xref: /linux/block/blk-mq.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, int op,
163 			       unsigned int op_flags)
164 {
165 	if (blk_queue_io_stat(q))
166 		op_flags |= REQ_IO_STAT;
167 
168 	INIT_LIST_HEAD(&rq->queuelist);
169 	/* csd/requeue_work/fifo_time is initialized before use */
170 	rq->q = q;
171 	rq->mq_ctx = ctx;
172 	req_set_op_attrs(rq, op, op_flags);
173 	/* do not touch atomic flags, it needs atomic ops against the timer */
174 	rq->cpu = -1;
175 	INIT_HLIST_NODE(&rq->hash);
176 	RB_CLEAR_NODE(&rq->rb_node);
177 	rq->rq_disk = NULL;
178 	rq->part = NULL;
179 	rq->start_time = jiffies;
180 #ifdef CONFIG_BLK_CGROUP
181 	rq->rl = NULL;
182 	set_start_time_ns(rq);
183 	rq->io_start_time_ns = 0;
184 #endif
185 	rq->nr_phys_segments = 0;
186 #if defined(CONFIG_BLK_DEV_INTEGRITY)
187 	rq->nr_integrity_segments = 0;
188 #endif
189 	rq->special = NULL;
190 	/* tag was already set */
191 	rq->errors = 0;
192 
193 	rq->cmd = rq->__cmd;
194 
195 	rq->extra_len = 0;
196 	rq->sense_len = 0;
197 	rq->resid_len = 0;
198 	rq->sense = NULL;
199 
200 	INIT_LIST_HEAD(&rq->timeout_list);
201 	rq->timeout = 0;
202 
203 	rq->end_io = NULL;
204 	rq->end_io_data = NULL;
205 	rq->next_rq = NULL;
206 
207 	ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
208 }
209 
210 static struct request *
211 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
212 {
213 	struct request *rq;
214 	unsigned int tag;
215 
216 	tag = blk_mq_get_tag(data);
217 	if (tag != BLK_MQ_TAG_FAIL) {
218 		rq = data->hctx->tags->rqs[tag];
219 
220 		if (blk_mq_tag_busy(data->hctx)) {
221 			rq->cmd_flags = REQ_MQ_INFLIGHT;
222 			atomic_inc(&data->hctx->nr_active);
223 		}
224 
225 		rq->tag = tag;
226 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
227 		return rq;
228 	}
229 
230 	return NULL;
231 }
232 
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
234 		unsigned int flags)
235 {
236 	struct blk_mq_ctx *ctx;
237 	struct blk_mq_hw_ctx *hctx;
238 	struct request *rq;
239 	struct blk_mq_alloc_data alloc_data;
240 	int ret;
241 
242 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
243 	if (ret)
244 		return ERR_PTR(ret);
245 
246 	ctx = blk_mq_get_ctx(q);
247 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
248 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249 
250 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
251 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
252 		__blk_mq_run_hw_queue(hctx);
253 		blk_mq_put_ctx(ctx);
254 
255 		ctx = blk_mq_get_ctx(q);
256 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
258 		rq =  __blk_mq_alloc_request(&alloc_data, rw, 0);
259 		ctx = alloc_data.ctx;
260 	}
261 	blk_mq_put_ctx(ctx);
262 	if (!rq) {
263 		blk_queue_exit(q);
264 		return ERR_PTR(-EWOULDBLOCK);
265 	}
266 
267 	rq->__data_len = 0;
268 	rq->__sector = (sector_t) -1;
269 	rq->bio = rq->biotail = NULL;
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 		unsigned int flags, unsigned int hctx_idx)
276 {
277 	struct blk_mq_hw_ctx *hctx;
278 	struct blk_mq_ctx *ctx;
279 	struct request *rq;
280 	struct blk_mq_alloc_data alloc_data;
281 	int ret;
282 
283 	/*
284 	 * If the tag allocator sleeps we could get an allocation for a
285 	 * different hardware context.  No need to complicate the low level
286 	 * allocator for this for the rare use case of a command tied to
287 	 * a specific queue.
