1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, int op, 163 unsigned int op_flags) 164 { 165 if (blk_queue_io_stat(q)) 166 op_flags |= REQ_IO_STAT; 167 168 INIT_LIST_HEAD(&rq->queuelist); 169 /* csd/requeue_work/fifo_time is initialized before use */ 170 rq->q = q; 171 rq->mq_ctx = ctx; 172 req_set_op_attrs(rq, op, op_flags); 173 /* do not touch atomic flags, it needs atomic ops against the timer */ 174 rq->cpu = -1; 175 INIT_HLIST_NODE(&rq->hash); 176 RB_CLEAR_NODE(&rq->rb_node); 177 rq->rq_disk = NULL; 178 rq->part = NULL; 179 rq->start_time = jiffies; 180 #ifdef CONFIG_BLK_CGROUP 181 rq->rl = NULL; 182 set_start_time_ns(rq); 183 rq->io_start_time_ns = 0; 184 #endif 185 rq->nr_phys_segments = 0; 186 #if defined(CONFIG_BLK_DEV_INTEGRITY) 187 rq->nr_integrity_segments = 0; 188 #endif 189 rq->special = NULL; 190 /* tag was already set */ 191 rq->errors = 0; 192 193 rq->cmd = rq->__cmd; 194 195 rq->extra_len = 0; 196 rq->sense_len = 0; 197 rq->resid_len = 0; 198 rq->sense = NULL; 199 200 INIT_LIST_HEAD(&rq->timeout_list); 201 rq->timeout = 0; 202 203 rq->end_io = NULL; 204 rq->end_io_data = NULL; 205 rq->next_rq = NULL; 206 207 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++; 208 } 209 210 static struct request * 211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags) 212 { 213 struct request *rq; 214 unsigned int tag; 215 216 tag = blk_mq_get_tag(data); 217 if (tag != BLK_MQ_TAG_FAIL) { 218 rq = data->hctx->tags->rqs[tag]; 219 220 if (blk_mq_tag_busy(data->hctx)) { 221 rq->cmd_flags = REQ_MQ_INFLIGHT; 222 atomic_inc(&data->hctx->nr_active); 223 } 224 225 rq->tag = tag; 226 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags); 227 return rq; 228 } 229 230 return NULL; 231 } 232 233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 234 unsigned int flags) 235 { 236 struct blk_mq_ctx *ctx; 237 struct blk_mq_hw_ctx *hctx; 238 struct request *rq; 239 struct blk_mq_alloc_data alloc_data; 240 int ret; 241 242 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 243 if (ret) 244 return ERR_PTR(ret); 245 246 ctx = blk_mq_get_ctx(q); 247 hctx = q->mq_ops->map_queue(q, ctx->cpu); 248 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 249 250 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 251 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) { 252 __blk_mq_run_hw_queue(hctx); 253 blk_mq_put_ctx(ctx); 254 255 ctx = blk_mq_get_ctx(q); 256 hctx = q->mq_ops->map_queue(q, ctx->cpu); 257 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 258 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 259 ctx = alloc_data.ctx; 260 } 261 blk_mq_put_ctx(ctx); 262 if (!rq) { 263 blk_queue_exit(q); 264 return ERR_PTR(-EWOULDBLOCK); 265 } 266 267 rq->__data_len = 0; 268 rq->__sector = (sector_t) -1; 269 rq->bio = rq->biotail = NULL; 270 return rq; 271 } 272 EXPORT_SYMBOL(blk_mq_alloc_request); 273 274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 275 unsigned int flags, unsigned int hctx_idx) 276 { 277 struct blk_mq_hw_ctx *hctx; 278 struct blk_mq_ctx *ctx; 279 struct request *rq; 280 struct blk_mq_alloc_data alloc_data; 281 int ret; 282 283 /* 284 * If the tag allocator sleeps we could get an allocation for a 285 * different hardware context. No need to complicate the low level 286 * allocator for this for the rare use case of a command tied to 287 * a specific queue. 288 */ 289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 290 return ERR_PTR(-EINVAL); 291 292 if (hctx_idx >= q->nr_hw_queues) 293 return ERR_PTR(-EIO); 294 295 ret = blk_queue_enter(q, true); 296 if (ret) 297 return ERR_PTR(ret); 298 299 hctx = q->queue_hw_ctx[hctx_idx]; 300 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 301 302 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 303 rq = __blk_mq_alloc_request(&alloc_data, rw, 0); 304 if (!rq) { 305 blk_queue_exit(q); 306 return ERR_PTR(-EWOULDBLOCK); 307 } 308 309 return rq; 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 312 313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 314 struct blk_mq_ctx *ctx, struct request *rq) 315 { 316 const int tag = rq->tag; 317 struct request_queue *q = rq->q; 318 319 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 320 atomic_dec(&hctx->nr_active); 321 rq->cmd_flags = 0; 322 323 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 324 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 325 blk_queue_exit(q); 326 } 327 328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 329 { 330 struct blk_mq_ctx *ctx = rq->mq_ctx; 331 332 ctx->rq_completed[rq_is_sync(rq)]++; 333 __blk_mq_free_request(hctx, ctx, rq); 334 335 } 336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 337 338 void blk_mq_free_request(struct request *rq) 339 { 340 struct blk_mq_hw_ctx *hctx; 341 struct request_queue *q = rq->q; 342 343 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 344 blk_mq_free_hctx_request(hctx, rq); 345 } 346 EXPORT_SYMBOL_GPL(blk_mq_free_request); 347 348 inline void __blk_mq_end_request(struct request *rq, int error) 349 { 350 blk_account_io_done(rq); 351 352 if (rq->end_io) { 353 rq->end_io(rq, error); 354 } else { 355 if (unlikely(blk_bidi_rq(rq))) 356 blk_mq_free_request(rq->next_rq); 357 blk_mq_free_request(rq); 358 } 359 } 360 EXPORT_SYMBOL(__blk_mq_end_request); 361 362 void blk_mq_end_request(struct request *rq, int error) 363 { 364 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 365 BUG(); 366 __blk_mq_end_request(rq, error); 367 } 368 EXPORT_SYMBOL(blk_mq_end_request); 369 370 static void __blk_mq_complete_request_remote(void *data) 371 { 372 struct request *rq = data; 373 374 rq->q->softirq_done_fn(rq); 375 } 376 377 static void blk_mq_ipi_complete_request(struct request *rq) 378 { 379 struct blk_mq_ctx *ctx = rq->mq_ctx; 380 bool shared = false; 381 int cpu; 382 383 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 384 rq->q->softirq_done_fn(rq); 385 return; 386 } 387 388 cpu = get_cpu(); 389 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 390 shared = cpus_share_cache(cpu, ctx->cpu); 391 392 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 393 rq->csd.func = __blk_mq_complete_request_remote; 394 rq->csd.info = rq; 395 rq->csd.flags = 0; 396 smp_call_function_single_async(ctx->cpu, &rq->csd); 397 } else { 398 rq->q->softirq_done_fn(rq); 399 } 400 put_cpu(); 401 } 402 403 static void __blk_mq_complete_request(struct request *rq) 404 { 405 struct request_queue *q = rq->q; 406 407 if (!q->softirq_done_fn) 408 blk_mq_end_request(rq, rq->errors); 409 else 410 blk_mq_ipi_complete_request(rq); 411 } 412 413 /** 414 * blk_mq_complete_request - end I/O on a request 415 * @rq: the request being processed 416 * 417 * Description: 418 * Ends all I/O on a request. It does not handle partial completions. 419 * The actual completion happens out-of-order, through a IPI handler. 420 **/ 421 void blk_mq_complete_request(struct request *rq, int error) 422 { 423 struct request_queue *q = rq->q; 424 425 if (unlikely(blk_should_fake_timeout(q))) 426 return; 427 if (!blk_mark_rq_complete(rq)) { 428 rq->errors = error; 429 __blk_mq_complete_request(rq); 430 } 431 } 432 EXPORT_SYMBOL(blk_mq_complete_request); 433 434 int blk_mq_request_started(struct request *rq) 435 { 436 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 437 } 438 EXPORT_SYMBOL_GPL(blk_mq_request_started); 439 440 void blk_mq_start_request(struct request *rq) 441 { 442 struct request_queue *q = rq->q; 443 444 trace_block_rq_issue(q, rq); 445 446 rq->resid_len = blk_rq_bytes(rq); 447 if (unlikely(blk_bidi_rq(rq))) 448 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 449 450 blk_add_timer(rq); 451 452 /* 453 * Ensure that ->deadline is visible before set the started 454 * flag and clear the completed flag. 455 */ 456 smp_mb__before_atomic(); 457 458 /* 459 * Mark us as started and clear complete. Complete might have been 460 * set if requeue raced with timeout, which then marked it as 461 * complete. So be sure to clear complete again when we start 462 * the request, otherwise we'll ignore the completion event. 