xref: /linux/block/blk-mq.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (blk_mq_tag_busy(data->hctx)) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	}
371 
372 	tag = blk_mq_get_tag(data);
373 	if (tag == BLK_MQ_TAG_FAIL) {
374 		if (put_ctx_on_error) {
375 			blk_mq_put_ctx(data->ctx);
376 			data->ctx = NULL;
377 		}
378 		blk_queue_exit(q);
379 		return NULL;
380 	}
381 
382 	rq = blk_mq_rq_ctx_init(data, tag, op);
383 	if (!op_is_flush(op)) {
384 		rq->elv.icq = NULL;
385 		if (e && e->type->ops.mq.prepare_request) {
386 			if (e->type->icq_cache && rq_ioc(bio))
387 				blk_mq_sched_assign_ioc(rq, bio);
388 
389 			e->type->ops.mq.prepare_request(rq, bio);
390 			rq->rq_flags |= RQF_ELVPRIV;
391 		}
392 	}
393 	data->hctx->queued++;
394 	return rq;
395 }
396 
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398 		blk_mq_req_flags_t flags)
399 {
400 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 	struct request *rq;
402 	int ret;
403 
404 	ret = blk_queue_enter(q, flags);
405 	if (ret)
406 		return ERR_PTR(ret);
407 
408 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 	blk_queue_exit(q);
410 
411 	if (!rq)
412 		return ERR_PTR(-EWOULDBLOCK);
413 
414 	blk_mq_put_ctx(alloc_data.ctx);
415 
416 	rq->__data_len = 0;
417 	rq->__sector = (sector_t) -1;
418 	rq->bio = rq->biotail = NULL;
419 	return rq;
420 }
421 EXPORT_SYMBOL(blk_mq_alloc_request);
422 
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
425 {
426 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
427 	struct request *rq;
428 	unsigned int cpu;
429 	int ret;
430 
431 	/*
432 	 * If the tag allocator sleeps we could get an allocation for a
433 	 * different hardware context.  No need to complicate the low level
434 	 * allocator for this for the rare use case of a command tied to
435 	 * a specific queue.
436 	 */
437 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438 		return ERR_PTR(-EINVAL);
439 
440 	if (hctx_idx >= q->nr_hw_queues)
441 		return ERR_PTR(-EIO);
442 
443 	ret = blk_queue_enter(q, flags);
444 	if (ret)
445 		return ERR_PTR(ret);
446 
447 	/*
448 	 * Check if the hardware context is actually mapped to anything.
449 	 * If not tell the caller that it should skip this queue.
450 	 */
451 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453 		blk_queue_exit(q);
454 		return ERR_PTR(-EXDEV);
455 	}
456 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
458 
459 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 	blk_queue_exit(q);
461 
462 	if (!rq)
463 		return ERR_PTR(-EWOULDBLOCK);
464 
465 	return rq;
466 }
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
468 
469 static void __blk_mq_free_request(struct request *rq)
470 {
471 	struct request_queue *q = rq->q;
472 	struct blk_mq_ctx *ctx = rq->mq_ctx;
473 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474 	const int sched_tag = rq->internal_tag;
475 
476 	if (rq->tag != -1)
477 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478 	if (sched_tag != -1)
479 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480 	blk_mq_sched_restart(hctx);
481 	blk_queue_exit(q);
482 }
483 
484 void blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct elevator_queue *e = q->elevator;
488 	struct blk_mq_ctx *ctx = rq->mq_ctx;
489 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
490 
491 	if (rq->rq_flags & RQF_ELVPRIV) {
492 		if (e && e->type->ops.mq.finish_request)
493 			e->type->ops.mq.finish_request(rq);
494 		if (rq->elv.icq) {
495 			put_io_context(rq->elv.icq->ioc);
496 			rq->elv.icq = NULL;
497 		}
498 	}
499 
500 	ctx->rq_completed[rq_is_sync(rq)]++;
501 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502 		atomic_dec(&hctx->nr_active);
503 
504 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505 		laptop_io_completion(q->backing_dev_info);
506 
507 	wbt_done(q->rq_wb, rq);
508 
509 	if (blk_rq_rl(rq))
510 		blk_put_rl(blk_rq_rl(rq));
511 
512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 	if (refcount_dec_and_test(&rq->ref))
514 		__blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517 
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 	u64 now = ktime_get_ns();
521 
522 	if (rq->rq_flags & RQF_STATS) {
523 		blk_mq_poll_stats_start(rq->q);
524 		blk_stat_add(rq, now);
525 	}
526 
527 	blk_account_io_done(rq, now);
528 
529 	if (rq->end_io) {
530 		wbt_done(rq->q->rq_wb, rq);
531 		rq->end_io(rq, error);
532 	} else {
533 		if (unlikely(blk_bidi_rq(rq)))
534 			blk_mq_free_request(rq->next_rq);
535 		blk_mq_free_request(rq);
536 	}
537 }
538 EXPORT_SYMBOL(__blk_mq_end_request);
539 
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543 		BUG();
544 	__blk_mq_end_request(rq, error);
545 }
546 EXPORT_SYMBOL(blk_mq_end_request);
547 
548 static void __blk_mq_complete_request_remote(void *data)
549 {
550 	struct request *rq = data;
551 
552 	rq->q->softirq_done_fn(rq);
553 }
554 
555 static void __blk_mq_complete_request(struct request *rq)
556 {
557 	struct blk_mq_ctx *ctx = rq->mq_ctx;
558 	bool shared = false;
559 	int cpu;
560 
561 	if (!blk_mq_mark_complete(rq))
562 		return;
563 	if (rq->internal_tag != -1)
564 		blk_mq_sched_completed_request(rq);
565 
566 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
567 		rq->q->softirq_done_fn(rq);
568 		return;
569 	}
570 
571 	cpu = get_cpu();
572 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
573 		shared = cpus_share_cache(cpu, ctx->cpu);
574 
575 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
576 		rq->csd.func = __blk_mq_complete_request_remote;
577 		rq->csd.info = rq;
578 		rq->csd.flags = 0;
579 		smp_call_function_single_async(ctx->cpu, &rq->csd);
580 	} else {
581 		rq->q->softirq_done_fn(rq);
582 	}
583 	put_cpu();
584 }
585 
586 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
587 	__releases(hctx->srcu)
588 {
589 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
590 		rcu_read_unlock();
591 	else
592 		srcu_read_unlock(hctx->srcu, srcu_idx);
593 }
594 
595 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
596 	__acquires(hctx->srcu)
597 {
598 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
599 		/* shut up gcc false positive */
600 		*srcu_idx = 0;
601 		rcu_read_lock();
602 	} else
603 		*srcu_idx = srcu_read_lock(hctx->srcu);
604 }
605 
606 /**
607  * blk_mq_complete_request - end I/O on a request
608  * @rq:		the request being processed
609  *
610  * Description:
611  *	Ends all I/O on a request. It does not handle partial completions.
612  *	The actual completion happens out-of-order, through a IPI handler.
613  **/
614 void blk_mq_complete_request(struct request *rq)
615 {
616 	if (unlikely(blk_should_fake_timeout(rq->q)))
617 		return;
618 	__blk_mq_complete_request(rq);
619 }
620 EXPORT_SYMBOL(blk_mq_complete_request);
621 
622 int blk_mq_request_started(struct request *rq)
623 {
624 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
625 }
626 EXPORT_SYMBOL_GPL(blk_mq_request_started);
627 
628 void blk_mq_start_request(struct request *rq)
629 {
630 	struct request_queue *q = rq->q;
631 
632 	blk_mq_sched_started_request(rq);
633 
634 	trace_block_rq_issue(q, rq);
635 
636 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
637 		rq->io_start_time_ns = ktime_get_ns();
638 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
639 		rq->throtl_size = blk_rq_sectors(rq);
640 #endif
641 		rq->rq_flags |= RQF_STATS;
642 		wbt_issue(q->rq_wb, rq);
643 	}
644 
645 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
646 
647 	blk_add_timer(rq);
648 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
649 
650 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
651 		/*
652 		 * Make sure space for the drain appears.  We know we can do
653 		 * this because max_hw_segments has been adjusted to be one
654 		 * fewer than the device can handle.
655 		 */
656 		rq->nr_phys_segments++;
657 	}
658 }
659 EXPORT_SYMBOL(blk_mq_start_request);
660 
661 static void __blk_mq_requeue_request(struct request *rq)
662 {
663 	struct request_queue *q = rq->q;
664 
665 	blk_mq_put_driver_tag(rq);
666 
667 	trace_block_rq_requeue(q, rq);
668 	wbt_requeue(q->rq_wb, rq);
669 
670 	if (blk_mq_request_started(rq)) {
671 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
672 		rq->rq_flags &= ~RQF_TIMED_OUT;
673 		if (q->dma_drain_size && blk_rq_bytes(rq))
674 			rq->nr_phys_segments--;
675 	}
676 }
677 
678 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
679 {
680 	__blk_mq_requeue_request(rq);
681 
682 	/* this request will be re-inserted to io scheduler queue */
683 	blk_mq_sched_requeue_request(rq);
684 
685 	BUG_ON(blk_queued_rq(rq));
686 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
687 }
688 EXPORT_SYMBOL(blk_mq_requeue_request);
689 
690 static void blk_mq_requeue_work(struct work_struct *work)
691 {
692 	struct request_queue *q =
693 		container_of(work, struct request_queue, requeue_work.work);
694 	LIST_HEAD(rq_list);
695 	struct request *rq, *next;
696 
697 	spin_lock_irq(&q->requeue_lock);
698 	list_splice_init(&q->requeue_list, &rq_list);
699 	spin_unlock_irq(&q->requeue_lock);
700 
701 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
702 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
703 			continue;
704 
705 		rq->rq_flags &= ~RQF_SOFTBARRIER;
706 		list_del_init(&rq->queuelist);
707 		blk_mq_sched_insert_request(rq, true, false, false);
708 	}
709 
710 	while (!list_empty(&rq_list)) {
711 		rq = list_entry(rq_list.next, struct request, queuelist);
712 		list_del_init(&rq->queuelist);
713 		blk_mq_sched_insert_request(rq, false, false, false);
714 	}
715 
716 	blk_mq_run_hw_queues(q, false);
717 }
718 
719 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
720 				bool kick_requeue_list)
721 {
722 	struct request_queue *q = rq->q;
723 	unsigned long flags;
724 
725 	/*
726 	 * We abuse this flag that is otherwise used by the I/O scheduler to
727 	 * request head insertion from the workqueue.
