xref: /linux/block/blk-mq.c (revision bd166ef183c263c5ced656d49ef19c7da4adc774)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26 
27 #include <trace/events/block.h>
28 
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36 
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39 
40 /*
41  * Check if any of the ctx's have pending work in this hardware queue
42  */
43 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 			!list_empty_careful(&hctx->dispatch) ||
47 			blk_mq_sched_has_work(hctx);
48 }
49 
50 /*
51  * Mark this ctx as having pending work in this hardware queue
52  */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 				     struct blk_mq_ctx *ctx)
55 {
56 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59 
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 				      struct blk_mq_ctx *ctx)
62 {
63 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65 
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 	int freeze_depth;
69 
70 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 	if (freeze_depth == 1) {
72 		percpu_ref_kill(&q->q_usage_counter);
73 		blk_mq_run_hw_queues(q, false);
74 	}
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82 
83 /*
84  * Guarantee no request is in use, so we can change any data structure of
85  * the queue afterward.
86  */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 	/*
90 	 * In the !blk_mq case we are only calling this to kill the
91 	 * q_usage_counter, otherwise this increases the freeze depth
92 	 * and waits for it to return to zero.  For this reason there is
93 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 	 * exported to drivers as the only user for unfreeze is blk_mq.
95 	 */
96 	blk_mq_freeze_queue_start(q);
97 	blk_mq_freeze_queue_wait(q);
98 }
99 
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 	/*
103 	 * ...just an alias to keep freeze and unfreeze actions balanced
104 	 * in the blk_mq_* namespace
105 	 */
106 	blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109 
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 	int freeze_depth;
113 
114 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 	WARN_ON_ONCE(freeze_depth < 0);
116 	if (!freeze_depth) {
117 		percpu_ref_reinit(&q->q_usage_counter);
118 		wake_up_all(&q->mq_freeze_wq);
119 	}
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122 
123 /**
124  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125  * @q: request queue.
126  *
127  * Note: this function does not prevent that the struct request end_io()
128  * callback function is invoked. Additionally, it is not prevented that
129  * new queue_rq() calls occur unless the queue has been stopped first.
130  */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 	struct blk_mq_hw_ctx *hctx;
134 	unsigned int i;
135 	bool rcu = false;
136 
137 	blk_mq_stop_hw_queues(q);
138 
139 	queue_for_each_hw_ctx(q, hctx, i) {
140 		if (hctx->flags & BLK_MQ_F_BLOCKING)
141 			synchronize_srcu(&hctx->queue_rq_srcu);
142 		else
143 			rcu = true;
144 	}
145 	if (rcu)
146 		synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149 
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 	struct blk_mq_hw_ctx *hctx;
153 	unsigned int i;
154 
155 	queue_for_each_hw_ctx(q, hctx, i)
156 		if (blk_mq_hw_queue_mapped(hctx))
157 			blk_mq_tag_wakeup_all(hctx->tags, true);
158 
159 	/*
160 	 * If we are called because the queue has now been marked as
161 	 * dying, we need to ensure that processes currently waiting on
162 	 * the queue are notified as well.
163 	 */
164 	wake_up_all(&q->mq_freeze_wq);
165 }
166 
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 	return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172 
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 			struct request *rq, unsigned int op)
175 {
176 	INIT_LIST_HEAD(&rq->queuelist);
177 	/* csd/requeue_work/fifo_time is initialized before use */
178 	rq->q = q;
179 	rq->mq_ctx = ctx;
180 	rq->cmd_flags = op;
181 	if (blk_queue_io_stat(q))
182 		rq->rq_flags |= RQF_IO_STAT;
183 	/* do not touch atomic flags, it needs atomic ops against the timer */
184 	rq->cpu = -1;
185 	INIT_HLIST_NODE(&rq->hash);
186 	RB_CLEAR_NODE(&rq->rb_node);
187 	rq->rq_disk = NULL;
188 	rq->part = NULL;
189 	rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 	rq->rl = NULL;
192 	set_start_time_ns(rq);
193 	rq->io_start_time_ns = 0;
194 #endif
195 	rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 	rq->nr_integrity_segments = 0;
198 #endif
199 	rq->special = NULL;
200 	/* tag was already set */
201 	rq->errors = 0;
202 
203 	rq->cmd = rq->__cmd;
204 
205 	rq->extra_len = 0;
206 	rq->sense_len = 0;
207 	rq->resid_len = 0;
208 	rq->sense = NULL;
209 
210 	INIT_LIST_HEAD(&rq->timeout_list);
211 	rq->timeout = 0;
212 
213 	rq->end_io = NULL;
214 	rq->end_io_data = NULL;
215 	rq->next_rq = NULL;
216 
217 	ctx->rq_dispatched[op_is_sync(op)]++;
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220 
221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 				       unsigned int op)
223 {
224 	struct request *rq;
225 	unsigned int tag;
226 
227 	tag = blk_mq_get_tag(data);
228 	if (tag != BLK_MQ_TAG_FAIL) {
229 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230 
231 		rq = tags->static_rqs[tag];
232 
233 		if (blk_mq_tag_busy(data->hctx)) {
234 			rq->rq_flags = RQF_MQ_INFLIGHT;
235 			atomic_inc(&data->hctx->nr_active);
236 		}
237 
238 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
239 			rq->tag = -1;
240 			rq->internal_tag = tag;
241 		} else {
242 			rq->tag = tag;
243 			rq->internal_tag = -1;
244 		}
245 
246 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
247 		return rq;
248 	}
249 
250 	return NULL;
251 }
252 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
253 
254 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
255 		unsigned int flags)
256 {
257 	struct blk_mq_alloc_data alloc_data;
258 	struct request *rq;
259 	int ret;
260 
261 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
262 	if (ret)
263 		return ERR_PTR(ret);
264 
265 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
266 
267 	blk_mq_put_ctx(alloc_data.ctx);
268 	blk_queue_exit(q);
269 
270 	if (!rq)
271 		return ERR_PTR(-EWOULDBLOCK);
272 
273 	rq->__data_len = 0;
274 	rq->__sector = (sector_t) -1;
275 	rq->bio = rq->biotail = NULL;
276 	return rq;
277 }
278 EXPORT_SYMBOL(blk_mq_alloc_request);
279 
280 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
281 		unsigned int flags, unsigned int hctx_idx)
282 {
283 	struct blk_mq_hw_ctx *hctx;
284 	struct blk_mq_ctx *ctx;
285 	struct request *rq;
286 	struct blk_mq_alloc_data alloc_data;
287 	int ret;
288 
289 	/*
290 	 * If the tag allocator sleeps we could get an allocation for a
291 	 * different hardware context.  No need to complicate the low level
292 	 * allocator for this for the rare use case of a command tied to
293 	 * a specific queue.
294 	 */
295 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
296 		return ERR_PTR(-EINVAL);
297 
298 	if (hctx_idx >= q->nr_hw_queues)
299 		return ERR_PTR(-EIO);
300 
301 	ret = blk_queue_enter(q, true);
302 	if (ret)
303 		return ERR_PTR(ret);
304 
305 	/*
306 	 * Check if the hardware context is actually mapped to anything.
307 	 * If not tell the caller that it should skip this queue.
308 	 */
309 	hctx = q->queue_hw_ctx[hctx_idx];
310 	if (!blk_mq_hw_queue_mapped(hctx)) {
311 		ret = -EXDEV;
312 		goto out_queue_exit;
313 	}
314 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
315 
316 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
317 	rq = __blk_mq_alloc_request(&alloc_data, rw);
318 	if (!rq) {
319 		ret = -EWOULDBLOCK;
320 		goto out_queue_exit;
321 	}
322 
323 	return rq;
324 
325 out_queue_exit:
326 	blk_queue_exit(q);
327 	return ERR_PTR(ret);
328 }
329 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
330 
331 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
332 			     struct request *rq)
333 {
334 	const int sched_tag = rq->internal_tag;
335 	struct request_queue *q = rq->q;
336 
337 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
338 		atomic_dec(&hctx->nr_active);
339 
340 	wbt_done(q->rq_wb, &rq->issue_stat);
341 	rq->rq_flags = 0;
342 
343 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
344 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
345 	if (rq->tag != -1)
346 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
347 	if (sched_tag != -1)
348 		blk_mq_sched_completed_request(hctx, rq);
349 	blk_queue_exit(q);
350 }
351 
352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
353 				     struct request *rq)
354 {
355 	struct blk_mq_ctx *ctx = rq->mq_ctx;
356 
357 	ctx->rq_completed[rq_is_sync(rq)]++;
358 	__blk_mq_finish_request(hctx, ctx, rq);
359 }
360 
361 void blk_mq_finish_request(struct request *rq)
362 {
363 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
364 }
365 
366 void blk_mq_free_request(struct request *rq)
367 {
368 	blk_mq_sched_put_request(rq);
369 }
370 EXPORT_SYMBOL_GPL(blk_mq_free_request);
371 
372 inline void __blk_mq_end_request(struct request *rq, int error)
373 {
374 	blk_account_io_done(rq);
375 
376 	if (rq->end_io) {
377 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
378 		rq->end_io(rq, error);
379 	} else {
380 		if (unlikely(blk_bidi_rq(rq)))
381 			blk_mq_free_request(rq->next_rq);
382 		blk_mq_free_request(rq);
383 	}
384 }
385 EXPORT_SYMBOL(__blk_mq_end_request);
386 
387 void blk_mq_end_request(struct request *rq, int error)
388 {
389 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
390 		BUG();
391 	__blk_mq_end_request(rq, error);
392 }
393 EXPORT_SYMBOL(blk_mq_end_request);
394 
395 static void __blk_mq_complete_request_remote(void *data)
396 {
397 	struct request *rq = data;
398 
399 	rq->q->softirq_done_fn(rq);
400 }
401 
402 static void blk_mq_ipi_complete_request(struct request *rq)
403 {
404 	struct blk_mq_ctx *ctx = rq->mq_ctx;
405 	bool shared = false;
406 	int cpu;
407 
408 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
409 		rq->q->softirq_done_fn(rq);
410 		return;
411 	}
412 
413 	cpu = get_cpu();
414 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
415 		shared = cpus_share_cache(cpu, ctx->cpu);
416 
417 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
418 		rq->csd.func = __blk_mq_complete_request_remote;
419 		rq->csd.info = rq;
420 		rq->csd.flags = 0;
421 		smp_call_function_single_async(ctx->cpu, &rq->csd);
422 	} else {
423 		rq->q->softirq_done_fn(rq);
424 	}
425 	put_cpu();
426 }
427 
428 static void blk_mq_stat_add(struct request *rq)
429 {
430 	if (rq->rq_flags & RQF_STATS) {
431 		/*
432 		 * We could rq->mq_ctx here, but there's less of a risk
433 		 * of races if we have the completion event add the stats
434 		 * to the local software queue.