463 */ 464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 465 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 466 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 467 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 468 469 if (q->dma_drain_size && blk_rq_bytes(rq)) { 470 /* 471 * Make sure space for the drain appears. We know we can do 472 * this because max_hw_segments has been adjusted to be one 473 * fewer than the device can handle. 474 */ 475 rq->nr_phys_segments++; 476 } 477 } 478 EXPORT_SYMBOL(blk_mq_start_request); 479 480 static void __blk_mq_requeue_request(struct request *rq) 481 { 482 struct request_queue *q = rq->q; 483 484 trace_block_rq_requeue(q, rq); 485 486 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 487 if (q->dma_drain_size && blk_rq_bytes(rq)) 488 rq->nr_phys_segments--; 489 } 490 } 491 492 void blk_mq_requeue_request(struct request *rq) 493 { 494 __blk_mq_requeue_request(rq); 495 496 BUG_ON(blk_queued_rq(rq)); 497 blk_mq_add_to_requeue_list(rq, true); 498 } 499 EXPORT_SYMBOL(blk_mq_requeue_request); 500 501 static void blk_mq_requeue_work(struct work_struct *work) 502 { 503 struct request_queue *q = 504 container_of(work, struct request_queue, requeue_work); 505 LIST_HEAD(rq_list); 506 struct request *rq, *next; 507 unsigned long flags; 508 509 spin_lock_irqsave(&q->requeue_lock, flags); 510 list_splice_init(&q->requeue_list, &rq_list); 511 spin_unlock_irqrestore(&q->requeue_lock, flags); 512 513 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 514 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 515 continue; 516 517 rq->cmd_flags &= ~REQ_SOFTBARRIER; 518 list_del_init(&rq->queuelist); 519 blk_mq_insert_request(rq, true, false, false); 520 } 521 522 while (!list_empty(&rq_list)) { 523 rq = list_entry(rq_list.next, struct request, queuelist); 524 list_del_init(&rq->queuelist); 525 blk_mq_insert_request(rq, false, false, false); 526 } 527 528 /* 529 * Use the start variant of queue running here, so that running 530 * the requeue work will kick stopped queues. 531 */ 532 blk_mq_start_hw_queues(q); 533 } 534 535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 536 { 537 struct request_queue *q = rq->q; 538 unsigned long flags; 539 540 /* 541 * We abuse this flag that is otherwise used by the I/O scheduler to 542 * request head insertation from the workqueue. 543 */ 544 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 545 546 spin_lock_irqsave(&q->requeue_lock, flags); 547 if (at_head) { 548 rq->cmd_flags |= REQ_SOFTBARRIER; 549 list_add(&rq->queuelist, &q->requeue_list); 550 } else { 551 list_add_tail(&rq->queuelist, &q->requeue_list); 552 } 553 spin_unlock_irqrestore(&q->requeue_lock, flags); 554 } 555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 556 557 void blk_mq_cancel_requeue_work(struct request_queue *q) 558 { 559 cancel_work_sync(&q->requeue_work); 560 } 561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 562 563 void blk_mq_kick_requeue_list(struct request_queue *q) 564 { 565 kblockd_schedule_work(&q->requeue_work); 566 } 567 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 568 569 void blk_mq_abort_requeue_list(struct request_queue *q) 570 { 571 unsigned long flags; 572 LIST_HEAD(rq_list); 573 574 spin_lock_irqsave(&q->requeue_lock, flags); 575 list_splice_init(&q->requeue_list, &rq_list); 576 spin_unlock_irqrestore(&q->requeue_lock, flags); 577 578 while (!list_empty(&rq_list)) { 579 struct request *rq; 580 581 rq = list_first_entry(&rq_list, struct request, queuelist); 582 list_del_init(&rq->queuelist); 583 rq->errors = -EIO; 584 blk_mq_end_request(rq, rq->errors); 585 } 586 } 587 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 588 589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 590 { 591 if (tag < tags->nr_tags) 592 return tags->rqs[tag]; 593 594 return NULL; 595 } 596 EXPORT_SYMBOL(blk_mq_tag_to_rq); 597 598 struct blk_mq_timeout_data { 599 unsigned long next; 600 unsigned int next_set; 601 }; 602 603 void blk_mq_rq_timed_out(struct request *req, bool reserved) 604 { 605 struct blk_mq_ops *ops = req->q->mq_ops; 606 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 607 608 /* 609 * We know that complete is set at this point. If STARTED isn't set 610 * anymore, then the request isn't active and the "timeout" should 611 * just be ignored. This can happen due to the bitflag ordering. 612 * Timeout first checks if STARTED is set, and if it is, assumes 613 * the request is active. But if we race with completion, then 614 * we both flags will get cleared. So check here again, and ignore 615 * a timeout event with a request that isn't active. 616 */ 617 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 618 return; 619 620 if (ops->timeout) 621 ret = ops->timeout(req, reserved); 622 623 switch (ret) { 624 case BLK_EH_HANDLED: 625 __blk_mq_complete_request(req); 626 break; 627 case BLK_EH_RESET_TIMER: 628 blk_add_timer(req); 629 blk_clear_rq_complete(req); 630 break; 631 case BLK_EH_NOT_HANDLED: 632 break; 633 default: 634 printk(KERN_ERR "block: bad eh return: %d\n", ret); 635 break; 636 } 637 } 638 639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 640 struct request *rq, void *priv, bool reserved) 641 { 642 struct blk_mq_timeout_data *data = priv; 643 644 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 645 /* 646 * If a request wasn't started before the queue was 647 * marked dying, kill it here or it'll go unnoticed. 648 */ 649 if (unlikely(blk_queue_dying(rq->q))) { 650 rq->errors = -EIO; 651 blk_mq_end_request(rq, rq->errors); 652 } 653 return; 654 } 655 656 if (time_after_eq(jiffies, rq->deadline)) { 657 if (!blk_mark_rq_complete(rq)) 658 blk_mq_rq_timed_out(rq, reserved); 659 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 660 data->next = rq->deadline; 661 data->next_set = 1; 662 } 663 } 664 665 static void blk_mq_timeout_work(struct work_struct *work) 666 { 667 struct request_queue *q = 668 container_of(work, struct request_queue, timeout_work); 669 struct blk_mq_timeout_data data = { 670 .next = 0, 671 .next_set = 0, 672 }; 673 int i; 674 675 /* A deadlock might occur if a request is stuck requiring a 676 * timeout at the same time a queue freeze is waiting 677 * completion, since the timeout code would not be able to 678 * acquire the queue reference here. 679 * 680 * That's why we don't use blk_queue_enter here; instead, we use 681 * percpu_ref_tryget directly, because we need to be able to 682 * obtain a reference even in the short window between the queue 683 * starting to freeze, by dropping the first reference in 684 * blk_mq_freeze_queue_start, and the moment the last request is 685 * consumed, marked by the instant q_usage_counter reaches 686 * zero. 687 */ 688 if (!percpu_ref_tryget(&q->q_usage_counter)) 689 return; 690 691 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 692 693 if (data.next_set) { 694 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 695 mod_timer(&q->timeout, data.next); 696 } else { 697 struct blk_mq_hw_ctx *hctx; 698 699 queue_for_each_hw_ctx(q, hctx, i) { 700 /* the hctx may be unmapped, so check it here */ 701 if (blk_mq_hw_queue_mapped(hctx)) 702 blk_mq_tag_idle(hctx); 703 } 704 } 705 blk_queue_exit(q); 706 } 707 708 /* 709 * Reverse check our software queue for entries that we could potentially 710 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 711 * too much time checking for merges. 