728 	 */
729 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
730 
731 	spin_lock_irqsave(&q->requeue_lock, flags);
732 	if (at_head) {
733 		rq->rq_flags |= RQF_SOFTBARRIER;
734 		list_add(&rq->queuelist, &q->requeue_list);
735 	} else {
736 		list_add_tail(&rq->queuelist, &q->requeue_list);
737 	}
738 	spin_unlock_irqrestore(&q->requeue_lock, flags);
739 
740 	if (kick_requeue_list)
741 		blk_mq_kick_requeue_list(q);
742 }
743 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
744 
745 void blk_mq_kick_requeue_list(struct request_queue *q)
746 {
747 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
748 }
749 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
750 
751 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
752 				    unsigned long msecs)
753 {
754 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
755 				    msecs_to_jiffies(msecs));
756 }
757 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
758 
759 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
760 {
761 	if (tag < tags->nr_tags) {
762 		prefetch(tags->rqs[tag]);
763 		return tags->rqs[tag];
764 	}
765 
766 	return NULL;
767 }
768 EXPORT_SYMBOL(blk_mq_tag_to_rq);
769 
770 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
771 {
772 	req->rq_flags |= RQF_TIMED_OUT;
773 	if (req->q->mq_ops->timeout) {
774 		enum blk_eh_timer_return ret;
775 
776 		ret = req->q->mq_ops->timeout(req, reserved);
777 		if (ret == BLK_EH_DONE)
778 			return;
779 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
780 	}
781 
782 	blk_add_timer(req);
783 }
784 
785 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
786 {
787 	unsigned long deadline;
788 
789 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
790 		return false;
791 	if (rq->rq_flags & RQF_TIMED_OUT)
792 		return false;
793 
794 	deadline = blk_rq_deadline(rq);
795 	if (time_after_eq(jiffies, deadline))
796 		return true;
797 
798 	if (*next == 0)
799 		*next = deadline;
800 	else if (time_after(*next, deadline))
801 		*next = deadline;
802 	return false;
803 }
804 
805 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
806 		struct request *rq, void *priv, bool reserved)
807 {
808 	unsigned long *next = priv;
809 
810 	/*
811 	 * Just do a quick check if it is expired before locking the request in
812 	 * so we're not unnecessarilly synchronizing across CPUs.
813 	 */
814 	if (!blk_mq_req_expired(rq, next))
815 		return;
816 
817 	/*
818 	 * We have reason to believe the request may be expired. Take a
819 	 * reference on the request to lock this request lifetime into its
820 	 * currently allocated context to prevent it from being reallocated in
821 	 * the event the completion by-passes this timeout handler.
822 	 *
823 	 * If the reference was already released, then the driver beat the
824 	 * timeout handler to posting a natural completion.
825 	 */
826 	if (!refcount_inc_not_zero(&rq->ref))
827 		return;
828 
829 	/*
830 	 * The request is now locked and cannot be reallocated underneath the
831 	 * timeout handler's processing. Re-verify this exact request is truly
832 	 * expired; if it is not expired, then the request was completed and
833 	 * reallocated as a new request.
834 	 */
835 	if (blk_mq_req_expired(rq, next))
836 		blk_mq_rq_timed_out(rq, reserved);
837 	if (refcount_dec_and_test(&rq->ref))
838 		__blk_mq_free_request(rq);
839 }
840 
841 static void blk_mq_timeout_work(struct work_struct *work)
842 {
843 	struct request_queue *q =
844 		container_of(work, struct request_queue, timeout_work);
845 	unsigned long next = 0;
846 	struct blk_mq_hw_ctx *hctx;
847 	int i;
848 
849 	/* A deadlock might occur if a request is stuck requiring a
850 	 * timeout at the same time a queue freeze is waiting
851 	 * completion, since the timeout code would not be able to
852 	 * acquire the queue reference here.
853 	 *
854 	 * That's why we don't use blk_queue_enter here; instead, we use
855 	 * percpu_ref_tryget directly, because we need to be able to
856 	 * obtain a reference even in the short window between the queue
857 	 * starting to freeze, by dropping the first reference in
858 	 * blk_freeze_queue_start, and the moment the last request is
859 	 * consumed, marked by the instant q_usage_counter reaches
860 	 * zero.
861 	 */
862 	if (!percpu_ref_tryget(&q->q_usage_counter))
863 		return;
864 
865 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
866 
867 	if (next != 0) {
868 		mod_timer(&q->timeout, next);
869 	} else {
870 		/*
871 		 * Request timeouts are handled as a forward rolling timer. If
872 		 * we end up here it means that no requests are pending and
873 		 * also that no request has been pending for a while. Mark
874 		 * each hctx as idle.
875 		 */
876 		queue_for_each_hw_ctx(q, hctx, i) {
877 			/* the hctx may be unmapped, so check it here */
878 			if (blk_mq_hw_queue_mapped(hctx))
879 				blk_mq_tag_idle(hctx);
880 		}
881 	}
882 	blk_queue_exit(q);
883 }
884 
885 struct flush_busy_ctx_data {
886 	struct blk_mq_hw_ctx *hctx;
887 	struct list_head *list;
888 };
889 
890 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
891 {
892 	struct flush_busy_ctx_data *flush_data = data;
893 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
894 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
895 
896 	spin_lock(&ctx->lock);
897 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
898 	sbitmap_clear_bit(sb, bitnr);
899 	spin_unlock(&ctx->lock);
900 	return true;
901 }
902 
903 /*
904  * Process software queues that have been marked busy, splicing them
905  * to the for-dispatch
906  */
907 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 {
909 	struct flush_busy_ctx_data data = {
910 		.hctx = hctx,
911 		.list = list,
912 	};
913 
914 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915 }
916 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917 
918 struct dispatch_rq_data {
919 	struct blk_mq_hw_ctx *hctx;
920 	struct request *rq;
921 };
922 
923 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
924 		void *data)
925 {
926 	struct dispatch_rq_data *dispatch_data = data;
927 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
928 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
929 
930 	spin_lock(&ctx->lock);
931 	if (!list_empty(&ctx->rq_list)) {
932 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
933 		list_del_init(&dispatch_data->rq->queuelist);
934 		if (list_empty(&ctx->rq_list))
935 			sbitmap_clear_bit(sb, bitnr);
936 	}
937 	spin_unlock(&ctx->lock);
938 
939 	return !dispatch_data->rq;
940 }
941 
942 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
943 					struct blk_mq_ctx *start)
944 {
945 	unsigned off = start ? start->index_hw : 0;
946 	struct dispatch_rq_data data = {
947 		.hctx = hctx,
948 		.rq   = NULL,
949 	};
950 
951 	__sbitmap_for_each_set(&hctx->ctx_map, off,
952 			       dispatch_rq_from_ctx, &data);
953 
954 	return data.rq;
955 }
956 
957 static inline unsigned int queued_to_index(unsigned int queued)
958 {
959 	if (!queued)
960 		return 0;
961 
962 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 }
964 
965 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
966 			   bool wait)
967 {
968 	struct blk_mq_alloc_data data = {
969 		.q = rq->q,
970 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
971 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
972 	};
973 
974 	might_sleep_if(wait);
975 
976 	if (rq->tag != -1)
977 		goto done;
978 
979 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 		data.flags |= BLK_MQ_REQ_RESERVED;
981 
982 	rq->tag = blk_mq_get_tag(&data);
983 	if (rq->tag >= 0) {
984 		if (blk_mq_tag_busy(data.hctx)) {
985 			rq->rq_flags |= RQF_MQ_INFLIGHT;
986 			atomic_inc(&data.hctx->nr_active);
987 		}
988 		data.hctx->tags->rqs[rq->tag] = rq;
989 	}
990 
991 done:
992 	if (hctx)
993 		*hctx = data.hctx;
994 	return rq->tag != -1;
995 }
996 
997 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
998 				int flags, void *key)
999 {
1000 	struct blk_mq_hw_ctx *hctx;
1001 
1002 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003 
1004 	list_del_init(&wait->entry);
1005 	blk_mq_run_hw_queue(hctx, true);
1006 	return 1;
1007 }
1008 
1009 /*
1010  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1011  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1012  * restart. For both cases, take care to check the condition again after
1013  * marking us as waiting.
1014  */
1015 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1016 				 struct request *rq)
1017 {
1018 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1019 	struct sbq_wait_state *ws;
1020 	wait_queue_entry_t *wait;
1021 	bool ret;
1022 
1023 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1024 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1025 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1026 
1027 		/*
1028 		 * It's possible that a tag was freed in the window between the
1029 		 * allocation failure and adding the hardware queue to the wait
1030 		 * queue.
1031 		 *
1032 		 * Don't clear RESTART here, someone else could have set it.
1033 		 * At most this will cost an extra queue run.
1034 		 */
1035 		return blk_mq_get_driver_tag(rq, hctx, false);
1036 	}
1037 
1038 	wait = &this_hctx->dispatch_wait;
1039 	if (!list_empty_careful(&wait->entry))
1040 		return false;
1041 
1042 	spin_lock(&this_hctx->lock);
1043 	if (!list_empty(&wait->entry)) {
1044 		spin_unlock(&this_hctx->lock);
1045 		return false;
1046 	}
1047 
1048 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1049 	add_wait_queue(&ws->wait, wait);
1050 
1051 	/*
1052 	 * It's possible that a tag was freed in the window between the
1053 	 * allocation failure and adding the hardware queue to the wait
1054 	 * queue.
1055 	 */
1056 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1057 	if (!ret) {
1058 		spin_unlock(&this_hctx->lock);
1059 		return false;
1060 	}
1061 
1062 	/*
1063 	 * We got a tag, remove ourselves from the wait queue to ensure
1064 	 * someone else gets the wakeup.