288 	 */
289 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 		return ERR_PTR(-EINVAL);
291 
292 	if (hctx_idx >= q->nr_hw_queues)
293 		return ERR_PTR(-EIO);
294 
295 	ret = blk_queue_enter(q, true);
296 	if (ret)
297 		return ERR_PTR(ret);
298 
299 	hctx = q->queue_hw_ctx[hctx_idx];
300 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
301 
302 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
303 	rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
304 	if (!rq) {
305 		blk_queue_exit(q);
306 		return ERR_PTR(-EWOULDBLOCK);
307 	}
308 
309 	return rq;
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
312 
313 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
314 				  struct blk_mq_ctx *ctx, struct request *rq)
315 {
316 	const int tag = rq->tag;
317 	struct request_queue *q = rq->q;
318 
319 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
320 		atomic_dec(&hctx->nr_active);
321 	rq->cmd_flags = 0;
322 
323 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
324 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
325 	blk_queue_exit(q);
326 }
327 
328 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
329 {
330 	struct blk_mq_ctx *ctx = rq->mq_ctx;
331 
332 	ctx->rq_completed[rq_is_sync(rq)]++;
333 	__blk_mq_free_request(hctx, ctx, rq);
334 
335 }
336 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
337 
338 void blk_mq_free_request(struct request *rq)
339 {
340 	struct blk_mq_hw_ctx *hctx;
341 	struct request_queue *q = rq->q;
342 
343 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
344 	blk_mq_free_hctx_request(hctx, rq);
345 }
346 EXPORT_SYMBOL_GPL(blk_mq_free_request);
347 
348 inline void __blk_mq_end_request(struct request *rq, int error)
349 {
350 	blk_account_io_done(rq);
351 
352 	if (rq->end_io) {
353 		rq->end_io(rq, error);
354 	} else {
355 		if (unlikely(blk_bidi_rq(rq)))
356 			blk_mq_free_request(rq->next_rq);
357 		blk_mq_free_request(rq);
358 	}
359 }
360 EXPORT_SYMBOL(__blk_mq_end_request);
361 
362 void blk_mq_end_request(struct request *rq, int error)
363 {
364 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
365 		BUG();
366 	__blk_mq_end_request(rq, error);
367 }
368 EXPORT_SYMBOL(blk_mq_end_request);
369 
370 static void __blk_mq_complete_request_remote(void *data)
371 {
372 	struct request *rq = data;
373 
374 	rq->q->softirq_done_fn(rq);
375 }
376 
377 static void blk_mq_ipi_complete_request(struct request *rq)
378 {
379 	struct blk_mq_ctx *ctx = rq->mq_ctx;
380 	bool shared = false;
381 	int cpu;
382 
383 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
384 		rq->q->softirq_done_fn(rq);
385 		return;
386 	}
387 
388 	cpu = get_cpu();
389 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
390 		shared = cpus_share_cache(cpu, ctx->cpu);
391 
392 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
393 		rq->csd.func = __blk_mq_complete_request_remote;
394 		rq->csd.info = rq;
395 		rq->csd.flags = 0;
396 		smp_call_function_single_async(ctx->cpu, &rq->csd);
397 	} else {
398 		rq->q->softirq_done_fn(rq);
399 	}
400 	put_cpu();
401 }
402 
403 static void __blk_mq_complete_request(struct request *rq)
404 {
405 	struct request_queue *q = rq->q;
406 
407 	if (!q->softirq_done_fn)
408 		blk_mq_end_request(rq, rq->errors);
409 	else
410 		blk_mq_ipi_complete_request(rq);
411 }
412 
413 /**
414  * blk_mq_complete_request - end I/O on a request
415  * @rq:		the request being processed
416  *
417  * Description:
418  *	Ends all I/O on a request. It does not handle partial completions.
419  *	The actual completion happens out-of-order, through a IPI handler.
420  **/
421 void blk_mq_complete_request(struct request *rq, int error)
422 {
423 	struct request_queue *q = rq->q;
424 
425 	if (unlikely(blk_should_fake_timeout(q)))
426 		return;
427 	if (!blk_mark_rq_complete(rq)) {
428 		rq->errors = error;
429 		__blk_mq_complete_request(rq);
430 	}
431 }
432 EXPORT_SYMBOL(blk_mq_complete_request);
433 
434 int blk_mq_request_started(struct request *rq)
435 {
436 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
437 }
438 EXPORT_SYMBOL_GPL(blk_mq_request_started);
439 
440 void blk_mq_start_request(struct request *rq)
441 {
442 	struct request_queue *q = rq->q;
443 
444 	trace_block_rq_issue(q, rq);
445 
446 	rq->resid_len = blk_rq_bytes(rq);
447 	if (unlikely(blk_bidi_rq(rq)))
448 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
449 
450 	blk_add_timer(rq);
451 
452 	/*
453 	 * Ensure that ->deadline is visible before set the started
454 	 * flag and clear the completed flag.
