1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static void blk_mq_poll_stats_start(struct request_queue *q); 41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 42 43 static int blk_mq_poll_stats_bkt(const struct request *rq) 44 { 45 int ddir, bytes, bucket; 46 47 ddir = rq_data_dir(rq); 48 bytes = blk_rq_bytes(rq); 49 50 bucket = ddir + 2*(ilog2(bytes) - 9); 51 52 if (bucket < 0) 53 return -1; 54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 56 57 return bucket; 58 } 59 60 /* 61 * Check if any of the ctx's have pending work in this hardware queue 62 */ 63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 64 { 65 return sbitmap_any_bit_set(&hctx->ctx_map) || 66 !list_empty_careful(&hctx->dispatch) || 67 blk_mq_sched_has_work(hctx); 68 } 69 70 /* 71 * Mark this ctx as having pending work in this hardware queue 72 */ 73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 78 } 79 80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 84 } 85 86 void blk_freeze_queue_start(struct request_queue *q) 87 { 88 int freeze_depth; 89 90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 91 if (freeze_depth == 1) { 92 percpu_ref_kill(&q->q_usage_counter); 93 blk_mq_run_hw_queues(q, false); 94 } 95 } 96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 97 98 void blk_mq_freeze_queue_wait(struct request_queue *q) 99 { 100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 101 } 102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 103 104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 105 unsigned long timeout) 106 { 107 return wait_event_timeout(q->mq_freeze_wq, 108 percpu_ref_is_zero(&q->q_usage_counter), 109 timeout); 110 } 111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 112 113 /* 114 * Guarantee no request is in use, so we can change any data structure of 115 * the queue afterward. 116 */ 117 void blk_freeze_queue(struct request_queue *q) 118 { 119 /* 120 * In the !blk_mq case we are only calling this to kill the 121 * q_usage_counter, otherwise this increases the freeze depth 122 * and waits for it to return to zero. For this reason there is 123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 124 * exported to drivers as the only user for unfreeze is blk_mq. 125 */ 126 blk_freeze_queue_start(q); 127 blk_mq_freeze_queue_wait(q); 128 } 129 130 void blk_mq_freeze_queue(struct request_queue *q) 131 { 132 /* 133 * ...just an alias to keep freeze and unfreeze actions balanced 134 * in the blk_mq_* namespace 135 */ 136 blk_freeze_queue(q); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 139 140 void blk_mq_unfreeze_queue(struct request_queue *q) 141 { 142 int freeze_depth; 143 144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 145 WARN_ON_ONCE(freeze_depth < 0); 146 if (!freeze_depth) { 147 percpu_ref_reinit(&q->q_usage_counter); 148 wake_up_all(&q->mq_freeze_wq); 149 } 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 152 153 /* 154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 155 * mpt3sas driver such that this function can be removed. 156 */ 157 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 158 { 159 unsigned long flags; 160 161 spin_lock_irqsave(q->queue_lock, flags); 162 queue_flag_set(QUEUE_FLAG_QUIESCED, q); 163 spin_unlock_irqrestore(q->queue_lock, flags); 164 } 165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 166 167 /** 168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 169 * @q: request queue. 170 * 171 * Note: this function does not prevent that the struct request end_io() 172 * callback function is invoked. Once this function is returned, we make 173 * sure no dispatch can happen until the queue is unquiesced via 174 * blk_mq_unquiesce_queue(). 175 */ 176 void blk_mq_quiesce_queue(struct request_queue *q) 177 { 178 struct blk_mq_hw_ctx *hctx; 179 unsigned int i; 180 bool rcu = false; 181 182 blk_mq_quiesce_queue_nowait(q); 183 184 queue_for_each_hw_ctx(q, hctx, i) { 185 if (hctx->flags & BLK_MQ_F_BLOCKING) 186 synchronize_srcu(hctx->queue_rq_srcu); 187 else 188 rcu = true; 189 } 190 if (rcu) 191 synchronize_rcu(); 192 } 193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 194 195 /* 196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 197 * @q: request queue. 198 * 199 * This function recovers queue into the state before quiescing 200 * which is done by blk_mq_quiesce_queue. 201 */ 202 void blk_mq_unquiesce_queue(struct request_queue *q) 203 { 204 unsigned long flags; 205 206 spin_lock_irqsave(q->queue_lock, flags); 207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 208 spin_unlock_irqrestore(q->queue_lock, flags); 209 210 /* dispatch requests which are inserted during quiescing */ 211 blk_mq_run_hw_queues(q, true); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 214 215 void blk_mq_wake_waiters(struct request_queue *q) 216 { 217 struct blk_mq_hw_ctx *hctx; 218 unsigned int i; 219 220 queue_for_each_hw_ctx(q, hctx, i) 221 if (blk_mq_hw_queue_mapped(hctx)) 222 blk_mq_tag_wakeup_all(hctx->tags, true); 223 224 /* 225 * If we are called because the queue has now been marked as 226 * dying, we need to ensure that processes currently waiting on 227 * the queue are notified as well. 228 */ 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 233 { 234 return blk_mq_has_free_tags(hctx->tags); 235 } 236 EXPORT_SYMBOL(blk_mq_can_queue); 237 238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 239 unsigned int tag, unsigned int op) 240 { 241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 242 struct request *rq = tags->static_rqs[tag]; 243 244 rq->rq_flags = 0; 245 246 if (data->flags & BLK_MQ_REQ_INTERNAL) { 247 rq->tag = -1; 248 rq->internal_tag = tag; 249 } else { 250 if (blk_mq_tag_busy(data->hctx)) { 251 rq->rq_flags = RQF_MQ_INFLIGHT; 252 atomic_inc(&data->hctx->nr_active); 253 } 254 rq->tag = tag; 255 rq->internal_tag = -1; 256 data->hctx->tags->rqs[rq->tag] = rq; 257 } 258 259 INIT_LIST_HEAD(&rq->queuelist); 260 /* csd/requeue_work/fifo_time is initialized before use */ 261 rq->q = data->q; 262 rq->mq_ctx = data->ctx; 263 rq->cmd_flags = op; 264 if (blk_queue_io_stat(data->q)) 265 rq->rq_flags |= RQF_IO_STAT; 266 /* do not touch atomic flags, it needs atomic ops against the timer */ 267 rq->cpu = -1; 268 INIT_HLIST_NODE(&rq->hash); 269 RB_CLEAR_NODE(&rq->rb_node); 270 rq->rq_disk = NULL; 271 rq->part = NULL; 272 rq->start_time = jiffies; 273 #ifdef CONFIG_BLK_CGROUP 274 rq->rl = NULL; 275 set_start_time_ns(rq); 276 rq->io_start_time_ns = 0; 277 #endif 278 rq->nr_phys_segments = 0; 279 #if defined(CONFIG_BLK_DEV_INTEGRITY) 280 rq->nr_integrity_segments = 0; 281 #endif 282 rq->special = NULL; 283 /* tag was already set */ 284 rq->extra_len = 0; 285 286 INIT_LIST_HEAD(&rq->timeout_list); 287 rq->timeout = 0; 288 289 rq->end_io = NULL; 290 rq->end_io_data = NULL; 291 rq->next_rq = NULL; 292 293 data->ctx->rq_dispatched[op_is_sync(op)]++; 294 return rq; 295 } 296 297 static struct request *blk_mq_get_request(struct request_queue *q, 298 struct bio *bio, unsigned int op, 299 struct blk_mq_alloc_data *data) 300 { 301 struct elevator_queue *e = q->elevator; 302 struct request *rq; 303 unsigned int tag; 304 struct blk_mq_ctx *local_ctx = NULL; 305 306 blk_queue_enter_live(q); 307 data->q = q; 308 if (likely(!data->ctx)) 309 data->ctx = local_ctx = blk_mq_get_ctx(q); 310 if (likely(!data->hctx)) 311 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 312 if (op & REQ_NOWAIT) 313 data->flags |= BLK_MQ_REQ_NOWAIT; 314 315 if (e) { 316 data->flags |= BLK_MQ_REQ_INTERNAL; 317 318 /* 319 * Flush requests are special and go directly to the 320 * dispatch list. 321 */ 322 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 323 e->type->ops.mq.limit_depth(op, data); 324 } 325 326 tag = blk_mq_get_tag(data); 327 if (tag == BLK_MQ_TAG_FAIL) { 328 if (local_ctx) { 329 blk_mq_put_ctx(local_ctx); 330 data->ctx = NULL; 331 } 332 blk_queue_exit(q); 333 return NULL; 334 } 335 336 rq = blk_mq_rq_ctx_init(data, tag, op); 337 if (!op_is_flush(op)) { 338 rq->elv.icq = NULL; 339 if (e && e->type->ops.mq.prepare_request) { 340 if (e->type->icq_cache && rq_ioc(bio)) 341 blk_mq_sched_assign_ioc(rq, bio); 342 343 e->type->ops.mq.prepare_request(rq, bio); 344 rq->rq_flags |= RQF_ELVPRIV; 345 } 346 } 347 data->hctx->queued++; 348 return rq; 349 } 350 351 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 352 unsigned int flags) 353 { 354 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 355 struct request *rq; 356 int ret; 357 358 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 359 if (ret) 360 return ERR_PTR(ret); 361 362 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 363 364 if (!rq) 365 return ERR_PTR(-EWOULDBLOCK); 366 367 blk_mq_put_ctx(alloc_data.ctx); 368 blk_queue_exit(q); 369 370 rq->__data_len = 0; 371 rq->__sector = (sector_t) -1; 372 rq->bio = rq->biotail = NULL; 373 return rq; 374 } 375 EXPORT_SYMBOL(blk_mq_alloc_request); 376 377 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 378 unsigned int op, unsigned int flags, unsigned int hctx_idx) 379 { 380 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 381 struct request *rq; 382 unsigned int cpu; 383 int ret; 384 385 /* 386 * If the tag allocator sleeps we could get an allocation for a 387 * different hardware context. No need to complicate the low level 388 * allocator for this for the rare use case of a command tied to 389 * a specific queue. 390 */ 391 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 392 return ERR_PTR(-EINVAL); 393 394 if (hctx_idx >= q->nr_hw_queues) 395 return ERR_PTR(-EIO); 396 397 ret = blk_queue_enter(q, true); 398 if (ret) 399 return ERR_PTR(ret); 400 401 /* 402 * Check if the hardware context is actually mapped to anything. 