1065 	 */
1066 	spin_lock_irq(&ws->wait.lock);
1067 	list_del_init(&wait->entry);
1068 	spin_unlock_irq(&ws->wait.lock);
1069 	spin_unlock(&this_hctx->lock);
1070 
1071 	return true;
1072 }
1073 
1074 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1075 
1076 /*
1077  * Returns true if we did some work AND can potentially do more.
1078  */
1079 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1080 			     bool got_budget)
1081 {
1082 	struct blk_mq_hw_ctx *hctx;
1083 	struct request *rq, *nxt;
1084 	bool no_tag = false;
1085 	int errors, queued;
1086 	blk_status_t ret = BLK_STS_OK;
1087 
1088 	if (list_empty(list))
1089 		return false;
1090 
1091 	WARN_ON(!list_is_singular(list) && got_budget);
1092 
1093 	/*
1094 	 * Now process all the entries, sending them to the driver.
1095 	 */
1096 	errors = queued = 0;
1097 	do {
1098 		struct blk_mq_queue_data bd;
1099 
1100 		rq = list_first_entry(list, struct request, queuelist);
1101 
1102 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1103 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1104 			break;
1105 
1106 		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1107 			/*
1108 			 * The initial allocation attempt failed, so we need to
1109 			 * rerun the hardware queue when a tag is freed. The
1110 			 * waitqueue takes care of that. If the queue is run
1111 			 * before we add this entry back on the dispatch list,
1112 			 * we'll re-run it below.
1113 			 */
1114 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1115 				blk_mq_put_dispatch_budget(hctx);
1116 				/*
1117 				 * For non-shared tags, the RESTART check
1118 				 * will suffice.
1119 				 */
1120 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1121 					no_tag = true;
1122 				break;
1123 			}
1124 		}
1125 
1126 		list_del_init(&rq->queuelist);
1127 
1128 		bd.rq = rq;
1129 
1130 		/*
1131 		 * Flag last if we have no more requests, or if we have more
1132 		 * but can't assign a driver tag to it.
1133 		 */
1134 		if (list_empty(list))
1135 			bd.last = true;
1136 		else {
1137 			nxt = list_first_entry(list, struct request, queuelist);
1138 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1139 		}
1140 
1141 		ret = q->mq_ops->queue_rq(hctx, &bd);
1142 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1143 			/*
1144 			 * If an I/O scheduler has been configured and we got a
1145 			 * driver tag for the next request already, free it
1146 			 * again.
1147 			 */
1148 			if (!list_empty(list)) {
1149 				nxt = list_first_entry(list, struct request, queuelist);
1150 				blk_mq_put_driver_tag(nxt);
1151 			}
1152 			list_add(&rq->queuelist, list);
1153 			__blk_mq_requeue_request(rq);
1154 			break;
1155 		}
1156 
1157 		if (unlikely(ret != BLK_STS_OK)) {
1158 			errors++;
1159 			blk_mq_end_request(rq, BLK_STS_IOERR);
1160 			continue;
1161 		}
1162 
1163 		queued++;
1164 	} while (!list_empty(list));
1165 
1166 	hctx->dispatched[queued_to_index(queued)]++;
1167 
1168 	/*
1169 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1170 	 * that is where we will continue on next queue run.
1171 	 */
1172 	if (!list_empty(list)) {
1173 		bool needs_restart;
1174 
1175 		spin_lock(&hctx->lock);
1176 		list_splice_init(list, &hctx->dispatch);
1177 		spin_unlock(&hctx->lock);
1178 
1179 		/*
1180 		 * If SCHED_RESTART was set by the caller of this function and
1181 		 * it is no longer set that means that it was cleared by another
1182 		 * thread and hence that a queue rerun is needed.
1183 		 *
1184 		 * If 'no_tag' is set, that means that we failed getting
1185 		 * a driver tag with an I/O scheduler attached. If our dispatch
1186 		 * waitqueue is no longer active, ensure that we run the queue
1187 		 * AFTER adding our entries back to the list.
1188 		 *
1189 		 * If no I/O scheduler has been configured it is possible that
1190 		 * the hardware queue got stopped and restarted before requests
1191 		 * were pushed back onto the dispatch list. Rerun the queue to
1192 		 * avoid starvation. Notes:
1193 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1194 		 *   been stopped before rerunning a queue.
1195 		 * - Some but not all block drivers stop a queue before
1196 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1197 		 *   and dm-rq.
1198 		 *
1199 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1200 		 * bit is set, run queue after a delay to avoid IO stalls
1201 		 * that could otherwise occur if the queue is idle.
1202 		 */
1203 		needs_restart = blk_mq_sched_needs_restart(hctx);
1204 		if (!needs_restart ||
1205 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1206 			blk_mq_run_hw_queue(hctx, true);
1207 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1208 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1209 
1210 		return false;
1211 	}
1212 
1213 	/*
1214 	 * If the host/device is unable to accept more work, inform the
1215 	 * caller of that.
1216 	 */
1217 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1218 		return false;
1219 
1220 	return (queued + errors) != 0;
1221 }
1222 
1223 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225 	int srcu_idx;
1226 
1227 	/*
1228 	 * We should be running this queue from one of the CPUs that
1229 	 * are mapped to it.
1230 	 *
1231 	 * There are at least two related races now between setting
1232 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1233 	 * __blk_mq_run_hw_queue():
1234 	 *
1235 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1236 	 *   but later it becomes online, then this warning is harmless
1237 	 *   at all
1238 	 *
1239 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1240 	 *   but later it becomes offline, then the warning can't be
1241 	 *   triggered, and we depend on blk-mq timeout handler to
1242 	 *   handle dispatched requests to this hctx
1243 	 */
1244 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1245 		cpu_online(hctx->next_cpu)) {
1246 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1247 			raw_smp_processor_id(),
1248 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1249 		dump_stack();
1250 	}
1251 
1252 	/*
1253 	 * We can't run the queue inline with ints disabled. Ensure that
1254 	 * we catch bad users of this early.
1255 	 */
1256 	WARN_ON_ONCE(in_interrupt());
1257 
1258 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1259 
1260 	hctx_lock(hctx, &srcu_idx);
1261 	blk_mq_sched_dispatch_requests(hctx);
1262 	hctx_unlock(hctx, srcu_idx);
1263 }
1264 
1265 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1266 {
1267 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1268 
1269 	if (cpu >= nr_cpu_ids)
1270 		cpu = cpumask_first(hctx->cpumask);
1271 	return cpu;
1272 }
1273 
1274 /*
1275  * It'd be great if the workqueue API had a way to pass
1276  * in a mask and had some smarts for more clever placement.
1277  * For now we just round-robin here, switching for every
1278  * BLK_MQ_CPU_WORK_BATCH queued items.
1279  */
1280 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1281 {
1282 	bool tried = false;
1283 	int next_cpu = hctx->next_cpu;
1284 
1285 	if (hctx->queue->nr_hw_queues == 1)
1286 		return WORK_CPU_UNBOUND;
1287 
1288 	if (--hctx->next_cpu_batch <= 0) {
1289 select_cpu:
1290 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1291 				cpu_online_mask);
1292 		if (next_cpu >= nr_cpu_ids)
1293 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1294 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1295 	}
1296 
1297 	/*
1298 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1299 	 * and it should only happen in the path of handling CPU DEAD.
1300 	 */
1301 	if (!cpu_online(next_cpu)) {
1302 		if (!tried) {
1303 			tried = true;
1304 			goto select_cpu;
1305 		}
1306 
1307 		/*
1308 		 * Make sure to re-select CPU next time once after CPUs
1309 		 * in hctx->cpumask become online again.
1310 		 */
1311 		hctx->next_cpu = next_cpu;
1312 		hctx->next_cpu_batch = 1;
1313 		return WORK_CPU_UNBOUND;
1314 	}
1315 
1316 	hctx->next_cpu = next_cpu;
1317 	return next_cpu;
1318 }
1319 
1320 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1321 					unsigned long msecs)
1322 {
1323 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1324 		return;
1325 
1326 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1327 		int cpu = get_cpu();
1328 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1329 			__blk_mq_run_hw_queue(hctx);
1330 			put_cpu();
1331 			return;
1332 		}
1333 
1334 		put_cpu();
1335 	}
1336 
1337 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1338 				    msecs_to_jiffies(msecs));
1339 }
1340 
1341 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1342 {
1343 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1344 }
1345 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1346 
1347 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1348 {
1349 	int srcu_idx;
1350 	bool need_run;
1351 
1352 	/*
1353 	 * When queue is quiesced, we may be switching io scheduler, or
1354 	 * updating nr_hw_queues, or other things, and we can't run queue
1355 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1356 	 *
1357 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1358 	 * quiesced.
1359 	 */
1360 	hctx_lock(hctx, &srcu_idx);
1361 	need_run = !blk_queue_quiesced(hctx->queue) &&
1362 		blk_mq_hctx_has_pending(hctx);
1363 	hctx_unlock(hctx, srcu_idx);
1364 
1365 	if (need_run) {
1366 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1367 		return true;
1368 	}
1369 
1370 	return false;
1371 }
1372 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1373 
1374 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1375 {
1376 	struct blk_mq_hw_ctx *hctx;
1377 	int i;
1378 
1379 	queue_for_each_hw_ctx(q, hctx, i) {
1380 		if (blk_mq_hctx_stopped(hctx))
1381 			continue;
1382 
1383 		blk_mq_run_hw_queue(hctx, async);
1384 	}
1385 }
1386 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1387 
1388 /**
1389  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1390  * @q: request queue.
1391  *
1392  * The caller is responsible for serializing this function against
1393  * blk_mq_{start,stop}_hw_queue().