455 	 */
456 	smp_mb__before_atomic();
457 
458 	/*
459 	 * Mark us as started and clear complete. Complete might have been
460 	 * set if requeue raced with timeout, which then marked it as
461 	 * complete. So be sure to clear complete again when we start
462 	 * the request, otherwise we'll ignore the completion event.
463 	 */
464 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
466 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
467 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
468 
469 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
470 		/*
471 		 * Make sure space for the drain appears.  We know we can do
472 		 * this because max_hw_segments has been adjusted to be one
473 		 * fewer than the device can handle.
474 		 */
475 		rq->nr_phys_segments++;
476 	}
477 }
478 EXPORT_SYMBOL(blk_mq_start_request);
479 
480 static void __blk_mq_requeue_request(struct request *rq)
481 {
482 	struct request_queue *q = rq->q;
483 
484 	trace_block_rq_requeue(q, rq);
485 
486 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
487 		if (q->dma_drain_size && blk_rq_bytes(rq))
488 			rq->nr_phys_segments--;
489 	}
490 }
491 
492 void blk_mq_requeue_request(struct request *rq)
493 {
494 	__blk_mq_requeue_request(rq);
495 
496 	BUG_ON(blk_queued_rq(rq));
497 	blk_mq_add_to_requeue_list(rq, true);
498 }
499 EXPORT_SYMBOL(blk_mq_requeue_request);
500 
501 static void blk_mq_requeue_work(struct work_struct *work)
502 {
503 	struct request_queue *q =
504 		container_of(work, struct request_queue, requeue_work);
505 	LIST_HEAD(rq_list);
506 	struct request *rq, *next;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&q->requeue_lock, flags);
510 	list_splice_init(&q->requeue_list, &rq_list);
511 	spin_unlock_irqrestore(&q->requeue_lock, flags);
512 
513 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
514 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
515 			continue;
516 
517 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
518 		list_del_init(&rq->queuelist);
519 		blk_mq_insert_request(rq, true, false, false);
520 	}
521 
522 	while (!list_empty(&rq_list)) {
523 		rq = list_entry(rq_list.next, struct request, queuelist);
524 		list_del_init(&rq->queuelist);
525 		blk_mq_insert_request(rq, false, false, false);
526 	}
527 
528 	/*
529 	 * Use the start variant of queue running here, so that running
530 	 * the requeue work will kick stopped queues.
531 	 */
532 	blk_mq_start_hw_queues(q);
533 }
534 
535 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
536 {
537 	struct request_queue *q = rq->q;
538 	unsigned long flags;
539 
540 	/*
541 	 * We abuse this flag that is otherwise used by the I/O scheduler to
542 	 * request head insertation from the workqueue.
543 	 */
544 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
545 
546 	spin_lock_irqsave(&q->requeue_lock, flags);
547 	if (at_head) {
548 		rq->cmd_flags |= REQ_SOFTBARRIER;
549 		list_add(&rq->queuelist, &q->requeue_list);
550 	} else {
551 		list_add_tail(&rq->queuelist, &q->requeue_list);
552 	}
553 	spin_unlock_irqrestore(&q->requeue_lock, flags);
554 }
555 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
556 
557 void blk_mq_cancel_requeue_work(struct request_queue *q)
558 {
559 	cancel_work_sync(&q->requeue_work);
560 }
561 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
562 
563 void blk_mq_kick_requeue_list(struct request_queue *q)
564 {
565 	kblockd_schedule_work(&q->requeue_work);
566 }
567 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
568 
569 void blk_mq_abort_requeue_list(struct request_queue *q)
570 {
571 	unsigned long flags;
572 	LIST_HEAD(rq_list);
573 
574 	spin_lock_irqsave(&q->requeue_lock, flags);
575 	list_splice_init(&q->requeue_list, &rq_list);
576 	spin_unlock_irqrestore(&q->requeue_lock, flags);
577 
578 	while (!list_empty(&rq_list)) {
579 		struct request *rq;
580 
581 		rq = list_first_entry(&rq_list, struct request, queuelist);
582 		list_del_init(&rq->queuelist);
583 		rq->errors = -EIO;
584 		blk_mq_end_request(rq, rq->errors);
585 	}
586 }
587 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
588 
589 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
590 {
591 	if (tag < tags->nr_tags)
592 		return tags->rqs[tag];
593 
594 	return NULL;
595 }
596 EXPORT_SYMBOL(blk_mq_tag_to_rq);
597 
598 struct blk_mq_timeout_data {
599 	unsigned long next;
600 	unsigned int next_set;
601 };
602 
603 void blk_mq_rq_timed_out(struct request *req, bool reserved)
604 {
605 	struct blk_mq_ops *ops = req->q->mq_ops;
606 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
607 
608 	/*
609 	 * We know that complete is set at this point. If STARTED isn't set
610 	 * anymore, then the request isn't active and the "timeout" should
611 	 * just be ignored. This can happen due to the bitflag ordering.
