx)) 1619 return; 1620 1621 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1622 blk_mq_run_hw_queue(hctx, async); 1623 } 1624 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1625 1626 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1627 { 1628 struct blk_mq_hw_ctx *hctx; 1629 int i; 1630 1631 queue_for_each_hw_ctx(q, hctx, i) 1632 blk_mq_start_stopped_hw_queue(hctx, async); 1633 } 1634 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1635 1636 static void blk_mq_run_work_fn(struct work_struct *work) 1637 { 1638 struct blk_mq_hw_ctx *hctx; 1639 1640 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1641 1642 /* 1643 * If we are stopped, don't run the queue. 1644 */ 1645 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1646 return; 1647 1648 __blk_mq_run_hw_queue(hctx); 1649 } 1650 1651 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1652 struct request *rq, 1653 bool at_head) 1654 { 1655 struct blk_mq_ctx *ctx = rq->mq_ctx; 1656 enum hctx_type type = hctx->type; 1657 1658 lockdep_assert_held(&ctx->lock); 1659 1660 trace_block_rq_insert(hctx->queue, rq); 1661 1662 if (at_head) 1663 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1664 else 1665 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1666 } 1667 1668 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1669 bool at_head) 1670 { 1671 struct blk_mq_ctx *ctx = rq->mq_ctx; 1672 1673 lockdep_assert_held(&ctx->lock); 1674 1675 __blk_mq_insert_req_list(hctx, rq, at_head); 1676 blk_mq_hctx_mark_pending(hctx, ctx); 1677 } 1678 1679 /** 1680 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1681 * @rq: Pointer to request to be inserted. 1682 * @run_queue: If we should run the hardware queue after inserting the request. 1683 * 1684 * Should only be used carefully, when the caller knows we want to 1685 * bypass a potential IO scheduler on the target device. 1686 */ 1687 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1688 bool run_queue) 1689 { 1690 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1691 1692 spin_lock(&hctx->lock); 1693 if (at_head) 1694 list_add(&rq->queuelist, &hctx->dispatch); 1695 else 1696 list_add_tail(&rq->queuelist, &hctx->dispatch); 1697 spin_unlock(&hctx->lock); 1698 1699 if (run_queue) 1700 blk_mq_run_hw_queue(hctx, false); 1701 } 1702 1703 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1704 struct list_head *list) 1705 1706 { 1707 struct request *rq; 1708 enum hctx_type type = hctx->type; 1709 1710 /* 1711 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1712 * offline now 1713 */ 1714 list_for_each_entry(rq, list, queuelist) { 1715 BUG_ON(rq->mq_ctx != ctx); 1716 trace_block_rq_insert(hctx->queue, rq); 1717 } 1718 1719 spin_lock(&ctx->lock); 1720 list_splice_tail_init(list, &ctx->rq_lists[type]); 1721 blk_mq_hctx_mark_pending(hctx, ctx); 1722 spin_unlock(&ctx->lock); 1723 } 1724 1725 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1726 { 1727 struct request *rqa = container_of(a, struct request, queuelist); 1728 struct request *rqb = container_of(b, struct request, queuelist); 1729 1730 if (rqa->mq_ctx != rqb->mq_ctx) 1731 return rqa->mq_ctx > rqb->mq_ctx; 1732 if (rqa->mq_hctx != rqb->mq_hctx) 1733 return rqa->mq_hctx > rqb->mq_hctx; 1734 1735 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1736 } 1737 1738 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1739 { 1740 LIST_HEAD(list); 1741 1742 if (list_empty(&plug->mq_list)) 1743 return; 1744 list_splice_init(&plug->mq_list, &list); 1745 1746 if (plug->rq_count > 2 && plug->multiple_queues) 1747 list_sort(NULL, &list, plug_rq_cmp); 1748 1749 plug->rq_count = 0; 1750 1751 do { 1752 struct list_head rq_list; 1753 struct request *rq, *head_rq = list_entry_rq(list.next); 1754 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1755 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1756 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1757 unsigned int depth = 1; 1758 1759 list_for_each_continue(pos, &list) { 1760 rq = list_entry_rq(pos); 1761 BUG_ON(!rq->q); 1762 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1763 break; 1764 depth++; 1765 } 1766 1767 list_cut_before(&rq_list, &list, pos); 1768 trace_block_unplug(head_rq->q, depth, !from_schedule); 1769 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1770 from_schedule); 1771 } while(!list_empty(&list)); 1772 } 1773 1774 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1775 unsigned int nr_segs) 1776 { 1777 if (bio->bi_opf & REQ_RAHEAD) 1778 rq->cmd_flags |= REQ_FAILFAST_MASK; 1779 1780 rq->__sector = bio->bi_iter.bi_sector; 1781 rq->write_hint = bio->bi_write_hint; 1782 blk_rq_bio_prep(rq, bio, nr_segs); 1783 1784 blk_account_io_start(rq, true); 1785 } 1786 1787 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1788 struct request *rq, 1789 blk_qc_t *cookie, bool last) 1790 { 1791 struct request_queue *q = rq->q; 1792 struct blk_mq_queue_data bd = { 1793 .rq = rq, 1794 .last = last, 1795 }; 1796 blk_qc_t new_cookie; 1797 blk_status_t ret; 1798 1799 new_cookie = request_to_qc_t(hctx, rq); 1800 1801 /* 1802 * For OK queue, we are done. For error, caller may kill it. 1803 * Any other error (busy), just add it to our list as we 1804 * previously would have done. 1805 */ 1806 ret = q->mq_ops->queue_rq(hctx, &bd); 1807 switch (ret) { 1808 case BLK_STS_OK: 1809 blk_mq_update_dispatch_busy(hctx, false); 1810 *cookie = new_cookie; 1811 break; 1812 case BLK_STS_RESOURCE: 1813 case BLK_STS_DEV_RESOURCE: 1814 blk_mq_update_dispatch_busy(hctx, true); 1815 __blk_mq_requeue_request(rq); 1816 break; 1817 default: 1818 blk_mq_update_dispatch_busy(hctx, false); 1819 *cookie = BLK_QC_T_NONE; 1820 break; 1821 } 1822 1823 return ret; 1824 } 1825 1826 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1827 struct request *rq, 1828 blk_qc_t *cookie, 1829 bool bypass_insert, bool last) 1830 { 1831 struct request_queue *q = rq->q; 1832 bool run_queue = true; 1833 1834 /* 1835 * RCU or SRCU read lock is needed before checking quiesced flag. 1836 * 1837 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1838 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1839 * and avoid driver to try to dispatch again. 1840 */ 1841 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1842 run_queue = false; 1843 bypass_insert = false; 1844 goto insert; 1845 } 1846 1847 if (q->elevator && !bypass_insert) 1848 goto insert; 1849 1850 if (!blk_mq_get_dispatch_budget(hctx)) 1851 goto insert; 1852 1853 if (!blk_mq_get_driver_tag(rq)) { 1854 blk_mq_put_dispatch_budget(hctx); 1855 goto insert; 1856 } 1857 1858 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1859 insert: 1860 if (bypass_insert) 1861 return BLK_STS_RESOURCE; 1862 1863 blk_mq_request_bypass_insert(rq, false, run_queue); 1864 return BLK_STS_OK; 1865 } 1866 1867 /** 1868 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 1869 * @hctx: Pointer of the associated hardware queue. 