xref: /linux/block/blk-mq.c (revision bb4c19e030f45c5416f1eb4daa94fbaf7165e9ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
49 		struct list_head *list);
50 
51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
52 		blk_qc_t qc)
53 {
54 	return xa_load(&q->hctx_table, qc);
55 }
56 
57 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
58 {
59 	return rq->mq_hctx->queue_num;
60 }
61 
62 /*
63  * Check if any of the ctx, dispatch list or elevator
64  * have pending work in this hardware queue.
65  */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 	return !list_empty_careful(&hctx->dispatch) ||
69 		sbitmap_any_bit_set(&hctx->ctx_map) ||
70 			blk_mq_sched_has_work(hctx);
71 }
72 
73 /*
74  * Mark this ctx as having pending work in this hardware queue
75  */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 				     struct blk_mq_ctx *ctx)
78 {
79 	const int bit = ctx->index_hw[hctx->type];
80 
81 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 		sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84 
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 				      struct blk_mq_ctx *ctx)
87 {
88 	const int bit = ctx->index_hw[hctx->type];
89 
90 	sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92 
93 struct mq_inflight {
94 	struct block_device *part;
95 	unsigned int inflight[2];
96 };
97 
98 static bool blk_mq_check_inflight(struct request *rq, void *priv)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	if (rq->part && blk_do_io_stat(rq) &&
103 	    (!mi->part->bd_partno || rq->part == mi->part) &&
104 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
105 		mi->inflight[rq_data_dir(rq)]++;
106 
107 	return true;
108 }
109 
110 unsigned int blk_mq_in_flight(struct request_queue *q,
111 		struct block_device *part)
112 {
113 	struct mq_inflight mi = { .part = part };
114 
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 
117 	return mi.inflight[0] + mi.inflight[1];
118 }
119 
120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
121 		unsigned int inflight[2])
122 {
123 	struct mq_inflight mi = { .part = part };
124 
125 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
126 	inflight[0] = mi.inflight[0];
127 	inflight[1] = mi.inflight[1];
128 }
129 
130 void blk_freeze_queue_start(struct request_queue *q)
131 {
132 	mutex_lock(&q->mq_freeze_lock);
133 	if (++q->mq_freeze_depth == 1) {
134 		percpu_ref_kill(&q->q_usage_counter);
135 		mutex_unlock(&q->mq_freeze_lock);
136 		if (queue_is_mq(q))
137 			blk_mq_run_hw_queues(q, false);
138 	} else {
139 		mutex_unlock(&q->mq_freeze_lock);
140 	}
141 }
142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
143 
144 void blk_mq_freeze_queue_wait(struct request_queue *q)
145 {
146 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
149 
150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
151 				     unsigned long timeout)
152 {
153 	return wait_event_timeout(q->mq_freeze_wq,
154 					percpu_ref_is_zero(&q->q_usage_counter),
155 					timeout);
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
158 
159 /*
160  * Guarantee no request is in use, so we can change any data structure of
161  * the queue afterward.
162  */
163 void blk_freeze_queue(struct request_queue *q)
164 {
165 	/*
166 	 * In the !blk_mq case we are only calling this to kill the
167 	 * q_usage_counter, otherwise this increases the freeze depth
168 	 * and waits for it to return to zero.  For this reason there is
169 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
170 	 * exported to drivers as the only user for unfreeze is blk_mq.
171 	 */
172 	blk_freeze_queue_start(q);
173 	blk_mq_freeze_queue_wait(q);
174 }
175 
176 void blk_mq_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * ...just an alias to keep freeze and unfreeze actions balanced
180 	 * in the blk_mq_* namespace
181 	 */
182 	blk_freeze_queue(q);
183 }
184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
185 
186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
187 {
188 	mutex_lock(&q->mq_freeze_lock);
189 	if (force_atomic)
190 		q->q_usage_counter.data->force_atomic = true;
191 	q->mq_freeze_depth--;
192 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
193 	if (!q->mq_freeze_depth) {
194 		percpu_ref_resurrect(&q->q_usage_counter);
195 		wake_up_all(&q->mq_freeze_wq);
196 	}
197 	mutex_unlock(&q->mq_freeze_lock);
198 }
199 
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202 	__blk_mq_unfreeze_queue(q, false);
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205 
206 /*
207  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208  * mpt3sas driver such that this function can be removed.
209  */
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
211 {
212 	unsigned long flags;
213 
214 	spin_lock_irqsave(&q->queue_lock, flags);
215 	if (!q->quiesce_depth++)
216 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217 	spin_unlock_irqrestore(&q->queue_lock, flags);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
223  * @set: tag_set to wait on
224  *
225  * Note: it is driver's responsibility for making sure that quiesce has
226  * been started on or more of the request_queues of the tag_set.  This
227  * function only waits for the quiesce on those request_queues that had
228  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
229  */
230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
231 {
232 	if (set->flags & BLK_MQ_F_BLOCKING)
233 		synchronize_srcu(set->srcu);
234 	else
235 		synchronize_rcu();
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
238 
239 /**
240  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
241  * @q: request queue.
242  *
243  * Note: this function does not prevent that the struct request end_io()
244  * callback function is invoked. Once this function is returned, we make
245  * sure no dispatch can happen until the queue is unquiesced via
246  * blk_mq_unquiesce_queue().
247  */
248 void blk_mq_quiesce_queue(struct request_queue *q)
249 {
250 	blk_mq_quiesce_queue_nowait(q);
251 	/* nothing to wait for non-mq queues */
252 	if (queue_is_mq(q))
253 		blk_mq_wait_quiesce_done(q->tag_set);
254 }
255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
256 
257 /*
258  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
259  * @q: request queue.
260  *
261  * This function recovers queue into the state before quiescing
262  * which is done by blk_mq_quiesce_queue.
263  */
264 void blk_mq_unquiesce_queue(struct request_queue *q)
265 {
266 	unsigned long flags;
267 	bool run_queue = false;
268 
269 	spin_lock_irqsave(&q->queue_lock, flags);
270 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
271 		;
272 	} else if (!--q->quiesce_depth) {
273 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
274 		run_queue = true;
275 	}
276 	spin_unlock_irqrestore(&q->queue_lock, flags);
277 
278 	/* dispatch requests which are inserted during quiescing */
279 	if (run_queue)
280 		blk_mq_run_hw_queues(q, true);
281 }
282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
283 
284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
285 {
286 	struct request_queue *q;
287 
288 	mutex_lock(&set->tag_list_lock);
289 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
290 		if (!blk_queue_skip_tagset_quiesce(q))
291 			blk_mq_quiesce_queue_nowait(q);
292 	}
293 	blk_mq_wait_quiesce_done(set);
294 	mutex_unlock(&set->tag_list_lock);
295 }
296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
297 
298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
299 {
300 	struct request_queue *q;
301 
302 	mutex_lock(&set->tag_list_lock);
303 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
304 		if (!blk_queue_skip_tagset_quiesce(q))
305 			blk_mq_unquiesce_queue(q);
306 	}
307 	mutex_unlock(&set->tag_list_lock);
308 }
309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
310 
311 void blk_mq_wake_waiters(struct request_queue *q)
312 {
313 	struct blk_mq_hw_ctx *hctx;
314 	unsigned long i;
315 
316 	queue_for_each_hw_ctx(q, hctx, i)
317 		if (blk_mq_hw_queue_mapped(hctx))
318 			blk_mq_tag_wakeup_all(hctx->tags, true);
319 }
320 
321 void blk_rq_init(struct request_queue *q, struct request *rq)
322 {
323 	memset(rq, 0, sizeof(*rq));
324 
325 	INIT_LIST_HEAD(&rq->queuelist);
326 	rq->q = q;
327 	rq->__sector = (sector_t) -1;
328 	INIT_HLIST_NODE(&rq->hash);
329 	RB_CLEAR_NODE(&rq->rb_node);
330 	rq->tag = BLK_MQ_NO_TAG;
331 	rq->internal_tag = BLK_MQ_NO_TAG;
332 	rq->start_time_ns = ktime_get_ns();
333 	rq->part = NULL;
334 	blk_crypto_rq_set_defaults(rq);
335 }
336 EXPORT_SYMBOL(blk_rq_init);
337 
338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
339 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
340 {
341 	struct blk_mq_ctx *ctx = data->ctx;
342 	struct blk_mq_hw_ctx *hctx = data->hctx;
343 	struct request_queue *q = data->q;
344 	struct request *rq = tags->static_rqs[tag];
345 
346 	rq->q = q;
347 	rq->mq_ctx = ctx;
348 	rq->mq_hctx = hctx;
349 	rq->cmd_flags = data->cmd_flags;
350 
351 	if (data->flags & BLK_MQ_REQ_PM)
352 		data->rq_flags |= RQF_PM;
353 	if (blk_queue_io_stat(q))
354 		data->rq_flags |= RQF_IO_STAT;
355 	rq->rq_flags = data->rq_flags;
356 
357 	if (!(data->rq_flags & RQF_ELV)) {
358 		rq->tag = tag;
359 		rq->internal_tag = BLK_MQ_NO_TAG;
360 	} else {
361 		rq->tag = BLK_MQ_NO_TAG;
362 		rq->internal_tag = tag;
363 	}
364 	rq->timeout = 0;
365 
366 	if (blk_mq_need_time_stamp(rq))
367 		rq->start_time_ns = ktime_get_ns();
368 	else
369 		rq->start_time_ns = 0;
370 	rq->part = NULL;
371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
372 	rq->alloc_time_ns = alloc_time_ns;
373 #endif
374 	rq->io_start_time_ns = 0;
375 	rq->stats_sectors = 0;
376 	rq->nr_phys_segments = 0;
377 #if defined(CONFIG_BLK_DEV_INTEGRITY)
378 	rq->nr_integrity_segments = 0;
379 #endif
380 	rq->end_io = NULL;
381 	rq->end_io_data = NULL;
382 
383 	blk_crypto_rq_set_defaults(rq);
384 	INIT_LIST_HEAD(&rq->queuelist);
385 	/* tag was already set */
386 	WRITE_ONCE(rq->deadline, 0);
387 	req_ref_set(rq, 1);
388 
389 	if (rq->rq_flags & RQF_ELV) {
390 		struct elevator_queue *e = data->q->elevator;
391 
392 		INIT_HLIST_NODE(&rq->hash);
393 		RB_CLEAR_NODE(&rq->rb_node);
394 
395 		if (!op_is_flush(data->cmd_flags) &&
396 		    e->type->ops.prepare_request) {
397 			e->type->ops.prepare_request(rq);
398 			rq->rq_flags |= RQF_ELVPRIV;
399 		}
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
407 		u64 alloc_time_ns)
408 {
409 	unsigned int tag, tag_offset;
410 	struct blk_mq_tags *tags;
411 	struct request *rq;
412 	unsigned long tag_mask;
413 	int i, nr = 0;
414 
415 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
416 	if (unlikely(!tag_mask))
417 		return NULL;
418 
419 	tags = blk_mq_tags_from_data(data);
420 	for (i = 0; tag_mask; i++) {
421 		if (!(tag_mask & (1UL << i)))
422 			continue;
423 		tag = tag_offset + i;
424 		prefetch(tags->static_rqs[tag]);
425 		tag_mask &= ~(1UL << i);
426 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
427 		rq_list_add(data->cached_rq, rq);
428 		nr++;
429 	}
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = ktime_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 	if (q->elevator) {
452 		struct elevator_queue *e = q->elevator;
453 
454 		data->rq_flags |= RQF_ELV;
455 
456 		/*
457 		 * Flush/passthrough requests are special and go directly to the
458 		 * dispatch list. Don't include reserved tags in the
459 		 * limiting, as it isn't useful.
460 		 */
461 		if (!op_is_flush(data->cmd_flags) &&
462 		    !blk_op_is_passthrough(data->cmd_flags) &&
463 		    e->type->ops.limit_depth &&
464 		    !(data->flags & BLK_MQ_REQ_RESERVED))
465 			e->type->ops.limit_depth(data->cmd_flags, data);
466 	}
467 
468 retry:
469 	data->ctx = blk_mq_get_ctx(q);
470 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
471 	if (!(data->rq_flags & RQF_ELV))
472 		blk_mq_tag_busy(data->hctx);
473 
474 	if (data->flags & BLK_MQ_REQ_RESERVED)
475 		data->rq_flags |= RQF_RESV;
476 
477 	/*
478 	 * Try batched alloc if we want more than 1 tag.
479 	 */
480 	if (data->nr_tags > 1) {
481 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 		if (rq)
483 			return rq;
484 		data->nr_tags = 1;
485 	}
486 
487 	/*
488 	 * Waiting allocations only fail because of an inactive hctx.  In that
489 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 	 * should have migrated us to an online CPU by now.
491 	 */
492 	tag = blk_mq_get_tag(data);
493 	if (tag == BLK_MQ_NO_TAG) {
494 		if (data->flags & BLK_MQ_REQ_NOWAIT)
495 			return NULL;
496 		/*
497 		 * Give up the CPU and sleep for a random short time to
498 		 * ensure that thread using a realtime scheduling class
499 		 * are migrated off the CPU, and thus off the hctx that
500 		 * is going away.
501 		 */
502 		msleep(3);
503 		goto retry;
504 	}
505 
506 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 					alloc_time_ns);
508 }
509 
510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
511 					    struct blk_plug *plug,
512 					    blk_opf_t opf,
513 					    blk_mq_req_flags_t flags)
514 {
515 	struct blk_mq_alloc_data data = {
516 		.q		= q,
517 		.flags		= flags,
518 		.cmd_flags	= opf,
519 		.nr_tags	= plug->nr_ios,
520 		.cached_rq	= &plug->cached_rq,
521 	};
522 	struct request *rq;
523 
524 	if (blk_queue_enter(q, flags))
525 		return NULL;
526 
527 	plug->nr_ios = 1;
528 
529 	rq = __blk_mq_alloc_requests(&data);
530 	if (unlikely(!rq))
531 		blk_queue_exit(q);
532 	return rq;
533 }
534 
535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
536 						   blk_opf_t opf,
537 						   blk_mq_req_flags_t flags)
538 {
539 	struct blk_plug *plug = current->plug;
540 	struct request *rq;
541 
542 	if (!plug)
543 		return NULL;
544 
545 	if (rq_list_empty(plug->cached_rq)) {
546 		if (plug->nr_ios == 1)
547 			return NULL;
548 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
549 		if (!rq)
550 			return NULL;
551 	} else {
552 		rq = rq_list_peek(&plug->cached_rq);
553 		if (!rq || rq->q != q)
554 			return NULL;
555 
556 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
557 			return NULL;
558 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
559 			return NULL;
560 
561 		plug->cached_rq = rq_list_next(rq);
562 	}
563 
564 	rq->cmd_flags = opf;
565 	INIT_LIST_HEAD(&rq->queuelist);
566 	return rq;
567 }
568 
569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
570 		blk_mq_req_flags_t flags)
571 {
572 	struct request *rq;
573 
574 	rq = blk_mq_alloc_cached_request(q, opf, flags);
575 	if (!rq) {
576 		struct blk_mq_alloc_data data = {
577 			.q		= q,
578 			.flags		= flags,
579 			.cmd_flags	= opf,
580 			.nr_tags	= 1,
581 		};
582 		int ret;
583 
584 		ret = blk_queue_enter(q, flags);
585 		if (ret)
586 			return ERR_PTR(ret);
587 
588 		rq = __blk_mq_alloc_requests(&data);
589 		if (!rq)
590 			goto out_queue_exit;
591 	}
592 	rq->__data_len = 0;
593 	rq->__sector = (sector_t) -1;
594 	rq->bio = rq->biotail = NULL;
595 	return rq;
596 out_queue_exit:
597 	blk_queue_exit(q);
598 	return ERR_PTR(-EWOULDBLOCK);
599 }
600 EXPORT_SYMBOL(blk_mq_alloc_request);
601 
602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
603 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
604 {
605 	struct blk_mq_alloc_data data = {
606 		.q		= q,
607 		.flags		= flags,
608 		.cmd_flags	= opf,
609 		.nr_tags	= 1,
610 	};
611 	u64 alloc_time_ns = 0;
612 	struct request *rq;
613 	unsigned int cpu;
614 	unsigned int tag;
615 	int ret;
616 
617 	/* alloc_time includes depth and tag waits */
618 	if (blk_queue_rq_alloc_time(q))
619 		alloc_time_ns = ktime_get_ns();
620 
621 	/*
622 	 * If the tag allocator sleeps we could get an allocation for a
623 	 * different hardware context.  No need to complicate the low level
624 	 * allocator for this for the rare use case of a command tied to
625 	 * a specific queue.
626 	 */
627 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
628 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
629 		return ERR_PTR(-EINVAL);
630 
631 	if (hctx_idx >= q->nr_hw_queues)
632 		return ERR_PTR(-EIO);
633 
634 	ret = blk_queue_enter(q, flags);
635 	if (ret)
636 		return ERR_PTR(ret);
637 
638 	/*
639 	 * Check if the hardware context is actually mapped to anything.
640 	 * If not tell the caller that it should skip this queue.