403 * If not tell the caller that it should skip this queue. 404 */ 405 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 406 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 407 blk_queue_exit(q); 408 return ERR_PTR(-EXDEV); 409 } 410 cpu = cpumask_first(alloc_data.hctx->cpumask); 411 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 412 413 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 414 415 if (!rq) 416 return ERR_PTR(-EWOULDBLOCK); 417 418 blk_queue_exit(q); 419 420 return rq; 421 } 422 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 423 424 void blk_mq_free_request(struct request *rq) 425 { 426 struct request_queue *q = rq->q; 427 struct elevator_queue *e = q->elevator; 428 struct blk_mq_ctx *ctx = rq->mq_ctx; 429 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 430 const int sched_tag = rq->internal_tag; 431 432 if (rq->rq_flags & RQF_ELVPRIV) { 433 if (e && e->type->ops.mq.finish_request) 434 e->type->ops.mq.finish_request(rq); 435 if (rq->elv.icq) { 436 put_io_context(rq->elv.icq->ioc); 437 rq->elv.icq = NULL; 438 } 439 } 440 441 ctx->rq_completed[rq_is_sync(rq)]++; 442 if (rq->rq_flags & RQF_MQ_INFLIGHT) 443 atomic_dec(&hctx->nr_active); 444 445 wbt_done(q->rq_wb, &rq->issue_stat); 446 447 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 448 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 449 if (rq->tag != -1) 450 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 451 if (sched_tag != -1) 452 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 453 blk_mq_sched_restart(hctx); 454 blk_queue_exit(q); 455 } 456 EXPORT_SYMBOL_GPL(blk_mq_free_request); 457 458 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 459 { 460 blk_account_io_done(rq); 461 462 if (rq->end_io) { 463 wbt_done(rq->q->rq_wb, &rq->issue_stat); 464 rq->end_io(rq, error); 465 } else { 466 if (unlikely(blk_bidi_rq(rq))) 467 blk_mq_free_request(rq->next_rq); 468 blk_mq_free_request(rq); 469 } 470 } 471 EXPORT_SYMBOL(__blk_mq_end_request); 472 473 void blk_mq_end_request(struct request *rq, blk_status_t error) 474 { 475 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 476 BUG(); 477 __blk_mq_end_request(rq, error); 478 } 479 EXPORT_SYMBOL(blk_mq_end_request); 480 481 static void __blk_mq_complete_request_remote(void *data) 482 { 483 struct request *rq = data; 484 485 rq->q->softirq_done_fn(rq); 486 } 487 488 static void __blk_mq_complete_request(struct request *rq) 489 { 490 struct blk_mq_ctx *ctx = rq->mq_ctx; 491 bool shared = false; 492 int cpu; 493 494 if (rq->internal_tag != -1) 495 blk_mq_sched_completed_request(rq); 496 if (rq->rq_flags & RQF_STATS) { 497 blk_mq_poll_stats_start(rq->q); 498 blk_stat_add(rq); 499 } 500 501 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 502 rq->q->softirq_done_fn(rq); 503 return; 504 } 505 506 cpu = get_cpu(); 507 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 508 shared = cpus_share_cache(cpu, ctx->cpu); 509 510 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 511 rq->csd.func = __blk_mq_complete_request_remote; 512 rq->csd.info = rq; 513 rq->csd.flags = 0; 514 smp_call_function_single_async(ctx->cpu, &rq->csd); 515 } else { 516 rq->q->softirq_done_fn(rq); 517 } 518 put_cpu(); 519 } 520 521 /** 522 * blk_mq_complete_request - end I/O on a request 523 * @rq: the request being processed 524 * 525 * Description: 526 * Ends all I/O on a request. It does not handle partial completions. 527 * The actual completion happens out-of-order, through a IPI handler. 528 **/ 529 void blk_mq_complete_request(struct request *rq) 530 { 531 struct request_queue *q = rq->q; 532 533 if (unlikely(blk_should_fake_timeout(q))) 534 return; 535 if (!blk_mark_rq_complete(rq)) 536 __blk_mq_complete_request(rq); 537 } 538 EXPORT_SYMBOL(blk_mq_complete_request); 539 540 int blk_mq_request_started(struct request *rq) 541 { 542 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 543 } 544 EXPORT_SYMBOL_GPL(blk_mq_request_started); 545 546 void blk_mq_start_request(struct request *rq) 547 { 548 struct request_queue *q = rq->q; 549 550 blk_mq_sched_started_request(rq); 551 552 trace_block_rq_issue(q, rq); 553 554 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 555 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 556 rq->rq_flags |= RQF_STATS; 557 wbt_issue(q->rq_wb, &rq->issue_stat); 558 } 559 560 blk_add_timer(rq); 561 562 /* 563 * Ensure that ->deadline is visible before set the started 564 * flag and clear the completed flag. 565 */ 566 smp_mb__before_atomic(); 567 568 /* 569 * Mark us as started and clear complete. Complete might have been 570 * set if requeue raced with timeout, which then marked it as 571 * complete. So be sure to clear complete again when we start 572 * the request, otherwise we'll ignore the completion event. 573 */ 574 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 575 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 576 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 577 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 578 579 if (q->dma_drain_size && blk_rq_bytes(rq)) { 580 /* 581 * Make sure space for the drain appears. We know we can do 582 * this because max_hw_segments has been adjusted to be one 583 * fewer than the device can handle. 584 */ 585 rq->nr_phys_segments++; 586 } 587 } 588 EXPORT_SYMBOL(blk_mq_start_request); 589 590 /* 591 * When we reach here because queue is busy, REQ_ATOM_COMPLETE 592 * flag isn't set yet, so there may be race with timeout handler, 593 * but given rq->deadline is just set in .queue_rq() under 594 * this situation, the race won't be possible in reality because 595 * rq->timeout should be set as big enough to cover the window 596 * between blk_mq_start_request() called from .queue_rq() and 597 * clearing REQ_ATOM_STARTED here. 598 */ 599 static void __blk_mq_requeue_request(struct request *rq) 600 { 601 struct request_queue *q = rq->q; 602 603 trace_block_rq_requeue(q, rq); 604 wbt_requeue(q->rq_wb, &rq->issue_stat); 605 blk_mq_sched_requeue_request(rq); 606 607 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 608 if (q->dma_drain_size && blk_rq_bytes(rq)) 609 rq->nr_phys_segments--; 610 } 611 } 612 613 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 614 { 615 __blk_mq_requeue_request(rq); 616 617 BUG_ON(blk_queued_rq(rq)); 618 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 619 } 620 EXPORT_SYMBOL(blk_mq_requeue_request); 621 622 static void blk_mq_requeue_work(struct work_struct *work) 623 { 624 struct request_queue *q = 625 container_of(work, struct request_queue, requeue_work.work); 626 LIST_HEAD(rq_list); 627 struct request *rq, *next; 628 unsigned long flags; 629 630 spin_lock_irqsave(&q->requeue_lock, flags); 631 list_splice_init(&q->requeue_list, &rq_list); 632 spin_unlock_irqrestore(&q->requeue_lock, flags); 633 634 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 635 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 636 continue; 637 638 rq->rq_flags &= ~RQF_SOFTBARRIER; 639 list_del_init(&rq->queuelist); 640 blk_mq_sched_insert_request(rq, true, false, false, true); 641 } 642 643 while (!list_empty(&rq_list)) { 644 rq = list_entry(rq_list.next, struct request, queuelist); 645 list_del_init(&rq->queuelist); 646 blk_mq_sched_insert_request(rq, false, false, false, true); 647 } 648 649 blk_mq_run_hw_queues(q, false); 650 } 651 652 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 653 bool kick_requeue_list) 654 { 655 struct request_queue *q = rq->q; 656 unsigned long flags; 657 658 /* 659 * We abuse this flag that is otherwise used by the I/O scheduler to 660 * request head insertation from the workqueue. 661 */ 662 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 663 664 spin_lock_irqsave(&q->requeue_lock, flags); 665 if (at_head) { 666 rq->rq_flags |= RQF_SOFTBARRIER; 667 list_add(&rq->queuelist, &q->requeue_list); 668 } else { 669 list_add_tail(&rq->queuelist, &q->requeue_list); 670 } 671 spin_unlock_irqrestore(&q->requeue_lock, flags); 672 673 if (kick_requeue_list) 674 blk_mq_kick_requeue_list(q); 675 } 676 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 677 678 void blk_mq_kick_requeue_list(struct request_queue *q) 679 { 680 kblockd_schedule_delayed_work(&q->requeue_work, 0); 681 } 682 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 683 684 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 685 unsigned long msecs) 686 { 687 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 688 msecs_to_jiffies(msecs)); 689 } 690 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 691 692 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 693 { 694 if (tag < tags->nr_tags) { 695 prefetch(tags->rqs[tag]); 696 return tags->rqs[tag]; 697 } 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(blk_mq_tag_to_rq); 702 703 struct blk_mq_timeout_data { 704 unsigned long next; 705 unsigned int next_set; 706 }; 707 708 void blk_mq_rq_timed_out(struct request *req, bool reserved) 709 { 710 const struct blk_mq_ops *ops = req->q->mq_ops; 711 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 712 713 /* 714 * We know that complete is set at this point. If STARTED isn't set 715 * anymore, then the request isn't active and the "timeout" should 716 * just be ignored. This can happen due to the bitflag ordering. 717 * Timeout first checks if STARTED is set, and if it is, assumes 718 * the request is active. But if we race with completion, then 719 * both flags will get cleared. So check here again, and ignore 720 * a timeout event with a request that isn't active. 