1870 * @rq: Pointer to request to be sent. 1871 * @cookie: Request queue cookie. 1872 * 1873 * If the device has enough resources to accept a new request now, send the 1874 * request directly to device driver. Else, insert at hctx->dispatch queue, so 1875 * we can try send it another time in the future. Requests inserted at this 1876 * queue have higher priority. 1877 */ 1878 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1879 struct request *rq, blk_qc_t *cookie) 1880 { 1881 blk_status_t ret; 1882 int srcu_idx; 1883 1884 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1885 1886 hctx_lock(hctx, &srcu_idx); 1887 1888 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1889 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1890 blk_mq_request_bypass_insert(rq, false, true); 1891 else if (ret != BLK_STS_OK) 1892 blk_mq_end_request(rq, ret); 1893 1894 hctx_unlock(hctx, srcu_idx); 1895 } 1896 1897 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1898 { 1899 blk_status_t ret; 1900 int srcu_idx; 1901 blk_qc_t unused_cookie; 1902 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1903 1904 hctx_lock(hctx, &srcu_idx); 1905 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1906 hctx_unlock(hctx, srcu_idx); 1907 1908 return ret; 1909 } 1910 1911 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1912 struct list_head *list) 1913 { 1914 int queued = 0; 1915 1916 while (!list_empty(list)) { 1917 blk_status_t ret; 1918 struct request *rq = list_first_entry(list, struct request, 1919 queuelist); 1920 1921 list_del_init(&rq->queuelist); 1922 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1923 if (ret != BLK_STS_OK) { 1924 if (ret == BLK_STS_RESOURCE || 1925 ret == BLK_STS_DEV_RESOURCE) { 1926 blk_mq_request_bypass_insert(rq, false, 1927 list_empty(list)); 1928 break; 1929 } 1930 blk_mq_end_request(rq, ret); 1931 } else 1932 queued++; 1933 } 1934 1935 /* 1936 * If we didn't flush the entire list, we could have told 1937 * the driver there was more coming, but that turned out to 1938 * be a lie. 1939 */ 1940 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 1941 hctx->queue->mq_ops->commit_rqs(hctx); 1942 } 1943 1944 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1945 { 1946 list_add_tail(&rq->queuelist, &plug->mq_list); 1947 plug->rq_count++; 1948 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1949 struct request *tmp; 1950 1951 tmp = list_first_entry(&plug->mq_list, struct request, 1952 queuelist); 1953 if (tmp->q != rq->q) 1954 plug->multiple_queues = true; 1955 } 1956 } 1957 1958 /** 1959 * blk_mq_make_request - Create and send a request to block device. 1960 * @q: Request queue pointer. 1961 * @bio: Bio pointer. 1962 * 1963 * Builds up a request structure from @q and @bio and send to the device. The 1964 * request may not be queued directly to hardware if: 1965 * * This request can be merged with another one 1966 * * We want to place request at plug queue for possible future merging 1967 * * There is an IO scheduler active at this queue 1968 * 1969 * It will not queue the request if there is an error with the bio, or at the 1970 * request creation. 1971 * 1972 * Returns: Request queue cookie. 1973 */ 1974 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1975 { 1976 const int is_sync = op_is_sync(bio->bi_opf); 1977 const int is_flush_fua = op_is_flush(bio->bi_opf); 1978 struct blk_mq_alloc_data data = { .flags = 0}; 1979 struct request *rq; 1980 struct blk_plug *plug; 1981 struct request *same_queue_rq = NULL; 1982 unsigned int nr_segs; 1983 blk_qc_t cookie; 1984 1985 blk_queue_bounce(q, &bio); 1986 __blk_queue_split(q, &bio, &nr_segs); 1987 1988 if (!bio_integrity_prep(bio)) 1989 return BLK_QC_T_NONE; 1990 1991 if (!is_flush_fua && !blk_queue_nomerges(q) && 1992 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1993 return BLK_QC_T_NONE; 1994 1995 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1996 return BLK_QC_T_NONE; 1997 1998 rq_qos_throttle(q, bio); 1999 2000 data.cmd_flags = bio->bi_opf; 2001 rq = blk_mq_get_request(q, bio, &data); 2002 if (unlikely(!rq)) { 2003 rq_qos_cleanup(q, bio); 2004 if (bio->bi_opf & REQ_NOWAIT) 2005 bio_wouldblock_error(bio); 2006 return BLK_QC_T_NONE; 2007 } 2008 2009 trace_block_getrq(q, bio, bio->bi_opf); 2010 2011 rq_qos_track(q, rq, bio); 2012 2013 cookie = request_to_qc_t(data.hctx, rq); 2014 2015 blk_mq_bio_to_request(rq, bio, nr_segs); 2016 2017 plug = blk_mq_plug(q, bio); 2018 if (unlikely(is_flush_fua)) { 2019 /* Bypass scheduler for flush requests */ 2020 blk_insert_flush(rq); 2021 blk_mq_run_hw_queue(data.hctx, true); 2022 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2023 !blk_queue_nonrot(q))) { 2024 /* 2025 * Use plugging if we have a ->commit_rqs() hook as well, as 2026 * we know the driver uses bd->last in a smart fashion. 2027 * 2028 * Use normal plugging if this disk is slow HDD, as sequential 2029 * IO may benefit a lot from plug merging. 2030 */ 2031 unsigned int request_count = plug->rq_count; 2032 struct request *last = NULL; 2033 2034 if (!request_count) 2035 trace_block_plug(q); 2036 else 2037 last = list_entry_rq(plug->mq_list.prev); 2038 2039 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2040 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2041 blk_flush_plug_list(plug, false); 2042 trace_block_plug(q); 2043 } 2044 2045 blk_add_rq_to_plug(plug, rq); 2046 } else if (q->elevator) { 2047 /* Insert the request at the IO scheduler queue */ 2048 blk_mq_sched_insert_request(rq, false, true, true); 2049 } else if (plug && !blk_queue_nomerges(q)) { 2050 /* 2051 * We do limited plugging. If the bio can be merged, do that. 2052 * Otherwise the existing request in the plug list will be 2053 * issued. So the plug list will have one request at most 2054 * The plug list might get flushed before this. If that happens, 2055 * the plug list is empty, and same_queue_rq is invalid. 2056 */ 2057 if (list_empty(&plug->mq_list)) 2058 same_queue_rq = NULL; 2059 if (same_queue_rq) { 2060 list_del_init(&same_queue_rq->queuelist); 2061 plug->rq_count--; 2062 } 2063 blk_add_rq_to_plug(plug, rq); 2064 trace_block_plug(q); 2065 2066 if (same_queue_rq) { 2067 data.hctx = same_queue_rq->mq_hctx; 2068 trace_block_unplug(q, 1, true); 2069 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2070 &cookie); 2071 } 2072 } else if ((q->nr_hw_queues > 1 && is_sync) || 2073 !data.hctx->dispatch_busy) { 2074 /* 2075 * There is no scheduler and we can try to send directly 2076 * to the hardware. 