641 	 */
642 	ret = -EXDEV;
643 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
644 	if (!blk_mq_hw_queue_mapped(data.hctx))
645 		goto out_queue_exit;
646 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
647 	if (cpu >= nr_cpu_ids)
648 		goto out_queue_exit;
649 	data.ctx = __blk_mq_get_ctx(q, cpu);
650 
651 	if (!q->elevator)
652 		blk_mq_tag_busy(data.hctx);
653 	else
654 		data.rq_flags |= RQF_ELV;
655 
656 	if (flags & BLK_MQ_REQ_RESERVED)
657 		data.rq_flags |= RQF_RESV;
658 
659 	ret = -EWOULDBLOCK;
660 	tag = blk_mq_get_tag(&data);
661 	if (tag == BLK_MQ_NO_TAG)
662 		goto out_queue_exit;
663 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
664 					alloc_time_ns);
665 	rq->__data_len = 0;
666 	rq->__sector = (sector_t) -1;
667 	rq->bio = rq->biotail = NULL;
668 	return rq;
669 
670 out_queue_exit:
671 	blk_queue_exit(q);
672 	return ERR_PTR(ret);
673 }
674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
675 
676 static void __blk_mq_free_request(struct request *rq)
677 {
678 	struct request_queue *q = rq->q;
679 	struct blk_mq_ctx *ctx = rq->mq_ctx;
680 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
681 	const int sched_tag = rq->internal_tag;
682 
683 	blk_crypto_free_request(rq);
684 	blk_pm_mark_last_busy(rq);
685 	rq->mq_hctx = NULL;
686 	if (rq->tag != BLK_MQ_NO_TAG)
687 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688 	if (sched_tag != BLK_MQ_NO_TAG)
689 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690 	blk_mq_sched_restart(hctx);
691 	blk_queue_exit(q);
692 }
693 
694 void blk_mq_free_request(struct request *rq)
695 {
696 	struct request_queue *q = rq->q;
697 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
698 
699 	if ((rq->rq_flags & RQF_ELVPRIV) &&
700 	    q->elevator->type->ops.finish_request)
701 		q->elevator->type->ops.finish_request(rq);
702 
703 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
704 		__blk_mq_dec_active_requests(hctx);
705 
706 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
707 		laptop_io_completion(q->disk->bdi);
708 
709 	rq_qos_done(q, rq);
710 
711 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712 	if (req_ref_put_and_test(rq))
713 		__blk_mq_free_request(rq);
714 }
715 EXPORT_SYMBOL_GPL(blk_mq_free_request);
716 
717 void blk_mq_free_plug_rqs(struct blk_plug *plug)
718 {
719 	struct request *rq;
720 
721 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
722 		blk_mq_free_request(rq);
723 }
724 
725 void blk_dump_rq_flags(struct request *rq, char *msg)
726 {
727 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
728 		rq->q->disk ? rq->q->disk->disk_name : "?",
729 		(__force unsigned long long) rq->cmd_flags);
730 
731 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
732 	       (unsigned long long)blk_rq_pos(rq),
733 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
734 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
735 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
736 }
737 EXPORT_SYMBOL(blk_dump_rq_flags);
738 
739 static void req_bio_endio(struct request *rq, struct bio *bio,
740 			  unsigned int nbytes, blk_status_t error)
741 {
742 	if (unlikely(error)) {
743 		bio->bi_status = error;
744 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
745 		/*
746 		 * Partial zone append completions cannot be supported as the
747 		 * BIO fragments may end up not being written sequentially.
748 		 */
749 		if (bio->bi_iter.bi_size != nbytes)
750 			bio->bi_status = BLK_STS_IOERR;
751 		else
752 			bio->bi_iter.bi_sector = rq->__sector;
753 	}
754 
755 	bio_advance(bio, nbytes);
756 
757 	if (unlikely(rq->rq_flags & RQF_QUIET))
758 		bio_set_flag(bio, BIO_QUIET);
759 	/* don't actually finish bio if it's part of flush sequence */
760 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
761 		bio_endio(bio);
762 }
763 
764 static void blk_account_io_completion(struct request *req, unsigned int bytes)
765 {
766 	if (req->part && blk_do_io_stat(req)) {
767 		const int sgrp = op_stat_group(req_op(req));
768 
769 		part_stat_lock();
770 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
771 		part_stat_unlock();
772 	}
773 }
774 
775 static void blk_print_req_error(struct request *req, blk_status_t status)
776 {
777 	printk_ratelimited(KERN_ERR
778 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
779 		"phys_seg %u prio class %u\n",
780 		blk_status_to_str(status),
781 		req->q->disk ? req->q->disk->disk_name : "?",
782 		blk_rq_pos(req), (__force u32)req_op(req),
783 		blk_op_str(req_op(req)),
784 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
785 		req->nr_phys_segments,
786 		IOPRIO_PRIO_CLASS(req->ioprio));
787 }
788 
789 /*
790  * Fully end IO on a request. Does not support partial completions, or
791  * errors.
792  */
793 static void blk_complete_request(struct request *req)
794 {
795 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
796 	int total_bytes = blk_rq_bytes(req);
797 	struct bio *bio = req->bio;
798 
799 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
800 
801 	if (!bio)
802 		return;
803 
804 #ifdef CONFIG_BLK_DEV_INTEGRITY
805 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806 		req->q->integrity.profile->complete_fn(req, total_bytes);
807 #endif
808 
809 	/*
810 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
811 	 * bio_endio().  Therefore, the keyslot must be released before that.
812 	 */
813 	blk_crypto_rq_put_keyslot(req);
814 
815 	blk_account_io_completion(req, total_bytes);
816 
817 	do {
818 		struct bio *next = bio->bi_next;
819 
820 		/* Completion has already been traced */
821 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
822 
823 		if (req_op(req) == REQ_OP_ZONE_APPEND)
824 			bio->bi_iter.bi_sector = req->__sector;
825 
826 		if (!is_flush)
827 			bio_endio(bio);
828 		bio = next;
829 	} while (bio);
830 
831 	/*
832 	 * Reset counters so that the request stacking driver
833 	 * can find how many bytes remain in the request
834 	 * later.
835 	 */
836 	if (!req->end_io) {
837 		req->bio = NULL;
838 		req->__data_len = 0;
839 	}
840 }
841 
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865 		unsigned int nr_bytes)
866 {
867 	int total_bytes;
868 
869 	trace_block_rq_complete(req, error, nr_bytes);
870 
871 	if (!req->bio)
872 		return false;
873 
874 #ifdef CONFIG_BLK_DEV_INTEGRITY
875 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
876 	    error == BLK_STS_OK)
877 		req->q->integrity.profile->complete_fn(req, nr_bytes);
878 #endif
879 
880 	/*
881 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
882 	 * bio_endio().  Therefore, the keyslot must be released before that.
883 	 */
884 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885 		__blk_crypto_rq_put_keyslot(req);
886 
887 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
888 		     !(req->rq_flags & RQF_QUIET)) &&
889 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
890 		blk_print_req_error(req, error);
891 		trace_block_rq_error(req, error, nr_bytes);
892 	}
893 
894 	blk_account_io_completion(req, nr_bytes);
895 
896 	total_bytes = 0;
897 	while (req->bio) {
898 		struct bio *bio = req->bio;
899 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
900 
901 		if (bio_bytes == bio->bi_iter.bi_size)
902 			req->bio = bio->bi_next;
903 
904 		/* Completion has already been traced */
905 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
906 		req_bio_endio(req, bio, bio_bytes, error);
907 
908 		total_bytes += bio_bytes;
909 		nr_bytes -= bio_bytes;
910 
911 		if (!nr_bytes)
912 			break;
913 	}
914 
915 	/*
916 	 * completely done
917 	 */
918 	if (!req->bio) {
919 		/*
920 		 * Reset counters so that the request stacking driver
921 		 * can find how many bytes remain in the request
922 		 * later.
923 		 */
924 		req->__data_len = 0;
925 		return false;
926 	}
927 
928 	req->__data_len -= total_bytes;
929 
930 	/* update sector only for requests with clear definition of sector */
931 	if (!blk_rq_is_passthrough(req))
932 		req->__sector += total_bytes >> 9;
933 
934 	/* mixed attributes always follow the first bio */
935 	if (req->rq_flags & RQF_MIXED_MERGE) {
936 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
937 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
938 	}
939 
940 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
941 		/*
942 		 * If total number of sectors is less than the first segment
943 		 * size, something has gone terribly wrong.
944 		 */
945 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
946 			blk_dump_rq_flags(req, "request botched");
947 			req->__data_len = blk_rq_cur_bytes(req);
948 		}
949 
950 		/* recalculate the number of segments */
951 		req->nr_phys_segments = blk_recalc_rq_segments(req);
952 	}
953 
954 	return true;
955 }
956 EXPORT_SYMBOL_GPL(blk_update_request);
957 
958 static inline void blk_account_io_done(struct request *req, u64 now)
959 {
960 	/*
961 	 * Account IO completion.  flush_rq isn't accounted as a
962 	 * normal IO on queueing nor completion.  Accounting the
963 	 * containing request is enough.
964 	 */
965 	if (blk_do_io_stat(req) && req->part &&
966 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
967 		const int sgrp = op_stat_group(req_op(req));
968 
969 		part_stat_lock();
970 		update_io_ticks(req->part, jiffies, true);
971 		part_stat_inc(req->part, ios[sgrp]);
972 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
973 		part_stat_unlock();
974 	}
975 }
976 
977 static inline void blk_account_io_start(struct request *req)
978 {
979 	if (blk_do_io_stat(req)) {
980 		/*
981 		 * All non-passthrough requests are created from a bio with one
982 		 * exception: when a flush command that is part of a flush sequence
983 		 * generated by the state machine in blk-flush.c is cloned onto the
984 		 * lower device by dm-multipath we can get here without a bio.
985 		 */
986 		if (req->bio)
987 			req->part = req->bio->bi_bdev;
988 		else
989 			req->part = req->q->disk->part0;
990 
991 		part_stat_lock();
992 		update_io_ticks(req->part, jiffies, false);
993 		part_stat_unlock();
994 	}
995 }
996 
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999 	if (rq->rq_flags & RQF_STATS)
1000 		blk_stat_add(rq, now);
1001 
1002 	blk_mq_sched_completed_request(rq, now);
1003 	blk_account_io_done(rq, now);
1004 }
1005 
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008 	if (blk_mq_need_time_stamp(rq))
1009 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1010 
1011 	if (rq->end_io) {
1012 		rq_qos_done(rq->q, rq);
1013 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014 			blk_mq_free_request(rq);
1015 	} else {
1016 		blk_mq_free_request(rq);
1017 	}
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020 
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024 		BUG();
1025 	__blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028 
1029 #define TAG_COMP_BATCH		32
1030 
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032 					  int *tag_array, int nr_tags)
1033 {
1034 	struct request_queue *q = hctx->queue;
1035 
1036 	/*
1037 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038 	 * update hctx->nr_active in batch
1039 	 */
1040 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041 		__blk_mq_sub_active_requests(hctx, nr_tags);
1042 
1043 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046 
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1050 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1051 	struct request *rq;
1052 	u64 now = 0;
1053 
1054 	if (iob->need_ts)
1055 		now = ktime_get_ns();
1056 
1057 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058 		prefetch(rq->bio);
1059 		prefetch(rq->rq_next);
1060 
1061 		blk_complete_request(rq);
1062 		if (iob->need_ts)
1063 			__blk_mq_end_request_acct(rq, now);
1064 
1065 		rq_qos_done(rq->q, rq);
1066 
1067 		/*
1068 		 * If end_io handler returns NONE, then it still has
1069 		 * ownership of the request.
1070 		 */
1071 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072 			continue;
1073 
1074 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075 		if (!req_ref_put_and_test(rq))
1076 			continue;
1077 
1078 		blk_crypto_free_request(rq);
1079 		blk_pm_mark_last_busy(rq);
1080 
1081 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082 			if (cur_hctx)
1083 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084 			nr_tags = 0;
1085 			cur_hctx = rq->mq_hctx;
1086 		}
1087 		tags[nr_tags++] = rq->tag;
1088 	}
1089 
1090 	if (nr_tags)
1091 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094 
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098 	struct request *rq, *next;
1099 
1100 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101 		rq->q->mq_ops->complete(rq);
1102 }
1103 
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108 
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112 	return 0;
1113 }
1114 
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119 
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122 	int cpu = raw_smp_processor_id();
1123 
1124 	if (!IS_ENABLED(CONFIG_SMP) ||
1125 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126 		return false;
1127 	/*
1128 	 * With force threaded interrupts enabled, raising softirq from an SMP
1129 	 * function call will always result in waking the ksoftirqd thread.
1130 	 * This is probably worse than completing the request on a different
1131 	 * cache domain.
1132 	 */
1133 	if (force_irqthreads())
1134 		return false;
1135 
1136 	/* same CPU or cache domain?  Complete locally */
1137 	if (cpu == rq->mq_ctx->cpu ||
1138 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140 		return false;
1141 
1142 	/* don't try to IPI to an offline CPU */
1143 	return cpu_online(rq->mq_ctx->cpu);
1144 }
1145 
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148 	struct llist_head *list;
1149 	unsigned int cpu;
1150 
1151 	cpu = rq->mq_ctx->cpu;
1152 	list = &per_cpu(blk_cpu_done, cpu);
1153 	if (llist_add(&rq->ipi_list, list)) {
1154 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155 		smp_call_function_single_async(cpu, &rq->csd);
1156 	}
1157 }
1158 
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161 	struct llist_head *list;
1162 
1163 	preempt_disable();
1164 	list = this_cpu_ptr(&blk_cpu_done);
1165 	if (llist_add(&rq->ipi_list, list))
1166 		raise_softirq(BLOCK_SOFTIRQ);
1167 	preempt_enable();
1168 }
1169 
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173 
1174 	/*
1175 	 * For request which hctx has only one ctx mapping,
1176 	 * or a polled request, always complete locally,
1177 	 * it's pointless to redirect the completion.
1178 	 */
1179 	if (rq->mq_hctx->nr_ctx == 1 ||
1180 		rq->cmd_flags & REQ_POLLED)
1181 		return false;
1182 
1183 	if (blk_mq_complete_need_ipi(rq)) {
1184 		blk_mq_complete_send_ipi(rq);
1185 		return true;
1186 	}
1187 
1188 	if (rq->q->nr_hw_queues == 1) {
1189 		blk_mq_raise_softirq(rq);
1190 		return true;
1191 	}
1192 	return false;
1193 }
1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1195 
1196 /**
1197  * blk_mq_complete_request - end I/O on a request
1198  * @rq:		the request being processed
1199  *
1200  * Description:
1201  *	Complete a request by scheduling the ->complete_rq operation.
1202  **/
1203 void blk_mq_complete_request(struct request *rq)
1204 {
1205 	if (!blk_mq_complete_request_remote(rq))
1206 		rq->q->mq_ops->complete(rq);
1207 }
1208 EXPORT_SYMBOL(blk_mq_complete_request);
1209 
1210 /**
1211  * blk_mq_start_request - Start processing a request
1212  * @rq: Pointer to request to be started
1213  *
1214  * Function used by device drivers to notify the block layer that a request
1215  * is going to be processed now, so blk layer can do proper initializations
1216  * such as starting the timeout timer.
1217  */
1218 void blk_mq_start_request(struct request *rq)
1219 {
1220 	struct request_queue *q = rq->q;
1221 
1222 	trace_block_rq_issue(rq);
1223 
1224 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1225 		rq->io_start_time_ns = ktime_get_ns();
1226 		rq->stats_sectors = blk_rq_sectors(rq);
1227 		rq->rq_flags |= RQF_STATS;
1228 		rq_qos_issue(q, rq);
1229 	}
1230 
1231 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1232 
1233 	blk_add_timer(rq);
1234 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1235 
1236 #ifdef CONFIG_BLK_DEV_INTEGRITY
1237 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1238 		q->integrity.profile->prepare_fn(rq);
1239 #endif
1240 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1241 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1242 }
1243 EXPORT_SYMBOL(blk_mq_start_request);
1244 
1245 /*
1246  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1247  * queues. This is important for md arrays to benefit from merging
1248  * requests.
1249  */
1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1251 {
1252 	if (plug->multiple_queues)
1253 		return BLK_MAX_REQUEST_COUNT * 2;
1254 	return BLK_MAX_REQUEST_COUNT;
1255 }
1256 
1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1258 {
1259 	struct request *last = rq_list_peek(&plug->mq_list);
1260 
1261 	if (!plug->rq_count) {
1262 		trace_block_plug(rq->q);
1263 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1264 		   (!blk_queue_nomerges(rq->q) &&
1265 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1266 		blk_mq_flush_plug_list(plug, false);
1267 		last = NULL;
1268 		trace_block_plug(rq->q);
1269 	}
1270 
1271 	if (!plug->multiple_queues && last && last->q != rq->q)
1272 		plug->multiple_queues = true;
1273 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1274 		plug->has_elevator = true;
1275 	rq->rq_next = NULL;
1276 	rq_list_add(&plug->mq_list, rq);
1277 	plug->rq_count++;
1278 }
1279 
1280 /**
1281  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1282  * @rq:		request to insert
1283  * @at_head:    insert request at head or tail of queue
1284  *
1285  * Description:
1286  *    Insert a fully prepared request at the back of the I/O scheduler queue
1287  *    for execution.  Don't wait for completion.
1288  *
1289  * Note:
1290  *    This function will invoke @done directly if the queue is dead.
1291  */
1292 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1293 {
1294 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1295 
1296 	WARN_ON(irqs_disabled());
1297 	WARN_ON(!blk_rq_is_passthrough(rq));
1298 
1299 	blk_account_io_start(rq);
1300 
1301 	/*
1302 	 * As plugging can be enabled for passthrough requests on a zoned
1303 	 * device, directly accessing the plug instead of using blk_mq_plug()
1304 	 * should not have any consequences.