435 		 */
436 		struct blk_mq_ctx *ctx;
437 
438 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
439 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
440 	}
441 }
442 
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 	struct request_queue *q = rq->q;
446 
447 	blk_mq_stat_add(rq);
448 
449 	if (!q->softirq_done_fn)
450 		blk_mq_end_request(rq, rq->errors);
451 	else
452 		blk_mq_ipi_complete_request(rq);
453 }
454 
455 /**
456  * blk_mq_complete_request - end I/O on a request
457  * @rq:		the request being processed
458  *
459  * Description:
460  *	Ends all I/O on a request. It does not handle partial completions.
461  *	The actual completion happens out-of-order, through a IPI handler.
462  **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465 	struct request_queue *q = rq->q;
466 
467 	if (unlikely(blk_should_fake_timeout(q)))
468 		return;
469 	if (!blk_mark_rq_complete(rq)) {
470 		rq->errors = error;
471 		__blk_mq_complete_request(rq);
472 	}
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475 
476 int blk_mq_request_started(struct request *rq)
477 {
478 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481 
482 void blk_mq_start_request(struct request *rq)
483 {
484 	struct request_queue *q = rq->q;
485 
486 	blk_mq_sched_started_request(rq);
487 
488 	trace_block_rq_issue(q, rq);
489 
490 	rq->resid_len = blk_rq_bytes(rq);
491 	if (unlikely(blk_bidi_rq(rq)))
492 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
493 
494 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
495 		blk_stat_set_issue_time(&rq->issue_stat);
496 		rq->rq_flags |= RQF_STATS;
497 		wbt_issue(q->rq_wb, &rq->issue_stat);
498 	}
499 
500 	blk_add_timer(rq);
501 
502 	/*
503 	 * Ensure that ->deadline is visible before set the started
504 	 * flag and clear the completed flag.
505 	 */
506 	smp_mb__before_atomic();
507 
508 	/*
509 	 * Mark us as started and clear complete. Complete might have been
510 	 * set if requeue raced with timeout, which then marked it as
511 	 * complete. So be sure to clear complete again when we start
512 	 * the request, otherwise we'll ignore the completion event.
513 	 */
514 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
515 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
516 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
517 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
518 
519 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
520 		/*
521 		 * Make sure space for the drain appears.  We know we can do
522 		 * this because max_hw_segments has been adjusted to be one
523 		 * fewer than the device can handle.
524 		 */
525 		rq->nr_phys_segments++;
526 	}
527 }
528 EXPORT_SYMBOL(blk_mq_start_request);
529 
530 static void __blk_mq_requeue_request(struct request *rq)
531 {
532 	struct request_queue *q = rq->q;
533 
534 	trace_block_rq_requeue(q, rq);
535 	wbt_requeue(q->rq_wb, &rq->issue_stat);
536 	blk_mq_sched_requeue_request(rq);
537 
538 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
539 		if (q->dma_drain_size && blk_rq_bytes(rq))
540 			rq->nr_phys_segments--;
541 	}
542 }
543 
544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
545 {
546 	__blk_mq_requeue_request(rq);
547 
548 	BUG_ON(blk_queued_rq(rq));
549 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
550 }
551 EXPORT_SYMBOL(blk_mq_requeue_request);
552 
553 static void blk_mq_requeue_work(struct work_struct *work)
554 {
555 	struct request_queue *q =
556 		container_of(work, struct request_queue, requeue_work.work);
557 	LIST_HEAD(rq_list);
558 	struct request *rq, *next;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&q->requeue_lock, flags);
562 	list_splice_init(&q->requeue_list, &rq_list);
563 	spin_unlock_irqrestore(&q->requeue_lock, flags);
564 
565 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
566 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
567 			continue;
568 
569 		rq->rq_flags &= ~RQF_SOFTBARRIER;
570 		list_del_init(&rq->queuelist);
571 		blk_mq_sched_insert_request(rq, true, false, false);
572 	}
573 
574 	while (!list_empty(&rq_list)) {
575 		rq = list_entry(rq_list.next, struct request, queuelist);
576 		list_del_init(&rq->queuelist);
577 		blk_mq_sched_insert_request(rq, false, false, false);
578 	}
579 
580 	blk_mq_run_hw_queues(q, false);
581 }
582 
583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
584 				bool kick_requeue_list)
585 {
586 	struct request_queue *q = rq->q;
587 	unsigned long flags;
588 
589 	/*
590 	 * We abuse this flag that is otherwise used by the I/O scheduler to
591 	 * request head insertation from the workqueue.
592 	 */
593 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
594 
595 	spin_lock_irqsave(&q->requeue_lock, flags);
596 	if (at_head) {
597 		rq->rq_flags |= RQF_SOFTBARRIER;
598 		list_add(&rq->queuelist, &q->requeue_list);
599 	} else {
600 		list_add_tail(&rq->queuelist, &q->requeue_list);
601 	}
602 	spin_unlock_irqrestore(&q->requeue_lock, flags);
603 
604 	if (kick_requeue_list)
605 		blk_mq_kick_requeue_list(q);
606 }
607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
608 
609 void blk_mq_kick_requeue_list(struct request_queue *q)
610 {
611 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
612 }
613 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
614 
615 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
616 				    unsigned long msecs)
617 {
618 	kblockd_schedule_delayed_work(&q->requeue_work,
619 				      msecs_to_jiffies(msecs));
620 }
621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
622 
623 void blk_mq_abort_requeue_list(struct request_queue *q)
624 {
625 	unsigned long flags;
626 	LIST_HEAD(rq_list);
627 
628 	spin_lock_irqsave(&q->requeue_lock, flags);
629 	list_splice_init(&q->requeue_list, &rq_list);
630 	spin_unlock_irqrestore(&q->requeue_lock, flags);
631 
632 	while (!list_empty(&rq_list)) {
633 		struct request *rq;
634 
635 		rq = list_first_entry(&rq_list, struct request, queuelist);
636 		list_del_init(&rq->queuelist);
637 		rq->errors = -EIO;
638 		blk_mq_end_request(rq, rq->errors);
639 	}
640 }
641 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
642 
643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
644 {
645 	if (tag < tags->nr_tags) {
646 		prefetch(tags->rqs[tag]);
647 		return tags->rqs[tag];
648 	}
649 
650 	return NULL;
651 }
652 EXPORT_SYMBOL(blk_mq_tag_to_rq);
653 
654 struct blk_mq_timeout_data {
655 	unsigned long next;
656 	unsigned int next_set;
657 };
658 
659 void blk_mq_rq_timed_out(struct request *req, bool reserved)
660 {
661 	const struct blk_mq_ops *ops = req->q->mq_ops;
662 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
663 
664 	/*
665 	 * We know that complete is set at this point. If STARTED isn't set
666 	 * anymore, then the request isn't active and the "timeout" should
667 	 * just be ignored. This can happen due to the bitflag ordering.
668 	 * Timeout first checks if STARTED is set, and if it is, assumes
669 	 * the request is active. But if we race with completion, then
670 	 * we both flags will get cleared. So check here again, and ignore
671 	 * a timeout event with a request that isn't active.
672 	 */
673 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
674 		return;
675 
676 	if (ops->timeout)
677 		ret = ops->timeout(req, reserved);
678 
679 	switch (ret) {
680 	case BLK_EH_HANDLED:
681 		__blk_mq_complete_request(req);
682 		break;
683 	case BLK_EH_RESET_TIMER:
684 		blk_add_timer(req);
685 		blk_clear_rq_complete(req);
686 		break;
687 	case BLK_EH_NOT_HANDLED:
688 		break;
689 	default:
690 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
691 		break;
692 	}
693 }
694 
695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
696 		struct request *rq, void *priv, bool reserved)
697 {
698 	struct blk_mq_timeout_data *data = priv;
699 
700 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
701 		/*
702 		 * If a request wasn't started before the queue was
703 		 * marked dying, kill it here or it'll go unnoticed.
704 		 */
705 		if (unlikely(blk_queue_dying(rq->q))) {
706 			rq->errors = -EIO;
707 			blk_mq_end_request(rq, rq->errors);
708 		}
709 		return;
710 	}
711 
712 	if (time_after_eq(jiffies, rq->deadline)) {
713 		if (!blk_mark_rq_complete(rq))
714 			blk_mq_rq_timed_out(rq, reserved);
715 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
716 		data->next = rq->deadline;
717 		data->next_set = 1;
718 	}
719 }
720 
721 static void blk_mq_timeout_work(struct work_struct *work)
722 {
723 	struct request_queue *q =
724 		container_of(work, struct request_queue, timeout_work);
725 	struct blk_mq_timeout_data data = {
726 		.next		= 0,
727 		.next_set	= 0,
728 	};
729 	int i;
730 
731 	/* A deadlock might occur if a request is stuck requiring a
732 	 * timeout at the same time a queue freeze is waiting
733 	 * completion, since the timeout code would not be able to
734 	 * acquire the queue reference here.
735 	 *
736 	 * That's why we don't use blk_queue_enter here; instead, we use
737 	 * percpu_ref_tryget directly, because we need to be able to
738 	 * obtain a reference even in the short window between the queue
739 	 * starting to freeze, by dropping the first reference in
740 	 * blk_mq_freeze_queue_start, and the moment the last request is
741 	 * consumed, marked by the instant q_usage_counter reaches
742 	 * zero.
