1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 49 struct list_head *list); 50 51 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 52 blk_qc_t qc) 53 { 54 return xa_load(&q->hctx_table, qc); 55 } 56 57 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 58 { 59 return rq->mq_hctx->queue_num; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct block_device *part; 95 unsigned int inflight[2]; 96 }; 97 98 static bool blk_mq_check_inflight(struct request *rq, void *priv) 99 { 100 struct mq_inflight *mi = priv; 101 102 if (rq->part && blk_do_io_stat(rq) && 103 (!mi->part->bd_partno || rq->part == mi->part) && 104 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 105 mi->inflight[rq_data_dir(rq)]++; 106 107 return true; 108 } 109 110 unsigned int blk_mq_in_flight(struct request_queue *q, 111 struct block_device *part) 112 { 113 struct mq_inflight mi = { .part = part }; 114 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 117 return mi.inflight[0] + mi.inflight[1]; 118 } 119 120 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 121 unsigned int inflight[2]) 122 { 123 struct mq_inflight mi = { .part = part }; 124 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 126 inflight[0] = mi.inflight[0]; 127 inflight[1] = mi.inflight[1]; 128 } 129 130 void blk_freeze_queue_start(struct request_queue *q) 131 { 132 mutex_lock(&q->mq_freeze_lock); 133 if (++q->mq_freeze_depth == 1) { 134 percpu_ref_kill(&q->q_usage_counter); 135 mutex_unlock(&q->mq_freeze_lock); 136 if (queue_is_mq(q)) 137 blk_mq_run_hw_queues(q, false); 138 } else { 139 mutex_unlock(&q->mq_freeze_lock); 140 } 141 } 142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 143 144 void blk_mq_freeze_queue_wait(struct request_queue *q) 145 { 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 149 150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 151 unsigned long timeout) 152 { 153 return wait_event_timeout(q->mq_freeze_wq, 154 percpu_ref_is_zero(&q->q_usage_counter), 155 timeout); 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 158 159 /* 160 * Guarantee no request is in use, so we can change any data structure of 161 * the queue afterward. 162 */ 163 void blk_freeze_queue(struct request_queue *q) 164 { 165 /* 166 * In the !blk_mq case we are only calling this to kill the 167 * q_usage_counter, otherwise this increases the freeze depth 168 * and waits for it to return to zero. For this reason there is 169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 170 * exported to drivers as the only user for unfreeze is blk_mq. 171 */ 172 blk_freeze_queue_start(q); 173 blk_mq_freeze_queue_wait(q); 174 } 175 176 void blk_mq_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * ...just an alias to keep freeze and unfreeze actions balanced 180 * in the blk_mq_* namespace 181 */ 182 blk_freeze_queue(q); 183 } 184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 185 186 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 187 { 188 mutex_lock(&q->mq_freeze_lock); 189 if (force_atomic) 190 q->q_usage_counter.data->force_atomic = true; 191 q->mq_freeze_depth--; 192 WARN_ON_ONCE(q->mq_freeze_depth < 0); 193 if (!q->mq_freeze_depth) { 194 percpu_ref_resurrect(&q->q_usage_counter); 195 wake_up_all(&q->mq_freeze_wq); 196 } 197 mutex_unlock(&q->mq_freeze_lock); 198 } 199 200 void blk_mq_unfreeze_queue(struct request_queue *q) 201 { 202 __blk_mq_unfreeze_queue(q, false); 203 } 204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 205 206 /* 207 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 208 * mpt3sas driver such that this function can be removed. 209 */ 210 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 211 { 212 unsigned long flags; 213 214 spin_lock_irqsave(&q->queue_lock, flags); 215 if (!q->quiesce_depth++) 216 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 217 spin_unlock_irqrestore(&q->queue_lock, flags); 218 } 219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 220 221 /** 222 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 223 * @set: tag_set to wait on 224 * 225 * Note: it is driver's responsibility for making sure that quiesce has 226 * been started on or more of the request_queues of the tag_set. This 227 * function only waits for the quiesce on those request_queues that had 228 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 229 */ 230 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 231 { 232 if (set->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(set->srcu); 234 else 235 synchronize_rcu(); 236 } 237 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 238 239 /** 240 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 241 * @q: request queue. 242 * 243 * Note: this function does not prevent that the struct request end_io() 244 * callback function is invoked. Once this function is returned, we make 245 * sure no dispatch can happen until the queue is unquiesced via 246 * blk_mq_unquiesce_queue(). 247 */ 248 void blk_mq_quiesce_queue(struct request_queue *q) 249 { 250 blk_mq_quiesce_queue_nowait(q); 251 /* nothing to wait for non-mq queues */ 252 if (queue_is_mq(q)) 253 blk_mq_wait_quiesce_done(q->tag_set); 254 } 255 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 256 257 /* 258 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 259 * @q: request queue. 260 * 261 * This function recovers queue into the state before quiescing 262 * which is done by blk_mq_quiesce_queue. 263 */ 264 void blk_mq_unquiesce_queue(struct request_queue *q) 265 { 266 unsigned long flags; 267 bool run_queue = false; 268 269 spin_lock_irqsave(&q->queue_lock, flags); 270 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 271 ; 272 } else if (!--q->quiesce_depth) { 273 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 274 run_queue = true; 275 } 276 spin_unlock_irqrestore(&q->queue_lock, flags); 277 278 /* dispatch requests which are inserted during quiescing */ 279 if (run_queue) 280 blk_mq_run_hw_queues(q, true); 281 } 282 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 283 284 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 285 { 286 struct request_queue *q; 287 288 mutex_lock(&set->tag_list_lock); 289 list_for_each_entry(q, &set->tag_list, tag_set_list) { 290 if (!blk_queue_skip_tagset_quiesce(q)) 291 blk_mq_quiesce_queue_nowait(q); 292 } 293 blk_mq_wait_quiesce_done(set); 294 mutex_unlock(&set->tag_list_lock); 295 } 296 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 297 298 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 299 { 300 struct request_queue *q; 301 302 mutex_lock(&set->tag_list_lock); 303 list_for_each_entry(q, &set->tag_list, tag_set_list) { 304 if (!blk_queue_skip_tagset_quiesce(q)) 305 blk_mq_unquiesce_queue(q); 306 } 307 mutex_unlock(&set->tag_list_lock); 308 } 309 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 310 311 void blk_mq_wake_waiters(struct request_queue *q) 312 { 313 struct blk_mq_hw_ctx *hctx; 314 unsigned long i; 315 316 queue_for_each_hw_ctx(q, hctx, i) 317 if (blk_mq_hw_queue_mapped(hctx)) 318 blk_mq_tag_wakeup_all(hctx->tags, true); 319 } 320 321 void blk_rq_init(struct request_queue *q, struct request *rq) 322 { 323 memset(rq, 0, sizeof(*rq)); 324 325 INIT_LIST_HEAD(&rq->queuelist); 326 rq->q = q; 327 rq->__sector = (sector_t) -1; 328 INIT_HLIST_NODE(&rq->hash); 329 RB_CLEAR_NODE(&rq->rb_node); 330 rq->tag = BLK_MQ_NO_TAG; 331 rq->internal_tag = BLK_MQ_NO_TAG; 332 rq->start_time_ns = ktime_get_ns(); 333 rq->part = NULL; 334 blk_crypto_rq_set_defaults(rq); 335 } 336 EXPORT_SYMBOL(blk_rq_init); 337 338 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 339 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 340 { 341 struct blk_mq_ctx *ctx = data->ctx; 342 struct blk_mq_hw_ctx *hctx = data->hctx; 343 struct request_queue *q = data->q; 344 struct request *rq = tags->static_rqs[tag]; 345 346 rq->q = q; 347 rq->mq_ctx = ctx; 348 rq->mq_hctx = hctx; 349 rq->cmd_flags = data->cmd_flags; 350 351 if (data->flags & BLK_MQ_REQ_PM) 352 data->rq_flags |= RQF_PM; 353 if (blk_queue_io_stat(q)) 354 data->rq_flags |= RQF_IO_STAT; 355 rq->rq_flags = data->rq_flags; 356 357 if (!(data->rq_flags & RQF_ELV)) { 358 rq->tag = tag; 359 rq->internal_tag = BLK_MQ_NO_TAG; 360 } else { 361 rq->tag = BLK_MQ_NO_TAG; 362 rq->internal_tag = tag; 363 } 364 rq->timeout = 0; 365 366 if (blk_mq_need_time_stamp(rq)) 367 rq->start_time_ns = ktime_get_ns(); 368 else 369 rq->start_time_ns = 0; 370 rq->part = NULL; 371 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 372 rq->alloc_time_ns = alloc_time_ns; 373 #endif 374 rq->io_start_time_ns = 0; 375 rq->stats_sectors = 0; 376 rq->nr_phys_segments = 0; 377 #if defined(CONFIG_BLK_DEV_INTEGRITY) 378 rq->nr_integrity_segments = 0; 379 #endif 380 rq->end_io = NULL; 381 rq->end_io_data = NULL; 382 383 blk_crypto_rq_set_defaults(rq); 384 INIT_LIST_HEAD(&rq->queuelist); 385 /* tag was already set */ 386 WRITE_ONCE(rq->deadline, 0); 387 req_ref_set(rq, 1); 388 389 if (rq->rq_flags & RQF_ELV) { 390 struct elevator_queue *e = data->q->elevator; 391 392 INIT_HLIST_NODE(&rq->hash); 393 RB_CLEAR_NODE(&rq->rb_node); 394 395 if (!op_is_flush(data->cmd_flags) && 396 e->type->ops.prepare_request) { 397 e->type->ops.prepare_request(rq); 398 rq->rq_flags |= RQF_ELVPRIV; 399 } 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 407 u64 alloc_time_ns) 408 { 409 unsigned int tag, tag_offset; 410 struct blk_mq_tags *tags; 411 struct request *rq; 412 unsigned long tag_mask; 413 int i, nr = 0; 414 415 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 416 if (unlikely(!tag_mask)) 417 return NULL; 418 419 tags = blk_mq_tags_from_data(data); 420 for (i = 0; tag_mask; i++) { 421 if (!(tag_mask & (1UL << i))) 422 continue; 423 tag = tag_offset + i; 424 prefetch(tags->static_rqs[tag]); 425 tag_mask &= ~(1UL << i); 426 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 427 rq_list_add(data->cached_rq, rq); 428 nr++; 429 } 430 /* caller already holds a reference, add for remainder */ 431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 432 data->nr_tags -= nr; 433 434 return rq_list_pop(data->cached_rq); 435 } 436 437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 438 { 439 struct request_queue *q = data->q; 440 u64 alloc_time_ns = 0; 441 struct request *rq; 442 unsigned int tag; 443 444 /* alloc_time includes depth and tag waits */ 445 if (blk_queue_rq_alloc_time(q)) 446 alloc_time_ns = ktime_get_ns(); 447 448 if (data->cmd_flags & REQ_NOWAIT) 449 data->flags |= BLK_MQ_REQ_NOWAIT; 450 451 if (q->elevator) { 452 struct elevator_queue *e = q->elevator; 453 454 data->rq_flags |= RQF_ELV; 455 456 /* 457 * Flush/passthrough requests are special and go directly to the 458 * dispatch list. Don't include reserved tags in the 459 * limiting, as it isn't useful. 460 */ 461 if (!op_is_flush(data->cmd_flags) && 462 !blk_op_is_passthrough(data->cmd_flags) && 463 e->type->ops.limit_depth && 464 !(data->flags & BLK_MQ_REQ_RESERVED)) 465 e->type->ops.limit_depth(data->cmd_flags, data); 466 } 467 468 retry: 469 data->ctx = blk_mq_get_ctx(q); 470 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 471 if (!(data->rq_flags & RQF_ELV)) 472 blk_mq_tag_busy(data->hctx); 473 474 if (data->flags & BLK_MQ_REQ_RESERVED) 475 data->rq_flags |= RQF_RESV; 476 477 /* 478 * Try batched alloc if we want more than 1 tag. 479 */ 480 if (data->nr_tags > 1) { 481 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 482 if (rq) 483 return rq; 484 data->nr_tags = 1; 485 } 486 487 /* 488 * Waiting allocations only fail because of an inactive hctx. In that 489 * case just retry the hctx assignment and tag allocation as CPU hotplug 490 * should have migrated us to an online CPU by now. 491 */ 492 tag = blk_mq_get_tag(data); 493 if (tag == BLK_MQ_NO_TAG) { 494 if (data->flags & BLK_MQ_REQ_NOWAIT) 495 return NULL; 496 /* 497 * Give up the CPU and sleep for a random short time to 498 * ensure that thread using a realtime scheduling class 499 * are migrated off the CPU, and thus off the hctx that 500 * is going away. 501 */ 502 msleep(3); 503 goto retry; 504 } 505 506 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 507 alloc_time_ns); 508 } 509 510 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 511 struct blk_plug *plug, 512 blk_opf_t opf, 513 blk_mq_req_flags_t flags) 514 { 515 struct blk_mq_alloc_data data = { 516 .q = q, 517 .flags = flags, 518 .cmd_flags = opf, 519 .nr_tags = plug->nr_ios, 520 .cached_rq = &plug->cached_rq, 521 }; 522 struct request *rq; 523 524 if (blk_queue_enter(q, flags)) 525 return NULL; 526 527 plug->nr_ios = 1; 528 529 rq = __blk_mq_alloc_requests(&data); 530 if (unlikely(!rq)) 531 blk_queue_exit(q); 532 return rq; 533 } 534 535 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 536 blk_opf_t opf, 537 blk_mq_req_flags_t flags) 538 { 539 struct blk_plug *plug = current->plug; 540 struct request *rq; 541 542 if (!plug) 543 return NULL; 544 545 if (rq_list_empty(plug->cached_rq)) { 546 if (plug->nr_ios == 1) 547 return NULL; 548 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 549 if (!rq) 550 return NULL; 551 } else { 552 rq = rq_list_peek(&plug->cached_rq); 553 if (!rq || rq->q != q) 554 return NULL; 555 556 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 557 return NULL; 558 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 559 return NULL; 560 561 plug->cached_rq = rq_list_next(rq); 562 } 563 564 rq->cmd_flags = opf; 565 INIT_LIST_HEAD(&rq->queuelist); 566 return rq; 567 } 568 569 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 570 blk_mq_req_flags_t flags) 571 { 572 struct request *rq; 573 574 rq = blk_mq_alloc_cached_request(q, opf, flags); 575 if (!rq) { 576 struct blk_mq_alloc_data data = { 577 .q = q, 578 .flags = flags, 579 .cmd_flags = opf, 580 .nr_tags = 1, 581 }; 582 int ret; 583 584 ret = blk_queue_enter(q, flags); 585 if (ret) 586 return ERR_PTR(ret); 587 588 rq = __blk_mq_alloc_requests(&data); 589 if (!rq) 590 goto out_queue_exit; 591 } 592 rq->__data_len = 0; 593 rq->__sector = (sector_t) -1; 594 rq->bio = rq->biotail = NULL; 595 return rq; 596 out_queue_exit: 597 blk_queue_exit(q); 598 return ERR_PTR(-EWOULDBLOCK); 599 } 600 EXPORT_SYMBOL(blk_mq_alloc_request); 601 602 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 603 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 604 { 605 struct blk_mq_alloc_data data = { 606 .q = q, 607 .flags = flags, 608 .cmd_flags = opf, 609 .nr_tags = 1, 610 }; 611 u64 alloc_time_ns = 0; 612 struct request *rq; 613 unsigned int cpu; 614 unsigned int tag; 615 int ret; 616 617 /* alloc_time includes depth and tag waits */ 618 if (blk_queue_rq_alloc_time(q)) 619 alloc_time_ns = ktime_get_ns(); 620 621 /* 622 * If the tag allocator sleeps we could get an allocation for a 623 * different hardware context. No need to complicate the low level 624 * allocator for this for the rare use case of a command tied to 625 * a specific queue. 626 */ 627 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 628 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 629 return ERR_PTR(-EINVAL); 630 631 if (hctx_idx >= q->nr_hw_queues) 632 return ERR_PTR(-EIO); 633 634 ret = blk_queue_enter(q, flags); 635 if (ret) 636 return ERR_PTR(ret); 637 638 /* 639 * Check if the hardware context is actually mapped to anything. 640 * If not tell the caller that it should skip this queue. 