1305 	 */
1306 	if (current->plug && !at_head) {
1307 		blk_add_rq_to_plug(current->plug, rq);
1308 		return;
1309 	}
1310 
1311 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1312 	blk_mq_run_hw_queue(hctx, false);
1313 }
1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1315 
1316 struct blk_rq_wait {
1317 	struct completion done;
1318 	blk_status_t ret;
1319 };
1320 
1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1322 {
1323 	struct blk_rq_wait *wait = rq->end_io_data;
1324 
1325 	wait->ret = ret;
1326 	complete(&wait->done);
1327 	return RQ_END_IO_NONE;
1328 }
1329 
1330 bool blk_rq_is_poll(struct request *rq)
1331 {
1332 	if (!rq->mq_hctx)
1333 		return false;
1334 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1335 		return false;
1336 	if (WARN_ON_ONCE(!rq->bio))
1337 		return false;
1338 	return true;
1339 }
1340 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1341 
1342 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1343 {
1344 	do {
1345 		bio_poll(rq->bio, NULL, 0);
1346 		cond_resched();
1347 	} while (!completion_done(wait));
1348 }
1349 
1350 /**
1351  * blk_execute_rq - insert a request into queue for execution
1352  * @rq:		request to insert
1353  * @at_head:    insert request at head or tail of queue
1354  *
1355  * Description:
1356  *    Insert a fully prepared request at the back of the I/O scheduler queue
1357  *    for execution and wait for completion.
1358  * Return: The blk_status_t result provided to blk_mq_end_request().
1359  */
1360 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1361 {
1362 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1363 	struct blk_rq_wait wait = {
1364 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1365 	};
1366 
1367 	WARN_ON(irqs_disabled());
1368 	WARN_ON(!blk_rq_is_passthrough(rq));
1369 
1370 	rq->end_io_data = &wait;
1371 	rq->end_io = blk_end_sync_rq;
1372 
1373 	blk_account_io_start(rq);
1374 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1375 	blk_mq_run_hw_queue(hctx, false);
1376 
1377 	if (blk_rq_is_poll(rq)) {
1378 		blk_rq_poll_completion(rq, &wait.done);
1379 	} else {
1380 		/*
1381 		 * Prevent hang_check timer from firing at us during very long
1382 		 * I/O
1383 		 */
1384 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1385 
1386 		if (hang_check)
1387 			while (!wait_for_completion_io_timeout(&wait.done,
1388 					hang_check * (HZ/2)))
1389 				;
1390 		else
1391 			wait_for_completion_io(&wait.done);
1392 	}
1393 
1394 	return wait.ret;
1395 }
1396 EXPORT_SYMBOL(blk_execute_rq);
1397 
1398 static void __blk_mq_requeue_request(struct request *rq)
1399 {
1400 	struct request_queue *q = rq->q;
1401 
1402 	blk_mq_put_driver_tag(rq);
1403 
1404 	trace_block_rq_requeue(rq);
1405 	rq_qos_requeue(q, rq);
1406 
1407 	if (blk_mq_request_started(rq)) {
1408 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1409 		rq->rq_flags &= ~RQF_TIMED_OUT;
1410 	}
1411 }
1412 
1413 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1414 {
1415 	struct request_queue *q = rq->q;
1416 
1417 	__blk_mq_requeue_request(rq);
1418 
1419 	/* this request will be re-inserted to io scheduler queue */
1420 	blk_mq_sched_requeue_request(rq);
1421 
1422 	blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
1423 
1424 	if (kick_requeue_list)
1425 		blk_mq_kick_requeue_list(q);
1426 }
1427 EXPORT_SYMBOL(blk_mq_requeue_request);
1428 
1429 static void blk_mq_requeue_work(struct work_struct *work)
1430 {
1431 	struct request_queue *q =
1432 		container_of(work, struct request_queue, requeue_work.work);
1433 	LIST_HEAD(rq_list);
1434 	struct request *rq, *next;
1435 
1436 	spin_lock_irq(&q->requeue_lock);
1437 	list_splice_init(&q->requeue_list, &rq_list);
1438 	spin_unlock_irq(&q->requeue_lock);
1439 
1440 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1441 		/*
1442 		 * If RQF_DONTPREP ist set, the request has been started by the
1443 		 * driver already and might have driver-specific data allocated
1444 		 * already.  Insert it into the hctx dispatch list to avoid
1445 		 * block layer merges for the request.
1446 		 */
1447 		if (rq->rq_flags & RQF_DONTPREP) {
1448 			rq->rq_flags &= ~RQF_SOFTBARRIER;
1449 			list_del_init(&rq->queuelist);
1450 			blk_mq_request_bypass_insert(rq, 0);
1451 		} else if (rq->rq_flags & RQF_SOFTBARRIER) {
1452 			rq->rq_flags &= ~RQF_SOFTBARRIER;
1453 			list_del_init(&rq->queuelist);
1454 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1455 		}
1456 	}
1457 
1458 	while (!list_empty(&rq_list)) {
1459 		rq = list_entry(rq_list.next, struct request, queuelist);
1460 		list_del_init(&rq->queuelist);
1461 		blk_mq_insert_request(rq, 0);
1462 	}
1463 
1464 	blk_mq_run_hw_queues(q, false);
1465 }
1466 
1467 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags)
1468 {
1469 	struct request_queue *q = rq->q;
1470 	unsigned long flags;
1471 
1472 	/*
1473 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1474 	 * request head insertion from the workqueue.
1475 	 */
1476 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1477 
1478 	spin_lock_irqsave(&q->requeue_lock, flags);
1479 	if (insert_flags & BLK_MQ_INSERT_AT_HEAD) {
1480 		rq->rq_flags |= RQF_SOFTBARRIER;
1481 		list_add(&rq->queuelist, &q->requeue_list);
1482 	} else {
1483 		list_add_tail(&rq->queuelist, &q->requeue_list);
1484 	}
1485 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1486 }
1487 
1488 void blk_mq_kick_requeue_list(struct request_queue *q)
1489 {
1490 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1491 }
1492 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1493 
1494 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1495 				    unsigned long msecs)
1496 {
1497 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1498 				    msecs_to_jiffies(msecs));
1499 }
1500 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1501 
1502 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1503 {
1504 	/*
1505 	 * If we find a request that isn't idle we know the queue is busy
1506 	 * as it's checked in the iter.
1507 	 * Return false to stop the iteration.
1508 	 */
1509 	if (blk_mq_request_started(rq)) {
1510 		bool *busy = priv;
1511 
1512 		*busy = true;
1513 		return false;
1514 	}
1515 
1516 	return true;
1517 }
1518 
1519 bool blk_mq_queue_inflight(struct request_queue *q)
1520 {
1521 	bool busy = false;
1522 
1523 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1524 	return busy;
1525 }
1526 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1527 
1528 static void blk_mq_rq_timed_out(struct request *req)
1529 {
1530 	req->rq_flags |= RQF_TIMED_OUT;
1531 	if (req->q->mq_ops->timeout) {
1532 		enum blk_eh_timer_return ret;
1533 
1534 		ret = req->q->mq_ops->timeout(req);
1535 		if (ret == BLK_EH_DONE)
1536 			return;
1537 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1538 	}
1539 
1540 	blk_add_timer(req);
1541 }
1542 
1543 struct blk_expired_data {
1544 	bool has_timedout_rq;
1545 	unsigned long next;
1546 	unsigned long timeout_start;
1547 };
1548 
1549 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1550 {
1551 	unsigned long deadline;
1552 
1553 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1554 		return false;
1555 	if (rq->rq_flags & RQF_TIMED_OUT)
1556 		return false;
1557 
1558 	deadline = READ_ONCE(rq->deadline);
1559 	if (time_after_eq(expired->timeout_start, deadline))
1560 		return true;
1561 
1562 	if (expired->next == 0)
1563 		expired->next = deadline;
1564 	else if (time_after(expired->next, deadline))
1565 		expired->next = deadline;
1566 	return false;
1567 }
1568 
1569 void blk_mq_put_rq_ref(struct request *rq)
1570 {
1571 	if (is_flush_rq(rq)) {
1572 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1573 			blk_mq_free_request(rq);
1574 	} else if (req_ref_put_and_test(rq)) {
1575 		__blk_mq_free_request(rq);
1576 	}
1577 }
1578 
1579 static bool blk_mq_check_expired(struct request *rq, void *priv)
1580 {
1581 	struct blk_expired_data *expired = priv;
1582 
1583 	/*
1584 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1585 	 * be reallocated underneath the timeout handler's processing, then
1586 	 * the expire check is reliable. If the request is not expired, then
1587 	 * it was completed and reallocated as a new request after returning
1588 	 * from blk_mq_check_expired().
1589 	 */
1590 	if (blk_mq_req_expired(rq, expired)) {
1591 		expired->has_timedout_rq = true;
1592 		return false;
1593 	}
1594 	return true;
1595 }
1596 
1597 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1598 {
1599 	struct blk_expired_data *expired = priv;
1600 
1601 	if (blk_mq_req_expired(rq, expired))
1602 		blk_mq_rq_timed_out(rq);
1603 	return true;
1604 }
1605 
1606 static void blk_mq_timeout_work(struct work_struct *work)
1607 {
1608 	struct request_queue *q =
1609 		container_of(work, struct request_queue, timeout_work);
1610 	struct blk_expired_data expired = {
1611 		.timeout_start = jiffies,
1612 	};
1613 	struct blk_mq_hw_ctx *hctx;
1614 	unsigned long i;
1615 
1616 	/* A deadlock might occur if a request is stuck requiring a
1617 	 * timeout at the same time a queue freeze is waiting
1618 	 * completion, since the timeout code would not be able to
1619 	 * acquire the queue reference here.
1620 	 *
1621 	 * That's why we don't use blk_queue_enter here; instead, we use
1622 	 * percpu_ref_tryget directly, because we need to be able to
1623 	 * obtain a reference even in the short window between the queue
1624 	 * starting to freeze, by dropping the first reference in
1625 	 * blk_freeze_queue_start, and the moment the last request is
1626 	 * consumed, marked by the instant q_usage_counter reaches
1627 	 * zero.
1628 	 */
1629 	if (!percpu_ref_tryget(&q->q_usage_counter))
1630 		return;
1631 
1632 	/* check if there is any timed-out request */
1633 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1634 	if (expired.has_timedout_rq) {
1635 		/*
1636 		 * Before walking tags, we must ensure any submit started
1637 		 * before the current time has finished. Since the submit
1638 		 * uses srcu or rcu, wait for a synchronization point to
1639 		 * ensure all running submits have finished
1640 		 */
1641 		blk_mq_wait_quiesce_done(q->tag_set);
1642 
1643 		expired.next = 0;
1644 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1645 	}
1646 
1647 	if (expired.next != 0) {
1648 		mod_timer(&q->timeout, expired.next);
1649 	} else {
1650 		/*
1651 		 * Request timeouts are handled as a forward rolling timer. If
1652 		 * we end up here it means that no requests are pending and
1653 		 * also that no request has been pending for a while. Mark
1654 		 * each hctx as idle.
1655 		 */
1656 		queue_for_each_hw_ctx(q, hctx, i) {
1657 			/* the hctx may be unmapped, so check it here */
1658 			if (blk_mq_hw_queue_mapped(hctx))
1659 				blk_mq_tag_idle(hctx);
1660 		}
1661 	}
1662 	blk_queue_exit(q);
1663 }
1664 
1665 struct flush_busy_ctx_data {
1666 	struct blk_mq_hw_ctx *hctx;
1667 	struct list_head *list;
1668 };
1669 
1670 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1671 {
1672 	struct flush_busy_ctx_data *flush_data = data;
1673 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1674 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1675 	enum hctx_type type = hctx->type;
1676 
1677 	spin_lock(&ctx->lock);
1678 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1679 	sbitmap_clear_bit(sb, bitnr);
1680 	spin_unlock(&ctx->lock);
1681 	return true;
1682 }
1683 
1684 /*
1685  * Process software queues that have been marked busy, splicing them
1686  * to the for-dispatch
1687  */
1688 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1689 {
1690 	struct flush_busy_ctx_data data = {
1691 		.hctx = hctx,
1692 		.list = list,
1693 	};
1694 
1695 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1696 }
1697 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1698 
1699 struct dispatch_rq_data {
1700 	struct blk_mq_hw_ctx *hctx;
1701 	struct request *rq;
1702 };
1703 
1704 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1705 		void *data)
1706 {
1707 	struct dispatch_rq_data *dispatch_data = data;
1708 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1709 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1710 	enum hctx_type type = hctx->type;
1711 
1712 	spin_lock(&ctx->lock);
1713 	if (!list_empty(&ctx->rq_lists[type])) {
1714 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1715 		list_del_init(&dispatch_data->rq->queuelist);
1716 		if (list_empty(&ctx->rq_lists[type]))
1717 			sbitmap_clear_bit(sb, bitnr);
1718 	}
1719 	spin_unlock(&ctx->lock);
1720 
1721 	return !dispatch_data->rq;
1722 }
1723 
1724 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1725 					struct blk_mq_ctx *start)
1726 {
1727 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1728 	struct dispatch_rq_data data = {
1729 		.hctx = hctx,
1730 		.rq   = NULL,
1731 	};
1732 
1733 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1734 			       dispatch_rq_from_ctx, &data);
1735 
1736 	return data.rq;
1737 }
1738 
1739 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1740 {
1741 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1742 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1743 	int tag;
1744 
1745 	blk_mq_tag_busy(rq->mq_hctx);
1746 
1747 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1748 		bt = &rq->mq_hctx->tags->breserved_tags;
1749 		tag_offset = 0;
1750 	} else {
1751 		if (!hctx_may_queue(rq->mq_hctx, bt))
1752 			return false;
1753 	}
1754 
1755 	tag = __sbitmap_queue_get(bt);
1756 	if (tag == BLK_MQ_NO_TAG)
1757 		return false;
1758 
1759 	rq->tag = tag + tag_offset;
1760 	return true;
1761 }
1762 
1763 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1764 {
1765 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1766 		return false;
1767 
1768 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1769 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1770 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1771 		__blk_mq_inc_active_requests(hctx);
1772 	}
1773 	hctx->tags->rqs[rq->tag] = rq;
1774 	return true;
1775 }
1776 
1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778 				int flags, void *key)
1779 {
1780 	struct blk_mq_hw_ctx *hctx;
1781 
1782 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783 
1784 	spin_lock(&hctx->dispatch_wait_lock);
1785 	if (!list_empty(&wait->entry)) {
1786 		struct sbitmap_queue *sbq;
1787 
1788 		list_del_init(&wait->entry);
1789 		sbq = &hctx->tags->bitmap_tags;
1790 		atomic_dec(&sbq->ws_active);
1791 	}
1792 	spin_unlock(&hctx->dispatch_wait_lock);
1793 
1794 	blk_mq_run_hw_queue(hctx, true);
1795 	return 1;
1796 }
1797 
1798 /*
1799  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801  * restart. For both cases, take care to check the condition again after
1802  * marking us as waiting.
1803  */
1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805 				 struct request *rq)
1806 {
1807 	struct sbitmap_queue *sbq;
1808 	struct wait_queue_head *wq;
1809 	wait_queue_entry_t *wait;
1810 	bool ret;
1811 
1812 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1814 		blk_mq_sched_mark_restart_hctx(hctx);
1815 
1816 		/*
1817 		 * It's possible that a tag was freed in the window between the
1818 		 * allocation failure and adding the hardware queue to the wait
1819 		 * queue.
1820 		 *
1821 		 * Don't clear RESTART here, someone else could have set it.
1822 		 * At most this will cost an extra queue run.
1823 		 */
1824 		return blk_mq_get_driver_tag(rq);
1825 	}
1826 
1827 	wait = &hctx->dispatch_wait;
1828 	if (!list_empty_careful(&wait->entry))
1829 		return false;
1830 
1831 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832 		sbq = &hctx->tags->breserved_tags;
1833 	else
1834 		sbq = &hctx->tags->bitmap_tags;
1835 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1836 
1837 	spin_lock_irq(&wq->lock);
1838 	spin_lock(&hctx->dispatch_wait_lock);
1839 	if (!list_empty(&wait->entry)) {
1840 		spin_unlock(&hctx->dispatch_wait_lock);
1841 		spin_unlock_irq(&wq->lock);
1842 		return false;
1843 	}
1844 
1845 	atomic_inc(&sbq->ws_active);
1846 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847 	__add_wait_queue(wq, wait);
1848 
1849 	/*
1850 	 * It's possible that a tag was freed in the window between the
1851 	 * allocation failure and adding the hardware queue to the wait
1852 	 * queue.
1853 	 */
1854 	ret = blk_mq_get_driver_tag(rq);
1855 	if (!ret) {
1856 		spin_unlock(&hctx->dispatch_wait_lock);
1857 		spin_unlock_irq(&wq->lock);
1858 		return false;
1859 	}
1860 
1861 	/*
1862 	 * We got a tag, remove ourselves from the wait queue to ensure
1863 	 * someone else gets the wakeup.
1864 	 */
1865 	list_del_init(&wait->entry);
1866 	atomic_dec(&sbq->ws_active);
1867 	spin_unlock(&hctx->dispatch_wait_lock);
1868 	spin_unlock_irq(&wq->lock);
1869 
1870 	return true;
1871 }
1872 
1873 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1874 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1875 /*
1876  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1877  * - EWMA is one simple way to compute running average value
1878  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1879  * - take 4 as factor for avoiding to get too small(0) result, and this
1880  *   factor doesn't matter because EWMA decreases exponentially
1881  */
1882 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1883 {
1884 	unsigned int ewma;
1885 
1886 	ewma = hctx->dispatch_busy;
1887 
1888 	if (!ewma && !busy)
1889 		return;
1890 
1891 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1892 	if (busy)
1893 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1894 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1895 
1896 	hctx->dispatch_busy = ewma;
1897 }
1898 
1899 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1900 
1901 static void blk_mq_handle_dev_resource(struct request *rq,
1902 				       struct list_head *list)
1903 {
1904 	list_add(&rq->queuelist, list);
1905 	__blk_mq_requeue_request(rq);
1906 }
1907 
1908 static void blk_mq_handle_zone_resource(struct request *rq,
1909 					struct list_head *zone_list)
1910 {
1911 	/*
1912 	 * If we end up here it is because we cannot dispatch a request to a
1913 	 * specific zone due to LLD level zone-write locking or other zone
1914 	 * related resource not being available. In this case, set the request
1915 	 * aside in zone_list for retrying it later.