1394  */
1395 bool blk_mq_queue_stopped(struct request_queue *q)
1396 {
1397 	struct blk_mq_hw_ctx *hctx;
1398 	int i;
1399 
1400 	queue_for_each_hw_ctx(q, hctx, i)
1401 		if (blk_mq_hctx_stopped(hctx))
1402 			return true;
1403 
1404 	return false;
1405 }
1406 EXPORT_SYMBOL(blk_mq_queue_stopped);
1407 
1408 /*
1409  * This function is often used for pausing .queue_rq() by driver when
1410  * there isn't enough resource or some conditions aren't satisfied, and
1411  * BLK_STS_RESOURCE is usually returned.
1412  *
1413  * We do not guarantee that dispatch can be drained or blocked
1414  * after blk_mq_stop_hw_queue() returns. Please use
1415  * blk_mq_quiesce_queue() for that requirement.
1416  */
1417 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1418 {
1419 	cancel_delayed_work(&hctx->run_work);
1420 
1421 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1422 }
1423 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1424 
1425 /*
1426  * This function is often used for pausing .queue_rq() by driver when
1427  * there isn't enough resource or some conditions aren't satisfied, and
1428  * BLK_STS_RESOURCE is usually returned.
1429  *
1430  * We do not guarantee that dispatch can be drained or blocked
1431  * after blk_mq_stop_hw_queues() returns. Please use
1432  * blk_mq_quiesce_queue() for that requirement.
1433  */
1434 void blk_mq_stop_hw_queues(struct request_queue *q)
1435 {
1436 	struct blk_mq_hw_ctx *hctx;
1437 	int i;
1438 
1439 	queue_for_each_hw_ctx(q, hctx, i)
1440 		blk_mq_stop_hw_queue(hctx);
1441 }
1442 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1443 
1444 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1445 {
1446 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1447 
1448 	blk_mq_run_hw_queue(hctx, false);
1449 }
1450 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1451 
1452 void blk_mq_start_hw_queues(struct request_queue *q)
1453 {
1454 	struct blk_mq_hw_ctx *hctx;
1455 	int i;
1456 
1457 	queue_for_each_hw_ctx(q, hctx, i)
1458 		blk_mq_start_hw_queue(hctx);
1459 }
1460 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1461 
1462 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1463 {
1464 	if (!blk_mq_hctx_stopped(hctx))
1465 		return;
1466 
1467 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1468 	blk_mq_run_hw_queue(hctx, async);
1469 }
1470 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1471 
1472 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1473 {
1474 	struct blk_mq_hw_ctx *hctx;
1475 	int i;
1476 
1477 	queue_for_each_hw_ctx(q, hctx, i)
1478 		blk_mq_start_stopped_hw_queue(hctx, async);
1479 }
1480 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1481 
1482 static void blk_mq_run_work_fn(struct work_struct *work)
1483 {
1484 	struct blk_mq_hw_ctx *hctx;
1485 
1486 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1487 
1488 	/*
1489 	 * If we are stopped, don't run the queue.
1490 	 */
1491 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1492 		return;
1493 
1494 	__blk_mq_run_hw_queue(hctx);
1495 }
1496 
1497 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1498 					    struct request *rq,
1499 					    bool at_head)
1500 {
1501 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1502 
1503 	lockdep_assert_held(&ctx->lock);
1504 
1505 	trace_block_rq_insert(hctx->queue, rq);
1506 
1507 	if (at_head)
1508 		list_add(&rq->queuelist, &ctx->rq_list);
1509 	else
1510 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1511 }
1512 
1513 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1514 			     bool at_head)
1515 {
1516 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1517 
1518 	lockdep_assert_held(&ctx->lock);
1519 
1520 	__blk_mq_insert_req_list(hctx, rq, at_head);
1521 	blk_mq_hctx_mark_pending(hctx, ctx);
1522 }
1523 
1524 /*
1525  * Should only be used carefully, when the caller knows we want to
1526  * bypass a potential IO scheduler on the target device.
1527  */
1528 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1529 {
1530 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1531 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1532 
1533 	spin_lock(&hctx->lock);
1534 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1535 	spin_unlock(&hctx->lock);
1536 
1537 	if (run_queue)
1538 		blk_mq_run_hw_queue(hctx, false);
1539 }
1540 
1541 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1542 			    struct list_head *list)
1543 
1544 {
1545 	/*
1546 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1547 	 * offline now
1548 	 */
1549 	spin_lock(&ctx->lock);
1550 	while (!list_empty(list)) {
1551 		struct request *rq;
1552 
1553 		rq = list_first_entry(list, struct request, queuelist);
1554 		BUG_ON(rq->mq_ctx != ctx);
1555 		list_del_init(&rq->queuelist);
1556 		__blk_mq_insert_req_list(hctx, rq, false);
1557 	}
1558 	blk_mq_hctx_mark_pending(hctx, ctx);
1559 	spin_unlock(&ctx->lock);
1560 }
1561 
1562 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1563 {
1564 	struct request *rqa = container_of(a, struct request, queuelist);
1565 	struct request *rqb = container_of(b, struct request, queuelist);
1566 
1567 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1568 		 (rqa->mq_ctx == rqb->mq_ctx &&
1569 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1570 }
1571 
1572 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1573 {
1574 	struct blk_mq_ctx *this_ctx;
1575 	struct request_queue *this_q;
1576 	struct request *rq;
1577 	LIST_HEAD(list);
1578 	LIST_HEAD(ctx_list);
1579 	unsigned int depth;
1580 
1581 	list_splice_init(&plug->mq_list, &list);
1582 
1583 	list_sort(NULL, &list, plug_ctx_cmp);
1584 
1585 	this_q = NULL;
1586 	this_ctx = NULL;
1587 	depth = 0;
1588 
1589 	while (!list_empty(&list)) {
1590 		rq = list_entry_rq(list.next);
1591 		list_del_init(&rq->queuelist);
1592 		BUG_ON(!rq->q);
1593 		if (rq->mq_ctx != this_ctx) {
1594 			if (this_ctx) {
1595 				trace_block_unplug(this_q, depth, from_schedule);
1596 				blk_mq_sched_insert_requests(this_q, this_ctx,
1597 								&ctx_list,
1598 								from_schedule);
1599 			}
1600 
1601 			this_ctx = rq->mq_ctx;
1602 			this_q = rq->q;
1603 			depth = 0;
1604 		}
1605 
1606 		depth++;
1607 		list_add_tail(&rq->queuelist, &ctx_list);
1608 	}
1609 
1610 	/*
1611 	 * If 'this_ctx' is set, we know we have entries to complete
1612 	 * on 'ctx_list'. Do those.
1613 	 */
1614 	if (this_ctx) {
1615 		trace_block_unplug(this_q, depth, from_schedule);
1616 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1617 						from_schedule);
1618 	}
1619 }
1620 
1621 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1622 {
1623 	blk_init_request_from_bio(rq, bio);
1624 
1625 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1626 
1627 	blk_account_io_start(rq, true);
1628 }
1629 
1630 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1631 {
1632 	if (rq->tag != -1)
1633 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1634 
1635 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1636 }
1637 
1638 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1639 					    struct request *rq,
1640 					    blk_qc_t *cookie)
1641 {
1642 	struct request_queue *q = rq->q;
1643 	struct blk_mq_queue_data bd = {
1644 		.rq = rq,
1645 		.last = true,
1646 	};
1647 	blk_qc_t new_cookie;
1648 	blk_status_t ret;
1649 
1650 	new_cookie = request_to_qc_t(hctx, rq);
1651 
1652 	/*
1653 	 * For OK queue, we are done. For error, caller may kill it.
1654 	 * Any other error (busy), just add it to our list as we
1655 	 * previously would have done.
1656 	 */
1657 	ret = q->mq_ops->queue_rq(hctx, &bd);
1658 	switch (ret) {
1659 	case BLK_STS_OK:
1660 		*cookie = new_cookie;
1661 		break;
1662 	case BLK_STS_RESOURCE:
1663 	case BLK_STS_DEV_RESOURCE:
1664 		__blk_mq_requeue_request(rq);
1665 		break;
1666 	default:
1667 		*cookie = BLK_QC_T_NONE;
1668 		break;
1669 	}
1670 
1671 	return ret;
1672 }
1673 
1674 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1675 						struct request *rq,
1676 						blk_qc_t *cookie,
1677 						bool bypass_insert)
1678 {
1679 	struct request_queue *q = rq->q;
1680 	bool run_queue = true;
1681 
1682 	/*
1683 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1684 	 *
1685 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1686 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1687 	 * and avoid driver to try to dispatch again.