721 */ 722 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 723 return; 724 725 if (ops->timeout) 726 ret = ops->timeout(req, reserved); 727 728 switch (ret) { 729 case BLK_EH_HANDLED: 730 __blk_mq_complete_request(req); 731 break; 732 case BLK_EH_RESET_TIMER: 733 blk_add_timer(req); 734 blk_clear_rq_complete(req); 735 break; 736 case BLK_EH_NOT_HANDLED: 737 break; 738 default: 739 printk(KERN_ERR "block: bad eh return: %d\n", ret); 740 break; 741 } 742 } 743 744 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 745 struct request *rq, void *priv, bool reserved) 746 { 747 struct blk_mq_timeout_data *data = priv; 748 749 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 750 return; 751 752 /* 753 * The rq being checked may have been freed and reallocated 754 * out already here, we avoid this race by checking rq->deadline 755 * and REQ_ATOM_COMPLETE flag together: 756 * 757 * - if rq->deadline is observed as new value because of 758 * reusing, the rq won't be timed out because of timing. 759 * - if rq->deadline is observed as previous value, 760 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path 761 * because we put a barrier between setting rq->deadline 762 * and clearing the flag in blk_mq_start_request(), so 763 * this rq won't be timed out too. 764 */ 765 if (time_after_eq(jiffies, rq->deadline)) { 766 if (!blk_mark_rq_complete(rq)) 767 blk_mq_rq_timed_out(rq, reserved); 768 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 769 data->next = rq->deadline; 770 data->next_set = 1; 771 } 772 } 773 774 static void blk_mq_timeout_work(struct work_struct *work) 775 { 776 struct request_queue *q = 777 container_of(work, struct request_queue, timeout_work); 778 struct blk_mq_timeout_data data = { 779 .next = 0, 780 .next_set = 0, 781 }; 782 int i; 783 784 /* A deadlock might occur if a request is stuck requiring a 785 * timeout at the same time a queue freeze is waiting 786 * completion, since the timeout code would not be able to 787 * acquire the queue reference here. 788 * 789 * That's why we don't use blk_queue_enter here; instead, we use 790 * percpu_ref_tryget directly, because we need to be able to 791 * obtain a reference even in the short window between the queue 792 * starting to freeze, by dropping the first reference in 793 * blk_freeze_queue_start, and the moment the last request is 794 * consumed, marked by the instant q_usage_counter reaches 795 * zero. 796 */ 797 if (!percpu_ref_tryget(&q->q_usage_counter)) 798 return; 799 800 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 801 802 if (data.next_set) { 803 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 804 mod_timer(&q->timeout, data.next); 805 } else { 806 struct blk_mq_hw_ctx *hctx; 807 808 queue_for_each_hw_ctx(q, hctx, i) { 809 /* the hctx may be unmapped, so check it here */ 810 if (blk_mq_hw_queue_mapped(hctx)) 811 blk_mq_tag_idle(hctx); 812 } 813 } 814 blk_queue_exit(q); 815 } 816 817 struct flush_busy_ctx_data { 818 struct blk_mq_hw_ctx *hctx; 819 struct list_head *list; 820 }; 821 822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 823 { 824 struct flush_busy_ctx_data *flush_data = data; 825 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 827 828 sbitmap_clear_bit(sb, bitnr); 829 spin_lock(&ctx->lock); 830 list_splice_tail_init(&ctx->rq_list, flush_data->list); 831 spin_unlock(&ctx->lock); 832 return true; 833 } 834 835 /* 836 * Process software queues that have been marked busy, splicing them 837 * to the for-dispatch 838 */ 839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 840 { 841 struct flush_busy_ctx_data data = { 842 .hctx = hctx, 843 .list = list, 844 }; 845 846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 847 } 848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 849 850 static inline unsigned int queued_to_index(unsigned int queued) 851 { 852 if (!queued) 853 return 0; 854 855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 856 } 857 858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 859 bool wait) 860 { 861 struct blk_mq_alloc_data data = { 862 .q = rq->q, 863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 865 }; 866 867 might_sleep_if(wait); 868 869 if (rq->tag != -1) 870 goto done; 871 872 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 873 data.flags |= BLK_MQ_REQ_RESERVED; 874 875 rq->tag = blk_mq_get_tag(&data); 876 if (rq->tag >= 0) { 877 if (blk_mq_tag_busy(data.hctx)) { 878 rq->rq_flags |= RQF_MQ_INFLIGHT; 879 atomic_inc(&data.hctx->nr_active); 880 } 881 data.hctx->tags->rqs[rq->tag] = rq; 882 } 883 884 done: 885 if (hctx) 886 *hctx = data.hctx; 887 return rq->tag != -1; 888 } 889 890 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 891 struct request *rq) 892 { 893 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 894 rq->tag = -1; 895 896 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 897 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 898 atomic_dec(&hctx->nr_active); 899 } 900 } 901 902 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx, 903 struct request *rq) 904 { 905 if (rq->tag == -1 || rq->internal_tag == -1) 906 return; 907 908 __blk_mq_put_driver_tag(hctx, rq); 909 } 910 911 static void blk_mq_put_driver_tag(struct request *rq) 912 { 913 struct blk_mq_hw_ctx *hctx; 914 915 if (rq->tag == -1 || rq->internal_tag == -1) 916 return; 917 918 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 919 __blk_mq_put_driver_tag(hctx, rq); 920 } 921 922 /* 923 * If we fail getting a driver tag because all the driver tags are already 924 * assigned and on the dispatch list, BUT the first entry does not have a 925 * tag, then we could deadlock. For that case, move entries with assigned 926 * driver tags to the front, leaving the set of tagged requests in the 927 * same order, and the untagged set in the same order. 928 */ 929 static bool reorder_tags_to_front(struct list_head *list) 930 { 931 struct request *rq, *tmp, *first = NULL; 932 933 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 934 if (rq == first) 935 break; 936 if (rq->tag != -1) { 937 list_move(&rq->queuelist, list); 938 if (!first) 939 first = rq; 940 } 941 } 942 943 return first != NULL; 944 } 945 946 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags, 947 void *key) 948 { 949 struct blk_mq_hw_ctx *hctx; 950 951 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 952 953 list_del(&wait->entry); 954 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 955 blk_mq_run_hw_queue(hctx, true); 956 return 1; 957 } 958 959 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 960 { 961 struct sbq_wait_state *ws; 962 963 /* 964 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 965 * The thread which wins the race to grab this bit adds the hardware 966 * queue to the wait queue. 967 */ 968 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 969 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 970 return false; 971 972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 973 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 974 975 /* 976 * As soon as this returns, it's no longer safe to fiddle with 977 * hctx->dispatch_wait, since a completion can wake up the wait queue 978 * and unlock the bit. 979 */ 980 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 981 return true; 982 } 983 984 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list) 985 { 986 struct blk_mq_hw_ctx *hctx; 987 struct request *rq; 988 int errors, queued; 989 990 if (list_empty(list)) 991 return false; 992 993 /* 994 * Now process all the entries, sending them to the driver. 995 */ 996 errors = queued = 0; 997 do { 998 struct blk_mq_queue_data bd; 999 blk_status_t ret; 1000 1001 rq = list_first_entry(list, struct request, queuelist); 1002 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1003 if (!queued && reorder_tags_to_front(list)) 1004 continue; 1005 1006 /* 1007 * The initial allocation attempt failed, so we need to 1008 * rerun the hardware queue when a tag is freed. 1009 */ 1010 if (!blk_mq_dispatch_wait_add(hctx)) 1011 break; 1012 1013 /* 1014 * It's possible that a tag was freed in the window 1015 * between the allocation failure and adding the 1016 * hardware queue to the wait queue. 1017 */ 1018 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1019 break; 1020 } 1021 1022 list_del_init(&rq->queuelist); 1023 1024 bd.rq = rq; 1025 1026 /* 1027 * Flag last if we have no more requests, or if we have more 1028 * but can't assign a driver tag to it. 1029 */ 1030 if (list_empty(list)) 1031 bd.last = true; 1032 else { 1033 struct request *nxt; 1034 1035 nxt = list_first_entry(list, struct request, queuelist); 1036 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1037 } 1038 1039 ret = q->mq_ops->queue_rq(hctx, &bd); 1040 if (ret == BLK_STS_RESOURCE) { 1041 blk_mq_put_driver_tag_hctx(hctx, rq); 1042 list_add(&rq->queuelist, list); 1043 __blk_mq_requeue_request(rq); 1044 break; 1045 } 1046 1047 if (unlikely(ret != BLK_STS_OK)) { 1048 errors++; 1049 blk_mq_end_request(rq, BLK_STS_IOERR); 1050 continue; 1051 } 1052 1053 queued++; 1054 } while (!list_empty(list)); 1055 1056 hctx->dispatched[queued_to_index(queued)]++; 1057 1058 /* 1059 * Any items that need requeuing? Stuff them into hctx->dispatch, 1060 * that is where we will continue on next queue run. 1061 */ 1062 if (!list_empty(list)) { 1063 /* 1064 * If an I/O scheduler has been configured and we got a driver 1065 * tag for the next request already, free it again. 1066 */ 1067 rq = list_first_entry(list, struct request, queuelist); 1068 blk_mq_put_driver_tag(rq); 1069 1070 spin_lock(&hctx->lock); 1071 list_splice_init(list, &hctx->dispatch); 1072 spin_unlock(&hctx->lock); 1073 1074 /* 1075 * If SCHED_RESTART was set by the caller of this function and 1076 * it is no longer set that means that it was cleared by another 1077 * thread and hence that a queue rerun is needed. 