1916 	 */
1917 	list_add(&rq->queuelist, zone_list);
1918 	__blk_mq_requeue_request(rq);
1919 }
1920 
1921 enum prep_dispatch {
1922 	PREP_DISPATCH_OK,
1923 	PREP_DISPATCH_NO_TAG,
1924 	PREP_DISPATCH_NO_BUDGET,
1925 };
1926 
1927 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1928 						  bool need_budget)
1929 {
1930 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1931 	int budget_token = -1;
1932 
1933 	if (need_budget) {
1934 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1935 		if (budget_token < 0) {
1936 			blk_mq_put_driver_tag(rq);
1937 			return PREP_DISPATCH_NO_BUDGET;
1938 		}
1939 		blk_mq_set_rq_budget_token(rq, budget_token);
1940 	}
1941 
1942 	if (!blk_mq_get_driver_tag(rq)) {
1943 		/*
1944 		 * The initial allocation attempt failed, so we need to
1945 		 * rerun the hardware queue when a tag is freed. The
1946 		 * waitqueue takes care of that. If the queue is run
1947 		 * before we add this entry back on the dispatch list,
1948 		 * we'll re-run it below.
1949 		 */
1950 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1951 			/*
1952 			 * All budgets not got from this function will be put
1953 			 * together during handling partial dispatch
1954 			 */
1955 			if (need_budget)
1956 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1957 			return PREP_DISPATCH_NO_TAG;
1958 		}
1959 	}
1960 
1961 	return PREP_DISPATCH_OK;
1962 }
1963 
1964 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1965 static void blk_mq_release_budgets(struct request_queue *q,
1966 		struct list_head *list)
1967 {
1968 	struct request *rq;
1969 
1970 	list_for_each_entry(rq, list, queuelist) {
1971 		int budget_token = blk_mq_get_rq_budget_token(rq);
1972 
1973 		if (budget_token >= 0)
1974 			blk_mq_put_dispatch_budget(q, budget_token);
1975 	}
1976 }
1977 
1978 /*
1979  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1980  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1981  * details)
1982  * Attention, we should explicitly call this in unusual cases:
1983  *  1) did not queue everything initially scheduled to queue
1984  *  2) the last attempt to queue a request failed
1985  */
1986 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1987 			      bool from_schedule)
1988 {
1989 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1990 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1991 		hctx->queue->mq_ops->commit_rqs(hctx);
1992 	}
1993 }
1994 
1995 /*
1996  * Returns true if we did some work AND can potentially do more.
1997  */
1998 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1999 			     unsigned int nr_budgets)
2000 {
2001 	enum prep_dispatch prep;
2002 	struct request_queue *q = hctx->queue;
2003 	struct request *rq;
2004 	int queued;
2005 	blk_status_t ret = BLK_STS_OK;
2006 	LIST_HEAD(zone_list);
2007 	bool needs_resource = false;
2008 
2009 	if (list_empty(list))
2010 		return false;
2011 
2012 	/*
2013 	 * Now process all the entries, sending them to the driver.
2014 	 */
2015 	queued = 0;
2016 	do {
2017 		struct blk_mq_queue_data bd;
2018 
2019 		rq = list_first_entry(list, struct request, queuelist);
2020 
2021 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2022 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2023 		if (prep != PREP_DISPATCH_OK)
2024 			break;
2025 
2026 		list_del_init(&rq->queuelist);
2027 
2028 		bd.rq = rq;
2029 		bd.last = list_empty(list);
2030 
2031 		/*
2032 		 * once the request is queued to lld, no need to cover the
2033 		 * budget any more
2034 		 */
2035 		if (nr_budgets)
2036 			nr_budgets--;
2037 		ret = q->mq_ops->queue_rq(hctx, &bd);
2038 		switch (ret) {
2039 		case BLK_STS_OK:
2040 			queued++;
2041 			break;
2042 		case BLK_STS_RESOURCE:
2043 			needs_resource = true;
2044 			fallthrough;
2045 		case BLK_STS_DEV_RESOURCE:
2046 			blk_mq_handle_dev_resource(rq, list);
2047 			goto out;
2048 		case BLK_STS_ZONE_RESOURCE:
2049 			/*
2050 			 * Move the request to zone_list and keep going through
2051 			 * the dispatch list to find more requests the drive can
2052 			 * accept.
2053 			 */
2054 			blk_mq_handle_zone_resource(rq, &zone_list);
2055 			needs_resource = true;
2056 			break;
2057 		default:
2058 			blk_mq_end_request(rq, ret);
2059 		}
2060 	} while (!list_empty(list));
2061 out:
2062 	if (!list_empty(&zone_list))
2063 		list_splice_tail_init(&zone_list, list);
2064 
2065 	/* If we didn't flush the entire list, we could have told the driver
2066 	 * there was more coming, but that turned out to be a lie.
2067 	 */
2068 	if (!list_empty(list) || ret != BLK_STS_OK)
2069 		blk_mq_commit_rqs(hctx, queued, false);
2070 
2071 	/*
2072 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2073 	 * that is where we will continue on next queue run.
2074 	 */
2075 	if (!list_empty(list)) {
2076 		bool needs_restart;
2077 		/* For non-shared tags, the RESTART check will suffice */
2078 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2079 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2080 			blk_mq_is_shared_tags(hctx->flags));
2081 
2082 		if (nr_budgets)
2083 			blk_mq_release_budgets(q, list);
2084 
2085 		spin_lock(&hctx->lock);
2086 		list_splice_tail_init(list, &hctx->dispatch);
2087 		spin_unlock(&hctx->lock);
2088 
2089 		/*
2090 		 * Order adding requests to hctx->dispatch and checking
2091 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2092 		 * in blk_mq_sched_restart(). Avoid restart code path to
2093 		 * miss the new added requests to hctx->dispatch, meantime
2094 		 * SCHED_RESTART is observed here.
2095 		 */
2096 		smp_mb();
2097 
2098 		/*
2099 		 * If SCHED_RESTART was set by the caller of this function and
2100 		 * it is no longer set that means that it was cleared by another
2101 		 * thread and hence that a queue rerun is needed.
2102 		 *
2103 		 * If 'no_tag' is set, that means that we failed getting
2104 		 * a driver tag with an I/O scheduler attached. If our dispatch
2105 		 * waitqueue is no longer active, ensure that we run the queue
2106 		 * AFTER adding our entries back to the list.
2107 		 *
2108 		 * If no I/O scheduler has been configured it is possible that
2109 		 * the hardware queue got stopped and restarted before requests
2110 		 * were pushed back onto the dispatch list. Rerun the queue to
2111 		 * avoid starvation. Notes:
2112 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2113 		 *   been stopped before rerunning a queue.
2114 		 * - Some but not all block drivers stop a queue before
2115 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2116 		 *   and dm-rq.
2117 		 *
2118 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2119 		 * bit is set, run queue after a delay to avoid IO stalls
2120 		 * that could otherwise occur if the queue is idle.  We'll do
2121 		 * similar if we couldn't get budget or couldn't lock a zone
2122 		 * and SCHED_RESTART is set.
2123 		 */
2124 		needs_restart = blk_mq_sched_needs_restart(hctx);
2125 		if (prep == PREP_DISPATCH_NO_BUDGET)
2126 			needs_resource = true;
2127 		if (!needs_restart ||
2128 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2129 			blk_mq_run_hw_queue(hctx, true);
2130 		else if (needs_resource)
2131 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2132 
2133 		blk_mq_update_dispatch_busy(hctx, true);
2134 		return false;
2135 	}
2136 
2137 	blk_mq_update_dispatch_busy(hctx, false);
2138 	return true;
2139 }
2140 
2141 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2142 {
2143 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2144 
2145 	if (cpu >= nr_cpu_ids)
2146 		cpu = cpumask_first(hctx->cpumask);
2147 	return cpu;
2148 }
2149 
2150 /*
2151  * It'd be great if the workqueue API had a way to pass
2152  * in a mask and had some smarts for more clever placement.
2153  * For now we just round-robin here, switching for every
2154  * BLK_MQ_CPU_WORK_BATCH queued items.
2155  */
2156 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2157 {
2158 	bool tried = false;
2159 	int next_cpu = hctx->next_cpu;
2160 
2161 	if (hctx->queue->nr_hw_queues == 1)
2162 		return WORK_CPU_UNBOUND;
2163 
2164 	if (--hctx->next_cpu_batch <= 0) {
2165 select_cpu:
2166 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2167 				cpu_online_mask);
2168 		if (next_cpu >= nr_cpu_ids)
2169 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2170 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171 	}
2172 
2173 	/*
2174 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2175 	 * and it should only happen in the path of handling CPU DEAD.
2176 	 */
2177 	if (!cpu_online(next_cpu)) {
2178 		if (!tried) {
2179 			tried = true;
2180 			goto select_cpu;
2181 		}
2182 
2183 		/*
2184 		 * Make sure to re-select CPU next time once after CPUs
2185 		 * in hctx->cpumask become online again.
2186 		 */
2187 		hctx->next_cpu = next_cpu;
2188 		hctx->next_cpu_batch = 1;
2189 		return WORK_CPU_UNBOUND;
2190 	}
2191 
2192 	hctx->next_cpu = next_cpu;
2193 	return next_cpu;
2194 }
2195 
2196 /**
2197  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2198  * @hctx: Pointer to the hardware queue to run.
2199  * @msecs: Milliseconds of delay to wait before running the queue.
2200  *
2201  * Run a hardware queue asynchronously with a delay of @msecs.
2202  */
2203 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2204 {
2205 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2206 		return;
2207 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2208 				    msecs_to_jiffies(msecs));
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2211 
2212 /**
2213  * blk_mq_run_hw_queue - Start to run a hardware queue.
2214  * @hctx: Pointer to the hardware queue to run.
2215  * @async: If we want to run the queue asynchronously.
2216  *
2217  * Check if the request queue is not in a quiesced state and if there are
2218  * pending requests to be sent. If this is true, run the queue to send requests
2219  * to hardware.
2220  */
2221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2222 {
2223 	bool need_run;
2224 
2225 	/*
2226 	 * We can't run the queue inline with interrupts disabled.
2227 	 */
2228 	WARN_ON_ONCE(!async && in_interrupt());
2229 
2230 	/*
2231 	 * When queue is quiesced, we may be switching io scheduler, or
2232 	 * updating nr_hw_queues, or other things, and we can't run queue
2233 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2234 	 *
2235 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2236 	 * quiesced.
2237 	 */
2238 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2239 		need_run = !blk_queue_quiesced(hctx->queue) &&
2240 		blk_mq_hctx_has_pending(hctx));
2241 
2242 	if (!need_run)
2243 		return;
2244 
2245 	if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2246 	    !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2247 		blk_mq_delay_run_hw_queue(hctx, 0);
2248 		return;
2249 	}
2250 
2251 	blk_mq_run_dispatch_ops(hctx->queue,
2252 				blk_mq_sched_dispatch_requests(hctx));
2253 }
2254 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2255 
2256 /*
2257  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2258  * scheduler.
2259  */
2260 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2261 {
2262 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2263 	/*
2264 	 * If the IO scheduler does not respect hardware queues when
2265 	 * dispatching, we just don't bother with multiple HW queues and
2266 	 * dispatch from hctx for the current CPU since running multiple queues
2267 	 * just causes lock contention inside the scheduler and pointless cache
2268 	 * bouncing.
2269 	 */
2270 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2271 
2272 	if (!blk_mq_hctx_stopped(hctx))
2273 		return hctx;
2274 	return NULL;
2275 }
2276 
2277 /**
2278  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2279  * @q: Pointer to the request queue to run.
2280  * @async: If we want to run the queue asynchronously.
2281  */
2282 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2283 {
2284 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2285 	unsigned long i;
2286 
2287 	sq_hctx = NULL;
2288 	if (blk_queue_sq_sched(q))
2289 		sq_hctx = blk_mq_get_sq_hctx(q);
2290 	queue_for_each_hw_ctx(q, hctx, i) {
2291 		if (blk_mq_hctx_stopped(hctx))
2292 			continue;
2293 		/*
2294 		 * Dispatch from this hctx either if there's no hctx preferred
2295 		 * by IO scheduler or if it has requests that bypass the
2296 		 * scheduler.
2297 		 */
2298 		if (!sq_hctx || sq_hctx == hctx ||
2299 		    !list_empty_careful(&hctx->dispatch))
2300 			blk_mq_run_hw_queue(hctx, async);
2301 	}
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2304 
2305 /**
2306  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2307  * @q: Pointer to the request queue to run.
2308  * @msecs: Milliseconds of delay to wait before running the queues.
2309  */
2310 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2311 {
2312 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2313 	unsigned long i;
2314 
2315 	sq_hctx = NULL;
2316 	if (blk_queue_sq_sched(q))
2317 		sq_hctx = blk_mq_get_sq_hctx(q);
2318 	queue_for_each_hw_ctx(q, hctx, i) {
2319 		if (blk_mq_hctx_stopped(hctx))
2320 			continue;
2321 		/*
2322 		 * If there is already a run_work pending, leave the
2323 		 * pending delay untouched. Otherwise, a hctx can stall
2324 		 * if another hctx is re-delaying the other's work
2325 		 * before the work executes.
2326 		 */
2327 		if (delayed_work_pending(&hctx->run_work))
2328 			continue;
2329 		/*
2330 		 * Dispatch from this hctx either if there's no hctx preferred
2331 		 * by IO scheduler or if it has requests that bypass the
2332 		 * scheduler.
2333 		 */
2334 		if (!sq_hctx || sq_hctx == hctx ||
2335 		    !list_empty_careful(&hctx->dispatch))
2336 			blk_mq_delay_run_hw_queue(hctx, msecs);
2337 	}
2338 }
2339 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2340 
2341 /*
2342  * This function is often used for pausing .queue_rq() by driver when
2343  * there isn't enough resource or some conditions aren't satisfied, and
2344  * BLK_STS_RESOURCE is usually returned.
2345  *
2346  * We do not guarantee that dispatch can be drained or blocked
2347  * after blk_mq_stop_hw_queue() returns. Please use
2348  * blk_mq_quiesce_queue() for that requirement.
2349  */
2350 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2351 {
2352 	cancel_delayed_work(&hctx->run_work);
2353 
2354 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2355 }
2356 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2357 
2358 /*
2359  * This function is often used for pausing .queue_rq() by driver when
2360  * there isn't enough resource or some conditions aren't satisfied, and
2361  * BLK_STS_RESOURCE is usually returned.
2362  *
2363  * We do not guarantee that dispatch can be drained or blocked
2364  * after blk_mq_stop_hw_queues() returns. Please use
2365  * blk_mq_quiesce_queue() for that requirement.
2366  */
2367 void blk_mq_stop_hw_queues(struct request_queue *q)
2368 {
2369 	struct blk_mq_hw_ctx *hctx;
2370 	unsigned long i;
2371 
2372 	queue_for_each_hw_ctx(q, hctx, i)
2373 		blk_mq_stop_hw_queue(hctx);
2374 }
2375 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2376 
2377 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2378 {
2379 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2380 
2381 	blk_mq_run_hw_queue(hctx, false);
2382 }
2383 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2384 
2385 void blk_mq_start_hw_queues(struct request_queue *q)
2386 {
2387 	struct blk_mq_hw_ctx *hctx;
2388 	unsigned long i;
2389 
2390 	queue_for_each_hw_ctx(q, hctx, i)
2391 		blk_mq_start_hw_queue(hctx);
2392 }
2393 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2394 
2395 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2396 {
2397 	if (!blk_mq_hctx_stopped(hctx))
2398 		return;
2399 
2400 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401 	blk_mq_run_hw_queue(hctx, async);
2402 }
2403 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2404 
2405 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2406 {
2407 	struct blk_mq_hw_ctx *hctx;
2408 	unsigned long i;
2409 
2410 	queue_for_each_hw_ctx(q, hctx, i)
2411 		blk_mq_start_stopped_hw_queue(hctx, async);
2412 }
2413 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2414 
2415 static void blk_mq_run_work_fn(struct work_struct *work)
2416 {
2417 	struct blk_mq_hw_ctx *hctx =
2418 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2419 
2420 	blk_mq_run_dispatch_ops(hctx->queue,
2421 				blk_mq_sched_dispatch_requests(hctx));
2422 }
2423 
2424 /**
2425  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2426  * @rq: Pointer to request to be inserted.
2427  * @flags: BLK_MQ_INSERT_*
2428  *
2429  * Should only be used carefully, when the caller knows we want to
2430  * bypass a potential IO scheduler on the target device.
2431  */
2432 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2433 {
2434 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2435 
2436 	spin_lock(&hctx->lock);
2437 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2438 		list_add(&rq->queuelist, &hctx->dispatch);
2439 	else
2440 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2441 	spin_unlock(&hctx->lock);
2442 }
2443 
2444 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2445 		struct blk_mq_ctx *ctx, struct list_head *list,
2446 		bool run_queue_async)
2447 {
2448 	struct request *rq;
2449 	enum hctx_type type = hctx->type;
2450 
2451 	/*
2452 	 * Try to issue requests directly if the hw queue isn't busy to save an
2453 	 * extra enqueue & dequeue to the sw queue.