612 	 * Timeout first checks if STARTED is set, and if it is, assumes
613 	 * the request is active. But if we race with completion, then
614 	 * we both flags will get cleared. So check here again, and ignore
615 	 * a timeout event with a request that isn't active.
616 	 */
617 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
618 		return;
619 
620 	if (ops->timeout)
621 		ret = ops->timeout(req, reserved);
622 
623 	switch (ret) {
624 	case BLK_EH_HANDLED:
625 		__blk_mq_complete_request(req);
626 		break;
627 	case BLK_EH_RESET_TIMER:
628 		blk_add_timer(req);
629 		blk_clear_rq_complete(req);
630 		break;
631 	case BLK_EH_NOT_HANDLED:
632 		break;
633 	default:
634 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
635 		break;
636 	}
637 }
638 
639 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
640 		struct request *rq, void *priv, bool reserved)
641 {
642 	struct blk_mq_timeout_data *data = priv;
643 
644 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
645 		/*
646 		 * If a request wasn't started before the queue was
647 		 * marked dying, kill it here or it'll go unnoticed.
648 		 */
649 		if (unlikely(blk_queue_dying(rq->q))) {
650 			rq->errors = -EIO;
651 			blk_mq_end_request(rq, rq->errors);
652 		}
653 		return;
654 	}
655 
656 	if (time_after_eq(jiffies, rq->deadline)) {
657 		if (!blk_mark_rq_complete(rq))
658 			blk_mq_rq_timed_out(rq, reserved);
659 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
660 		data->next = rq->deadline;
661 		data->next_set = 1;
662 	}
663 }
664 
665 static void blk_mq_timeout_work(struct work_struct *work)
666 {
667 	struct request_queue *q =
668 		container_of(work, struct request_queue, timeout_work);
669 	struct blk_mq_timeout_data data = {
670 		.next		= 0,
671 		.next_set	= 0,
672 	};
673 	int i;
674 
675 	/* A deadlock might occur if a request is stuck requiring a
676 	 * timeout at the same time a queue freeze is waiting
677 	 * completion, since the timeout code would not be able to
678 	 * acquire the queue reference here.
679 	 *
680 	 * That's why we don't use blk_queue_enter here; instead, we use
681 	 * percpu_ref_tryget directly, because we need to be able to
682 	 * obtain a reference even in the short window between the queue
683 	 * starting to freeze, by dropping the first reference in
684 	 * blk_mq_freeze_queue_start, and the moment the last request is
685 	 * consumed, marked by the instant q_usage_counter reaches
686 	 * zero.
687 	 */
688 	if (!percpu_ref_tryget(&q->q_usage_counter))
689 		return;
690 
691 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
692 
693 	if (data.next_set) {
694 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
695 		mod_timer(&q->timeout, data.next);
696 	} else {
697 		struct blk_mq_hw_ctx *hctx;
698 
699 		queue_for_each_hw_ctx(q, hctx, i) {
700 			/* the hctx may be unmapped, so check it here */
701 			if (blk_mq_hw_queue_mapped(hctx))
702 				blk_mq_tag_idle(hctx);
703 		}
704 	}
705 	blk_queue_exit(q);
706 }
707 
708 /*
709  * Reverse check our software queue for entries that we could potentially
710  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
711  * too much time checking for merges.