2077 */ 2078 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2079 } else { 2080 /* Default case. */ 2081 blk_mq_sched_insert_request(rq, false, true, true); 2082 } 2083 2084 return cookie; 2085 } 2086 2087 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2088 unsigned int hctx_idx) 2089 { 2090 struct page *page; 2091 2092 if (tags->rqs && set->ops->exit_request) { 2093 int i; 2094 2095 for (i = 0; i < tags->nr_tags; i++) { 2096 struct request *rq = tags->static_rqs[i]; 2097 2098 if (!rq) 2099 continue; 2100 set->ops->exit_request(set, rq, hctx_idx); 2101 tags->static_rqs[i] = NULL; 2102 } 2103 } 2104 2105 while (!list_empty(&tags->page_list)) { 2106 page = list_first_entry(&tags->page_list, struct page, lru); 2107 list_del_init(&page->lru); 2108 /* 2109 * Remove kmemleak object previously allocated in 2110 * blk_mq_alloc_rqs(). 2111 */ 2112 kmemleak_free(page_address(page)); 2113 __free_pages(page, page->private); 2114 } 2115 } 2116 2117 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2118 { 2119 kfree(tags->rqs); 2120 tags->rqs = NULL; 2121 kfree(tags->static_rqs); 2122 tags->static_rqs = NULL; 2123 2124 blk_mq_free_tags(tags); 2125 } 2126 2127 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2128 unsigned int hctx_idx, 2129 unsigned int nr_tags, 2130 unsigned int reserved_tags) 2131 { 2132 struct blk_mq_tags *tags; 2133 int node; 2134 2135 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2136 if (node == NUMA_NO_NODE) 2137 node = set->numa_node; 2138 2139 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2140 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2141 if (!tags) 2142 return NULL; 2143 2144 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2145 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2146 node); 2147 if (!tags->rqs) { 2148 blk_mq_free_tags(tags); 2149 return NULL; 2150 } 2151 2152 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2153 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2154 node); 2155 if (!tags->static_rqs) { 2156 kfree(tags->rqs); 2157 blk_mq_free_tags(tags); 2158 return NULL; 2159 } 2160 2161 return tags; 2162 } 2163 2164 static size_t order_to_size(unsigned int order) 2165 { 2166 return (size_t)PAGE_SIZE << order; 2167 } 2168 2169 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2170 unsigned int hctx_idx, int node) 2171 { 2172 int ret; 2173 2174 if (set->ops->init_request) { 2175 ret = set->ops->init_request(set, rq, hctx_idx, node); 2176 if (ret) 2177 return ret; 2178 } 2179 2180 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2181 return 0; 2182 } 2183 2184 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2185 unsigned int hctx_idx, unsigned int depth) 2186 { 2187 unsigned int i, j, entries_per_page, max_order = 4; 2188 size_t rq_size, left; 2189 int node; 2190 2191 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2192 if (node == NUMA_NO_NODE) 2193 node = set->numa_node; 2194 2195 INIT_LIST_HEAD(&tags->page_list); 2196 2197 /* 2198 * rq_size is the size of the request plus driver payload, rounded 2199 * to the cacheline size 2200 */ 2201 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2202 cache_line_size()); 2203 left = rq_size * depth; 2204 2205 for (i = 0; i < depth; ) { 2206 int this_order = max_order; 2207 struct page *page; 2208 int to_do; 2209 void *p; 2210 2211 while (this_order && left < order_to_size(this_order - 1)) 2212 this_order--; 2213 2214 do { 2215 page = alloc_pages_node(node, 2216 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2217 this_order); 2218 if (page) 2219 break; 2220 if (!this_order--) 2221 break; 2222 if (order_to_size(this_order) < rq_size) 2223 break; 2224 } while (1); 2225 2226 if (!page) 2227 goto fail; 2228 2229 page->private = this_order; 2230 list_add_tail(&page->lru, &tags->page_list); 2231 2232 p = page_address(page); 2233 /* 2234 * Allow kmemleak to scan these pages as they contain pointers 2235 * to additional allocations like via ops->init_request(). 2236 */ 2237 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2238 entries_per_page = order_to_size(this_order) / rq_size; 2239 to_do = min(entries_per_page, depth - i); 2240 left -= to_do * rq_size; 2241 for (j = 0; j < to_do; j++) { 2242 struct request *rq = p; 2243 2244 tags->static_rqs[i] = rq; 2245 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2246 tags->static_rqs[i] = NULL; 2247 goto fail; 2248 } 2249 2250 p += rq_size; 2251 i++; 2252 } 2253 } 2254 return 0; 2255 2256 fail: 2257 blk_mq_free_rqs(set, tags, hctx_idx); 2258 return -ENOMEM; 2259 } 2260 2261 /* 2262 * 'cpu' is going away. splice any existing rq_list entries from this 2263 * software queue to the hw queue dispatch list, and ensure that it 2264 * gets run. 2265 */ 2266 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2267 { 2268 struct blk_mq_hw_ctx *hctx; 2269 struct blk_mq_ctx *ctx; 2270 LIST_HEAD(tmp); 2271 enum hctx_type type; 2272 2273 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2274 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2275 type = hctx->type; 2276 2277 spin_lock(&ctx->lock); 2278 if (!list_empty(&ctx->rq_lists[type])) { 2279 list_splice_init(&ctx->rq_lists[type], &tmp); 2280 blk_mq_hctx_clear_pending(hctx, ctx); 2281 } 2282 spin_unlock(&ctx->lock); 2283 2284 if (list_empty(&tmp)) 2285 return 0; 2286 2287 spin_lock(&hctx->lock); 2288 list_splice_tail_init(&tmp, &hctx->dispatch); 2289 spin_unlock(&hctx->lock); 2290 2291 blk_mq_run_hw_queue(hctx, true); 2292 return 0; 2293 } 2294 2295 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2296 { 2297 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2298 &hctx->cpuhp_dead); 2299 } 2300 2301 /* hctx->ctxs will be freed in queue's release handler */ 2302 static void blk_mq_exit_hctx(struct request_queue *q, 2303 struct blk_mq_tag_set *set, 2304 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2305 { 2306 if (blk_mq_hw_queue_mapped(hctx)) 2307 blk_mq_tag_idle(hctx); 2308 2309 if (set->ops->exit_request) 2310 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2311 2312 if (set->ops->exit_hctx) 2313 set->ops->exit_hctx(hctx, hctx_idx); 2314 2315 blk_mq_remove_cpuhp(hctx); 2316 2317 spin_lock(&q->unused_hctx_lock); 2318 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2319 spin_unlock(&q->unused_hctx_lock); 2320 } 2321 2322 static void blk_mq_exit_hw_queues(struct request_queue *q, 2323 struct blk_mq_tag_set *set, int nr_queue) 2324 { 2325 struct blk_mq_hw_ctx *hctx; 2326 unsigned int i; 2327 2328 queue_for_each_hw_ctx(q, hctx, i) { 2329 if (i == nr_queue) 2330 break; 2331 blk_mq_debugfs_unregister_hctx(hctx); 2332 blk_mq_exit_hctx(q, set, hctx, i); 2333 } 2334 } 2335 2336 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2337 { 2338 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2339 2340 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2341 __alignof__(struct blk_mq_hw_ctx)) != 2342 sizeof(struct blk_mq_hw_ctx)); 2343 2344 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2345 hw_ctx_size += sizeof(struct srcu_struct); 2346 2347 return hw_ctx_size; 2348 } 2349 2350 static int blk_mq_init_hctx(struct request_queue *q, 2351 struct blk_mq_tag_set *set, 2352 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2353 { 2354 hctx->queue_num = hctx_idx; 2355 2356 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2357 2358 hctx->tags = set->tags[hctx_idx]; 2359 2360 if (set->ops->init_hctx && 2361 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2362 goto unregister_cpu_notifier; 2363 2364 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2365 hctx->numa_node)) 2366 goto exit_hctx; 2367 return 0; 2368 2369 exit_hctx: 2370 if (set->ops->exit_hctx) 2371 set->ops->exit_hctx(hctx, hctx_idx); 2372 unregister_cpu_notifier: 2373 blk_mq_remove_cpuhp(hctx); 2374 return -1; 2375 } 2376 2377 static struct blk_mq_hw_ctx * 2378 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2379 int node) 2380 { 2381 struct blk_mq_hw_ctx *hctx; 2382 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2383 2384 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2385 if (!hctx) 2386 goto fail_alloc_hctx; 2387 2388 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2389 goto free_hctx; 2390 2391 atomic_set(&hctx->nr_active, 0); 2392 if (node == NUMA_NO_NODE) 2393 node = set->numa_node; 2394 hctx->numa_node = node; 2395 2396 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2397 spin_lock_init(&hctx->lock); 2398 INIT_LIST_HEAD(&hctx->dispatch); 2399 hctx->queue = q; 2400 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2401 2402 INIT_LIST_HEAD(&hctx->hctx_list); 2403 2404 /* 2405 * Allocate space for all possible cpus to avoid allocation at 2406 * runtime 2407 */ 2408 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2409 gfp, node); 2410 if (!hctx->ctxs) 2411 goto free_cpumask; 2412 2413 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2414 gfp, node)) 2415 goto free_ctxs; 2416 hctx->nr_ctx = 0; 2417 2418 spin_lock_init(&hctx->dispatch_wait_lock); 2419 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2420 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2421 2422 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2423 if (!hctx->fq) 2424 goto free_bitmap; 2425 2426 if (hctx->flags & BLK_MQ_F_BLOCKING) 2427 init_srcu_struct(hctx->srcu); 2428 blk_mq_hctx_kobj_init(hctx); 2429 2430 return hctx; 2431 2432 free_bitmap: 2433 sbitmap_free(&hctx->ctx_map); 2434 free_ctxs: 2435 kfree(hctx->ctxs); 2436 free_cpumask: 2437 free_cpumask_var(hctx->cpumask); 2438 free_hctx: 2439 kfree(hctx); 2440 fail_alloc_hctx: 2441 return NULL; 2442 } 2443 2444 static void blk_mq_init_cpu_queues(struct request_queue *q, 2445 unsigned int nr_hw_queues) 2446 { 2447 struct blk_mq_tag_set *set = q->tag_set; 2448 unsigned int i, j; 2449 2450 for_each_possible_cpu(i) { 2451 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2452 struct blk_mq_hw_ctx *hctx; 2453 int k; 2454 2455 __ctx->cpu = i; 2456 spin_lock_init(&__ctx->lock); 2457 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2458 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2459 2460 __ctx->queue = q; 2461 2462 /* 2463 * Set local node, IFF we have more than one hw queue. If 2464 * not, we remain on the home node of the device 2465 */ 2466 for (j = 0; j < set->nr_maps; j++) { 2467 hctx = blk_mq_map_queue_type(q, j, i); 2468 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2469 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2470 } 2471 } 2472 } 2473 2474 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2475 { 2476 int ret = 0; 2477 2478 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2479 set->queue_depth, set->reserved_tags); 2480 if (!set->tags[hctx_idx]) 2481 return false; 2482 2483 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2484 set->queue_depth); 2485 if (!ret) 2486 return true; 2487 2488 blk_mq_free_rq_map(set->tags[hctx_idx]); 2489 set->tags[hctx_idx] = NULL; 2490 return false; 2491 } 2492 2493 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2494 unsigned int hctx_idx) 2495 { 2496 if (set->tags && set->tags[hctx_idx]) { 2497 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2498 blk_mq_free_rq_map(set->tags[hctx_idx]); 2499 set->tags[hctx_idx] = NULL; 2500 } 2501 } 2502 2503 static void blk_mq_map_swqueue(struct request_queue *q) 2504 { 2505 unsigned int i, j, hctx_idx; 2506 struct blk_mq_hw_ctx *hctx; 2507 struct blk_mq_ctx *ctx; 2508 struct blk_mq_tag_set *set = q->tag_set; 2509 2510 queue_for_each_hw_ctx(q, hctx, i) { 2511 cpumask_clear(hctx->cpumask); 2512 hctx->nr_ctx = 0; 2513 hctx->dispatch_from = NULL; 2514 } 2515 2516 /* 2517 * Map software to hardware queues. 2518 * 2519 * If the cpu isn't present, the cpu is mapped to first hctx. 2520 */ 2521 for_each_possible_cpu(i) { 2522 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2523 /* unmapped hw queue can be remapped after CPU topo changed */ 2524 if (!set->tags[hctx_idx] && 2525 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2526 /* 2527 * If tags initialization fail for some hctx, 2528 * that hctx won't be brought online. In this 2529 * case, remap the current ctx to hctx[0] which 2530 * is guaranteed to always have tags allocated 2531 */ 2532 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2533 } 2534 2535 ctx = per_cpu_ptr(q->queue_ctx, i); 2536 for (j = 0; j < set->nr_maps; j++) { 2537 if (!set->map[j].nr_queues) { 2538 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2539 HCTX_TYPE_DEFAULT, i); 2540 continue; 2541 } 2542 2543 hctx = blk_mq_map_queue_type(q, j, i); 2544 ctx->hctxs[j] = hctx; 2545 /* 2546 * If the CPU is already set in the mask, then we've 2547 * mapped this one already. This can happen if 2548 * devices share queues across queue maps. 2549 */ 2550 if (cpumask_test_cpu(i, hctx->cpumask)) 2551 continue; 2552 2553 cpumask_set_cpu(i, hctx->cpumask); 2554 hctx->type = j; 2555 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2556 hctx->ctxs[hctx->nr_ctx++] = ctx; 2557 2558 /* 2559 * If the nr_ctx type overflows, we have exceeded the 2560 * amount of sw queues we can support. 2561 */ 2562 BUG_ON(!hctx->nr_ctx); 2563 } 2564 2565 for (; j < HCTX_MAX_TYPES; j++) 2566 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2567 HCTX_TYPE_DEFAULT, i); 2568 } 2569 2570 queue_for_each_hw_ctx(q, hctx, i) { 2571 /* 2572 * If no software queues are mapped to this hardware queue, 2573 * disable it and free the request entries. 2574 */ 2575 if (!hctx->nr_ctx) { 2576 /* Never unmap queue 0. We need it as a 2577 * fallback in case of a new remap fails 2578 * allocation 2579 */ 2580 if (i && set->tags[i]) 2581 blk_mq_free_map_and_requests(set, i); 2582 2583 hctx->tags = NULL; 2584 continue; 2585 } 2586 2587 hctx->tags = set->tags[i]; 2588 WARN_ON(!hctx->tags); 2589 2590 /* 2591 * Set the map size to the number of mapped software queues. 2592 * This is more accurate and more efficient than looping 2593 * over all possibly mapped software queues. 