712 */ 713 static bool blk_mq_attempt_merge(struct request_queue *q, 714 struct blk_mq_ctx *ctx, struct bio *bio) 715 { 716 struct request *rq; 717 int checked = 8; 718 719 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 720 int el_ret; 721 722 if (!checked--) 723 break; 724 725 if (!blk_rq_merge_ok(rq, bio)) 726 continue; 727 728 el_ret = blk_try_merge(rq, bio); 729 if (el_ret == ELEVATOR_BACK_MERGE) { 730 if (bio_attempt_back_merge(q, rq, bio)) { 731 ctx->rq_merged++; 732 return true; 733 } 734 break; 735 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 736 if (bio_attempt_front_merge(q, rq, bio)) { 737 ctx->rq_merged++; 738 return true; 739 } 740 break; 741 } 742 } 743 744 return false; 745 } 746 747 /* 748 * Process software queues that have been marked busy, splicing them 749 * to the for-dispatch 750 */ 751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 752 { 753 struct blk_mq_ctx *ctx; 754 int i; 755 756 for (i = 0; i < hctx->ctx_map.size; i++) { 757 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 758 unsigned int off, bit; 759 760 if (!bm->word) 761 continue; 762 763 bit = 0; 764 off = i * hctx->ctx_map.bits_per_word; 765 do { 766 bit = find_next_bit(&bm->word, bm->depth, bit); 767 if (bit >= bm->depth) 768 break; 769 770 ctx = hctx->ctxs[bit + off]; 771 clear_bit(bit, &bm->word); 772 spin_lock(&ctx->lock); 773 list_splice_tail_init(&ctx->rq_list, list); 774 spin_unlock(&ctx->lock); 775 776 bit++; 777 } while (1); 778 } 779 } 780 781 /* 782 * Run this hardware queue, pulling any software queues mapped to it in. 783 * Note that this function currently has various problems around ordering 784 * of IO. In particular, we'd like FIFO behaviour on handling existing 785 * items on the hctx->dispatch list. Ignore that for now. 786 */ 787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 788 { 789 struct request_queue *q = hctx->queue; 790 struct request *rq; 791 LIST_HEAD(rq_list); 792 LIST_HEAD(driver_list); 793 struct list_head *dptr; 794 int queued; 795 796 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 797 798 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 799 return; 800 801 hctx->run++; 802 803 /* 804 * Touch any software queue that has pending entries. 805 */ 806 flush_busy_ctxs(hctx, &rq_list); 807 808 /* 809 * If we have previous entries on our dispatch list, grab them 810 * and stuff them at the front for more fair dispatch. 811 */ 812 if (!list_empty_careful(&hctx->dispatch)) { 813 spin_lock(&hctx->lock); 814 if (!list_empty(&hctx->dispatch)) 815 list_splice_init(&hctx->dispatch, &rq_list); 816 spin_unlock(&hctx->lock); 817 } 818 819 /* 820 * Start off with dptr being NULL, so we start the first request 821 * immediately, even if we have more pending. 822 */ 823 dptr = NULL; 824 825 /* 826 * Now process all the entries, sending them to the driver. 827 */ 828 queued = 0; 829 while (!list_empty(&rq_list)) { 830 struct blk_mq_queue_data bd; 831 int ret; 832 833 rq = list_first_entry(&rq_list, struct request, queuelist); 834 list_del_init(&rq->queuelist); 835 836 bd.rq = rq; 837 bd.list = dptr; 838 bd.last = list_empty(&rq_list); 839 840 ret = q->mq_ops->queue_rq(hctx, &bd); 841 switch (ret) { 842 case BLK_MQ_RQ_QUEUE_OK: 843 queued++; 844 break; 845 case BLK_MQ_RQ_QUEUE_BUSY: 846 list_add(&rq->queuelist, &rq_list); 847 __blk_mq_requeue_request(rq); 848 break; 849 default: 850 pr_err("blk-mq: bad return on queue: %d\n", ret); 851 case BLK_MQ_RQ_QUEUE_ERROR: 852 rq->errors = -EIO; 853 blk_mq_end_request(rq, rq->errors); 854 break; 855 } 856 857 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 858 break; 859 860 /* 861 * We've done the first request. If we have more than 1 862 * left in the list, set dptr to defer issue. 863 */ 864 if (!dptr && rq_list.next != rq_list.prev) 865 dptr = &driver_list; 866 } 867 868 if (!queued) 869 hctx->dispatched[0]++; 870 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 871 hctx->dispatched[ilog2(queued) + 1]++; 872 873 /* 874 * Any items that need requeuing? Stuff them into hctx->dispatch, 875 * that is where we will continue on next queue run. 876 */ 877 if (!list_empty(&rq_list)) { 878 spin_lock(&hctx->lock); 879 list_splice(&rq_list, &hctx->dispatch); 880 spin_unlock(&hctx->lock); 881 /* 882 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 883 * it's possible the queue is stopped and restarted again 884 * before this. Queue restart will dispatch requests. And since 885 * requests in rq_list aren't added into hctx->dispatch yet, 886 * the requests in rq_list might get lost. 887 * 888 * blk_mq_run_hw_queue() already checks the STOPPED bit 889 **/ 890 blk_mq_run_hw_queue(hctx, true); 891 } 892 } 893 894 /* 895 * It'd be great if the workqueue API had a way to pass 896 * in a mask and had some smarts for more clever placement. 897 * For now we just round-robin here, switching for every 898 * BLK_MQ_CPU_WORK_BATCH queued items. 899 */ 900 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 901 { 902 if (hctx->queue->nr_hw_queues == 1) 903 return WORK_CPU_UNBOUND; 904 905 if (--hctx->next_cpu_batch <= 0) { 906 int cpu = hctx->next_cpu, next_cpu; 907 908 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 909 if (next_cpu >= nr_cpu_ids) 910 next_cpu = cpumask_first(hctx->cpumask); 911 912 hctx->next_cpu = next_cpu; 913 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 914 915 return cpu; 916 } 917 918 return hctx->next_cpu; 919 } 920 921 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 922 { 923 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 924 !blk_mq_hw_queue_mapped(hctx))) 925 return; 926 927 if (!async) { 928 int cpu = get_cpu(); 929 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 930 __blk_mq_run_hw_queue(hctx); 931 put_cpu(); 932 return; 933 } 934 935 put_cpu(); 936 } 937 938 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 939 &hctx->run_work, 0); 940 } 941 942 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 943 { 944 struct blk_mq_hw_ctx *hctx; 945 int i; 946 947 queue_for_each_hw_ctx(q, hctx, i) { 948 if ((!blk_mq_hctx_has_pending(hctx) && 949 list_empty_careful(&hctx->dispatch)) || 950 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 951 continue; 952 953 blk_mq_run_hw_queue(hctx, async); 954 } 955 } 956 EXPORT_SYMBOL(blk_mq_run_hw_queues); 957 958 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 959 { 960 cancel_delayed_work(&hctx->run_work); 961 cancel_delayed_work(&hctx->delay_work); 962 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 963 } 964 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 965 966 void blk_mq_stop_hw_queues(struct request_queue *q) 967 { 968 struct blk_mq_hw_ctx *hctx; 969 int i; 970 971 queue_for_each_hw_ctx(q, hctx, i) 972 blk_mq_stop_hw_queue(hctx); 973 } 974 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 975 976 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 977 { 978 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 979 980 blk_mq_run_hw_queue(hctx, false); 981 } 982 EXPORT_SYMBOL(blk_mq_start_hw_queue); 983 984 void blk_mq_start_hw_queues(struct request_queue *q) 985 { 986 struct blk_mq_hw_ctx *hctx; 987 int i; 988 989 queue_for_each_hw_ctx(q, hctx, i) 990 blk_mq_start_hw_queue(hctx); 991 } 992 EXPORT_SYMBOL(blk_mq_start_hw_queues); 993 994 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 995 { 996 struct blk_mq_hw_ctx *hctx; 997 int i; 998 999 queue_for_each_hw_ctx(q, hctx, i) { 1000 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1001 continue; 1002 1003 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1004 blk_mq_run_hw_queue(hctx, async); 1005 } 1006 } 1007 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1008 1009 static void blk_mq_run_work_fn(struct work_struct *work) 1010 { 1011 struct blk_mq_hw_ctx *hctx; 1012 1013 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1014 1015 __blk_mq_run_hw_queue(hctx); 1016 } 1017 1018 static void blk_mq_delay_work_fn(struct work_struct *work) 1019 { 1020 struct