743 	 */
744 	if (!percpu_ref_tryget(&q->q_usage_counter))
745 		return;
746 
747 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
748 
749 	if (data.next_set) {
750 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
751 		mod_timer(&q->timeout, data.next);
752 	} else {
753 		struct blk_mq_hw_ctx *hctx;
754 
755 		queue_for_each_hw_ctx(q, hctx, i) {
756 			/* the hctx may be unmapped, so check it here */
757 			if (blk_mq_hw_queue_mapped(hctx))
758 				blk_mq_tag_idle(hctx);
759 		}
760 	}
761 	blk_queue_exit(q);
762 }
763 
764 /*
765  * Reverse check our software queue for entries that we could potentially
766  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
767  * too much time checking for merges.
768  */
769 static bool blk_mq_attempt_merge(struct request_queue *q,
770 				 struct blk_mq_ctx *ctx, struct bio *bio)
771 {
772 	struct request *rq;
773 	int checked = 8;
774 
775 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
776 		int el_ret;
777 
778 		if (!checked--)
779 			break;
780 
781 		if (!blk_rq_merge_ok(rq, bio))
782 			continue;
783 
784 		el_ret = blk_try_merge(rq, bio);
785 		if (el_ret == ELEVATOR_NO_MERGE)
786 			continue;
787 
788 		if (!blk_mq_sched_allow_merge(q, rq, bio))
789 			break;
790 
791 		if (el_ret == ELEVATOR_BACK_MERGE) {
792 			if (bio_attempt_back_merge(q, rq, bio)) {
793 				ctx->rq_merged++;
794 				return true;
795 			}
796 			break;
797 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
798 			if (bio_attempt_front_merge(q, rq, bio)) {
799 				ctx->rq_merged++;
800 				return true;
801 			}
802 			break;
803 		}
804 	}
805 
806 	return false;
807 }
808 
809 struct flush_busy_ctx_data {
810 	struct blk_mq_hw_ctx *hctx;
811 	struct list_head *list;
812 };
813 
814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
815 {
816 	struct flush_busy_ctx_data *flush_data = data;
817 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
818 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
819 
820 	sbitmap_clear_bit(sb, bitnr);
821 	spin_lock(&ctx->lock);
822 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
823 	spin_unlock(&ctx->lock);
824 	return true;
825 }
826 
827 /*
828  * Process software queues that have been marked busy, splicing them
829  * to the for-dispatch
830  */
831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
832 {
833 	struct flush_busy_ctx_data data = {
834 		.hctx = hctx,
835 		.list = list,
836 	};
837 
838 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
839 }
840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
841 
842 static inline unsigned int queued_to_index(unsigned int queued)
843 {
844 	if (!queued)
845 		return 0;
846 
847 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
848 }
849 
850 static bool blk_mq_get_driver_tag(struct request *rq,
851 				  struct blk_mq_hw_ctx **hctx, bool wait)
852 {
853 	struct blk_mq_alloc_data data = {
854 		.q = rq->q,
855 		.ctx = rq->mq_ctx,
856 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
857 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
858 	};
859 
860 	if (blk_mq_hctx_stopped(data.hctx))
861 		return false;
862 
863 	if (rq->tag != -1) {
864 done:
865 		if (hctx)
866 			*hctx = data.hctx;
867 		return true;
868 	}
869 
870 	rq->tag = blk_mq_get_tag(&data);
871 	if (rq->tag >= 0) {
872 		data.hctx->tags->rqs[rq->tag] = rq;
873 		goto done;
874 	}
875 
876 	return false;
877 }
878 
879 /*
880  * If we fail getting a driver tag because all the driver tags are already
881  * assigned and on the dispatch list, BUT the first entry does not have a
882  * tag, then we could deadlock. For that case, move entries with assigned
883  * driver tags to the front, leaving the set of tagged requests in the
884  * same order, and the untagged set in the same order.
885  */
886 static bool reorder_tags_to_front(struct list_head *list)
887 {
888 	struct request *rq, *tmp, *first = NULL;
889 
890 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
891 		if (rq == first)
892 			break;
893 		if (rq->tag != -1) {
894 			list_move(&rq->queuelist, list);
895 			if (!first)
896 				first = rq;
897 		}
898 	}
899 
900 	return first != NULL;
901 }
902 
903 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
904 {
905 	struct request_queue *q = hctx->queue;
906 	struct request *rq;
907 	LIST_HEAD(driver_list);
908 	struct list_head *dptr;
909 	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
910 
911 	/*
912 	 * Start off with dptr being NULL, so we start the first request
913 	 * immediately, even if we have more pending.
914 	 */
915 	dptr = NULL;
916 
917 	/*
918 	 * Now process all the entries, sending them to the driver.
919 	 */
920 	queued = 0;
921 	while (!list_empty(list)) {
922 		struct blk_mq_queue_data bd;
923 
924 		rq = list_first_entry(list, struct request, queuelist);
925 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
926 			if (!queued && reorder_tags_to_front(list))
927 				continue;
928 			blk_mq_sched_mark_restart(hctx);
929 			break;
930 		}
931 		list_del_init(&rq->queuelist);
932 
933 		bd.rq = rq;
934 		bd.list = dptr;
935 		bd.last = list_empty(list);
936 
937 		ret = q->mq_ops->queue_rq(hctx, &bd);
938 		switch (ret) {
939 		case BLK_MQ_RQ_QUEUE_OK:
940 			queued++;
941 			break;
942 		case BLK_MQ_RQ_QUEUE_BUSY:
943 			list_add(&rq->queuelist, list);
944 			__blk_mq_requeue_request(rq);
945 			break;
946 		default:
947 			pr_err("blk-mq: bad return on queue: %d\n", ret);
948 		case BLK_MQ_RQ_QUEUE_ERROR:
949 			rq->errors = -EIO;
950 			blk_mq_end_request(rq, rq->errors);
951 			break;
952 		}
953 
954 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
955 			break;
956 
957 		/*
958 		 * We've done the first request. If we have more than 1
959 		 * left in the list, set dptr to defer issue.
960 		 */
961 		if (!dptr && list->next != list->prev)
962 			dptr = &driver_list;
963 	}
964 
965 	hctx->dispatched[queued_to_index(queued)]++;
966 
967 	/*
968 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
969 	 * that is where we will continue on next queue run.
970 	 */
971 	if (!list_empty(list)) {
972 		spin_lock(&hctx->lock);
973 		list_splice(list, &hctx->dispatch);
974 		spin_unlock(&hctx->lock);
975 
976 		/*
977 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
978 		 * it's possible the queue is stopped and restarted again
979 		 * before this. Queue restart will dispatch requests. And since
980 		 * requests in rq_list aren't added into hctx->dispatch yet,
981 		 * the requests in rq_list might get lost.
982 		 *
983 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
984 		 *
985 		 * If RESTART is set, then let completion restart the queue
986 		 * instead of potentially looping here.
987 		 */
988 		if (!blk_mq_sched_needs_restart(hctx))
989 			blk_mq_run_hw_queue(hctx, true);
990 	}
991 
992 	return ret != BLK_MQ_RQ_QUEUE_BUSY;
993 }
994 
995 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
996 {
997 	int srcu_idx;
998 
999 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1000 		cpu_online(hctx->next_cpu));
1001 
1002 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1003 		rcu_read_lock();
1004 		blk_mq_sched_dispatch_requests(hctx);
1005 		rcu_read_unlock();
1006 	} else {
1007 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1008 		blk_mq_sched_dispatch_requests(hctx);
1009 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1010 	}
1011 }
1012 
1013 /*
1014  * It'd be great if the workqueue API had a way to pass
1015  * in a mask and had some smarts for more clever placement.
1016  * For now we just round-robin here, switching for every
1017  * BLK_MQ_CPU_WORK_BATCH queued items.
1018  */
1019 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1020 {
1021 	if (hctx->queue->nr_hw_queues == 1)
1022 		return WORK_CPU_UNBOUND;
1023 
1024 	if (--hctx->next_cpu_batch <= 0) {
1025 		int next_cpu;
1026 
1027 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1028 		if (next_cpu >= nr_cpu_ids)
1029 			next_cpu = cpumask_first(hctx->cpumask);
1030 
1031 		hctx->next_cpu = next_cpu;
1032 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1033 	}
1034 
1035 	return hctx->next_cpu;
1036 }
1037 
1038 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1039 {
1040 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1041 		     !blk_mq_hw_queue_mapped(hctx)))
1042 		return;
1043 
1044 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1045 		int cpu = get_cpu();
1046 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1047 			__blk_mq_run_hw_queue(hctx);
1048 			put_cpu();
1049 			return;
1050 		}
1051 
1052 		put_cpu();
1053 	}
1054 
1055 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1056 }
1057 
1058 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1059 {
1060 	struct blk_mq_hw_ctx *hctx;
1061 	int i;
1062 
1063 	queue_for_each_hw_ctx(q, hctx, i) {
1064 		if (!blk_mq_hctx_has_pending(hctx) ||
1065 		    blk_mq_hctx_stopped(hctx))
1066 			continue;
1067 
1068 		blk_mq_run_hw_queue(hctx, async);
1069 	}
1070 }
1071 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1072 
1073 /**
1074  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1075  * @q: request queue.
1076  *
1077  * The caller is responsible for serializing this function against
1078  * blk_mq_{start,stop}_hw_queue().