712  */
713 static bool blk_mq_attempt_merge(struct request_queue *q,
714 				 struct blk_mq_ctx *ctx, struct bio *bio)
715 {
716 	struct request *rq;
717 	int checked = 8;
718 
719 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
720 		int el_ret;
721 
722 		if (!checked--)
723 			break;
724 
725 		if (!blk_rq_merge_ok(rq, bio))
726 			continue;
727 
728 		el_ret = blk_try_merge(rq, bio);
729 		if (el_ret == ELEVATOR_BACK_MERGE) {
730 			if (bio_attempt_back_merge(q, rq, bio)) {
731 				ctx->rq_merged++;
732 				return true;
733 			}
734 			break;
735 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
736 			if (bio_attempt_front_merge(q, rq, bio)) {
737 				ctx->rq_merged++;
738 				return true;
739 			}
740 			break;
741 		}
742 	}
743 
744 	return false;
745 }
746 
747 /*
748  * Process software queues that have been marked busy, splicing them
749  * to the for-dispatch
750  */
751 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
752 {
753 	struct blk_mq_ctx *ctx;
754 	int i;
755 
756 	for (i = 0; i < hctx->ctx_map.size; i++) {
757 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
758 		unsigned int off, bit;
759 
760 		if (!bm->word)
761 			continue;
762 
763 		bit = 0;
764 		off = i * hctx->ctx_map.bits_per_word;
765 		do {
766 			bit = find_next_bit(&bm->word, bm->depth, bit);
767 			if (bit >= bm->depth)
768 				break;
769 
770 			ctx = hctx->ctxs[bit + off];
771 			clear_bit(bit, &bm->word);
772 			spin_lock(&ctx->lock);
773 			list_splice_tail_init(&ctx->rq_list, list);
774 			spin_unlock(&ctx->lock);
775 
776 			bit++;
777 		} while (1);
778 	}
779 }
780 
781 /*
782  * Run this hardware queue, pulling any software queues mapped to it in.
783  * Note that this function currently has various problems around ordering
784  * of IO. In particular, we'd like FIFO behaviour on handling existing
785  * items on the hctx->dispatch list. Ignore that for now.
786  */
787 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
788 {
789 	struct request_queue *q = hctx->queue;
790 	struct request *rq;
791 	LIST_HEAD(rq_list);
792 	LIST_HEAD(driver_list);
793 	struct list_head *dptr;
794 	int queued;
795 
796 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
797 
798 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
799 		return;
800 
801 	hctx->run++;
802 
803 	/*
804 	 * Touch any software queue that has pending entries.
805 	 */
806 	flush_busy_ctxs(hctx, &rq_list);
807 
808 	/*
809 	 * If we have previous entries on our dispatch list, grab them
810 	 * and stuff them at the front for more fair dispatch.
811 	 */
812 	if (!list_empty_careful(&hctx->dispatch)) {
813 		spin_lock(&hctx->lock);
814 		if (!list_empty(&hctx->dispatch))
815 			list_splice_init(&hctx->dispatch, &rq_list);
816 		spin_unlock(&hctx->lock);
817 	}
818 
819 	/*
820 	 * Start off with dptr being NULL, so we start the first request
821 	 * immediately, even if we have more pending.
822 	 */
823 	dptr = NULL;
824 
825 	/*
826 	 * Now process all the entries, sending them to the driver.
827 	 */
828 	queued = 0;
829 	while (!list_empty(&rq_list)) {
830 		struct blk_mq_queue_data bd;
831 		int ret;
832 
833 		rq = list_first_entry(&rq_list, struct request, queuelist);
834 		list_del_init(&rq->queuelist);
835 
836 		bd.rq = rq;
837 		bd.list = dptr;
838 		bd.last = list_empty(&rq_list);
839 
840 		ret = q->mq_ops->queue_rq(hctx, &bd);
841 		switch (ret) {
842 		case BLK_MQ_RQ_QUEUE_OK:
843 			queued++;
844 			break;
845 		case BLK_MQ_RQ_QUEUE_BUSY:
846 			list_add(&rq->queuelist, &rq_list);
847 			__blk_mq_requeue_request(rq);
848 			break;
849 		default:
850 			pr_err("blk-mq: bad return on queue: %d\n", ret);
851 		case BLK_MQ_RQ_QUEUE_ERROR:
852 			rq->errors = -EIO;
853 			blk_mq_end_request(rq, rq->errors);
854 			break;
855 		}
856 
857 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
858 			break;
859 
860 		/*
861 		 * We've done the first request. If we have more than 1
862 		 * left in the list, set dptr to defer issue.