641 */ 642 ret = -EXDEV; 643 data.hctx = xa_load(&q->hctx_table, hctx_idx); 644 if (!blk_mq_hw_queue_mapped(data.hctx)) 645 goto out_queue_exit; 646 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 647 if (cpu >= nr_cpu_ids) 648 goto out_queue_exit; 649 data.ctx = __blk_mq_get_ctx(q, cpu); 650 651 if (!q->elevator) 652 blk_mq_tag_busy(data.hctx); 653 else 654 data.rq_flags |= RQF_ELV; 655 656 if (flags & BLK_MQ_REQ_RESERVED) 657 data.rq_flags |= RQF_RESV; 658 659 ret = -EWOULDBLOCK; 660 tag = blk_mq_get_tag(&data); 661 if (tag == BLK_MQ_NO_TAG) 662 goto out_queue_exit; 663 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 664 alloc_time_ns); 665 rq->__data_len = 0; 666 rq->__sector = (sector_t) -1; 667 rq->bio = rq->biotail = NULL; 668 return rq; 669 670 out_queue_exit: 671 blk_queue_exit(q); 672 return ERR_PTR(ret); 673 } 674 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 675 676 static void __blk_mq_free_request(struct request *rq) 677 { 678 struct request_queue *q = rq->q; 679 struct blk_mq_ctx *ctx = rq->mq_ctx; 680 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 681 const int sched_tag = rq->internal_tag; 682 683 blk_crypto_free_request(rq); 684 blk_pm_mark_last_busy(rq); 685 rq->mq_hctx = NULL; 686 if (rq->tag != BLK_MQ_NO_TAG) 687 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 688 if (sched_tag != BLK_MQ_NO_TAG) 689 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 690 blk_mq_sched_restart(hctx); 691 blk_queue_exit(q); 692 } 693 694 void blk_mq_free_request(struct request *rq) 695 { 696 struct request_queue *q = rq->q; 697 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 698 699 if ((rq->rq_flags & RQF_ELVPRIV) && 700 q->elevator->type->ops.finish_request) 701 q->elevator->type->ops.finish_request(rq); 702 703 if (rq->rq_flags & RQF_MQ_INFLIGHT) 704 __blk_mq_dec_active_requests(hctx); 705 706 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 707 laptop_io_completion(q->disk->bdi); 708 709 rq_qos_done(q, rq); 710 711 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 712 if (req_ref_put_and_test(rq)) 713 __blk_mq_free_request(rq); 714 } 715 EXPORT_SYMBOL_GPL(blk_mq_free_request); 716 717 void blk_mq_free_plug_rqs(struct blk_plug *plug) 718 { 719 struct request *rq; 720 721 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 722 blk_mq_free_request(rq); 723 } 724 725 void blk_dump_rq_flags(struct request *rq, char *msg) 726 { 727 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 728 rq->q->disk ? rq->q->disk->disk_name : "?", 729 (__force unsigned long long) rq->cmd_flags); 730 731 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 732 (unsigned long long)blk_rq_pos(rq), 733 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 734 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 735 rq->bio, rq->biotail, blk_rq_bytes(rq)); 736 } 737 EXPORT_SYMBOL(blk_dump_rq_flags); 738 739 static void req_bio_endio(struct request *rq, struct bio *bio, 740 unsigned int nbytes, blk_status_t error) 741 { 742 if (unlikely(error)) { 743 bio->bi_status = error; 744 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 745 /* 746 * Partial zone append completions cannot be supported as the 747 * BIO fragments may end up not being written sequentially. 748 */ 749 if (bio->bi_iter.bi_size != nbytes) 750 bio->bi_status = BLK_STS_IOERR; 751 else 752 bio->bi_iter.bi_sector = rq->__sector; 753 } 754 755 bio_advance(bio, nbytes); 756 757 if (unlikely(rq->rq_flags & RQF_QUIET)) 758 bio_set_flag(bio, BIO_QUIET); 759 /* don't actually finish bio if it's part of flush sequence */ 760 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 761 bio_endio(bio); 762 } 763 764 static void blk_account_io_completion(struct request *req, unsigned int bytes) 765 { 766 if (req->part && blk_do_io_stat(req)) { 767 const int sgrp = op_stat_group(req_op(req)); 768 769 part_stat_lock(); 770 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 771 part_stat_unlock(); 772 } 773 } 774 775 static void blk_print_req_error(struct request *req, blk_status_t status) 776 { 777 printk_ratelimited(KERN_ERR 778 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 779 "phys_seg %u prio class %u\n", 780 blk_status_to_str(status), 781 req->q->disk ? req->q->disk->disk_name : "?", 782 blk_rq_pos(req), (__force u32)req_op(req), 783 blk_op_str(req_op(req)), 784 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 785 req->nr_phys_segments, 786 IOPRIO_PRIO_CLASS(req->ioprio)); 787 } 788 789 /* 790 * Fully end IO on a request. Does not support partial completions, or 791 * errors. 792 */ 793 static void blk_complete_request(struct request *req) 794 { 795 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 796 int total_bytes = blk_rq_bytes(req); 797 struct bio *bio = req->bio; 798 799 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 800 801 if (!bio) 802 return; 803 804 #ifdef CONFIG_BLK_DEV_INTEGRITY 805 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 806 req->q->integrity.profile->complete_fn(req, total_bytes); 807 #endif 808 809 /* 810 * Upper layers may call blk_crypto_evict_key() anytime after the last 811 * bio_endio(). Therefore, the keyslot must be released before that. 812 */ 813 blk_crypto_rq_put_keyslot(req); 814 815 blk_account_io_completion(req, total_bytes); 816 817 do { 818 struct bio *next = bio->bi_next; 819 820 /* Completion has already been traced */ 821 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 822 823 if (req_op(req) == REQ_OP_ZONE_APPEND) 824 bio->bi_iter.bi_sector = req->__sector; 825 826 if (!is_flush) 827 bio_endio(bio); 828 bio = next; 829 } while (bio); 830 831 /* 832 * Reset counters so that the request stacking driver 833 * can find how many bytes remain in the request 834 * later. 835 */ 836 if (!req->end_io) { 837 req->bio = NULL; 838 req->__data_len = 0; 839 } 840 } 841 842 /** 843 * blk_update_request - Complete multiple bytes without completing the request 844 * @req: the request being processed 845 * @error: block status code 846 * @nr_bytes: number of bytes to complete for @req 847 * 848 * Description: 849 * Ends I/O on a number of bytes attached to @req, but doesn't complete 850 * the request structure even if @req doesn't have leftover. 851 * If @req has leftover, sets it up for the next range of segments. 852 * 853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 854 * %false return from this function. 855 * 856 * Note: 857 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 858 * except in the consistency check at the end of this function. 859 * 860 * Return: 861 * %false - this request doesn't have any more data 862 * %true - this request has more data 863 **/ 864 bool blk_update_request(struct request *req, blk_status_t error, 865 unsigned int nr_bytes) 866 { 867 int total_bytes; 868 869 trace_block_rq_complete(req, error, nr_bytes); 870 871 if (!req->bio) 872 return false; 873 874 #ifdef CONFIG_BLK_DEV_INTEGRITY 875 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 876 error == BLK_STS_OK) 877 req->q->integrity.profile->complete_fn(req, nr_bytes); 878 #endif 879 880 /* 881 * Upper layers may call blk_crypto_evict_key() anytime after the last 882 * bio_endio(). Therefore, the keyslot must be released before that. 883 */ 884 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 885 __blk_crypto_rq_put_keyslot(req); 886 887 if (unlikely(error && !blk_rq_is_passthrough(req) && 888 !(req->rq_flags & RQF_QUIET)) && 889 !test_bit(GD_DEAD, &req->q->disk->state)) { 890 blk_print_req_error(req, error); 891 trace_block_rq_error(req, error, nr_bytes); 892 } 893 894 blk_account_io_completion(req, nr_bytes); 895 896 total_bytes = 0; 897 while (req->bio) { 898 struct bio *bio = req->bio; 899 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 900 901 if (bio_bytes == bio->bi_iter.bi_size) 902 req->bio = bio->bi_next; 903 904 /* Completion has already been traced */ 905 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 906 req_bio_endio(req, bio, bio_bytes, error); 907 908 total_bytes += bio_bytes; 909 nr_bytes -= bio_bytes; 910 911 if (!nr_bytes) 912 break; 913 } 914 915 /* 916 * completely done 917 */ 918 if (!req->bio) { 919 /* 920 * Reset counters so that the request stacking driver 921 * can find how many bytes remain in the request 922 * later. 923 */ 924 req->__data_len = 0; 925 return false; 926 } 927 928 req->__data_len -= total_bytes; 929 930 /* update sector only for requests with clear definition of sector */ 931 if (!blk_rq_is_passthrough(req)) 932 req->__sector += total_bytes >> 9; 933 934 /* mixed attributes always follow the first bio */ 935 if (req->rq_flags & RQF_MIXED_MERGE) { 936 req->cmd_flags &= ~REQ_FAILFAST_MASK; 937 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 938 } 939 940 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 941 /* 942 * If total number of sectors is less than the first segment 943 * size, something has gone terribly wrong. 944 */ 945 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 946 blk_dump_rq_flags(req, "request botched"); 947 req->__data_len = blk_rq_cur_bytes(req); 948 } 949 950 /* recalculate the number of segments */ 951 req->nr_phys_segments = blk_recalc_rq_segments(req); 952 } 953 954 return true; 955 } 956 EXPORT_SYMBOL_GPL(blk_update_request); 957 958 static inline void blk_account_io_done(struct request *req, u64 now) 959 { 960 /* 961 * Account IO completion. flush_rq isn't accounted as a 962 * normal IO on queueing nor completion. Accounting the 963 * containing request is enough. 964 */ 965 if (blk_do_io_stat(req) && req->part && 966 !(req->rq_flags & RQF_FLUSH_SEQ)) { 967 const int sgrp = op_stat_group(req_op(req)); 968 969 part_stat_lock(); 970 update_io_ticks(req->part, jiffies, true); 971 part_stat_inc(req->part, ios[sgrp]); 972 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 973 part_stat_unlock(); 974 } 975 } 976 977 static inline void blk_account_io_start(struct request *req) 978 { 979 if (blk_do_io_stat(req)) { 980 /* 981 * All non-passthrough requests are created from a bio with one 982 * exception: when a flush command that is part of a flush sequence 983 * generated by the state machine in blk-flush.c is cloned onto the 984 * lower device by dm-multipath we can get here without a bio. 985 */ 986 if (req->bio) 987 req->part = req->bio->bi_bdev; 988 else 989 req->part = req->q->disk->part0; 990 991 part_stat_lock(); 992 update_io_ticks(req->part, jiffies, false); 993 part_stat_unlock(); 994 } 995 } 996 997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 998 { 999 if (rq->rq_flags & RQF_STATS) 1000 blk_stat_add(rq, now); 1001 1002 blk_mq_sched_completed_request(rq, now); 1003 blk_account_io_done(rq, now); 1004 } 1005 1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1007 { 1008 if (blk_mq_need_time_stamp(rq)) 1009 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1010 1011 if (rq->end_io) { 1012 rq_qos_done(rq->q, rq); 1013 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1014 blk_mq_free_request(rq); 1015 } else { 1016 blk_mq_free_request(rq); 1017 } 1018 } 1019 EXPORT_SYMBOL(__blk_mq_end_request); 1020 1021 void blk_mq_end_request(struct request *rq, blk_status_t error) 1022 { 1023 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1024 BUG(); 1025 __blk_mq_end_request(rq, error); 1026 } 1027 EXPORT_SYMBOL(blk_mq_end_request); 1028 1029 #define TAG_COMP_BATCH 32 1030 1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1032 int *tag_array, int nr_tags) 1033 { 1034 struct request_queue *q = hctx->queue; 1035 1036 /* 1037 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1038 * update hctx->nr_active in batch 1039 */ 1040 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1041 __blk_mq_sub_active_requests(hctx, nr_tags); 1042 1043 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1044 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1045 } 1046 1047 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1048 { 1049 int tags[TAG_COMP_BATCH], nr_tags = 0; 1050 struct blk_mq_hw_ctx *cur_hctx = NULL; 1051 struct request *rq; 1052 u64 now = 0; 1053 1054 if (iob->need_ts) 1055 now = ktime_get_ns(); 1056 1057 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1058 prefetch(rq->bio); 1059 prefetch(rq->rq_next); 1060 1061 blk_complete_request(rq); 1062 if (iob->need_ts) 1063 __blk_mq_end_request_acct(rq, now); 1064 1065 rq_qos_done(rq->q, rq); 1066 1067 /* 1068 * If end_io handler returns NONE, then it still has 1069 * ownership of the request. 1070 */ 1071 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1072 continue; 1073 1074 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1075 if (!req_ref_put_and_test(rq)) 1076 continue; 1077 1078 blk_crypto_free_request(rq); 1079 blk_pm_mark_last_busy(rq); 1080 1081 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1082 if (cur_hctx) 1083 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1084 nr_tags = 0; 1085 cur_hctx = rq->mq_hctx; 1086 } 1087 tags[nr_tags++] = rq->tag; 1088 } 1089 1090 if (nr_tags) 1091 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1092 } 1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1094 1095 static void blk_complete_reqs(struct llist_head *list) 1096 { 1097 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1098 struct request *rq, *next; 1099 1100 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1101 rq->q->mq_ops->complete(rq); 1102 } 1103 1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1105 { 1106 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1107 } 1108 1109 static int blk_softirq_cpu_dead(unsigned int cpu) 1110 { 1111 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1112 return 0; 1113 } 1114 1115 static void __blk_mq_complete_request_remote(void *data) 1116 { 1117 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1118 } 1119 1120 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1121 { 1122 int cpu = raw_smp_processor_id(); 1123 1124 if (!IS_ENABLED(CONFIG_SMP) || 1125 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1126 return false; 1127 /* 1128 * With force threaded interrupts enabled, raising softirq from an SMP 1129 * function call will always result in waking the ksoftirqd thread. 1130 * This is probably worse than completing the request on a different 1131 * cache domain. 1132 */ 1133 if (force_irqthreads()) 1134 return false; 1135 1136 /* same CPU or cache domain? Complete locally */ 1137 if (cpu == rq->mq_ctx->cpu || 1138 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1139 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1140 return false; 1141 1142 /* don't try to IPI to an offline CPU */ 1143 return cpu_online(rq->mq_ctx->cpu); 1144 } 1145 1146 static void blk_mq_complete_send_ipi(struct request *rq) 1147 { 1148 struct llist_head *list; 1149 unsigned int cpu; 1150 1151 cpu = rq->mq_ctx->cpu; 1152 list = &per_cpu(blk_cpu_done, cpu); 1153 if (llist_add(&rq->ipi_list, list)) { 1154 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1155 smp_call_function_single_async(cpu, &rq->csd); 1156 } 1157 } 1158 1159 static void blk_mq_raise_softirq(struct request *rq) 1160 { 1161 struct llist_head *list; 1162 1163 preempt_disable(); 1164 list = this_cpu_ptr(&blk_cpu_done); 1165 if (llist_add(&rq->ipi_list, list)) 1166 raise_softirq(BLOCK_SOFTIRQ); 1167 preempt_enable(); 1168 } 1169 1170 bool blk_mq_complete_request_remote(struct request *rq) 1171 { 1172 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1173 1174 /* 1175 * For request which hctx has only one ctx mapping, 1176 * or a polled request, always complete locally, 1177 * it's pointless to redirect the completion. 1178 */ 1179 if (rq->mq_hctx->nr_ctx == 1 || 1180 rq->cmd_flags & REQ_POLLED) 1181 return false; 1182 1183 if (blk_mq_complete_need_ipi(rq)) { 1184 blk_mq_complete_send_ipi(rq); 1185 return true; 1186 } 1187 1188 if (rq->q->nr_hw_queues == 1) { 1189 blk_mq_raise_softirq(rq); 1190 return true; 1191 } 1192 return false; 1193 } 1194 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1195 1196 /** 1197 * blk_mq_complete_request - end I/O on a request 1198 * @rq: the request being processed 1199 * 1200 * Description: 1201 * Complete a request by scheduling the ->complete_rq operation. 1202 **/ 1203 void blk_mq_complete_request(struct request *rq) 1204 { 1205 if (!blk_mq_complete_request_remote(rq)) 1206 rq->q->mq_ops->complete(rq); 1207 } 1208 EXPORT_SYMBOL(blk_mq_complete_request); 1209 1210 /** 1211 * blk_mq_start_request - Start processing a request 1212 * @rq: Pointer to request to be started 1213 * 1214 * Function used by device drivers to notify the block layer that a request 1215 * is going to be processed now, so blk layer can do proper initializations 1216 * such as starting the timeout timer. 1217 */ 1218 void blk_mq_start_request(struct request *rq) 1219 { 1220 struct request_queue *q = rq->q; 1221 1222 trace_block_rq_issue(rq); 1223 1224 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1225 rq->io_start_time_ns = ktime_get_ns(); 1226 rq->stats_sectors = blk_rq_sectors(rq); 1227 rq->rq_flags |= RQF_STATS; 1228 rq_qos_issue(q, rq); 1229 } 1230 1231 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1232 1233 blk_add_timer(rq); 1234 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1235 1236 #ifdef CONFIG_BLK_DEV_INTEGRITY 1237 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1238 q->integrity.profile->prepare_fn(rq); 1239 #endif 1240 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1241 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1242 } 1243 EXPORT_SYMBOL(blk_mq_start_request); 1244 1245 /* 1246 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1247 * queues. This is important for md arrays to benefit from merging 1248 * requests. 