1688 	 */
1689 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1690 		run_queue = false;
1691 		bypass_insert = false;
1692 		goto insert;
1693 	}
1694 
1695 	if (q->elevator && !bypass_insert)
1696 		goto insert;
1697 
1698 	if (!blk_mq_get_dispatch_budget(hctx))
1699 		goto insert;
1700 
1701 	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1702 		blk_mq_put_dispatch_budget(hctx);
1703 		goto insert;
1704 	}
1705 
1706 	return __blk_mq_issue_directly(hctx, rq, cookie);
1707 insert:
1708 	if (bypass_insert)
1709 		return BLK_STS_RESOURCE;
1710 
1711 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1712 	return BLK_STS_OK;
1713 }
1714 
1715 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1716 		struct request *rq, blk_qc_t *cookie)
1717 {
1718 	blk_status_t ret;
1719 	int srcu_idx;
1720 
1721 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1722 
1723 	hctx_lock(hctx, &srcu_idx);
1724 
1725 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1726 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1727 		blk_mq_sched_insert_request(rq, false, true, false);
1728 	else if (ret != BLK_STS_OK)
1729 		blk_mq_end_request(rq, ret);
1730 
1731 	hctx_unlock(hctx, srcu_idx);
1732 }
1733 
1734 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1735 {
1736 	blk_status_t ret;
1737 	int srcu_idx;
1738 	blk_qc_t unused_cookie;
1739 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1740 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1741 
1742 	hctx_lock(hctx, &srcu_idx);
1743 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1744 	hctx_unlock(hctx, srcu_idx);
1745 
1746 	return ret;
1747 }
1748 
1749 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1750 {
1751 	const int is_sync = op_is_sync(bio->bi_opf);
1752 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1753 	struct blk_mq_alloc_data data = { .flags = 0 };
1754 	struct request *rq;
1755 	unsigned int request_count = 0;
1756 	struct blk_plug *plug;
1757 	struct request *same_queue_rq = NULL;
1758 	blk_qc_t cookie;
1759 	unsigned int wb_acct;
1760 
1761 	blk_queue_bounce(q, &bio);
1762 
1763 	blk_queue_split(q, &bio);
1764 
1765 	if (!bio_integrity_prep(bio))
1766 		return BLK_QC_T_NONE;
1767 
1768 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1769 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1770 		return BLK_QC_T_NONE;
1771 
1772 	if (blk_mq_sched_bio_merge(q, bio))
1773 		return BLK_QC_T_NONE;
1774 
1775 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1776 
1777 	trace_block_getrq(q, bio, bio->bi_opf);
1778 
1779 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1780 	if (unlikely(!rq)) {
1781 		__wbt_done(q->rq_wb, wb_acct);
1782 		if (bio->bi_opf & REQ_NOWAIT)
1783 			bio_wouldblock_error(bio);
1784 		return BLK_QC_T_NONE;
1785 	}
1786 
1787 	wbt_track(rq, wb_acct);
1788 
1789 	cookie = request_to_qc_t(data.hctx, rq);
1790 
1791 	plug = current->plug;
1792 	if (unlikely(is_flush_fua)) {
1793 		blk_mq_put_ctx(data.ctx);
1794 		blk_mq_bio_to_request(rq, bio);
1795 
1796 		/* bypass scheduler for flush rq */
1797 		blk_insert_flush(rq);
1798 		blk_mq_run_hw_queue(data.hctx, true);
1799 	} else if (plug && q->nr_hw_queues == 1) {
1800 		struct request *last = NULL;
1801 
1802 		blk_mq_put_ctx(data.ctx);
1803 		blk_mq_bio_to_request(rq, bio);
1804 
1805 		/*
1806 		 * @request_count may become stale because of schedule
1807 		 * out, so check the list again.
1808 		 */
1809 		if (list_empty(&plug->mq_list))
1810 			request_count = 0;
1811 		else if (blk_queue_nomerges(q))
1812 			request_count = blk_plug_queued_count(q);
1813 
1814 		if (!request_count)
1815 			trace_block_plug(q);
1816 		else
1817 			last = list_entry_rq(plug->mq_list.prev);
1818 
1819 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1820 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1821 			blk_flush_plug_list(plug, false);
1822 			trace_block_plug(q);
1823 		}
1824 
1825 		list_add_tail(&rq->queuelist, &plug->mq_list);
1826 	} else if (plug && !blk_queue_nomerges(q)) {
1827 		blk_mq_bio_to_request(rq, bio);
1828 
1829 		/*
1830 		 * We do limited plugging. If the bio can be merged, do that.
1831 		 * Otherwise the existing request in the plug list will be
1832 		 * issued. So the plug list will have one request at most
1833 		 * The plug list might get flushed before this. If that happens,
1834 		 * the plug list is empty, and same_queue_rq is invalid.
1835 		 */
1836 		if (list_empty(&plug->mq_list))
1837 			same_queue_rq = NULL;
1838 		if (same_queue_rq)
1839 			list_del_init(&same_queue_rq->queuelist);
1840 		list_add_tail(&rq->queuelist, &plug->mq_list);
1841 
1842 		blk_mq_put_ctx(data.ctx);
1843 
1844 		if (same_queue_rq) {
1845 			data.hctx = blk_mq_map_queue(q,
1846 					same_queue_rq->mq_ctx->cpu);
1847 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1848 					&cookie);
1849 		}
1850 	} else if (q->nr_hw_queues > 1 && is_sync) {
1851 		blk_mq_put_ctx(data.ctx);
1852 		blk_mq_bio_to_request(rq, bio);
1853 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1854 	} else {
1855 		blk_mq_put_ctx(data.ctx);
1856 		blk_mq_bio_to_request(rq, bio);
1857 		blk_mq_sched_insert_request(rq, false, true, true);
1858 	}
1859 
1860 	return cookie;
1861 }
1862 
1863 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1864 		     unsigned int hctx_idx)
1865 {
1866 	struct page *page;
1867 
1868 	if (tags->rqs && set->ops->exit_request) {
1869 		int i;
1870 
1871 		for (i = 0; i < tags->nr_tags; i++) {
1872 			struct request *rq = tags->static_rqs[i];
1873 
1874 			if (!rq)
1875 				continue;
1876 			set->ops->exit_request(set, rq, hctx_idx);
1877 			tags->static_rqs[i] = NULL;
1878 		}
1879 	}
1880 
1881 	while (!list_empty(&tags->page_list)) {
1882 		page = list_first_entry(&tags->page_list, struct page, lru);
1883 		list_del_init(&page->lru);
1884 		/*
1885 		 * Remove kmemleak object previously allocated in
1886 		 * blk_mq_init_rq_map().
1887 		 */
1888 		kmemleak_free(page_address(page));
1889 		__free_pages(page, page->private);
1890 	}
1891 }
1892 
1893 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1894 {
1895 	kfree(tags->rqs);
1896 	tags->rqs = NULL;
1897 	kfree(tags->static_rqs);
1898 	tags->static_rqs = NULL;
1899 
1900 	blk_mq_free_tags(tags);
1901 }
1902 
1903 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1904 					unsigned int hctx_idx,
1905 					unsigned int nr_tags,
1906 					unsigned int reserved_tags)
1907 {
1908 	struct blk_mq_tags *tags;
1909 	int node;
1910 
1911 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1912 	if (node == NUMA_NO_NODE)
1913 		node = set->numa_node;
1914 
1915 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1916 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1917 	if (!tags)
1918 		return NULL;
1919 
1920 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1921 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1922 				 node);
1923 	if (!tags->rqs) {
1924 		blk_mq_free_tags(tags);
1925 		return NULL;
1926 	}
1927 
1928 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1929 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1930 					node);
1931 	if (!tags->static_rqs) {
1932 		kfree(tags->rqs);
1933 		blk_mq_free_tags(tags);
1934 		return NULL;
1935 	}
1936 
1937 	return tags;
1938 }
1939 
1940 static size_t order_to_size(unsigned int order)
1941 {
1942 	return (size_t)PAGE_SIZE << order;
1943 }
1944 
1945 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1946 			       unsigned int hctx_idx, int node)
1947 {
1948 	int ret;
1949 
1950 	if (set->ops->init_request) {
1951 		ret = set->ops->init_request(set, rq, hctx_idx, node);
1952 		if (ret)
1953 			return ret;
1954 	}
1955 
1956 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1957 	return 0;
1958 }
1959 
1960 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1961 		     unsigned int hctx_idx, unsigned int depth)
1962 {
1963 	unsigned int i, j, entries_per_page, max_order = 4;
1964 	size_t rq_size, left;
1965 	int node;
1966 
1967 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1968 	if (node == NUMA_NO_NODE)
1969 		node = set->numa_node;
1970 
1971 	INIT_LIST_HEAD(&tags->page_list);
1972 
1973 	/*
1974 	 * rq_size is the size of the request plus driver payload, rounded
1975 	 * to the cacheline size
1976 	 */
1977 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1978 				cache_line_size());
1979 	left = rq_size * depth;
1980 
1981 	for (i = 0; i < depth; ) {
1982 		int this_order = max_order;
1983 		struct page *page;
1984 		int to_do;
1985 		void *p;
1986 
1987 		while (this_order && left < order_to_size(this_order - 1))
1988 			this_order--;
1989 
1990 		do {
1991 			page = alloc_pages_node(node,
1992 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1993 				this_order);
1994 			if (page)
1995 				break;
1996 			if (!this_order--)
1997 				break;
1998 			if (order_to_size(this_order) < rq_size)
1999 				break;
2000 		} while (1);
2001 
2002 		if (!page)
2003 			goto fail;
2004 
2005 		page->private = this_order;
2006 		list_add_tail(&page->lru, &tags->page_list);
2007 
2008 		p = page_address(page);
2009 		/*
2010 		 * Allow kmemleak to scan these pages as they contain pointers
2011 		 * to additional allocations like via ops->init_request().
2012 		 */
2013 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2014 		entries_per_page = order_to_size(this_order) / rq_size;
2015 		to_do = min(entries_per_page, depth - i);
2016 		left -= to_do * rq_size;
2017 		for (j = 0; j < to_do; j++) {
2018 			struct request *rq = p;
2019 
2020 			tags->static_rqs[i] = rq;
2021 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2022 				tags->static_rqs[i] = NULL;
2023 				goto fail;
2024 			}
2025 
2026 			p += rq_size;
2027 			i++;
2028 		}
2029 	}
2030 	return 0;
2031 
2032 fail:
2033 	blk_mq_free_rqs(set, tags, hctx_idx);
2034 	return -ENOMEM;
2035 }
2036 
2037 /*
2038  * 'cpu' is going away. splice any existing rq_list entries from this
2039  * software queue to the hw queue dispatch list, and ensure that it
2040  * gets run.
