1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 #include <linux/prefetch.h> 26 27 #include <trace/events/block.h> 28 29 #include <linux/blk-mq.h> 30 #include "blk.h" 31 #include "blk-mq.h" 32 #include "blk-mq-tag.h" 33 #include "blk-stat.h" 34 #include "blk-wbt.h" 35 #include "blk-mq-sched.h" 36 37 static DEFINE_MUTEX(all_q_mutex); 38 static LIST_HEAD(all_q_list); 39 40 /* 41 * Check if any of the ctx's have pending work in this hardware queue 42 */ 43 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 44 { 45 return sbitmap_any_bit_set(&hctx->ctx_map) || 46 !list_empty_careful(&hctx->dispatch) || 47 blk_mq_sched_has_work(hctx); 48 } 49 50 /* 51 * Mark this ctx as having pending work in this hardware queue 52 */ 53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 54 struct blk_mq_ctx *ctx) 55 { 56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 58 } 59 60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 61 struct blk_mq_ctx *ctx) 62 { 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 64 } 65 66 void blk_mq_freeze_queue_start(struct request_queue *q) 67 { 68 int freeze_depth; 69 70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 71 if (freeze_depth == 1) { 72 percpu_ref_kill(&q->q_usage_counter); 73 blk_mq_run_hw_queues(q, false); 74 } 75 } 76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 77 78 static void blk_mq_freeze_queue_wait(struct request_queue *q) 79 { 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 81 } 82 83 /* 84 * Guarantee no request is in use, so we can change any data structure of 85 * the queue afterward. 86 */ 87 void blk_freeze_queue(struct request_queue *q) 88 { 89 /* 90 * In the !blk_mq case we are only calling this to kill the 91 * q_usage_counter, otherwise this increases the freeze depth 92 * and waits for it to return to zero. For this reason there is 93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 94 * exported to drivers as the only user for unfreeze is blk_mq. 95 */ 96 blk_mq_freeze_queue_start(q); 97 blk_mq_freeze_queue_wait(q); 98 } 99 100 void blk_mq_freeze_queue(struct request_queue *q) 101 { 102 /* 103 * ...just an alias to keep freeze and unfreeze actions balanced 104 * in the blk_mq_* namespace 105 */ 106 blk_freeze_queue(q); 107 } 108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 109 110 void blk_mq_unfreeze_queue(struct request_queue *q) 111 { 112 int freeze_depth; 113 114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 115 WARN_ON_ONCE(freeze_depth < 0); 116 if (!freeze_depth) { 117 percpu_ref_reinit(&q->q_usage_counter); 118 wake_up_all(&q->mq_freeze_wq); 119 } 120 } 121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 122 123 /** 124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 125 * @q: request queue. 126 * 127 * Note: this function does not prevent that the struct request end_io() 128 * callback function is invoked. Additionally, it is not prevented that 129 * new queue_rq() calls occur unless the queue has been stopped first. 130 */ 131 void blk_mq_quiesce_queue(struct request_queue *q) 132 { 133 struct blk_mq_hw_ctx *hctx; 134 unsigned int i; 135 bool rcu = false; 136 137 blk_mq_stop_hw_queues(q); 138 139 queue_for_each_hw_ctx(q, hctx, i) { 140 if (hctx->flags & BLK_MQ_F_BLOCKING) 141 synchronize_srcu(&hctx->queue_rq_srcu); 142 else 143 rcu = true; 144 } 145 if (rcu) 146 synchronize_rcu(); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 149 150 void blk_mq_wake_waiters(struct request_queue *q) 151 { 152 struct blk_mq_hw_ctx *hctx; 153 unsigned int i; 154 155 queue_for_each_hw_ctx(q, hctx, i) 156 if (blk_mq_hw_queue_mapped(hctx)) 157 blk_mq_tag_wakeup_all(hctx->tags, true); 158 159 /* 160 * If we are called because the queue has now been marked as 161 * dying, we need to ensure that processes currently waiting on 162 * the queue are notified as well. 163 */ 164 wake_up_all(&q->mq_freeze_wq); 165 } 166 167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 168 { 169 return blk_mq_has_free_tags(hctx->tags); 170 } 171 EXPORT_SYMBOL(blk_mq_can_queue); 172 173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 174 struct request *rq, unsigned int op) 175 { 176 INIT_LIST_HEAD(&rq->queuelist); 177 /* csd/requeue_work/fifo_time is initialized before use */ 178 rq->q = q; 179 rq->mq_ctx = ctx; 180 rq->cmd_flags = op; 181 if (blk_queue_io_stat(q)) 182 rq->rq_flags |= RQF_IO_STAT; 183 /* do not touch atomic flags, it needs atomic ops against the timer */ 184 rq->cpu = -1; 185 INIT_HLIST_NODE(&rq->hash); 186 RB_CLEAR_NODE(&rq->rb_node); 187 rq->rq_disk = NULL; 188 rq->part = NULL; 189 rq->start_time = jiffies; 190 #ifdef CONFIG_BLK_CGROUP 191 rq->rl = NULL; 192 set_start_time_ns(rq); 193 rq->io_start_time_ns = 0; 194 #endif 195 rq->nr_phys_segments = 0; 196 #if defined(CONFIG_BLK_DEV_INTEGRITY) 197 rq->nr_integrity_segments = 0; 198 #endif 199 rq->special = NULL; 200 /* tag was already set */ 201 rq->errors = 0; 202 203 rq->cmd = rq->__cmd; 204 205 rq->extra_len = 0; 206 rq->sense_len = 0; 207 rq->resid_len = 0; 208 rq->sense = NULL; 209 210 INIT_LIST_HEAD(&rq->timeout_list); 211 rq->timeout = 0; 212 213 rq->end_io = NULL; 214 rq->end_io_data = NULL; 215 rq->next_rq = NULL; 216 217 ctx->rq_dispatched[op_is_sync(op)]++; 218 } 219 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 220 221 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 222 unsigned int op) 223 { 224 struct request *rq; 225 unsigned int tag; 226 227 tag = blk_mq_get_tag(data); 228 if (tag != BLK_MQ_TAG_FAIL) { 229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 230 231 rq = tags->static_rqs[tag]; 232 233 if (blk_mq_tag_busy(data->hctx)) { 234 rq->rq_flags = RQF_MQ_INFLIGHT; 235 atomic_inc(&data->hctx->nr_active); 236 } 237 238 if (data->flags & BLK_MQ_REQ_INTERNAL) { 239 rq->tag = -1; 240 rq->internal_tag = tag; 241 } else { 242 rq->tag = tag; 243 rq->internal_tag = -1; 244 } 245 246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 247 return rq; 248 } 249 250 return NULL; 251 } 252 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 253 254 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 255 unsigned int flags) 256 { 257 struct blk_mq_alloc_data alloc_data; 258 struct request *rq; 259 int ret; 260 261 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 262 if (ret) 263 return ERR_PTR(ret); 264 265 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 266 267 blk_mq_put_ctx(alloc_data.ctx); 268 blk_queue_exit(q); 269 270 if (!rq) 271 return ERR_PTR(-EWOULDBLOCK); 272 273 rq->__data_len = 0; 274 rq->__sector = (sector_t) -1; 275 rq->bio = rq->biotail = NULL; 276 return rq; 277 } 278 EXPORT_SYMBOL(blk_mq_alloc_request); 279 280 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 281 unsigned int flags, unsigned int hctx_idx) 282 { 283 struct blk_mq_hw_ctx *hctx; 284 struct blk_mq_ctx *ctx; 285 struct request *rq; 286 struct blk_mq_alloc_data alloc_data; 287 int ret; 288 289 /* 290 * If the tag allocator sleeps we could get an allocation for a 291 * different hardware context. No need to complicate the low level 292 * allocator for this for the rare use case of a command tied to 293 * a specific queue. 294 */ 295 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 296 return ERR_PTR(-EINVAL); 297 298 if (hctx_idx >= q->nr_hw_queues) 299 return ERR_PTR(-EIO); 300 301 ret = blk_queue_enter(q, true); 302 if (ret) 303 return ERR_PTR(ret); 304 305 /* 306 * Check if the hardware context is actually mapped to anything. 307 * If not tell the caller that it should skip this queue. 308 */ 309 hctx = q->queue_hw_ctx[hctx_idx]; 310 if (!blk_mq_hw_queue_mapped(hctx)) { 311 ret = -EXDEV; 312 goto out_queue_exit; 313 } 314 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 315 316 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 317 rq = __blk_mq_alloc_request(&alloc_data, rw); 318 if (!rq) { 319 ret = -EWOULDBLOCK; 320 goto out_queue_exit; 321 } 322 323 return rq; 324 325 out_queue_exit: 326 blk_queue_exit(q); 327 return ERR_PTR(ret); 328 } 329 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 330 331 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 332 struct request *rq) 333 { 334 const int sched_tag = rq->internal_tag; 335 struct request_queue *q = rq->q; 336 337 if (rq->rq_flags & RQF_MQ_INFLIGHT) 338 atomic_dec(&hctx->nr_active); 339 340 wbt_done(q->rq_wb, &rq->issue_stat); 341 rq->rq_flags = 0; 342 343 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 344 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 345 if (rq->tag != -1) 346 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 347 if (sched_tag != -1) 348 blk_mq_sched_completed_request(hctx, rq); 349 blk_queue_exit(q); 350 } 351 352 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 353 struct request *rq) 354 { 355 struct blk_mq_ctx *ctx = rq->mq_ctx; 356 357 ctx->rq_completed[rq_is_sync(rq)]++; 358 __blk_mq_finish_request(hctx, ctx, rq); 359 } 360 361 void blk_mq_finish_request(struct request *rq) 362 { 363 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 364 } 365 366 void blk_mq_free_request(struct request *rq) 367 { 368 blk_mq_sched_put_request(rq); 369 } 370 EXPORT_SYMBOL_GPL(blk_mq_free_request); 371 372 inline void __blk_mq_end_request(struct request *rq, int error) 373 { 374 blk_account_io_done(rq); 375 376 if (rq->end_io) { 377 wbt_done(rq->q->rq_wb, &rq->issue_stat); 378 rq->end_io(rq, error); 379 } else { 380 if (unlikely(blk_bidi_rq(rq))) 381 blk_mq_free_request(rq->next_rq); 382 blk_mq_free_request(rq); 383 } 384 } 385 EXPORT_SYMBOL(__blk_mq_end_request); 386 387 void blk_mq_end_request(struct request *rq, int error) 388 { 389 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 390 BUG(); 391 __blk_mq_end_request(rq, error); 392 } 393 EXPORT_SYMBOL(blk_mq_end_request); 394 395 static void __blk_mq_complete_request_remote(void *data) 396 { 397 struct request *rq = data; 398 399 rq->q->softirq_done_fn(rq); 400 } 401 402 static void blk_mq_ipi_complete_request(struct request *rq) 403 { 404 struct blk_mq_ctx *ctx = rq->mq_ctx; 405 bool shared = false; 406 int cpu; 407 408 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 409 rq->q->softirq_done_fn(rq); 410 return; 411 } 412 413 cpu = get_cpu(); 414 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 415 shared = cpus_share_cache(cpu, ctx->cpu); 416 417 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 418 rq->csd.func = __blk_mq_complete_request_remote; 419 rq->csd.info = rq; 420 rq->csd.flags = 0; 421 smp_call_function_single_async(ctx->cpu, &rq->csd); 422 } else { 423 rq->q->softirq_done_fn(rq); 424 } 425 put_cpu(); 426 } 427 428 static void blk_mq_stat_add(struct request *rq) 429 { 430 if (rq->rq_flags & RQF_STATS) { 431 /* 432 * We could rq->mq_ctx here, but there's less of a risk 433 * of races if we have the completion event add the stats 434 * to the local software queue. 435 */ 436 struct blk_mq_ctx *ctx; 437 438 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 439 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 440 } 441 } 442 443 static void __blk_mq_complete_request(struct request *rq) 444 { 445 struct request_queue *q = rq->q; 446 447 blk_mq_stat_add(rq); 448 449 if (!q->softirq_done_fn) 450 blk_mq_end_request(rq, rq->errors); 451 else 452 blk_mq_ipi_complete_request(rq); 453 } 454 455 /** 456 * blk_mq_complete_request - end I/O on a request 457 * @rq: the request being processed 458 * 459 * Description: 460 * Ends all I/O on a request. It does not handle partial completions. 461 * The actual completion happens out-of-order, through a IPI handler. 462 **/ 463 void blk_mq_complete_request(struct request *rq, int error) 464 { 465 struct request_queue *q = rq->q; 466 467 if (unlikely(blk_should_fake_timeout(q))) 468 return; 469 if (!blk_mark_rq_complete(rq)) { 470 rq->errors = error; 471 __blk_mq_complete_request(rq); 472 } 473 } 474 EXPORT_SYMBOL(blk_mq_complete_request); 475 476 int blk_mq_request_started(struct request *rq) 477 { 478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 479 } 480 EXPORT_SYMBOL_GPL(blk_mq_request_started); 481 482 void blk_mq_start_request(struct request *rq) 483 { 484 struct request_queue *q = rq->q; 485 486 blk_mq_sched_started_request(rq); 487 488 trace_block_rq_issue(q, rq); 489 490 rq->resid_len = blk_rq_bytes(rq); 491 if (unlikely(blk_bidi_rq(rq))) 492 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 493 494 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 495 blk_stat_set_issue_time(&rq->issue_stat); 496 rq->rq_flags |= RQF_STATS; 497 wbt_issue(q->rq_wb, &rq->issue_stat); 498 } 499 500 blk_add_timer(rq); 501 502 /* 503 * Ensure that ->deadline is visible before set the started 504 * flag and clear the completed flag. 505 */ 506 smp_mb__before_atomic(); 507 508 /* 509 * Mark us as started and clear complete. Complete might have been 510 * set if requeue raced with timeout, which then marked it as 511 * complete. So be sure to clear complete again when we start 512 * the request, otherwise we'll ignore the completion event. 513 */ 514 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 515 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 516 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 517 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 518 519 if (q->dma_drain_size && blk_rq_bytes(rq)) { 520 /* 521 * Make sure space for the drain appears. We know we can do 522 * this because max_hw_segments has been adjusted to be one 523 * fewer than the device can handle. 524 */ 525 rq->nr_phys_segments++; 526 } 527 } 528 EXPORT_SYMBOL(blk_mq_start_request); 529 530 static void __blk_mq_requeue_request(struct request *rq) 531 { 532 struct request_queue *q = rq->q; 533 534 trace_block_rq_requeue(q, rq); 535 wbt_requeue(q->rq_wb, &rq->issue_stat); 536 blk_mq_sched_requeue_request(rq); 537 538 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 539 if (q->dma_drain_size && blk_rq_bytes(rq)) 540 rq->nr_phys_segments--; 541 } 542 } 543 544 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 545 { 546 __blk_mq_requeue_request(rq); 547 548 BUG_ON(blk_queued_rq(rq)); 549 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 550 } 551 EXPORT_SYMBOL(blk_mq_requeue_request); 552 553 static void blk_mq_requeue_work(struct work_struct *work) 554 { 555 struct request_queue *q = 556 container_of(work, struct request_queue, requeue_work.work); 557 LIST_HEAD(rq_list); 558 struct request *rq, *next; 559 unsigned long flags; 560 561 spin_lock_irqsave(&q->requeue_lock, flags); 562 list_splice_init(&q->requeue_list, &rq_list); 563 spin_unlock_irqrestore(&q->requeue_lock, flags); 564 565 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 566 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 567 continue; 568 569 rq->rq_flags &= ~RQF_SOFTBARRIER; 570 list_del_init(&rq->queuelist); 571 blk_mq_sched_insert_request(rq, true, false, false); 572 } 573 574 while (!list_empty(&rq_list)) { 575 rq = list_entry(rq_list.next, struct request, queuelist); 576 list_del_init(&rq->queuelist); 577 blk_mq_sched_insert_request(rq, false, false, false); 578 } 579 580 blk_mq_run_hw_queues(q, false); 581 } 582 583 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 584 bool kick_requeue_list) 585 { 586 struct request_queue *q = rq->q; 587 unsigned long flags; 588 589 /* 590 * We abuse this flag that is otherwise used by the I/O scheduler to 591 * request head insertation from the workqueue. 592 */ 593 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 594 595 spin_lock_irqsave(&q->requeue_lock, flags); 596 if (at_head) { 597 rq->rq_flags |= RQF_SOFTBARRIER; 598 list_add(&rq->queuelist, &q->requeue_list); 599 } else { 600 list_add_tail(&rq->queuelist, &q->requeue_list); 601 } 602 spin_unlock_irqrestore(&q->requeue_lock, flags); 603 604 if (kick_requeue_list) 605 blk_mq_kick_requeue_list(q); 606 } 607 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 608 609 void blk_mq_kick_requeue_list(struct request_queue *q) 610 { 611 kblockd_schedule_delayed_work(&q->requeue_work, 0); 612 } 613 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 614 615 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 616 unsigned long msecs) 617 { 618 kblockd_schedule_delayed_work(&q->requeue_work, 619 msecs_to_jiffies(msecs)); 620 } 621 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 622 623 void blk_mq_abort_requeue_list(struct request_queue *q) 624 { 625 unsigned long flags; 626 LIST_HEAD(rq_list); 627 628 spin_lock_irqsave(&q->requeue_lock, flags); 629 list_splice_init(&q->requeue_list, &rq_list); 630 spin_unlock_irqrestore(&q->requeue_lock, flags); 631 632 while (!list_empty(&rq_list)) { 633 struct request *rq; 634 635 rq = list_first_entry(&rq_list, struct request, queuelist); 636 list_del_init(&rq->queuelist); 637 rq->errors = -EIO; 638 blk_mq_end_request(rq, rq->errors); 639 } 640 } 641 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 642 643 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 644 { 645 if (tag < tags->nr_tags) { 646 prefetch(tags->rqs[tag]); 647 return tags->rqs[tag]; 648 } 649 650 return NULL; 651 } 652 EXPORT_SYMBOL(blk_mq_tag_to_rq); 653 654 struct blk_mq_timeout_data { 655 unsigned long next; 656 unsigned int next_set; 657 }; 658 659 void blk_mq_rq_timed_out(struct request *req, bool reserved) 660 { 661 const struct blk_mq_ops *ops = req->q->mq_ops; 662 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 663 664 /* 665 * We know that complete is set at this point. If STARTED isn't set 666 * anymore, then the request isn't active and the "timeout" should 667 * just be ignored. This can happen due to the bitflag ordering. 668 * Timeout first checks if STARTED is set, and if it is, assumes 669 * the request is active. But if we race with completion, then 670 * we both flags will get cleared. So check here again, and ignore 671 * a timeout event with a request that isn't active. 672 */ 673 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 674 return; 675 676 if (ops->timeout) 677 ret = ops->timeout(req, reserved); 678 679 switch (ret) { 680 case BLK_EH_HANDLED: 681 __blk_mq_complete_request(req); 682 break; 683 case BLK_EH_RESET_TIMER: 684 blk_add_timer(req); 685 blk_clear_rq_complete(req); 686 break; 687 case BLK_EH_NOT_HANDLED: 688 break; 689 default: 690 printk(KERN_ERR "block: bad eh return: %d\n", ret); 691 break; 692 } 693 } 694 695 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 696 struct request *rq, void *priv, bool reserved) 697 { 698 struct blk_mq_timeout_data *data = priv; 699 700 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 701 /* 702 * If a request wasn't started before the queue was 703 * marked dying, kill it here or it'll go unnoticed. 