2454 	 */
2455 	if (!hctx->dispatch_busy && !run_queue_async) {
2456 		blk_mq_run_dispatch_ops(hctx->queue,
2457 			blk_mq_try_issue_list_directly(hctx, list));
2458 		if (list_empty(list))
2459 			goto out;
2460 	}
2461 
2462 	/*
2463 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2464 	 * offline now
2465 	 */
2466 	list_for_each_entry(rq, list, queuelist) {
2467 		BUG_ON(rq->mq_ctx != ctx);
2468 		trace_block_rq_insert(rq);
2469 	}
2470 
2471 	spin_lock(&ctx->lock);
2472 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2473 	blk_mq_hctx_mark_pending(hctx, ctx);
2474 	spin_unlock(&ctx->lock);
2475 out:
2476 	blk_mq_run_hw_queue(hctx, run_queue_async);
2477 }
2478 
2479 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2480 {
2481 	struct request_queue *q = rq->q;
2482 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2483 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2484 
2485 	if (blk_rq_is_passthrough(rq)) {
2486 		/*
2487 		 * Passthrough request have to be added to hctx->dispatch
2488 		 * directly.  The device may be in a situation where it can't
2489 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2490 		 * them, which gets them added to hctx->dispatch.
2491 		 *
2492 		 * If a passthrough request is required to unblock the queues,
2493 		 * and it is added to the scheduler queue, there is no chance to
2494 		 * dispatch it given we prioritize requests in hctx->dispatch.
2495 		 */
2496 		blk_mq_request_bypass_insert(rq, flags);
2497 	} else if (rq->rq_flags & RQF_FLUSH_SEQ) {
2498 		/*
2499 		 * Firstly normal IO request is inserted to scheduler queue or
2500 		 * sw queue, meantime we add flush request to dispatch queue(
2501 		 * hctx->dispatch) directly and there is at most one in-flight
2502 		 * flush request for each hw queue, so it doesn't matter to add
2503 		 * flush request to tail or front of the dispatch queue.
2504 		 *
2505 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2506 		 * command, and queueing it will fail when there is any
2507 		 * in-flight normal IO request(NCQ command). When adding flush
2508 		 * rq to the front of hctx->dispatch, it is easier to introduce
2509 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2510 		 * compared with adding to the tail of dispatch queue, then
2511 		 * chance of flush merge is increased, and less flush requests
2512 		 * will be issued to controller. It is observed that ~10% time
2513 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2514 		 * drive when adding flush rq to the front of hctx->dispatch.
2515 		 *
2516 		 * Simply queue flush rq to the front of hctx->dispatch so that
2517 		 * intensive flush workloads can benefit in case of NCQ HW.
2518 		 */
2519 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2520 	} else if (q->elevator) {
2521 		LIST_HEAD(list);
2522 
2523 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2524 
2525 		list_add(&rq->queuelist, &list);
2526 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2527 	} else {
2528 		trace_block_rq_insert(rq);
2529 
2530 		spin_lock(&ctx->lock);
2531 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2532 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2533 		else
2534 			list_add_tail(&rq->queuelist,
2535 				      &ctx->rq_lists[hctx->type]);
2536 		blk_mq_hctx_mark_pending(hctx, ctx);
2537 		spin_unlock(&ctx->lock);
2538 	}
2539 }
2540 
2541 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2542 		unsigned int nr_segs)
2543 {
2544 	int err;
2545 
2546 	if (bio->bi_opf & REQ_RAHEAD)
2547 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2548 
2549 	rq->__sector = bio->bi_iter.bi_sector;
2550 	blk_rq_bio_prep(rq, bio, nr_segs);
2551 
2552 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2553 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2554 	WARN_ON_ONCE(err);
2555 
2556 	blk_account_io_start(rq);
2557 }
2558 
2559 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2560 					    struct request *rq, bool last)
2561 {
2562 	struct request_queue *q = rq->q;
2563 	struct blk_mq_queue_data bd = {
2564 		.rq = rq,
2565 		.last = last,
2566 	};
2567 	blk_status_t ret;
2568 
2569 	/*
2570 	 * For OK queue, we are done. For error, caller may kill it.
2571 	 * Any other error (busy), just add it to our list as we
2572 	 * previously would have done.
2573 	 */
2574 	ret = q->mq_ops->queue_rq(hctx, &bd);
2575 	switch (ret) {
2576 	case BLK_STS_OK:
2577 		blk_mq_update_dispatch_busy(hctx, false);
2578 		break;
2579 	case BLK_STS_RESOURCE:
2580 	case BLK_STS_DEV_RESOURCE:
2581 		blk_mq_update_dispatch_busy(hctx, true);
2582 		__blk_mq_requeue_request(rq);
2583 		break;
2584 	default:
2585 		blk_mq_update_dispatch_busy(hctx, false);
2586 		break;
2587 	}
2588 
2589 	return ret;
2590 }
2591 
2592 static bool blk_mq_get_budget_and_tag(struct request *rq)
2593 {
2594 	int budget_token;
2595 
2596 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2597 	if (budget_token < 0)
2598 		return false;
2599 	blk_mq_set_rq_budget_token(rq, budget_token);
2600 	if (!blk_mq_get_driver_tag(rq)) {
2601 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2602 		return false;
2603 	}
2604 	return true;
2605 }
2606 
2607 /**
2608  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2609  * @hctx: Pointer of the associated hardware queue.
2610  * @rq: Pointer to request to be sent.
2611  *
2612  * If the device has enough resources to accept a new request now, send the
2613  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2614  * we can try send it another time in the future. Requests inserted at this
2615  * queue have higher priority.
2616  */
2617 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2618 		struct request *rq)
2619 {
2620 	blk_status_t ret;
2621 
2622 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2623 		blk_mq_insert_request(rq, 0);
2624 		return;
2625 	}
2626 
2627 	if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) {
2628 		blk_mq_insert_request(rq, 0);
2629 		blk_mq_run_hw_queue(hctx, false);
2630 		return;
2631 	}
2632 
2633 	ret = __blk_mq_issue_directly(hctx, rq, true);
2634 	switch (ret) {
2635 	case BLK_STS_OK:
2636 		break;
2637 	case BLK_STS_RESOURCE:
2638 	case BLK_STS_DEV_RESOURCE:
2639 		blk_mq_request_bypass_insert(rq, 0);
2640 		blk_mq_run_hw_queue(hctx, false);
2641 		break;
2642 	default:
2643 		blk_mq_end_request(rq, ret);
2644 		break;
2645 	}
2646 }
2647 
2648 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2649 {
2650 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2651 
2652 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2653 		blk_mq_insert_request(rq, 0);
2654 		return BLK_STS_OK;
2655 	}
2656 
2657 	if (!blk_mq_get_budget_and_tag(rq))
2658 		return BLK_STS_RESOURCE;
2659 	return __blk_mq_issue_directly(hctx, rq, last);
2660 }
2661 
2662 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2663 {
2664 	struct blk_mq_hw_ctx *hctx = NULL;
2665 	struct request *rq;
2666 	int queued = 0;
2667 	blk_status_t ret = BLK_STS_OK;
2668 
2669 	while ((rq = rq_list_pop(&plug->mq_list))) {
2670 		bool last = rq_list_empty(plug->mq_list);
2671 
2672 		if (hctx != rq->mq_hctx) {
2673 			if (hctx) {
2674 				blk_mq_commit_rqs(hctx, queued, false);
2675 				queued = 0;
2676 			}
2677 			hctx = rq->mq_hctx;
2678 		}
2679 
2680 		ret = blk_mq_request_issue_directly(rq, last);
2681 		switch (ret) {
2682 		case BLK_STS_OK:
2683 			queued++;
2684 			break;
2685 		case BLK_STS_RESOURCE:
2686 		case BLK_STS_DEV_RESOURCE:
2687 			blk_mq_request_bypass_insert(rq, 0);
2688 			blk_mq_run_hw_queue(hctx, false);
2689 			goto out;
2690 		default:
2691 			blk_mq_end_request(rq, ret);
2692 			break;
2693 		}
2694 	}
2695 
2696 out:
2697 	if (ret != BLK_STS_OK)
2698 		blk_mq_commit_rqs(hctx, queued, false);
2699 }
2700 
2701 static void __blk_mq_flush_plug_list(struct request_queue *q,
2702 				     struct blk_plug *plug)
2703 {
2704 	if (blk_queue_quiesced(q))
2705 		return;
2706 	q->mq_ops->queue_rqs(&plug->mq_list);
2707 }
2708 
2709 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2710 {
2711 	struct blk_mq_hw_ctx *this_hctx = NULL;
2712 	struct blk_mq_ctx *this_ctx = NULL;
2713 	struct request *requeue_list = NULL;
2714 	unsigned int depth = 0;
2715 	LIST_HEAD(list);
2716 
2717 	do {
2718 		struct request *rq = rq_list_pop(&plug->mq_list);
2719 
2720 		if (!this_hctx) {
2721 			this_hctx = rq->mq_hctx;
2722 			this_ctx = rq->mq_ctx;
2723 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2724 			rq_list_add(&requeue_list, rq);
2725 			continue;
2726 		}
2727 		list_add_tail(&rq->queuelist, &list);
2728 		depth++;
2729 	} while (!rq_list_empty(plug->mq_list));
2730 
2731 	plug->mq_list = requeue_list;
2732 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2733 
2734 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2735 	if (this_hctx->queue->elevator) {
2736 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2737 				&list, 0);
2738 		blk_mq_run_hw_queue(this_hctx, from_sched);
2739 	} else {
2740 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2741 	}
2742 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2743 }
2744 
2745 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2746 {
2747 	struct request *rq;
2748 
2749 	if (rq_list_empty(plug->mq_list))
2750 		return;
2751 	plug->rq_count = 0;
2752 
2753 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2754 		struct request_queue *q;
2755 
2756 		rq = rq_list_peek(&plug->mq_list);
2757 		q = rq->q;
2758 
2759 		/*
2760 		 * Peek first request and see if we have a ->queue_rqs() hook.
2761 		 * If we do, we can dispatch the whole plug list in one go. We
2762 		 * already know at this point that all requests belong to the
2763 		 * same queue, caller must ensure that's the case.
2764 		 *
2765 		 * Since we pass off the full list to the driver at this point,
2766 		 * we do not increment the active request count for the queue.
2767 		 * Bypass shared tags for now because of that.
2768 		 */
2769 		if (q->mq_ops->queue_rqs &&
2770 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2771 			blk_mq_run_dispatch_ops(q,
2772 				__blk_mq_flush_plug_list(q, plug));
2773 			if (rq_list_empty(plug->mq_list))
2774 				return;
2775 		}
2776 
2777 		blk_mq_run_dispatch_ops(q,
2778 				blk_mq_plug_issue_direct(plug));
2779 		if (rq_list_empty(plug->mq_list))
2780 			return;
2781 	}
2782 
2783 	do {
2784 		blk_mq_dispatch_plug_list(plug, from_schedule);
2785 	} while (!rq_list_empty(plug->mq_list));
2786 }
2787 
2788 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2789 		struct list_head *list)
2790 {
2791 	int queued = 0;
2792 	blk_status_t ret = BLK_STS_OK;
2793 
2794 	while (!list_empty(list)) {
2795 		struct request *rq = list_first_entry(list, struct request,
2796 				queuelist);
2797 
2798 		list_del_init(&rq->queuelist);
2799 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2800 		switch (ret) {
2801 		case BLK_STS_OK:
2802 			queued++;
2803 			break;
2804 		case BLK_STS_RESOURCE:
2805 		case BLK_STS_DEV_RESOURCE:
2806 			blk_mq_request_bypass_insert(rq, 0);
2807 			if (list_empty(list))
2808 				blk_mq_run_hw_queue(hctx, false);
2809 			goto out;
2810 		default:
2811 			blk_mq_end_request(rq, ret);
2812 			break;
2813 		}
2814 	}
2815 
2816 out:
2817 	if (ret != BLK_STS_OK)
2818 		blk_mq_commit_rqs(hctx, queued, false);
2819 }
2820 
2821 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2822 				     struct bio *bio, unsigned int nr_segs)
2823 {
2824 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2825 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2826 			return true;
2827 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2828 			return true;
2829 	}
2830 	return false;
2831 }
2832 
2833 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2834 					       struct blk_plug *plug,
2835 					       struct bio *bio,
2836 					       unsigned int nsegs)
2837 {
2838 	struct blk_mq_alloc_data data = {
2839 		.q		= q,
2840 		.nr_tags	= 1,
2841 		.cmd_flags	= bio->bi_opf,
2842 	};
2843 	struct request *rq;
2844 
2845 	if (unlikely(bio_queue_enter(bio)))
2846 		return NULL;
2847 
2848 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2849 		goto queue_exit;
2850 
2851 	rq_qos_throttle(q, bio);
2852 
2853 	if (plug) {
2854 		data.nr_tags = plug->nr_ios;
2855 		plug->nr_ios = 1;
2856 		data.cached_rq = &plug->cached_rq;
2857 	}
2858 
2859 	rq = __blk_mq_alloc_requests(&data);
2860 	if (rq)
2861 		return rq;
2862 	rq_qos_cleanup(q, bio);
2863 	if (bio->bi_opf & REQ_NOWAIT)
2864 		bio_wouldblock_error(bio);
2865 queue_exit:
2866 	blk_queue_exit(q);
2867 	return NULL;
2868 }
2869 
2870 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2871 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2872 {
2873 	struct request *rq;
2874 	enum hctx_type type, hctx_type;
2875 
2876 	if (!plug)
2877 		return NULL;
2878 
2879 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2880 		*bio = NULL;
2881 		return NULL;
2882 	}
2883 
2884 	rq = rq_list_peek(&plug->cached_rq);
2885 	if (!rq || rq->q != q)
2886 		return NULL;
2887 
2888 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2889 	hctx_type = rq->mq_hctx->type;
2890 	if (type != hctx_type &&
2891 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2892 		return NULL;
2893 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2894 		return NULL;
2895 
2896 	/*
2897 	 * If any qos ->throttle() end up blocking, we will have flushed the
2898 	 * plug and hence killed the cached_rq list as well. Pop this entry
2899 	 * before we throttle.
2900 	 */
2901 	plug->cached_rq = rq_list_next(rq);
2902 	rq_qos_throttle(q, *bio);
2903 
2904 	rq->cmd_flags = (*bio)->bi_opf;
2905 	INIT_LIST_HEAD(&rq->queuelist);
2906 	return rq;
2907 }
2908 
2909 static void bio_set_ioprio(struct bio *bio)
2910 {
2911 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2912 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2913 		bio->bi_ioprio = get_current_ioprio();
2914 	blkcg_set_ioprio(bio);
2915 }
2916 
2917 /**
2918  * blk_mq_submit_bio - Create and send a request to block device.
2919  * @bio: Bio pointer.
2920  *
2921  * Builds up a request structure from @q and @bio and send to the device. The
2922  * request may not be queued directly to hardware if:
2923  * * This request can be merged with another one
2924  * * We want to place request at plug queue for possible future merging
2925  * * There is an IO scheduler active at this queue
2926  *
2927  * It will not queue the request if there is an error with the bio, or at the
2928  * request creation.
2929  */
2930 void blk_mq_submit_bio(struct bio *bio)
2931 {
2932 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2933 	struct blk_plug *plug = blk_mq_plug(bio);
2934 	const int is_sync = op_is_sync(bio->bi_opf);
2935 	struct blk_mq_hw_ctx *hctx;
2936 	struct request *rq;
2937 	unsigned int nr_segs = 1;
2938 	blk_status_t ret;
2939 
2940 	bio = blk_queue_bounce(bio, q);
2941 	if (bio_may_exceed_limits(bio, &q->limits)) {
2942 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2943 		if (!bio)
2944 			return;
2945 	}
2946 
2947 	if (!bio_integrity_prep(bio))
2948 		return;
2949 
2950 	bio_set_ioprio(bio);
2951 
2952 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2953 	if (!rq) {
2954 		if (!bio)
2955 			return;
2956 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2957 		if (unlikely(!rq))
2958 			return;
2959 	}
2960 
2961 	trace_block_getrq(bio);
2962 
2963 	rq_qos_track(q, rq, bio);
2964 
2965 	blk_mq_bio_to_request(rq, bio, nr_segs);
2966 
2967 	ret = blk_crypto_rq_get_keyslot(rq);
2968 	if (ret != BLK_STS_OK) {
2969 		bio->bi_status = ret;
2970 		bio_endio(bio);
2971 		blk_mq_free_request(rq);
2972 		return;
2973 	}
2974 
2975 	if (op_is_flush(bio->bi_opf)) {
2976 		blk_insert_flush(rq);
2977 		return;
2978 	}
2979 
2980 	if (plug) {
2981 		blk_add_rq_to_plug(plug, rq);
2982 		return;
2983 	}
2984 
2985 	hctx = rq->mq_hctx;
2986 	if ((rq->rq_flags & RQF_ELV) ||
2987 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2988 		blk_mq_insert_request(rq, 0);
2989 		blk_mq_run_hw_queue(hctx, true);
2990 	} else {
2991 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2992 	}
2993 }
2994 
2995 #ifdef CONFIG_BLK_MQ_STACKING
2996 /**
2997  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2998  * @rq: the request being queued
2999  */
3000 blk_status_t blk_insert_cloned_request(struct request *rq)
3001 {
3002 	struct request_queue *q = rq->q;
3003 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3004 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3005 	blk_status_t ret;
3006 
3007 	if (blk_rq_sectors(rq) > max_sectors) {
3008 		/*
3009 		 * SCSI device does not have a good way to return if
3010 		 * Write Same/Zero is actually supported. If a device rejects
3011 		 * a non-read/write command (discard, write same,etc.) the
3012 		 * low-level device driver will set the relevant queue limit to
3013 		 * 0 to prevent blk-lib from issuing more of the offending
3014 		 * operations. Commands queued prior to the queue limit being
3015 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3016 		 * errors being propagated to upper layers.