1079  */
1080 bool blk_mq_queue_stopped(struct request_queue *q)
1081 {
1082 	struct blk_mq_hw_ctx *hctx;
1083 	int i;
1084 
1085 	queue_for_each_hw_ctx(q, hctx, i)
1086 		if (blk_mq_hctx_stopped(hctx))
1087 			return true;
1088 
1089 	return false;
1090 }
1091 EXPORT_SYMBOL(blk_mq_queue_stopped);
1092 
1093 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1094 {
1095 	cancel_work(&hctx->run_work);
1096 	cancel_delayed_work(&hctx->delay_work);
1097 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1098 }
1099 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1100 
1101 void blk_mq_stop_hw_queues(struct request_queue *q)
1102 {
1103 	struct blk_mq_hw_ctx *hctx;
1104 	int i;
1105 
1106 	queue_for_each_hw_ctx(q, hctx, i)
1107 		blk_mq_stop_hw_queue(hctx);
1108 }
1109 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1110 
1111 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1112 {
1113 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1114 
1115 	blk_mq_run_hw_queue(hctx, false);
1116 }
1117 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1118 
1119 void blk_mq_start_hw_queues(struct request_queue *q)
1120 {
1121 	struct blk_mq_hw_ctx *hctx;
1122 	int i;
1123 
1124 	queue_for_each_hw_ctx(q, hctx, i)
1125 		blk_mq_start_hw_queue(hctx);
1126 }
1127 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1128 
1129 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1130 {
1131 	if (!blk_mq_hctx_stopped(hctx))
1132 		return;
1133 
1134 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1135 	blk_mq_run_hw_queue(hctx, async);
1136 }
1137 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1138 
1139 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1140 {
1141 	struct blk_mq_hw_ctx *hctx;
1142 	int i;
1143 
1144 	queue_for_each_hw_ctx(q, hctx, i)
1145 		blk_mq_start_stopped_hw_queue(hctx, async);
1146 }
1147 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1148 
1149 static void blk_mq_run_work_fn(struct work_struct *work)
1150 {
1151 	struct blk_mq_hw_ctx *hctx;
1152 
1153 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1154 
1155 	__blk_mq_run_hw_queue(hctx);
1156 }
1157 
1158 static void blk_mq_delay_work_fn(struct work_struct *work)
1159 {
1160 	struct blk_mq_hw_ctx *hctx;
1161 
1162 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1163 
1164 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1165 		__blk_mq_run_hw_queue(hctx);
1166 }
1167 
1168 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1169 {
1170 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1171 		return;
1172 
1173 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1174 			&hctx->delay_work, msecs_to_jiffies(msecs));
1175 }
1176 EXPORT_SYMBOL(blk_mq_delay_queue);
1177 
1178 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1179 					    struct request *rq,
1180 					    bool at_head)
1181 {
1182 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1183 
1184 	trace_block_rq_insert(hctx->queue, rq);
1185 
1186 	if (at_head)
1187 		list_add(&rq->queuelist, &ctx->rq_list);
1188 	else
1189 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1190 }
1191 
1192 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1193 			     bool at_head)
1194 {
1195 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1196 
1197 	__blk_mq_insert_req_list(hctx, rq, at_head);
1198 	blk_mq_hctx_mark_pending(hctx, ctx);
1199 }
1200 
1201 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1202 			    struct list_head *list)
1203 
1204 {
1205 	/*
1206 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1207 	 * offline now
1208 	 */
1209 	spin_lock(&ctx->lock);
1210 	while (!list_empty(list)) {
1211 		struct request *rq;
1212 
1213 		rq = list_first_entry(list, struct request, queuelist);
1214 		BUG_ON(rq->mq_ctx != ctx);
1215 		list_del_init(&rq->queuelist);
1216 		__blk_mq_insert_req_list(hctx, rq, false);
1217 	}
1218 	blk_mq_hctx_mark_pending(hctx, ctx);
1219 	spin_unlock(&ctx->lock);
1220 }
1221 
1222 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1223 {
1224 	struct request *rqa = container_of(a, struct request, queuelist);
1225 	struct request *rqb = container_of(b, struct request, queuelist);
1226 
1227 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1228 		 (rqa->mq_ctx == rqb->mq_ctx &&
1229 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1230 }
1231 
1232 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1233 {
1234 	struct blk_mq_ctx *this_ctx;
1235 	struct request_queue *this_q;
1236 	struct request *rq;
1237 	LIST_HEAD(list);
1238 	LIST_HEAD(ctx_list);
1239 	unsigned int depth;
1240 
1241 	list_splice_init(&plug->mq_list, &list);
1242 
1243 	list_sort(NULL, &list, plug_ctx_cmp);
1244 
1245 	this_q = NULL;
1246 	this_ctx = NULL;
1247 	depth = 0;
1248 
1249 	while (!list_empty(&list)) {
1250 		rq = list_entry_rq(list.next);
1251 		list_del_init(&rq->queuelist);
1252 		BUG_ON(!rq->q);
1253 		if (rq->mq_ctx != this_ctx) {
1254 			if (this_ctx) {
1255 				trace_block_unplug(this_q, depth, from_schedule);
1256 				blk_mq_sched_insert_requests(this_q, this_ctx,
1257 								&ctx_list,
1258 								from_schedule);
1259 			}
1260 
1261 			this_ctx = rq->mq_ctx;
1262 			this_q = rq->q;
1263 			depth = 0;
1264 		}
1265 
1266 		depth++;
1267 		list_add_tail(&rq->queuelist, &ctx_list);
1268 	}
1269 
1270 	/*
1271 	 * If 'this_ctx' is set, we know we have entries to complete
1272 	 * on 'ctx_list'. Do those.
1273 	 */
1274 	if (this_ctx) {
1275 		trace_block_unplug(this_q, depth, from_schedule);
1276 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1277 						from_schedule);
1278 	}
1279 }
1280 
1281 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1282 {
1283 	init_request_from_bio(rq, bio);
1284 
1285 	blk_account_io_start(rq, true);
1286 }
1287 
1288 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1289 {
1290 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1291 		!blk_queue_nomerges(hctx->queue);
1292 }
1293 
1294 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1295 					 struct blk_mq_ctx *ctx,
1296 					 struct request *rq, struct bio *bio)
1297 {
1298 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1299 		blk_mq_bio_to_request(rq, bio);
1300 		spin_lock(&ctx->lock);
1301 insert_rq:
1302 		__blk_mq_insert_request(hctx, rq, false);
1303 		spin_unlock(&ctx->lock);
1304 		return false;
1305 	} else {
1306 		struct request_queue *q = hctx->queue;
1307 
1308 		spin_lock(&ctx->lock);
1309 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1310 			blk_mq_bio_to_request(rq, bio);
1311 			goto insert_rq;
1312 		}
1313 
1314 		spin_unlock(&ctx->lock);
1315 		__blk_mq_finish_request(hctx, ctx, rq);
1316 		return true;
1317 	}
1318 }
1319 
1320 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1321 {
1322 	if (rq->tag != -1)
1323 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1324 
1325 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1326 }
1327 
1328 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1329 {
1330 	struct request_queue *q = rq->q;
1331 	struct blk_mq_queue_data bd = {
1332 		.rq = rq,
1333 		.list = NULL,
1334 		.last = 1
1335 	};
1336 	struct blk_mq_hw_ctx *hctx;
1337 	blk_qc_t new_cookie;
1338 	int ret;
1339 
1340 	if (q->elevator)
1341 		goto insert;
1342 
1343 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1344 		goto insert;
1345 
1346 	new_cookie = request_to_qc_t(hctx, rq);
1347 
1348 	/*
1349 	 * For OK queue, we are done. For error, kill it. Any other
1350 	 * error (busy), just add it to our list as we previously
1351 	 * would have done
1352 	 */
1353 	ret = q->mq_ops->queue_rq(hctx, &bd);
1354 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1355 		*cookie = new_cookie;
1356 		return;
1357 	}
1358 
1359 	__blk_mq_requeue_request(rq);
1360 
1361 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1362 		*cookie = BLK_QC_T_NONE;
1363 		rq->errors = -EIO;
1364 		blk_mq_end_request(rq, rq->errors);
1365 		return;
1366 	}
1367 
1368 insert:
1369 	blk_mq_sched_insert_request(rq, false, true, true);
1370 }
1371 
1372 /*
1373  * Multiple hardware queue variant. This will not use per-process plugs,
1374  * but will attempt to bypass the hctx queueing if we can go straight to
1375  * hardware for SYNC IO.
1376  */
1377 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1378 {
1379 	const int is_sync = op_is_sync(bio->bi_opf);
1380 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1381 	struct blk_mq_alloc_data data;
1382 	struct request *rq;
1383 	unsigned int request_count = 0, srcu_idx;
1384 	struct blk_plug *plug;
1385 	struct request *same_queue_rq = NULL;
1386 	blk_qc_t cookie;
1387 	unsigned int wb_acct;
1388 
1389 	blk_queue_bounce(q, &bio);
1390 
1391 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1392 		bio_io_error(bio);
1393 		return BLK_QC_T_NONE;
1394 	}
1395 
1396 	blk_queue_split(q, &bio, q->bio_split);
1397 
1398 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1399 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1400 		return BLK_QC_T_NONE;
1401 
1402 	if (blk_mq_sched_bio_merge(q, bio))
1403 		return BLK_QC_T_NONE;
1404 
1405 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1406 
1407 	trace_block_getrq(q, bio, bio->bi_opf);
1408 
1409 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1410 	if (unlikely(!rq)) {
1411 		__wbt_done(q->rq_wb, wb_acct);
1412 		return BLK_QC_T_NONE;
1413 	}
1414 
1415 	wbt_track(&rq->issue_stat, wb_acct);
1416 
1417 	cookie = request_to_qc_t(data.hctx, rq);
1418 
1419 	if (unlikely(is_flush_fua)) {
1420 		blk_mq_bio_to_request(rq, bio);
1421 		blk_mq_get_driver_tag(rq, NULL, true);
1422 		blk_insert_flush(rq);
1423 		goto run_queue;
1424 	}
1425 
1426 	plug = current->plug;
1427 	/*
1428 	 * If the driver supports defer issued based on 'last', then
1429 	 * queue it up like normal since we can potentially save some
1430 	 * CPU this way.
1431 	 */
1432 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1433 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1434 		struct request *old_rq = NULL;
1435 
1436 		blk_mq_bio_to_request(rq, bio);
1437 
1438 		/*
1439 		 * We do limited plugging. If the bio can be merged, do that.