704 */ 705 if (unlikely(blk_queue_dying(rq->q))) { 706 rq->errors = -EIO; 707 blk_mq_end_request(rq, rq->errors); 708 } 709 return; 710 } 711 712 if (time_after_eq(jiffies, rq->deadline)) { 713 if (!blk_mark_rq_complete(rq)) 714 blk_mq_rq_timed_out(rq, reserved); 715 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 716 data->next = rq->deadline; 717 data->next_set = 1; 718 } 719 } 720 721 static void blk_mq_timeout_work(struct work_struct *work) 722 { 723 struct request_queue *q = 724 container_of(work, struct request_queue, timeout_work); 725 struct blk_mq_timeout_data data = { 726 .next = 0, 727 .next_set = 0, 728 }; 729 int i; 730 731 /* A deadlock might occur if a request is stuck requiring a 732 * timeout at the same time a queue freeze is waiting 733 * completion, since the timeout code would not be able to 734 * acquire the queue reference here. 735 * 736 * That's why we don't use blk_queue_enter here; instead, we use 737 * percpu_ref_tryget directly, because we need to be able to 738 * obtain a reference even in the short window between the queue 739 * starting to freeze, by dropping the first reference in 740 * blk_mq_freeze_queue_start, and the moment the last request is 741 * consumed, marked by the instant q_usage_counter reaches 742 * zero. 743 */ 744 if (!percpu_ref_tryget(&q->q_usage_counter)) 745 return; 746 747 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 748 749 if (data.next_set) { 750 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 751 mod_timer(&q->timeout, data.next); 752 } else { 753 struct blk_mq_hw_ctx *hctx; 754 755 queue_for_each_hw_ctx(q, hctx, i) { 756 /* the hctx may be unmapped, so check it here */ 757 if (blk_mq_hw_queue_mapped(hctx)) 758 blk_mq_tag_idle(hctx); 759 } 760 } 761 blk_queue_exit(q); 762 } 763 764 /* 765 * Reverse check our software queue for entries that we could potentially 766 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 767 * too much time checking for merges. 768 */ 769 static bool blk_mq_attempt_merge(struct request_queue *q, 770 struct blk_mq_ctx *ctx, struct bio *bio) 771 { 772 struct request *rq; 773 int checked = 8; 774 775 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 776 int el_ret; 777 778 if (!checked--) 779 break; 780 781 if (!blk_rq_merge_ok(rq, bio)) 782 continue; 783 784 el_ret = blk_try_merge(rq, bio); 785 if (el_ret == ELEVATOR_NO_MERGE) 786 continue; 787 788 if (!blk_mq_sched_allow_merge(q, rq, bio)) 789 break; 790 791 if (el_ret == ELEVATOR_BACK_MERGE) { 792 if (bio_attempt_back_merge(q, rq, bio)) { 793 ctx->rq_merged++; 794 return true; 795 } 796 break; 797 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 798 if (bio_attempt_front_merge(q, rq, bio)) { 799 ctx->rq_merged++; 800 return true; 801 } 802 break; 803 } 804 } 805 806 return false; 807 } 808 809 struct flush_busy_ctx_data { 810 struct blk_mq_hw_ctx *hctx; 811 struct list_head *list; 812 }; 813 814 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 815 { 816 struct flush_busy_ctx_data *flush_data = data; 817 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 818 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 819 820 sbitmap_clear_bit(sb, bitnr); 821 spin_lock(&ctx->lock); 822 list_splice_tail_init(&ctx->rq_list, flush_data->list); 823 spin_unlock(&ctx->lock); 824 return true; 825 } 826 827 /* 828 * Process software queues that have been marked busy, splicing them 829 * to the for-dispatch 830 */ 831 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 832 { 833 struct flush_busy_ctx_data data = { 834 .hctx = hctx, 835 .list = list, 836 }; 837 838 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 839 } 840 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 841 842 static inline unsigned int queued_to_index(unsigned int queued) 843 { 844 if (!queued) 845 return 0; 846 847 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 848 } 849 850 static bool blk_mq_get_driver_tag(struct request *rq, 851 struct blk_mq_hw_ctx **hctx, bool wait) 852 { 853 struct blk_mq_alloc_data data = { 854 .q = rq->q, 855 .ctx = rq->mq_ctx, 856 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 857 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 858 }; 859 860 if (blk_mq_hctx_stopped(data.hctx)) 861 return false; 862 863 if (rq->tag != -1) { 864 done: 865 if (hctx) 866 *hctx = data.hctx; 867 return true; 868 } 869 870 rq->tag = blk_mq_get_tag(&data); 871 if (rq->tag >= 0) { 872 data.hctx->tags->rqs[rq->tag] = rq; 873 goto done; 874 } 875 876 return false; 877 } 878 879 /* 880 * If we fail getting a driver tag because all the driver tags are already 881 * assigned and on the dispatch list, BUT the first entry does not have a 882 * tag, then we could deadlock. For that case, move entries with assigned 883 * driver tags to the front, leaving the set of tagged requests in the 884 * same order, and the untagged set in the same order. 885 */ 886 static bool reorder_tags_to_front(struct list_head *list) 887 { 888 struct request *rq, *tmp, *first = NULL; 889 890 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 891 if (rq == first) 892 break; 893 if (rq->tag != -1) { 894 list_move(&rq->queuelist, list); 895 if (!first) 896 first = rq; 897 } 898 } 899 900 return first != NULL; 901 } 902 903 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 904 { 905 struct request_queue *q = hctx->queue; 906 struct request *rq; 907 LIST_HEAD(driver_list); 908 struct list_head *dptr; 909 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 910 911 /* 912 * Start off with dptr being NULL, so we start the first request 913 * immediately, even if we have more pending. 914 */ 915 dptr = NULL; 916 917 /* 918 * Now process all the entries, sending them to the driver. 919 */ 920 queued = 0; 921 while (!list_empty(list)) { 922 struct blk_mq_queue_data bd; 923 924 rq = list_first_entry(list, struct request, queuelist); 925 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 926 if (!queued && reorder_tags_to_front(list)) 927 continue; 928 blk_mq_sched_mark_restart(hctx); 929 break; 930 } 931 list_del_init(&rq->queuelist); 932 933 bd.rq = rq; 934 bd.list = dptr; 935 bd.last = list_empty(list); 936 937 ret = q->mq_ops->queue_rq(hctx, &bd); 938 switch (ret) { 939 case BLK_MQ_RQ_QUEUE_OK: 940 queued++; 941 break; 942 case BLK_MQ_RQ_QUEUE_BUSY: 943 list_add(&rq->queuelist, list); 944 __blk_mq_requeue_request(rq); 945 break; 946 default: 947 pr_err("blk-mq: bad return on queue: %d\n", ret); 948 case BLK_MQ_RQ_QUEUE_ERROR: 949 rq->errors = -EIO; 950 blk_mq_end_request(rq, rq->errors); 951 break; 952 } 953 954 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 955 break; 956 957 /* 958 * We've done the first request. If we have more than 1 959 * left in the list, set dptr to defer issue. 960 */ 961 if (!dptr && list->next != list->prev) 962 dptr = &driver_list; 963 } 964 965 hctx->dispatched[queued_to_index(queued)]++; 966 967 /* 968 * Any items that need requeuing? Stuff them into hctx->dispatch, 969 * that is where we will continue on next queue run. 970 */ 971 if (!list_empty(list)) { 972 spin_lock(&hctx->lock); 973 list_splice(list, &hctx->dispatch); 974 spin_unlock(&hctx->lock); 975 976 /* 977 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 978 * it's possible the queue is stopped and restarted again 979 * before this. Queue restart will dispatch requests. And since 980 * requests in rq_list aren't added into hctx->dispatch yet, 981 * the requests in rq_list might get lost. 982 * 983 * blk_mq_run_hw_queue() already checks the STOPPED bit 984 * 985 * If RESTART is set, then let completion restart the queue 986 * instead of potentially looping here. 987 */ 988 if (!blk_mq_sched_needs_restart(hctx)) 989 blk_mq_run_hw_queue(hctx, true); 990 } 991 992 return ret != BLK_MQ_RQ_QUEUE_BUSY; 993 } 994 995 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 996 { 997 int srcu_idx; 998 999 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1000 cpu_online(hctx->next_cpu)); 1001 1002 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1003 rcu_read_lock(); 1004 blk_mq_sched_dispatch_requests(hctx); 1005 rcu_read_unlock(); 1006 } else { 1007 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1008 blk_mq_sched_dispatch_requests(hctx); 1009 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1010 } 1011 } 1012 1013 /* 1014 * It'd be great if the workqueue API had a way to pass 1015 * in a mask and had some smarts for more clever placement. 1016 * For now we just round-robin here, switching for every 1017 * BLK_MQ_CPU_WORK_BATCH queued items. 1018 */ 1019 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1020 { 1021 if (hctx->queue->nr_hw_queues == 1) 1022 return WORK_CPU_UNBOUND; 1023 1024 if (--hctx->next_cpu_batch <= 0) { 1025 int next_cpu; 1026 1027 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1028 if (next_cpu >= nr_cpu_ids) 1029 next_cpu = cpumask_first(hctx->cpumask); 1030 1031 hctx->next_cpu = next_cpu; 1032 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1033 } 1034 1035 return hctx->next_cpu; 1036 } 1037 1038 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1039 { 1040 if (unlikely(blk_mq_hctx_stopped(hctx) || 1041 !blk_mq_hw_queue_mapped(hctx))) 1042 return; 1043 1044 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1045 int cpu = get_cpu(); 1046 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1047 __blk_mq_run_hw_queue(hctx); 1048 put_cpu(); 1049 return; 1050 } 1051 1052 put_cpu(); 1053 } 1054 1055 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1056 } 1057 1058 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1059 { 1060 struct blk_mq_hw_ctx *hctx; 1061 int i; 1062 1063 queue_for_each_hw_ctx(q, hctx, i) { 1064 if (!blk_mq_hctx_has_pending(hctx) || 1065 blk_mq_hctx_stopped(hctx)) 1066 continue; 1067 1068 blk_mq_run_hw_queue(hctx, async); 1069 } 1070 } 1071 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1072 1073 /** 1074 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1075 * @q: request queue. 