blk_mq_hw_ctx *hctx; 1021 1022 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1023 1024 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1025 __blk_mq_run_hw_queue(hctx); 1026 } 1027 1028 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1029 { 1030 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1031 return; 1032 1033 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1034 &hctx->delay_work, msecs_to_jiffies(msecs)); 1035 } 1036 EXPORT_SYMBOL(blk_mq_delay_queue); 1037 1038 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1039 struct blk_mq_ctx *ctx, 1040 struct request *rq, 1041 bool at_head) 1042 { 1043 trace_block_rq_insert(hctx->queue, rq); 1044 1045 if (at_head) 1046 list_add(&rq->queuelist, &ctx->rq_list); 1047 else 1048 list_add_tail(&rq->queuelist, &ctx->rq_list); 1049 } 1050 1051 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1052 struct request *rq, bool at_head) 1053 { 1054 struct blk_mq_ctx *ctx = rq->mq_ctx; 1055 1056 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 1057 blk_mq_hctx_mark_pending(hctx, ctx); 1058 } 1059 1060 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1061 bool async) 1062 { 1063 struct request_queue *q = rq->q; 1064 struct blk_mq_hw_ctx *hctx; 1065 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1066 1067 current_ctx = blk_mq_get_ctx(q); 1068 if (!cpu_online(ctx->cpu)) 1069 rq->mq_ctx = ctx = current_ctx; 1070 1071 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1072 1073 spin_lock(&ctx->lock); 1074 __blk_mq_insert_request(hctx, rq, at_head); 1075 spin_unlock(&ctx->lock); 1076 1077 if (run_queue) 1078 blk_mq_run_hw_queue(hctx, async); 1079 1080 blk_mq_put_ctx(current_ctx); 1081 } 1082 1083 static void blk_mq_insert_requests(struct request_queue *q, 1084 struct blk_mq_ctx *ctx, 1085 struct list_head *list, 1086 int depth, 1087 bool from_schedule) 1088 1089 { 1090 struct blk_mq_hw_ctx *hctx; 1091 struct blk_mq_ctx *current_ctx; 1092 1093 trace_block_unplug(q, depth, !from_schedule); 1094 1095 current_ctx = blk_mq_get_ctx(q); 1096 1097 if (!cpu_online(ctx->cpu)) 1098 ctx = current_ctx; 1099 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1100 1101 /* 1102 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1103 * offline now 1104 */ 1105 spin_lock(&ctx->lock); 1106 while (!list_empty(list)) { 1107 struct request *rq; 1108 1109 rq = list_first_entry(list, struct request, queuelist); 1110 list_del_init(&rq->queuelist); 1111 rq->mq_ctx = ctx; 1112 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1113 } 1114 blk_mq_hctx_mark_pending(hctx, ctx); 1115 spin_unlock(&ctx->lock); 1116 1117 blk_mq_run_hw_queue(hctx, from_schedule); 1118 blk_mq_put_ctx(current_ctx); 1119 } 1120 1121 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1122 { 1123 struct request *rqa = container_of(a, struct request, queuelist); 1124 struct request *rqb = container_of(b, struct request, queuelist); 1125 1126 return !(rqa->mq_ctx < rqb->mq_ctx || 1127 (rqa->mq_ctx == rqb->mq_ctx && 1128 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1129 } 1130 1131 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1132 { 1133 struct blk_mq_ctx *this_ctx; 1134 struct request_queue *this_q; 1135 struct request *rq; 1136 LIST_HEAD(list); 1137 LIST_HEAD(ctx_list); 1138 unsigned int depth; 1139 1140 list_splice_init(&plug->mq_list, &list); 1141 1142 list_sort(NULL, &list, plug_ctx_cmp); 1143 1144 this_q = NULL; 1145 this_ctx = NULL; 1146 depth = 0; 1147 1148 while (!list_empty(&list)) { 1149 rq = list_entry_rq(list.next); 1150 list_del_init(&rq->queuelist); 1151 BUG_ON(!rq->q); 1152 if (rq->mq_ctx != this_ctx) { 1153 if (this_ctx) { 1154 blk_mq_insert_requests(this_q, this_ctx, 1155 &ctx_list, depth, 1156 from_schedule); 1157 } 1158 1159 this_ctx = rq->mq_ctx; 1160 this_q = rq->q; 1161 depth = 0; 1162 } 1163 1164 depth++; 1165 list_add_tail(&rq->queuelist, &ctx_list); 1166 } 1167 1168 /* 1169 * If 'this_ctx' is set, we know we have entries to complete 1170 * on 'ctx_list'. Do those. 1171 */ 1172 if (this_ctx) { 1173 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1174 from_schedule); 1175 } 1176 } 1177 1178 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1179 { 1180 init_request_from_bio(rq, bio); 1181 1182 blk_account_io_start(rq, 1); 1183 } 1184 1185 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1186 { 1187 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1188 !blk_queue_nomerges(hctx->queue); 1189 } 1190 1191 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1192 struct blk_mq_ctx *ctx, 1193 struct request *rq, struct bio *bio) 1194 { 1195 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1196 blk_mq_bio_to_request(rq, bio); 1197 spin_lock(&ctx->lock); 1198 insert_rq: 1199 __blk_mq_insert_request(hctx, rq, false); 1200 spin_unlock(&ctx->lock); 1201 return false; 1202 } else { 1203 struct request_queue *q = hctx->queue; 1204 1205 spin_lock(&ctx->lock); 1206 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1207 blk_mq_bio_to_request(rq, bio); 1208 goto insert_rq; 1209 } 1210 1211 spin_unlock(&ctx->lock); 1212 __blk_mq_free_request(hctx, ctx, rq); 1213 return true; 1214 } 1215 } 1216 1217 struct blk_map_ctx { 1218 struct blk_mq_hw_ctx *hctx; 1219 struct blk_mq_ctx *ctx; 1220 }; 1221 1222 static struct request *blk_mq_map_request(struct request_queue *q, 1223 struct bio *bio, 1224 struct blk_map_ctx *data) 1225 { 1226 struct blk_mq_hw_ctx *hctx; 1227 struct blk_mq_ctx *ctx; 1228 struct request *rq; 1229 int op = bio_data_dir(bio); 1230 int op_flags = 0; 1231 struct blk_mq_alloc_data alloc_data; 1232 1233 blk_queue_enter_live(q); 1234 ctx = blk_mq_get_ctx(q); 1235 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1236 1237 if (rw_is_sync(bio_op(bio), bio->bi_opf)) 1238 op_flags |= REQ_SYNC; 1239 1240 trace_block_getrq(q, bio, op); 1241 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx); 1242 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags); 1243 if (unlikely(!rq)) { 1244 __blk_mq_run_hw_queue(hctx); 1245 blk_mq_put_ctx(ctx); 1246 trace_block_sleeprq(q, bio, op); 1247 1248 ctx = blk_mq_get_ctx(q); 1249 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1250 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx); 1251 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags); 1252 ctx = alloc_data.ctx; 1253 hctx = alloc_data.hctx; 1254 } 1255 1256 hctx->queued++; 1257 data->hctx = hctx; 1258 data->ctx = ctx; 1259 return rq; 1260 } 1261 1262 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1263 { 1264 int ret; 1265 struct request_queue *q = rq->q; 1266 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1267 rq->mq_ctx->cpu); 1268 struct blk_mq_queue_data bd = { 1269 .rq = rq, 1270 .list = NULL, 1271 .last = 1 1272 }; 1273 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1274 1275 /* 1276 * For OK queue, we are done. For error, kill it. Any other 1277 * error (busy), just add it to our list as we previously 1278 * would have done 1279 */ 1280 ret = q->mq_ops->queue_rq(hctx, &bd); 1281 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1282 *cookie = new_cookie; 1283 return 0; 1284 } 1285 1286 __blk_mq_requeue_request(rq); 1287 1288 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1289 *cookie = BLK_QC_T_NONE; 1290 rq->errors = -EIO; 1291 blk_mq_end_request(rq, rq->errors); 1292 return 0; 1293 } 1294 1295 return -1; 1296 } 1297 1298 /* 1299 * Multiple hardware queue variant. This will not use per-process plugs, 1300 * but will attempt to bypass the hctx queueing if we can go straight to 1301 * hardware for SYNC IO. 1302 */ 1303 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1304 { 1305 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf); 1306 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1307 struct blk_map_ctx data; 1308 struct request *rq; 1309 