1249 */ 1250 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1251 { 1252 if (plug->multiple_queues) 1253 return BLK_MAX_REQUEST_COUNT * 2; 1254 return BLK_MAX_REQUEST_COUNT; 1255 } 1256 1257 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1258 { 1259 struct request *last = rq_list_peek(&plug->mq_list); 1260 1261 if (!plug->rq_count) { 1262 trace_block_plug(rq->q); 1263 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1264 (!blk_queue_nomerges(rq->q) && 1265 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1266 blk_mq_flush_plug_list(plug, false); 1267 last = NULL; 1268 trace_block_plug(rq->q); 1269 } 1270 1271 if (!plug->multiple_queues && last && last->q != rq->q) 1272 plug->multiple_queues = true; 1273 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1274 plug->has_elevator = true; 1275 rq->rq_next = NULL; 1276 rq_list_add(&plug->mq_list, rq); 1277 plug->rq_count++; 1278 } 1279 1280 /** 1281 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1282 * @rq: request to insert 1283 * @at_head: insert request at head or tail of queue 1284 * 1285 * Description: 1286 * Insert a fully prepared request at the back of the I/O scheduler queue 1287 * for execution. Don't wait for completion. 1288 * 1289 * Note: 1290 * This function will invoke @done directly if the queue is dead. 1291 */ 1292 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1293 { 1294 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1295 1296 WARN_ON(irqs_disabled()); 1297 WARN_ON(!blk_rq_is_passthrough(rq)); 1298 1299 blk_account_io_start(rq); 1300 1301 /* 1302 * As plugging can be enabled for passthrough requests on a zoned 1303 * device, directly accessing the plug instead of using blk_mq_plug() 1304 * should not have any consequences. 1305 */ 1306 if (current->plug && !at_head) { 1307 blk_add_rq_to_plug(current->plug, rq); 1308 return; 1309 } 1310 1311 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1312 blk_mq_run_hw_queue(hctx, false); 1313 } 1314 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1315 1316 struct blk_rq_wait { 1317 struct completion done; 1318 blk_status_t ret; 1319 }; 1320 1321 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1322 { 1323 struct blk_rq_wait *wait = rq->end_io_data; 1324 1325 wait->ret = ret; 1326 complete(&wait->done); 1327 return RQ_END_IO_NONE; 1328 } 1329 1330 bool blk_rq_is_poll(struct request *rq) 1331 { 1332 if (!rq->mq_hctx) 1333 return false; 1334 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1335 return false; 1336 if (WARN_ON_ONCE(!rq->bio)) 1337 return false; 1338 return true; 1339 } 1340 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1341 1342 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1343 { 1344 do { 1345 bio_poll(rq->bio, NULL, 0); 1346 cond_resched(); 1347 } while (!completion_done(wait)); 1348 } 1349 1350 /** 1351 * blk_execute_rq - insert a request into queue for execution 1352 * @rq: request to insert 1353 * @at_head: insert request at head or tail of queue 1354 * 1355 * Description: 1356 * Insert a fully prepared request at the back of the I/O scheduler queue 1357 * for execution and wait for completion. 1358 * Return: The blk_status_t result provided to blk_mq_end_request(). 1359 */ 1360 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1361 { 1362 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1363 struct blk_rq_wait wait = { 1364 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1365 }; 1366 1367 WARN_ON(irqs_disabled()); 1368 WARN_ON(!blk_rq_is_passthrough(rq)); 1369 1370 rq->end_io_data = &wait; 1371 rq->end_io = blk_end_sync_rq; 1372 1373 blk_account_io_start(rq); 1374 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1375 blk_mq_run_hw_queue(hctx, false); 1376 1377 if (blk_rq_is_poll(rq)) { 1378 blk_rq_poll_completion(rq, &wait.done); 1379 } else { 1380 /* 1381 * Prevent hang_check timer from firing at us during very long 1382 * I/O 1383 */ 1384 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1385 1386 if (hang_check) 1387 while (!wait_for_completion_io_timeout(&wait.done, 1388 hang_check * (HZ/2))) 1389 ; 1390 else 1391 wait_for_completion_io(&wait.done); 1392 } 1393 1394 return wait.ret; 1395 } 1396 EXPORT_SYMBOL(blk_execute_rq); 1397 1398 static void __blk_mq_requeue_request(struct request *rq) 1399 { 1400 struct request_queue *q = rq->q; 1401 1402 blk_mq_put_driver_tag(rq); 1403 1404 trace_block_rq_requeue(rq); 1405 rq_qos_requeue(q, rq); 1406 1407 if (blk_mq_request_started(rq)) { 1408 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1409 rq->rq_flags &= ~RQF_TIMED_OUT; 1410 } 1411 } 1412 1413 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1414 { 1415 struct request_queue *q = rq->q; 1416 1417 __blk_mq_requeue_request(rq); 1418 1419 /* this request will be re-inserted to io scheduler queue */ 1420 blk_mq_sched_requeue_request(rq); 1421 1422 blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD); 1423 1424 if (kick_requeue_list) 1425 blk_mq_kick_requeue_list(q); 1426 } 1427 EXPORT_SYMBOL(blk_mq_requeue_request); 1428 1429 static void blk_mq_requeue_work(struct work_struct *work) 1430 { 1431 struct request_queue *q = 1432 container_of(work, struct request_queue, requeue_work.work); 1433 LIST_HEAD(rq_list); 1434 struct request *rq, *next; 1435 1436 spin_lock_irq(&q->requeue_lock); 1437 list_splice_init(&q->requeue_list, &rq_list); 1438 spin_unlock_irq(&q->requeue_lock); 1439 1440 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1441 /* 1442 * If RQF_DONTPREP ist set, the request has been started by the 1443 * driver already and might have driver-specific data allocated 1444 * already. Insert it into the hctx dispatch list to avoid 1445 * block layer merges for the request. 1446 */ 1447 if (rq->rq_flags & RQF_DONTPREP) { 1448 rq->rq_flags &= ~RQF_SOFTBARRIER; 1449 list_del_init(&rq->queuelist); 1450 blk_mq_request_bypass_insert(rq, 0); 1451 } else if (rq->rq_flags & RQF_SOFTBARRIER) { 1452 rq->rq_flags &= ~RQF_SOFTBARRIER; 1453 list_del_init(&rq->queuelist); 1454 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1455 } 1456 } 1457 1458 while (!list_empty(&rq_list)) { 1459 rq = list_entry(rq_list.next, struct request, queuelist); 1460 list_del_init(&rq->queuelist); 1461 blk_mq_insert_request(rq, 0); 1462 } 1463 1464 blk_mq_run_hw_queues(q, false); 1465 } 1466 1467 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags) 1468 { 1469 struct request_queue *q = rq->q; 1470 unsigned long flags; 1471 1472 /* 1473 * We abuse this flag that is otherwise used by the I/O scheduler to 1474 * request head insertion from the workqueue. 1475 */ 1476 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1477 1478 spin_lock_irqsave(&q->requeue_lock, flags); 1479 if (insert_flags & BLK_MQ_INSERT_AT_HEAD) { 1480 rq->rq_flags |= RQF_SOFTBARRIER; 1481 list_add(&rq->queuelist, &q->requeue_list); 1482 } else { 1483 list_add_tail(&rq->queuelist, &q->requeue_list); 1484 } 1485 spin_unlock_irqrestore(&q->requeue_lock, flags); 1486 } 1487 1488 void blk_mq_kick_requeue_list(struct request_queue *q) 1489 { 1490 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1491 } 1492 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1493 1494 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1495 unsigned long msecs) 1496 { 1497 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1498 msecs_to_jiffies(msecs)); 1499 } 1500 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1501 1502 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1503 { 1504 /* 1505 * If we find a request that isn't idle we know the queue is busy 1506 * as it's checked in the iter. 1507 * Return false to stop the iteration. 1508 */ 1509 if (blk_mq_request_started(rq)) { 1510 bool *busy = priv; 1511 1512 *busy = true; 1513 return false; 1514 } 1515 1516 return true; 1517 } 1518 1519 bool blk_mq_queue_inflight(struct request_queue *q) 1520 { 1521 bool busy = false; 1522 1523 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1524 return busy; 1525 } 1526 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1527 1528 static void blk_mq_rq_timed_out(struct request *req) 1529 { 1530 req->rq_flags |= RQF_TIMED_OUT; 1531 if (req->q->mq_ops->timeout) { 1532 enum blk_eh_timer_return ret; 1533 1534 ret = req->q->mq_ops->timeout(req); 1535 if (ret == BLK_EH_DONE) 1536 return; 1537 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1538 } 1539 1540 blk_add_timer(req); 1541 } 1542 1543 struct blk_expired_data { 1544 bool has_timedout_rq; 1545 unsigned long next; 1546 unsigned long timeout_start; 1547 }; 1548 1549 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1550 { 1551 unsigned long deadline; 1552 1553 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1554 return false; 1555 if (rq->rq_flags & RQF_TIMED_OUT) 1556 return false; 1557 1558 deadline = READ_ONCE(rq->deadline); 1559 if (time_after_eq(expired->timeout_start, deadline)) 1560 return true; 1561 1562 if (expired->next == 0) 1563 expired->next = deadline; 1564 else if (time_after(expired->next, deadline)) 1565 expired->next = deadline; 1566 return false; 1567 } 1568 1569 void blk_mq_put_rq_ref(struct request *rq) 1570 { 1571 if (is_flush_rq(rq)) { 1572 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1573 blk_mq_free_request(rq); 1574 } else if (req_ref_put_and_test(rq)) { 1575 __blk_mq_free_request(rq); 1576 } 1577 } 1578 1579 static bool blk_mq_check_expired(struct request *rq, void *priv) 1580 { 1581 struct blk_expired_data *expired = priv; 1582 1583 /* 1584 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1585 * be reallocated underneath the timeout handler's processing, then 1586 * the expire check is reliable. If the request is not expired, then 1587 * it was completed and reallocated as a new request after returning 1588 * from blk_mq_check_expired(). 1589 */ 1590 if (blk_mq_req_expired(rq, expired)) { 1591 expired->has_timedout_rq = true; 1592 return false; 1593 } 1594 return true; 1595 } 1596 1597 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1598 { 1599 struct blk_expired_data *expired = priv; 1600 1601 if (blk_mq_req_expired(rq, expired)) 1602 blk_mq_rq_timed_out(rq); 1603 return true; 1604 } 1605 1606 static void blk_mq_timeout_work(struct work_struct *work) 1607 { 1608 struct request_queue *q = 1609 container_of(work, struct request_queue, timeout_work); 1610 struct blk_expired_data expired = { 1611 .timeout_start = jiffies, 1612 }; 1613 struct blk_mq_hw_ctx *hctx; 1614 unsigned long i; 1615 1616 /* A deadlock might occur if a request is stuck requiring a 1617 * timeout at the same time a queue freeze is waiting 1618 * completion, since the timeout code would not be able to 1619 * acquire the queue reference here. 1620 * 1621 * That's why we don't use blk_queue_enter here; instead, we use 1622 * percpu_ref_tryget directly, because we need to be able to 1623 * obtain a reference even in the short window between the queue 1624 * starting to freeze, by dropping the first reference in 1625 * blk_freeze_queue_start, and the moment the last request is 1626 * consumed, marked by the instant q_usage_counter reaches 1627 * zero. 1628 */ 1629 if (!percpu_ref_tryget(&q->q_usage_counter)) 1630 return; 1631 1632 /* check if there is any timed-out request */ 1633 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1634 if (expired.has_timedout_rq) { 1635 /* 1636 * Before walking tags, we must ensure any submit started 1637 * before the current time has finished. Since the submit 1638 * uses srcu or rcu, wait for a synchronization point to 1639 * ensure all running submits have finished 1640 */ 1641 blk_mq_wait_quiesce_done(q->tag_set); 1642 1643 expired.next = 0; 1644 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1645 } 1646 1647 if (expired.next != 0) { 1648 mod_timer(&q->timeout, expired.next); 1649 } else { 1650 /* 1651 * Request timeouts are handled as a forward rolling timer. If 1652 * we end up here it means that no requests are pending and 1653 * also that no request has been pending for a while. Mark 1654 * each hctx as idle. 1655 */ 1656 queue_for_each_hw_ctx(q, hctx, i) { 1657 /* the hctx may be unmapped, so check it here */ 1658 if (blk_mq_hw_queue_mapped(hctx)) 1659 blk_mq_tag_idle(hctx); 1660 } 1661 } 1662 blk_queue_exit(q); 1663 } 1664 1665 struct flush_busy_ctx_data { 1666 struct blk_mq_hw_ctx *hctx; 1667 struct list_head *list; 1668 }; 1669 1670 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1671 { 1672 struct flush_busy_ctx_data *flush_data = data; 1673 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1674 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1675 enum hctx_type type = hctx->type; 1676 1677 spin_lock(&ctx->lock); 1678 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1679 sbitmap_clear_bit(sb, bitnr); 1680 spin_unlock(&ctx->lock); 1681 return true; 1682 } 1683 1684 /* 1685 * Process software queues that have been marked busy, splicing them 1686 * to the for-dispatch 1687 */ 1688 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1689 { 1690 struct flush_busy_ctx_data data = { 1691 .hctx = hctx, 1692 .list = list, 1693 }; 1694 1695 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1696 } 1697 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1698 1699 struct dispatch_rq_data { 1700 struct blk_mq_hw_ctx *hctx; 1701 struct request *rq; 1702 }; 1703 1704 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1705 void *data) 1706 { 1707 struct dispatch_rq_data *dispatch_data = data; 1708 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1709 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1710 enum hctx_type type = hctx->type; 1711 1712 spin_lock(&ctx->lock); 1713 if (!list_empty(&ctx->rq_lists[type])) { 1714 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1715 list_del_init(&dispatch_data->rq->queuelist); 1716 if (list_empty(&ctx->rq_lists[type])) 1717 sbitmap_clear_bit(sb, bitnr); 1718 } 1719 spin_unlock(&ctx->lock); 1720 1721 return !dispatch_data->rq; 1722 } 1723 1724 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1725 struct blk_mq_ctx *start) 1726 { 1727 unsigned off = start ? start->index_hw[hctx->type] : 0; 1728 struct dispatch_rq_data data = { 1729 .hctx = hctx, 1730 .rq = NULL, 1731 }; 1732 1733 __sbitmap_for_each_set(&hctx->ctx_map, off, 1734 dispatch_rq_from_ctx, &data); 1735 1736 return data.rq; 1737 } 1738 1739 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1740 { 1741 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1742 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1743 int tag; 1744 1745 blk_mq_tag_busy(rq->mq_hctx); 1746 1747 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1748 bt = &rq->mq_hctx->tags->breserved_tags; 1749 tag_offset = 0; 1750 } else { 1751 if (!hctx_may_queue(rq->mq_hctx, bt)) 1752 return false; 1753 } 1754 1755 tag = __sbitmap_queue_get(bt); 1756 if (tag == BLK_MQ_NO_TAG) 1757 return false; 1758 1759 rq->tag = tag + tag_offset; 1760 return true; 1761 } 1762 1763 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1764 { 1765 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1766 return false; 1767 1768 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1769 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1770 rq->rq_flags |= RQF_MQ_INFLIGHT; 1771 __blk_mq_inc_active_requests(hctx); 1772 } 1773 hctx->tags->rqs[rq->tag] = rq; 1774 return true; 1775 } 1776 1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1778 int flags, void *key) 1779 { 1780 struct blk_mq_hw_ctx *hctx; 1781 1782 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1783 1784 spin_lock(&hctx->dispatch_wait_lock); 1785 if (!list_empty(&wait->entry)) { 1786 struct sbitmap_queue *sbq; 1787 1788 list_del_init(&wait->entry); 1789 sbq = &hctx->tags->bitmap_tags; 1790 atomic_dec(&sbq->ws_active); 1791 } 1792 spin_unlock(&hctx->dispatch_wait_lock); 1793 1794 blk_mq_run_hw_queue(hctx, true); 1795 return 1; 1796 } 1797 1798 /* 1799 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1800 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1801 * restart. For both cases, take care to check the condition again after 1802 * marking us as waiting. 1803 */ 1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1805 struct request *rq) 1806 { 1807 struct sbitmap_queue *sbq; 1808 struct wait_queue_head *wq; 1809 wait_queue_entry_t *wait; 1810 bool ret; 1811 1812 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1813 !(blk_mq_is_shared_tags(hctx->flags))) { 1814 blk_mq_sched_mark_restart_hctx(hctx); 1815 1816 /* 1817 * It's possible that a tag was freed in the window between the 1818 * allocation failure and adding the hardware queue to the wait 1819 * queue. 1820 * 1821 * Don't clear RESTART here, someone else could have set it. 1822 * At most this will cost an extra queue run. 1823 */ 1824 return blk_mq_get_driver_tag(rq); 1825 } 1826 1827 wait = &hctx->dispatch_wait; 1828 if (!list_empty_careful(&wait->entry)) 1829 return false; 1830 1831 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1832 sbq = &hctx->tags->breserved_tags; 1833 else 1834 sbq = &hctx->tags->bitmap_tags; 1835 wq = &bt_wait_ptr(sbq, hctx)->wait; 1836 1837 spin_lock_irq(&wq->lock); 1838 spin_lock(&hctx->dispatch_wait_lock); 1839 if (!list_empty(&wait->entry)) { 1840 spin_unlock(&hctx->dispatch_wait_lock); 1841 spin_unlock_irq(&wq->lock); 1842 return false; 1843 } 1844 1845 atomic_inc(&sbq->ws_active); 1846 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1847 __add_wait_queue(wq, wait); 1848 1849 /* 1850 * It's possible that a tag was freed in the window between the 1851 * allocation failure and adding the hardware queue to the wait 1852 * queue. 