2041  */
2042 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2043 {
2044 	struct blk_mq_hw_ctx *hctx;
2045 	struct blk_mq_ctx *ctx;
2046 	LIST_HEAD(tmp);
2047 
2048 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2049 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2050 
2051 	spin_lock(&ctx->lock);
2052 	if (!list_empty(&ctx->rq_list)) {
2053 		list_splice_init(&ctx->rq_list, &tmp);
2054 		blk_mq_hctx_clear_pending(hctx, ctx);
2055 	}
2056 	spin_unlock(&ctx->lock);
2057 
2058 	if (list_empty(&tmp))
2059 		return 0;
2060 
2061 	spin_lock(&hctx->lock);
2062 	list_splice_tail_init(&tmp, &hctx->dispatch);
2063 	spin_unlock(&hctx->lock);
2064 
2065 	blk_mq_run_hw_queue(hctx, true);
2066 	return 0;
2067 }
2068 
2069 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2070 {
2071 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2072 					    &hctx->cpuhp_dead);
2073 }
2074 
2075 /* hctx->ctxs will be freed in queue's release handler */
2076 static void blk_mq_exit_hctx(struct request_queue *q,
2077 		struct blk_mq_tag_set *set,
2078 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2079 {
2080 	blk_mq_debugfs_unregister_hctx(hctx);
2081 
2082 	if (blk_mq_hw_queue_mapped(hctx))
2083 		blk_mq_tag_idle(hctx);
2084 
2085 	if (set->ops->exit_request)
2086 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2087 
2088 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2089 
2090 	if (set->ops->exit_hctx)
2091 		set->ops->exit_hctx(hctx, hctx_idx);
2092 
2093 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2094 		cleanup_srcu_struct(hctx->srcu);
2095 
2096 	blk_mq_remove_cpuhp(hctx);
2097 	blk_free_flush_queue(hctx->fq);
2098 	sbitmap_free(&hctx->ctx_map);
2099 }
2100 
2101 static void blk_mq_exit_hw_queues(struct request_queue *q,
2102 		struct blk_mq_tag_set *set, int nr_queue)
2103 {
2104 	struct blk_mq_hw_ctx *hctx;
2105 	unsigned int i;
2106 
2107 	queue_for_each_hw_ctx(q, hctx, i) {
2108 		if (i == nr_queue)
2109 			break;
2110 		blk_mq_exit_hctx(q, set, hctx, i);
2111 	}
2112 }
2113 
2114 static int blk_mq_init_hctx(struct request_queue *q,
2115 		struct blk_mq_tag_set *set,
2116 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2117 {
2118 	int node;
2119 
2120 	node = hctx->numa_node;
2121 	if (node == NUMA_NO_NODE)
2122 		node = hctx->numa_node = set->numa_node;
2123 
2124 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2125 	spin_lock_init(&hctx->lock);
2126 	INIT_LIST_HEAD(&hctx->dispatch);
2127 	hctx->queue = q;
2128 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2129 
2130 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2131 
2132 	hctx->tags = set->tags[hctx_idx];
2133 
2134 	/*
2135 	 * Allocate space for all possible cpus to avoid allocation at
2136 	 * runtime
2137 	 */
2138 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2139 					GFP_KERNEL, node);
2140 	if (!hctx->ctxs)
2141 		goto unregister_cpu_notifier;
2142 
2143 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2144 			      node))
2145 		goto free_ctxs;
2146 
2147 	hctx->nr_ctx = 0;
2148 
2149 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2150 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2151 
2152 	if (set->ops->init_hctx &&
2153 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2154 		goto free_bitmap;
2155 
2156 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2157 		goto exit_hctx;
2158 
2159 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2160 	if (!hctx->fq)
2161 		goto sched_exit_hctx;
2162 
2163 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2164 		goto free_fq;
2165 
2166 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2167 		init_srcu_struct(hctx->srcu);
2168 
2169 	blk_mq_debugfs_register_hctx(q, hctx);
2170 
2171 	return 0;
2172 
2173  free_fq:
2174 	kfree(hctx->fq);
2175  sched_exit_hctx:
2176 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2177  exit_hctx:
2178 	if (set->ops->exit_hctx)
2179 		set->ops->exit_hctx(hctx, hctx_idx);
2180  free_bitmap:
2181 	sbitmap_free(&hctx->ctx_map);
2182  free_ctxs:
2183 	kfree(hctx->ctxs);
2184  unregister_cpu_notifier:
2185 	blk_mq_remove_cpuhp(hctx);
2186 	return -1;
2187 }
2188 
2189 static void blk_mq_init_cpu_queues(struct request_queue *q,
2190 				   unsigned int nr_hw_queues)
2191 {
2192 	unsigned int i;
2193 
2194 	for_each_possible_cpu(i) {
2195 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2196 		struct blk_mq_hw_ctx *hctx;
2197 
2198 		__ctx->cpu = i;
2199 		spin_lock_init(&__ctx->lock);
2200 		INIT_LIST_HEAD(&__ctx->rq_list);
2201 		__ctx->queue = q;
2202 
2203 		/*
2204 		 * Set local node, IFF we have more than one hw queue. If
2205 		 * not, we remain on the home node of the device
2206 		 */
2207 		hctx = blk_mq_map_queue(q, i);
2208 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2209 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2210 	}
2211 }
2212 
2213 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2214 {
2215 	int ret = 0;
2216 
2217 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2218 					set->queue_depth, set->reserved_tags);
2219 	if (!set->tags[hctx_idx])
2220 		return false;
2221 
2222 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2223 				set->queue_depth);
2224 	if (!ret)
2225 		return true;
2226 
2227 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2228 	set->tags[hctx_idx] = NULL;
2229 	return false;
2230 }
2231 
2232 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2233 					 unsigned int hctx_idx)
2234 {
2235 	if (set->tags[hctx_idx]) {
2236 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2237 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2238 		set->tags[hctx_idx] = NULL;
2239 	}
2240 }
2241 
2242 static void blk_mq_map_swqueue(struct request_queue *q)
2243 {
2244 	unsigned int i, hctx_idx;
2245 	struct blk_mq_hw_ctx *hctx;
2246 	struct blk_mq_ctx *ctx;
2247 	struct blk_mq_tag_set *set = q->tag_set;
2248 
2249 	/*
2250 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2251 	 */
2252 	mutex_lock(&q->sysfs_lock);
2253 
2254 	queue_for_each_hw_ctx(q, hctx, i) {
2255 		cpumask_clear(hctx->cpumask);
2256 		hctx->nr_ctx = 0;
2257 		hctx->dispatch_from = NULL;
2258 	}
2259 
2260 	/*
2261 	 * Map software to hardware queues.
2262 	 *
2263 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2264 	 */
2265 	for_each_possible_cpu(i) {
2266 		hctx_idx = q->mq_map[i];
2267 		/* unmapped hw queue can be remapped after CPU topo changed */
2268 		if (!set->tags[hctx_idx] &&
2269 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2270 			/*
2271 			 * If tags initialization fail for some hctx,
2272 			 * that hctx won't be brought online.  In this
2273 			 * case, remap the current ctx to hctx[0] which
2274 			 * is guaranteed to always have tags allocated
2275 			 */
2276 			q->mq_map[i] = 0;
2277 		}
2278 
2279 		ctx = per_cpu_ptr(q->queue_ctx, i);
2280 		hctx = blk_mq_map_queue(q, i);
2281 
2282 		cpumask_set_cpu(i, hctx->cpumask);
2283 		ctx->index_hw = hctx->nr_ctx;
2284 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2285 	}
2286 
2287 	mutex_unlock(&q->sysfs_lock);
2288 
2289 	queue_for_each_hw_ctx(q, hctx, i) {
2290 		/*
2291 		 * If no software queues are mapped to this hardware queue,
2292 		 * disable it and free the request entries.
2293 		 */
2294 		if (!hctx->nr_ctx) {
2295 			/* Never unmap queue 0.  We need it as a
2296 			 * fallback in case of a new remap fails
2297 			 * allocation
2298 			 */
2299 			if (i && set->tags[i])
2300 				blk_mq_free_map_and_requests(set, i);
2301 
2302 			hctx->tags = NULL;
2303 			continue;
2304 		}
2305 
2306 		hctx->tags = set->tags[i];
2307 		WARN_ON(!hctx->tags);
2308 
2309 		/*
2310 		 * Set the map size to the number of mapped software queues.
2311 		 * This is more accurate and more efficient than looping
2312 		 * over all possibly mapped software queues.
2313 		 */
2314 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2315 
2316 		/*
2317 		 * Initialize batch roundrobin counts
2318 		 */
2319 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2320 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2321 	}
2322 }
2323 
2324 /*
2325  * Caller needs to ensure that we're either frozen/quiesced, or that
2326  * the queue isn't live yet.
2327  */
2328 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2329 {
2330 	struct blk_mq_hw_ctx *hctx;
2331 	int i;
2332 
2333 	queue_for_each_hw_ctx(q, hctx, i) {
2334 		if (shared) {
2335 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2336 				atomic_inc(&q->shared_hctx_restart);
2337 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2338 		} else {
2339 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2340 				atomic_dec(&q->shared_hctx_restart);
2341 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2342 		}
2343 	}
2344 }
2345 
2346 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2347 					bool shared)
2348 {
2349 	struct request_queue *q;
2350 
2351 	lockdep_assert_held(&set->tag_list_lock);
2352 
2353 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2354 		blk_mq_freeze_queue(q);
2355 		queue_set_hctx_shared(q, shared);
2356 		blk_mq_unfreeze_queue(q);
2357 	}
2358 }
2359 
2360 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2361 {
2362 	struct blk_mq_tag_set *set = q->tag_set;
2363 
2364 	mutex_lock(&set->tag_list_lock);
2365 	list_del_rcu(&q->tag_set_list);
2366 	if (list_is_singular(&set->tag_list)) {
2367 		/* just transitioned to unshared */
2368 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2369 		/* update existing queue */
2370 		blk_mq_update_tag_set_depth(set, false);
2371 	}
2372 	mutex_unlock(&set->tag_list_lock);
2373 	synchronize_rcu();
2374 	INIT_LIST_HEAD(&q->tag_set_list);
2375 }
2376 
2377 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2378 				     struct request_queue *q)
2379 {
2380 	q->tag_set = set;
2381 
2382 	mutex_lock(&set->tag_list_lock);
2383 
2384 	/*
2385 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2386 	 */
2387 	if (!list_empty(&set->tag_list) &&
2388 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2389 		set->flags |= BLK_MQ_F_TAG_SHARED;
2390 		/* update existing queue */
2391 		blk_mq_update_tag_set_depth(set, true);
2392 	}
2393 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2394 		queue_set_hctx_shared(q, true);
2395 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2396 
2397 	mutex_unlock(&set->tag_list_lock);
2398 }
2399 
2400 /*
2401  * It is the actual release handler for mq, but we do it from
2402  * request queue's release handler for avoiding use-after-free
2403  * and headache because q->mq_kobj shouldn't have been introduced,
2404  * but we can't group ctx/kctx kobj without it.