unsigned int request_count = 0; 1310 struct blk_plug *plug; 1311 struct request *same_queue_rq = NULL; 1312 blk_qc_t cookie; 1313 1314 blk_queue_bounce(q, &bio); 1315 1316 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1317 bio_io_error(bio); 1318 return BLK_QC_T_NONE; 1319 } 1320 1321 blk_queue_split(q, &bio, q->bio_split); 1322 1323 if (!is_flush_fua && !blk_queue_nomerges(q) && 1324 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1325 return BLK_QC_T_NONE; 1326 1327 rq = blk_mq_map_request(q, bio, &data); 1328 if (unlikely(!rq)) 1329 return BLK_QC_T_NONE; 1330 1331 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1332 1333 if (unlikely(is_flush_fua)) { 1334 blk_mq_bio_to_request(rq, bio); 1335 blk_insert_flush(rq); 1336 goto run_queue; 1337 } 1338 1339 plug = current->plug; 1340 /* 1341 * If the driver supports defer issued based on 'last', then 1342 * queue it up like normal since we can potentially save some 1343 * CPU this way. 1344 */ 1345 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1346 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1347 struct request *old_rq = NULL; 1348 1349 blk_mq_bio_to_request(rq, bio); 1350 1351 /* 1352 * We do limited pluging. If the bio can be merged, do that. 1353 * Otherwise the existing request in the plug list will be 1354 * issued. So the plug list will have one request at most 1355 */ 1356 if (plug) { 1357 /* 1358 * The plug list might get flushed before this. If that 1359 * happens, same_queue_rq is invalid and plug list is 1360 * empty 1361 */ 1362 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1363 old_rq = same_queue_rq; 1364 list_del_init(&old_rq->queuelist); 1365 } 1366 list_add_tail(&rq->queuelist, &plug->mq_list); 1367 } else /* is_sync */ 1368 old_rq = rq; 1369 blk_mq_put_ctx(data.ctx); 1370 if (!old_rq) 1371 goto done; 1372 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1373 goto done; 1374 blk_mq_insert_request(old_rq, false, true, true); 1375 goto done; 1376 } 1377 1378 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1379 /* 1380 * For a SYNC request, send it to the hardware immediately. For 1381 * an ASYNC request, just ensure that we run it later on. The 1382 * latter allows for merging opportunities and more efficient 1383 * dispatching. 1384 */ 1385 run_queue: 1386 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1387 } 1388 blk_mq_put_ctx(data.ctx); 1389 done: 1390 return cookie; 1391 } 1392 1393 /* 1394 * Single hardware queue variant. This will attempt to use any per-process 1395 * plug for merging and IO deferral. 1396 */ 1397 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1398 { 1399 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf); 1400 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA); 1401 struct blk_plug *plug; 1402 unsigned int request_count = 0; 1403 struct blk_map_ctx data; 1404 struct request *rq; 1405 blk_qc_t cookie; 1406 1407 blk_queue_bounce(q, &bio); 1408 1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1410 bio_io_error(bio); 1411 return BLK_QC_T_NONE; 1412 } 1413 1414 blk_queue_split(q, &bio, q->bio_split); 1415 1416 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1417 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1418 return BLK_QC_T_NONE; 1419 } else 1420 request_count = blk_plug_queued_count(q); 1421 1422 rq = blk_mq_map_request(q, bio, &data); 1423 if (unlikely(!rq)) 1424 return BLK_QC_T_NONE; 1425 1426 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1427 1428 if (unlikely(is_flush_fua)) { 1429 blk_mq_bio_to_request(rq, bio); 1430 blk_insert_flush(rq); 1431 goto run_queue; 1432 } 1433 1434 /* 1435 * A task plug currently exists. Since this is completely lockless, 1436 * utilize that to temporarily store requests until the task is 1437 * either done or scheduled away. 1438 */ 1439 plug = current->plug; 1440 if (plug) { 1441 blk_mq_bio_to_request(rq, bio); 1442 if (!request_count) 1443 trace_block_plug(q); 1444 1445 blk_mq_put_ctx(data.ctx); 1446 1447 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1448 blk_flush_plug_list(plug, false); 1449 trace_block_plug(q); 1450 } 1451 1452 list_add_tail(&rq->queuelist, &plug->mq_list); 1453 return cookie; 1454 } 1455 1456 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1457 /* 1458 * For a SYNC request, send it to the hardware immediately. For 1459 * an ASYNC request, just ensure that we run it later on. The 1460 * latter allows for merging opportunities and more efficient 1461 * dispatching. 1462 */ 1463 run_queue: 1464 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1465 } 1466 1467 blk_mq_put_ctx(data.ctx); 1468 return cookie; 1469 } 1470 1471 /* 1472 * Default mapping to a software queue, since we use one per CPU. 1473 */ 1474 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1475 { 1476 return q->queue_hw_ctx[q->mq_map[cpu]]; 1477 } 1478 EXPORT_SYMBOL(blk_mq_map_queue); 1479 1480 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1481 struct blk_mq_tags *tags, unsigned int hctx_idx) 1482 { 1483 struct page *page; 1484 1485 if (tags->rqs && set->ops->exit_request) { 1486 int i; 1487 1488 for (i = 0; i < tags->nr_tags; i++) { 1489 if (!tags->rqs[i]) 1490 continue; 1491 set->ops->exit_request(set->driver_data, tags->rqs[i], 1492 hctx_idx, i); 1493 tags->rqs[i] = NULL; 1494 } 1495 } 1496 1497 while (!list_empty(&tags->page_list)) { 1498 page = list_first_entry(&tags->page_list, struct page, lru); 1499 list_del_init(&page->lru); 1500 /* 1501 * Remove kmemleak object previously allocated in 1502 * blk_mq_init_rq_map(). 1503 */ 1504 kmemleak_free(page_address(page)); 1505 __free_pages(page, page->private); 1506 } 1507 1508 kfree(tags->rqs); 1509 1510 blk_mq_free_tags(tags); 1511 } 1512 1513 static size_t order_to_size(unsigned int order) 1514 { 1515 return (size_t)PAGE_SIZE << order; 1516 } 1517 1518 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1519 unsigned int hctx_idx) 1520 { 1521 struct blk_mq_tags *tags; 1522 unsigned int i, j, entries_per_page, max_order = 4; 1523 size_t rq_size, left; 1524 1525 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1526 set->numa_node, 1527 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1528 if (!tags) 1529 return NULL; 1530 1531 INIT_LIST_HEAD(&tags->page_list); 1532 1533 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1534 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1535 set->numa_node); 1536 if (!tags->rqs) { 1537 blk_mq_free_tags(tags); 1538 return NULL; 1539 } 1540 1541 /* 1542 * rq_size is the size of the request plus driver payload, rounded 1543 * to the cacheline size 1544 */ 1545 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1546 cache_line_size()); 1547 left = rq_size * set->queue_depth; 1548 1549 for (i = 0; i < set->queue_depth; ) { 1550 int this_order = max_order; 1551 struct page *page; 1552 int to_do; 1553 void *p; 1554 1555 while (this_order && left < order_to_size(this_order - 1)) 1556 this_order--; 1557 1558 do { 1559 page = alloc_pages_node(set->numa_node, 1560 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1561 this_order); 1562 if (page) 1563 break; 1564 if (!this_order--) 1565 break; 1566 if (order_to_size(this_order) < rq_size) 1567 break; 1568 } while (1); 1569 1570 if (!page) 1571 goto fail; 1572 1573 page->private = this_order; 1574 list_add_tail(&page->lru, &tags->page_list); 1575 1576 p = page_address(page); 1577 /* 1578 * Allow kmemleak to scan these pages as they contain pointers 1579 * to additional allocations like via ops->init_request(). 