1078 * 1079 * If TAG_WAITING is set that means that an I/O scheduler has 1080 * been configured and another thread is waiting for a driver 1081 * tag. To guarantee fairness, do not rerun this hardware queue 1082 * but let the other thread grab the driver tag. 1083 * 1084 * If no I/O scheduler has been configured it is possible that 1085 * the hardware queue got stopped and restarted before requests 1086 * were pushed back onto the dispatch list. Rerun the queue to 1087 * avoid starvation. Notes: 1088 * - blk_mq_run_hw_queue() checks whether or not a queue has 1089 * been stopped before rerunning a queue. 1090 * - Some but not all block drivers stop a queue before 1091 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1092 * and dm-rq. 1093 */ 1094 if (!blk_mq_sched_needs_restart(hctx) && 1095 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1096 blk_mq_run_hw_queue(hctx, true); 1097 } 1098 1099 return (queued + errors) != 0; 1100 } 1101 1102 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1103 { 1104 int srcu_idx; 1105 1106 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1107 cpu_online(hctx->next_cpu)); 1108 1109 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1110 rcu_read_lock(); 1111 blk_mq_sched_dispatch_requests(hctx); 1112 rcu_read_unlock(); 1113 } else { 1114 might_sleep(); 1115 1116 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu); 1117 blk_mq_sched_dispatch_requests(hctx); 1118 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx); 1119 } 1120 } 1121 1122 /* 1123 * It'd be great if the workqueue API had a way to pass 1124 * in a mask and had some smarts for more clever placement. 1125 * For now we just round-robin here, switching for every 1126 * BLK_MQ_CPU_WORK_BATCH queued items. 1127 */ 1128 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1129 { 1130 if (hctx->queue->nr_hw_queues == 1) 1131 return WORK_CPU_UNBOUND; 1132 1133 if (--hctx->next_cpu_batch <= 0) { 1134 int next_cpu; 1135 1136 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1137 if (next_cpu >= nr_cpu_ids) 1138 next_cpu = cpumask_first(hctx->cpumask); 1139 1140 hctx->next_cpu = next_cpu; 1141 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1142 } 1143 1144 return hctx->next_cpu; 1145 } 1146 1147 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1148 unsigned long msecs) 1149 { 1150 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1151 return; 1152 1153 if (unlikely(blk_mq_hctx_stopped(hctx))) 1154 return; 1155 1156 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1157 int cpu = get_cpu(); 1158 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1159 __blk_mq_run_hw_queue(hctx); 1160 put_cpu(); 1161 return; 1162 } 1163 1164 put_cpu(); 1165 } 1166 1167 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1168 &hctx->run_work, 1169 msecs_to_jiffies(msecs)); 1170 } 1171 1172 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1173 { 1174 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1175 } 1176 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1177 1178 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1179 { 1180 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1181 } 1182 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1183 1184 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1185 { 1186 struct blk_mq_hw_ctx *hctx; 1187 int i; 1188 1189 queue_for_each_hw_ctx(q, hctx, i) { 1190 if (!blk_mq_hctx_has_pending(hctx) || 1191 blk_mq_hctx_stopped(hctx)) 1192 continue; 1193 1194 blk_mq_run_hw_queue(hctx, async); 1195 } 1196 } 1197 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1198 1199 /** 1200 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1201 * @q: request queue. 1202 * 1203 * The caller is responsible for serializing this function against 1204 * blk_mq_{start,stop}_hw_queue(). 1205 */ 1206 bool blk_mq_queue_stopped(struct request_queue *q) 1207 { 1208 struct blk_mq_hw_ctx *hctx; 1209 int i; 1210 1211 queue_for_each_hw_ctx(q, hctx, i) 1212 if (blk_mq_hctx_stopped(hctx)) 1213 return true; 1214 1215 return false; 1216 } 1217 EXPORT_SYMBOL(blk_mq_queue_stopped); 1218 1219 /* 1220 * This function is often used for pausing .queue_rq() by driver when 1221 * there isn't enough resource or some conditions aren't satisfied, and 1222 * BLK_MQ_RQ_QUEUE_BUSY is usually returned. 1223 * 1224 * We do not guarantee that dispatch can be drained or blocked 1225 * after blk_mq_stop_hw_queue() returns. Please use 1226 * blk_mq_quiesce_queue() for that requirement. 1227 */ 1228 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1229 { 1230 cancel_delayed_work(&hctx->run_work); 1231 1232 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1233 } 1234 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1235 1236 /* 1237 * This function is often used for pausing .queue_rq() by driver when 1238 * there isn't enough resource or some conditions aren't satisfied, and 1239 * BLK_MQ_RQ_QUEUE_BUSY is usually returned. 1240 * 1241 * We do not guarantee that dispatch can be drained or blocked 1242 * after blk_mq_stop_hw_queues() returns. Please use 1243 * blk_mq_quiesce_queue() for that requirement. 1244 */ 1245 void blk_mq_stop_hw_queues(struct request_queue *q) 1246 { 1247 struct blk_mq_hw_ctx *hctx; 1248 int i; 1249 1250 queue_for_each_hw_ctx(q, hctx, i) 1251 blk_mq_stop_hw_queue(hctx); 1252 } 1253 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1254 1255 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1256 { 1257 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1258 1259 blk_mq_run_hw_queue(hctx, false); 1260 } 1261 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1262 1263 void blk_mq_start_hw_queues(struct request_queue *q) 1264 { 1265 struct blk_mq_hw_ctx *hctx; 1266 int i; 1267 1268 queue_for_each_hw_ctx(q, hctx, i) 1269 blk_mq_start_hw_queue(hctx); 1270 } 1271 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1272 1273 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1274 { 1275 if (!blk_mq_hctx_stopped(hctx)) 1276 return; 1277 1278 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1279 blk_mq_run_hw_queue(hctx, async); 1280 } 1281 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1282 1283 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1284 { 1285 struct blk_mq_hw_ctx *hctx; 1286 int i; 1287 1288 queue_for_each_hw_ctx(q, hctx, i) 1289 blk_mq_start_stopped_hw_queue(hctx, async); 1290 } 1291 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1292 1293 static void blk_mq_run_work_fn(struct work_struct *work) 1294 { 1295 struct blk_mq_hw_ctx *hctx; 1296 1297 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1298 1299 /* 1300 * If we are stopped, don't run the queue. The exception is if 1301 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1302 * the STOPPED bit and run it. 1303 */ 1304 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1305 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1306 return; 1307 1308 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1309 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1310 } 1311 1312 __blk_mq_run_hw_queue(hctx); 1313 } 1314 1315 1316 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1317 { 1318 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1319 return; 1320 1321 /* 1322 * Stop the hw queue, then modify currently delayed work. 1323 * This should prevent us from running the queue prematurely. 1324 * Mark the queue as auto-clearing STOPPED when it runs. 1325 */ 1326 blk_mq_stop_hw_queue(hctx); 1327 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1328 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1329 &hctx->run_work, 1330 msecs_to_jiffies(msecs)); 1331 } 1332 EXPORT_SYMBOL(blk_mq_delay_queue); 1333 1334 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1335 struct request *rq, 1336 bool at_head) 1337 { 1338 struct blk_mq_ctx *ctx = rq->mq_ctx; 1339 1340 lockdep_assert_held(&ctx->lock); 1341 1342 trace_block_rq_insert(hctx->queue, rq); 1343 1344 if (at_head) 1345 list_add(&rq->queuelist, &ctx->rq_list); 1346 else 1347 list_add_tail(&rq->queuelist, &ctx->rq_list); 1348 } 1349 1350 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1351 bool at_head) 1352 { 1353 struct blk_mq_ctx *ctx = rq->mq_ctx; 1354 1355 lockdep_assert_held(&ctx->lock); 1356 1357 __blk_mq_insert_req_list(hctx, rq, at_head); 1358 blk_mq_hctx_mark_pending(hctx, ctx); 1359 } 1360 1361 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1362 struct list_head *list) 1363 1364 { 1365 /* 1366 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1367 * offline now 1368 */ 1369 spin_lock(&ctx->lock); 1370 while (!list_empty(list)) { 1371 struct request *rq; 1372 1373 rq = list_first_entry(list, struct request, queuelist); 1374 BUG_ON(rq->mq_ctx != ctx); 1375 list_del_init(&rq->queuelist); 1376 __blk_mq_insert_req_list(hctx, rq, false); 1377 } 1378 blk_mq_hctx_mark_pending(hctx, ctx); 1379 spin_unlock(&ctx->lock); 1380 } 1381 1382 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1383 { 1384 struct request *rqa = container_of(a, struct request, queuelist); 1385 struct request *rqb = container_of(b, struct request, queuelist); 1386 1387 return !