2594 */ 2595 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2596 2597 /* 2598 * Initialize batch roundrobin counts 2599 */ 2600 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2601 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2602 } 2603 } 2604 2605 /* 2606 * Caller needs to ensure that we're either frozen/quiesced, or that 2607 * the queue isn't live yet. 2608 */ 2609 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2610 { 2611 struct blk_mq_hw_ctx *hctx; 2612 int i; 2613 2614 queue_for_each_hw_ctx(q, hctx, i) { 2615 if (shared) 2616 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2617 else 2618 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2619 } 2620 } 2621 2622 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2623 bool shared) 2624 { 2625 struct request_queue *q; 2626 2627 lockdep_assert_held(&set->tag_list_lock); 2628 2629 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2630 blk_mq_freeze_queue(q); 2631 queue_set_hctx_shared(q, shared); 2632 blk_mq_unfreeze_queue(q); 2633 } 2634 } 2635 2636 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2637 { 2638 struct blk_mq_tag_set *set = q->tag_set; 2639 2640 mutex_lock(&set->tag_list_lock); 2641 list_del_rcu(&q->tag_set_list); 2642 if (list_is_singular(&set->tag_list)) { 2643 /* just transitioned to unshared */ 2644 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2645 /* update existing queue */ 2646 blk_mq_update_tag_set_depth(set, false); 2647 } 2648 mutex_unlock(&set->tag_list_lock); 2649 INIT_LIST_HEAD(&q->tag_set_list); 2650 } 2651 2652 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2653 struct request_queue *q) 2654 { 2655 mutex_lock(&set->tag_list_lock); 2656 2657 /* 2658 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2659 */ 2660 if (!list_empty(&set->tag_list) && 2661 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2662 set->flags |= BLK_MQ_F_TAG_SHARED; 2663 /* update existing queue */ 2664 blk_mq_update_tag_set_depth(set, true); 2665 } 2666 if (set->flags & BLK_MQ_F_TAG_SHARED) 2667 queue_set_hctx_shared(q, true); 2668 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2669 2670 mutex_unlock(&set->tag_list_lock); 2671 } 2672 2673 /* All allocations will be freed in release handler of q->mq_kobj */ 2674 static int blk_mq_alloc_ctxs(struct request_queue *q) 2675 { 2676 struct blk_mq_ctxs *ctxs; 2677 int cpu; 2678 2679 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2680 if (!ctxs) 2681 return -ENOMEM; 2682 2683 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2684 if (!ctxs->queue_ctx) 2685 goto fail; 2686 2687 for_each_possible_cpu(cpu) { 2688 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2689 ctx->ctxs = ctxs; 2690 } 2691 2692 q->mq_kobj = &ctxs->kobj; 2693 q->queue_ctx = ctxs->queue_ctx; 2694 2695 return 0; 2696 fail: 2697 kfree(ctxs); 2698 return -ENOMEM; 2699 } 2700 2701 /* 2702 * It is the actual release handler for mq, but we do it from 2703 * request queue's release handler for avoiding use-after-free 2704 * and headache because q->mq_kobj shouldn't have been introduced, 2705 * but we can't group ctx/kctx kobj without it. 2706 */ 2707 void blk_mq_release(struct request_queue *q) 2708 { 2709 struct blk_mq_hw_ctx *hctx, *next; 2710 int i; 2711 2712 queue_for_each_hw_ctx(q, hctx, i) 2713 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2714 2715 /* all hctx are in .unused_hctx_list now */ 2716 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2717 list_del_init(&hctx->hctx_list); 2718 kobject_put(&hctx->kobj); 2719 } 2720 2721 kfree(q->queue_hw_ctx); 2722 2723 /* 2724 * release .mq_kobj and sw queue's kobject now because 2725 * both share lifetime with request queue. 2726 */ 2727 blk_mq_sysfs_deinit(q); 2728 } 2729 2730 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 2731 void *queuedata) 2732 { 2733 struct request_queue *uninit_q, *q; 2734 2735 uninit_q = __blk_alloc_queue(set->numa_node); 2736 if (!uninit_q) 2737 return ERR_PTR(-ENOMEM); 2738 uninit_q->queuedata = queuedata; 2739 2740 /* 2741 * Initialize the queue without an elevator. device_add_disk() will do 2742 * the initialization. 2743 */ 2744 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2745 if (IS_ERR(q)) 2746 blk_cleanup_queue(uninit_q); 2747 2748 return q; 2749 } 2750 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 2751 2752 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2753 { 2754 return blk_mq_init_queue_data(set, NULL); 2755 } 2756 EXPORT_SYMBOL(blk_mq_init_queue); 2757 2758 /* 2759 * Helper for setting up a queue with mq ops, given queue depth, and 2760 * the passed in mq ops flags. 2761 */ 2762 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2763 const struct blk_mq_ops *ops, 2764 unsigned int queue_depth, 2765 unsigned int set_flags) 2766 { 2767 struct request_queue *q; 2768 int ret; 2769 2770 memset(set, 0, sizeof(*set)); 2771 set->ops = ops; 2772 set->nr_hw_queues = 1; 2773 set->nr_maps = 1; 2774 set->queue_depth = queue_depth; 2775 set->numa_node = NUMA_NO_NODE; 2776 set->flags = set_flags; 2777 2778 ret = blk_mq_alloc_tag_set(set); 2779 if (ret) 2780 return ERR_PTR(ret); 2781 2782 q = blk_mq_init_queue(set); 2783 if (IS_ERR(q)) { 2784 blk_mq_free_tag_set(set); 2785 return q; 2786 } 2787 2788 return q; 2789 } 2790 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2791 2792 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2793 struct blk_mq_tag_set *set, struct request_queue *q, 2794 int hctx_idx, int node) 2795 { 2796 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2797 2798 /* reuse dead hctx first */ 2799 spin_lock(&q->unused_hctx_lock); 2800 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2801 if (tmp->numa_node == node) { 2802 hctx = tmp; 2803 break; 2804 } 2805 } 2806 if (hctx) 2807 list_del_init(&hctx->hctx_list); 2808 spin_unlock(&q->unused_hctx_lock); 2809 2810 if (!hctx) 2811 hctx = blk_mq_alloc_hctx(q, set, node); 2812 if (!hctx) 2813 goto fail; 2814 2815 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2816 goto free_hctx; 2817 2818 return hctx; 2819 2820 free_hctx: 2821 kobject_put(&hctx->kobj); 2822 fail: 2823 return NULL; 2824 } 2825 2826 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2827 struct request_queue *q) 2828 { 2829 int i, j, end; 2830 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2831 2832 if (q->nr_hw_queues < set->nr_hw_queues) { 2833 struct blk_mq_hw_ctx **new_hctxs; 2834 2835 new_hctxs = kcalloc_node(set->nr_hw_queues, 2836 sizeof(*new_hctxs), GFP_KERNEL, 2837 set->numa_node); 2838 if (!new_hctxs) 2839 return; 2840 if (hctxs) 2841 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 2842 sizeof(*hctxs)); 2843 q->queue_hw_ctx = new_hctxs; 2844 kfree(hctxs); 2845 hctxs = new_hctxs; 2846 } 2847 2848 /* protect against switching io scheduler */ 2849 mutex_lock(&q->sysfs_lock); 2850 for (i = 0; i < set->nr_hw_queues; i++) { 2851 int node; 2852 struct blk_mq_hw_ctx *hctx; 2853 2854 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2855 /* 2856 * If the hw queue has been mapped to another numa node, 2857 * we need to realloc the hctx. If allocation fails, fallback 2858 * to use the previous one. 2859 */ 2860 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2861 continue; 2862 2863 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2864 if (hctx) { 2865 if (hctxs[i]) 2866 blk_mq_exit_hctx(q, set, hctxs[i], i); 2867 hctxs[i] = hctx; 2868 } else { 2869 if (hctxs[i]) 2870 pr_warn("Allocate new hctx on node %d fails,\ 2871 fallback to previous one on node %d\n", 2872 node, hctxs[i]->numa_node); 2873 else 2874 break; 2875 } 2876 } 2877 /* 2878 * Increasing nr_hw_queues fails. Free the newly allocated 2879 * hctxs and keep the previous q->nr_hw_queues. 