1076 * 1077 * The caller is responsible for serializing this function against 1078 * blk_mq_{start,stop}_hw_queue(). 1079 */ 1080 bool blk_mq_queue_stopped(struct request_queue *q) 1081 { 1082 struct blk_mq_hw_ctx *hctx; 1083 int i; 1084 1085 queue_for_each_hw_ctx(q, hctx, i) 1086 if (blk_mq_hctx_stopped(hctx)) 1087 return true; 1088 1089 return false; 1090 } 1091 EXPORT_SYMBOL(blk_mq_queue_stopped); 1092 1093 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1094 { 1095 cancel_work(&hctx->run_work); 1096 cancel_delayed_work(&hctx->delay_work); 1097 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1098 } 1099 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1100 1101 void blk_mq_stop_hw_queues(struct request_queue *q) 1102 { 1103 struct blk_mq_hw_ctx *hctx; 1104 int i; 1105 1106 queue_for_each_hw_ctx(q, hctx, i) 1107 blk_mq_stop_hw_queue(hctx); 1108 } 1109 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1110 1111 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1112 { 1113 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1114 1115 blk_mq_run_hw_queue(hctx, false); 1116 } 1117 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1118 1119 void blk_mq_start_hw_queues(struct request_queue *q) 1120 { 1121 struct blk_mq_hw_ctx *hctx; 1122 int i; 1123 1124 queue_for_each_hw_ctx(q, hctx, i) 1125 blk_mq_start_hw_queue(hctx); 1126 } 1127 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1128 1129 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1130 { 1131 if (!blk_mq_hctx_stopped(hctx)) 1132 return; 1133 1134 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1135 blk_mq_run_hw_queue(hctx, async); 1136 } 1137 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1138 1139 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1140 { 1141 struct blk_mq_hw_ctx *hctx; 1142 int i; 1143 1144 queue_for_each_hw_ctx(q, hctx, i) 1145 blk_mq_start_stopped_hw_queue(hctx, async); 1146 } 1147 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1148 1149 static void blk_mq_run_work_fn(struct work_struct *work) 1150 { 1151 struct blk_mq_hw_ctx *hctx; 1152 1153 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1154 1155 __blk_mq_run_hw_queue(hctx); 1156 } 1157 1158 static void blk_mq_delay_work_fn(struct work_struct *work) 1159 { 1160 struct blk_mq_hw_ctx *hctx; 1161 1162 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1163 1164 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1165 __blk_mq_run_hw_queue(hctx); 1166 } 1167 1168 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1169 { 1170 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1171 return; 1172 1173 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1174 &hctx->delay_work, msecs_to_jiffies(msecs)); 1175 } 1176 EXPORT_SYMBOL(blk_mq_delay_queue); 1177 1178 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1179 struct request *rq, 1180 bool at_head) 1181 { 1182 struct blk_mq_ctx *ctx = rq->mq_ctx; 1183 1184 trace_block_rq_insert(hctx->queue, rq); 1185 1186 if (at_head) 1187 list_add(&rq->queuelist, &ctx->rq_list); 1188 else 1189 list_add_tail(&rq->queuelist, &ctx->rq_list); 1190 } 1191 1192 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1193 bool at_head) 1194 { 1195 struct blk_mq_ctx *ctx = rq->mq_ctx; 1196 1197 __blk_mq_insert_req_list(hctx, rq, at_head); 1198 blk_mq_hctx_mark_pending(hctx, ctx); 1199 } 1200 1201 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1202 struct list_head *list) 1203 1204 { 1205 /* 1206 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1207 * offline now 1208 */ 1209 spin_lock(&ctx->lock); 1210 while (!list_empty(list)) { 1211 struct request *rq; 1212 1213 rq = list_first_entry(list, struct request, queuelist); 1214 BUG_ON(rq->mq_ctx != ctx); 1215 list_del_init(&rq->queuelist); 1216 __blk_mq_insert_req_list(hctx, rq, false); 1217 } 1218 blk_mq_hctx_mark_pending(hctx, ctx); 1219 spin_unlock(&ctx->lock); 1220 } 1221 1222 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1223 { 1224 struct request *rqa = container_of(a, struct request, queuelist); 1225 struct request *rqb = container_of(b, struct request, queuelist); 1226 1227 return !(rqa->mq_ctx < rqb->mq_ctx || 1228 (rqa->mq_ctx == rqb->mq_ctx && 1229 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1230 } 1231 1232 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1233 { 1234 struct blk_mq_ctx *this_ctx; 1235 struct request_queue *this_q; 1236 struct request *rq; 1237 LIST_HEAD(list); 1238 LIST_HEAD(ctx_list); 1239 unsigned int depth; 1240 1241 list_splice_init(&plug->mq_list, &list); 1242 1243 list_sort(NULL, &list, plug_ctx_cmp); 1244 1245 this_q = NULL; 1246 this_ctx = NULL; 1247 depth = 0; 1248 1249 while (!list_empty(&list)) { 1250 rq = list_entry_rq(list.next); 1251 list_del_init(&rq->queuelist); 1252 BUG_ON(!rq->q); 1253 if (rq->mq_ctx != this_ctx) { 1254 if (this_ctx) { 1255 trace_block_unplug(this_q, depth, from_schedule); 1256 blk_mq_sched_insert_requests(this_q, this_ctx, 1257 &ctx_list, 1258 from_schedule); 1259 } 1260 1261 this_ctx = rq->mq_ctx; 1262 this_q = rq->q; 1263 depth = 0; 1264 } 1265 1266 depth++; 1267 list_add_tail(&rq->queuelist, &ctx_list); 1268 } 1269 1270 /* 1271 * If 'this_ctx' is set, we know we have entries to complete 1272 * on 'ctx_list'. Do those. 1273 */ 1274 if (this_ctx) { 1275 trace_block_unplug(this_q, depth, from_schedule); 1276 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1277 from_schedule); 1278 } 1279 } 1280 1281 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1282 { 1283 init_request_from_bio(rq, bio); 1284 1285 blk_account_io_start(rq, true); 1286 } 1287 1288 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1289 { 1290 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1291 !blk_queue_nomerges(hctx->queue); 1292 } 1293 1294 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1295 struct blk_mq_ctx *ctx, 1296 struct request *rq, struct bio *bio) 1297 { 1298 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1299 blk_mq_bio_to_request(rq, bio); 1300 spin_lock(&ctx->lock); 1301 insert_rq: 1302 __blk_mq_insert_request(hctx, rq, false); 1303 spin_unlock(&ctx->lock); 1304 return false; 1305 } else { 1306 struct request_queue *q = hctx->queue; 1307 1308 spin_lock(&ctx->lock); 1309 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1310 blk_mq_bio_to_request(rq, bio); 1311 goto insert_rq; 1312 } 1313 1314 spin_unlock(&ctx->lock); 1315 __blk_mq_finish_request(hctx, ctx, rq); 1316 return true; 1317 } 1318 } 1319 1320 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1321 { 1322 if (rq->tag != -1) 1323 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1324 1325 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1326 } 1327 1328 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1329 { 1330 struct request_queue *q = rq->q; 1331 struct blk_mq_queue_data bd = { 1332 .rq = rq, 1333 .list = NULL, 1334 .last = 1 1335 }; 1336 struct blk_mq_hw_ctx *hctx; 1337 blk_qc_t new_cookie; 1338 int ret; 1339 1340 if (q->elevator) 1341 goto insert; 1342 1343 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1344 goto insert; 1345 1346 new_cookie = request_to_qc_t(hctx, rq); 1347 1348 /* 1349 * For OK queue, we are done. For error, kill it. Any other 1350 * error (busy), just add it to our list as we previously 1351 * would have done 1352 */ 1353 ret = q->mq_ops->queue_rq(hctx, &bd); 1354 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1355 *cookie = new_cookie; 1356 return; 1357 } 1358 1359 __blk_mq_requeue_request(rq); 1360 1361 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1362 *cookie = BLK_QC_T_NONE; 1363 rq->errors = -EIO; 1364 blk_mq_end_request(rq, rq->errors); 1365 return; 1366 } 1367 1368 insert: 1369 blk_mq_sched_insert_request(rq, false, true, true); 1370 } 1371 1372 /* 1373 * Multiple hardware queue variant. This will not use per-process plugs, 1374 * but will attempt to bypass the hctx queueing if we can go straight to 1375 * hardware for SYNC IO. 1376 */ 1377 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1378 { 1379 const int is_sync = op_is_sync(bio->bi_opf); 1380 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1381 struct blk_mq_alloc_data data; 1382 struct request *rq; 1383 unsigned int request_count = 0, srcu_idx; 1384 struct blk_plug *plug; 1385 struct request *same_queue_rq = NULL; 1386 blk_qc_t cookie; 1387 unsigned int wb_acct; 1388 1389 blk_queue_bounce(q, &bio); 1390 1391 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1392 bio_io_error(bio); 1393 return BLK_QC_T_NONE; 1394 } 1395 1396 blk_queue_split(q, &bio, q->bio_split); 1397 1398 if (!is_flush_fua && !blk_queue_nomerges(q) && 1399 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1400 return BLK_QC_T_NONE; 1401 1402 if (blk_mq_sched_bio_merge(q, bio)) 1403 return BLK_QC_T_NONE; 1404 1405 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1406 