1580 */ 1581 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1582 entries_per_page = order_to_size(this_order) / rq_size; 1583 to_do = min(entries_per_page, set->queue_depth - i); 1584 left -= to_do * rq_size; 1585 for (j = 0; j < to_do; j++) { 1586 tags->rqs[i] = p; 1587 if (set->ops->init_request) { 1588 if (set->ops->init_request(set->driver_data, 1589 tags->rqs[i], hctx_idx, i, 1590 set->numa_node)) { 1591 tags->rqs[i] = NULL; 1592 goto fail; 1593 } 1594 } 1595 1596 p += rq_size; 1597 i++; 1598 } 1599 } 1600 return tags; 1601 1602 fail: 1603 blk_mq_free_rq_map(set, tags, hctx_idx); 1604 return NULL; 1605 } 1606 1607 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1608 { 1609 kfree(bitmap->map); 1610 } 1611 1612 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1613 { 1614 unsigned int bpw = 8, total, num_maps, i; 1615 1616 bitmap->bits_per_word = bpw; 1617 1618 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1619 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1620 GFP_KERNEL, node); 1621 if (!bitmap->map) 1622 return -ENOMEM; 1623 1624 total = nr_cpu_ids; 1625 for (i = 0; i < num_maps; i++) { 1626 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1627 total -= bitmap->map[i].depth; 1628 } 1629 1630 return 0; 1631 } 1632 1633 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1634 { 1635 struct request_queue *q = hctx->queue; 1636 struct blk_mq_ctx *ctx; 1637 LIST_HEAD(tmp); 1638 1639 /* 1640 * Move ctx entries to new CPU, if this one is going away. 1641 */ 1642 ctx = __blk_mq_get_ctx(q, cpu); 1643 1644 spin_lock(&ctx->lock); 1645 if (!list_empty(&ctx->rq_list)) { 1646 list_splice_init(&ctx->rq_list, &tmp); 1647 blk_mq_hctx_clear_pending(hctx, ctx); 1648 } 1649 spin_unlock(&ctx->lock); 1650 1651 if (list_empty(&tmp)) 1652 return NOTIFY_OK; 1653 1654 ctx = blk_mq_get_ctx(q); 1655 spin_lock(&ctx->lock); 1656 1657 while (!list_empty(&tmp)) { 1658 struct request *rq; 1659 1660 rq = list_first_entry(&tmp, struct request, queuelist); 1661 rq->mq_ctx = ctx; 1662 list_move_tail(&rq->queuelist, &ctx->rq_list); 1663 } 1664 1665 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1666 blk_mq_hctx_mark_pending(hctx, ctx); 1667 1668 spin_unlock(&ctx->lock); 1669 1670 blk_mq_run_hw_queue(hctx, true); 1671 blk_mq_put_ctx(ctx); 1672 return NOTIFY_OK; 1673 } 1674 1675 static int blk_mq_hctx_notify(void *data, unsigned long action, 1676 unsigned int cpu) 1677 { 1678 struct blk_mq_hw_ctx *hctx = data; 1679 1680 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1681 return blk_mq_hctx_cpu_offline(hctx, cpu); 1682 1683 /* 1684 * In case of CPU online, tags may be reallocated 1685 * in blk_mq_map_swqueue() after mapping is updated. 1686 */ 1687 1688 return NOTIFY_OK; 1689 } 1690 1691 /* hctx->ctxs will be freed in queue's release handler */ 1692 static void blk_mq_exit_hctx(struct request_queue *q, 1693 struct blk_mq_tag_set *set, 1694 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1695 { 1696 unsigned flush_start_tag = set->queue_depth; 1697 1698 blk_mq_tag_idle(hctx); 1699 1700 if (set->ops->exit_request) 1701 set->ops->exit_request(set->driver_data, 1702 hctx->fq->flush_rq, hctx_idx, 1703 flush_start_tag + hctx_idx); 1704 1705 if (set->ops->exit_hctx) 1706 set->ops->exit_hctx(hctx, hctx_idx); 1707 1708 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1709 blk_free_flush_queue(hctx->fq); 1710 blk_mq_free_bitmap(&hctx->ctx_map); 1711 } 1712 1713 static void blk_mq_exit_hw_queues(struct request_queue *q, 1714 struct blk_mq_tag_set *set, int nr_queue) 1715 { 1716 struct blk_mq_hw_ctx *hctx; 1717 unsigned int i; 1718 1719 queue_for_each_hw_ctx(q, hctx, i) { 1720 if (i == nr_queue) 1721 break; 1722 blk_mq_exit_hctx(q, set, hctx, i); 1723 } 1724 } 1725 1726 static void blk_mq_free_hw_queues(struct request_queue *q, 1727 struct blk_mq_tag_set *set) 1728 { 1729 struct blk_mq_hw_ctx *hctx; 1730 unsigned int i; 1731 1732 queue_for_each_hw_ctx(q, hctx, i) 1733 free_cpumask_var(hctx->cpumask); 1734 } 1735 1736 static int blk_mq_init_hctx(struct request_queue *q, 1737 struct blk_mq_tag_set *set, 1738 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1739 { 1740 int node; 1741 unsigned flush_start_tag = set->queue_depth; 1742 1743 node = hctx->numa_node; 1744 if (node == NUMA_NO_NODE) 1745 node = hctx->numa_node = set->numa_node; 1746 1747 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1748 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1749 spin_lock_init(&hctx->lock); 1750 INIT_LIST_HEAD(&hctx->dispatch); 1751 hctx->queue = q; 1752 hctx->queue_num = hctx_idx; 1753 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1754 1755 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1756 blk_mq_hctx_notify, hctx); 1757 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1758 1759 hctx->tags = set->tags[hctx_idx]; 1760 1761 /* 1762 * Allocate space for all possible cpus to avoid allocation at 1763 * runtime 1764 */ 1765 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1766 GFP_KERNEL, node); 1767 if (!hctx->ctxs) 1768 goto unregister_cpu_notifier; 1769 1770 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1771 goto free_ctxs; 1772 1773 hctx->nr_ctx = 0; 1774 1775 if (set->ops->init_hctx && 1776 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1777 goto free_bitmap; 1778 1779 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1780 if (!hctx->fq) 1781 goto exit_hctx; 1782 1783 if (set->ops->init_request && 1784 set->ops->init_request(set->driver_data, 1785 hctx->fq->flush_rq, hctx_idx, 1786 flush_start_tag + hctx_idx, node)) 1787 goto free_fq; 1788 1789 return 0; 1790 1791 free_fq: 1792 kfree(hctx->fq); 1793 exit_hctx: 1794 if (set->ops->exit_hctx) 1795 set->ops->exit_hctx(hctx, hctx_idx); 1796 free_bitmap: 1797 blk_mq_free_bitmap(&hctx->ctx_map); 1798 free_ctxs: 1799 kfree(hctx->ctxs); 1800 unregister_cpu_notifier: 1801 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1802 1803 return -1; 1804 } 1805 1806 static void blk_mq_init_cpu_queues(struct request_queue *q, 1807 unsigned int nr_hw_queues) 1808 { 1809 unsigned int i; 1810 1811 for_each_possible_cpu(i) { 1812 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1813 struct blk_mq_hw_ctx *hctx; 1814 1815 memset(__ctx, 0, sizeof(*__ctx)); 1816 __ctx->cpu = i; 1817 spin_lock_init(&__ctx->lock); 1818 INIT_LIST_HEAD(&__ctx->rq_list); 1819 __ctx->queue = q; 1820 1821 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1822 if (!cpu_online(i)) 1823 continue; 1824 1825 hctx = q->mq_ops->map_queue(q, i); 1826 1827 /* 1828 * Set local node, IFF we have more than one hw queue. If 1829 * not, we remain on the home node of the device 1830 */ 1831 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1832 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1833 } 1834 } 1835 1836 static void blk_mq_map_swqueue(struct request_queue *q, 1837 const struct cpumask *online_mask) 1838 { 1839 unsigned int i; 1840 struct blk_mq_hw_ctx *hctx; 1841 struct blk_mq_ctx *ctx; 1842 struct blk_mq_tag_set *set = q->tag_set; 1843 1844 /* 1845 * Avoid others reading imcomplete hctx->cpumask through sysfs 1846 */ 1847 mutex_lock(&q->sysfs_lock); 1848 1849 queue_for_each_hw_ctx(q, hctx, i) { 1850 cpumask_clear(hctx->cpumask); 1851 hctx->nr_ctx = 0; 1852 } 1853 1854 /* 1855 * Map software to hardware queues 1856 */ 1857 for_each_possible_cpu(i) { 1858 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1859 if (!cpumask_test_cpu(i, online_mask)) 1860 continue; 1861 1862 ctx = per_cpu_ptr(q->queue_ctx, i); 1863 hctx = q->mq_ops->map_queue(q, i); 1864 1865 cpumask_set_cpu(i, hctx->cpumask); 1866 ctx->index_hw = hctx->nr_ctx; 1867 hctx->ctxs[hctx->nr_ctx++] = ctx; 1868 } 1869 1870 mutex_unlock(&q->sysfs_lock); 1871 1872 queue_for_each_hw_ctx(q, hctx, i) { 1873 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1874 1875 /* 1876 * If no software queues are mapped to this hardware queue, 1877 * disable it and free the request entries. 