(rqa->mq_ctx < rqb->mq_ctx || 1388 (rqa->mq_ctx == rqb->mq_ctx && 1389 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1390 } 1391 1392 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1393 { 1394 struct blk_mq_ctx *this_ctx; 1395 struct request_queue *this_q; 1396 struct request *rq; 1397 LIST_HEAD(list); 1398 LIST_HEAD(ctx_list); 1399 unsigned int depth; 1400 1401 list_splice_init(&plug->mq_list, &list); 1402 1403 list_sort(NULL, &list, plug_ctx_cmp); 1404 1405 this_q = NULL; 1406 this_ctx = NULL; 1407 depth = 0; 1408 1409 while (!list_empty(&list)) { 1410 rq = list_entry_rq(list.next); 1411 list_del_init(&rq->queuelist); 1412 BUG_ON(!rq->q); 1413 if (rq->mq_ctx != this_ctx) { 1414 if (this_ctx) { 1415 trace_block_unplug(this_q, depth, from_schedule); 1416 blk_mq_sched_insert_requests(this_q, this_ctx, 1417 &ctx_list, 1418 from_schedule); 1419 } 1420 1421 this_ctx = rq->mq_ctx; 1422 this_q = rq->q; 1423 depth = 0; 1424 } 1425 1426 depth++; 1427 list_add_tail(&rq->queuelist, &ctx_list); 1428 } 1429 1430 /* 1431 * If 'this_ctx' is set, we know we have entries to complete 1432 * on 'ctx_list'. Do those. 1433 */ 1434 if (this_ctx) { 1435 trace_block_unplug(this_q, depth, from_schedule); 1436 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1437 from_schedule); 1438 } 1439 } 1440 1441 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1442 { 1443 blk_init_request_from_bio(rq, bio); 1444 1445 blk_account_io_start(rq, true); 1446 } 1447 1448 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1449 { 1450 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1451 !blk_queue_nomerges(hctx->queue); 1452 } 1453 1454 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1455 struct blk_mq_ctx *ctx, 1456 struct request *rq) 1457 { 1458 spin_lock(&ctx->lock); 1459 __blk_mq_insert_request(hctx, rq, false); 1460 spin_unlock(&ctx->lock); 1461 } 1462 1463 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1464 { 1465 if (rq->tag != -1) 1466 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1467 1468 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1469 } 1470 1471 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1472 struct request *rq, 1473 blk_qc_t *cookie, bool may_sleep) 1474 { 1475 struct request_queue *q = rq->q; 1476 struct blk_mq_queue_data bd = { 1477 .rq = rq, 1478 .last = true, 1479 }; 1480 blk_qc_t new_cookie; 1481 blk_status_t ret; 1482 bool run_queue = true; 1483 1484 /* RCU or SRCU read lock is needed before checking quiesced flag */ 1485 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1486 run_queue = false; 1487 goto insert; 1488 } 1489 1490 if (q->elevator) 1491 goto insert; 1492 1493 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1494 goto insert; 1495 1496 new_cookie = request_to_qc_t(hctx, rq); 1497 1498 /* 1499 * For OK queue, we are done. For error, kill it. Any other 1500 * error (busy), just add it to our list as we previously 1501 * would have done 1502 */ 1503 ret = q->mq_ops->queue_rq(hctx, &bd); 1504 switch (ret) { 1505 case BLK_STS_OK: 1506 *cookie = new_cookie; 1507 return; 1508 case BLK_STS_RESOURCE: 1509 __blk_mq_requeue_request(rq); 1510 goto insert; 1511 default: 1512 *cookie = BLK_QC_T_NONE; 1513 blk_mq_end_request(rq, ret); 1514 return; 1515 } 1516 1517 insert: 1518 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep); 1519 } 1520 1521 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1522 struct request *rq, blk_qc_t *cookie) 1523 { 1524 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1525 rcu_read_lock(); 1526 __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1527 rcu_read_unlock(); 1528 } else { 1529 unsigned int srcu_idx; 1530 1531 might_sleep(); 1532 1533 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu); 1534 __blk_mq_try_issue_directly(hctx, rq, cookie, true); 1535 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx); 1536 } 1537 } 1538 1539 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1540 { 1541 const int is_sync = op_is_sync(bio->bi_opf); 1542 const int is_flush_fua = op_is_flush(bio->bi_opf); 1543 struct blk_mq_alloc_data data = { .flags = 0 }; 1544 struct request *rq; 1545 unsigned int request_count = 0; 1546 struct blk_plug *plug; 1547 struct request *same_queue_rq = NULL; 1548 blk_qc_t cookie; 1549 unsigned int wb_acct; 1550 1551 blk_queue_bounce(q, &bio); 1552 1553 blk_queue_split(q, &bio); 1554 1555 if (!bio_integrity_prep(bio)) 1556 return BLK_QC_T_NONE; 1557 1558 if (!is_flush_fua && !blk_queue_nomerges(q) && 1559 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1560 return BLK_QC_T_NONE; 1561 1562 if (blk_mq_sched_bio_merge(q, bio)) 1563 return BLK_QC_T_NONE; 1564 1565 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1566 1567 trace_block_getrq(q, bio, bio->bi_opf); 1568 1569 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1570 if (unlikely(!rq)) { 1571 __wbt_done(q->rq_wb, wb_acct); 1572 if (bio->bi_opf & REQ_NOWAIT) 1573 bio_wouldblock_error(bio); 1574 return BLK_QC_T_NONE; 1575 } 1576 1577 wbt_track(&rq->issue_stat, wb_acct); 1578 1579 cookie = request_to_qc_t(data.hctx, rq); 1580 1581 plug = current->plug; 1582 if (unlikely(is_flush_fua)) { 1583 blk_mq_put_ctx(data.ctx); 1584 blk_mq_bio_to_request(rq, bio); 1585 if (q->elevator) { 1586 blk_mq_sched_insert_request(rq, false, true, true, 1587 true); 1588 } else { 1589 blk_insert_flush(rq); 1590 blk_mq_run_hw_queue(data.hctx, true); 1591 } 1592 } else if (plug && q->nr_hw_queues == 1) { 1593 struct request *last = NULL; 1594 1595 blk_mq_put_ctx(data.ctx); 1596 blk_mq_bio_to_request(rq, bio); 1597 1598 /* 1599 * @request_count may become stale because of schedule 1600 * out, so check the list again. 1601 */ 1602 if (list_empty(&plug->mq_list)) 1603 request_count = 0; 1604 else if (blk_queue_nomerges(q)) 1605 request_count = blk_plug_queued_count(q); 1606 1607 if (!request_count) 1608 trace_block_plug(q); 1609 else 1610 last = list_entry_rq(plug->mq_list.prev); 1611 1612 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1613 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1614 blk_flush_plug_list(plug, false); 1615 trace_block_plug(q); 1616 } 1617 1618 list_add_tail(&rq->queuelist, &plug->mq_list); 1619 } else if (plug && !blk_queue_nomerges(q)) { 1620 blk_mq_bio_to_request(rq, bio); 1621 1622 /* 1623 * We do limited plugging. If the bio can be merged, do that. 1624 * Otherwise the existing request in the plug list will be 1625 * issued. So the plug list will have one request at most 1626 * The plug list might get flushed before this. If that happens, 1627 * the plug list is empty, and same_queue_rq is invalid. 1628 */ 1629 if (list_empty(&plug->mq_list)) 1630 same_queue_rq = NULL; 1631 if (same_queue_rq) 1632 list_del_init(&same_queue_rq->queuelist); 1633 list_add_tail(&rq->queuelist, &plug->mq_list); 1634 1635 blk_mq_put_ctx(data.ctx); 1636 1637 if (same_queue_rq) { 1638 data.hctx = blk_mq_map_queue(q, 1639 same_queue_rq->mq_ctx->cpu); 1640 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1641 &cookie); 1642 } 1643 } else if (q->nr_hw_queues > 1 && is_sync) { 1644 blk_mq_put_ctx(data.ctx); 1645 blk_mq_bio_to_request(rq, bio); 1646 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1647 } else if (q->elevator) { 1648 blk_mq_put_ctx(data.ctx); 1649 blk_mq_bio_to_request(rq, bio); 1650 blk_mq_sched_insert_request(rq, false, true, true, true); 1651 } else { 1652 blk_mq_put_ctx(data.ctx); 1653 blk_mq_bio_to_request(rq, bio); 1654 blk_mq_queue_io(data.hctx, data.ctx, rq); 1655 blk_mq_run_hw_queue(data.hctx, true); 1656 } 1657 1658 return cookie; 1659 } 1660 1661 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1662 unsigned int hctx_idx) 1663 { 1664 struct page *page; 1665 1666 if (tags->rqs && set->ops->exit_request) { 1667 int i; 1668 1669 for (i = 0; i < tags->nr_tags; i++) { 1670 struct request *rq = tags->static_rqs[i]; 1671 1672 if (!rq) 1673 continue; 1674 set->ops->exit_request(set, rq, hctx_idx); 1675 tags->static_rqs[i] = NULL; 1676 } 1677 } 1678 1679 while (!list_empty(&tags->page_list)) { 1680 page = list_first_entry(&tags->page_list, struct page, lru); 1681 list_del_init(&page->lru); 1682 /* 1683 * Remove kmemleak object previously allocated in 1684 * blk_mq_init_rq_map(). 1685 */ 1686 kmemleak_free(page_address(page)); 1687 __free_pages(page, page->private); 1688 } 1689 } 1690 1691 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1692 { 1693 kfree(tags->rqs); 1694 tags->rqs = NULL; 1695 kfree(tags->static_rqs); 1696 tags->static_rqs = NULL; 1697 1698 blk_mq_free_tags(tags); 1699 } 1700 1701 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1702 unsigned int hctx_idx, 1703 unsigned int nr_tags, 1704 unsigned int reserved_tags) 1705 { 1706 struct blk_mq_tags *tags; 1707 int node; 1708 1709 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1710 if (node == NUMA_NO_NODE) 1711 node = set->numa_node; 1712 1713 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1714 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1715 if (!tags) 1716 return NULL; 1717 1718 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1719 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1720 node); 1721 if (!tags->rqs) { 1722 blk_mq_free_tags(tags); 1723 return NULL; 1724 } 1725 1726 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1727 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1728 node); 1729 if (!tags->static_rqs) { 1730 kfree(tags->rqs); 1731 blk_mq_free_tags(tags); 1732 return NULL; 1733 } 1734 1735 return tags; 1736 } 1737 1738 static size_t order_to_size(unsigned int order) 1739 { 1740 return (size_t)PAGE_SIZE << order; 1741 } 1742 1743 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1744 unsigned int hctx_idx, unsigned int depth) 1745 { 1746 unsigned int i, j, entries_per_page, max_order = 4; 1747 size_t rq_size, left; 1748 int node; 1749 1750 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1751 if (node == NUMA_NO_NODE) 1752 node = set->numa_node; 1753 1754 INIT_LIST_HEAD(&tags->page_list); 1755 1756 /* 1757 * rq_size is the size of the request plus driver payload, rounded 1758 * to the cacheline size 1759 */ 1760 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1761 cache_line_size()); 1762 left = rq_size * depth; 1763 1764 for (i = 0; i < depth; ) { 1765 int this_order = max_order; 1766 struct page *page; 1767 int to_do; 1768 void *p; 1769 1770 while (this_order && left < order_to_size(this_order - 1)) 1771 this_order--; 1772 1773 do { 1774 page = alloc_pages_node(node, 1775 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1776 this_order); 1777 if (page) 1778 break; 1779 if (!this_order--) 1780 break; 1781 if (order_to_size(this_order) < rq_size) 1782 break; 1783 } while (1); 1784 1785 if (!page) 1786 goto fail; 1787 1788 page->private = this_order; 1789 list_add_tail(&page->lru, &tags->page_list); 1790 1791 p = page_address(page); 1792 /* 1793 * Allow kmemleak to scan these pages as they contain pointers 1794 * to additional allocations like via ops->init_request(). 