1407 trace_block_getrq(q, bio, bio->bi_opf); 1408 1409 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1410 if (unlikely(!rq)) { 1411 __wbt_done(q->rq_wb, wb_acct); 1412 return BLK_QC_T_NONE; 1413 } 1414 1415 wbt_track(&rq->issue_stat, wb_acct); 1416 1417 cookie = request_to_qc_t(data.hctx, rq); 1418 1419 if (unlikely(is_flush_fua)) { 1420 blk_mq_bio_to_request(rq, bio); 1421 blk_mq_get_driver_tag(rq, NULL, true); 1422 blk_insert_flush(rq); 1423 goto run_queue; 1424 } 1425 1426 plug = current->plug; 1427 /* 1428 * If the driver supports defer issued based on 'last', then 1429 * queue it up like normal since we can potentially save some 1430 * CPU this way. 1431 */ 1432 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1433 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1434 struct request *old_rq = NULL; 1435 1436 blk_mq_bio_to_request(rq, bio); 1437 1438 /* 1439 * We do limited plugging. If the bio can be merged, do that. 1440 * Otherwise the existing request in the plug list will be 1441 * issued. So the plug list will have one request at most 1442 */ 1443 if (plug) { 1444 /* 1445 * The plug list might get flushed before this. If that 1446 * happens, same_queue_rq is invalid and plug list is 1447 * empty 1448 */ 1449 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1450 old_rq = same_queue_rq; 1451 list_del_init(&old_rq->queuelist); 1452 } 1453 list_add_tail(&rq->queuelist, &plug->mq_list); 1454 } else /* is_sync */ 1455 old_rq = rq; 1456 blk_mq_put_ctx(data.ctx); 1457 if (!old_rq) 1458 goto done; 1459 1460 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1461 rcu_read_lock(); 1462 blk_mq_try_issue_directly(old_rq, &cookie); 1463 rcu_read_unlock(); 1464 } else { 1465 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1466 blk_mq_try_issue_directly(old_rq, &cookie); 1467 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1468 } 1469 goto done; 1470 } 1471 1472 if (q->elevator) { 1473 blk_mq_put_ctx(data.ctx); 1474 blk_mq_bio_to_request(rq, bio); 1475 blk_mq_sched_insert_request(rq, false, true, true); 1476 goto done; 1477 } 1478 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1479 /* 1480 * For a SYNC request, send it to the hardware immediately. For 1481 * an ASYNC request, just ensure that we run it later on. The 1482 * latter allows for merging opportunities and more efficient 1483 * dispatching. 1484 */ 1485 run_queue: 1486 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1487 } 1488 blk_mq_put_ctx(data.ctx); 1489 done: 1490 return cookie; 1491 } 1492 1493 /* 1494 * Single hardware queue variant. This will attempt to use any per-process 1495 * plug for merging and IO deferral. 1496 */ 1497 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1498 { 1499 const int is_sync = op_is_sync(bio->bi_opf); 1500 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1501 struct blk_plug *plug; 1502 unsigned int request_count = 0; 1503 struct blk_mq_alloc_data data; 1504 struct request *rq; 1505 blk_qc_t cookie; 1506 unsigned int wb_acct; 1507 1508 blk_queue_bounce(q, &bio); 1509 1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1511 bio_io_error(bio); 1512 return BLK_QC_T_NONE; 1513 } 1514 1515 blk_queue_split(q, &bio, q->bio_split); 1516 1517 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1518 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1519 return BLK_QC_T_NONE; 1520 } else 1521 request_count = blk_plug_queued_count(q); 1522 1523 if (blk_mq_sched_bio_merge(q, bio)) 1524 return BLK_QC_T_NONE; 1525 1526 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1527 1528 trace_block_getrq(q, bio, bio->bi_opf); 1529 1530 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1531 if (unlikely(!rq)) { 1532 __wbt_done(q->rq_wb, wb_acct); 1533 return BLK_QC_T_NONE; 1534 } 1535 1536 wbt_track(&rq->issue_stat, wb_acct); 1537 1538 cookie = request_to_qc_t(data.hctx, rq); 1539 1540 if (unlikely(is_flush_fua)) { 1541 blk_mq_bio_to_request(rq, bio); 1542 blk_mq_get_driver_tag(rq, NULL, true); 1543 blk_insert_flush(rq); 1544 goto run_queue; 1545 } 1546 1547 /* 1548 * A task plug currently exists. Since this is completely lockless, 1549 * utilize that to temporarily store requests until the task is 1550 * either done or scheduled away. 1551 */ 1552 plug = current->plug; 1553 if (plug) { 1554 struct request *last = NULL; 1555 1556 blk_mq_bio_to_request(rq, bio); 1557 1558 /* 1559 * @request_count may become stale because of schedule 1560 * out, so check the list again. 1561 */ 1562 if (list_empty(&plug->mq_list)) 1563 request_count = 0; 1564 if (!request_count) 1565 trace_block_plug(q); 1566 else 1567 last = list_entry_rq(plug->mq_list.prev); 1568 1569 blk_mq_put_ctx(data.ctx); 1570 1571 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1572 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1573 blk_flush_plug_list(plug, false); 1574 trace_block_plug(q); 1575 } 1576 1577 list_add_tail(&rq->queuelist, &plug->mq_list); 1578 return cookie; 1579 } 1580 1581 if (q->elevator) { 1582 blk_mq_put_ctx(data.ctx); 1583 blk_mq_bio_to_request(rq, bio); 1584 blk_mq_sched_insert_request(rq, false, true, true); 1585 goto done; 1586 } 1587 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1588 /* 1589 * For a SYNC request, send it to the hardware immediately. For 1590 * an ASYNC request, just ensure that we run it later on. The 1591 * latter allows for merging opportunities and more efficient 1592 * dispatching. 1593 */ 1594 run_queue: 1595 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1596 } 1597 1598 blk_mq_put_ctx(data.ctx); 1599 done: 1600 return cookie; 1601 } 1602 1603 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1604 unsigned int hctx_idx) 1605 { 1606 struct page *page; 1607 1608 if (tags->rqs && set->ops->exit_request) { 1609 int i; 1610 1611 for (i = 0; i < tags->nr_tags; i++) { 1612 struct request *rq = tags->static_rqs[i]; 1613 1614 if (!rq) 1615 continue; 1616 set->ops->exit_request(set->driver_data, rq, 1617 hctx_idx, i); 1618 tags->static_rqs[i] = NULL; 1619 } 1620 } 1621 1622 while (!list_empty(&tags->page_list)) { 1623 page = list_first_entry(&tags->page_list, struct page, lru); 1624 list_del_init(&page->lru); 1625 /* 1626 * Remove kmemleak object previously allocated in 1627 * blk_mq_init_rq_map(). 1628 */ 1629 kmemleak_free(page_address(page)); 1630 __free_pages(page, page->private); 1631 } 1632 } 1633 1634 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1635 { 1636 kfree(tags->rqs); 1637 tags->rqs = NULL; 1638 kfree(tags->static_rqs); 1639 tags->static_rqs = NULL; 1640 1641 blk_mq_free_tags(tags); 1642 } 1643 1644 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1645 unsigned int hctx_idx, 1646 unsigned int nr_tags, 1647 unsigned int reserved_tags) 1648 { 1649 struct blk_mq_tags *tags; 1650 1651 tags = blk_mq_init_tags(nr_tags, reserved_tags, 1652 set->numa_node, 1653 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1654 if (!tags) 1655 return NULL; 1656 1657 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1658 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1659 set->numa_node); 1660 if (!tags->rqs) { 1661 blk_mq_free_tags(tags); 1662 return NULL; 1663 } 1664 1665 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1666 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1667 set->numa_node); 1668 if (!tags->static_rqs) { 1669 kfree(tags->rqs); 1670 blk_mq_free_tags(tags); 1671 return NULL; 1672 } 1673 1674 return tags; 1675 } 1676 1677 static size_t order_to_size(unsigned int order) 1678 { 1679 return (size_t)PAGE_SIZE << order; 1680 } 1681 1682 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1683 unsigned int hctx_idx, unsigned int depth) 1684 { 1685 unsigned int i, j, entries_per_page, max_order = 4; 1686 size_t rq_size, left; 1687 1688 INIT_LIST_HEAD(&tags->page_list); 1689 1690 /* 1691 * rq_size is the size of the request plus driver payload, rounded 1692 * to the cacheline size 1693 */ 1694 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1695 cache_line_size()); 1696 left = rq_size * depth; 1697 1698 for (i = 0; i < depth; ) { 1699 int this_order = max_order; 1700 struct page *page; 1701 int to_do; 1702 void *p; 1703 1704 while (this_order && left < order_to_size(this_order - 1)) 1705 this_order--; 1706 1707 do { 1708 page = alloc_pages_node(set->numa_node, 1709 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1710 this_order); 1711 if (page) 1712 break; 1713 if (!this_order--) 1714 break; 1715 if (order_to_size(this_order) < rq_size) 1716 break; 1717 } while (1); 1718 1719 if (!page) 1720 goto fail; 1721 1722 page->private = this_order; 1723 list_add_tail(&page->lru, &tags->page_list); 1724 1725 p = page_address(page); 1726 /* 1727 * Allow kmemleak to scan these pages as they contain pointers 1728 * to additional allocations like via ops->init_request(). 