1853 */ 1854 ret = blk_mq_get_driver_tag(rq); 1855 if (!ret) { 1856 spin_unlock(&hctx->dispatch_wait_lock); 1857 spin_unlock_irq(&wq->lock); 1858 return false; 1859 } 1860 1861 /* 1862 * We got a tag, remove ourselves from the wait queue to ensure 1863 * someone else gets the wakeup. 1864 */ 1865 list_del_init(&wait->entry); 1866 atomic_dec(&sbq->ws_active); 1867 spin_unlock(&hctx->dispatch_wait_lock); 1868 spin_unlock_irq(&wq->lock); 1869 1870 return true; 1871 } 1872 1873 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1874 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1875 /* 1876 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1877 * - EWMA is one simple way to compute running average value 1878 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1879 * - take 4 as factor for avoiding to get too small(0) result, and this 1880 * factor doesn't matter because EWMA decreases exponentially 1881 */ 1882 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1883 { 1884 unsigned int ewma; 1885 1886 ewma = hctx->dispatch_busy; 1887 1888 if (!ewma && !busy) 1889 return; 1890 1891 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1892 if (busy) 1893 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1894 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1895 1896 hctx->dispatch_busy = ewma; 1897 } 1898 1899 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1900 1901 static void blk_mq_handle_dev_resource(struct request *rq, 1902 struct list_head *list) 1903 { 1904 list_add(&rq->queuelist, list); 1905 __blk_mq_requeue_request(rq); 1906 } 1907 1908 static void blk_mq_handle_zone_resource(struct request *rq, 1909 struct list_head *zone_list) 1910 { 1911 /* 1912 * If we end up here it is because we cannot dispatch a request to a 1913 * specific zone due to LLD level zone-write locking or other zone 1914 * related resource not being available. In this case, set the request 1915 * aside in zone_list for retrying it later. 1916 */ 1917 list_add(&rq->queuelist, zone_list); 1918 __blk_mq_requeue_request(rq); 1919 } 1920 1921 enum prep_dispatch { 1922 PREP_DISPATCH_OK, 1923 PREP_DISPATCH_NO_TAG, 1924 PREP_DISPATCH_NO_BUDGET, 1925 }; 1926 1927 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1928 bool need_budget) 1929 { 1930 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1931 int budget_token = -1; 1932 1933 if (need_budget) { 1934 budget_token = blk_mq_get_dispatch_budget(rq->q); 1935 if (budget_token < 0) { 1936 blk_mq_put_driver_tag(rq); 1937 return PREP_DISPATCH_NO_BUDGET; 1938 } 1939 blk_mq_set_rq_budget_token(rq, budget_token); 1940 } 1941 1942 if (!blk_mq_get_driver_tag(rq)) { 1943 /* 1944 * The initial allocation attempt failed, so we need to 1945 * rerun the hardware queue when a tag is freed. The 1946 * waitqueue takes care of that. If the queue is run 1947 * before we add this entry back on the dispatch list, 1948 * we'll re-run it below. 1949 */ 1950 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1951 /* 1952 * All budgets not got from this function will be put 1953 * together during handling partial dispatch 1954 */ 1955 if (need_budget) 1956 blk_mq_put_dispatch_budget(rq->q, budget_token); 1957 return PREP_DISPATCH_NO_TAG; 1958 } 1959 } 1960 1961 return PREP_DISPATCH_OK; 1962 } 1963 1964 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1965 static void blk_mq_release_budgets(struct request_queue *q, 1966 struct list_head *list) 1967 { 1968 struct request *rq; 1969 1970 list_for_each_entry(rq, list, queuelist) { 1971 int budget_token = blk_mq_get_rq_budget_token(rq); 1972 1973 if (budget_token >= 0) 1974 blk_mq_put_dispatch_budget(q, budget_token); 1975 } 1976 } 1977 1978 /* 1979 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1980 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1981 * details) 1982 * Attention, we should explicitly call this in unusual cases: 1983 * 1) did not queue everything initially scheduled to queue 1984 * 2) the last attempt to queue a request failed 1985 */ 1986 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1987 bool from_schedule) 1988 { 1989 if (hctx->queue->mq_ops->commit_rqs && queued) { 1990 trace_block_unplug(hctx->queue, queued, !from_schedule); 1991 hctx->queue->mq_ops->commit_rqs(hctx); 1992 } 1993 } 1994 1995 /* 1996 * Returns true if we did some work AND can potentially do more. 1997 */ 1998 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1999 unsigned int nr_budgets) 2000 { 2001 enum prep_dispatch prep; 2002 struct request_queue *q = hctx->queue; 2003 struct request *rq; 2004 int queued; 2005 blk_status_t ret = BLK_STS_OK; 2006 LIST_HEAD(zone_list); 2007 bool needs_resource = false; 2008 2009 if (list_empty(list)) 2010 return false; 2011 2012 /* 2013 * Now process all the entries, sending them to the driver. 2014 */ 2015 queued = 0; 2016 do { 2017 struct blk_mq_queue_data bd; 2018 2019 rq = list_first_entry(list, struct request, queuelist); 2020 2021 WARN_ON_ONCE(hctx != rq->mq_hctx); 2022 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2023 if (prep != PREP_DISPATCH_OK) 2024 break; 2025 2026 list_del_init(&rq->queuelist); 2027 2028 bd.rq = rq; 2029 bd.last = list_empty(list); 2030 2031 /* 2032 * once the request is queued to lld, no need to cover the 2033 * budget any more 2034 */ 2035 if (nr_budgets) 2036 nr_budgets--; 2037 ret = q->mq_ops->queue_rq(hctx, &bd); 2038 switch (ret) { 2039 case BLK_STS_OK: 2040 queued++; 2041 break; 2042 case BLK_STS_RESOURCE: 2043 needs_resource = true; 2044 fallthrough; 2045 case BLK_STS_DEV_RESOURCE: 2046 blk_mq_handle_dev_resource(rq, list); 2047 goto out; 2048 case BLK_STS_ZONE_RESOURCE: 2049 /* 2050 * Move the request to zone_list and keep going through 2051 * the dispatch list to find more requests the drive can 2052 * accept. 2053 */ 2054 blk_mq_handle_zone_resource(rq, &zone_list); 2055 needs_resource = true; 2056 break; 2057 default: 2058 blk_mq_end_request(rq, ret); 2059 } 2060 } while (!list_empty(list)); 2061 out: 2062 if (!list_empty(&zone_list)) 2063 list_splice_tail_init(&zone_list, list); 2064 2065 /* If we didn't flush the entire list, we could have told the driver 2066 * there was more coming, but that turned out to be a lie. 2067 */ 2068 if (!list_empty(list) || ret != BLK_STS_OK) 2069 blk_mq_commit_rqs(hctx, queued, false); 2070 2071 /* 2072 * Any items that need requeuing? Stuff them into hctx->dispatch, 2073 * that is where we will continue on next queue run. 2074 */ 2075 if (!list_empty(list)) { 2076 bool needs_restart; 2077 /* For non-shared tags, the RESTART check will suffice */ 2078 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2079 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2080 blk_mq_is_shared_tags(hctx->flags)); 2081 2082 if (nr_budgets) 2083 blk_mq_release_budgets(q, list); 2084 2085 spin_lock(&hctx->lock); 2086 list_splice_tail_init(list, &hctx->dispatch); 2087 spin_unlock(&hctx->lock); 2088 2089 /* 2090 * Order adding requests to hctx->dispatch and checking 2091 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2092 * in blk_mq_sched_restart(). Avoid restart code path to 2093 * miss the new added requests to hctx->dispatch, meantime 2094 * SCHED_RESTART is observed here. 2095 */ 2096 smp_mb(); 2097 2098 /* 2099 * If SCHED_RESTART was set by the caller of this function and 2100 * it is no longer set that means that it was cleared by another 2101 * thread and hence that a queue rerun is needed. 2102 * 2103 * If 'no_tag' is set, that means that we failed getting 2104 * a driver tag with an I/O scheduler attached. If our dispatch 2105 * waitqueue is no longer active, ensure that we run the queue 2106 * AFTER adding our entries back to the list. 2107 * 2108 * If no I/O scheduler has been configured it is possible that 2109 * the hardware queue got stopped and restarted before requests 2110 * were pushed back onto the dispatch list. Rerun the queue to 2111 * avoid starvation. Notes: 2112 * - blk_mq_run_hw_queue() checks whether or not a queue has 2113 * been stopped before rerunning a queue. 2114 * - Some but not all block drivers stop a queue before 2115 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2116 * and dm-rq. 2117 * 2118 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2119 * bit is set, run queue after a delay to avoid IO stalls 2120 * that could otherwise occur if the queue is idle. We'll do 2121 * similar if we couldn't get budget or couldn't lock a zone 2122 * and SCHED_RESTART is set. 2123 */ 2124 needs_restart = blk_mq_sched_needs_restart(hctx); 2125 if (prep == PREP_DISPATCH_NO_BUDGET) 2126 needs_resource = true; 2127 if (!needs_restart || 2128 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2129 blk_mq_run_hw_queue(hctx, true); 2130 else if (needs_resource) 2131 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2132 2133 blk_mq_update_dispatch_busy(hctx, true); 2134 return false; 2135 } 2136 2137 blk_mq_update_dispatch_busy(hctx, false); 2138 return true; 2139 } 2140 2141 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2142 { 2143 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2144 2145 if (cpu >= nr_cpu_ids) 2146 cpu = cpumask_first(hctx->cpumask); 2147 return cpu; 2148 } 2149 2150 /* 2151 * It'd be great if the workqueue API had a way to pass 2152 * in a mask and had some smarts for more clever placement. 2153 * For now we just round-robin here, switching for every 2154 * BLK_MQ_CPU_WORK_BATCH queued items. 2155 */ 2156 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2157 { 2158 bool tried = false; 2159 int next_cpu = hctx->next_cpu; 2160 2161 if (hctx->queue->nr_hw_queues == 1) 2162 return WORK_CPU_UNBOUND; 2163 2164 if (--hctx->next_cpu_batch <= 0) { 2165 select_cpu: 2166 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2167 cpu_online_mask); 2168 if (next_cpu >= nr_cpu_ids) 2169 next_cpu = blk_mq_first_mapped_cpu(hctx); 2170 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2171 } 2172 2173 /* 2174 * Do unbound schedule if we can't find a online CPU for this hctx, 2175 * and it should only happen in the path of handling CPU DEAD. 2176 */ 2177 if (!cpu_online(next_cpu)) { 2178 if (!tried) { 2179 tried = true; 2180 goto select_cpu; 2181 } 2182 2183 /* 2184 * Make sure to re-select CPU next time once after CPUs 2185 * in hctx->cpumask become online again. 2186 */ 2187 hctx->next_cpu = next_cpu; 2188 hctx->next_cpu_batch = 1; 2189 return WORK_CPU_UNBOUND; 2190 } 2191 2192 hctx->next_cpu = next_cpu; 2193 return next_cpu; 2194 } 2195 2196 /** 2197 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2198 * @hctx: Pointer to the hardware queue to run. 2199 * @msecs: Milliseconds of delay to wait before running the queue. 2200 * 2201 * Run a hardware queue asynchronously with a delay of @msecs. 2202 */ 2203 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2204 { 2205 if (unlikely(blk_mq_hctx_stopped(hctx))) 2206 return; 2207 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2208 msecs_to_jiffies(msecs)); 2209 } 2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2211 2212 /** 2213 * blk_mq_run_hw_queue - Start to run a hardware queue. 2214 * @hctx: Pointer to the hardware queue to run. 2215 * @async: If we want to run the queue asynchronously. 2216 * 2217 * Check if the request queue is not in a quiesced state and if there are 2218 * pending requests to be sent. If this is true, run the queue to send requests 2219 * to hardware. 2220 */ 2221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2222 { 2223 bool need_run; 2224 2225 /* 2226 * We can't run the queue inline with interrupts disabled. 2227 */ 2228 WARN_ON_ONCE(!async && in_interrupt()); 2229 2230 /* 2231 * When queue is quiesced, we may be switching io scheduler, or 2232 * updating nr_hw_queues, or other things, and we can't run queue 2233 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2234 * 2235 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2236 * quiesced. 2237 */ 2238 __blk_mq_run_dispatch_ops(hctx->queue, false, 2239 need_run = !blk_queue_quiesced(hctx->queue) && 2240 blk_mq_hctx_has_pending(hctx)); 2241 2242 if (!need_run) 2243 return; 2244 2245 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) || 2246 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2247 blk_mq_delay_run_hw_queue(hctx, 0); 2248 return; 2249 } 2250 2251 blk_mq_run_dispatch_ops(hctx->queue, 2252 blk_mq_sched_dispatch_requests(hctx)); 2253 } 2254 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2255 2256 /* 2257 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2258 * scheduler. 2259 */ 2260 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2261 { 2262 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2263 /* 2264 * If the IO scheduler does not respect hardware queues when 2265 * dispatching, we just don't bother with multiple HW queues and 2266 * dispatch from hctx for the current CPU since running multiple queues 2267 * just causes lock contention inside the scheduler and pointless cache 2268 * bouncing. 2269 */ 2270 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2271 2272 if (!blk_mq_hctx_stopped(hctx)) 2273 return hctx; 2274 return NULL; 2275 } 2276 2277 /** 2278 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2279 * @q: Pointer to the request queue to run. 2280 * @async: If we want to run the queue asynchronously. 2281 */ 2282 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2283 { 2284 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2285 unsigned long i; 2286 2287 sq_hctx = NULL; 2288 if (blk_queue_sq_sched(q)) 2289 sq_hctx = blk_mq_get_sq_hctx(q); 2290 queue_for_each_hw_ctx(q, hctx, i) { 2291 if (blk_mq_hctx_stopped(hctx)) 2292 continue; 2293 /* 2294 * Dispatch from this hctx either if there's no hctx preferred 2295 * by IO scheduler or if it has requests that bypass the 2296 * scheduler. 2297 */ 2298 if (!sq_hctx || sq_hctx == hctx || 2299 !list_empty_careful(&hctx->dispatch)) 2300 blk_mq_run_hw_queue(hctx, async); 2301 } 2302 } 2303 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2304 2305 /** 2306 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2307 * @q: Pointer to the request queue to run. 2308 * @msecs: Milliseconds of delay to wait before running the queues. 2309 */ 2310 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2311 { 2312 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2313 unsigned long i; 2314 2315 sq_hctx = NULL; 2316 if (blk_queue_sq_sched(q)) 2317 sq_hctx = blk_mq_get_sq_hctx(q); 2318 queue_for_each_hw_ctx(q, hctx, i) { 2319 if (blk_mq_hctx_stopped(hctx)) 2320 continue; 2321 /* 2322 * If there is already a run_work pending, leave the 2323 * pending delay untouched. Otherwise, a hctx can stall 2324 * if another hctx is re-delaying the other's work 2325 * before the work executes. 2326 */ 2327 if (delayed_work_pending(&hctx->run_work)) 2328 continue; 2329 /* 2330 * Dispatch from this hctx either if there's no hctx preferred 2331 * by IO scheduler or if it has requests that bypass the 2332 * scheduler. 2333 */ 2334 if (!sq_hctx || sq_hctx == hctx || 2335 !list_empty_careful(&hctx->dispatch)) 2336 blk_mq_delay_run_hw_queue(hctx, msecs); 2337 } 2338 } 2339 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2340 2341 /* 2342 * This function is often used for pausing .queue_rq() by driver when 2343 * there isn't enough resource or some conditions aren't satisfied, and 2344 * BLK_STS_RESOURCE is usually returned. 2345 * 2346 * We do not guarantee that dispatch can be drained or blocked 2347 * after blk_mq_stop_hw_queue() returns. Please use 2348 * blk_mq_quiesce_queue() for that requirement. 2349 */ 2350 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2351 { 2352 cancel_delayed_work(&hctx->run_work); 2353 2354 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2355 } 2356 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2357 2358 /* 2359 * This function is often used for pausing .queue_rq() by driver when 2360 * there isn't enough resource or some conditions aren't satisfied, and 2361 * BLK_STS_RESOURCE is usually returned. 2362 * 2363 * We do not guarantee that dispatch can be drained or blocked 2364 * after blk_mq_stop_hw_queues() returns. Please use 2365 * blk_mq_quiesce_queue() for that requirement. 