1795 */ 1796 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1797 entries_per_page = order_to_size(this_order) / rq_size; 1798 to_do = min(entries_per_page, depth - i); 1799 left -= to_do * rq_size; 1800 for (j = 0; j < to_do; j++) { 1801 struct request *rq = p; 1802 1803 tags->static_rqs[i] = rq; 1804 if (set->ops->init_request) { 1805 if (set->ops->init_request(set, rq, hctx_idx, 1806 node)) { 1807 tags->static_rqs[i] = NULL; 1808 goto fail; 1809 } 1810 } 1811 1812 p += rq_size; 1813 i++; 1814 } 1815 } 1816 return 0; 1817 1818 fail: 1819 blk_mq_free_rqs(set, tags, hctx_idx); 1820 return -ENOMEM; 1821 } 1822 1823 /* 1824 * 'cpu' is going away. splice any existing rq_list entries from this 1825 * software queue to the hw queue dispatch list, and ensure that it 1826 * gets run. 1827 */ 1828 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1829 { 1830 struct blk_mq_hw_ctx *hctx; 1831 struct blk_mq_ctx *ctx; 1832 LIST_HEAD(tmp); 1833 1834 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1835 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1836 1837 spin_lock(&ctx->lock); 1838 if (!list_empty(&ctx->rq_list)) { 1839 list_splice_init(&ctx->rq_list, &tmp); 1840 blk_mq_hctx_clear_pending(hctx, ctx); 1841 } 1842 spin_unlock(&ctx->lock); 1843 1844 if (list_empty(&tmp)) 1845 return 0; 1846 1847 spin_lock(&hctx->lock); 1848 list_splice_tail_init(&tmp, &hctx->dispatch); 1849 spin_unlock(&hctx->lock); 1850 1851 blk_mq_run_hw_queue(hctx, true); 1852 return 0; 1853 } 1854 1855 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1856 { 1857 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1858 &hctx->cpuhp_dead); 1859 } 1860 1861 /* hctx->ctxs will be freed in queue's release handler */ 1862 static void blk_mq_exit_hctx(struct request_queue *q, 1863 struct blk_mq_tag_set *set, 1864 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1865 { 1866 blk_mq_debugfs_unregister_hctx(hctx); 1867 1868 blk_mq_tag_idle(hctx); 1869 1870 if (set->ops->exit_request) 1871 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 1872 1873 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1874 1875 if (set->ops->exit_hctx) 1876 set->ops->exit_hctx(hctx, hctx_idx); 1877 1878 if (hctx->flags & BLK_MQ_F_BLOCKING) 1879 cleanup_srcu_struct(hctx->queue_rq_srcu); 1880 1881 blk_mq_remove_cpuhp(hctx); 1882 blk_free_flush_queue(hctx->fq); 1883 sbitmap_free(&hctx->ctx_map); 1884 } 1885 1886 static void blk_mq_exit_hw_queues(struct request_queue *q, 1887 struct blk_mq_tag_set *set, int nr_queue) 1888 { 1889 struct blk_mq_hw_ctx *hctx; 1890 unsigned int i; 1891 1892 queue_for_each_hw_ctx(q, hctx, i) { 1893 if (i == nr_queue) 1894 break; 1895 blk_mq_exit_hctx(q, set, hctx, i); 1896 } 1897 } 1898 1899 static int blk_mq_init_hctx(struct request_queue *q, 1900 struct blk_mq_tag_set *set, 1901 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1902 { 1903 int node; 1904 1905 node = hctx->numa_node; 1906 if (node == NUMA_NO_NODE) 1907 node = hctx->numa_node = set->numa_node; 1908 1909 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1910 spin_lock_init(&hctx->lock); 1911 INIT_LIST_HEAD(&hctx->dispatch); 1912 hctx->queue = q; 1913 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1914 1915 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1916 1917 hctx->tags = set->tags[hctx_idx]; 1918 1919 /* 1920 * Allocate space for all possible cpus to avoid allocation at 1921 * runtime 1922 */ 1923 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1924 GFP_KERNEL, node); 1925 if (!hctx->ctxs) 1926 goto unregister_cpu_notifier; 1927 1928 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1929 node)) 1930 goto free_ctxs; 1931 1932 hctx->nr_ctx = 0; 1933 1934 if (set->ops->init_hctx && 1935 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1936 goto free_bitmap; 1937 1938 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 1939 goto exit_hctx; 1940 1941 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1942 if (!hctx->fq) 1943 goto sched_exit_hctx; 1944 1945 if (set->ops->init_request && 1946 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx, 1947 node)) 1948 goto free_fq; 1949 1950 if (hctx->flags & BLK_MQ_F_BLOCKING) 1951 init_srcu_struct(hctx->queue_rq_srcu); 1952 1953 blk_mq_debugfs_register_hctx(q, hctx); 1954 1955 return 0; 1956 1957 free_fq: 1958 kfree(hctx->fq); 1959 sched_exit_hctx: 1960 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 1961 exit_hctx: 1962 if (set->ops->exit_hctx) 1963 set->ops->exit_hctx(hctx, hctx_idx); 1964 free_bitmap: 1965 sbitmap_free(&hctx->ctx_map); 1966 free_ctxs: 1967 kfree(hctx->ctxs); 1968 unregister_cpu_notifier: 1969 blk_mq_remove_cpuhp(hctx); 1970 return -1; 1971 } 1972 1973 static void blk_mq_init_cpu_queues(struct request_queue *q, 1974 unsigned int nr_hw_queues) 1975 { 1976 unsigned int i; 1977 1978 for_each_possible_cpu(i) { 1979 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1980 struct blk_mq_hw_ctx *hctx; 1981 1982 __ctx->cpu = i; 1983 spin_lock_init(&__ctx->lock); 1984 INIT_LIST_HEAD(&__ctx->rq_list); 1985 __ctx->queue = q; 1986 1987 /* If the cpu isn't present, the cpu is mapped to first hctx */ 1988 if (!cpu_present(i)) 1989 continue; 1990 1991 hctx = blk_mq_map_queue(q, i); 1992 1993 /* 1994 * Set local node, IFF we have more than one hw queue. If 1995 * not, we remain on the home node of the device 1996 */ 1997 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1998 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1999 } 2000 } 2001 2002 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2003 { 2004 int ret = 0; 2005 2006 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2007 set->queue_depth, set->reserved_tags); 2008 if (!set->tags[hctx_idx]) 2009 return false; 2010 2011 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2012 set->queue_depth); 2013 if (!ret) 2014 return true; 2015 2016 blk_mq_free_rq_map(set->tags[hctx_idx]); 2017 set->tags[hctx_idx] = NULL; 2018 return false; 2019 } 2020 2021 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2022 unsigned int hctx_idx) 2023 { 2024 if (set->tags[hctx_idx]) { 2025 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2026 blk_mq_free_rq_map(set->tags[hctx_idx]); 2027 set->tags[hctx_idx] = NULL; 2028 } 2029 } 2030 2031 static void blk_mq_map_swqueue(struct request_queue *q) 2032 { 2033 unsigned int i, hctx_idx; 2034 struct blk_mq_hw_ctx *hctx; 2035 struct blk_mq_ctx *ctx; 2036 struct blk_mq_tag_set *set = q->tag_set; 2037 2038 /* 2039 * Avoid others reading imcomplete hctx->cpumask through sysfs 2040 */ 2041 mutex_lock(&q->sysfs_lock); 2042 2043 queue_for_each_hw_ctx(q, hctx, i) { 2044 cpumask_clear(hctx->cpumask); 2045 hctx->nr_ctx = 0; 2046 } 2047 2048 /* 2049 * Map software to hardware queues. 2050 * 2051 * If the cpu isn't present, the cpu is mapped to first hctx. 2052 */ 2053 for_each_present_cpu(i) { 2054 hctx_idx = q->mq_map[i]; 2055 /* unmapped hw queue can be remapped after CPU topo changed */ 2056 if (!set->tags[hctx_idx] && 2057 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2058 /* 2059 * If tags initialization fail for some hctx, 2060 * that hctx won't be brought online. In this 2061 * case, remap the current ctx to hctx[0] which 2062 * is guaranteed to always have tags allocated 2063 */ 2064 q->mq_map[i] = 0; 2065 } 2066 2067 ctx = per_cpu_ptr(q->queue_ctx, i); 2068 hctx = blk_mq_map_queue(q, i); 2069 2070 cpumask_set_cpu(i, hctx->cpumask); 2071 ctx->index_hw = hctx->nr_ctx; 2072 hctx->ctxs[hctx->nr_ctx++] = ctx; 2073 } 2074 2075 mutex_unlock(&q->sysfs_lock); 2076 2077 queue_for_each_hw_ctx(q, hctx, i) { 2078 /* 2079 * If no software queues are mapped to this hardware queue, 2080 * disable it and free the request entries. 2081 */ 2082 if (!hctx->nr_ctx) { 2083 /* Never unmap queue 0. We need it as a 2084 * fallback in case of a new remap fails 2085 * allocation 2086 */ 2087 if (i && set->tags[i]) 2088 blk_mq_free_map_and_requests(set, i); 2089 2090 hctx->tags = NULL; 2091 continue; 2092 } 2093 2094 hctx->tags = set->tags[i]; 2095 WARN_ON(!hctx->tags); 2096 2097 /* 2098 * Set the map size to the number of mapped software queues. 2099 * This is more accurate and more efficient than looping 2100 * over all possibly mapped software queues. 