3017 		 */
3018 		if (max_sectors == 0)
3019 			return BLK_STS_NOTSUPP;
3020 
3021 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3022 			__func__, blk_rq_sectors(rq), max_sectors);
3023 		return BLK_STS_IOERR;
3024 	}
3025 
3026 	/*
3027 	 * The queue settings related to segment counting may differ from the
3028 	 * original queue.
3029 	 */
3030 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3031 	if (rq->nr_phys_segments > max_segments) {
3032 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3033 			__func__, rq->nr_phys_segments, max_segments);
3034 		return BLK_STS_IOERR;
3035 	}
3036 
3037 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3038 		return BLK_STS_IOERR;
3039 
3040 	ret = blk_crypto_rq_get_keyslot(rq);
3041 	if (ret != BLK_STS_OK)
3042 		return ret;
3043 
3044 	blk_account_io_start(rq);
3045 
3046 	/*
3047 	 * Since we have a scheduler attached on the top device,
3048 	 * bypass a potential scheduler on the bottom device for
3049 	 * insert.
3050 	 */
3051 	blk_mq_run_dispatch_ops(q,
3052 			ret = blk_mq_request_issue_directly(rq, true));
3053 	if (ret)
3054 		blk_account_io_done(rq, ktime_get_ns());
3055 	return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3058 
3059 /**
3060  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3061  * @rq: the clone request to be cleaned up
3062  *
3063  * Description:
3064  *     Free all bios in @rq for a cloned request.
3065  */
3066 void blk_rq_unprep_clone(struct request *rq)
3067 {
3068 	struct bio *bio;
3069 
3070 	while ((bio = rq->bio) != NULL) {
3071 		rq->bio = bio->bi_next;
3072 
3073 		bio_put(bio);
3074 	}
3075 }
3076 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3077 
3078 /**
3079  * blk_rq_prep_clone - Helper function to setup clone request
3080  * @rq: the request to be setup
3081  * @rq_src: original request to be cloned
3082  * @bs: bio_set that bios for clone are allocated from
3083  * @gfp_mask: memory allocation mask for bio
3084  * @bio_ctr: setup function to be called for each clone bio.
3085  *           Returns %0 for success, non %0 for failure.
3086  * @data: private data to be passed to @bio_ctr
3087  *
3088  * Description:
3089  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3090  *     Also, pages which the original bios are pointing to are not copied
3091  *     and the cloned bios just point same pages.
3092  *     So cloned bios must be completed before original bios, which means
3093  *     the caller must complete @rq before @rq_src.
3094  */
3095 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3096 		      struct bio_set *bs, gfp_t gfp_mask,
3097 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3098 		      void *data)
3099 {
3100 	struct bio *bio, *bio_src;
3101 
3102 	if (!bs)
3103 		bs = &fs_bio_set;
3104 
3105 	__rq_for_each_bio(bio_src, rq_src) {
3106 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3107 				      bs);
3108 		if (!bio)
3109 			goto free_and_out;
3110 
3111 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3112 			goto free_and_out;
3113 
3114 		if (rq->bio) {
3115 			rq->biotail->bi_next = bio;
3116 			rq->biotail = bio;
3117 		} else {
3118 			rq->bio = rq->biotail = bio;
3119 		}
3120 		bio = NULL;
3121 	}
3122 
3123 	/* Copy attributes of the original request to the clone request. */
3124 	rq->__sector = blk_rq_pos(rq_src);
3125 	rq->__data_len = blk_rq_bytes(rq_src);
3126 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3127 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3128 		rq->special_vec = rq_src->special_vec;
3129 	}
3130 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3131 	rq->ioprio = rq_src->ioprio;
3132 
3133 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3134 		goto free_and_out;
3135 
3136 	return 0;
3137 
3138 free_and_out:
3139 	if (bio)
3140 		bio_put(bio);
3141 	blk_rq_unprep_clone(rq);
3142 
3143 	return -ENOMEM;
3144 }
3145 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3146 #endif /* CONFIG_BLK_MQ_STACKING */
3147 
3148 /*
3149  * Steal bios from a request and add them to a bio list.
3150  * The request must not have been partially completed before.
3151  */
3152 void blk_steal_bios(struct bio_list *list, struct request *rq)
3153 {
3154 	if (rq->bio) {
3155 		if (list->tail)
3156 			list->tail->bi_next = rq->bio;
3157 		else
3158 			list->head = rq->bio;
3159 		list->tail = rq->biotail;
3160 
3161 		rq->bio = NULL;
3162 		rq->biotail = NULL;
3163 	}
3164 
3165 	rq->__data_len = 0;
3166 }
3167 EXPORT_SYMBOL_GPL(blk_steal_bios);
3168 
3169 static size_t order_to_size(unsigned int order)
3170 {
3171 	return (size_t)PAGE_SIZE << order;
3172 }
3173 
3174 /* called before freeing request pool in @tags */
3175 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3176 				    struct blk_mq_tags *tags)
3177 {
3178 	struct page *page;
3179 	unsigned long flags;
3180 
3181 	/*
3182 	 * There is no need to clear mapping if driver tags is not initialized
3183 	 * or the mapping belongs to the driver tags.
3184 	 */
3185 	if (!drv_tags || drv_tags == tags)
3186 		return;
3187 
3188 	list_for_each_entry(page, &tags->page_list, lru) {
3189 		unsigned long start = (unsigned long)page_address(page);
3190 		unsigned long end = start + order_to_size(page->private);
3191 		int i;
3192 
3193 		for (i = 0; i < drv_tags->nr_tags; i++) {
3194 			struct request *rq = drv_tags->rqs[i];
3195 			unsigned long rq_addr = (unsigned long)rq;
3196 
3197 			if (rq_addr >= start && rq_addr < end) {
3198 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3199 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3200 			}
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * Wait until all pending iteration is done.
3206 	 *
3207 	 * Request reference is cleared and it is guaranteed to be observed
3208 	 * after the ->lock is released.
3209 	 */
3210 	spin_lock_irqsave(&drv_tags->lock, flags);
3211 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3212 }
3213 
3214 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3215 		     unsigned int hctx_idx)
3216 {
3217 	struct blk_mq_tags *drv_tags;
3218 	struct page *page;
3219 
3220 	if (list_empty(&tags->page_list))
3221 		return;
3222 
3223 	if (blk_mq_is_shared_tags(set->flags))
3224 		drv_tags = set->shared_tags;
3225 	else
3226 		drv_tags = set->tags[hctx_idx];
3227 
3228 	if (tags->static_rqs && set->ops->exit_request) {
3229 		int i;
3230 
3231 		for (i = 0; i < tags->nr_tags; i++) {
3232 			struct request *rq = tags->static_rqs[i];
3233 
3234 			if (!rq)
3235 				continue;
3236 			set->ops->exit_request(set, rq, hctx_idx);
3237 			tags->static_rqs[i] = NULL;
3238 		}
3239 	}
3240 
3241 	blk_mq_clear_rq_mapping(drv_tags, tags);
3242 
3243 	while (!list_empty(&tags->page_list)) {
3244 		page = list_first_entry(&tags->page_list, struct page, lru);
3245 		list_del_init(&page->lru);
3246 		/*
3247 		 * Remove kmemleak object previously allocated in
3248 		 * blk_mq_alloc_rqs().
3249 		 */
3250 		kmemleak_free(page_address(page));
3251 		__free_pages(page, page->private);
3252 	}
3253 }
3254 
3255 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3256 {
3257 	kfree(tags->rqs);
3258 	tags->rqs = NULL;
3259 	kfree(tags->static_rqs);
3260 	tags->static_rqs = NULL;
3261 
3262 	blk_mq_free_tags(tags);
3263 }
3264 
3265 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3266 		unsigned int hctx_idx)
3267 {
3268 	int i;
3269 
3270 	for (i = 0; i < set->nr_maps; i++) {
3271 		unsigned int start = set->map[i].queue_offset;
3272 		unsigned int end = start + set->map[i].nr_queues;
3273 
3274 		if (hctx_idx >= start && hctx_idx < end)
3275 			break;
3276 	}
3277 
3278 	if (i >= set->nr_maps)
3279 		i = HCTX_TYPE_DEFAULT;
3280 
3281 	return i;
3282 }
3283 
3284 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3285 		unsigned int hctx_idx)
3286 {
3287 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3288 
3289 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3290 }
3291 
3292 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3293 					       unsigned int hctx_idx,
3294 					       unsigned int nr_tags,
3295 					       unsigned int reserved_tags)
3296 {
3297 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3298 	struct blk_mq_tags *tags;
3299 
3300 	if (node == NUMA_NO_NODE)
3301 		node = set->numa_node;
3302 
3303 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3304 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3305 	if (!tags)
3306 		return NULL;
3307 
3308 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3309 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3310 				 node);
3311 	if (!tags->rqs)
3312 		goto err_free_tags;
3313 
3314 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3315 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3316 					node);
3317 	if (!tags->static_rqs)
3318 		goto err_free_rqs;
3319 
3320 	return tags;
3321 
3322 err_free_rqs:
3323 	kfree(tags->rqs);
3324 err_free_tags:
3325 	blk_mq_free_tags(tags);
3326 	return NULL;
3327 }
3328 
3329 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3330 			       unsigned int hctx_idx, int node)
3331 {
3332 	int ret;
3333 
3334 	if (set->ops->init_request) {
3335 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3336 		if (ret)
3337 			return ret;
3338 	}
3339 
3340 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3341 	return 0;
3342 }
3343 
3344 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3345 			    struct blk_mq_tags *tags,
3346 			    unsigned int hctx_idx, unsigned int depth)
3347 {
3348 	unsigned int i, j, entries_per_page, max_order = 4;
3349 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3350 	size_t rq_size, left;
3351 
3352 	if (node == NUMA_NO_NODE)
3353 		node = set->numa_node;
3354 
3355 	INIT_LIST_HEAD(&tags->page_list);
3356 
3357 	/*
3358 	 * rq_size is the size of the request plus driver payload, rounded
3359 	 * to the cacheline size
3360 	 */
3361 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3362 				cache_line_size());
3363 	left = rq_size * depth;
3364 
3365 	for (i = 0; i < depth; ) {
3366 		int this_order = max_order;
3367 		struct page *page;
3368 		int to_do;
3369 		void *p;
3370 
3371 		while (this_order && left < order_to_size(this_order - 1))
3372 			this_order--;
3373 
3374 		do {
3375 			page = alloc_pages_node(node,
3376 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3377 				this_order);
3378 			if (page)
3379 				break;
3380 			if (!this_order--)
3381 				break;
3382 			if (order_to_size(this_order) < rq_size)
3383 				break;
3384 		} while (1);
3385 
3386 		if (!page)
3387 			goto fail;
3388 
3389 		page->private = this_order;
3390 		list_add_tail(&page->lru, &tags->page_list);
3391 
3392 		p = page_address(page);
3393 		/*
3394 		 * Allow kmemleak to scan these pages as they contain pointers
3395 		 * to additional allocations like via ops->init_request().
3396 		 */
3397 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3398 		entries_per_page = order_to_size(this_order) / rq_size;
3399 		to_do = min(entries_per_page, depth - i);
3400 		left -= to_do * rq_size;
3401 		for (j = 0; j < to_do; j++) {
3402 			struct request *rq = p;
3403 
3404 			tags->static_rqs[i] = rq;
3405 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3406 				tags->static_rqs[i] = NULL;
3407 				goto fail;
3408 			}
3409 
3410 			p += rq_size;
3411 			i++;
3412 		}
3413 	}
3414 	return 0;
3415 
3416 fail:
3417 	blk_mq_free_rqs(set, tags, hctx_idx);
3418 	return -ENOMEM;
3419 }
3420 
3421 struct rq_iter_data {
3422 	struct blk_mq_hw_ctx *hctx;
3423 	bool has_rq;
3424 };
3425 
3426 static bool blk_mq_has_request(struct request *rq, void *data)
3427 {
3428 	struct rq_iter_data *iter_data = data;
3429 
3430 	if (rq->mq_hctx != iter_data->hctx)
3431 		return true;
3432 	iter_data->has_rq = true;
3433 	return false;
3434 }
3435 
3436 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3437 {
3438 	struct blk_mq_tags *tags = hctx->sched_tags ?
3439 			hctx->sched_tags : hctx->tags;
3440 	struct rq_iter_data data = {
3441 		.hctx	= hctx,
3442 	};
3443 
3444 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3445 	return data.has_rq;
3446 }
3447 
3448 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3449 		struct blk_mq_hw_ctx *hctx)
3450 {
3451 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3452 		return false;
3453 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3454 		return false;
3455 	return true;
3456 }
3457 
3458 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3459 {
3460 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3461 			struct blk_mq_hw_ctx, cpuhp_online);
3462 
3463 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3464 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3465 		return 0;
3466 
3467 	/*
3468 	 * Prevent new request from being allocated on the current hctx.
3469 	 *
3470 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3471 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3472 	 * seen once we return from the tag allocator.
3473 	 */
3474 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3475 	smp_mb__after_atomic();
3476 
3477 	/*
3478 	 * Try to grab a reference to the queue and wait for any outstanding
3479 	 * requests.  If we could not grab a reference the queue has been
3480 	 * frozen and there are no requests.
3481 	 */
3482 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3483 		while (blk_mq_hctx_has_requests(hctx))
3484 			msleep(5);
3485 		percpu_ref_put(&hctx->queue->q_usage_counter);
3486 	}
3487 
3488 	return 0;
3489 }
3490 
3491 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3492 {
3493 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3494 			struct blk_mq_hw_ctx, cpuhp_online);
3495 
3496 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3497 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3498 	return 0;
3499 }
3500 
3501 /*
3502  * 'cpu' is going away. splice any existing rq_list entries from this
3503  * software queue to the hw queue dispatch list, and ensure that it
3504  * gets run.
3505  */
3506 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3507 {
3508 	struct blk_mq_hw_ctx *hctx;
3509 	struct blk_mq_ctx *ctx;
3510 	LIST_HEAD(tmp);
3511 	enum hctx_type type;
3512 
3513 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3514 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3515 		return 0;
3516 
3517 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3518 	type = hctx->type;
3519 
3520 	spin_lock(&ctx->lock);
3521 	if (!list_empty(&ctx->rq_lists[type])) {
3522 		list_splice_init(&ctx->rq_lists[type], &tmp);
3523 		blk_mq_hctx_clear_pending(hctx, ctx);
3524 	}
3525 	spin_unlock(&ctx->lock);
3526 
3527 	if (list_empty(&tmp))
3528 		return 0;
3529 
3530 	spin_lock(&hctx->lock);
3531 	list_splice_tail_init(&tmp, &hctx->dispatch);
3532 	spin_unlock(&hctx->lock);
3533 
3534 	blk_mq_run_hw_queue(hctx, true);
3535 	return 0;
3536 }
3537 
3538 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3539 {
3540 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3541 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3542 						    &hctx->cpuhp_online);
3543 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3544 					    &hctx->cpuhp_dead);
3545 }
3546 
3547 /*
3548  * Before freeing hw queue, clearing the flush request reference in
3549  * tags->rqs[] for avoiding potential UAF.
3550  */
3551 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3552 		unsigned int queue_depth, struct request *flush_rq)
3553 {
3554 	int i;
3555 	unsigned long flags;
3556 
3557 	/* The hw queue may not be mapped yet */
3558 	if (!tags)
3559 		return;
3560 
3561 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3562 
3563 	for (i = 0; i < queue_depth; i++)
3564 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3565 
3566 	/*
3567 	 * Wait until all pending iteration is done.
3568 	 *
3569 	 * Request reference is cleared and it is guaranteed to be observed
3570 	 * after the ->lock is released.