2880 */ 2881 if (i != set->nr_hw_queues) { 2882 j = q->nr_hw_queues; 2883 end = i; 2884 } else { 2885 j = i; 2886 end = q->nr_hw_queues; 2887 q->nr_hw_queues = set->nr_hw_queues; 2888 } 2889 2890 for (; j < end; j++) { 2891 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2892 2893 if (hctx) { 2894 if (hctx->tags) 2895 blk_mq_free_map_and_requests(set, j); 2896 blk_mq_exit_hctx(q, set, hctx, j); 2897 hctxs[j] = NULL; 2898 } 2899 } 2900 mutex_unlock(&q->sysfs_lock); 2901 } 2902 2903 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2904 struct request_queue *q, 2905 bool elevator_init) 2906 { 2907 /* mark the queue as mq asap */ 2908 q->mq_ops = set->ops; 2909 2910 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2911 blk_mq_poll_stats_bkt, 2912 BLK_MQ_POLL_STATS_BKTS, q); 2913 if (!q->poll_cb) 2914 goto err_exit; 2915 2916 if (blk_mq_alloc_ctxs(q)) 2917 goto err_poll; 2918 2919 /* init q->mq_kobj and sw queues' kobjects */ 2920 blk_mq_sysfs_init(q); 2921 2922 INIT_LIST_HEAD(&q->unused_hctx_list); 2923 spin_lock_init(&q->unused_hctx_lock); 2924 2925 blk_mq_realloc_hw_ctxs(set, q); 2926 if (!q->nr_hw_queues) 2927 goto err_hctxs; 2928 2929 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2930 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2931 2932 q->tag_set = set; 2933 2934 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2935 if (set->nr_maps > HCTX_TYPE_POLL && 2936 set->map[HCTX_TYPE_POLL].nr_queues) 2937 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2938 2939 q->sg_reserved_size = INT_MAX; 2940 2941 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2942 INIT_LIST_HEAD(&q->requeue_list); 2943 spin_lock_init(&q->requeue_lock); 2944 2945 q->make_request_fn = blk_mq_make_request; 2946 q->nr_requests = set->queue_depth; 2947 2948 /* 2949 * Default to classic polling 2950 */ 2951 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2952 2953 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2954 blk_mq_add_queue_tag_set(set, q); 2955 blk_mq_map_swqueue(q); 2956 2957 if (elevator_init) 2958 elevator_init_mq(q); 2959 2960 return q; 2961 2962 err_hctxs: 2963 kfree(q->queue_hw_ctx); 2964 q->nr_hw_queues = 0; 2965 blk_mq_sysfs_deinit(q); 2966 err_poll: 2967 blk_stat_free_callback(q->poll_cb); 2968 q->poll_cb = NULL; 2969 err_exit: 2970 q->mq_ops = NULL; 2971 return ERR_PTR(-ENOMEM); 2972 } 2973 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2974 2975 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2976 void blk_mq_exit_queue(struct request_queue *q) 2977 { 2978 struct blk_mq_tag_set *set = q->tag_set; 2979 2980 blk_mq_del_queue_tag_set(q); 2981 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2982 } 2983 2984 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2985 { 2986 int i; 2987 2988 for (i = 0; i < set->nr_hw_queues; i++) 2989 if (!__blk_mq_alloc_rq_map(set, i)) 2990 goto out_unwind; 2991 2992 return 0; 2993 2994 out_unwind: 2995 while (--i >= 0) 2996 blk_mq_free_rq_map(set->tags[i]); 2997 2998 return -ENOMEM; 2999 } 3000 3001 /* 3002 * Allocate the request maps associated with this tag_set. Note that this 3003 * may reduce the depth asked for, if memory is tight. set->queue_depth 3004 * will be updated to reflect the allocated depth. 3005 */ 3006 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3007 { 3008 unsigned int depth; 3009 int err; 3010 3011 depth = set->queue_depth; 3012 do { 3013 err = __blk_mq_alloc_rq_maps(set); 3014 if (!err) 3015 break; 3016 3017 set->queue_depth >>= 1; 3018 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3019 err = -ENOMEM; 3020 break; 3021 } 3022 } while (set->queue_depth); 3023 3024 if (!set->queue_depth || err) { 3025 pr_err("blk-mq: failed to allocate request map\n"); 3026 return -ENOMEM; 3027 } 3028 3029 if (depth != set->queue_depth) 3030 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3031 depth, set->queue_depth); 3032 3033 return 0; 3034 } 3035 3036 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3037 { 3038 /* 3039 * blk_mq_map_queues() and multiple .map_queues() implementations 3040 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3041 * number of hardware queues. 3042 */ 3043 if (set->nr_maps == 1) 3044 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3045 3046 if (set->ops->map_queues && !is_kdump_kernel()) { 3047 int i; 3048 3049 /* 3050 * transport .map_queues is usually done in the following 3051 * way: 3052 * 3053 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3054 * mask = get_cpu_mask(queue) 3055 * for_each_cpu(cpu, mask) 3056 * set->map[x].mq_map[cpu] = queue; 3057 * } 3058 * 3059 * When we need to remap, the table has to be cleared for 3060 * killing stale mapping since one CPU may not be mapped 3061 * to any hw queue. 3062 */ 3063 for (i = 0; i < set->nr_maps; i++) 3064 blk_mq_clear_mq_map(&set->map[i]); 3065 3066 return set->ops->map_queues(set); 3067 } else { 3068 BUG_ON(set->nr_maps > 1); 3069 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3070 } 3071 } 3072 3073 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3074 int cur_nr_hw_queues, int new_nr_hw_queues) 3075 { 3076 struct blk_mq_tags **new_tags; 3077 3078 if (cur_nr_hw_queues >= new_nr_hw_queues) 3079 return 0; 3080 3081 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3082 GFP_KERNEL, set->numa_node); 3083 if (!new_tags) 3084 return -ENOMEM; 3085 3086 if (set->tags) 3087 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3088 sizeof(*set->tags)); 3089 kfree(set->tags); 3090 set->tags = new_tags; 3091 set->nr_hw_queues = new_nr_hw_queues; 3092 3093 return 0; 3094 } 3095 3096 /* 3097 * Alloc a tag set to be associated with one or more request queues. 3098 * May fail with EINVAL for various error conditions. May adjust the 3099 * requested depth down, if it's too large. In that case, the set 3100 * value will be stored in set->queue_depth. 