2101 */ 2102 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2103 2104 /* 2105 * Initialize batch roundrobin counts 2106 */ 2107 hctx->next_cpu = cpumask_first(hctx->cpumask); 2108 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2109 } 2110 } 2111 2112 /* 2113 * Caller needs to ensure that we're either frozen/quiesced, or that 2114 * the queue isn't live yet. 2115 */ 2116 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2117 { 2118 struct blk_mq_hw_ctx *hctx; 2119 int i; 2120 2121 queue_for_each_hw_ctx(q, hctx, i) { 2122 if (shared) { 2123 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2124 atomic_inc(&q->shared_hctx_restart); 2125 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2126 } else { 2127 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2128 atomic_dec(&q->shared_hctx_restart); 2129 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2130 } 2131 } 2132 } 2133 2134 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2135 bool shared) 2136 { 2137 struct request_queue *q; 2138 2139 lockdep_assert_held(&set->tag_list_lock); 2140 2141 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2142 blk_mq_freeze_queue(q); 2143 queue_set_hctx_shared(q, shared); 2144 blk_mq_unfreeze_queue(q); 2145 } 2146 } 2147 2148 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2149 { 2150 struct blk_mq_tag_set *set = q->tag_set; 2151 2152 mutex_lock(&set->tag_list_lock); 2153 list_del_rcu(&q->tag_set_list); 2154 INIT_LIST_HEAD(&q->tag_set_list); 2155 if (list_is_singular(&set->tag_list)) { 2156 /* just transitioned to unshared */ 2157 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2158 /* update existing queue */ 2159 blk_mq_update_tag_set_depth(set, false); 2160 } 2161 mutex_unlock(&set->tag_list_lock); 2162 2163 synchronize_rcu(); 2164 } 2165 2166 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2167 struct request_queue *q) 2168 { 2169 q->tag_set = set; 2170 2171 mutex_lock(&set->tag_list_lock); 2172 2173 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2174 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2175 set->flags |= BLK_MQ_F_TAG_SHARED; 2176 /* update existing queue */ 2177 blk_mq_update_tag_set_depth(set, true); 2178 } 2179 if (set->flags & BLK_MQ_F_TAG_SHARED) 2180 queue_set_hctx_shared(q, true); 2181 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2182 2183 mutex_unlock(&set->tag_list_lock); 2184 } 2185 2186 /* 2187 * It is the actual release handler for mq, but we do it from 2188 * request queue's release handler for avoiding use-after-free 2189 * and headache because q->mq_kobj shouldn't have been introduced, 2190 * but we can't group ctx/kctx kobj without it. 2191 */ 2192 void blk_mq_release(struct request_queue *q) 2193 { 2194 struct blk_mq_hw_ctx *hctx; 2195 unsigned int i; 2196 2197 /* hctx kobj stays in hctx */ 2198 queue_for_each_hw_ctx(q, hctx, i) { 2199 if (!hctx) 2200 continue; 2201 kobject_put(&hctx->kobj); 2202 } 2203 2204 q->mq_map = NULL; 2205 2206 kfree(q->queue_hw_ctx); 2207 2208 /* 2209 * release .mq_kobj and sw queue's kobject now because 2210 * both share lifetime with request queue. 2211 */ 2212 blk_mq_sysfs_deinit(q); 2213 2214 free_percpu(q->queue_ctx); 2215 } 2216 2217 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2218 { 2219 struct request_queue *uninit_q, *q; 2220 2221 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2222 if (!uninit_q) 2223 return ERR_PTR(-ENOMEM); 2224 2225 q = blk_mq_init_allocated_queue(set, uninit_q); 2226 if (IS_ERR(q)) 2227 blk_cleanup_queue(uninit_q); 2228 2229 return q; 2230 } 2231 EXPORT_SYMBOL(blk_mq_init_queue); 2232 2233 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2234 { 2235 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2236 2237 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu), 2238 __alignof__(struct blk_mq_hw_ctx)) != 2239 sizeof(struct blk_mq_hw_ctx)); 2240 2241 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2242 hw_ctx_size += sizeof(struct srcu_struct); 2243 2244 return hw_ctx_size; 2245 } 2246 2247 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2248 struct request_queue *q) 2249 { 2250 int i, j; 2251 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2252 2253 blk_mq_sysfs_unregister(q); 2254 for (i = 0; i < set->nr_hw_queues; i++) { 2255 int node; 2256 2257 if (hctxs[i]) 2258 continue; 2259 2260 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2261 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2262 GFP_KERNEL, node); 2263 if (!hctxs[i]) 2264 break; 2265 2266 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2267 node)) { 2268 kfree(hctxs[i]); 2269 hctxs[i] = NULL; 2270 break; 2271 } 2272 2273 atomic_set(&hctxs[i]->nr_active, 0); 2274 hctxs[i]->numa_node = node; 2275 hctxs[i]->queue_num = i; 2276 2277 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2278 free_cpumask_var(hctxs[i]->cpumask); 2279 kfree(hctxs[i]); 2280 hctxs[i] = NULL; 2281 break; 2282 } 2283 blk_mq_hctx_kobj_init(hctxs[i]); 2284 } 2285 for (j = i; j < q->nr_hw_queues; j++) { 2286 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2287 2288 if (hctx) { 2289 if (hctx->tags) 2290 blk_mq_free_map_and_requests(set, j); 2291 blk_mq_exit_hctx(q, set, hctx, j); 2292 kobject_put(&hctx->kobj); 2293 hctxs[j] = NULL; 2294 2295 } 2296 } 2297 q->nr_hw_queues = i; 2298 blk_mq_sysfs_register(q); 2299 } 2300 2301 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2302 struct request_queue *q) 2303 { 2304 /* mark the queue as mq asap */ 2305 q->mq_ops = set->ops; 2306 2307 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2308 blk_mq_poll_stats_bkt, 2309 BLK_MQ_POLL_STATS_BKTS, q); 2310 if (!q->poll_cb) 2311 goto err_exit; 2312 2313 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2314 if (!q->queue_ctx) 2315 goto err_exit; 2316 2317 /* init q->mq_kobj and sw queues' kobjects */ 2318 blk_mq_sysfs_init(q); 2319 2320 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2321 GFP_KERNEL, set->numa_node); 2322 if (!q->queue_hw_ctx) 2323 goto err_percpu; 2324 2325 q->mq_map = set->mq_map; 2326 2327 blk_mq_realloc_hw_ctxs(set, q); 2328 if (!q->nr_hw_queues) 2329 goto err_hctxs; 2330 2331 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2332 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2333 2334 q->nr_queues = nr_cpu_ids; 2335 2336 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2337 2338 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2339 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2340 2341 q->sg_reserved_size = INT_MAX; 2342 2343 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2344 INIT_LIST_HEAD(&q->requeue_list); 2345 spin_lock_init(&q->requeue_lock); 2346 2347 blk_queue_make_request(q, blk_mq_make_request); 2348 2349 /* 2350 * Do this after blk_queue_make_request() overrides it... 2351 */ 2352 q->nr_requests = set->queue_depth; 2353 2354 /* 2355 * Default to classic polling 2356 */ 2357 q->poll_nsec = -1; 2358 2359 if (set->ops->complete) 2360 blk_queue_softirq_done(q, set->ops->complete); 2361 2362 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2363 blk_mq_add_queue_tag_set(set, q); 2364 blk_mq_map_swqueue(q); 2365 2366 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2367 int ret; 2368 2369 ret = blk_mq_sched_init(q); 2370 if (ret) 2371 return ERR_PTR(ret); 2372 } 2373 2374 return q; 2375 2376 err_hctxs: 2377 kfree(q->queue_hw_ctx); 2378 err_percpu: 2379 free_percpu(q->queue_ctx); 2380 err_exit: 2381 q->mq_ops = NULL; 2382 return ERR_PTR(-ENOMEM); 2383 } 2384 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2385 2386 void blk_mq_free_queue(struct request_queue *q) 2387 { 2388 struct blk_mq_tag_set *set = q->tag_set; 2389 2390 blk_mq_del_queue_tag_set(q); 2391 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2392 } 2393 2394 /* Basically redo blk_mq_init_queue with queue frozen */ 2395 static void blk_mq_queue_reinit(struct request_queue *q) 2396 { 2397 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2398 2399 blk_mq_debugfs_unregister_hctxs(q); 2400 blk_mq_sysfs_unregister(q); 2401 2402 /* 2403 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2404 * we should change hctx numa_node according to new topology (this 2405 * involves free and re-allocate memory, worthy doing?) 2406 */ 2407 2408 blk_mq_map_swqueue(q); 2409 2410 blk_mq_sysfs_register(q); 2411 blk_mq_debugfs_register_hctxs(q); 2412 } 2413 2414 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2415 { 2416 int i; 2417 2418 for (i = 0; i < set->nr_hw_queues; i++) 2419 if (!__blk_mq_alloc_rq_map(set, i)) 2420 goto out_unwind; 2421 2422 return 0; 2423 2424 out_unwind: 2425 while (--i >= 0) 2426 blk_mq_free_rq_map(set->tags[i]); 2427 2428 return -ENOMEM; 2429 } 2430 2431 /* 2432 * Allocate the request maps associated with this tag_set. Note that this 2433 * may reduce the depth asked for, if memory is tight. set->queue_depth 2434 * will be updated to reflect the allocated depth. 2435 */ 2436 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2437 { 2438 unsigned int depth; 2439 int err; 2440 2441 depth = set->queue_depth; 2442 do { 2443 err = __blk_mq_alloc_rq_maps(set); 2444 if (!err) 2445 break; 2446 2447 set->queue_depth >>= 1; 2448 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2449 err = -ENOMEM; 2450 break; 2451 } 2452 } while (set->queue_depth); 2453 2454 if (!set->queue_depth || err) { 2455 pr_err("blk-mq: failed to allocate request map\n"); 2456 return -ENOMEM; 2457 } 2458 2459 if (depth != set->queue_depth) 2460 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2461 depth, set->queue_depth); 2462 2463 return 0; 2464 } 2465 2466 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2467 { 2468 if (set->ops->map_queues) 2469 return set->ops->map_queues(set); 2470 else 2471 return blk_mq_map_queues(set); 2472 } 2473 2474 /* 2475 * Alloc a tag set to be associated with one or more request queues. 2476 * May fail with EINVAL for various error conditions. May adjust the 2477 * requested depth down, if if it too large. In that case, the set 2478 * value will be stored in set->queue_depth. 