1440 		 * Otherwise the existing request in the plug list will be
1441 		 * issued. So the plug list will have one request at most
1442 		 */
1443 		if (plug) {
1444 			/*
1445 			 * The plug list might get flushed before this. If that
1446 			 * happens, same_queue_rq is invalid and plug list is
1447 			 * empty
1448 			 */
1449 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1450 				old_rq = same_queue_rq;
1451 				list_del_init(&old_rq->queuelist);
1452 			}
1453 			list_add_tail(&rq->queuelist, &plug->mq_list);
1454 		} else /* is_sync */
1455 			old_rq = rq;
1456 		blk_mq_put_ctx(data.ctx);
1457 		if (!old_rq)
1458 			goto done;
1459 
1460 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1461 			rcu_read_lock();
1462 			blk_mq_try_issue_directly(old_rq, &cookie);
1463 			rcu_read_unlock();
1464 		} else {
1465 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1466 			blk_mq_try_issue_directly(old_rq, &cookie);
1467 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1468 		}
1469 		goto done;
1470 	}
1471 
1472 	if (q->elevator) {
1473 		blk_mq_put_ctx(data.ctx);
1474 		blk_mq_bio_to_request(rq, bio);
1475 		blk_mq_sched_insert_request(rq, false, true, true);
1476 		goto done;
1477 	}
1478 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1479 		/*
1480 		 * For a SYNC request, send it to the hardware immediately. For
1481 		 * an ASYNC request, just ensure that we run it later on. The
1482 		 * latter allows for merging opportunities and more efficient
1483 		 * dispatching.
1484 		 */
1485 run_queue:
1486 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1487 	}
1488 	blk_mq_put_ctx(data.ctx);
1489 done:
1490 	return cookie;
1491 }
1492 
1493 /*
1494  * Single hardware queue variant. This will attempt to use any per-process
1495  * plug for merging and IO deferral.
1496  */
1497 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1498 {
1499 	const int is_sync = op_is_sync(bio->bi_opf);
1500 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1501 	struct blk_plug *plug;
1502 	unsigned int request_count = 0;
1503 	struct blk_mq_alloc_data data;
1504 	struct request *rq;
1505 	blk_qc_t cookie;
1506 	unsigned int wb_acct;
1507 
1508 	blk_queue_bounce(q, &bio);
1509 
1510 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511 		bio_io_error(bio);
1512 		return BLK_QC_T_NONE;
1513 	}
1514 
1515 	blk_queue_split(q, &bio, q->bio_split);
1516 
1517 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1518 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1519 			return BLK_QC_T_NONE;
1520 	} else
1521 		request_count = blk_plug_queued_count(q);
1522 
1523 	if (blk_mq_sched_bio_merge(q, bio))
1524 		return BLK_QC_T_NONE;
1525 
1526 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1527 
1528 	trace_block_getrq(q, bio, bio->bi_opf);
1529 
1530 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1531 	if (unlikely(!rq)) {
1532 		__wbt_done(q->rq_wb, wb_acct);
1533 		return BLK_QC_T_NONE;
1534 	}
1535 
1536 	wbt_track(&rq->issue_stat, wb_acct);
1537 
1538 	cookie = request_to_qc_t(data.hctx, rq);
1539 
1540 	if (unlikely(is_flush_fua)) {
1541 		blk_mq_bio_to_request(rq, bio);
1542 		blk_mq_get_driver_tag(rq, NULL, true);
1543 		blk_insert_flush(rq);
1544 		goto run_queue;
1545 	}
1546 
1547 	/*
1548 	 * A task plug currently exists. Since this is completely lockless,
1549 	 * utilize that to temporarily store requests until the task is
1550 	 * either done or scheduled away.
1551 	 */
1552 	plug = current->plug;
1553 	if (plug) {
1554 		struct request *last = NULL;
1555 
1556 		blk_mq_bio_to_request(rq, bio);
1557 
1558 		/*
1559 		 * @request_count may become stale because of schedule
1560 		 * out, so check the list again.
1561 		 */
1562 		if (list_empty(&plug->mq_list))
1563 			request_count = 0;
1564 		if (!request_count)
1565 			trace_block_plug(q);
1566 		else
1567 			last = list_entry_rq(plug->mq_list.prev);
1568 
1569 		blk_mq_put_ctx(data.ctx);
1570 
1571 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1572 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1573 			blk_flush_plug_list(plug, false);
1574 			trace_block_plug(q);
1575 		}
1576 
1577 		list_add_tail(&rq->queuelist, &plug->mq_list);
1578 		return cookie;
1579 	}
1580 
1581 	if (q->elevator) {
1582 		blk_mq_put_ctx(data.ctx);
1583 		blk_mq_bio_to_request(rq, bio);
1584 		blk_mq_sched_insert_request(rq, false, true, true);
1585 		goto done;
1586 	}
1587 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1588 		/*
1589 		 * For a SYNC request, send it to the hardware immediately. For
1590 		 * an ASYNC request, just ensure that we run it later on. The
1591 		 * latter allows for merging opportunities and more efficient
1592 		 * dispatching.
1593 		 */
1594 run_queue:
1595 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1596 	}
1597 
1598 	blk_mq_put_ctx(data.ctx);
1599 done:
1600 	return cookie;
1601 }
1602 
1603 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1604 		     unsigned int hctx_idx)
1605 {
1606 	struct page *page;
1607 
1608 	if (tags->rqs && set->ops->exit_request) {
1609 		int i;
1610 
1611 		for (i = 0; i < tags->nr_tags; i++) {
1612 			struct request *rq = tags->static_rqs[i];
1613 
1614 			if (!rq)
1615 				continue;
1616 			set->ops->exit_request(set->driver_data, rq,
1617 						hctx_idx, i);
1618 			tags->static_rqs[i] = NULL;
1619 		}
1620 	}
1621 
1622 	while (!list_empty(&tags->page_list)) {
1623 		page = list_first_entry(&tags->page_list, struct page, lru);
1624 		list_del_init(&page->lru);
1625 		/*
1626 		 * Remove kmemleak object previously allocated in
1627 		 * blk_mq_init_rq_map().
1628 		 */
1629 		kmemleak_free(page_address(page));
1630 		__free_pages(page, page->private);
1631 	}
1632 }
1633 
1634 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1635 {
1636 	kfree(tags->rqs);
1637 	tags->rqs = NULL;
1638 	kfree(tags->static_rqs);
1639 	tags->static_rqs = NULL;
1640 
1641 	blk_mq_free_tags(tags);
1642 }
1643 
1644 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1645 					unsigned int hctx_idx,
1646 					unsigned int nr_tags,
1647 					unsigned int reserved_tags)
1648 {
1649 	struct blk_mq_tags *tags;
1650 
1651 	tags = blk_mq_init_tags(nr_tags, reserved_tags,
1652 				set->numa_node,
1653 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1654 	if (!tags)
1655 		return NULL;
1656 
1657 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1658 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1659 				 set->numa_node);
1660 	if (!tags->rqs) {
1661 		blk_mq_free_tags(tags);
1662 		return NULL;
1663 	}
1664 
1665 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1666 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1667 				 set->numa_node);
1668 	if (!tags->static_rqs) {
1669 		kfree(tags->rqs);
1670 		blk_mq_free_tags(tags);
1671 		return NULL;
1672 	}
1673 
1674 	return tags;
1675 }
1676 
1677 static size_t order_to_size(unsigned int order)
1678 {
1679 	return (size_t)PAGE_SIZE << order;
1680 }
1681 
1682 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1683 		     unsigned int hctx_idx, unsigned int depth)
1684 {
1685 	unsigned int i, j, entries_per_page, max_order = 4;
1686 	size_t rq_size, left;
1687 
1688 	INIT_LIST_HEAD(&tags->page_list);
1689 
1690 	/*
1691 	 * rq_size is the size of the request plus driver payload, rounded
1692 	 * to the cacheline size
1693 	 */
1694 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1695 				cache_line_size());
1696 	left = rq_size * depth;
1697 
1698 	for (i = 0; i < depth; ) {
1699 		int this_order = max_order;
1700 		struct page *page;
1701 		int to_do;
1702 		void *p;
1703 
1704 		while (this_order && left < order_to_size(this_order - 1))
1705 			this_order--;
1706 
1707 		do {
1708 			page = alloc_pages_node(set->numa_node,
1709 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1710 				this_order);
1711 			if (page)
1712 				break;
1713 			if (!this_order--)
1714 				break;
1715 			if (order_to_size(this_order) < rq_size)
1716 				break;
1717 		} while (1);
1718 
1719 		if (!page)
1720 			goto fail;
1721 
1722 		page->private = this_order;
1723 		list_add_tail(&page->lru, &tags->page_list);
1724 
1725 		p = page_address(page);
1726 		/*
1727 		 * Allow kmemleak to scan these pages as they contain pointers
1728 		 * to additional allocations like via ops->init_request().
1729 		 */
1730 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1731 		entries_per_page = order_to_size(this_order) / rq_size;
1732 		to_do = min(entries_per_page, depth - i);
1733 		left -= to_do * rq_size;
1734 		for (j = 0; j < to_do; j++) {
1735 			struct request *rq = p;
1736 
1737 			tags->static_rqs[i] = rq;
1738 			if (set->ops->init_request) {
1739 				if (set->ops->init_request(set->driver_data,
1740 						rq, hctx_idx, i,
1741 						set->numa_node)) {
1742 					tags->static_rqs[i] = NULL;
1743 					goto fail;
1744 				}
1745 			}
1746 
1747 			p += rq_size;
1748 			i++;
1749 		}
1750 	}
1751 	return 0;
1752 
1753 fail:
1754 	blk_mq_free_rqs(set, tags, hctx_idx);
1755 	return -ENOMEM;
1756 }
1757 
1758 /*
1759  * 'cpu' is going away. splice any existing rq_list entries from this
1760  * software queue to the hw queue dispatch list, and ensure that it
1761  * gets run.