1878 */ 1879 if (!hctx->nr_ctx) { 1880 if (set->tags[i]) { 1881 blk_mq_free_rq_map(set, set->tags[i], i); 1882 set->tags[i] = NULL; 1883 } 1884 hctx->tags = NULL; 1885 continue; 1886 } 1887 1888 /* unmapped hw queue can be remapped after CPU topo changed */ 1889 if (!set->tags[i]) 1890 set->tags[i] = blk_mq_init_rq_map(set, i); 1891 hctx->tags = set->tags[i]; 1892 WARN_ON(!hctx->tags); 1893 1894 cpumask_copy(hctx->tags->cpumask, hctx->cpumask); 1895 /* 1896 * Set the map size to the number of mapped software queues. 1897 * This is more accurate and more efficient than looping 1898 * over all possibly mapped software queues. 1899 */ 1900 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1901 1902 /* 1903 * Initialize batch roundrobin counts 1904 */ 1905 hctx->next_cpu = cpumask_first(hctx->cpumask); 1906 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1907 } 1908 } 1909 1910 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1911 { 1912 struct blk_mq_hw_ctx *hctx; 1913 int i; 1914 1915 queue_for_each_hw_ctx(q, hctx, i) { 1916 if (shared) 1917 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1918 else 1919 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1920 } 1921 } 1922 1923 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1924 { 1925 struct request_queue *q; 1926 1927 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1928 blk_mq_freeze_queue(q); 1929 queue_set_hctx_shared(q, shared); 1930 blk_mq_unfreeze_queue(q); 1931 } 1932 } 1933 1934 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1935 { 1936 struct blk_mq_tag_set *set = q->tag_set; 1937 1938 mutex_lock(&set->tag_list_lock); 1939 list_del_init(&q->tag_set_list); 1940 if (list_is_singular(&set->tag_list)) { 1941 /* just transitioned to unshared */ 1942 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1943 /* update existing queue */ 1944 blk_mq_update_tag_set_depth(set, false); 1945 } 1946 mutex_unlock(&set->tag_list_lock); 1947 } 1948 1949 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1950 struct request_queue *q) 1951 { 1952 q->tag_set = set; 1953 1954 mutex_lock(&set->tag_list_lock); 1955 1956 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1957 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1958 set->flags |= BLK_MQ_F_TAG_SHARED; 1959 /* update existing queue */ 1960 blk_mq_update_tag_set_depth(set, true); 1961 } 1962 if (set->flags & BLK_MQ_F_TAG_SHARED) 1963 queue_set_hctx_shared(q, true); 1964 list_add_tail(&q->tag_set_list, &set->tag_list); 1965 1966 mutex_unlock(&set->tag_list_lock); 1967 } 1968 1969 /* 1970 * It is the actual release handler for mq, but we do it from 1971 * request queue's release handler for avoiding use-after-free 1972 * and headache because q->mq_kobj shouldn't have been introduced, 1973 * but we can't group ctx/kctx kobj without it. 1974 */ 1975 void blk_mq_release(struct request_queue *q) 1976 { 1977 struct blk_mq_hw_ctx *hctx; 1978 unsigned int i; 1979 1980 /* hctx kobj stays in hctx */ 1981 queue_for_each_hw_ctx(q, hctx, i) { 1982 if (!hctx) 1983 continue; 1984 kfree(hctx->ctxs); 1985 kfree(hctx); 1986 } 1987 1988 kfree(q->mq_map); 1989 q->mq_map = NULL; 1990 1991 kfree(q->queue_hw_ctx); 1992 1993 /* ctx kobj stays in queue_ctx */ 1994 free_percpu(q->queue_ctx); 1995 } 1996 1997 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1998 { 1999 struct request_queue *uninit_q, *q; 2000 2001 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2002 if (!uninit_q) 2003 return ERR_PTR(-ENOMEM); 2004 2005 q = blk_mq_init_allocated_queue(set, uninit_q); 2006 if (IS_ERR(q)) 2007 blk_cleanup_queue(uninit_q); 2008 2009 return q; 2010 } 2011 EXPORT_SYMBOL(blk_mq_init_queue); 2012 2013 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2014 struct request_queue *q) 2015 { 2016 int i, j; 2017 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2018 2019 blk_mq_sysfs_unregister(q); 2020 for (i = 0; i < set->nr_hw_queues; i++) { 2021 int node; 2022 2023 if (hctxs[i]) 2024 continue; 2025 2026 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2027 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2028 GFP_KERNEL, node); 2029 if (!hctxs[i]) 2030 break; 2031 2032 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2033 node)) { 2034 kfree(hctxs[i]); 2035 hctxs[i] = NULL; 2036 break; 2037 } 2038 2039 atomic_set(&hctxs[i]->nr_active, 0); 2040 hctxs[i]->numa_node = node; 2041 hctxs[i]->queue_num = i; 2042 2043 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2044 free_cpumask_var(hctxs[i]->cpumask); 2045 kfree(hctxs[i]); 2046 hctxs[i] = NULL; 2047 break; 2048 } 2049 blk_mq_hctx_kobj_init(hctxs[i]); 2050 } 2051 for (j = i; j < q->nr_hw_queues; j++) { 2052 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2053 2054 if (hctx) { 2055 if (hctx->tags) { 2056 blk_mq_free_rq_map(set, hctx->tags, j); 2057 set->tags[j] = NULL; 2058 } 2059 blk_mq_exit_hctx(q, set, hctx, j); 2060 free_cpumask_var(hctx->cpumask); 2061 kobject_put(&hctx->kobj); 2062 kfree(hctx->ctxs); 2063 kfree(hctx); 2064 hctxs[j] = NULL; 2065 2066 } 2067 } 2068 q->nr_hw_queues = i; 2069 blk_mq_sysfs_register(q); 2070 } 2071 2072 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2073 struct request_queue *q) 2074 { 2075 /* mark the queue as mq asap */ 2076 q->mq_ops = set->ops; 2077 2078 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2079 if (!q->queue_ctx) 2080 goto err_exit; 2081 2082 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2083 GFP_KERNEL, set->numa_node); 2084 if (!q->queue_hw_ctx) 2085 goto err_percpu; 2086 2087 q->mq_map = blk_mq_make_queue_map(set); 2088 if (!q->mq_map) 2089 goto err_map; 2090 2091 blk_mq_realloc_hw_ctxs(set, q); 2092 if (!q->nr_hw_queues) 2093 goto err_hctxs; 2094 2095 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2096 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2097 2098 q->nr_queues = nr_cpu_ids; 2099 2100 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2101 2102 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2103 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2104 2105 q->sg_reserved_size = INT_MAX; 2106 2107 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2108 INIT_LIST_HEAD(&q->requeue_list); 2109 spin_lock_init(&q->requeue_lock); 2110 2111 if (q->nr_hw_queues > 1) 2112 blk_queue_make_request(q, blk_mq_make_request); 2113 else 2114 blk_queue_make_request(q, blk_sq_make_request); 2115 2116 /* 2117 * Do this after blk_queue_make_request() overrides it... 2118 */ 2119 q->nr_requests = set->queue_depth; 2120 2121 if (set->ops->complete) 2122 blk_queue_softirq_done(q, set->ops->complete); 2123 2124 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2125 2126 get_online_cpus(); 2127 mutex_lock(&all_q_mutex); 2128 2129 list_add_tail(&q->all_q_node, &all_q_list); 2130 blk_mq_add_queue_tag_set(set, q); 2131 blk_mq_map_swqueue(q, cpu_online_mask); 2132 2133 mutex_unlock(&all_q_mutex); 2134 put_online_cpus(); 2135 2136 return q; 2137 2138 err_hctxs: 2139 kfree(q->mq_map); 2140 err_map: 2141 kfree(q->queue_hw_ctx); 2142 err_percpu: 2143 free_percpu(q->queue_ctx); 2144 err_exit: 2145 q->mq_ops = NULL; 2146 return ERR_PTR(-ENOMEM); 2147 } 2148 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2149 2150 void blk_mq_free_queue(struct request_queue *q) 2151 { 2152 struct blk_mq_tag_set *set = q->tag_set; 2153 2154 mutex_lock(&all_q_mutex); 2155 list_del_init(&q->all_q_node); 2156 mutex_unlock(&all_q_mutex); 2157 2158 blk_mq_del_queue_tag_set(q); 2159 2160 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2161 blk_mq_free_hw_queues(q, set); 2162 } 2163 2164 /* Basically redo blk_mq_init_queue with queue frozen */ 2165 static void blk_mq_queue_reinit(struct request_queue *q, 2166 const struct cpumask *online_mask) 2167 { 2168 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2169 2170 blk_mq_sysfs_unregister(q); 2171 2172 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2173 2174 /* 2175 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2176 * we should change hctx numa_node according to new topology (this 2177 * involves free and re-allocate memory, worthy doing?) 