3101 */ 3102 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3103 { 3104 int i, ret; 3105 3106 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3107 3108 if (!set->nr_hw_queues) 3109 return -EINVAL; 3110 if (!set->queue_depth) 3111 return -EINVAL; 3112 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3113 return -EINVAL; 3114 3115 if (!set->ops->queue_rq) 3116 return -EINVAL; 3117 3118 if (!set->ops->get_budget ^ !set->ops->put_budget) 3119 return -EINVAL; 3120 3121 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3122 pr_info("blk-mq: reduced tag depth to %u\n", 3123 BLK_MQ_MAX_DEPTH); 3124 set->queue_depth = BLK_MQ_MAX_DEPTH; 3125 } 3126 3127 if (!set->nr_maps) 3128 set->nr_maps = 1; 3129 else if (set->nr_maps > HCTX_MAX_TYPES) 3130 return -EINVAL; 3131 3132 /* 3133 * If a crashdump is active, then we are potentially in a very 3134 * memory constrained environment. Limit us to 1 queue and 3135 * 64 tags to prevent using too much memory. 3136 */ 3137 if (is_kdump_kernel()) { 3138 set->nr_hw_queues = 1; 3139 set->nr_maps = 1; 3140 set->queue_depth = min(64U, set->queue_depth); 3141 } 3142 /* 3143 * There is no use for more h/w queues than cpus if we just have 3144 * a single map 3145 */ 3146 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3147 set->nr_hw_queues = nr_cpu_ids; 3148 3149 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3150 return -ENOMEM; 3151 3152 ret = -ENOMEM; 3153 for (i = 0; i < set->nr_maps; i++) { 3154 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3155 sizeof(set->map[i].mq_map[0]), 3156 GFP_KERNEL, set->numa_node); 3157 if (!set->map[i].mq_map) 3158 goto out_free_mq_map; 3159 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3160 } 3161 3162 ret = blk_mq_update_queue_map(set); 3163 if (ret) 3164 goto out_free_mq_map; 3165 3166 ret = blk_mq_alloc_rq_maps(set); 3167 if (ret) 3168 goto out_free_mq_map; 3169 3170 mutex_init(&set->tag_list_lock); 3171 INIT_LIST_HEAD(&set->tag_list); 3172 3173 return 0; 3174 3175 out_free_mq_map: 3176 for (i = 0; i < set->nr_maps; i++) { 3177 kfree(set->map[i].mq_map); 3178 set->map[i].mq_map = NULL; 3179 } 3180 kfree(set->tags); 3181 set->tags = NULL; 3182 return ret; 3183 } 3184 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3185 3186 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3187 { 3188 int i, j; 3189 3190 for (i = 0; i < set->nr_hw_queues; i++) 3191 blk_mq_free_map_and_requests(set, i); 3192 3193 for (j = 0; j < set->nr_maps; j++) { 3194 kfree(set->map[j].mq_map); 3195 set->map[j].mq_map = NULL; 3196 } 3197 3198 kfree(set->tags); 3199 set->tags = NULL; 3200 } 3201 EXPORT_SYMBOL(blk_mq_free_tag_set); 3202 3203 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3204 { 3205 struct blk_mq_tag_set *set = q->tag_set; 3206 struct blk_mq_hw_ctx *hctx; 3207 int i, ret; 3208 3209 if (!set) 3210 return -EINVAL; 3211 3212 if (q->nr_requests == nr) 3213 return 0; 3214 3215 blk_mq_freeze_queue(q); 3216 blk_mq_quiesce_queue(q); 3217 3218 ret = 0; 3219 queue_for_each_hw_ctx(q, hctx, i) { 3220 if (!hctx->tags) 3221 continue; 3222 /* 3223 * If we're using an MQ scheduler, just update the scheduler 3224 * queue depth. This is similar to what the old code would do. 3225 */ 3226 if (!hctx->sched_tags) { 3227 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3228 false); 3229 } else { 3230 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3231 nr, true); 3232 } 3233 if (ret) 3234 break; 3235 if (q->elevator && q->elevator->type->ops.depth_updated) 3236 q->elevator->type->ops.depth_updated(hctx); 3237 } 3238 3239 if (!ret) 3240 q->nr_requests = nr; 3241 3242 blk_mq_unquiesce_queue(q); 3243 blk_mq_unfreeze_queue(q); 3244 3245 return ret; 3246 } 3247 3248 /* 3249 * request_queue and elevator_type pair. 3250 * It is just used by __blk_mq_update_nr_hw_queues to cache 3251 * the elevator_type associated with a request_queue. 3252 */ 3253 struct blk_mq_qe_pair { 3254 struct list_head node; 3255 struct request_queue *q; 3256 struct elevator_type *type; 3257 }; 3258 3259 /* 3260 * Cache the elevator_type in qe pair list and switch the 3261 * io scheduler to 'none' 3262 */ 3263 static bool blk_mq_elv_switch_none(struct list_head *head, 3264 struct request_queue *q) 3265 { 3266 struct blk_mq_qe_pair *qe; 3267 3268 if (!q->elevator) 3269 return true; 3270 3271 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3272 if (!qe) 3273 return false; 3274 3275 INIT_LIST_HEAD(&qe->node); 3276 qe->q = q; 3277 qe->type = q->elevator->type; 3278 list_add(&qe->node, head); 3279 3280 mutex_lock(&q->sysfs_lock); 3281 /* 3282 * After elevator_switch_mq, the previous elevator_queue will be 3283 * released by elevator_release. The reference of the io scheduler 3284 * module get by elevator_get will also be put. So we need to get 3285 * a reference of the io scheduler module here to prevent it to be 3286 * removed. 3287 */ 3288 __module_get(qe->type->elevator_owner); 3289 elevator_switch_mq(q, NULL); 3290 mutex_unlock(&q->sysfs_lock); 3291 3292 return true; 3293 } 3294 3295 static void blk_mq_elv_switch_back(struct list_head *head, 3296 struct request_queue *q) 3297 { 3298 struct blk_mq_qe_pair *qe; 3299 struct elevator_type *t = NULL; 3300 3301 list_for_each_entry(qe, head, node) 3302 if (qe->q == q) { 3303 t = qe->type; 3304 break; 3305 } 3306 3307 if (!t) 3308 return; 3309 3310 list_del(&qe->node); 3311 kfree(qe); 3312 3313 mutex_lock(&q->sysfs_lock); 3314 elevator_switch_mq(q, t); 3315 mutex_unlock(&q->sysfs_lock); 3316 } 3317 3318 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3319 int nr_hw_queues) 3320 { 3321 struct request_queue *q; 3322 LIST_HEAD(head); 3323 int prev_nr_hw_queues; 3324 3325 lockdep_assert_held(&set->tag_list_lock); 3326 3327 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3328 nr_hw_queues = nr_cpu_ids; 3329 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3330 return; 3331 3332 list_for_each_entry(q, &set->tag_list, tag_set_list) 3333 blk_mq_freeze_queue(q); 3334 /* 3335 * Switch IO scheduler to 'none', cleaning up the data associated 3336 * with the previous scheduler. We will switch back once we are done 3337 * updating the new sw to hw queue mappings. 3338 */ 3339 list_for_each_entry(q, &set->tag_list, tag_set_list) 3340 if (!blk_mq_elv_switch_none(&head, q)) 3341 goto switch_back; 3342 3343 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3344 blk_mq_debugfs_unregister_hctxs(q); 3345 blk_mq_sysfs_unregister(q); 3346 } 3347 3348 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3349 0) 3350 goto reregister; 3351 3352 prev_nr_hw_queues = set->nr_hw_queues; 3353 set->nr_hw_queues = nr_hw_queues; 3354 blk_mq_update_queue_map(set); 3355 fallback: 3356 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3357 blk_mq_realloc_hw_ctxs(set, q); 3358 if (q->nr_hw_queues != set->nr_hw_queues) { 3359 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3360 nr_hw_queues, prev_nr_hw_queues); 3361 set->nr_hw_queues = prev_nr_hw_queues; 3362 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3363 goto fallback; 3364 } 3365 blk_mq_map_swqueue(q); 3366 } 3367 3368 reregister: 3369 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3370 blk_mq_sysfs_register(q); 3371 