1762  */
1763 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1764 {
1765 	struct blk_mq_hw_ctx *hctx;
1766 	struct blk_mq_ctx *ctx;
1767 	LIST_HEAD(tmp);
1768 
1769 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1770 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1771 
1772 	spin_lock(&ctx->lock);
1773 	if (!list_empty(&ctx->rq_list)) {
1774 		list_splice_init(&ctx->rq_list, &tmp);
1775 		blk_mq_hctx_clear_pending(hctx, ctx);
1776 	}
1777 	spin_unlock(&ctx->lock);
1778 
1779 	if (list_empty(&tmp))
1780 		return 0;
1781 
1782 	spin_lock(&hctx->lock);
1783 	list_splice_tail_init(&tmp, &hctx->dispatch);
1784 	spin_unlock(&hctx->lock);
1785 
1786 	blk_mq_run_hw_queue(hctx, true);
1787 	return 0;
1788 }
1789 
1790 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1791 {
1792 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1793 					    &hctx->cpuhp_dead);
1794 }
1795 
1796 /* hctx->ctxs will be freed in queue's release handler */
1797 static void blk_mq_exit_hctx(struct request_queue *q,
1798 		struct blk_mq_tag_set *set,
1799 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1800 {
1801 	unsigned flush_start_tag = set->queue_depth;
1802 
1803 	blk_mq_tag_idle(hctx);
1804 
1805 	if (set->ops->exit_request)
1806 		set->ops->exit_request(set->driver_data,
1807 				       hctx->fq->flush_rq, hctx_idx,
1808 				       flush_start_tag + hctx_idx);
1809 
1810 	if (set->ops->exit_hctx)
1811 		set->ops->exit_hctx(hctx, hctx_idx);
1812 
1813 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1814 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1815 
1816 	blk_mq_remove_cpuhp(hctx);
1817 	blk_free_flush_queue(hctx->fq);
1818 	sbitmap_free(&hctx->ctx_map);
1819 }
1820 
1821 static void blk_mq_exit_hw_queues(struct request_queue *q,
1822 		struct blk_mq_tag_set *set, int nr_queue)
1823 {
1824 	struct blk_mq_hw_ctx *hctx;
1825 	unsigned int i;
1826 
1827 	queue_for_each_hw_ctx(q, hctx, i) {
1828 		if (i == nr_queue)
1829 			break;
1830 		blk_mq_exit_hctx(q, set, hctx, i);
1831 	}
1832 }
1833 
1834 static void blk_mq_free_hw_queues(struct request_queue *q,
1835 		struct blk_mq_tag_set *set)
1836 {
1837 	struct blk_mq_hw_ctx *hctx;
1838 	unsigned int i;
1839 
1840 	queue_for_each_hw_ctx(q, hctx, i)
1841 		free_cpumask_var(hctx->cpumask);
1842 }
1843 
1844 static int blk_mq_init_hctx(struct request_queue *q,
1845 		struct blk_mq_tag_set *set,
1846 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1847 {
1848 	int node;
1849 	unsigned flush_start_tag = set->queue_depth;
1850 
1851 	node = hctx->numa_node;
1852 	if (node == NUMA_NO_NODE)
1853 		node = hctx->numa_node = set->numa_node;
1854 
1855 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1856 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1857 	spin_lock_init(&hctx->lock);
1858 	INIT_LIST_HEAD(&hctx->dispatch);
1859 	hctx->queue = q;
1860 	hctx->queue_num = hctx_idx;
1861 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1862 
1863 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1864 
1865 	hctx->tags = set->tags[hctx_idx];
1866 
1867 	/*
1868 	 * Allocate space for all possible cpus to avoid allocation at
1869 	 * runtime
1870 	 */
1871 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1872 					GFP_KERNEL, node);
1873 	if (!hctx->ctxs)
1874 		goto unregister_cpu_notifier;
1875 
1876 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1877 			      node))
1878 		goto free_ctxs;
1879 
1880 	hctx->nr_ctx = 0;
1881 
1882 	if (set->ops->init_hctx &&
1883 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1884 		goto free_bitmap;
1885 
1886 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1887 	if (!hctx->fq)
1888 		goto exit_hctx;
1889 
1890 	if (set->ops->init_request &&
1891 	    set->ops->init_request(set->driver_data,
1892 				   hctx->fq->flush_rq, hctx_idx,
1893 				   flush_start_tag + hctx_idx, node))
1894 		goto free_fq;
1895 
1896 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1897 		init_srcu_struct(&hctx->queue_rq_srcu);
1898 
1899 	return 0;
1900 
1901  free_fq:
1902 	kfree(hctx->fq);
1903  exit_hctx:
1904 	if (set->ops->exit_hctx)
1905 		set->ops->exit_hctx(hctx, hctx_idx);
1906  free_bitmap:
1907 	sbitmap_free(&hctx->ctx_map);
1908  free_ctxs:
1909 	kfree(hctx->ctxs);
1910  unregister_cpu_notifier:
1911 	blk_mq_remove_cpuhp(hctx);
1912 	return -1;
1913 }
1914 
1915 static void blk_mq_init_cpu_queues(struct request_queue *q,
1916 				   unsigned int nr_hw_queues)
1917 {
1918 	unsigned int i;
1919 
1920 	for_each_possible_cpu(i) {
1921 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1922 		struct blk_mq_hw_ctx *hctx;
1923 
1924 		memset(__ctx, 0, sizeof(*__ctx));
1925 		__ctx->cpu = i;
1926 		spin_lock_init(&__ctx->lock);
1927 		INIT_LIST_HEAD(&__ctx->rq_list);
1928 		__ctx->queue = q;
1929 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1930 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1931 
1932 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1933 		if (!cpu_online(i))
1934 			continue;
1935 
1936 		hctx = blk_mq_map_queue(q, i);
1937 
1938 		/*
1939 		 * Set local node, IFF we have more than one hw queue. If
1940 		 * not, we remain on the home node of the device
1941 		 */
1942 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1943 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1944 	}
1945 }
1946 
1947 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1948 {
1949 	int ret = 0;
1950 
1951 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1952 					set->queue_depth, set->reserved_tags);
1953 	if (!set->tags[hctx_idx])
1954 		return false;
1955 
1956 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1957 				set->queue_depth);
1958 	if (!ret)
1959 		return true;
1960 
1961 	blk_mq_free_rq_map(set->tags[hctx_idx]);
1962 	set->tags[hctx_idx] = NULL;
1963 	return false;
1964 }
1965 
1966 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1967 					 unsigned int hctx_idx)
1968 {
1969 	if (set->tags[hctx_idx]) {
1970 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1971 		blk_mq_free_rq_map(set->tags[hctx_idx]);
1972 		set->tags[hctx_idx] = NULL;
1973 	}
1974 }
1975 
1976 static void blk_mq_map_swqueue(struct request_queue *q,
1977 			       const struct cpumask *online_mask)
1978 {
1979 	unsigned int i, hctx_idx;
1980 	struct blk_mq_hw_ctx *hctx;
1981 	struct blk_mq_ctx *ctx;
1982 	struct blk_mq_tag_set *set = q->tag_set;
1983 
1984 	/*
1985 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1986 	 */
1987 	mutex_lock(&q->sysfs_lock);
1988 
1989 	queue_for_each_hw_ctx(q, hctx, i) {
1990 		cpumask_clear(hctx->cpumask);
1991 		hctx->nr_ctx = 0;
1992 	}
1993 
1994 	/*
1995 	 * Map software to hardware queues
1996 	 */
1997 	for_each_possible_cpu(i) {
1998 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1999 		if (!cpumask_test_cpu(i, online_mask))
2000 			continue;
2001 
2002 		hctx_idx = q->mq_map[i];
2003 		/* unmapped hw queue can be remapped after CPU topo changed */
2004 		if (!set->tags[hctx_idx] &&
2005 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2006 			/*
2007 			 * If tags initialization fail for some hctx,
2008 			 * that hctx won't be brought online.  In this
2009 			 * case, remap the current ctx to hctx[0] which
2010 			 * is guaranteed to always have tags allocated
2011 			 */
2012 			q->mq_map[i] = 0;
2013 		}
2014 
2015 		ctx = per_cpu_ptr(q->queue_ctx, i);
2016 		hctx = blk_mq_map_queue(q, i);
2017 
2018 		cpumask_set_cpu(i, hctx->cpumask);
2019 		ctx->index_hw = hctx->nr_ctx;
2020 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2021 	}
2022 
2023 	mutex_unlock(&q->sysfs_lock);
2024 
2025 	queue_for_each_hw_ctx(q, hctx, i) {
2026 		/*
2027 		 * If no software queues are mapped to this hardware queue,
2028 		 * disable it and free the request entries.
2029 		 */
2030 		if (!hctx->nr_ctx) {
2031 			/* Never unmap queue 0.  We need it as a
2032 			 * fallback in case of a new remap fails
2033 			 * allocation
2034 			 */
2035 			if (i && set->tags[i])
2036 				blk_mq_free_map_and_requests(set, i);
2037 
2038 			hctx->tags = NULL;
2039 			continue;
2040 		}
2041 
2042 		hctx->tags = set->tags[i];
2043 		WARN_ON(!hctx->tags);
2044 
2045 		/*
2046 		 * Set the map size to the number of mapped software queues.
2047 		 * This is more accurate and more efficient than looping
2048 		 * over all possibly mapped software queues.
2049 		 */
2050 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2051 
2052 		/*
2053 		 * Initialize batch roundrobin counts
2054 		 */
2055 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2056 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2057 	}
2058 }
2059 
2060 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2061 {
2062 	struct blk_mq_hw_ctx *hctx;
2063 	int i;
2064 
2065 	queue_for_each_hw_ctx(q, hctx, i) {
2066 		if (shared)
2067 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2068 		else
2069 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2070 	}
2071 }
2072 
2073 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2074 {
2075 	struct request_queue *q;
2076 
2077 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2078 		blk_mq_freeze_queue(q);
2079 		queue_set_hctx_shared(q, shared);
2080 		blk_mq_unfreeze_queue(q);
2081 	}
2082 }
2083 
2084 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2085 {
2086 	struct blk_mq_tag_set *set = q->tag_set;
2087 
2088 	mutex_lock(&set->tag_list_lock);
2089 	list_del_init(&q->tag_set_list);
2090 	if (list_is_singular(&set->tag_list)) {
2091 		/* just transitioned to unshared */
2092 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2093 		/* update existing queue */
2094 		blk_mq_update_tag_set_depth(set, false);
2095 	}
2096 	mutex_unlock(&set->tag_list_lock);
2097 }
2098 
2099 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2100 				     struct request_queue *q)
2101 {
2102 	q->tag_set = set;
2103 
2104 	mutex_lock(&set->tag_list_lock);
2105 
2106 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2107 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2108 		set->flags |= BLK_MQ_F_TAG_SHARED;
2109 		/* update existing queue */
2110 		blk_mq_update_tag_set_depth(set, true);
2111 	}
2112 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2113 		queue_set_hctx_shared(q, true);
2114 	list_add_tail(&q->tag_set_list, &set->tag_list);
2115 
2116 	mutex_unlock(&set->tag_list_lock);
2117 }
2118 
2119 /*
2120  * It is the actual release handler for mq, but we do it from
2121  * request queue's release handler for avoiding use-after-free
2122  * and headache because q->mq_kobj shouldn't have been introduced,
2123  * but we can't group ctx/kctx kobj without it.