2366 */ 2367 void blk_mq_stop_hw_queues(struct request_queue *q) 2368 { 2369 struct blk_mq_hw_ctx *hctx; 2370 unsigned long i; 2371 2372 queue_for_each_hw_ctx(q, hctx, i) 2373 blk_mq_stop_hw_queue(hctx); 2374 } 2375 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2376 2377 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2378 { 2379 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2380 2381 blk_mq_run_hw_queue(hctx, false); 2382 } 2383 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2384 2385 void blk_mq_start_hw_queues(struct request_queue *q) 2386 { 2387 struct blk_mq_hw_ctx *hctx; 2388 unsigned long i; 2389 2390 queue_for_each_hw_ctx(q, hctx, i) 2391 blk_mq_start_hw_queue(hctx); 2392 } 2393 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2394 2395 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2396 { 2397 if (!blk_mq_hctx_stopped(hctx)) 2398 return; 2399 2400 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2401 blk_mq_run_hw_queue(hctx, async); 2402 } 2403 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2404 2405 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2406 { 2407 struct blk_mq_hw_ctx *hctx; 2408 unsigned long i; 2409 2410 queue_for_each_hw_ctx(q, hctx, i) 2411 blk_mq_start_stopped_hw_queue(hctx, async); 2412 } 2413 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2414 2415 static void blk_mq_run_work_fn(struct work_struct *work) 2416 { 2417 struct blk_mq_hw_ctx *hctx = 2418 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2419 2420 blk_mq_run_dispatch_ops(hctx->queue, 2421 blk_mq_sched_dispatch_requests(hctx)); 2422 } 2423 2424 /** 2425 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2426 * @rq: Pointer to request to be inserted. 2427 * @flags: BLK_MQ_INSERT_* 2428 * 2429 * Should only be used carefully, when the caller knows we want to 2430 * bypass a potential IO scheduler on the target device. 2431 */ 2432 void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2433 { 2434 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2435 2436 spin_lock(&hctx->lock); 2437 if (flags & BLK_MQ_INSERT_AT_HEAD) 2438 list_add(&rq->queuelist, &hctx->dispatch); 2439 else 2440 list_add_tail(&rq->queuelist, &hctx->dispatch); 2441 spin_unlock(&hctx->lock); 2442 } 2443 2444 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2445 struct blk_mq_ctx *ctx, struct list_head *list, 2446 bool run_queue_async) 2447 { 2448 struct request *rq; 2449 enum hctx_type type = hctx->type; 2450 2451 /* 2452 * Try to issue requests directly if the hw queue isn't busy to save an 2453 * extra enqueue & dequeue to the sw queue. 2454 */ 2455 if (!hctx->dispatch_busy && !run_queue_async) { 2456 blk_mq_run_dispatch_ops(hctx->queue, 2457 blk_mq_try_issue_list_directly(hctx, list)); 2458 if (list_empty(list)) 2459 goto out; 2460 } 2461 2462 /* 2463 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2464 * offline now 2465 */ 2466 list_for_each_entry(rq, list, queuelist) { 2467 BUG_ON(rq->mq_ctx != ctx); 2468 trace_block_rq_insert(rq); 2469 } 2470 2471 spin_lock(&ctx->lock); 2472 list_splice_tail_init(list, &ctx->rq_lists[type]); 2473 blk_mq_hctx_mark_pending(hctx, ctx); 2474 spin_unlock(&ctx->lock); 2475 out: 2476 blk_mq_run_hw_queue(hctx, run_queue_async); 2477 } 2478 2479 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2480 { 2481 struct request_queue *q = rq->q; 2482 struct blk_mq_ctx *ctx = rq->mq_ctx; 2483 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2484 2485 if (blk_rq_is_passthrough(rq)) { 2486 /* 2487 * Passthrough request have to be added to hctx->dispatch 2488 * directly. The device may be in a situation where it can't 2489 * handle FS request, and always returns BLK_STS_RESOURCE for 2490 * them, which gets them added to hctx->dispatch. 2491 * 2492 * If a passthrough request is required to unblock the queues, 2493 * and it is added to the scheduler queue, there is no chance to 2494 * dispatch it given we prioritize requests in hctx->dispatch. 2495 */ 2496 blk_mq_request_bypass_insert(rq, flags); 2497 } else if (rq->rq_flags & RQF_FLUSH_SEQ) { 2498 /* 2499 * Firstly normal IO request is inserted to scheduler queue or 2500 * sw queue, meantime we add flush request to dispatch queue( 2501 * hctx->dispatch) directly and there is at most one in-flight 2502 * flush request for each hw queue, so it doesn't matter to add 2503 * flush request to tail or front of the dispatch queue. 2504 * 2505 * Secondly in case of NCQ, flush request belongs to non-NCQ 2506 * command, and queueing it will fail when there is any 2507 * in-flight normal IO request(NCQ command). When adding flush 2508 * rq to the front of hctx->dispatch, it is easier to introduce 2509 * extra time to flush rq's latency because of S_SCHED_RESTART 2510 * compared with adding to the tail of dispatch queue, then 2511 * chance of flush merge is increased, and less flush requests 2512 * will be issued to controller. It is observed that ~10% time 2513 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2514 * drive when adding flush rq to the front of hctx->dispatch. 2515 * 2516 * Simply queue flush rq to the front of hctx->dispatch so that 2517 * intensive flush workloads can benefit in case of NCQ HW. 2518 */ 2519 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2520 } else if (q->elevator) { 2521 LIST_HEAD(list); 2522 2523 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2524 2525 list_add(&rq->queuelist, &list); 2526 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2527 } else { 2528 trace_block_rq_insert(rq); 2529 2530 spin_lock(&ctx->lock); 2531 if (flags & BLK_MQ_INSERT_AT_HEAD) 2532 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2533 else 2534 list_add_tail(&rq->queuelist, 2535 &ctx->rq_lists[hctx->type]); 2536 blk_mq_hctx_mark_pending(hctx, ctx); 2537 spin_unlock(&ctx->lock); 2538 } 2539 } 2540 2541 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2542 unsigned int nr_segs) 2543 { 2544 int err; 2545 2546 if (bio->bi_opf & REQ_RAHEAD) 2547 rq->cmd_flags |= REQ_FAILFAST_MASK; 2548 2549 rq->__sector = bio->bi_iter.bi_sector; 2550 blk_rq_bio_prep(rq, bio, nr_segs); 2551 2552 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2553 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2554 WARN_ON_ONCE(err); 2555 2556 blk_account_io_start(rq); 2557 } 2558 2559 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2560 struct request *rq, bool last) 2561 { 2562 struct request_queue *q = rq->q; 2563 struct blk_mq_queue_data bd = { 2564 .rq = rq, 2565 .last = last, 2566 }; 2567 blk_status_t ret; 2568 2569 /* 2570 * For OK queue, we are done. For error, caller may kill it. 2571 * Any other error (busy), just add it to our list as we 2572 * previously would have done. 2573 */ 2574 ret = q->mq_ops->queue_rq(hctx, &bd); 2575 switch (ret) { 2576 case BLK_STS_OK: 2577 blk_mq_update_dispatch_busy(hctx, false); 2578 break; 2579 case BLK_STS_RESOURCE: 2580 case BLK_STS_DEV_RESOURCE: 2581 blk_mq_update_dispatch_busy(hctx, true); 2582 __blk_mq_requeue_request(rq); 2583 break; 2584 default: 2585 blk_mq_update_dispatch_busy(hctx, false); 2586 break; 2587 } 2588 2589 return ret; 2590 } 2591 2592 static bool blk_mq_get_budget_and_tag(struct request *rq) 2593 { 2594 int budget_token; 2595 2596 budget_token = blk_mq_get_dispatch_budget(rq->q); 2597 if (budget_token < 0) 2598 return false; 2599 blk_mq_set_rq_budget_token(rq, budget_token); 2600 if (!blk_mq_get_driver_tag(rq)) { 2601 blk_mq_put_dispatch_budget(rq->q, budget_token); 2602 return false; 2603 } 2604 return true; 2605 } 2606 2607 /** 2608 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2609 * @hctx: Pointer of the associated hardware queue. 2610 * @rq: Pointer to request to be sent. 2611 * 2612 * If the device has enough resources to accept a new request now, send the 2613 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2614 * we can try send it another time in the future. Requests inserted at this 2615 * queue have higher priority. 2616 */ 2617 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2618 struct request *rq) 2619 { 2620 blk_status_t ret; 2621 2622 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2623 blk_mq_insert_request(rq, 0); 2624 return; 2625 } 2626 2627 if ((rq->rq_flags & RQF_ELV) || !blk_mq_get_budget_and_tag(rq)) { 2628 blk_mq_insert_request(rq, 0); 2629 blk_mq_run_hw_queue(hctx, false); 2630 return; 2631 } 2632 2633 ret = __blk_mq_issue_directly(hctx, rq, true); 2634 switch (ret) { 2635 case BLK_STS_OK: 2636 break; 2637 case BLK_STS_RESOURCE: 2638 case BLK_STS_DEV_RESOURCE: 2639 blk_mq_request_bypass_insert(rq, 0); 2640 blk_mq_run_hw_queue(hctx, false); 2641 break; 2642 default: 2643 blk_mq_end_request(rq, ret); 2644 break; 2645 } 2646 } 2647 2648 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2649 { 2650 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2651 2652 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2653 blk_mq_insert_request(rq, 0); 2654 return BLK_STS_OK; 2655 } 2656 2657 if (!blk_mq_get_budget_and_tag(rq)) 2658 return BLK_STS_RESOURCE; 2659 return __blk_mq_issue_directly(hctx, rq, last); 2660 } 2661 2662 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2663 { 2664 struct blk_mq_hw_ctx *hctx = NULL; 2665 struct request *rq; 2666 int queued = 0; 2667 blk_status_t ret = BLK_STS_OK; 2668 2669 while ((rq = rq_list_pop(&plug->mq_list))) { 2670 bool last = rq_list_empty(plug->mq_list); 2671 2672 if (hctx != rq->mq_hctx) { 2673 if (hctx) { 2674 blk_mq_commit_rqs(hctx, queued, false); 2675 queued = 0; 2676 } 2677 hctx = rq->mq_hctx; 2678 } 2679 2680 ret = blk_mq_request_issue_directly(rq, last); 2681 switch (ret) { 2682 case BLK_STS_OK: 2683 queued++; 2684 break; 2685 case BLK_STS_RESOURCE: 2686 case BLK_STS_DEV_RESOURCE: 2687 blk_mq_request_bypass_insert(rq, 0); 2688 blk_mq_run_hw_queue(hctx, false); 2689 goto out; 2690 default: 2691 blk_mq_end_request(rq, ret); 2692 break; 2693 } 2694 } 2695 2696 out: 2697 if (ret != BLK_STS_OK) 2698 blk_mq_commit_rqs(hctx, queued, false); 2699 } 2700 2701 static void __blk_mq_flush_plug_list(struct request_queue *q, 2702 struct blk_plug *plug) 2703 { 2704 if (blk_queue_quiesced(q)) 2705 return; 2706 q->mq_ops->queue_rqs(&plug->mq_list); 2707 } 2708 2709 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2710 { 2711 struct blk_mq_hw_ctx *this_hctx = NULL; 2712 struct blk_mq_ctx *this_ctx = NULL; 2713 struct request *requeue_list = NULL; 2714 unsigned int depth = 0; 2715 LIST_HEAD(list); 2716 2717 do { 2718 struct request *rq = rq_list_pop(&plug->mq_list); 2719 2720 if (!this_hctx) { 2721 this_hctx = rq->mq_hctx; 2722 this_ctx = rq->mq_ctx; 2723 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2724 rq_list_add(&requeue_list, rq); 2725 continue; 2726 } 2727 list_add_tail(&rq->queuelist, &list); 2728 depth++; 2729 } while (!rq_list_empty(plug->mq_list)); 2730 2731 plug->mq_list = requeue_list; 2732 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2733 2734 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2735 if (this_hctx->queue->elevator) { 2736 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2737 &list, 0); 2738 blk_mq_run_hw_queue(this_hctx, from_sched); 2739 } else { 2740 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2741 } 2742 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2743 } 2744 2745 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2746 { 2747 struct request *rq; 2748 2749 if (rq_list_empty(plug->mq_list)) 2750 return; 2751 plug->rq_count = 0; 2752 2753 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2754 struct request_queue *q; 2755 2756 rq = rq_list_peek(&plug->mq_list); 2757 q = rq->q; 2758 2759 /* 2760 * Peek first request and see if we have a ->queue_rqs() hook. 2761 * If we do, we can dispatch the whole plug list in one go. We 2762 * already know at this point that all requests belong to the 2763 * same queue, caller must ensure that's the case. 2764 * 2765 * Since we pass off the full list to the driver at this point, 2766 * we do not increment the active request count for the queue. 2767 * Bypass shared tags for now because of that. 2768 */ 2769 if (q->mq_ops->queue_rqs && 2770 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2771 blk_mq_run_dispatch_ops(q, 2772 __blk_mq_flush_plug_list(q, plug)); 2773 if (rq_list_empty(plug->mq_list)) 2774 return; 2775 } 2776 2777 blk_mq_run_dispatch_ops(q, 2778 blk_mq_plug_issue_direct(plug)); 2779 if (rq_list_empty(plug->mq_list)) 2780 return; 2781 } 2782 2783 do { 2784 blk_mq_dispatch_plug_list(plug, from_schedule); 2785 } while (!rq_list_empty(plug->mq_list)); 2786 } 2787 2788 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2789 struct list_head *list) 2790 { 2791 int queued = 0; 2792 blk_status_t ret = BLK_STS_OK; 2793 2794 while (!list_empty(list)) { 2795 struct request *rq = list_first_entry(list, struct request, 2796 queuelist); 2797 2798 list_del_init(&rq->queuelist); 2799 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2800 switch (ret) { 2801 case BLK_STS_OK: 2802 queued++; 2803 break; 2804 case BLK_STS_RESOURCE: 2805 case BLK_STS_DEV_RESOURCE: 2806 blk_mq_request_bypass_insert(rq, 0); 2807 if (list_empty(list)) 2808 blk_mq_run_hw_queue(hctx, false); 2809 goto out; 2810 default: 2811 blk_mq_end_request(rq, ret); 2812 break; 2813 } 2814 } 2815 2816 out: 2817 if (ret != BLK_STS_OK) 2818 blk_mq_commit_rqs(hctx, queued, false); 2819 } 2820 2821 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2822 struct bio *bio, unsigned int nr_segs) 2823 { 2824 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2825 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2826 return true; 2827 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2828 return true; 2829 } 2830 return false; 2831 } 2832 2833 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2834 struct blk_plug *plug, 2835 struct bio *bio, 2836 unsigned int nsegs) 2837 { 2838 struct blk_mq_alloc_data data = { 2839 .q = q, 2840 .nr_tags = 1, 2841 .cmd_flags = bio->bi_opf, 2842 }; 2843 struct request *rq; 2844 2845 if (unlikely(bio_queue_enter(bio))) 2846 return NULL; 2847 2848 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2849 goto queue_exit; 2850 2851 rq_qos_throttle(q, bio); 2852 2853 if (plug) { 2854 data.nr_tags = plug->nr_ios; 2855 plug->nr_ios = 1; 2856 data.cached_rq = &plug->cached_rq; 2857 } 2858 2859 rq = __blk_mq_alloc_requests(&data); 2860 if (rq) 2861 return rq; 2862 rq_qos_cleanup(q, bio); 2863 if (bio->bi_opf & REQ_NOWAIT) 2864 bio_wouldblock_error(bio); 2865 queue_exit: 2866 blk_queue_exit(q); 2867 return NULL; 2868 } 2869 2870 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2871 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2872 { 2873 struct request *rq; 2874 enum hctx_type type, hctx_type; 2875 2876 if (!plug) 2877 return NULL; 2878 2879 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2880 *bio = NULL; 2881 return NULL; 2882 } 2883 2884 rq = rq_list_peek(&plug->cached_rq); 2885 if (!rq || rq->q != q) 2886 return NULL; 2887 2888 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2889 hctx_type = rq->mq_hctx->type; 2890 if (type != hctx_type && 2891 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2892 return NULL; 2893 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2894 return NULL; 2895 2896 /* 2897 * If any qos ->throttle() end up blocking, we will have flushed the 2898 * plug and hence killed the cached_rq list as well. Pop this entry 2899 * before we throttle. 2900 */ 2901 plug->cached_rq = rq_list_next(rq); 2902 rq_qos_throttle(q, *bio); 2903 2904 rq->cmd_flags = (*bio)->bi_opf; 2905 INIT_LIST_HEAD(&rq->queuelist); 2906 return rq; 2907 } 2908 2909 static void bio_set_ioprio(struct bio *bio) 2910 { 2911 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2912 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2913 bio->bi_ioprio = get_current_ioprio(); 2914 blkcg_set_ioprio(bio); 2915 } 2916 2917 /** 2918 * blk_mq_submit_bio - Create and send a request to block device. 2919 * @bio: Bio pointer. 2920 * 2921 * Builds up a request structure from @q and @bio and send to the device. The 2922 * request may not be queued directly to hardware if: 2923 * * This request can be merged with another one 2924 * * We want to place request at plug queue for possible future merging 2925 * * There is an IO scheduler active at this queue 2926 * 2927 * It will not queue the request if there is an error with the bio, or at the 2928 * request creation. 