1729 */ 1730 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1731 entries_per_page = order_to_size(this_order) / rq_size; 1732 to_do = min(entries_per_page, depth - i); 1733 left -= to_do * rq_size; 1734 for (j = 0; j < to_do; j++) { 1735 struct request *rq = p; 1736 1737 tags->static_rqs[i] = rq; 1738 if (set->ops->init_request) { 1739 if (set->ops->init_request(set->driver_data, 1740 rq, hctx_idx, i, 1741 set->numa_node)) { 1742 tags->static_rqs[i] = NULL; 1743 goto fail; 1744 } 1745 } 1746 1747 p += rq_size; 1748 i++; 1749 } 1750 } 1751 return 0; 1752 1753 fail: 1754 blk_mq_free_rqs(set, tags, hctx_idx); 1755 return -ENOMEM; 1756 } 1757 1758 /* 1759 * 'cpu' is going away. splice any existing rq_list entries from this 1760 * software queue to the hw queue dispatch list, and ensure that it 1761 * gets run. 1762 */ 1763 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1764 { 1765 struct blk_mq_hw_ctx *hctx; 1766 struct blk_mq_ctx *ctx; 1767 LIST_HEAD(tmp); 1768 1769 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1770 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1771 1772 spin_lock(&ctx->lock); 1773 if (!list_empty(&ctx->rq_list)) { 1774 list_splice_init(&ctx->rq_list, &tmp); 1775 blk_mq_hctx_clear_pending(hctx, ctx); 1776 } 1777 spin_unlock(&ctx->lock); 1778 1779 if (list_empty(&tmp)) 1780 return 0; 1781 1782 spin_lock(&hctx->lock); 1783 list_splice_tail_init(&tmp, &hctx->dispatch); 1784 spin_unlock(&hctx->lock); 1785 1786 blk_mq_run_hw_queue(hctx, true); 1787 return 0; 1788 } 1789 1790 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1791 { 1792 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1793 &hctx->cpuhp_dead); 1794 } 1795 1796 /* hctx->ctxs will be freed in queue's release handler */ 1797 static void blk_mq_exit_hctx(struct request_queue *q, 1798 struct blk_mq_tag_set *set, 1799 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1800 { 1801 unsigned flush_start_tag = set->queue_depth; 1802 1803 blk_mq_tag_idle(hctx); 1804 1805 if (set->ops->exit_request) 1806 set->ops->exit_request(set->driver_data, 1807 hctx->fq->flush_rq, hctx_idx, 1808 flush_start_tag + hctx_idx); 1809 1810 if (set->ops->exit_hctx) 1811 set->ops->exit_hctx(hctx, hctx_idx); 1812 1813 if (hctx->flags & BLK_MQ_F_BLOCKING) 1814 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1815 1816 blk_mq_remove_cpuhp(hctx); 1817 blk_free_flush_queue(hctx->fq); 1818 sbitmap_free(&hctx->ctx_map); 1819 } 1820 1821 static void blk_mq_exit_hw_queues(struct request_queue *q, 1822 struct blk_mq_tag_set *set, int nr_queue) 1823 { 1824 struct blk_mq_hw_ctx *hctx; 1825 unsigned int i; 1826 1827 queue_for_each_hw_ctx(q, hctx, i) { 1828 if (i == nr_queue) 1829 break; 1830 blk_mq_exit_hctx(q, set, hctx, i); 1831 } 1832 } 1833 1834 static void blk_mq_free_hw_queues(struct request_queue *q, 1835 struct blk_mq_tag_set *set) 1836 { 1837 struct blk_mq_hw_ctx *hctx; 1838 unsigned int i; 1839 1840 queue_for_each_hw_ctx(q, hctx, i) 1841 free_cpumask_var(hctx->cpumask); 1842 } 1843 1844 static int blk_mq_init_hctx(struct request_queue *q, 1845 struct blk_mq_tag_set *set, 1846 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1847 { 1848 int node; 1849 unsigned flush_start_tag = set->queue_depth; 1850 1851 node = hctx->numa_node; 1852 if (node == NUMA_NO_NODE) 1853 node = hctx->numa_node = set->numa_node; 1854 1855 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1856 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1857 spin_lock_init(&hctx->lock); 1858 INIT_LIST_HEAD(&hctx->dispatch); 1859 hctx->queue = q; 1860 hctx->queue_num = hctx_idx; 1861 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1862 1863 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1864 1865 hctx->tags = set->tags[hctx_idx]; 1866 1867 /* 1868 * Allocate space for all possible cpus to avoid allocation at 1869 * runtime 1870 */ 1871 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1872 GFP_KERNEL, node); 1873 if (!hctx->ctxs) 1874 goto unregister_cpu_notifier; 1875 1876 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1877 node)) 1878 goto free_ctxs; 1879 1880 hctx->nr_ctx = 0; 1881 1882 if (set->ops->init_hctx && 1883 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1884 goto free_bitmap; 1885 1886 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1887 if (!hctx->fq) 1888 goto exit_hctx; 1889 1890 if (set->ops->init_request && 1891 set->ops->init_request(set->driver_data, 1892 hctx->fq->flush_rq, hctx_idx, 1893 flush_start_tag + hctx_idx, node)) 1894 goto free_fq; 1895 1896 if (hctx->flags & BLK_MQ_F_BLOCKING) 1897 init_srcu_struct(&hctx->queue_rq_srcu); 1898 1899 return 0; 1900 1901 free_fq: 1902 kfree(hctx->fq); 1903 exit_hctx: 1904 if (set->ops->exit_hctx) 1905 set->ops->exit_hctx(hctx, hctx_idx); 1906 free_bitmap: 1907 sbitmap_free(&hctx->ctx_map); 1908 free_ctxs: 1909 kfree(hctx->ctxs); 1910 unregister_cpu_notifier: 1911 blk_mq_remove_cpuhp(hctx); 1912 return -1; 1913 } 1914 1915 static void blk_mq_init_cpu_queues(struct request_queue *q, 1916 unsigned int nr_hw_queues) 1917 { 1918 unsigned int i; 1919 1920 for_each_possible_cpu(i) { 1921 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1922 struct blk_mq_hw_ctx *hctx; 1923 1924 memset(__ctx, 0, sizeof(*__ctx)); 1925 __ctx->cpu = i; 1926 spin_lock_init(&__ctx->lock); 1927 INIT_LIST_HEAD(&__ctx->rq_list); 1928 __ctx->queue = q; 1929 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1930 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1931 1932 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1933 if (!cpu_online(i)) 1934 continue; 1935 1936 hctx = blk_mq_map_queue(q, i); 1937 1938 /* 1939 * Set local node, IFF we have more than one hw queue. If 1940 * not, we remain on the home node of the device 1941 */ 1942 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1943 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1944 } 1945 } 1946 1947 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 1948 { 1949 int ret = 0; 1950 1951 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 1952 set->queue_depth, set->reserved_tags); 1953 if (!set->tags[hctx_idx]) 1954 return false; 1955 1956 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 1957 set->queue_depth); 1958 if (!ret) 1959 return true; 1960 1961 blk_mq_free_rq_map(set->tags[hctx_idx]); 1962 set->tags[hctx_idx] = NULL; 1963 return false; 1964 } 1965 1966 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 1967 unsigned int hctx_idx) 1968 { 1969 if (set->tags[hctx_idx]) { 1970 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 1971 blk_mq_free_rq_map(set->tags[hctx_idx]); 1972 set->tags[hctx_idx] = NULL; 1973 } 1974 } 1975 1976 static void blk_mq_map_swqueue(struct request_queue *q, 1977 const struct cpumask *online_mask) 1978 { 1979 unsigned int i, hctx_idx; 1980 struct blk_mq_hw_ctx *hctx; 1981 struct blk_mq_ctx *ctx; 1982 struct blk_mq_tag_set *set = q->tag_set; 1983 1984 /* 1985 * Avoid others reading imcomplete hctx->cpumask through sysfs 1986 */ 1987 mutex_lock(&q->sysfs_lock); 1988 1989 queue_for_each_hw_ctx(q, hctx, i) { 1990 cpumask_clear(hctx->cpumask); 1991 hctx->nr_ctx = 0; 1992 } 1993 1994 /* 1995 * Map software to hardware queues 1996 */ 1997 for_each_possible_cpu(i) { 1998 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1999 if (!cpumask_test_cpu(i, online_mask)) 2000 continue; 2001 2002 hctx_idx = q->mq_map[i]; 2003 /* unmapped hw queue can be remapped after CPU topo changed */ 2004 if (!set->tags[hctx_idx] && 2005 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2006 /* 2007 * If tags initialization fail for some hctx, 2008 * that hctx won't be brought online. In this 2009 * case, remap the current ctx to hctx[0] which 2010 * is guaranteed to always have tags allocated 2011 */ 2012 q->mq_map[i] = 0; 2013 } 2014 2015 ctx = per_cpu_ptr(q->queue_ctx, i); 2016 hctx = blk_mq_map_queue(q, i); 2017 2018 cpumask_set_cpu(i, hctx->cpumask); 2019 ctx->index_hw = hctx->nr_ctx; 2020 hctx->ctxs[hctx->nr_ctx++] = ctx; 2021 } 2022 2023 mutex_unlock(&q->sysfs_lock); 2024 2025 queue_for_each_hw_ctx(q, hctx, i) { 2026 /* 2027 * If no software queues are mapped to this hardware queue, 2028 * disable it and free the request entries. 2029 */ 2030 if (!hctx->nr_ctx) { 2031 /* Never unmap queue 0. We need it as a 2032 * fallback in case of a new remap fails 2033 * allocation 2034 */ 2035 if (i && set->tags[i]) 2036 blk_mq_free_map_and_requests(set, i); 2037 2038 hctx->tags = NULL; 2039 continue; 2040 } 2041 2042 hctx->tags = set->tags[i]; 2043 WARN_ON(!hctx->tags); 2044 2045 /* 2046 * Set the map size to the number of mapped software queues. 2047 * This is more accurate and more efficient than looping 2048 * over all possibly mapped software queues. 