2405  */
2406 void blk_mq_release(struct request_queue *q)
2407 {
2408 	struct blk_mq_hw_ctx *hctx;
2409 	unsigned int i;
2410 
2411 	/* hctx kobj stays in hctx */
2412 	queue_for_each_hw_ctx(q, hctx, i) {
2413 		if (!hctx)
2414 			continue;
2415 		kobject_put(&hctx->kobj);
2416 	}
2417 
2418 	q->mq_map = NULL;
2419 
2420 	kfree(q->queue_hw_ctx);
2421 
2422 	/*
2423 	 * release .mq_kobj and sw queue's kobject now because
2424 	 * both share lifetime with request queue.
2425 	 */
2426 	blk_mq_sysfs_deinit(q);
2427 
2428 	free_percpu(q->queue_ctx);
2429 }
2430 
2431 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2432 {
2433 	struct request_queue *uninit_q, *q;
2434 
2435 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2436 	if (!uninit_q)
2437 		return ERR_PTR(-ENOMEM);
2438 
2439 	q = blk_mq_init_allocated_queue(set, uninit_q);
2440 	if (IS_ERR(q))
2441 		blk_cleanup_queue(uninit_q);
2442 
2443 	return q;
2444 }
2445 EXPORT_SYMBOL(blk_mq_init_queue);
2446 
2447 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2448 {
2449 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2450 
2451 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2452 			   __alignof__(struct blk_mq_hw_ctx)) !=
2453 		     sizeof(struct blk_mq_hw_ctx));
2454 
2455 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2456 		hw_ctx_size += sizeof(struct srcu_struct);
2457 
2458 	return hw_ctx_size;
2459 }
2460 
2461 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2462 						struct request_queue *q)
2463 {
2464 	int i, j;
2465 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2466 
2467 	blk_mq_sysfs_unregister(q);
2468 
2469 	/* protect against switching io scheduler  */
2470 	mutex_lock(&q->sysfs_lock);
2471 	for (i = 0; i < set->nr_hw_queues; i++) {
2472 		int node;
2473 
2474 		if (hctxs[i])
2475 			continue;
2476 
2477 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2478 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2479 					GFP_KERNEL, node);
2480 		if (!hctxs[i])
2481 			break;
2482 
2483 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2484 						node)) {
2485 			kfree(hctxs[i]);
2486 			hctxs[i] = NULL;
2487 			break;
2488 		}
2489 
2490 		atomic_set(&hctxs[i]->nr_active, 0);
2491 		hctxs[i]->numa_node = node;
2492 		hctxs[i]->queue_num = i;
2493 
2494 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2495 			free_cpumask_var(hctxs[i]->cpumask);
2496 			kfree(hctxs[i]);
2497 			hctxs[i] = NULL;
2498 			break;
2499 		}
2500 		blk_mq_hctx_kobj_init(hctxs[i]);
2501 	}
2502 	for (j = i; j < q->nr_hw_queues; j++) {
2503 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2504 
2505 		if (hctx) {
2506 			if (hctx->tags)
2507 				blk_mq_free_map_and_requests(set, j);
2508 			blk_mq_exit_hctx(q, set, hctx, j);
2509 			kobject_put(&hctx->kobj);
2510 			hctxs[j] = NULL;
2511 
2512 		}
2513 	}
2514 	q->nr_hw_queues = i;
2515 	mutex_unlock(&q->sysfs_lock);
2516 	blk_mq_sysfs_register(q);
2517 }
2518 
2519 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2520 						  struct request_queue *q)
2521 {
2522 	/* mark the queue as mq asap */
2523 	q->mq_ops = set->ops;
2524 
2525 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2526 					     blk_mq_poll_stats_bkt,
2527 					     BLK_MQ_POLL_STATS_BKTS, q);
2528 	if (!q->poll_cb)
2529 		goto err_exit;
2530 
2531 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2532 	if (!q->queue_ctx)
2533 		goto err_exit;
2534 
2535 	/* init q->mq_kobj and sw queues' kobjects */
2536 	blk_mq_sysfs_init(q);
2537 
2538 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2539 						GFP_KERNEL, set->numa_node);
2540 	if (!q->queue_hw_ctx)
2541 		goto err_percpu;
2542 
2543 	q->mq_map = set->mq_map;
2544 
2545 	blk_mq_realloc_hw_ctxs(set, q);
2546 	if (!q->nr_hw_queues)
2547 		goto err_hctxs;
2548 
2549 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2550 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2551 
2552 	q->nr_queues = nr_cpu_ids;
2553 
2554 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2555 
2556 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2557 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2558 
2559 	q->sg_reserved_size = INT_MAX;
2560 
2561 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2562 	INIT_LIST_HEAD(&q->requeue_list);
2563 	spin_lock_init(&q->requeue_lock);
2564 
2565 	blk_queue_make_request(q, blk_mq_make_request);
2566 	if (q->mq_ops->poll)
2567 		q->poll_fn = blk_mq_poll;
2568 
2569 	/*
2570 	 * Do this after blk_queue_make_request() overrides it...
2571 	 */
2572 	q->nr_requests = set->queue_depth;
2573 
2574 	/*
2575 	 * Default to classic polling
2576 	 */
2577 	q->poll_nsec = -1;
2578 
2579 	if (set->ops->complete)
2580 		blk_queue_softirq_done(q, set->ops->complete);
2581 
2582 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2583 	blk_mq_add_queue_tag_set(set, q);
2584 	blk_mq_map_swqueue(q);
2585 
2586 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2587 		int ret;
2588 
2589 		ret = elevator_init_mq(q);
2590 		if (ret)
2591 			return ERR_PTR(ret);
2592 	}
2593 
2594 	return q;
2595 
2596 err_hctxs:
2597 	kfree(q->queue_hw_ctx);
2598 err_percpu:
2599 	free_percpu(q->queue_ctx);
2600 err_exit:
2601 	q->mq_ops = NULL;
2602 	return ERR_PTR(-ENOMEM);
2603 }
2604 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2605 
2606 void blk_mq_free_queue(struct request_queue *q)
2607 {
2608 	struct blk_mq_tag_set	*set = q->tag_set;
2609 
2610 	blk_mq_del_queue_tag_set(q);
2611 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2612 }
2613 
2614 /* Basically redo blk_mq_init_queue with queue frozen */
2615 static void blk_mq_queue_reinit(struct request_queue *q)
2616 {
2617 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2618 
2619 	blk_mq_debugfs_unregister_hctxs(q);
2620 	blk_mq_sysfs_unregister(q);
2621 
2622 	/*
2623 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2624 	 * we should change hctx numa_node according to the new topology (this
2625 	 * involves freeing and re-allocating memory, worth doing?)
2626 	 */
2627 	blk_mq_map_swqueue(q);
2628 
2629 	blk_mq_sysfs_register(q);
2630 	blk_mq_debugfs_register_hctxs(q);
2631 }
2632 
2633 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2634 {
2635 	int i;
2636 
2637 	for (i = 0; i < set->nr_hw_queues; i++)
2638 		if (!__blk_mq_alloc_rq_map(set, i))
2639 			goto out_unwind;
2640 
2641 	return 0;
2642 
2643 out_unwind:
2644 	while (--i >= 0)
2645 		blk_mq_free_rq_map(set->tags[i]);
2646 
2647 	return -ENOMEM;
2648 }
2649 
2650 /*
2651  * Allocate the request maps associated with this tag_set. Note that this
2652  * may reduce the depth asked for, if memory is tight. set->queue_depth
2653  * will be updated to reflect the allocated depth.
2654  */
2655 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2656 {
2657 	unsigned int depth;
2658 	int err;
2659 
2660 	depth = set->queue_depth;
2661 	do {
2662 		err = __blk_mq_alloc_rq_maps(set);
2663 		if (!err)
2664 			break;
2665 
2666 		set->queue_depth >>= 1;
2667 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2668 			err = -ENOMEM;
2669 			break;
2670 		}
2671 	} while (set->queue_depth);
2672 
2673 	if (!set->queue_depth || err) {
2674 		pr_err("blk-mq: failed to allocate request map\n");
2675 		return -ENOMEM;
2676 	}
2677 
2678 	if (depth != set->queue_depth)
2679 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2680 						depth, set->queue_depth);
2681 
2682 	return 0;
2683 }
2684 
2685 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2686 {
2687 	if (set->ops->map_queues) {
2688 		int cpu;
2689 		/*
2690 		 * transport .map_queues is usually done in the following
2691 		 * way:
2692 		 *
2693 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2694 		 * 	mask = get_cpu_mask(queue)
2695 		 * 	for_each_cpu(cpu, mask)
2696 		 * 		set->mq_map[cpu] = queue;
2697 		 * }
2698 		 *
2699 		 * When we need to remap, the table has to be cleared for
2700 		 * killing stale mapping since one CPU may not be mapped
2701 		 * to any hw queue.
2702 		 */
2703 		for_each_possible_cpu(cpu)
2704 			set->mq_map[cpu] = 0;
2705 
2706 		return set->ops->map_queues(set);
2707 	} else
2708 		return blk_mq_map_queues(set);
2709 }
2710 
2711 /*
2712  * Alloc a tag set to be associated with one or more request queues.
2713  * May fail with EINVAL for various error conditions. May adjust the
2714  * requested depth down, if if it too large. In that case, the set
2715  * value will be stored in set->queue_depth.
2716  */
2717 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2718 {
2719 	int ret;
2720 
2721 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2722 
2723 	if (!set->nr_hw_queues)
2724 		return -EINVAL;
2725 	if (!set->queue_depth)
2726 		return -EINVAL;
2727 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2728 		return -EINVAL;
2729 
2730 	if (!set->ops->queue_rq)
2731 		return -EINVAL;
2732 
2733 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2734 		return -EINVAL;
2735 
2736 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2737 		pr_info("blk-mq: reduced tag depth to %u\n",
2738 			BLK_MQ_MAX_DEPTH);
2739 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2740 	}
2741 
2742 	/*
2743 	 * If a crashdump is active, then we are potentially in a very
2744 	 * memory constrained environment. Limit us to 1 queue and
2745 	 * 64 tags to prevent using too much memory.