blk_mq_debugfs_register_hctxs(q); 3372 } 3373 3374 switch_back: 3375 list_for_each_entry(q, &set->tag_list, tag_set_list) 3376 blk_mq_elv_switch_back(&head, q); 3377 3378 list_for_each_entry(q, &set->tag_list, tag_set_list) 3379 blk_mq_unfreeze_queue(q); 3380 } 3381 3382 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3383 { 3384 mutex_lock(&set->tag_list_lock); 3385 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3386 mutex_unlock(&set->tag_list_lock); 3387 } 3388 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3389 3390 /* Enable polling stats and return whether they were already enabled. */ 3391 static bool blk_poll_stats_enable(struct request_queue *q) 3392 { 3393 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3394 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3395 return true; 3396 blk_stat_add_callback(q, q->poll_cb); 3397 return false; 3398 } 3399 3400 static void blk_mq_poll_stats_start(struct request_queue *q) 3401 { 3402 /* 3403 * We don't arm the callback if polling stats are not enabled or the 3404 * callback is already active. 3405 */ 3406 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3407 blk_stat_is_active(q->poll_cb)) 3408 return; 3409 3410 blk_stat_activate_msecs(q->poll_cb, 100); 3411 } 3412 3413 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3414 { 3415 struct request_queue *q = cb->data; 3416 int bucket; 3417 3418 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3419 if (cb->stat[bucket].nr_samples) 3420 q->poll_stat[bucket] = cb->stat[bucket]; 3421 } 3422 } 3423 3424 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3425 struct request *rq) 3426 { 3427 unsigned long ret = 0; 3428 int bucket; 3429 3430 /* 3431 * If stats collection isn't on, don't sleep but turn it on for 3432 * future users 3433 */ 3434 if (!blk_poll_stats_enable(q)) 3435 return 0; 3436 3437 /* 3438 * As an optimistic guess, use half of the mean service time 3439 * for this type of request. We can (and should) make this smarter. 3440 * For instance, if the completion latencies are tight, we can 3441 * get closer than just half the mean. This is especially 3442 * important on devices where the completion latencies are longer 3443 * than ~10 usec. We do use the stats for the relevant IO size 3444 * if available which does lead to better estimates. 3445 */ 3446 bucket = blk_mq_poll_stats_bkt(rq); 3447 if (bucket < 0) 3448 return ret; 3449 3450 if (q->poll_stat[bucket].nr_samples) 3451 ret = (q->poll_stat[bucket].mean + 1) / 2; 3452 3453 return ret; 3454 } 3455 3456 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3457 struct request *rq) 3458 { 3459 struct hrtimer_sleeper hs; 3460 enum hrtimer_mode mode; 3461 unsigned int nsecs; 3462 ktime_t kt; 3463 3464 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3465 return false; 3466 3467 /* 3468 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3469 * 3470 * 0: use half of prev avg 3471 * >0: use this specific value 3472 */ 3473 if (q->poll_nsec > 0) 3474 nsecs = q->poll_nsec; 3475 else 3476 nsecs = blk_mq_poll_nsecs(q, rq); 3477 3478 if (!nsecs) 3479 return false; 3480 3481 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3482 3483 /* 3484 * This will be replaced with the stats tracking code, using 3485 * 'avg_completion_time / 2' as the pre-sleep target. 3486 */ 3487 kt = nsecs; 3488 3489 mode = HRTIMER_MODE_REL; 3490 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3491 hrtimer_set_expires(&hs.timer, kt); 3492 3493 do { 3494 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3495 break; 3496 set_current_state(TASK_UNINTERRUPTIBLE); 3497 hrtimer_sleeper_start_expires(&hs, mode); 3498 if (hs.task) 3499 io_schedule(); 3500 hrtimer_cancel(&hs.timer); 3501 mode = HRTIMER_MODE_ABS; 3502 } while (hs.task && !signal_pending(current)); 3503 3504 __set_current_state(TASK_RUNNING); 3505 destroy_hrtimer_on_stack(&hs.timer); 3506 return true; 3507 } 3508 3509 static bool blk_mq_poll_hybrid(struct request_queue *q, 3510 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3511 { 3512 struct request *rq; 3513 3514 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3515 return false; 3516 3517 if (!blk_qc_t_is_internal(cookie)) 3518 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3519 else { 3520 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3521 /* 3522 * With scheduling, if the request has completed, we'll 3523 * get a NULL return here, as we clear the sched tag when 3524 * that happens. The request still remains valid, like always, 3525 * so we should be safe with just the NULL check. 3526 */ 3527 if (!rq) 3528 return false; 3529 } 3530 3531 return blk_mq_poll_hybrid_sleep(q, rq); 3532 } 3533 3534 /** 3535 * blk_poll - poll for IO completions 3536 * @q: the queue 3537 * @cookie: cookie passed back at IO submission time 3538 * @spin: whether to spin for completions 3539 * 3540 * Description: 3541 * Poll for completions on the passed in queue. Returns number of 3542 * completed entries found. If @spin is true, then blk_poll will continue 3543 * looping until at least one completion is found, unless the task is 3544 * otherwise marked running (or we need to reschedule). 3545 */ 3546 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3547 { 3548 struct blk_mq_hw_ctx *hctx; 3549 long state; 3550 3551 if (!blk_qc_t_valid(cookie) || 3552 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3553 return 0; 3554 3555 if (current->plug) 3556 blk_flush_plug_list(current->plug, false); 3557 3558 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3559 3560 /* 3561 * If we sleep, have the caller restart the poll loop to reset 3562 * the state. Like for the other success return cases, the 3563 * caller is responsible for checking if the IO completed. If 3564 * the IO isn't complete, we'll get called again and will go 3565 * straight to the busy poll loop. 3566 */ 3567 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3568 return 1; 3569 3570 hctx->poll_considered++; 3571 3572 state = current->state; 3573 do { 3574 int ret; 3575 3576 hctx->poll_invoked++; 3577 3578 ret = q->mq_ops->poll(hctx); 3579 if (ret > 0) { 3580 hctx->poll_success++; 3581 __set_current_state(TASK_RUNNING); 3582 return ret; 3583 } 3584 3585 if (signal_pending_state(state, current)) 3586 __set_current_state(TASK_RUNNING); 3587 3588 if (current->state == TASK_RUNNING) 3589 return 1; 3590 if (ret < 0 || !spin) 3591 break; 3592 cpu_relax(); 3593 } while (!need_resched()); 3594 3595 __set_current_state(TASK_RUNNING); 3596 return 0; 3597 } 3598 EXPORT_SYMBOL_GPL(blk_poll); 3599 3600 unsigned int blk_mq_rq_cpu(struct request *rq) 3601 { 3602 return rq->mq_ctx->cpu; 3603 } 3604 EXPORT_SYMBOL(blk_mq_rq_cpu); 3605 3606 static int __init blk_mq_init(void) 3607 { 3608 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3609 blk_mq_hctx_notify_dead); 3610 return 0; 3611 } 3612 subsys_initcall(blk_mq_init); 3613