3571 	 */
3572 	spin_lock_irqsave(&tags->lock, flags);
3573 	spin_unlock_irqrestore(&tags->lock, flags);
3574 }
3575 
3576 /* hctx->ctxs will be freed in queue's release handler */
3577 static void blk_mq_exit_hctx(struct request_queue *q,
3578 		struct blk_mq_tag_set *set,
3579 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3580 {
3581 	struct request *flush_rq = hctx->fq->flush_rq;
3582 
3583 	if (blk_mq_hw_queue_mapped(hctx))
3584 		blk_mq_tag_idle(hctx);
3585 
3586 	if (blk_queue_init_done(q))
3587 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3588 				set->queue_depth, flush_rq);
3589 	if (set->ops->exit_request)
3590 		set->ops->exit_request(set, flush_rq, hctx_idx);
3591 
3592 	if (set->ops->exit_hctx)
3593 		set->ops->exit_hctx(hctx, hctx_idx);
3594 
3595 	blk_mq_remove_cpuhp(hctx);
3596 
3597 	xa_erase(&q->hctx_table, hctx_idx);
3598 
3599 	spin_lock(&q->unused_hctx_lock);
3600 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3601 	spin_unlock(&q->unused_hctx_lock);
3602 }
3603 
3604 static void blk_mq_exit_hw_queues(struct request_queue *q,
3605 		struct blk_mq_tag_set *set, int nr_queue)
3606 {
3607 	struct blk_mq_hw_ctx *hctx;
3608 	unsigned long i;
3609 
3610 	queue_for_each_hw_ctx(q, hctx, i) {
3611 		if (i == nr_queue)
3612 			break;
3613 		blk_mq_exit_hctx(q, set, hctx, i);
3614 	}
3615 }
3616 
3617 static int blk_mq_init_hctx(struct request_queue *q,
3618 		struct blk_mq_tag_set *set,
3619 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3620 {
3621 	hctx->queue_num = hctx_idx;
3622 
3623 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3624 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3625 				&hctx->cpuhp_online);
3626 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3627 
3628 	hctx->tags = set->tags[hctx_idx];
3629 
3630 	if (set->ops->init_hctx &&
3631 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3632 		goto unregister_cpu_notifier;
3633 
3634 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3635 				hctx->numa_node))
3636 		goto exit_hctx;
3637 
3638 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3639 		goto exit_flush_rq;
3640 
3641 	return 0;
3642 
3643  exit_flush_rq:
3644 	if (set->ops->exit_request)
3645 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3646  exit_hctx:
3647 	if (set->ops->exit_hctx)
3648 		set->ops->exit_hctx(hctx, hctx_idx);
3649  unregister_cpu_notifier:
3650 	blk_mq_remove_cpuhp(hctx);
3651 	return -1;
3652 }
3653 
3654 static struct blk_mq_hw_ctx *
3655 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3656 		int node)
3657 {
3658 	struct blk_mq_hw_ctx *hctx;
3659 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3660 
3661 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3662 	if (!hctx)
3663 		goto fail_alloc_hctx;
3664 
3665 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3666 		goto free_hctx;
3667 
3668 	atomic_set(&hctx->nr_active, 0);
3669 	if (node == NUMA_NO_NODE)
3670 		node = set->numa_node;
3671 	hctx->numa_node = node;
3672 
3673 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3674 	spin_lock_init(&hctx->lock);
3675 	INIT_LIST_HEAD(&hctx->dispatch);
3676 	hctx->queue = q;
3677 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3678 
3679 	INIT_LIST_HEAD(&hctx->hctx_list);
3680 
3681 	/*
3682 	 * Allocate space for all possible cpus to avoid allocation at
3683 	 * runtime
3684 	 */
3685 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3686 			gfp, node);
3687 	if (!hctx->ctxs)
3688 		goto free_cpumask;
3689 
3690 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3691 				gfp, node, false, false))
3692 		goto free_ctxs;
3693 	hctx->nr_ctx = 0;
3694 
3695 	spin_lock_init(&hctx->dispatch_wait_lock);
3696 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3697 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3698 
3699 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3700 	if (!hctx->fq)
3701 		goto free_bitmap;
3702 
3703 	blk_mq_hctx_kobj_init(hctx);
3704 
3705 	return hctx;
3706 
3707  free_bitmap:
3708 	sbitmap_free(&hctx->ctx_map);
3709  free_ctxs:
3710 	kfree(hctx->ctxs);
3711  free_cpumask:
3712 	free_cpumask_var(hctx->cpumask);
3713  free_hctx:
3714 	kfree(hctx);
3715  fail_alloc_hctx:
3716 	return NULL;
3717 }
3718 
3719 static void blk_mq_init_cpu_queues(struct request_queue *q,
3720 				   unsigned int nr_hw_queues)
3721 {
3722 	struct blk_mq_tag_set *set = q->tag_set;
3723 	unsigned int i, j;
3724 
3725 	for_each_possible_cpu(i) {
3726 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3727 		struct blk_mq_hw_ctx *hctx;
3728 		int k;
3729 
3730 		__ctx->cpu = i;
3731 		spin_lock_init(&__ctx->lock);
3732 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3733 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3734 
3735 		__ctx->queue = q;
3736 
3737 		/*
3738 		 * Set local node, IFF we have more than one hw queue. If
3739 		 * not, we remain on the home node of the device
3740 		 */
3741 		for (j = 0; j < set->nr_maps; j++) {
3742 			hctx = blk_mq_map_queue_type(q, j, i);
3743 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3744 				hctx->numa_node = cpu_to_node(i);
3745 		}
3746 	}
3747 }
3748 
3749 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3750 					     unsigned int hctx_idx,
3751 					     unsigned int depth)
3752 {
3753 	struct blk_mq_tags *tags;
3754 	int ret;
3755 
3756 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3757 	if (!tags)
3758 		return NULL;
3759 
3760 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3761 	if (ret) {
3762 		blk_mq_free_rq_map(tags);
3763 		return NULL;
3764 	}
3765 
3766 	return tags;
3767 }
3768 
3769 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3770 				       int hctx_idx)
3771 {
3772 	if (blk_mq_is_shared_tags(set->flags)) {
3773 		set->tags[hctx_idx] = set->shared_tags;
3774 
3775 		return true;
3776 	}
3777 
3778 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3779 						       set->queue_depth);
3780 
3781 	return set->tags[hctx_idx];
3782 }
3783 
3784 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3785 			     struct blk_mq_tags *tags,
3786 			     unsigned int hctx_idx)
3787 {
3788 	if (tags) {
3789 		blk_mq_free_rqs(set, tags, hctx_idx);
3790 		blk_mq_free_rq_map(tags);
3791 	}
3792 }
3793 
3794 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3795 				      unsigned int hctx_idx)
3796 {
3797 	if (!blk_mq_is_shared_tags(set->flags))
3798 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3799 
3800 	set->tags[hctx_idx] = NULL;
3801 }
3802 
3803 static void blk_mq_map_swqueue(struct request_queue *q)
3804 {
3805 	unsigned int j, hctx_idx;
3806 	unsigned long i;
3807 	struct blk_mq_hw_ctx *hctx;
3808 	struct blk_mq_ctx *ctx;
3809 	struct blk_mq_tag_set *set = q->tag_set;
3810 
3811 	queue_for_each_hw_ctx(q, hctx, i) {
3812 		cpumask_clear(hctx->cpumask);
3813 		hctx->nr_ctx = 0;
3814 		hctx->dispatch_from = NULL;
3815 	}
3816 
3817 	/*
3818 	 * Map software to hardware queues.
3819 	 *
3820 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3821 	 */
3822 	for_each_possible_cpu(i) {
3823 
3824 		ctx = per_cpu_ptr(q->queue_ctx, i);
3825 		for (j = 0; j < set->nr_maps; j++) {
3826 			if (!set->map[j].nr_queues) {
3827 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3828 						HCTX_TYPE_DEFAULT, i);
3829 				continue;
3830 			}
3831 			hctx_idx = set->map[j].mq_map[i];
3832 			/* unmapped hw queue can be remapped after CPU topo changed */
3833 			if (!set->tags[hctx_idx] &&
3834 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3835 				/*
3836 				 * If tags initialization fail for some hctx,
3837 				 * that hctx won't be brought online.  In this
3838 				 * case, remap the current ctx to hctx[0] which
3839 				 * is guaranteed to always have tags allocated
3840 				 */
3841 				set->map[j].mq_map[i] = 0;
3842 			}
3843 
3844 			hctx = blk_mq_map_queue_type(q, j, i);
3845 			ctx->hctxs[j] = hctx;
3846 			/*
3847 			 * If the CPU is already set in the mask, then we've
3848 			 * mapped this one already. This can happen if
3849 			 * devices share queues across queue maps.
3850 			 */
3851 			if (cpumask_test_cpu(i, hctx->cpumask))
3852 				continue;
3853 
3854 			cpumask_set_cpu(i, hctx->cpumask);
3855 			hctx->type = j;
3856 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3857 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3858 
3859 			/*
3860 			 * If the nr_ctx type overflows, we have exceeded the
3861 			 * amount of sw queues we can support.
3862 			 */
3863 			BUG_ON(!hctx->nr_ctx);
3864 		}
3865 
3866 		for (; j < HCTX_MAX_TYPES; j++)
3867 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3868 					HCTX_TYPE_DEFAULT, i);
3869 	}
3870 
3871 	queue_for_each_hw_ctx(q, hctx, i) {
3872 		/*
3873 		 * If no software queues are mapped to this hardware queue,
3874 		 * disable it and free the request entries.
3875 		 */
3876 		if (!hctx->nr_ctx) {
3877 			/* Never unmap queue 0.  We need it as a
3878 			 * fallback in case of a new remap fails
3879 			 * allocation
3880 			 */
3881 			if (i)
3882 				__blk_mq_free_map_and_rqs(set, i);
3883 
3884 			hctx->tags = NULL;
3885 			continue;
3886 		}
3887 
3888 		hctx->tags = set->tags[i];
3889 		WARN_ON(!hctx->tags);
3890 
3891 		/*
3892 		 * Set the map size to the number of mapped software queues.
3893 		 * This is more accurate and more efficient than looping
3894 		 * over all possibly mapped software queues.
3895 		 */
3896 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3897 
3898 		/*
3899 		 * Initialize batch roundrobin counts
3900 		 */
3901 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3902 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3903 	}
3904 }
3905 
3906 /*
3907  * Caller needs to ensure that we're either frozen/quiesced, or that
3908  * the queue isn't live yet.
3909  */
3910 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3911 {
3912 	struct blk_mq_hw_ctx *hctx;
3913 	unsigned long i;
3914 
3915 	queue_for_each_hw_ctx(q, hctx, i) {
3916 		if (shared) {
3917 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3918 		} else {
3919 			blk_mq_tag_idle(hctx);
3920 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3921 		}
3922 	}
3923 }
3924 
3925 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3926 					 bool shared)
3927 {
3928 	struct request_queue *q;
3929 
3930 	lockdep_assert_held(&set->tag_list_lock);
3931 
3932 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3933 		blk_mq_freeze_queue(q);
3934 		queue_set_hctx_shared(q, shared);
3935 		blk_mq_unfreeze_queue(q);
3936 	}
3937 }
3938 
3939 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3940 {
3941 	struct blk_mq_tag_set *set = q->tag_set;
3942 
3943 	mutex_lock(&set->tag_list_lock);
3944 	list_del(&q->tag_set_list);
3945 	if (list_is_singular(&set->tag_list)) {
3946 		/* just transitioned to unshared */
3947 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3948 		/* update existing queue */
3949 		blk_mq_update_tag_set_shared(set, false);
3950 	}
3951 	mutex_unlock(&set->tag_list_lock);
3952 	INIT_LIST_HEAD(&q->tag_set_list);
3953 }
3954 
3955 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3956 				     struct request_queue *q)
3957 {
3958 	mutex_lock(&set->tag_list_lock);
3959 
3960 	/*
3961 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3962 	 */
3963 	if (!list_empty(&set->tag_list) &&
3964 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3965 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3966 		/* update existing queue */
3967 		blk_mq_update_tag_set_shared(set, true);
3968 	}
3969 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3970 		queue_set_hctx_shared(q, true);
3971 	list_add_tail(&q->tag_set_list, &set->tag_list);
3972 
3973 	mutex_unlock(&set->tag_list_lock);
3974 }
3975 
3976 /* All allocations will be freed in release handler of q->mq_kobj */
3977 static int blk_mq_alloc_ctxs(struct request_queue *q)
3978 {
3979 	struct blk_mq_ctxs *ctxs;
3980 	int cpu;
3981 
3982 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3983 	if (!ctxs)
3984 		return -ENOMEM;
3985 
3986 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3987 	if (!ctxs->queue_ctx)
3988 		goto fail;
3989 
3990 	for_each_possible_cpu(cpu) {
3991 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3992 		ctx->ctxs = ctxs;
3993 	}
3994 
3995 	q->mq_kobj = &ctxs->kobj;
3996 	q->queue_ctx = ctxs->queue_ctx;
3997 
3998 	return 0;
3999  fail:
4000 	kfree(ctxs);
4001 	return -ENOMEM;
4002 }
4003 
4004 /*
4005  * It is the actual release handler for mq, but we do it from
4006  * request queue's release handler for avoiding use-after-free
4007  * and headache because q->mq_kobj shouldn't have been introduced,
4008  * but we can't group ctx/kctx kobj without it.
4009  */
4010 void blk_mq_release(struct request_queue *q)
4011 {
4012 	struct blk_mq_hw_ctx *hctx, *next;
4013 	unsigned long i;
4014 
4015 	queue_for_each_hw_ctx(q, hctx, i)
4016 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4017 
4018 	/* all hctx are in .unused_hctx_list now */
4019 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4020 		list_del_init(&hctx->hctx_list);
4021 		kobject_put(&hctx->kobj);
4022 	}
4023 
4024 	xa_destroy(&q->hctx_table);
4025 
4026 	/*
4027 	 * release .mq_kobj and sw queue's kobject now because
4028 	 * both share lifetime with request queue.
4029 	 */
4030 	blk_mq_sysfs_deinit(q);
4031 }
4032 
4033 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4034 		void *queuedata)
4035 {
4036 	struct request_queue *q;
4037 	int ret;
4038 
4039 	q = blk_alloc_queue(set->numa_node);
4040 	if (!q)
4041 		return ERR_PTR(-ENOMEM);
4042 	q->queuedata = queuedata;
4043 	ret = blk_mq_init_allocated_queue(set, q);
4044 	if (ret) {
4045 		blk_put_queue(q);
4046 		return ERR_PTR(ret);
4047 	}
4048 	return q;
4049 }
4050 
4051 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4052 {
4053 	return blk_mq_init_queue_data(set, NULL);
4054 }
4055 EXPORT_SYMBOL(blk_mq_init_queue);
4056 
4057 /**
4058  * blk_mq_destroy_queue - shutdown a request queue
4059  * @q: request queue to shutdown
4060  *
4061  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4062  * requests will be failed with -ENODEV. The caller is responsible for dropping
4063  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4064  *
4065  * Context: can sleep
4066  */
4067 void blk_mq_destroy_queue(struct request_queue *q)
4068 {
4069 	WARN_ON_ONCE(!queue_is_mq(q));
4070 	WARN_ON_ONCE(blk_queue_registered(q));
4071 
4072 	might_sleep();
4073 
4074 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4075 	blk_queue_start_drain(q);
4076 	blk_mq_freeze_queue_wait(q);
4077 
4078 	blk_sync_queue(q);
4079 	blk_mq_cancel_work_sync(q);
4080 	blk_mq_exit_queue(q);
4081 }
4082 EXPORT_SYMBOL(blk_mq_destroy_queue);
4083 
4084 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4085 		struct lock_class_key *lkclass)
4086 {
4087 	struct request_queue *q;
4088 	struct gendisk *disk;
4089 
4090 	q = blk_mq_init_queue_data(set, queuedata);
4091 	if (IS_ERR(q))
4092 		return ERR_CAST(q);
4093 
4094 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4095 	if (!disk) {
4096 		blk_mq_destroy_queue(q);
4097 		blk_put_queue(q);
4098 		return ERR_PTR(-ENOMEM);
4099 	}
4100 	set_bit(GD_OWNS_QUEUE, &disk->state);
4101 	return disk;
4102 }
4103 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4104 
4105 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4106 		struct lock_class_key *lkclass)
4107 {
4108 	struct gendisk *disk;
4109 
4110 	if (!blk_get_queue(q))
4111 		return NULL;
4112 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4113 	if (!disk)
4114 		blk_put_queue(q);
4115 	return disk;
4116 }
4117 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4118 
4119 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4120 		struct blk_mq_tag_set *set, struct request_queue *q,
4121 		int hctx_idx, int node)
4122 {
4123 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4124 
4125 	/* reuse dead hctx first */
4126 	spin_lock(&q->unused_hctx_lock);
4127 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4128 		if (tmp->numa_node == node) {
4129 			hctx = tmp;
4130 			break;
4131 		}
4132 	}
4133 	if (hctx)
4134 		list_del_init(&hctx->hctx_list);
4135 	spin_unlock(&q->unused_hctx_lock);
4136 
4137 	if (!hctx)
4138 		hctx = blk_mq_alloc_hctx(q, set, node);
4139 	if (!hctx)
4140 		goto fail;
4141 
4142 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4143 		goto free_hctx;
4144 
4145 	return hctx;
4146 
4147  free_hctx:
4148 	kobject_put(&hctx->kobj);
4149  fail:
4150 	return NULL;
4151 }
4152 
4153 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4154 						struct request_queue *q)
4155 {
4156 	struct blk_mq_hw_ctx *hctx;
4157 	unsigned long i, j;
4158 
4159 	/* protect against switching io scheduler  */
4160 	mutex_lock(&q->sysfs_lock);
4161 	for (i = 0; i < set->nr_hw_queues; i++) {
4162 		int old_node;
4163 		int node = blk_mq_get_hctx_node(set, i);
4164 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4165 
4166 		if (old_hctx) {
4167 			old_node = old_hctx->numa_node;
4168 			blk_mq_exit_hctx(q, set, old_hctx, i);
4169 		}
4170 
4171 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4172 			if (!old_hctx)
4173 				break;
4174 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4175 					node, old_node);
4176 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4177 			WARN_ON_ONCE(!hctx);
4178 		}
4179 	}
4180 	/*
4181 	 * Increasing nr_hw_queues fails. Free the newly allocated
4182 	 * hctxs and keep the previous q->nr_hw_queues.