2929 */ 2930 void blk_mq_submit_bio(struct bio *bio) 2931 { 2932 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2933 struct blk_plug *plug = blk_mq_plug(bio); 2934 const int is_sync = op_is_sync(bio->bi_opf); 2935 struct blk_mq_hw_ctx *hctx; 2936 struct request *rq; 2937 unsigned int nr_segs = 1; 2938 blk_status_t ret; 2939 2940 bio = blk_queue_bounce(bio, q); 2941 if (bio_may_exceed_limits(bio, &q->limits)) { 2942 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2943 if (!bio) 2944 return; 2945 } 2946 2947 if (!bio_integrity_prep(bio)) 2948 return; 2949 2950 bio_set_ioprio(bio); 2951 2952 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2953 if (!rq) { 2954 if (!bio) 2955 return; 2956 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2957 if (unlikely(!rq)) 2958 return; 2959 } 2960 2961 trace_block_getrq(bio); 2962 2963 rq_qos_track(q, rq, bio); 2964 2965 blk_mq_bio_to_request(rq, bio, nr_segs); 2966 2967 ret = blk_crypto_rq_get_keyslot(rq); 2968 if (ret != BLK_STS_OK) { 2969 bio->bi_status = ret; 2970 bio_endio(bio); 2971 blk_mq_free_request(rq); 2972 return; 2973 } 2974 2975 if (op_is_flush(bio->bi_opf)) { 2976 blk_insert_flush(rq); 2977 return; 2978 } 2979 2980 if (plug) { 2981 blk_add_rq_to_plug(plug, rq); 2982 return; 2983 } 2984 2985 hctx = rq->mq_hctx; 2986 if ((rq->rq_flags & RQF_ELV) || 2987 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 2988 blk_mq_insert_request(rq, 0); 2989 blk_mq_run_hw_queue(hctx, true); 2990 } else { 2991 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 2992 } 2993 } 2994 2995 #ifdef CONFIG_BLK_MQ_STACKING 2996 /** 2997 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2998 * @rq: the request being queued 2999 */ 3000 blk_status_t blk_insert_cloned_request(struct request *rq) 3001 { 3002 struct request_queue *q = rq->q; 3003 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3004 unsigned int max_segments = blk_rq_get_max_segments(rq); 3005 blk_status_t ret; 3006 3007 if (blk_rq_sectors(rq) > max_sectors) { 3008 /* 3009 * SCSI device does not have a good way to return if 3010 * Write Same/Zero is actually supported. If a device rejects 3011 * a non-read/write command (discard, write same,etc.) the 3012 * low-level device driver will set the relevant queue limit to 3013 * 0 to prevent blk-lib from issuing more of the offending 3014 * operations. Commands queued prior to the queue limit being 3015 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3016 * errors being propagated to upper layers. 3017 */ 3018 if (max_sectors == 0) 3019 return BLK_STS_NOTSUPP; 3020 3021 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3022 __func__, blk_rq_sectors(rq), max_sectors); 3023 return BLK_STS_IOERR; 3024 } 3025 3026 /* 3027 * The queue settings related to segment counting may differ from the 3028 * original queue. 3029 */ 3030 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3031 if (rq->nr_phys_segments > max_segments) { 3032 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3033 __func__, rq->nr_phys_segments, max_segments); 3034 return BLK_STS_IOERR; 3035 } 3036 3037 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3038 return BLK_STS_IOERR; 3039 3040 ret = blk_crypto_rq_get_keyslot(rq); 3041 if (ret != BLK_STS_OK) 3042 return ret; 3043 3044 blk_account_io_start(rq); 3045 3046 /* 3047 * Since we have a scheduler attached on the top device, 3048 * bypass a potential scheduler on the bottom device for 3049 * insert. 3050 */ 3051 blk_mq_run_dispatch_ops(q, 3052 ret = blk_mq_request_issue_directly(rq, true)); 3053 if (ret) 3054 blk_account_io_done(rq, ktime_get_ns()); 3055 return ret; 3056 } 3057 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3058 3059 /** 3060 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3061 * @rq: the clone request to be cleaned up 3062 * 3063 * Description: 3064 * Free all bios in @rq for a cloned request. 3065 */ 3066 void blk_rq_unprep_clone(struct request *rq) 3067 { 3068 struct bio *bio; 3069 3070 while ((bio = rq->bio) != NULL) { 3071 rq->bio = bio->bi_next; 3072 3073 bio_put(bio); 3074 } 3075 } 3076 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3077 3078 /** 3079 * blk_rq_prep_clone - Helper function to setup clone request 3080 * @rq: the request to be setup 3081 * @rq_src: original request to be cloned 3082 * @bs: bio_set that bios for clone are allocated from 3083 * @gfp_mask: memory allocation mask for bio 3084 * @bio_ctr: setup function to be called for each clone bio. 3085 * Returns %0 for success, non %0 for failure. 3086 * @data: private data to be passed to @bio_ctr 3087 * 3088 * Description: 3089 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3090 * Also, pages which the original bios are pointing to are not copied 3091 * and the cloned bios just point same pages. 3092 * So cloned bios must be completed before original bios, which means 3093 * the caller must complete @rq before @rq_src. 3094 */ 3095 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3096 struct bio_set *bs, gfp_t gfp_mask, 3097 int (*bio_ctr)(struct bio *, struct bio *, void *), 3098 void *data) 3099 { 3100 struct bio *bio, *bio_src; 3101 3102 if (!bs) 3103 bs = &fs_bio_set; 3104 3105 __rq_for_each_bio(bio_src, rq_src) { 3106 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3107 bs); 3108 if (!bio) 3109 goto free_and_out; 3110 3111 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3112 goto free_and_out; 3113 3114 if (rq->bio) { 3115 rq->biotail->bi_next = bio; 3116 rq->biotail = bio; 3117 } else { 3118 rq->bio = rq->biotail = bio; 3119 } 3120 bio = NULL; 3121 } 3122 3123 /* Copy attributes of the original request to the clone request. */ 3124 rq->__sector = blk_rq_pos(rq_src); 3125 rq->__data_len = blk_rq_bytes(rq_src); 3126 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3127 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3128 rq->special_vec = rq_src->special_vec; 3129 } 3130 rq->nr_phys_segments = rq_src->nr_phys_segments; 3131 rq->ioprio = rq_src->ioprio; 3132 3133 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3134 goto free_and_out; 3135 3136 return 0; 3137 3138 free_and_out: 3139 if (bio) 3140 bio_put(bio); 3141 blk_rq_unprep_clone(rq); 3142 3143 return -ENOMEM; 3144 } 3145 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3146 #endif /* CONFIG_BLK_MQ_STACKING */ 3147 3148 /* 3149 * Steal bios from a request and add them to a bio list. 3150 * The request must not have been partially completed before. 3151 */ 3152 void blk_steal_bios(struct bio_list *list, struct request *rq) 3153 { 3154 if (rq->bio) { 3155 if (list->tail) 3156 list->tail->bi_next = rq->bio; 3157 else 3158 list->head = rq->bio; 3159 list->tail = rq->biotail; 3160 3161 rq->bio = NULL; 3162 rq->biotail = NULL; 3163 } 3164 3165 rq->__data_len = 0; 3166 } 3167 EXPORT_SYMBOL_GPL(blk_steal_bios); 3168 3169 static size_t order_to_size(unsigned int order) 3170 { 3171 return (size_t)PAGE_SIZE << order; 3172 } 3173 3174 /* called before freeing request pool in @tags */ 3175 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3176 struct blk_mq_tags *tags) 3177 { 3178 struct page *page; 3179 unsigned long flags; 3180 3181 /* 3182 * There is no need to clear mapping if driver tags is not initialized 3183 * or the mapping belongs to the driver tags. 3184 */ 3185 if (!drv_tags || drv_tags == tags) 3186 return; 3187 3188 list_for_each_entry(page, &tags->page_list, lru) { 3189 unsigned long start = (unsigned long)page_address(page); 3190 unsigned long end = start + order_to_size(page->private); 3191 int i; 3192 3193 for (i = 0; i < drv_tags->nr_tags; i++) { 3194 struct request *rq = drv_tags->rqs[i]; 3195 unsigned long rq_addr = (unsigned long)rq; 3196 3197 if (rq_addr >= start && rq_addr < end) { 3198 WARN_ON_ONCE(req_ref_read(rq) != 0); 3199 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3200 } 3201 } 3202 } 3203 3204 /* 3205 * Wait until all pending iteration is done. 3206 * 3207 * Request reference is cleared and it is guaranteed to be observed 3208 * after the ->lock is released. 3209 */ 3210 spin_lock_irqsave(&drv_tags->lock, flags); 3211 spin_unlock_irqrestore(&drv_tags->lock, flags); 3212 } 3213 3214 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3215 unsigned int hctx_idx) 3216 { 3217 struct blk_mq_tags *drv_tags; 3218 struct page *page; 3219 3220 if (list_empty(&tags->page_list)) 3221 return; 3222 3223 if (blk_mq_is_shared_tags(set->flags)) 3224 drv_tags = set->shared_tags; 3225 else 3226 drv_tags = set->tags[hctx_idx]; 3227 3228 if (tags->static_rqs && set->ops->exit_request) { 3229 int i; 3230 3231 for (i = 0; i < tags->nr_tags; i++) { 3232 struct request *rq = tags->static_rqs[i]; 3233 3234 if (!rq) 3235 continue; 3236 set->ops->exit_request(set, rq, hctx_idx); 3237 tags->static_rqs[i] = NULL; 3238 } 3239 } 3240 3241 blk_mq_clear_rq_mapping(drv_tags, tags); 3242 3243 while (!list_empty(&tags->page_list)) { 3244 page = list_first_entry(&tags->page_list, struct page, lru); 3245 list_del_init(&page->lru); 3246 /* 3247 * Remove kmemleak object previously allocated in 3248 * blk_mq_alloc_rqs(). 3249 */ 3250 kmemleak_free(page_address(page)); 3251 __free_pages(page, page->private); 3252 } 3253 } 3254 3255 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3256 { 3257 kfree(tags->rqs); 3258 tags->rqs = NULL; 3259 kfree(tags->static_rqs); 3260 tags->static_rqs = NULL; 3261 3262 blk_mq_free_tags(tags); 3263 } 3264 3265 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3266 unsigned int hctx_idx) 3267 { 3268 int i; 3269 3270 for (i = 0; i < set->nr_maps; i++) { 3271 unsigned int start = set->map[i].queue_offset; 3272 unsigned int end = start + set->map[i].nr_queues; 3273 3274 if (hctx_idx >= start && hctx_idx < end) 3275 break; 3276 } 3277 3278 if (i >= set->nr_maps) 3279 i = HCTX_TYPE_DEFAULT; 3280 3281 return i; 3282 } 3283 3284 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3285 unsigned int hctx_idx) 3286 { 3287 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3288 3289 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3290 } 3291 3292 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3293 unsigned int hctx_idx, 3294 unsigned int nr_tags, 3295 unsigned int reserved_tags) 3296 { 3297 int node = blk_mq_get_hctx_node(set, hctx_idx); 3298 struct blk_mq_tags *tags; 3299 3300 if (node == NUMA_NO_NODE) 3301 node = set->numa_node; 3302 3303 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3304 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3305 if (!tags) 3306 return NULL; 3307 3308 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3309 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3310 node); 3311 if (!tags->rqs) 3312 goto err_free_tags; 3313 3314 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3316 node); 3317 if (!tags->static_rqs) 3318 goto err_free_rqs; 3319 3320 return tags; 3321 3322 err_free_rqs: 3323 kfree(tags->rqs); 3324 err_free_tags: 3325 blk_mq_free_tags(tags); 3326 return NULL; 3327 } 3328 3329 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3330 unsigned int hctx_idx, int node) 3331 { 3332 int ret; 3333 3334 if (set->ops->init_request) { 3335 ret = set->ops->init_request(set, rq, hctx_idx, node); 3336 if (ret) 3337 return ret; 3338 } 3339 3340 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3341 return 0; 3342 } 3343 3344 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3345 struct blk_mq_tags *tags, 3346 unsigned int hctx_idx, unsigned int depth) 3347 { 3348 unsigned int i, j, entries_per_page, max_order = 4; 3349 int node = blk_mq_get_hctx_node(set, hctx_idx); 3350 size_t rq_size, left; 3351 3352 if (node == NUMA_NO_NODE) 3353 node = set->numa_node; 3354 3355 INIT_LIST_HEAD(&tags->page_list); 3356 3357 /* 3358 * rq_size is the size of the request plus driver payload, rounded 3359 * to the cacheline size 3360 */ 3361 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3362 cache_line_size()); 3363 left = rq_size * depth; 3364 3365 for (i = 0; i < depth; ) { 3366 int this_order = max_order; 3367 struct page *page; 3368 int to_do; 3369 void *p; 3370 3371 while (this_order && left < order_to_size(this_order - 1)) 3372 this_order--; 3373 3374 do { 3375 page = alloc_pages_node(node, 3376 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3377 this_order); 3378 if (page) 3379 break; 3380 if (!this_order--) 3381 break; 3382 if (order_to_size(this_order) < rq_size) 3383 break; 3384 } while (1); 3385 3386 if (!page) 3387 goto fail; 3388 3389 page->private = this_order; 3390 list_add_tail(&page->lru, &tags->page_list); 3391 3392 p = page_address(page); 3393 /* 3394 * Allow kmemleak to scan these pages as they contain pointers 3395 * to additional allocations like via ops->init_request(). 3396 */ 3397 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3398 entries_per_page = order_to_size(this_order) / rq_size; 3399 to_do = min(entries_per_page, depth - i); 3400 left -= to_do * rq_size; 3401 for (j = 0; j < to_do; j++) { 3402 struct request *rq = p; 3403 3404 tags->static_rqs[i] = rq; 3405 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3406 tags->static_rqs[i] = NULL; 3407 goto fail; 3408 } 3409 3410 p += rq_size; 3411 i++; 3412 } 3413 } 3414 return 0; 3415 3416 fail: 3417 blk_mq_free_rqs(set, tags, hctx_idx); 3418 return -ENOMEM; 3419 } 3420 3421 struct rq_iter_data { 3422 struct blk_mq_hw_ctx *hctx; 3423 bool has_rq; 3424 }; 3425 3426 static bool blk_mq_has_request(struct request *rq, void *data) 3427 { 3428 struct rq_iter_data *iter_data = data; 3429 3430 if (rq->mq_hctx != iter_data->hctx) 3431 return true; 3432 iter_data->has_rq = true; 3433 return false; 3434 } 3435 3436 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3437 { 3438 struct blk_mq_tags *tags = hctx->sched_tags ? 3439 hctx->sched_tags : hctx->tags; 3440 struct rq_iter_data data = { 3441 .hctx = hctx, 3442 }; 3443 3444 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3445 return data.has_rq; 3446 } 3447 3448 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3449 struct blk_mq_hw_ctx *hctx) 3450 { 3451 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3452 return false; 3453 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3454 return false; 3455 return true; 3456 } 3457 3458 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3459 { 3460 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3461 struct blk_mq_hw_ctx, cpuhp_online); 3462 3463 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3464 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3465 return 0; 3466 3467 /* 3468 * Prevent new request from being allocated on the current hctx. 3469 * 3470 * The smp_mb__after_atomic() Pairs with the implied barrier in 3471 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3472 * seen once we return from the tag allocator. 3473 */ 3474 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3475 smp_mb__after_atomic(); 3476 3477 /* 3478 * Try to grab a reference to the queue and wait for any outstanding 3479 * requests. If we could not grab a reference the queue has been 3480 * frozen and there are no requests. 3481 */ 3482 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3483 while (blk_mq_hctx_has_requests(hctx)) 3484 msleep(5); 3485 percpu_ref_put(&hctx->queue->q_usage_counter); 3486 } 3487 3488 return 0; 3489 } 3490 3491 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3492 { 3493 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3494 struct blk_mq_hw_ctx, cpuhp_online); 3495 3496 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3497 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3498 return 0; 3499 } 3500 3501 /* 3502 * 'cpu' is going away. splice any existing rq_list entries from this 3503 * software queue to the hw queue dispatch list, and ensure that it 3504 * gets run. 3505 */ 3506 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3507 { 3508 struct blk_mq_hw_ctx *hctx; 3509 struct blk_mq_ctx *ctx; 3510 LIST_HEAD(tmp); 3511 enum hctx_type type; 3512 3513 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3514 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3515 return 0; 3516 3517 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3518 type = hctx->type; 3519 3520 spin_lock(&ctx->lock); 3521 if (!list_empty(&ctx->rq_lists[type])) { 3522 list_splice_init(&ctx->rq_lists[type], &tmp); 3523 blk_mq_hctx_clear_pending(hctx, ctx); 3524 } 3525 spin_unlock(&ctx->lock); 3526 3527 if (list_empty(&tmp)) 3528 return 0; 3529 3530 spin_lock(&hctx->lock); 3531 list_splice_tail_init(&tmp, &hctx->dispatch); 3532 spin_unlock(&hctx->lock); 3533 3534 blk_mq_run_hw_queue(hctx, true); 3535 return 0; 3536 } 3537 3538 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3539 { 3540 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3541 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3542 &hctx->cpuhp_online); 3543 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3544 &hctx->cpuhp_dead); 3545 } 3546 3547 /* 3548 * Before freeing hw queue, clearing the flush request reference in 3549 * tags->rqs[] for avoiding potential UAF. 3550 */ 3551 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3552 unsigned int queue_depth, struct request *flush_rq) 3553 { 3554 int i; 3555 unsigned long flags; 3556 3557 /* The hw queue may not be mapped yet */ 3558 if (!tags) 3559 return; 3560 3561 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3562 3563 for (i = 0; i < queue_depth; i++) 3564 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3565 3566 /* 3567 * Wait until all pending iteration is done. 3568 * 3569 * Request reference is cleared and it is guaranteed to be observed 3570 * after the ->lock is released. 