2746 	 */
2747 	if (is_kdump_kernel()) {
2748 		set->nr_hw_queues = 1;
2749 		set->queue_depth = min(64U, set->queue_depth);
2750 	}
2751 	/*
2752 	 * There is no use for more h/w queues than cpus.
2753 	 */
2754 	if (set->nr_hw_queues > nr_cpu_ids)
2755 		set->nr_hw_queues = nr_cpu_ids;
2756 
2757 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2758 				 GFP_KERNEL, set->numa_node);
2759 	if (!set->tags)
2760 		return -ENOMEM;
2761 
2762 	ret = -ENOMEM;
2763 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2764 				   GFP_KERNEL, set->numa_node);
2765 	if (!set->mq_map)
2766 		goto out_free_tags;
2767 
2768 	ret = blk_mq_update_queue_map(set);
2769 	if (ret)
2770 		goto out_free_mq_map;
2771 
2772 	ret = blk_mq_alloc_rq_maps(set);
2773 	if (ret)
2774 		goto out_free_mq_map;
2775 
2776 	mutex_init(&set->tag_list_lock);
2777 	INIT_LIST_HEAD(&set->tag_list);
2778 
2779 	return 0;
2780 
2781 out_free_mq_map:
2782 	kfree(set->mq_map);
2783 	set->mq_map = NULL;
2784 out_free_tags:
2785 	kfree(set->tags);
2786 	set->tags = NULL;
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2790 
2791 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2792 {
2793 	int i;
2794 
2795 	for (i = 0; i < nr_cpu_ids; i++)
2796 		blk_mq_free_map_and_requests(set, i);
2797 
2798 	kfree(set->mq_map);
2799 	set->mq_map = NULL;
2800 
2801 	kfree(set->tags);
2802 	set->tags = NULL;
2803 }
2804 EXPORT_SYMBOL(blk_mq_free_tag_set);
2805 
2806 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2807 {
2808 	struct blk_mq_tag_set *set = q->tag_set;
2809 	struct blk_mq_hw_ctx *hctx;
2810 	int i, ret;
2811 
2812 	if (!set)
2813 		return -EINVAL;
2814 
2815 	blk_mq_freeze_queue(q);
2816 	blk_mq_quiesce_queue(q);
2817 
2818 	ret = 0;
2819 	queue_for_each_hw_ctx(q, hctx, i) {
2820 		if (!hctx->tags)
2821 			continue;
2822 		/*
2823 		 * If we're using an MQ scheduler, just update the scheduler
2824 		 * queue depth. This is similar to what the old code would do.
2825 		 */
2826 		if (!hctx->sched_tags) {
2827 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2828 							false);
2829 		} else {
2830 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2831 							nr, true);
2832 		}
2833 		if (ret)
2834 			break;
2835 	}
2836 
2837 	if (!ret)
2838 		q->nr_requests = nr;
2839 
2840 	blk_mq_unquiesce_queue(q);
2841 	blk_mq_unfreeze_queue(q);
2842 
2843 	return ret;
2844 }
2845 
2846 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2847 							int nr_hw_queues)
2848 {
2849 	struct request_queue *q;
2850 
2851 	lockdep_assert_held(&set->tag_list_lock);
2852 
2853 	if (nr_hw_queues > nr_cpu_ids)
2854 		nr_hw_queues = nr_cpu_ids;
2855 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2856 		return;
2857 
2858 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2859 		blk_mq_freeze_queue(q);
2860 
2861 	set->nr_hw_queues = nr_hw_queues;
2862 	blk_mq_update_queue_map(set);
2863 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2864 		blk_mq_realloc_hw_ctxs(set, q);
2865 		blk_mq_queue_reinit(q);
2866 	}
2867 
2868 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2869 		blk_mq_unfreeze_queue(q);
2870 }
2871 
2872 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2873 {
2874 	mutex_lock(&set->tag_list_lock);
2875 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2876 	mutex_unlock(&set->tag_list_lock);
2877 }
2878 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2879 
2880 /* Enable polling stats and return whether they were already enabled. */
2881 static bool blk_poll_stats_enable(struct request_queue *q)
2882 {
2883 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2884 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2885 		return true;
2886 	blk_stat_add_callback(q, q->poll_cb);
2887 	return false;
2888 }
2889 
2890 static void blk_mq_poll_stats_start(struct request_queue *q)
2891 {
2892 	/*
2893 	 * We don't arm the callback if polling stats are not enabled or the
2894 	 * callback is already active.
2895 	 */
2896 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2897 	    blk_stat_is_active(q->poll_cb))
2898 		return;
2899 
2900 	blk_stat_activate_msecs(q->poll_cb, 100);
2901 }
2902 
2903 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2904 {
2905 	struct request_queue *q = cb->data;
2906 	int bucket;
2907 
2908 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2909 		if (cb->stat[bucket].nr_samples)
2910 			q->poll_stat[bucket] = cb->stat[bucket];
2911 	}
2912 }
2913 
2914 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2915 				       struct blk_mq_hw_ctx *hctx,
2916 				       struct request *rq)
2917 {
2918 	unsigned long ret = 0;
2919 	int bucket;
2920 
2921 	/*
2922 	 * If stats collection isn't on, don't sleep but turn it on for
2923 	 * future users
2924 	 */
2925 	if (!blk_poll_stats_enable(q))
2926 		return 0;
2927 
2928 	/*
2929 	 * As an optimistic guess, use half of the mean service time
2930 	 * for this type of request. We can (and should) make this smarter.
2931 	 * For instance, if the completion latencies are tight, we can
2932 	 * get closer than just half the mean. This is especially
2933 	 * important on devices where the completion latencies are longer
2934 	 * than ~10 usec. We do use the stats for the relevant IO size
2935 	 * if available which does lead to better estimates.
2936 	 */
2937 	bucket = blk_mq_poll_stats_bkt(rq);
2938 	if (bucket < 0)
2939 		return ret;
2940 
2941 	if (q->poll_stat[bucket].nr_samples)
2942 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2943 
2944 	return ret;
2945 }
2946 
2947 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2948 				     struct blk_mq_hw_ctx *hctx,
2949 				     struct request *rq)
2950 {
2951 	struct hrtimer_sleeper hs;
2952 	enum hrtimer_mode mode;
2953 	unsigned int nsecs;
2954 	ktime_t kt;
2955 
2956 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2957 		return false;
2958 
2959 	/*
2960 	 * poll_nsec can be:
2961 	 *
2962 	 * -1:	don't ever hybrid sleep
2963 	 *  0:	use half of prev avg
2964 	 * >0:	use this specific value
2965 	 */
2966 	if (q->poll_nsec == -1)
2967 		return false;
2968 	else if (q->poll_nsec > 0)
2969 		nsecs = q->poll_nsec;
2970 	else
2971 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2972 
2973 	if (!nsecs)
2974 		return false;
2975 
2976 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2977 
2978 	/*
2979 	 * This will be replaced with the stats tracking code, using
2980 	 * 'avg_completion_time / 2' as the pre-sleep target.
2981 	 */
2982 	kt = nsecs;
2983 
2984 	mode = HRTIMER_MODE_REL;
2985 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2986 	hrtimer_set_expires(&hs.timer, kt);
2987 
2988 	hrtimer_init_sleeper(&hs, current);
2989 	do {
2990 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2991 			break;
2992 		set_current_state(TASK_UNINTERRUPTIBLE);
2993 		hrtimer_start_expires(&hs.timer, mode);
2994 		if (hs.task)
2995 			io_schedule();
2996 		hrtimer_cancel(&hs.timer);
2997 		mode = HRTIMER_MODE_ABS;
2998 	} while (hs.task && !signal_pending(current));
2999 
3000 	__set_current_state(TASK_RUNNING);
3001 	destroy_hrtimer_on_stack(&hs.timer);
3002 	return true;
3003 }
3004 
3005 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3006 {
3007 	struct request_queue *q = hctx->queue;
3008 	long state;
3009 
3010 	/*
3011 	 * If we sleep, have the caller restart the poll loop to reset
3012 	 * the state. Like for the other success return cases, the
3013 	 * caller is responsible for checking if the IO completed. If
3014 	 * the IO isn't complete, we'll get called again and will go
3015 	 * straight to the busy poll loop.
3016 	 */
3017 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3018 		return true;
3019 
3020 	hctx->poll_considered++;
3021 
3022 	state = current->state;
3023 	while (!need_resched()) {
3024 		int ret;
3025 
3026 		hctx->poll_invoked++;
3027 
3028 		ret = q->mq_ops->poll(hctx, rq->tag);
3029 		if (ret > 0) {
3030 			hctx->poll_success++;
3031 			set_current_state(TASK_RUNNING);
3032 			return true;
3033 		}
3034 
3035 		if (signal_pending_state(state, current))
3036 			set_current_state(TASK_RUNNING);
3037 
3038 		if (current->state == TASK_RUNNING)
3039 			return true;
3040 		if (ret < 0)
3041 			break;
3042 		cpu_relax();
3043 	}
3044 
3045 	__set_current_state(TASK_RUNNING);
3046 	return false;
3047 }
3048 
3049 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3050 {
3051 	struct blk_mq_hw_ctx *hctx;
3052 	struct request *rq;
3053 
3054 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3055 		return false;
3056 
3057 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3058 	if (!blk_qc_t_is_internal(cookie))
3059 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3060 	else {
3061 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3062 		/*
3063 		 * With scheduling, if the request has completed, we'll
3064 		 * get a NULL return here, as we clear the sched tag when
3065 		 * that happens. The request still remains valid, like always,
3066 		 * so we should be safe with just the NULL check.
3067 		 */
3068 		if (!rq)
3069 			return false;
3070 	}
3071 
3072 	return __blk_mq_poll(hctx, rq);
3073 }
3074 
3075 static int __init blk_mq_init(void)
3076 {
3077 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3078 				blk_mq_hctx_notify_dead);
3079 	return 0;
3080 }
3081 subsys_initcall(blk_mq_init);
3082