2049 */ 2050 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2051 2052 /* 2053 * Initialize batch roundrobin counts 2054 */ 2055 hctx->next_cpu = cpumask_first(hctx->cpumask); 2056 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2057 } 2058 } 2059 2060 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2061 { 2062 struct blk_mq_hw_ctx *hctx; 2063 int i; 2064 2065 queue_for_each_hw_ctx(q, hctx, i) { 2066 if (shared) 2067 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2068 else 2069 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2070 } 2071 } 2072 2073 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2074 { 2075 struct request_queue *q; 2076 2077 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2078 blk_mq_freeze_queue(q); 2079 queue_set_hctx_shared(q, shared); 2080 blk_mq_unfreeze_queue(q); 2081 } 2082 } 2083 2084 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2085 { 2086 struct blk_mq_tag_set *set = q->tag_set; 2087 2088 mutex_lock(&set->tag_list_lock); 2089 list_del_init(&q->tag_set_list); 2090 if (list_is_singular(&set->tag_list)) { 2091 /* just transitioned to unshared */ 2092 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2093 /* update existing queue */ 2094 blk_mq_update_tag_set_depth(set, false); 2095 } 2096 mutex_unlock(&set->tag_list_lock); 2097 } 2098 2099 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2100 struct request_queue *q) 2101 { 2102 q->tag_set = set; 2103 2104 mutex_lock(&set->tag_list_lock); 2105 2106 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2107 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2108 set->flags |= BLK_MQ_F_TAG_SHARED; 2109 /* update existing queue */ 2110 blk_mq_update_tag_set_depth(set, true); 2111 } 2112 if (set->flags & BLK_MQ_F_TAG_SHARED) 2113 queue_set_hctx_shared(q, true); 2114 list_add_tail(&q->tag_set_list, &set->tag_list); 2115 2116 mutex_unlock(&set->tag_list_lock); 2117 } 2118 2119 /* 2120 * It is the actual release handler for mq, but we do it from 2121 * request queue's release handler for avoiding use-after-free 2122 * and headache because q->mq_kobj shouldn't have been introduced, 2123 * but we can't group ctx/kctx kobj without it. 2124 */ 2125 void blk_mq_release(struct request_queue *q) 2126 { 2127 struct blk_mq_hw_ctx *hctx; 2128 unsigned int i; 2129 2130 blk_mq_sched_teardown(q); 2131 2132 /* hctx kobj stays in hctx */ 2133 queue_for_each_hw_ctx(q, hctx, i) { 2134 if (!hctx) 2135 continue; 2136 kfree(hctx->ctxs); 2137 kfree(hctx); 2138 } 2139 2140 q->mq_map = NULL; 2141 2142 kfree(q->queue_hw_ctx); 2143 2144 /* ctx kobj stays in queue_ctx */ 2145 free_percpu(q->queue_ctx); 2146 } 2147 2148 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2149 { 2150 struct request_queue *uninit_q, *q; 2151 2152 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2153 if (!uninit_q) 2154 return ERR_PTR(-ENOMEM); 2155 2156 q = blk_mq_init_allocated_queue(set, uninit_q); 2157 if (IS_ERR(q)) 2158 blk_cleanup_queue(uninit_q); 2159 2160 return q; 2161 } 2162 EXPORT_SYMBOL(blk_mq_init_queue); 2163 2164 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2165 struct request_queue *q) 2166 { 2167 int i, j; 2168 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2169 2170 blk_mq_sysfs_unregister(q); 2171 for (i = 0; i < set->nr_hw_queues; i++) { 2172 int node; 2173 2174 if (hctxs[i]) 2175 continue; 2176 2177 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2178 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2179 GFP_KERNEL, node); 2180 if (!hctxs[i]) 2181 break; 2182 2183 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2184 node)) { 2185 kfree(hctxs[i]); 2186 hctxs[i] = NULL; 2187 break; 2188 } 2189 2190 atomic_set(&hctxs[i]->nr_active, 0); 2191 hctxs[i]->numa_node = node; 2192 hctxs[i]->queue_num = i; 2193 2194 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2195 free_cpumask_var(hctxs[i]->cpumask); 2196 kfree(hctxs[i]); 2197 hctxs[i] = NULL; 2198 break; 2199 } 2200 blk_mq_hctx_kobj_init(hctxs[i]); 2201 } 2202 for (j = i; j < q->nr_hw_queues; j++) { 2203 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2204 2205 if (hctx) { 2206 if (hctx->tags) 2207 blk_mq_free_map_and_requests(set, j); 2208 blk_mq_exit_hctx(q, set, hctx, j); 2209 free_cpumask_var(hctx->cpumask); 2210 kobject_put(&hctx->kobj); 2211 kfree(hctx->ctxs); 2212 kfree(hctx); 2213 hctxs[j] = NULL; 2214 2215 } 2216 } 2217 q->nr_hw_queues = i; 2218 blk_mq_sysfs_register(q); 2219 } 2220 2221 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2222 struct request_queue *q) 2223 { 2224 /* mark the queue as mq asap */ 2225 q->mq_ops = set->ops; 2226 2227 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2228 if (!q->queue_ctx) 2229 goto err_exit; 2230 2231 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2232 GFP_KERNEL, set->numa_node); 2233 if (!q->queue_hw_ctx) 2234 goto err_percpu; 2235 2236 q->mq_map = set->mq_map; 2237 2238 blk_mq_realloc_hw_ctxs(set, q); 2239 if (!q->nr_hw_queues) 2240 goto err_hctxs; 2241 2242 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2243 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2244 2245 q->nr_queues = nr_cpu_ids; 2246 2247 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2248 2249 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2250 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2251 2252 q->sg_reserved_size = INT_MAX; 2253 2254 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2255 INIT_LIST_HEAD(&q->requeue_list); 2256 spin_lock_init(&q->requeue_lock); 2257 2258 if (q->nr_hw_queues > 1) 2259 blk_queue_make_request(q, blk_mq_make_request); 2260 else 2261 blk_queue_make_request(q, blk_sq_make_request); 2262 2263 /* 2264 * Do this after blk_queue_make_request() overrides it... 2265 */ 2266 q->nr_requests = set->queue_depth; 2267 2268 /* 2269 * Default to classic polling 2270 */ 2271 q->poll_nsec = -1; 2272 2273 if (set->ops->complete) 2274 blk_queue_softirq_done(q, set->ops->complete); 2275 2276 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2277 2278 get_online_cpus(); 2279 mutex_lock(&all_q_mutex); 2280 2281 list_add_tail(&q->all_q_node, &all_q_list); 2282 blk_mq_add_queue_tag_set(set, q); 2283 blk_mq_map_swqueue(q, cpu_online_mask); 2284 2285 mutex_unlock(&all_q_mutex); 2286 put_online_cpus(); 2287 2288 return q; 2289 2290 err_hctxs: 2291 kfree(q->queue_hw_ctx); 2292 err_percpu: 2293 free_percpu(q->queue_ctx); 2294 err_exit: 2295 q->mq_ops = NULL; 2296 return ERR_PTR(-ENOMEM); 2297 } 2298 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2299 2300 void blk_mq_free_queue(struct request_queue *q) 2301 { 2302 struct blk_mq_tag_set *set = q->tag_set; 2303 2304 mutex_lock(&all_q_mutex); 2305 list_del_init(&q->all_q_node); 2306 mutex_unlock(&all_q_mutex); 2307 2308 wbt_exit(q); 2309 2310 blk_mq_del_queue_tag_set(q); 2311 2312 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2313 blk_mq_free_hw_queues(q, set); 2314 } 2315 2316 /* Basically redo blk_mq_init_queue with queue frozen */ 2317 static void blk_mq_queue_reinit(struct request_queue *q, 2318 const struct cpumask *online_mask) 2319 { 2320 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2321 2322 blk_mq_sysfs_unregister(q); 2323 2324 /* 2325 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2326 * we should change hctx numa_node according to new topology (this 2327 * involves free and re-allocate memory, worthy doing?) 2328 */ 2329 2330 blk_mq_map_swqueue(q, online_mask); 2331 2332 blk_mq_sysfs_register(q); 2333 } 2334 2335 /* 2336 * New online cpumask which is going to be set in this hotplug event. 2337 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2338 * one-by-one and dynamically allocating this could result in a failure. 2339 */ 2340 static struct cpumask cpuhp_online_new; 2341 2342 static void blk_mq_queue_reinit_work(void) 2343 { 2344 struct request_queue *q; 2345 2346 mutex_lock(&all_q_mutex); 2347 /* 2348 * We need to freeze and reinit all existing queues. Freezing 2349 * involves synchronous wait for an RCU grace period and doing it 2350 * one by one may take a long time. Start freezing all queues in 2351 * one swoop and then wait for the completions so that freezing can 2352 * take place in parallel. 2353 */ 2354 list_for_each_entry(q, &all_q_list, all_q_node) 2355 blk_mq_freeze_queue_start(q); 2356 list_for_each_entry(q, &all_q_list, all_q_node) 2357 blk_mq_freeze_queue_wait(q); 2358 2359 list_for_each_entry(q, &all_q_list, all_q_node) 2360 blk_mq_queue_reinit(q, &cpuhp_online_new); 2361 2362 list_for_each_entry(q, &all_q_list, all_q_node) 2363 blk_mq_unfreeze_queue(q); 2364 2365 mutex_unlock(&all_q_mutex); 2366 } 2367 2368 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2369 { 2370 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2371 blk_mq_queue_reinit_work(); 2372 return 0; 2373 } 2374 2375 /* 2376 * Before hotadded cpu starts handling requests, new mappings must be 2377 * established. Otherwise, these requests in hw queue might never be 2378 * dispatched. 2379 * 2380 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2381 * for CPU0, and ctx1 for CPU1). 2382 * 2383 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2384 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2385 * 2386 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2387 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2388 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2389 * ignored. 2390 */ 2391 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2392 { 2393 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2394 cpumask_set_cpu(cpu, &cpuhp_online_new); 2395 blk_mq_queue_reinit_work(); 2396 return 0; 2397 } 2398 2399 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2400 { 2401 int i; 2402 2403 for (i = 0; i < set->nr_hw_queues; i++) 2404 if (!__blk_mq_alloc_rq_map(set, i)) 2405 goto out_unwind; 2406 2407 return 0; 2408 2409 out_unwind: 2410 while (--i >= 0) 2411 blk_mq_free_rq_map(set->tags[i]); 2412 2413 return -ENOMEM; 2414 } 2415 2416 /* 2417 * Allocate the request maps associated with this tag_set. Note that this 2418 * may reduce the depth asked for, if memory is tight. set->queue_depth 2419 * will be updated to reflect the allocated depth. 2420 */ 2421 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2422 { 2423 unsigned int depth; 2424 int err; 2425 2426 depth = set->queue_depth; 2427 do { 2428 err = __blk_mq_alloc_rq_maps(set); 2429 if (!err) 2430 break; 2431 2432 set->queue_depth >>= 1; 2433 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2434 err = -ENOMEM; 2435 break; 2436 } 2437 } while (set->queue_depth); 2438 2439 if (!set->queue_depth || err) { 2440 pr_err("blk-mq: failed to allocate request map\n"); 2441 return -ENOMEM; 2442 } 2443 2444 if (depth != set->queue_depth) 2445 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2446 depth, set->queue_depth); 2447 2448 return 0; 2449 } 2450 2451 /* 2452 * Alloc a tag set to be associated with one or more request queues. 