3571 */ 3572 spin_lock_irqsave(&tags->lock, flags); 3573 spin_unlock_irqrestore(&tags->lock, flags); 3574 } 3575 3576 /* hctx->ctxs will be freed in queue's release handler */ 3577 static void blk_mq_exit_hctx(struct request_queue *q, 3578 struct blk_mq_tag_set *set, 3579 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3580 { 3581 struct request *flush_rq = hctx->fq->flush_rq; 3582 3583 if (blk_mq_hw_queue_mapped(hctx)) 3584 blk_mq_tag_idle(hctx); 3585 3586 if (blk_queue_init_done(q)) 3587 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3588 set->queue_depth, flush_rq); 3589 if (set->ops->exit_request) 3590 set->ops->exit_request(set, flush_rq, hctx_idx); 3591 3592 if (set->ops->exit_hctx) 3593 set->ops->exit_hctx(hctx, hctx_idx); 3594 3595 blk_mq_remove_cpuhp(hctx); 3596 3597 xa_erase(&q->hctx_table, hctx_idx); 3598 3599 spin_lock(&q->unused_hctx_lock); 3600 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3601 spin_unlock(&q->unused_hctx_lock); 3602 } 3603 3604 static void blk_mq_exit_hw_queues(struct request_queue *q, 3605 struct blk_mq_tag_set *set, int nr_queue) 3606 { 3607 struct blk_mq_hw_ctx *hctx; 3608 unsigned long i; 3609 3610 queue_for_each_hw_ctx(q, hctx, i) { 3611 if (i == nr_queue) 3612 break; 3613 blk_mq_exit_hctx(q, set, hctx, i); 3614 } 3615 } 3616 3617 static int blk_mq_init_hctx(struct request_queue *q, 3618 struct blk_mq_tag_set *set, 3619 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3620 { 3621 hctx->queue_num = hctx_idx; 3622 3623 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3624 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3625 &hctx->cpuhp_online); 3626 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3627 3628 hctx->tags = set->tags[hctx_idx]; 3629 3630 if (set->ops->init_hctx && 3631 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3632 goto unregister_cpu_notifier; 3633 3634 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3635 hctx->numa_node)) 3636 goto exit_hctx; 3637 3638 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3639 goto exit_flush_rq; 3640 3641 return 0; 3642 3643 exit_flush_rq: 3644 if (set->ops->exit_request) 3645 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3646 exit_hctx: 3647 if (set->ops->exit_hctx) 3648 set->ops->exit_hctx(hctx, hctx_idx); 3649 unregister_cpu_notifier: 3650 blk_mq_remove_cpuhp(hctx); 3651 return -1; 3652 } 3653 3654 static struct blk_mq_hw_ctx * 3655 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3656 int node) 3657 { 3658 struct blk_mq_hw_ctx *hctx; 3659 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3660 3661 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3662 if (!hctx) 3663 goto fail_alloc_hctx; 3664 3665 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3666 goto free_hctx; 3667 3668 atomic_set(&hctx->nr_active, 0); 3669 if (node == NUMA_NO_NODE) 3670 node = set->numa_node; 3671 hctx->numa_node = node; 3672 3673 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3674 spin_lock_init(&hctx->lock); 3675 INIT_LIST_HEAD(&hctx->dispatch); 3676 hctx->queue = q; 3677 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3678 3679 INIT_LIST_HEAD(&hctx->hctx_list); 3680 3681 /* 3682 * Allocate space for all possible cpus to avoid allocation at 3683 * runtime 3684 */ 3685 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3686 gfp, node); 3687 if (!hctx->ctxs) 3688 goto free_cpumask; 3689 3690 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3691 gfp, node, false, false)) 3692 goto free_ctxs; 3693 hctx->nr_ctx = 0; 3694 3695 spin_lock_init(&hctx->dispatch_wait_lock); 3696 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3697 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3698 3699 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3700 if (!hctx->fq) 3701 goto free_bitmap; 3702 3703 blk_mq_hctx_kobj_init(hctx); 3704 3705 return hctx; 3706 3707 free_bitmap: 3708 sbitmap_free(&hctx->ctx_map); 3709 free_ctxs: 3710 kfree(hctx->ctxs); 3711 free_cpumask: 3712 free_cpumask_var(hctx->cpumask); 3713 free_hctx: 3714 kfree(hctx); 3715 fail_alloc_hctx: 3716 return NULL; 3717 } 3718 3719 static void blk_mq_init_cpu_queues(struct request_queue *q, 3720 unsigned int nr_hw_queues) 3721 { 3722 struct blk_mq_tag_set *set = q->tag_set; 3723 unsigned int i, j; 3724 3725 for_each_possible_cpu(i) { 3726 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3727 struct blk_mq_hw_ctx *hctx; 3728 int k; 3729 3730 __ctx->cpu = i; 3731 spin_lock_init(&__ctx->lock); 3732 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3733 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3734 3735 __ctx->queue = q; 3736 3737 /* 3738 * Set local node, IFF we have more than one hw queue. If 3739 * not, we remain on the home node of the device 3740 */ 3741 for (j = 0; j < set->nr_maps; j++) { 3742 hctx = blk_mq_map_queue_type(q, j, i); 3743 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3744 hctx->numa_node = cpu_to_node(i); 3745 } 3746 } 3747 } 3748 3749 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3750 unsigned int hctx_idx, 3751 unsigned int depth) 3752 { 3753 struct blk_mq_tags *tags; 3754 int ret; 3755 3756 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3757 if (!tags) 3758 return NULL; 3759 3760 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3761 if (ret) { 3762 blk_mq_free_rq_map(tags); 3763 return NULL; 3764 } 3765 3766 return tags; 3767 } 3768 3769 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3770 int hctx_idx) 3771 { 3772 if (blk_mq_is_shared_tags(set->flags)) { 3773 set->tags[hctx_idx] = set->shared_tags; 3774 3775 return true; 3776 } 3777 3778 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3779 set->queue_depth); 3780 3781 return set->tags[hctx_idx]; 3782 } 3783 3784 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3785 struct blk_mq_tags *tags, 3786 unsigned int hctx_idx) 3787 { 3788 if (tags) { 3789 blk_mq_free_rqs(set, tags, hctx_idx); 3790 blk_mq_free_rq_map(tags); 3791 } 3792 } 3793 3794 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3795 unsigned int hctx_idx) 3796 { 3797 if (!blk_mq_is_shared_tags(set->flags)) 3798 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3799 3800 set->tags[hctx_idx] = NULL; 3801 } 3802 3803 static void blk_mq_map_swqueue(struct request_queue *q) 3804 { 3805 unsigned int j, hctx_idx; 3806 unsigned long i; 3807 struct blk_mq_hw_ctx *hctx; 3808 struct blk_mq_ctx *ctx; 3809 struct blk_mq_tag_set *set = q->tag_set; 3810 3811 queue_for_each_hw_ctx(q, hctx, i) { 3812 cpumask_clear(hctx->cpumask); 3813 hctx->nr_ctx = 0; 3814 hctx->dispatch_from = NULL; 3815 } 3816 3817 /* 3818 * Map software to hardware queues. 3819 * 3820 * If the cpu isn't present, the cpu is mapped to first hctx. 3821 */ 3822 for_each_possible_cpu(i) { 3823 3824 ctx = per_cpu_ptr(q->queue_ctx, i); 3825 for (j = 0; j < set->nr_maps; j++) { 3826 if (!set->map[j].nr_queues) { 3827 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3828 HCTX_TYPE_DEFAULT, i); 3829 continue; 3830 } 3831 hctx_idx = set->map[j].mq_map[i]; 3832 /* unmapped hw queue can be remapped after CPU topo changed */ 3833 if (!set->tags[hctx_idx] && 3834 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3835 /* 3836 * If tags initialization fail for some hctx, 3837 * that hctx won't be brought online. In this 3838 * case, remap the current ctx to hctx[0] which 3839 * is guaranteed to always have tags allocated 3840 */ 3841 set->map[j].mq_map[i] = 0; 3842 } 3843 3844 hctx = blk_mq_map_queue_type(q, j, i); 3845 ctx->hctxs[j] = hctx; 3846 /* 3847 * If the CPU is already set in the mask, then we've 3848 * mapped this one already. This can happen if 3849 * devices share queues across queue maps. 3850 */ 3851 if (cpumask_test_cpu(i, hctx->cpumask)) 3852 continue; 3853 3854 cpumask_set_cpu(i, hctx->cpumask); 3855 hctx->type = j; 3856 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3857 hctx->ctxs[hctx->nr_ctx++] = ctx; 3858 3859 /* 3860 * If the nr_ctx type overflows, we have exceeded the 3861 * amount of sw queues we can support. 3862 */ 3863 BUG_ON(!hctx->nr_ctx); 3864 } 3865 3866 for (; j < HCTX_MAX_TYPES; j++) 3867 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3868 HCTX_TYPE_DEFAULT, i); 3869 } 3870 3871 queue_for_each_hw_ctx(q, hctx, i) { 3872 /* 3873 * If no software queues are mapped to this hardware queue, 3874 * disable it and free the request entries. 3875 */ 3876 if (!hctx->nr_ctx) { 3877 /* Never unmap queue 0. We need it as a 3878 * fallback in case of a new remap fails 3879 * allocation 3880 */ 3881 if (i) 3882 __blk_mq_free_map_and_rqs(set, i); 3883 3884 hctx->tags = NULL; 3885 continue; 3886 } 3887 3888 hctx->tags = set->tags[i]; 3889 WARN_ON(!hctx->tags); 3890 3891 /* 3892 * Set the map size to the number of mapped software queues. 3893 * This is more accurate and more efficient than looping 3894 * over all possibly mapped software queues. 3895 */ 3896 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3897 3898 /* 3899 * Initialize batch roundrobin counts 3900 */ 3901 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3902 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3903 } 3904 } 3905 3906 /* 3907 * Caller needs to ensure that we're either frozen/quiesced, or that 3908 * the queue isn't live yet. 3909 */ 3910 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3911 { 3912 struct blk_mq_hw_ctx *hctx; 3913 unsigned long i; 3914 3915 queue_for_each_hw_ctx(q, hctx, i) { 3916 if (shared) { 3917 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3918 } else { 3919 blk_mq_tag_idle(hctx); 3920 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3921 } 3922 } 3923 } 3924 3925 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3926 bool shared) 3927 { 3928 struct request_queue *q; 3929 3930 lockdep_assert_held(&set->tag_list_lock); 3931 3932 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3933 blk_mq_freeze_queue(q); 3934 queue_set_hctx_shared(q, shared); 3935 blk_mq_unfreeze_queue(q); 3936 } 3937 } 3938 3939 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3940 { 3941 struct blk_mq_tag_set *set = q->tag_set; 3942 3943 mutex_lock(&set->tag_list_lock); 3944 list_del(&q->tag_set_list); 3945 if (list_is_singular(&set->tag_list)) { 3946 /* just transitioned to unshared */ 3947 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3948 /* update existing queue */ 3949 blk_mq_update_tag_set_shared(set, false); 3950 } 3951 mutex_unlock(&set->tag_list_lock); 3952 INIT_LIST_HEAD(&q->tag_set_list); 3953 } 3954 3955 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3956 struct request_queue *q) 3957 { 3958 mutex_lock(&set->tag_list_lock); 3959 3960 /* 3961 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3962 */ 3963 if (!list_empty(&set->tag_list) && 3964 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3965 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3966 /* update existing queue */ 3967 blk_mq_update_tag_set_shared(set, true); 3968 } 3969 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3970 queue_set_hctx_shared(q, true); 3971 list_add_tail(&q->tag_set_list, &set->tag_list); 3972 3973 mutex_unlock(&set->tag_list_lock); 3974 } 3975 3976 /* All allocations will be freed in release handler of q->mq_kobj */ 3977 static int blk_mq_alloc_ctxs(struct request_queue *q) 3978 { 3979 struct blk_mq_ctxs *ctxs; 3980 int cpu; 3981 3982 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3983 if (!ctxs) 3984 return -ENOMEM; 3985 3986 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3987 if (!ctxs->queue_ctx) 3988 goto fail; 3989 3990 for_each_possible_cpu(cpu) { 3991 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3992 ctx->ctxs = ctxs; 3993 } 3994 3995 q->mq_kobj = &ctxs->kobj; 3996 q->queue_ctx = ctxs->queue_ctx; 3997 3998 return 0; 3999 fail: 4000 kfree(ctxs); 4001 return -ENOMEM; 4002 } 4003 4004 /* 4005 * It is the actual release handler for mq, but we do it from 4006 * request queue's release handler for avoiding use-after-free 4007 * and headache because q->mq_kobj shouldn't have been introduced, 4008 * but we can't group ctx/kctx kobj without it. 4009 */ 4010 void blk_mq_release(struct request_queue *q) 4011 { 4012 struct blk_mq_hw_ctx *hctx, *next; 4013 unsigned long i; 4014 4015 queue_for_each_hw_ctx(q, hctx, i) 4016 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4017 4018 /* all hctx are in .unused_hctx_list now */ 4019 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4020 list_del_init(&hctx->hctx_list); 4021 kobject_put(&hctx->kobj); 4022 } 4023 4024 xa_destroy(&q->hctx_table); 4025 4026 /* 4027 * release .mq_kobj and sw queue's kobject now because 4028 * both share lifetime with request queue. 4029 */ 4030 blk_mq_sysfs_deinit(q); 4031 } 4032 4033 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4034 void *queuedata) 4035 { 4036 struct request_queue *q; 4037 int ret; 4038 4039 q = blk_alloc_queue(set->numa_node); 4040 if (!q) 4041 return ERR_PTR(-ENOMEM); 4042 q->queuedata = queuedata; 4043 ret = blk_mq_init_allocated_queue(set, q); 4044 if (ret) { 4045 blk_put_queue(q); 4046 return ERR_PTR(ret); 4047 } 4048 return q; 4049 } 4050 4051 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4052 { 4053 return blk_mq_init_queue_data(set, NULL); 4054 } 4055 EXPORT_SYMBOL(blk_mq_init_queue); 4056 4057 /** 4058 * blk_mq_destroy_queue - shutdown a request queue 4059 * @q: request queue to shutdown 4060 * 4061 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4062 * requests will be failed with -ENODEV. The caller is responsible for dropping 4063 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4064 * 4065 * Context: can sleep 4066 */ 4067 void blk_mq_destroy_queue(struct request_queue *q) 4068 { 4069 WARN_ON_ONCE(!queue_is_mq(q)); 4070 WARN_ON_ONCE(blk_queue_registered(q)); 4071 4072 might_sleep(); 4073 4074 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4075 blk_queue_start_drain(q); 4076 blk_mq_freeze_queue_wait(q); 4077 4078 blk_sync_queue(q); 4079 blk_mq_cancel_work_sync(q); 4080 blk_mq_exit_queue(q); 4081 } 4082 EXPORT_SYMBOL(blk_mq_destroy_queue); 4083 4084 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4085 struct lock_class_key *lkclass) 4086 { 4087 struct request_queue *q; 4088 struct gendisk *disk; 4089 4090 q = blk_mq_init_queue_data(set, queuedata); 4091 if (IS_ERR(q)) 4092 return ERR_CAST(q); 4093 4094 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4095 if (!disk) { 4096 blk_mq_destroy_queue(q); 4097 blk_put_queue(q); 4098 return ERR_PTR(-ENOMEM); 4099 } 4100 set_bit(GD_OWNS_QUEUE, &disk->state); 4101 return disk; 4102 } 4103 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4104 4105 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4106 struct lock_class_key *lkclass) 4107 { 4108 struct gendisk *disk; 4109 4110 if (!blk_get_queue(q)) 4111 return NULL; 4112 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4113 if (!disk) 4114 blk_put_queue(q); 4115 return disk; 4116 } 4117 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4118 4119 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4120 struct blk_mq_tag_set *set, struct request_queue *q, 4121 int hctx_idx, int node) 4122 { 4123 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4124 4125 /* reuse dead hctx first */ 4126 spin_lock(&q->unused_hctx_lock); 4127 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4128 if (tmp->numa_node == node) { 4129 hctx = tmp; 4130 break; 4131 } 4132 } 4133 if (hctx) 4134 list_del_init(&hctx->hctx_list); 4135 spin_unlock(&q->unused_hctx_lock); 4136 4137 if (!hctx) 4138 hctx = blk_mq_alloc_hctx(q, set, node); 4139 if (!hctx) 4140 goto fail; 4141 4142 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4143 goto free_hctx; 4144 4145 return hctx; 4146 4147 free_hctx: 4148 kobject_put(&hctx->kobj); 4149 fail: 4150 return NULL; 4151 } 4152 4153 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4154 struct request_queue *q) 4155 { 4156 struct blk_mq_hw_ctx *hctx; 4157 unsigned long i, j; 4158 4159 /* protect against switching io scheduler */ 4160 mutex_lock(&q->sysfs_lock); 4161 for (i = 0; i < set->nr_hw_queues; i++) { 4162 int old_node; 4163 int node = blk_mq_get_hctx_node(set, i); 4164 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4165 4166 if (old_hctx) { 4167 old_node = old_hctx->numa_node; 4168 blk_mq_exit_hctx(q, set, old_hctx, i); 4169 } 4170 4171 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4172 if (!old_hctx) 4173 break; 4174 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4175 node, old_node); 4176 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4177 WARN_ON_ONCE(!hctx); 4178 } 4179 } 4180 /* 4181 * Increasing nr_hw_queues fails. Free the newly allocated 4182 * hctxs and keep the previous q->nr_hw_queues. 