2124  */
2125 void blk_mq_release(struct request_queue *q)
2126 {
2127 	struct blk_mq_hw_ctx *hctx;
2128 	unsigned int i;
2129 
2130 	blk_mq_sched_teardown(q);
2131 
2132 	/* hctx kobj stays in hctx */
2133 	queue_for_each_hw_ctx(q, hctx, i) {
2134 		if (!hctx)
2135 			continue;
2136 		kfree(hctx->ctxs);
2137 		kfree(hctx);
2138 	}
2139 
2140 	q->mq_map = NULL;
2141 
2142 	kfree(q->queue_hw_ctx);
2143 
2144 	/* ctx kobj stays in queue_ctx */
2145 	free_percpu(q->queue_ctx);
2146 }
2147 
2148 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2149 {
2150 	struct request_queue *uninit_q, *q;
2151 
2152 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2153 	if (!uninit_q)
2154 		return ERR_PTR(-ENOMEM);
2155 
2156 	q = blk_mq_init_allocated_queue(set, uninit_q);
2157 	if (IS_ERR(q))
2158 		blk_cleanup_queue(uninit_q);
2159 
2160 	return q;
2161 }
2162 EXPORT_SYMBOL(blk_mq_init_queue);
2163 
2164 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2165 						struct request_queue *q)
2166 {
2167 	int i, j;
2168 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2169 
2170 	blk_mq_sysfs_unregister(q);
2171 	for (i = 0; i < set->nr_hw_queues; i++) {
2172 		int node;
2173 
2174 		if (hctxs[i])
2175 			continue;
2176 
2177 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2178 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2179 					GFP_KERNEL, node);
2180 		if (!hctxs[i])
2181 			break;
2182 
2183 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2184 						node)) {
2185 			kfree(hctxs[i]);
2186 			hctxs[i] = NULL;
2187 			break;
2188 		}
2189 
2190 		atomic_set(&hctxs[i]->nr_active, 0);
2191 		hctxs[i]->numa_node = node;
2192 		hctxs[i]->queue_num = i;
2193 
2194 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2195 			free_cpumask_var(hctxs[i]->cpumask);
2196 			kfree(hctxs[i]);
2197 			hctxs[i] = NULL;
2198 			break;
2199 		}
2200 		blk_mq_hctx_kobj_init(hctxs[i]);
2201 	}
2202 	for (j = i; j < q->nr_hw_queues; j++) {
2203 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2204 
2205 		if (hctx) {
2206 			if (hctx->tags)
2207 				blk_mq_free_map_and_requests(set, j);
2208 			blk_mq_exit_hctx(q, set, hctx, j);
2209 			free_cpumask_var(hctx->cpumask);
2210 			kobject_put(&hctx->kobj);
2211 			kfree(hctx->ctxs);
2212 			kfree(hctx);
2213 			hctxs[j] = NULL;
2214 
2215 		}
2216 	}
2217 	q->nr_hw_queues = i;
2218 	blk_mq_sysfs_register(q);
2219 }
2220 
2221 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2222 						  struct request_queue *q)
2223 {
2224 	/* mark the queue as mq asap */
2225 	q->mq_ops = set->ops;
2226 
2227 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2228 	if (!q->queue_ctx)
2229 		goto err_exit;
2230 
2231 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2232 						GFP_KERNEL, set->numa_node);
2233 	if (!q->queue_hw_ctx)
2234 		goto err_percpu;
2235 
2236 	q->mq_map = set->mq_map;
2237 
2238 	blk_mq_realloc_hw_ctxs(set, q);
2239 	if (!q->nr_hw_queues)
2240 		goto err_hctxs;
2241 
2242 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2243 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2244 
2245 	q->nr_queues = nr_cpu_ids;
2246 
2247 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2248 
2249 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2250 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2251 
2252 	q->sg_reserved_size = INT_MAX;
2253 
2254 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2255 	INIT_LIST_HEAD(&q->requeue_list);
2256 	spin_lock_init(&q->requeue_lock);
2257 
2258 	if (q->nr_hw_queues > 1)
2259 		blk_queue_make_request(q, blk_mq_make_request);
2260 	else
2261 		blk_queue_make_request(q, blk_sq_make_request);
2262 
2263 	/*
2264 	 * Do this after blk_queue_make_request() overrides it...
2265 	 */
2266 	q->nr_requests = set->queue_depth;
2267 
2268 	/*
2269 	 * Default to classic polling
2270 	 */
2271 	q->poll_nsec = -1;
2272 
2273 	if (set->ops->complete)
2274 		blk_queue_softirq_done(q, set->ops->complete);
2275 
2276 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2277 
2278 	get_online_cpus();
2279 	mutex_lock(&all_q_mutex);
2280 
2281 	list_add_tail(&q->all_q_node, &all_q_list);
2282 	blk_mq_add_queue_tag_set(set, q);
2283 	blk_mq_map_swqueue(q, cpu_online_mask);
2284 
2285 	mutex_unlock(&all_q_mutex);
2286 	put_online_cpus();
2287 
2288 	return q;
2289 
2290 err_hctxs:
2291 	kfree(q->queue_hw_ctx);
2292 err_percpu:
2293 	free_percpu(q->queue_ctx);
2294 err_exit:
2295 	q->mq_ops = NULL;
2296 	return ERR_PTR(-ENOMEM);
2297 }
2298 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2299 
2300 void blk_mq_free_queue(struct request_queue *q)
2301 {
2302 	struct blk_mq_tag_set	*set = q->tag_set;
2303 
2304 	mutex_lock(&all_q_mutex);
2305 	list_del_init(&q->all_q_node);
2306 	mutex_unlock(&all_q_mutex);
2307 
2308 	wbt_exit(q);
2309 
2310 	blk_mq_del_queue_tag_set(q);
2311 
2312 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2313 	blk_mq_free_hw_queues(q, set);
2314 }
2315 
2316 /* Basically redo blk_mq_init_queue with queue frozen */
2317 static void blk_mq_queue_reinit(struct request_queue *q,
2318 				const struct cpumask *online_mask)
2319 {
2320 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2321 
2322 	blk_mq_sysfs_unregister(q);
2323 
2324 	/*
2325 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2326 	 * we should change hctx numa_node according to new topology (this
2327 	 * involves free and re-allocate memory, worthy doing?)
2328 	 */
2329 
2330 	blk_mq_map_swqueue(q, online_mask);
2331 
2332 	blk_mq_sysfs_register(q);
2333 }
2334 
2335 /*
2336  * New online cpumask which is going to be set in this hotplug event.
2337  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2338  * one-by-one and dynamically allocating this could result in a failure.
2339  */
2340 static struct cpumask cpuhp_online_new;
2341 
2342 static void blk_mq_queue_reinit_work(void)
2343 {
2344 	struct request_queue *q;
2345 
2346 	mutex_lock(&all_q_mutex);
2347 	/*
2348 	 * We need to freeze and reinit all existing queues.  Freezing
2349 	 * involves synchronous wait for an RCU grace period and doing it
2350 	 * one by one may take a long time.  Start freezing all queues in
2351 	 * one swoop and then wait for the completions so that freezing can
2352 	 * take place in parallel.
2353 	 */
2354 	list_for_each_entry(q, &all_q_list, all_q_node)
2355 		blk_mq_freeze_queue_start(q);
2356 	list_for_each_entry(q, &all_q_list, all_q_node)
2357 		blk_mq_freeze_queue_wait(q);
2358 
2359 	list_for_each_entry(q, &all_q_list, all_q_node)
2360 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2361 
2362 	list_for_each_entry(q, &all_q_list, all_q_node)
2363 		blk_mq_unfreeze_queue(q);
2364 
2365 	mutex_unlock(&all_q_mutex);
2366 }
2367 
2368 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2369 {
2370 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2371 	blk_mq_queue_reinit_work();
2372 	return 0;
2373 }
2374 
2375 /*
2376  * Before hotadded cpu starts handling requests, new mappings must be
2377  * established.  Otherwise, these requests in hw queue might never be
2378  * dispatched.
2379  *
2380  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2381  * for CPU0, and ctx1 for CPU1).
2382  *
2383  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2384  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2385  *
2386  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2387  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2388  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2389  * ignored.
2390  */
2391 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2392 {
2393 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2394 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2395 	blk_mq_queue_reinit_work();
2396 	return 0;
2397 }
2398 
2399 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2400 {
2401 	int i;
2402 
2403 	for (i = 0; i < set->nr_hw_queues; i++)
2404 		if (!__blk_mq_alloc_rq_map(set, i))
2405 			goto out_unwind;
2406 
2407 	return 0;
2408 
2409 out_unwind:
2410 	while (--i >= 0)
2411 		blk_mq_free_rq_map(set->tags[i]);
2412 
2413 	return -ENOMEM;
2414 }
2415 
2416 /*
2417  * Allocate the request maps associated with this tag_set. Note that this
2418  * may reduce the depth asked for, if memory is tight. set->queue_depth
2419  * will be updated to reflect the allocated depth.
2420  */
2421 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2422 {
2423 	unsigned int depth;
2424 	int err;
2425 
2426 	depth = set->queue_depth;
2427 	do {
2428 		err = __blk_mq_alloc_rq_maps(set);
2429 		if (!err)
2430 			break;
2431 
2432 		set->queue_depth >>= 1;
2433 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2434 			err = -ENOMEM;
2435 			break;
2436 		}
2437 	} while (set->queue_depth);
2438 
2439 	if (!set->queue_depth || err) {
2440 		pr_err("blk-mq: failed to allocate request map\n");
2441 		return -ENOMEM;
2442 	}
2443 
2444 	if (depth != set->queue_depth)
2445 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2446 						depth, set->queue_depth);
2447 
2448 	return 0;
2449 }
2450 
2451 /*
2452  * Alloc a tag set to be associated with one or more request queues.