2453 * May fail with EINVAL for various error conditions. May adjust the 2454 * requested depth down, if if it too large. In that case, the set 2455 * value will be stored in set->queue_depth. 2456 */ 2457 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2458 { 2459 int ret; 2460 2461 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2462 2463 if (!set->nr_hw_queues) 2464 return -EINVAL; 2465 if (!set->queue_depth) 2466 return -EINVAL; 2467 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2468 return -EINVAL; 2469 2470 if (!set->ops->queue_rq) 2471 return -EINVAL; 2472 2473 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2474 pr_info("blk-mq: reduced tag depth to %u\n", 2475 BLK_MQ_MAX_DEPTH); 2476 set->queue_depth = BLK_MQ_MAX_DEPTH; 2477 } 2478 2479 /* 2480 * If a crashdump is active, then we are potentially in a very 2481 * memory constrained environment. Limit us to 1 queue and 2482 * 64 tags to prevent using too much memory. 2483 */ 2484 if (is_kdump_kernel()) { 2485 set->nr_hw_queues = 1; 2486 set->queue_depth = min(64U, set->queue_depth); 2487 } 2488 /* 2489 * There is no use for more h/w queues than cpus. 2490 */ 2491 if (set->nr_hw_queues > nr_cpu_ids) 2492 set->nr_hw_queues = nr_cpu_ids; 2493 2494 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2495 GFP_KERNEL, set->numa_node); 2496 if (!set->tags) 2497 return -ENOMEM; 2498 2499 ret = -ENOMEM; 2500 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2501 GFP_KERNEL, set->numa_node); 2502 if (!set->mq_map) 2503 goto out_free_tags; 2504 2505 if (set->ops->map_queues) 2506 ret = set->ops->map_queues(set); 2507 else 2508 ret = blk_mq_map_queues(set); 2509 if (ret) 2510 goto out_free_mq_map; 2511 2512 ret = blk_mq_alloc_rq_maps(set); 2513 if (ret) 2514 goto out_free_mq_map; 2515 2516 mutex_init(&set->tag_list_lock); 2517 INIT_LIST_HEAD(&set->tag_list); 2518 2519 return 0; 2520 2521 out_free_mq_map: 2522 kfree(set->mq_map); 2523 set->mq_map = NULL; 2524 out_free_tags: 2525 kfree(set->tags); 2526 set->tags = NULL; 2527 return ret; 2528 } 2529 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2530 2531 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2532 { 2533 int i; 2534 2535 for (i = 0; i < nr_cpu_ids; i++) 2536 blk_mq_free_map_and_requests(set, i); 2537 2538 kfree(set->mq_map); 2539 set->mq_map = NULL; 2540 2541 kfree(set->tags); 2542 set->tags = NULL; 2543 } 2544 EXPORT_SYMBOL(blk_mq_free_tag_set); 2545 2546 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2547 { 2548 struct blk_mq_tag_set *set = q->tag_set; 2549 struct blk_mq_hw_ctx *hctx; 2550 int i, ret; 2551 2552 if (!set) 2553 return -EINVAL; 2554 2555 ret = 0; 2556 queue_for_each_hw_ctx(q, hctx, i) { 2557 if (!hctx->tags) 2558 continue; 2559 /* 2560 * If we're using an MQ scheduler, just update the scheduler 2561 * queue depth. This is similar to what the old code would do. 2562 */ 2563 if (!hctx->sched_tags) 2564 ret = blk_mq_tag_update_depth(hctx->tags, 2565 min(nr, set->queue_depth)); 2566 else 2567 ret = blk_mq_tag_update_depth(hctx->sched_tags, nr); 2568 if (ret) 2569 break; 2570 } 2571 2572 if (!ret) 2573 q->nr_requests = nr; 2574 2575 return ret; 2576 } 2577 2578 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2579 { 2580 struct request_queue *q; 2581 2582 if (nr_hw_queues > nr_cpu_ids) 2583 nr_hw_queues = nr_cpu_ids; 2584 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2585 return; 2586 2587 list_for_each_entry(q, &set->tag_list, tag_set_list) 2588 blk_mq_freeze_queue(q); 2589 2590 set->nr_hw_queues = nr_hw_queues; 2591 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2592 blk_mq_realloc_hw_ctxs(set, q); 2593 2594 if (q->nr_hw_queues > 1) 2595 blk_queue_make_request(q, blk_mq_make_request); 2596 else 2597 blk_queue_make_request(q, blk_sq_make_request); 2598 2599 blk_mq_queue_reinit(q, cpu_online_mask); 2600 } 2601 2602 list_for_each_entry(q, &set->tag_list, tag_set_list) 2603 blk_mq_unfreeze_queue(q); 2604 } 2605 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2606 2607 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2608 struct blk_mq_hw_ctx *hctx, 2609 struct request *rq) 2610 { 2611 struct blk_rq_stat stat[2]; 2612 unsigned long ret = 0; 2613 2614 /* 2615 * If stats collection isn't on, don't sleep but turn it on for 2616 * future users 2617 */ 2618 if (!blk_stat_enable(q)) 2619 return 0; 2620 2621 /* 2622 * We don't have to do this once per IO, should optimize this 2623 * to just use the current window of stats until it changes 2624 */ 2625 memset(&stat, 0, sizeof(stat)); 2626 blk_hctx_stat_get(hctx, stat); 2627 2628 /* 2629 * As an optimistic guess, use half of the mean service time 2630 * for this type of request. We can (and should) make this smarter. 2631 * For instance, if the completion latencies are tight, we can 2632 * get closer than just half the mean. This is especially 2633 * important on devices where the completion latencies are longer 2634 * than ~10 usec. 2635 */ 2636 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2637 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2638 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2639 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2640 2641 return ret; 2642 } 2643 2644 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2645 struct blk_mq_hw_ctx *hctx, 2646 struct request *rq) 2647 { 2648 struct hrtimer_sleeper hs; 2649 enum hrtimer_mode mode; 2650 unsigned int nsecs; 2651 ktime_t kt; 2652 2653 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2654 return false; 2655 2656 /* 2657 * poll_nsec can be: 2658 * 2659 * -1: don't ever hybrid sleep 2660 * 0: use half of prev avg 2661 * >0: use this specific value 2662 */ 2663 if (q->poll_nsec == -1) 2664 return false; 2665 else if (q->poll_nsec > 0) 2666 nsecs = q->poll_nsec; 2667 else 2668 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2669 2670 if (!nsecs) 2671 return false; 2672 2673 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2674 2675 /* 2676 * This will be replaced with the stats tracking code, using 2677 * 'avg_completion_time / 2' as the pre-sleep target. 2678 */ 2679 kt = nsecs; 2680 2681 mode = HRTIMER_MODE_REL; 2682 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2683 hrtimer_set_expires(&hs.timer, kt); 2684 2685 hrtimer_init_sleeper(&hs, current); 2686 do { 2687 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2688 break; 2689 set_current_state(TASK_UNINTERRUPTIBLE); 2690 hrtimer_start_expires(&hs.timer, mode); 2691 if (hs.task) 2692 io_schedule(); 2693 hrtimer_cancel(&hs.timer); 2694 mode = HRTIMER_MODE_ABS; 2695 } while (hs.task && !signal_pending(current)); 2696 2697 __set_current_state(TASK_RUNNING); 2698 destroy_hrtimer_on_stack(&hs.timer); 2699 return true; 2700 } 2701 2702 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2703 { 2704 struct request_queue *q = hctx->queue; 2705 long state; 2706 2707 /* 2708 * If we sleep, have the caller restart the poll loop to reset 2709 * the state. Like for the other success return cases, the 2710 * caller is responsible for checking if the IO completed. If 2711 * the IO isn't complete, we'll get called again and will go 2712 * straight to the busy poll loop. 2713 */ 2714 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2715 return true; 2716 2717 hctx->poll_considered++; 2718 2719 state = current->state; 2720 while (!need_resched()) { 2721 int ret; 2722 2723 hctx->poll_invoked++; 2724 2725 ret = q->mq_ops->poll(hctx, rq->tag); 2726 if (ret > 0) { 2727 hctx->poll_success++; 2728 set_current_state(TASK_RUNNING); 2729 return true; 2730 } 2731 2732 if (signal_pending_state(state, current)) 2733 set_current_state(TASK_RUNNING); 2734 2735 if (current->state == TASK_RUNNING) 2736 return true; 2737 if (ret < 0) 2738 break; 2739 cpu_relax(); 2740 } 2741 2742 return false; 2743 } 2744 2745 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2746 { 2747 struct blk_mq_hw_ctx *hctx; 2748 struct blk_plug *plug; 2749 struct request *rq; 2750 2751 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2752 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2753 return false; 2754 2755 plug = current->plug; 2756 if (plug) 2757 blk_flush_plug_list(plug, false); 2758 2759 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2760 if (!blk_qc_t_is_internal(cookie)) 2761 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2762 else 2763 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2764 2765 return __blk_mq_poll(hctx, rq); 2766 } 2767 EXPORT_SYMBOL_GPL(blk_mq_poll); 2768 2769 void blk_mq_disable_hotplug(void) 2770 { 2771 mutex_lock(&all_q_mutex); 2772 } 2773 2774 void blk_mq_enable_hotplug(void) 2775 { 2776 mutex_unlock(&all_q_mutex); 2777 } 2778 2779 static int __init blk_mq_init(void) 2780 { 2781 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2782 blk_mq_hctx_notify_dead); 2783 2784 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2785 blk_mq_queue_reinit_prepare, 2786 blk_mq_queue_reinit_dead); 2787 return 0; 2788 } 2789 subsys_initcall(blk_mq_init); 2790