2479 */ 2480 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2481 { 2482 int ret; 2483 2484 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2485 2486 if (!set->nr_hw_queues) 2487 return -EINVAL; 2488 if (!set->queue_depth) 2489 return -EINVAL; 2490 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2491 return -EINVAL; 2492 2493 if (!set->ops->queue_rq) 2494 return -EINVAL; 2495 2496 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2497 pr_info("blk-mq: reduced tag depth to %u\n", 2498 BLK_MQ_MAX_DEPTH); 2499 set->queue_depth = BLK_MQ_MAX_DEPTH; 2500 } 2501 2502 /* 2503 * If a crashdump is active, then we are potentially in a very 2504 * memory constrained environment. Limit us to 1 queue and 2505 * 64 tags to prevent using too much memory. 2506 */ 2507 if (is_kdump_kernel()) { 2508 set->nr_hw_queues = 1; 2509 set->queue_depth = min(64U, set->queue_depth); 2510 } 2511 /* 2512 * There is no use for more h/w queues than cpus. 2513 */ 2514 if (set->nr_hw_queues > nr_cpu_ids) 2515 set->nr_hw_queues = nr_cpu_ids; 2516 2517 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2518 GFP_KERNEL, set->numa_node); 2519 if (!set->tags) 2520 return -ENOMEM; 2521 2522 ret = -ENOMEM; 2523 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2524 GFP_KERNEL, set->numa_node); 2525 if (!set->mq_map) 2526 goto out_free_tags; 2527 2528 ret = blk_mq_update_queue_map(set); 2529 if (ret) 2530 goto out_free_mq_map; 2531 2532 ret = blk_mq_alloc_rq_maps(set); 2533 if (ret) 2534 goto out_free_mq_map; 2535 2536 mutex_init(&set->tag_list_lock); 2537 INIT_LIST_HEAD(&set->tag_list); 2538 2539 return 0; 2540 2541 out_free_mq_map: 2542 kfree(set->mq_map); 2543 set->mq_map = NULL; 2544 out_free_tags: 2545 kfree(set->tags); 2546 set->tags = NULL; 2547 return ret; 2548 } 2549 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2550 2551 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2552 { 2553 int i; 2554 2555 for (i = 0; i < nr_cpu_ids; i++) 2556 blk_mq_free_map_and_requests(set, i); 2557 2558 kfree(set->mq_map); 2559 set->mq_map = NULL; 2560 2561 kfree(set->tags); 2562 set->tags = NULL; 2563 } 2564 EXPORT_SYMBOL(blk_mq_free_tag_set); 2565 2566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2567 { 2568 struct blk_mq_tag_set *set = q->tag_set; 2569 struct blk_mq_hw_ctx *hctx; 2570 int i, ret; 2571 2572 if (!set) 2573 return -EINVAL; 2574 2575 blk_mq_freeze_queue(q); 2576 2577 ret = 0; 2578 queue_for_each_hw_ctx(q, hctx, i) { 2579 if (!hctx->tags) 2580 continue; 2581 /* 2582 * If we're using an MQ scheduler, just update the scheduler 2583 * queue depth. This is similar to what the old code would do. 2584 */ 2585 if (!hctx->sched_tags) { 2586 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2587 min(nr, set->queue_depth), 2588 false); 2589 } else { 2590 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2591 nr, true); 2592 } 2593 if (ret) 2594 break; 2595 } 2596 2597 if (!ret) 2598 q->nr_requests = nr; 2599 2600 blk_mq_unfreeze_queue(q); 2601 2602 return ret; 2603 } 2604 2605 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2606 int nr_hw_queues) 2607 { 2608 struct request_queue *q; 2609 2610 lockdep_assert_held(&set->tag_list_lock); 2611 2612 if (nr_hw_queues > nr_cpu_ids) 2613 nr_hw_queues = nr_cpu_ids; 2614 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2615 return; 2616 2617 list_for_each_entry(q, &set->tag_list, tag_set_list) 2618 blk_mq_freeze_queue(q); 2619 2620 set->nr_hw_queues = nr_hw_queues; 2621 blk_mq_update_queue_map(set); 2622 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2623 blk_mq_realloc_hw_ctxs(set, q); 2624 blk_mq_queue_reinit(q); 2625 } 2626 2627 list_for_each_entry(q, &set->tag_list, tag_set_list) 2628 blk_mq_unfreeze_queue(q); 2629 } 2630 2631 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2632 { 2633 mutex_lock(&set->tag_list_lock); 2634 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2635 mutex_unlock(&set->tag_list_lock); 2636 } 2637 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2638 2639 /* Enable polling stats and return whether they were already enabled. */ 2640 static bool blk_poll_stats_enable(struct request_queue *q) 2641 { 2642 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2643 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 2644 return true; 2645 blk_stat_add_callback(q, q->poll_cb); 2646 return false; 2647 } 2648 2649 static void blk_mq_poll_stats_start(struct request_queue *q) 2650 { 2651 /* 2652 * We don't arm the callback if polling stats are not enabled or the 2653 * callback is already active. 2654 */ 2655 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2656 blk_stat_is_active(q->poll_cb)) 2657 return; 2658 2659 blk_stat_activate_msecs(q->poll_cb, 100); 2660 } 2661 2662 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 2663 { 2664 struct request_queue *q = cb->data; 2665 int bucket; 2666 2667 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 2668 if (cb->stat[bucket].nr_samples) 2669 q->poll_stat[bucket] = cb->stat[bucket]; 2670 } 2671 } 2672 2673 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2674 struct blk_mq_hw_ctx *hctx, 2675 struct request *rq) 2676 { 2677 unsigned long ret = 0; 2678 int bucket; 2679 2680 /* 2681 * If stats collection isn't on, don't sleep but turn it on for 2682 * future users 2683 */ 2684 if (!blk_poll_stats_enable(q)) 2685 return 0; 2686 2687 /* 2688 * As an optimistic guess, use half of the mean service time 2689 * for this type of request. We can (and should) make this smarter. 2690 * For instance, if the completion latencies are tight, we can 2691 * get closer than just half the mean. This is especially 2692 * important on devices where the completion latencies are longer 2693 * than ~10 usec. We do use the stats for the relevant IO size 2694 * if available which does lead to better estimates. 2695 */ 2696 bucket = blk_mq_poll_stats_bkt(rq); 2697 if (bucket < 0) 2698 return ret; 2699 2700 if (q->poll_stat[bucket].nr_samples) 2701 ret = (q->poll_stat[bucket].mean + 1) / 2; 2702 2703 return ret; 2704 } 2705 2706 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2707 struct blk_mq_hw_ctx *hctx, 2708 struct request *rq) 2709 { 2710 struct hrtimer_sleeper hs; 2711 enum hrtimer_mode mode; 2712 unsigned int nsecs; 2713 ktime_t kt; 2714 2715 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2716 return false; 2717 2718 /* 2719 * poll_nsec can be: 2720 * 2721 * -1: don't ever hybrid sleep 2722 * 0: use half of prev avg 2723 * >0: use this specific value 2724 */ 2725 if (q->poll_nsec == -1) 2726 return false; 2727 else if (q->poll_nsec > 0) 2728 nsecs = q->poll_nsec; 2729 else 2730 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2731 2732 if (!nsecs) 2733 return false; 2734 2735 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2736 2737 /* 2738 * This will be replaced with the stats tracking code, using 2739 * 'avg_completion_time / 2' as the pre-sleep target. 2740 */ 2741 kt = nsecs; 2742 2743 mode = HRTIMER_MODE_REL; 2744 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2745 hrtimer_set_expires(&hs.timer, kt); 2746 2747 hrtimer_init_sleeper(&hs, current); 2748 do { 2749 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2750 break; 2751 set_current_state(TASK_UNINTERRUPTIBLE); 2752 hrtimer_start_expires(&hs.timer, mode); 2753 if (hs.task) 2754 io_schedule(); 2755 hrtimer_cancel(&hs.timer); 2756 mode = HRTIMER_MODE_ABS; 2757 } while (hs.task && !signal_pending(current)); 2758 2759 __set_current_state(TASK_RUNNING); 2760 destroy_hrtimer_on_stack(&hs.timer); 2761 return true; 2762 } 2763 2764 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2765 { 2766 struct request_queue *q = hctx->queue; 2767 long state; 2768 2769 /* 2770 * If we sleep, have the caller restart the poll loop to reset 2771 * the state. Like for the other success return cases, the 2772 * caller is responsible for checking if the IO completed. If 2773 * the IO isn't complete, we'll get called again and will go 2774 * straight to the busy poll loop. 2775 */ 2776 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2777 return true; 2778 2779 hctx->poll_considered++; 2780 2781 state = current->state; 2782 while (!need_resched()) { 2783 int ret; 2784 2785 hctx->poll_invoked++; 2786 2787 ret = q->mq_ops->poll(hctx, rq->tag); 2788 if (ret > 0) { 2789 hctx->poll_success++; 2790 set_current_state(TASK_RUNNING); 2791 return true; 2792 } 2793 2794 if (signal_pending_state(state, current)) 2795 set_current_state(TASK_RUNNING); 2796 2797 if (current->state == TASK_RUNNING) 2798 return true; 2799 if (ret < 0) 2800 break; 2801 cpu_relax(); 2802 } 2803 2804 return false; 2805 } 2806 2807 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2808 { 2809 struct blk_mq_hw_ctx *hctx; 2810 struct blk_plug *plug; 2811 struct request *rq; 2812 2813 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2814 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2815 return false; 2816 2817 plug = current->plug; 2818 if (plug) 2819 blk_flush_plug_list(plug, false); 2820 2821 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2822 if (!blk_qc_t_is_internal(cookie)) 2823 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2824 else { 2825 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2826 /* 2827 * With scheduling, if the request has completed, we'll 2828 * get a NULL return here, as we clear the sched tag when 2829 * that happens. The request still remains valid, like always, 2830 * so we should be safe with just the NULL check. 2831 */ 2832 if (!rq) 2833 return false; 2834 } 2835 2836 return __blk_mq_poll(hctx, rq); 2837 } 2838 EXPORT_SYMBOL_GPL(blk_mq_poll); 2839 2840 static int __init blk_mq_init(void) 2841 { 2842 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2843 blk_mq_hctx_notify_dead); 2844 return 0; 2845 } 2846 subsys_initcall(blk_mq_init); 2847