2453  * May fail with EINVAL for various error conditions. May adjust the
2454  * requested depth down, if if it too large. In that case, the set
2455  * value will be stored in set->queue_depth.
2456  */
2457 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2458 {
2459 	int ret;
2460 
2461 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2462 
2463 	if (!set->nr_hw_queues)
2464 		return -EINVAL;
2465 	if (!set->queue_depth)
2466 		return -EINVAL;
2467 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2468 		return -EINVAL;
2469 
2470 	if (!set->ops->queue_rq)
2471 		return -EINVAL;
2472 
2473 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2474 		pr_info("blk-mq: reduced tag depth to %u\n",
2475 			BLK_MQ_MAX_DEPTH);
2476 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2477 	}
2478 
2479 	/*
2480 	 * If a crashdump is active, then we are potentially in a very
2481 	 * memory constrained environment. Limit us to 1 queue and
2482 	 * 64 tags to prevent using too much memory.
2483 	 */
2484 	if (is_kdump_kernel()) {
2485 		set->nr_hw_queues = 1;
2486 		set->queue_depth = min(64U, set->queue_depth);
2487 	}
2488 	/*
2489 	 * There is no use for more h/w queues than cpus.
2490 	 */
2491 	if (set->nr_hw_queues > nr_cpu_ids)
2492 		set->nr_hw_queues = nr_cpu_ids;
2493 
2494 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2495 				 GFP_KERNEL, set->numa_node);
2496 	if (!set->tags)
2497 		return -ENOMEM;
2498 
2499 	ret = -ENOMEM;
2500 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2501 			GFP_KERNEL, set->numa_node);
2502 	if (!set->mq_map)
2503 		goto out_free_tags;
2504 
2505 	if (set->ops->map_queues)
2506 		ret = set->ops->map_queues(set);
2507 	else
2508 		ret = blk_mq_map_queues(set);
2509 	if (ret)
2510 		goto out_free_mq_map;
2511 
2512 	ret = blk_mq_alloc_rq_maps(set);
2513 	if (ret)
2514 		goto out_free_mq_map;
2515 
2516 	mutex_init(&set->tag_list_lock);
2517 	INIT_LIST_HEAD(&set->tag_list);
2518 
2519 	return 0;
2520 
2521 out_free_mq_map:
2522 	kfree(set->mq_map);
2523 	set->mq_map = NULL;
2524 out_free_tags:
2525 	kfree(set->tags);
2526 	set->tags = NULL;
2527 	return ret;
2528 }
2529 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2530 
2531 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2532 {
2533 	int i;
2534 
2535 	for (i = 0; i < nr_cpu_ids; i++)
2536 		blk_mq_free_map_and_requests(set, i);
2537 
2538 	kfree(set->mq_map);
2539 	set->mq_map = NULL;
2540 
2541 	kfree(set->tags);
2542 	set->tags = NULL;
2543 }
2544 EXPORT_SYMBOL(blk_mq_free_tag_set);
2545 
2546 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2547 {
2548 	struct blk_mq_tag_set *set = q->tag_set;
2549 	struct blk_mq_hw_ctx *hctx;
2550 	int i, ret;
2551 
2552 	if (!set)
2553 		return -EINVAL;
2554 
2555 	ret = 0;
2556 	queue_for_each_hw_ctx(q, hctx, i) {
2557 		if (!hctx->tags)
2558 			continue;
2559 		/*
2560 		 * If we're using an MQ scheduler, just update the scheduler
2561 		 * queue depth. This is similar to what the old code would do.
2562 		 */
2563 		if (!hctx->sched_tags)
2564 			ret = blk_mq_tag_update_depth(hctx->tags,
2565 							min(nr, set->queue_depth));
2566 		else
2567 			ret = blk_mq_tag_update_depth(hctx->sched_tags, nr);
2568 		if (ret)
2569 			break;
2570 	}
2571 
2572 	if (!ret)
2573 		q->nr_requests = nr;
2574 
2575 	return ret;
2576 }
2577 
2578 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2579 {
2580 	struct request_queue *q;
2581 
2582 	if (nr_hw_queues > nr_cpu_ids)
2583 		nr_hw_queues = nr_cpu_ids;
2584 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2585 		return;
2586 
2587 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2588 		blk_mq_freeze_queue(q);
2589 
2590 	set->nr_hw_queues = nr_hw_queues;
2591 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2592 		blk_mq_realloc_hw_ctxs(set, q);
2593 
2594 		if (q->nr_hw_queues > 1)
2595 			blk_queue_make_request(q, blk_mq_make_request);
2596 		else
2597 			blk_queue_make_request(q, blk_sq_make_request);
2598 
2599 		blk_mq_queue_reinit(q, cpu_online_mask);
2600 	}
2601 
2602 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2603 		blk_mq_unfreeze_queue(q);
2604 }
2605 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2606 
2607 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2608 				       struct blk_mq_hw_ctx *hctx,
2609 				       struct request *rq)
2610 {
2611 	struct blk_rq_stat stat[2];
2612 	unsigned long ret = 0;
2613 
2614 	/*
2615 	 * If stats collection isn't on, don't sleep but turn it on for
2616 	 * future users
2617 	 */
2618 	if (!blk_stat_enable(q))
2619 		return 0;
2620 
2621 	/*
2622 	 * We don't have to do this once per IO, should optimize this
2623 	 * to just use the current window of stats until it changes
2624 	 */
2625 	memset(&stat, 0, sizeof(stat));
2626 	blk_hctx_stat_get(hctx, stat);
2627 
2628 	/*
2629 	 * As an optimistic guess, use half of the mean service time
2630 	 * for this type of request. We can (and should) make this smarter.
2631 	 * For instance, if the completion latencies are tight, we can
2632 	 * get closer than just half the mean. This is especially
2633 	 * important on devices where the completion latencies are longer
2634 	 * than ~10 usec.
2635 	 */
2636 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2637 		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2638 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2639 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2640 
2641 	return ret;
2642 }
2643 
2644 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2645 				     struct blk_mq_hw_ctx *hctx,
2646 				     struct request *rq)
2647 {
2648 	struct hrtimer_sleeper hs;
2649 	enum hrtimer_mode mode;
2650 	unsigned int nsecs;
2651 	ktime_t kt;
2652 
2653 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2654 		return false;
2655 
2656 	/*
2657 	 * poll_nsec can be:
2658 	 *
2659 	 * -1:	don't ever hybrid sleep
2660 	 *  0:	use half of prev avg
2661 	 * >0:	use this specific value
2662 	 */
2663 	if (q->poll_nsec == -1)
2664 		return false;
2665 	else if (q->poll_nsec > 0)
2666 		nsecs = q->poll_nsec;
2667 	else
2668 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2669 
2670 	if (!nsecs)
2671 		return false;
2672 
2673 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2674 
2675 	/*
2676 	 * This will be replaced with the stats tracking code, using
2677 	 * 'avg_completion_time / 2' as the pre-sleep target.
2678 	 */
2679 	kt = nsecs;
2680 
2681 	mode = HRTIMER_MODE_REL;
2682 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2683 	hrtimer_set_expires(&hs.timer, kt);
2684 
2685 	hrtimer_init_sleeper(&hs, current);
2686 	do {
2687 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2688 			break;
2689 		set_current_state(TASK_UNINTERRUPTIBLE);
2690 		hrtimer_start_expires(&hs.timer, mode);
2691 		if (hs.task)
2692 			io_schedule();
2693 		hrtimer_cancel(&hs.timer);
2694 		mode = HRTIMER_MODE_ABS;
2695 	} while (hs.task && !signal_pending(current));
2696 
2697 	__set_current_state(TASK_RUNNING);
2698 	destroy_hrtimer_on_stack(&hs.timer);
2699 	return true;
2700 }
2701 
2702 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2703 {
2704 	struct request_queue *q = hctx->queue;
2705 	long state;
2706 
2707 	/*
2708 	 * If we sleep, have the caller restart the poll loop to reset
2709 	 * the state. Like for the other success return cases, the
2710 	 * caller is responsible for checking if the IO completed. If
2711 	 * the IO isn't complete, we'll get called again and will go
2712 	 * straight to the busy poll loop.
2713 	 */
2714 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2715 		return true;
2716 
2717 	hctx->poll_considered++;
2718 
2719 	state = current->state;
2720 	while (!need_resched()) {
2721 		int ret;
2722 
2723 		hctx->poll_invoked++;
2724 
2725 		ret = q->mq_ops->poll(hctx, rq->tag);
2726 		if (ret > 0) {
2727 			hctx->poll_success++;
2728 			set_current_state(TASK_RUNNING);
2729 			return true;
2730 		}
2731 
2732 		if (signal_pending_state(state, current))
2733 			set_current_state(TASK_RUNNING);
2734 
2735 		if (current->state == TASK_RUNNING)
2736 			return true;
2737 		if (ret < 0)
2738 			break;
2739 		cpu_relax();
2740 	}
2741 
2742 	return false;
2743 }
2744 
2745 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2746 {
2747 	struct blk_mq_hw_ctx *hctx;
2748 	struct blk_plug *plug;
2749 	struct request *rq;
2750 
2751 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2752 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2753 		return false;
2754 
2755 	plug = current->plug;
2756 	if (plug)
2757 		blk_flush_plug_list(plug, false);
2758 
2759 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2760 	if (!blk_qc_t_is_internal(cookie))
2761 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2762 	else
2763 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2764 
2765 	return __blk_mq_poll(hctx, rq);
2766 }
2767 EXPORT_SYMBOL_GPL(blk_mq_poll);
2768 
2769 void blk_mq_disable_hotplug(void)
2770 {
2771 	mutex_lock(&all_q_mutex);
2772 }
2773 
2774 void blk_mq_enable_hotplug(void)
2775 {
2776 	mutex_unlock(&all_q_mutex);
2777 }
2778 
2779 static int __init blk_mq_init(void)
2780 {
2781 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2782 				blk_mq_hctx_notify_dead);
2783 
2784 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2785 				  blk_mq_queue_reinit_prepare,
2786 				  blk_mq_queue_reinit_dead);
2787 	return 0;
2788 }
2789 subsys_initcall(blk_mq_init);
2790