2178 */ 2179 2180 blk_mq_map_swqueue(q, online_mask); 2181 2182 blk_mq_sysfs_register(q); 2183 } 2184 2185 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2186 unsigned long action, void *hcpu) 2187 { 2188 struct request_queue *q; 2189 int cpu = (unsigned long)hcpu; 2190 /* 2191 * New online cpumask which is going to be set in this hotplug event. 2192 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2193 * one-by-one and dynamically allocating this could result in a failure. 2194 */ 2195 static struct cpumask online_new; 2196 2197 /* 2198 * Before hotadded cpu starts handling requests, new mappings must 2199 * be established. Otherwise, these requests in hw queue might 2200 * never be dispatched. 2201 * 2202 * For example, there is a single hw queue (hctx) and two CPU queues 2203 * (ctx0 for CPU0, and ctx1 for CPU1). 2204 * 2205 * Now CPU1 is just onlined and a request is inserted into 2206 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2207 * still zero. 2208 * 2209 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2210 * set in pending bitmap and tries to retrieve requests in 2211 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2212 * so the request in ctx1->rq_list is ignored. 2213 */ 2214 switch (action & ~CPU_TASKS_FROZEN) { 2215 case CPU_DEAD: 2216 case CPU_UP_CANCELED: 2217 cpumask_copy(&online_new, cpu_online_mask); 2218 break; 2219 case CPU_UP_PREPARE: 2220 cpumask_copy(&online_new, cpu_online_mask); 2221 cpumask_set_cpu(cpu, &online_new); 2222 break; 2223 default: 2224 return NOTIFY_OK; 2225 } 2226 2227 mutex_lock(&all_q_mutex); 2228 2229 /* 2230 * We need to freeze and reinit all existing queues. Freezing 2231 * involves synchronous wait for an RCU grace period and doing it 2232 * one by one may take a long time. Start freezing all queues in 2233 * one swoop and then wait for the completions so that freezing can 2234 * take place in parallel. 2235 */ 2236 list_for_each_entry(q, &all_q_list, all_q_node) 2237 blk_mq_freeze_queue_start(q); 2238 list_for_each_entry(q, &all_q_list, all_q_node) { 2239 blk_mq_freeze_queue_wait(q); 2240 2241 /* 2242 * timeout handler can't touch hw queue during the 2243 * reinitialization 2244 */ 2245 del_timer_sync(&q->timeout); 2246 } 2247 2248 list_for_each_entry(q, &all_q_list, all_q_node) 2249 blk_mq_queue_reinit(q, &online_new); 2250 2251 list_for_each_entry(q, &all_q_list, all_q_node) 2252 blk_mq_unfreeze_queue(q); 2253 2254 mutex_unlock(&all_q_mutex); 2255 return NOTIFY_OK; 2256 } 2257 2258 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2259 { 2260 int i; 2261 2262 for (i = 0; i < set->nr_hw_queues; i++) { 2263 set->tags[i] = blk_mq_init_rq_map(set, i); 2264 if (!set->tags[i]) 2265 goto out_unwind; 2266 } 2267 2268 return 0; 2269 2270 out_unwind: 2271 while (--i >= 0) 2272 blk_mq_free_rq_map(set, set->tags[i], i); 2273 2274 return -ENOMEM; 2275 } 2276 2277 /* 2278 * Allocate the request maps associated with this tag_set. Note that this 2279 * may reduce the depth asked for, if memory is tight. set->queue_depth 2280 * will be updated to reflect the allocated depth. 2281 */ 2282 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2283 { 2284 unsigned int depth; 2285 int err; 2286 2287 depth = set->queue_depth; 2288 do { 2289 err = __blk_mq_alloc_rq_maps(set); 2290 if (!err) 2291 break; 2292 2293 set->queue_depth >>= 1; 2294 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2295 err = -ENOMEM; 2296 break; 2297 } 2298 } while (set->queue_depth); 2299 2300 if (!set->queue_depth || err) { 2301 pr_err("blk-mq: failed to allocate request map\n"); 2302 return -ENOMEM; 2303 } 2304 2305 if (depth != set->queue_depth) 2306 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2307 depth, set->queue_depth); 2308 2309 return 0; 2310 } 2311 2312 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2313 { 2314 return tags->cpumask; 2315 } 2316 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2317 2318 /* 2319 * Alloc a tag set to be associated with one or more request queues. 2320 * May fail with EINVAL for various error conditions. May adjust the 2321 * requested depth down, if if it too large. In that case, the set 2322 * value will be stored in set->queue_depth. 2323 */ 2324 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2325 { 2326 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2327 2328 if (!set->nr_hw_queues) 2329 return -EINVAL; 2330 if (!set->queue_depth) 2331 return -EINVAL; 2332 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2333 return -EINVAL; 2334 2335 if (!set->ops->queue_rq || !set->ops->map_queue) 2336 return -EINVAL; 2337 2338 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2339 pr_info("blk-mq: reduced tag depth to %u\n", 2340 BLK_MQ_MAX_DEPTH); 2341 set->queue_depth = BLK_MQ_MAX_DEPTH; 2342 } 2343 2344 /* 2345 * If a crashdump is active, then we are potentially in a very 2346 * memory constrained environment. Limit us to 1 queue and 2347 * 64 tags to prevent using too much memory. 2348 */ 2349 if (is_kdump_kernel()) { 2350 set->nr_hw_queues = 1; 2351 set->queue_depth = min(64U, set->queue_depth); 2352 } 2353 /* 2354 * There is no use for more h/w queues than cpus. 2355 */ 2356 if (set->nr_hw_queues > nr_cpu_ids) 2357 set->nr_hw_queues = nr_cpu_ids; 2358 2359 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2360 GFP_KERNEL, set->numa_node); 2361 if (!set->tags) 2362 return -ENOMEM; 2363 2364 if (blk_mq_alloc_rq_maps(set)) 2365 goto enomem; 2366 2367 mutex_init(&set->tag_list_lock); 2368 INIT_LIST_HEAD(&set->tag_list); 2369 2370 return 0; 2371 enomem: 2372 kfree(set->tags); 2373 set->tags = NULL; 2374 return -ENOMEM; 2375 } 2376 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2377 2378 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2379 { 2380 int i; 2381 2382 for (i = 0; i < nr_cpu_ids; i++) { 2383 if (set->tags[i]) 2384 blk_mq_free_rq_map(set, set->tags[i], i); 2385 } 2386 2387 kfree(set->tags); 2388 set->tags = NULL; 2389 } 2390 EXPORT_SYMBOL(blk_mq_free_tag_set); 2391 2392 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2393 { 2394 struct blk_mq_tag_set *set = q->tag_set; 2395 struct blk_mq_hw_ctx *hctx; 2396 int i, ret; 2397 2398 if (!set || nr > set->queue_depth) 2399 return -EINVAL; 2400 2401 ret = 0; 2402 queue_for_each_hw_ctx(q, hctx, i) { 2403 if (!hctx->tags) 2404 continue; 2405 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2406 if (ret) 2407 break; 2408 } 2409 2410 if (!ret) 2411 q->nr_requests = nr; 2412 2413 return ret; 2414 } 2415 2416 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2417 { 2418 struct request_queue *q; 2419 2420 if (nr_hw_queues > nr_cpu_ids) 2421 nr_hw_queues = nr_cpu_ids; 2422 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2423 return; 2424 2425 list_for_each_entry(q, &set->tag_list, tag_set_list) 2426 blk_mq_freeze_queue(q); 2427 2428 set->nr_hw_queues = nr_hw_queues; 2429 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2430 blk_mq_realloc_hw_ctxs(set, q); 2431 2432 if (q->nr_hw_queues > 1) 2433 blk_queue_make_request(q, blk_mq_make_request); 2434 else 2435 blk_queue_make_request(q, blk_sq_make_request); 2436 2437 blk_mq_queue_reinit(q, cpu_online_mask); 2438 } 2439 2440 list_for_each_entry(q, &set->tag_list, tag_set_list) 2441 blk_mq_unfreeze_queue(q); 2442 } 2443 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2444 2445 void blk_mq_disable_hotplug(void) 2446 { 2447 mutex_lock(&all_q_mutex); 2448 } 2449 2450 void blk_mq_enable_hotplug(void) 2451 { 2452 mutex_unlock(&all_q_mutex); 2453 } 2454 2455 static int __init blk_mq_init(void) 2456 { 2457 blk_mq_cpu_init(); 2458 2459 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2460 2461 return 0; 2462 } 2463 subsys_initcall(blk_mq_init); 2464