4183 	 */
4184 	if (i != set->nr_hw_queues) {
4185 		j = q->nr_hw_queues;
4186 	} else {
4187 		j = i;
4188 		q->nr_hw_queues = set->nr_hw_queues;
4189 	}
4190 
4191 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4192 		blk_mq_exit_hctx(q, set, hctx, j);
4193 	mutex_unlock(&q->sysfs_lock);
4194 }
4195 
4196 static void blk_mq_update_poll_flag(struct request_queue *q)
4197 {
4198 	struct blk_mq_tag_set *set = q->tag_set;
4199 
4200 	if (set->nr_maps > HCTX_TYPE_POLL &&
4201 	    set->map[HCTX_TYPE_POLL].nr_queues)
4202 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4203 	else
4204 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4205 }
4206 
4207 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4208 		struct request_queue *q)
4209 {
4210 	/* mark the queue as mq asap */
4211 	q->mq_ops = set->ops;
4212 
4213 	if (blk_mq_alloc_ctxs(q))
4214 		goto err_exit;
4215 
4216 	/* init q->mq_kobj and sw queues' kobjects */
4217 	blk_mq_sysfs_init(q);
4218 
4219 	INIT_LIST_HEAD(&q->unused_hctx_list);
4220 	spin_lock_init(&q->unused_hctx_lock);
4221 
4222 	xa_init(&q->hctx_table);
4223 
4224 	blk_mq_realloc_hw_ctxs(set, q);
4225 	if (!q->nr_hw_queues)
4226 		goto err_hctxs;
4227 
4228 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4229 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4230 
4231 	q->tag_set = set;
4232 
4233 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4234 	blk_mq_update_poll_flag(q);
4235 
4236 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4237 	INIT_LIST_HEAD(&q->requeue_list);
4238 	spin_lock_init(&q->requeue_lock);
4239 
4240 	q->nr_requests = set->queue_depth;
4241 
4242 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4243 	blk_mq_add_queue_tag_set(set, q);
4244 	blk_mq_map_swqueue(q);
4245 	return 0;
4246 
4247 err_hctxs:
4248 	blk_mq_release(q);
4249 err_exit:
4250 	q->mq_ops = NULL;
4251 	return -ENOMEM;
4252 }
4253 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4254 
4255 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4256 void blk_mq_exit_queue(struct request_queue *q)
4257 {
4258 	struct blk_mq_tag_set *set = q->tag_set;
4259 
4260 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4261 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4262 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4263 	blk_mq_del_queue_tag_set(q);
4264 }
4265 
4266 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4267 {
4268 	int i;
4269 
4270 	if (blk_mq_is_shared_tags(set->flags)) {
4271 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4272 						BLK_MQ_NO_HCTX_IDX,
4273 						set->queue_depth);
4274 		if (!set->shared_tags)
4275 			return -ENOMEM;
4276 	}
4277 
4278 	for (i = 0; i < set->nr_hw_queues; i++) {
4279 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4280 			goto out_unwind;
4281 		cond_resched();
4282 	}
4283 
4284 	return 0;
4285 
4286 out_unwind:
4287 	while (--i >= 0)
4288 		__blk_mq_free_map_and_rqs(set, i);
4289 
4290 	if (blk_mq_is_shared_tags(set->flags)) {
4291 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4292 					BLK_MQ_NO_HCTX_IDX);
4293 	}
4294 
4295 	return -ENOMEM;
4296 }
4297 
4298 /*
4299  * Allocate the request maps associated with this tag_set. Note that this
4300  * may reduce the depth asked for, if memory is tight. set->queue_depth
4301  * will be updated to reflect the allocated depth.
4302  */
4303 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4304 {
4305 	unsigned int depth;
4306 	int err;
4307 
4308 	depth = set->queue_depth;
4309 	do {
4310 		err = __blk_mq_alloc_rq_maps(set);
4311 		if (!err)
4312 			break;
4313 
4314 		set->queue_depth >>= 1;
4315 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4316 			err = -ENOMEM;
4317 			break;
4318 		}
4319 	} while (set->queue_depth);
4320 
4321 	if (!set->queue_depth || err) {
4322 		pr_err("blk-mq: failed to allocate request map\n");
4323 		return -ENOMEM;
4324 	}
4325 
4326 	if (depth != set->queue_depth)
4327 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4328 						depth, set->queue_depth);
4329 
4330 	return 0;
4331 }
4332 
4333 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4334 {
4335 	/*
4336 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4337 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4338 	 * number of hardware queues.
4339 	 */
4340 	if (set->nr_maps == 1)
4341 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4342 
4343 	if (set->ops->map_queues && !is_kdump_kernel()) {
4344 		int i;
4345 
4346 		/*
4347 		 * transport .map_queues is usually done in the following
4348 		 * way:
4349 		 *
4350 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4351 		 * 	mask = get_cpu_mask(queue)
4352 		 * 	for_each_cpu(cpu, mask)
4353 		 * 		set->map[x].mq_map[cpu] = queue;
4354 		 * }
4355 		 *
4356 		 * When we need to remap, the table has to be cleared for
4357 		 * killing stale mapping since one CPU may not be mapped
4358 		 * to any hw queue.
4359 		 */
4360 		for (i = 0; i < set->nr_maps; i++)
4361 			blk_mq_clear_mq_map(&set->map[i]);
4362 
4363 		set->ops->map_queues(set);
4364 	} else {
4365 		BUG_ON(set->nr_maps > 1);
4366 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4367 	}
4368 }
4369 
4370 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4371 				       int new_nr_hw_queues)
4372 {
4373 	struct blk_mq_tags **new_tags;
4374 
4375 	if (set->nr_hw_queues >= new_nr_hw_queues)
4376 		goto done;
4377 
4378 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4379 				GFP_KERNEL, set->numa_node);
4380 	if (!new_tags)
4381 		return -ENOMEM;
4382 
4383 	if (set->tags)
4384 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4385 		       sizeof(*set->tags));
4386 	kfree(set->tags);
4387 	set->tags = new_tags;
4388 done:
4389 	set->nr_hw_queues = new_nr_hw_queues;
4390 	return 0;
4391 }
4392 
4393 /*
4394  * Alloc a tag set to be associated with one or more request queues.
4395  * May fail with EINVAL for various error conditions. May adjust the
4396  * requested depth down, if it's too large. In that case, the set
4397  * value will be stored in set->queue_depth.
4398  */
4399 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4400 {
4401 	int i, ret;
4402 
4403 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4404 
4405 	if (!set->nr_hw_queues)
4406 		return -EINVAL;
4407 	if (!set->queue_depth)
4408 		return -EINVAL;
4409 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4410 		return -EINVAL;
4411 
4412 	if (!set->ops->queue_rq)
4413 		return -EINVAL;
4414 
4415 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4416 		return -EINVAL;
4417 
4418 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4419 		pr_info("blk-mq: reduced tag depth to %u\n",
4420 			BLK_MQ_MAX_DEPTH);
4421 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4422 	}
4423 
4424 	if (!set->nr_maps)
4425 		set->nr_maps = 1;
4426 	else if (set->nr_maps > HCTX_MAX_TYPES)
4427 		return -EINVAL;
4428 
4429 	/*
4430 	 * If a crashdump is active, then we are potentially in a very
4431 	 * memory constrained environment. Limit us to 1 queue and
4432 	 * 64 tags to prevent using too much memory.
4433 	 */
4434 	if (is_kdump_kernel()) {
4435 		set->nr_hw_queues = 1;
4436 		set->nr_maps = 1;
4437 		set->queue_depth = min(64U, set->queue_depth);
4438 	}
4439 	/*
4440 	 * There is no use for more h/w queues than cpus if we just have
4441 	 * a single map
4442 	 */
4443 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4444 		set->nr_hw_queues = nr_cpu_ids;
4445 
4446 	if (set->flags & BLK_MQ_F_BLOCKING) {
4447 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4448 		if (!set->srcu)
4449 			return -ENOMEM;
4450 		ret = init_srcu_struct(set->srcu);
4451 		if (ret)
4452 			goto out_free_srcu;
4453 	}
4454 
4455 	ret = -ENOMEM;
4456 	set->tags = kcalloc_node(set->nr_hw_queues,
4457 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4458 				 set->numa_node);
4459 	if (!set->tags)
4460 		goto out_cleanup_srcu;
4461 
4462 	for (i = 0; i < set->nr_maps; i++) {
4463 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4464 						  sizeof(set->map[i].mq_map[0]),
4465 						  GFP_KERNEL, set->numa_node);
4466 		if (!set->map[i].mq_map)
4467 			goto out_free_mq_map;
4468 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4469 	}
4470 
4471 	blk_mq_update_queue_map(set);
4472 
4473 	ret = blk_mq_alloc_set_map_and_rqs(set);
4474 	if (ret)
4475 		goto out_free_mq_map;
4476 
4477 	mutex_init(&set->tag_list_lock);
4478 	INIT_LIST_HEAD(&set->tag_list);
4479 
4480 	return 0;
4481 
4482 out_free_mq_map:
4483 	for (i = 0; i < set->nr_maps; i++) {
4484 		kfree(set->map[i].mq_map);
4485 		set->map[i].mq_map = NULL;
4486 	}
4487 	kfree(set->tags);
4488 	set->tags = NULL;
4489 out_cleanup_srcu:
4490 	if (set->flags & BLK_MQ_F_BLOCKING)
4491 		cleanup_srcu_struct(set->srcu);
4492 out_free_srcu:
4493 	if (set->flags & BLK_MQ_F_BLOCKING)
4494 		kfree(set->srcu);
4495 	return ret;
4496 }
4497 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4498 
4499 /* allocate and initialize a tagset for a simple single-queue device */
4500 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4501 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4502 		unsigned int set_flags)
4503 {
4504 	memset(set, 0, sizeof(*set));
4505 	set->ops = ops;
4506 	set->nr_hw_queues = 1;
4507 	set->nr_maps = 1;
4508 	set->queue_depth = queue_depth;
4509 	set->numa_node = NUMA_NO_NODE;
4510 	set->flags = set_flags;
4511 	return blk_mq_alloc_tag_set(set);
4512 }
4513 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4514 
4515 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4516 {
4517 	int i, j;
4518 
4519 	for (i = 0; i < set->nr_hw_queues; i++)
4520 		__blk_mq_free_map_and_rqs(set, i);
4521 
4522 	if (blk_mq_is_shared_tags(set->flags)) {
4523 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4524 					BLK_MQ_NO_HCTX_IDX);
4525 	}
4526 
4527 	for (j = 0; j < set->nr_maps; j++) {
4528 		kfree(set->map[j].mq_map);
4529 		set->map[j].mq_map = NULL;
4530 	}
4531 
4532 	kfree(set->tags);
4533 	set->tags = NULL;
4534 	if (set->flags & BLK_MQ_F_BLOCKING) {
4535 		cleanup_srcu_struct(set->srcu);
4536 		kfree(set->srcu);
4537 	}
4538 }
4539 EXPORT_SYMBOL(blk_mq_free_tag_set);
4540 
4541 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4542 {
4543 	struct blk_mq_tag_set *set = q->tag_set;
4544 	struct blk_mq_hw_ctx *hctx;
4545 	int ret;
4546 	unsigned long i;
4547 
4548 	if (!set)
4549 		return -EINVAL;
4550 
4551 	if (q->nr_requests == nr)
4552 		return 0;
4553 
4554 	blk_mq_freeze_queue(q);
4555 	blk_mq_quiesce_queue(q);
4556 
4557 	ret = 0;
4558 	queue_for_each_hw_ctx(q, hctx, i) {
4559 		if (!hctx->tags)
4560 			continue;
4561 		/*
4562 		 * If we're using an MQ scheduler, just update the scheduler
4563 		 * queue depth. This is similar to what the old code would do.
4564 		 */
4565 		if (hctx->sched_tags) {
4566 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4567 						      nr, true);
4568 		} else {
4569 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4570 						      false);
4571 		}
4572 		if (ret)
4573 			break;
4574 		if (q->elevator && q->elevator->type->ops.depth_updated)
4575 			q->elevator->type->ops.depth_updated(hctx);
4576 	}
4577 	if (!ret) {
4578 		q->nr_requests = nr;
4579 		if (blk_mq_is_shared_tags(set->flags)) {
4580 			if (q->elevator)
4581 				blk_mq_tag_update_sched_shared_tags(q);
4582 			else
4583 				blk_mq_tag_resize_shared_tags(set, nr);
4584 		}
4585 	}
4586 
4587 	blk_mq_unquiesce_queue(q);
4588 	blk_mq_unfreeze_queue(q);
4589 
4590 	return ret;
4591 }
4592 
4593 /*
4594  * request_queue and elevator_type pair.
4595  * It is just used by __blk_mq_update_nr_hw_queues to cache
4596  * the elevator_type associated with a request_queue.
4597  */
4598 struct blk_mq_qe_pair {
4599 	struct list_head node;
4600 	struct request_queue *q;
4601 	struct elevator_type *type;
4602 };
4603 
4604 /*
4605  * Cache the elevator_type in qe pair list and switch the
4606  * io scheduler to 'none'
4607  */
4608 static bool blk_mq_elv_switch_none(struct list_head *head,
4609 		struct request_queue *q)
4610 {
4611 	struct blk_mq_qe_pair *qe;
4612 
4613 	if (!q->elevator)
4614 		return true;
4615 
4616 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4617 	if (!qe)
4618 		return false;
4619 
4620 	/* q->elevator needs protection from ->sysfs_lock */
4621 	mutex_lock(&q->sysfs_lock);
4622 
4623 	INIT_LIST_HEAD(&qe->node);
4624 	qe->q = q;
4625 	qe->type = q->elevator->type;
4626 	/* keep a reference to the elevator module as we'll switch back */
4627 	__elevator_get(qe->type);
4628 	list_add(&qe->node, head);
4629 	elevator_disable(q);
4630 	mutex_unlock(&q->sysfs_lock);
4631 
4632 	return true;
4633 }
4634 
4635 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4636 						struct request_queue *q)
4637 {
4638 	struct blk_mq_qe_pair *qe;
4639 
4640 	list_for_each_entry(qe, head, node)
4641 		if (qe->q == q)
4642 			return qe;
4643 
4644 	return NULL;
4645 }
4646 
4647 static void blk_mq_elv_switch_back(struct list_head *head,
4648 				  struct request_queue *q)
4649 {
4650 	struct blk_mq_qe_pair *qe;
4651 	struct elevator_type *t;
4652 
4653 	qe = blk_lookup_qe_pair(head, q);
4654 	if (!qe)
4655 		return;
4656 	t = qe->type;
4657 	list_del(&qe->node);
4658 	kfree(qe);
4659 
4660 	mutex_lock(&q->sysfs_lock);
4661 	elevator_switch(q, t);
4662 	/* drop the reference acquired in blk_mq_elv_switch_none */
4663 	elevator_put(t);
4664 	mutex_unlock(&q->sysfs_lock);
4665 }
4666 
4667 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4668 							int nr_hw_queues)
4669 {
4670 	struct request_queue *q;
4671 	LIST_HEAD(head);
4672 	int prev_nr_hw_queues;
4673 
4674 	lockdep_assert_held(&set->tag_list_lock);
4675 
4676 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4677 		nr_hw_queues = nr_cpu_ids;
4678 	if (nr_hw_queues < 1)
4679 		return;
4680 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4681 		return;
4682 
4683 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4684 		blk_mq_freeze_queue(q);
4685 	/*
4686 	 * Switch IO scheduler to 'none', cleaning up the data associated
4687 	 * with the previous scheduler. We will switch back once we are done
4688 	 * updating the new sw to hw queue mappings.
4689 	 */
4690 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4691 		if (!blk_mq_elv_switch_none(&head, q))
4692 			goto switch_back;
4693 
4694 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4695 		blk_mq_debugfs_unregister_hctxs(q);
4696 		blk_mq_sysfs_unregister_hctxs(q);
4697 	}
4698 
4699 	prev_nr_hw_queues = set->nr_hw_queues;
4700 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4701 		goto reregister;
4702 
4703 fallback:
4704 	blk_mq_update_queue_map(set);
4705 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706 		blk_mq_realloc_hw_ctxs(set, q);
4707 		blk_mq_update_poll_flag(q);
4708 		if (q->nr_hw_queues != set->nr_hw_queues) {
4709 			int i = prev_nr_hw_queues;
4710 
4711 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4712 					nr_hw_queues, prev_nr_hw_queues);
4713 			for (; i < set->nr_hw_queues; i++)
4714 				__blk_mq_free_map_and_rqs(set, i);
4715 
4716 			set->nr_hw_queues = prev_nr_hw_queues;
4717 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4718 			goto fallback;
4719 		}
4720 		blk_mq_map_swqueue(q);
4721 	}
4722 
4723 reregister:
4724 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4725 		blk_mq_sysfs_register_hctxs(q);
4726 		blk_mq_debugfs_register_hctxs(q);
4727 	}
4728 
4729 switch_back:
4730 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4731 		blk_mq_elv_switch_back(&head, q);
4732 
4733 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4734 		blk_mq_unfreeze_queue(q);
4735 }
4736 
4737 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4738 {
4739 	mutex_lock(&set->tag_list_lock);
4740 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4741 	mutex_unlock(&set->tag_list_lock);
4742 }
4743 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4744 
4745 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4746 		unsigned int flags)
4747 {
4748 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4749 	long state = get_current_state();
4750 	int ret;
4751 
4752 	do {
4753 		ret = q->mq_ops->poll(hctx, iob);
4754 		if (ret > 0) {
4755 			__set_current_state(TASK_RUNNING);
4756 			return ret;
4757 		}
4758 
4759 		if (signal_pending_state(state, current))
4760 			__set_current_state(TASK_RUNNING);
4761 		if (task_is_running(current))
4762 			return 1;
4763 
4764 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4765 			break;
4766 		cpu_relax();
4767 	} while (!need_resched());
4768 
4769 	__set_current_state(TASK_RUNNING);
4770 	return 0;
4771 }
4772 
4773 unsigned int blk_mq_rq_cpu(struct request *rq)
4774 {
4775 	return rq->mq_ctx->cpu;
4776 }
4777 EXPORT_SYMBOL(blk_mq_rq_cpu);
4778 
4779 void blk_mq_cancel_work_sync(struct request_queue *q)
4780 {
4781 	struct blk_mq_hw_ctx *hctx;
4782 	unsigned long i;
4783 
4784 	cancel_delayed_work_sync(&q->requeue_work);
4785 
4786 	queue_for_each_hw_ctx(q, hctx, i)
4787 		cancel_delayed_work_sync(&hctx->run_work);
4788 }
4789 
4790 static int __init blk_mq_init(void)
4791 {
4792 	int i;
4793 
4794 	for_each_possible_cpu(i)
4795 		init_llist_head(&per_cpu(blk_cpu_done, i));
4796 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4797 
4798 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4799 				  "block/softirq:dead", NULL,
4800 				  blk_softirq_cpu_dead);
4801 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4802 				blk_mq_hctx_notify_dead);
4803 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4804 				blk_mq_hctx_notify_online,
4805 				blk_mq_hctx_notify_offline);
4806 	return 0;
4807 }
4808 subsys_initcall(blk_mq_init);
4809