4183 */ 4184 if (i != set->nr_hw_queues) { 4185 j = q->nr_hw_queues; 4186 } else { 4187 j = i; 4188 q->nr_hw_queues = set->nr_hw_queues; 4189 } 4190 4191 xa_for_each_start(&q->hctx_table, j, hctx, j) 4192 blk_mq_exit_hctx(q, set, hctx, j); 4193 mutex_unlock(&q->sysfs_lock); 4194 } 4195 4196 static void blk_mq_update_poll_flag(struct request_queue *q) 4197 { 4198 struct blk_mq_tag_set *set = q->tag_set; 4199 4200 if (set->nr_maps > HCTX_TYPE_POLL && 4201 set->map[HCTX_TYPE_POLL].nr_queues) 4202 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4203 else 4204 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4205 } 4206 4207 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4208 struct request_queue *q) 4209 { 4210 /* mark the queue as mq asap */ 4211 q->mq_ops = set->ops; 4212 4213 if (blk_mq_alloc_ctxs(q)) 4214 goto err_exit; 4215 4216 /* init q->mq_kobj and sw queues' kobjects */ 4217 blk_mq_sysfs_init(q); 4218 4219 INIT_LIST_HEAD(&q->unused_hctx_list); 4220 spin_lock_init(&q->unused_hctx_lock); 4221 4222 xa_init(&q->hctx_table); 4223 4224 blk_mq_realloc_hw_ctxs(set, q); 4225 if (!q->nr_hw_queues) 4226 goto err_hctxs; 4227 4228 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4229 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4230 4231 q->tag_set = set; 4232 4233 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4234 blk_mq_update_poll_flag(q); 4235 4236 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4237 INIT_LIST_HEAD(&q->requeue_list); 4238 spin_lock_init(&q->requeue_lock); 4239 4240 q->nr_requests = set->queue_depth; 4241 4242 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4243 blk_mq_add_queue_tag_set(set, q); 4244 blk_mq_map_swqueue(q); 4245 return 0; 4246 4247 err_hctxs: 4248 blk_mq_release(q); 4249 err_exit: 4250 q->mq_ops = NULL; 4251 return -ENOMEM; 4252 } 4253 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4254 4255 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4256 void blk_mq_exit_queue(struct request_queue *q) 4257 { 4258 struct blk_mq_tag_set *set = q->tag_set; 4259 4260 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4261 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4262 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4263 blk_mq_del_queue_tag_set(q); 4264 } 4265 4266 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4267 { 4268 int i; 4269 4270 if (blk_mq_is_shared_tags(set->flags)) { 4271 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4272 BLK_MQ_NO_HCTX_IDX, 4273 set->queue_depth); 4274 if (!set->shared_tags) 4275 return -ENOMEM; 4276 } 4277 4278 for (i = 0; i < set->nr_hw_queues; i++) { 4279 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4280 goto out_unwind; 4281 cond_resched(); 4282 } 4283 4284 return 0; 4285 4286 out_unwind: 4287 while (--i >= 0) 4288 __blk_mq_free_map_and_rqs(set, i); 4289 4290 if (blk_mq_is_shared_tags(set->flags)) { 4291 blk_mq_free_map_and_rqs(set, set->shared_tags, 4292 BLK_MQ_NO_HCTX_IDX); 4293 } 4294 4295 return -ENOMEM; 4296 } 4297 4298 /* 4299 * Allocate the request maps associated with this tag_set. Note that this 4300 * may reduce the depth asked for, if memory is tight. set->queue_depth 4301 * will be updated to reflect the allocated depth. 4302 */ 4303 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4304 { 4305 unsigned int depth; 4306 int err; 4307 4308 depth = set->queue_depth; 4309 do { 4310 err = __blk_mq_alloc_rq_maps(set); 4311 if (!err) 4312 break; 4313 4314 set->queue_depth >>= 1; 4315 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4316 err = -ENOMEM; 4317 break; 4318 } 4319 } while (set->queue_depth); 4320 4321 if (!set->queue_depth || err) { 4322 pr_err("blk-mq: failed to allocate request map\n"); 4323 return -ENOMEM; 4324 } 4325 4326 if (depth != set->queue_depth) 4327 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4328 depth, set->queue_depth); 4329 4330 return 0; 4331 } 4332 4333 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4334 { 4335 /* 4336 * blk_mq_map_queues() and multiple .map_queues() implementations 4337 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4338 * number of hardware queues. 4339 */ 4340 if (set->nr_maps == 1) 4341 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4342 4343 if (set->ops->map_queues && !is_kdump_kernel()) { 4344 int i; 4345 4346 /* 4347 * transport .map_queues is usually done in the following 4348 * way: 4349 * 4350 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4351 * mask = get_cpu_mask(queue) 4352 * for_each_cpu(cpu, mask) 4353 * set->map[x].mq_map[cpu] = queue; 4354 * } 4355 * 4356 * When we need to remap, the table has to be cleared for 4357 * killing stale mapping since one CPU may not be mapped 4358 * to any hw queue. 4359 */ 4360 for (i = 0; i < set->nr_maps; i++) 4361 blk_mq_clear_mq_map(&set->map[i]); 4362 4363 set->ops->map_queues(set); 4364 } else { 4365 BUG_ON(set->nr_maps > 1); 4366 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4367 } 4368 } 4369 4370 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4371 int new_nr_hw_queues) 4372 { 4373 struct blk_mq_tags **new_tags; 4374 4375 if (set->nr_hw_queues >= new_nr_hw_queues) 4376 goto done; 4377 4378 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4379 GFP_KERNEL, set->numa_node); 4380 if (!new_tags) 4381 return -ENOMEM; 4382 4383 if (set->tags) 4384 memcpy(new_tags, set->tags, set->nr_hw_queues * 4385 sizeof(*set->tags)); 4386 kfree(set->tags); 4387 set->tags = new_tags; 4388 done: 4389 set->nr_hw_queues = new_nr_hw_queues; 4390 return 0; 4391 } 4392 4393 /* 4394 * Alloc a tag set to be associated with one or more request queues. 4395 * May fail with EINVAL for various error conditions. May adjust the 4396 * requested depth down, if it's too large. In that case, the set 4397 * value will be stored in set->queue_depth. 4398 */ 4399 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4400 { 4401 int i, ret; 4402 4403 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4404 4405 if (!set->nr_hw_queues) 4406 return -EINVAL; 4407 if (!set->queue_depth) 4408 return -EINVAL; 4409 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4410 return -EINVAL; 4411 4412 if (!set->ops->queue_rq) 4413 return -EINVAL; 4414 4415 if (!set->ops->get_budget ^ !set->ops->put_budget) 4416 return -EINVAL; 4417 4418 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4419 pr_info("blk-mq: reduced tag depth to %u\n", 4420 BLK_MQ_MAX_DEPTH); 4421 set->queue_depth = BLK_MQ_MAX_DEPTH; 4422 } 4423 4424 if (!set->nr_maps) 4425 set->nr_maps = 1; 4426 else if (set->nr_maps > HCTX_MAX_TYPES) 4427 return -EINVAL; 4428 4429 /* 4430 * If a crashdump is active, then we are potentially in a very 4431 * memory constrained environment. Limit us to 1 queue and 4432 * 64 tags to prevent using too much memory. 4433 */ 4434 if (is_kdump_kernel()) { 4435 set->nr_hw_queues = 1; 4436 set->nr_maps = 1; 4437 set->queue_depth = min(64U, set->queue_depth); 4438 } 4439 /* 4440 * There is no use for more h/w queues than cpus if we just have 4441 * a single map 4442 */ 4443 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4444 set->nr_hw_queues = nr_cpu_ids; 4445 4446 if (set->flags & BLK_MQ_F_BLOCKING) { 4447 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4448 if (!set->srcu) 4449 return -ENOMEM; 4450 ret = init_srcu_struct(set->srcu); 4451 if (ret) 4452 goto out_free_srcu; 4453 } 4454 4455 ret = -ENOMEM; 4456 set->tags = kcalloc_node(set->nr_hw_queues, 4457 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4458 set->numa_node); 4459 if (!set->tags) 4460 goto out_cleanup_srcu; 4461 4462 for (i = 0; i < set->nr_maps; i++) { 4463 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4464 sizeof(set->map[i].mq_map[0]), 4465 GFP_KERNEL, set->numa_node); 4466 if (!set->map[i].mq_map) 4467 goto out_free_mq_map; 4468 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4469 } 4470 4471 blk_mq_update_queue_map(set); 4472 4473 ret = blk_mq_alloc_set_map_and_rqs(set); 4474 if (ret) 4475 goto out_free_mq_map; 4476 4477 mutex_init(&set->tag_list_lock); 4478 INIT_LIST_HEAD(&set->tag_list); 4479 4480 return 0; 4481 4482 out_free_mq_map: 4483 for (i = 0; i < set->nr_maps; i++) { 4484 kfree(set->map[i].mq_map); 4485 set->map[i].mq_map = NULL; 4486 } 4487 kfree(set->tags); 4488 set->tags = NULL; 4489 out_cleanup_srcu: 4490 if (set->flags & BLK_MQ_F_BLOCKING) 4491 cleanup_srcu_struct(set->srcu); 4492 out_free_srcu: 4493 if (set->flags & BLK_MQ_F_BLOCKING) 4494 kfree(set->srcu); 4495 return ret; 4496 } 4497 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4498 4499 /* allocate and initialize a tagset for a simple single-queue device */ 4500 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4501 const struct blk_mq_ops *ops, unsigned int queue_depth, 4502 unsigned int set_flags) 4503 { 4504 memset(set, 0, sizeof(*set)); 4505 set->ops = ops; 4506 set->nr_hw_queues = 1; 4507 set->nr_maps = 1; 4508 set->queue_depth = queue_depth; 4509 set->numa_node = NUMA_NO_NODE; 4510 set->flags = set_flags; 4511 return blk_mq_alloc_tag_set(set); 4512 } 4513 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4514 4515 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4516 { 4517 int i, j; 4518 4519 for (i = 0; i < set->nr_hw_queues; i++) 4520 __blk_mq_free_map_and_rqs(set, i); 4521 4522 if (blk_mq_is_shared_tags(set->flags)) { 4523 blk_mq_free_map_and_rqs(set, set->shared_tags, 4524 BLK_MQ_NO_HCTX_IDX); 4525 } 4526 4527 for (j = 0; j < set->nr_maps; j++) { 4528 kfree(set->map[j].mq_map); 4529 set->map[j].mq_map = NULL; 4530 } 4531 4532 kfree(set->tags); 4533 set->tags = NULL; 4534 if (set->flags & BLK_MQ_F_BLOCKING) { 4535 cleanup_srcu_struct(set->srcu); 4536 kfree(set->srcu); 4537 } 4538 } 4539 EXPORT_SYMBOL(blk_mq_free_tag_set); 4540 4541 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4542 { 4543 struct blk_mq_tag_set *set = q->tag_set; 4544 struct blk_mq_hw_ctx *hctx; 4545 int ret; 4546 unsigned long i; 4547 4548 if (!set) 4549 return -EINVAL; 4550 4551 if (q->nr_requests == nr) 4552 return 0; 4553 4554 blk_mq_freeze_queue(q); 4555 blk_mq_quiesce_queue(q); 4556 4557 ret = 0; 4558 queue_for_each_hw_ctx(q, hctx, i) { 4559 if (!hctx->tags) 4560 continue; 4561 /* 4562 * If we're using an MQ scheduler, just update the scheduler 4563 * queue depth. This is similar to what the old code would do. 4564 */ 4565 if (hctx->sched_tags) { 4566 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4567 nr, true); 4568 } else { 4569 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4570 false); 4571 } 4572 if (ret) 4573 break; 4574 if (q->elevator && q->elevator->type->ops.depth_updated) 4575 q->elevator->type->ops.depth_updated(hctx); 4576 } 4577 if (!ret) { 4578 q->nr_requests = nr; 4579 if (blk_mq_is_shared_tags(set->flags)) { 4580 if (q->elevator) 4581 blk_mq_tag_update_sched_shared_tags(q); 4582 else 4583 blk_mq_tag_resize_shared_tags(set, nr); 4584 } 4585 } 4586 4587 blk_mq_unquiesce_queue(q); 4588 blk_mq_unfreeze_queue(q); 4589 4590 return ret; 4591 } 4592 4593 /* 4594 * request_queue and elevator_type pair. 4595 * It is just used by __blk_mq_update_nr_hw_queues to cache 4596 * the elevator_type associated with a request_queue. 4597 */ 4598 struct blk_mq_qe_pair { 4599 struct list_head node; 4600 struct request_queue *q; 4601 struct elevator_type *type; 4602 }; 4603 4604 /* 4605 * Cache the elevator_type in qe pair list and switch the 4606 * io scheduler to 'none' 4607 */ 4608 static bool blk_mq_elv_switch_none(struct list_head *head, 4609 struct request_queue *q) 4610 { 4611 struct blk_mq_qe_pair *qe; 4612 4613 if (!q->elevator) 4614 return true; 4615 4616 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4617 if (!qe) 4618 return false; 4619 4620 /* q->elevator needs protection from ->sysfs_lock */ 4621 mutex_lock(&q->sysfs_lock); 4622 4623 INIT_LIST_HEAD(&qe->node); 4624 qe->q = q; 4625 qe->type = q->elevator->type; 4626 /* keep a reference to the elevator module as we'll switch back */ 4627 __elevator_get(qe->type); 4628 list_add(&qe->node, head); 4629 elevator_disable(q); 4630 mutex_unlock(&q->sysfs_lock); 4631 4632 return true; 4633 } 4634 4635 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4636 struct request_queue *q) 4637 { 4638 struct blk_mq_qe_pair *qe; 4639 4640 list_for_each_entry(qe, head, node) 4641 if (qe->q == q) 4642 return qe; 4643 4644 return NULL; 4645 } 4646 4647 static void blk_mq_elv_switch_back(struct list_head *head, 4648 struct request_queue *q) 4649 { 4650 struct blk_mq_qe_pair *qe; 4651 struct elevator_type *t; 4652 4653 qe = blk_lookup_qe_pair(head, q); 4654 if (!qe) 4655 return; 4656 t = qe->type; 4657 list_del(&qe->node); 4658 kfree(qe); 4659 4660 mutex_lock(&q->sysfs_lock); 4661 elevator_switch(q, t); 4662 /* drop the reference acquired in blk_mq_elv_switch_none */ 4663 elevator_put(t); 4664 mutex_unlock(&q->sysfs_lock); 4665 } 4666 4667 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4668 int nr_hw_queues) 4669 { 4670 struct request_queue *q; 4671 LIST_HEAD(head); 4672 int prev_nr_hw_queues; 4673 4674 lockdep_assert_held(&set->tag_list_lock); 4675 4676 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4677 nr_hw_queues = nr_cpu_ids; 4678 if (nr_hw_queues < 1) 4679 return; 4680 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4681 return; 4682 4683 list_for_each_entry(q, &set->tag_list, tag_set_list) 4684 blk_mq_freeze_queue(q); 4685 /* 4686 * Switch IO scheduler to 'none', cleaning up the data associated 4687 * with the previous scheduler. We will switch back once we are done 4688 * updating the new sw to hw queue mappings. 4689 */ 4690 list_for_each_entry(q, &set->tag_list, tag_set_list) 4691 if (!blk_mq_elv_switch_none(&head, q)) 4692 goto switch_back; 4693 4694 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4695 blk_mq_debugfs_unregister_hctxs(q); 4696 blk_mq_sysfs_unregister_hctxs(q); 4697 } 4698 4699 prev_nr_hw_queues = set->nr_hw_queues; 4700 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4701 goto reregister; 4702 4703 fallback: 4704 blk_mq_update_queue_map(set); 4705 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4706 blk_mq_realloc_hw_ctxs(set, q); 4707 blk_mq_update_poll_flag(q); 4708 if (q->nr_hw_queues != set->nr_hw_queues) { 4709 int i = prev_nr_hw_queues; 4710 4711 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4712 nr_hw_queues, prev_nr_hw_queues); 4713 for (; i < set->nr_hw_queues; i++) 4714 __blk_mq_free_map_and_rqs(set, i); 4715 4716 set->nr_hw_queues = prev_nr_hw_queues; 4717 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4718 goto fallback; 4719 } 4720 blk_mq_map_swqueue(q); 4721 } 4722 4723 reregister: 4724 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4725 blk_mq_sysfs_register_hctxs(q); 4726 blk_mq_debugfs_register_hctxs(q); 4727 } 4728 4729 switch_back: 4730 list_for_each_entry(q, &set->tag_list, tag_set_list) 4731 blk_mq_elv_switch_back(&head, q); 4732 4733 list_for_each_entry(q, &set->tag_list, tag_set_list) 4734 blk_mq_unfreeze_queue(q); 4735 } 4736 4737 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4738 { 4739 mutex_lock(&set->tag_list_lock); 4740 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4741 mutex_unlock(&set->tag_list_lock); 4742 } 4743 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4744 4745 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4746 unsigned int flags) 4747 { 4748 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4749 long state = get_current_state(); 4750 int ret; 4751 4752 do { 4753 ret = q->mq_ops->poll(hctx, iob); 4754 if (ret > 0) { 4755 __set_current_state(TASK_RUNNING); 4756 return ret; 4757 } 4758 4759 if (signal_pending_state(state, current)) 4760 __set_current_state(TASK_RUNNING); 4761 if (task_is_running(current)) 4762 return 1; 4763 4764 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4765 break; 4766 cpu_relax(); 4767 } while (!need_resched()); 4768 4769 __set_current_state(TASK_RUNNING); 4770 return 0; 4771 } 4772 4773 unsigned int blk_mq_rq_cpu(struct request *rq) 4774 { 4775 return rq->mq_ctx->cpu; 4776 } 4777 EXPORT_SYMBOL(blk_mq_rq_cpu); 4778 4779 void blk_mq_cancel_work_sync(struct request_queue *q) 4780 { 4781 struct blk_mq_hw_ctx *hctx; 4782 unsigned long i; 4783 4784 cancel_delayed_work_sync(&q->requeue_work); 4785 4786 queue_for_each_hw_ctx(q, hctx, i) 4787 cancel_delayed_work_sync(&hctx->run_work); 4788 } 4789 4790 static int __init blk_mq_init(void) 4791 { 4792 int i; 4793 4794 for_each_possible_cpu(i) 4795 init_llist_head(&per_cpu(blk_cpu_done, i)); 4796 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4797 4798 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4799 "block/softirq:dead", NULL, 4800 blk_softirq_cpu_dead); 4801 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4802 blk_mq_hctx_notify_dead); 4803 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4804 blk_mq_hctx_notify_online, 4805 blk_mq_hctx_notify_offline); 4806 return 0; 4807 } 4808 subsys_initcall(blk_mq_init); 4809