863 		 */
864 		if (!dptr && rq_list.next != rq_list.prev)
865 			dptr = &driver_list;
866 	}
867 
868 	if (!queued)
869 		hctx->dispatched[0]++;
870 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
871 		hctx->dispatched[ilog2(queued) + 1]++;
872 
873 	/*
874 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
875 	 * that is where we will continue on next queue run.
876 	 */
877 	if (!list_empty(&rq_list)) {
878 		spin_lock(&hctx->lock);
879 		list_splice(&rq_list, &hctx->dispatch);
880 		spin_unlock(&hctx->lock);
881 		/*
882 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
883 		 * it's possible the queue is stopped and restarted again
884 		 * before this. Queue restart will dispatch requests. And since
885 		 * requests in rq_list aren't added into hctx->dispatch yet,
886 		 * the requests in rq_list might get lost.
887 		 *
888 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
889 		 **/
890 		blk_mq_run_hw_queue(hctx, true);
891 	}
892 }
893 
894 /*
895  * It'd be great if the workqueue API had a way to pass
896  * in a mask and had some smarts for more clever placement.
897  * For now we just round-robin here, switching for every
898  * BLK_MQ_CPU_WORK_BATCH queued items.
899  */
900 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
901 {
902 	if (hctx->queue->nr_hw_queues == 1)
903 		return WORK_CPU_UNBOUND;
904 
905 	if (--hctx->next_cpu_batch <= 0) {
906 		int cpu = hctx->next_cpu, next_cpu;
907 
908 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
909 		if (next_cpu >= nr_cpu_ids)
910 			next_cpu = cpumask_first(hctx->cpumask);
911 
912 		hctx->next_cpu = next_cpu;
913 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
914 
915 		return cpu;
916 	}
917 
918 	return hctx->next_cpu;
919 }
920 
921 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
922 {
923 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
924 	    !blk_mq_hw_queue_mapped(hctx)))
925 		return;
926 
927 	if (!async) {
928 		int cpu = get_cpu();
929 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
930 			__blk_mq_run_hw_queue(hctx);
931 			put_cpu();
932 			return;
933 		}
934 
935 		put_cpu();
936 	}
937 
938 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
939 			&hctx->run_work, 0);
940 }
941 
942 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
943 {
944 	struct blk_mq_hw_ctx *hctx;
945 	int i;
946 
947 	queue_for_each_hw_ctx(q, hctx, i) {
948 		if ((!blk_mq_hctx_has_pending(hctx) &&
949 		    list_empty_careful(&hctx->dispatch)) ||
950 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
951 			continue;
952 
953 		blk_mq_run_hw_queue(hctx, async);
954 	}
955 }
956 EXPORT_SYMBOL(blk_mq_run_hw_queues);
957 
958 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
959 {
960 	cancel_delayed_work(&hctx->run_work);
961 	cancel_delayed_work(&hctx->delay_work);
962 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
963 }
964 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
965 
966 void blk_mq_stop_hw_queues(struct request_queue *q)
967 {
968 	struct blk_mq_hw_ctx *hctx;
969 	int i;
970 
971 	queue_for_each_hw_ctx(q, hctx, i)
972 		blk_mq_stop_hw_queue(hctx);
973 }
974 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
975 
976 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
977 {
978 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
979 
980 	blk_mq_run_hw_queue(hctx, false);
981 }
982 EXPORT_SYMBOL(blk_mq_start_hw_queue);
983 
984 void blk_mq_start_hw_queues(struct request_queue *q)
985 {
986 	struct blk_mq_hw_ctx *hctx;
987 	int i;
988 
989 	queue_for_each_hw_ctx(q, hctx, i)
990 		blk_mq_start_hw_queue(hctx);
991 }
992 EXPORT_SYMBOL(blk_mq_start_hw_queues);
993 
994 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
995 {
996 	struct blk_mq_hw_ctx *hctx;
997 	int i;
998 
999 	queue_for_each_hw_ctx(q, hctx, i) {
1000 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 			continue;
1002 
1003 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1004 		blk_mq_run_hw_queue(hctx, async);
1005 	}
1006 }
1007 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1008 
1009 static void blk_mq_run_work_fn(struct work_struct *work)
1010 {
1011 	struct blk_mq_hw_ctx *hctx;
1012 
1013 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1014 
1015 	__blk_mq_run_hw_queue(hctx);
1016 }
1017 
1018 static void blk_mq_delay_work_fn(struct work_struct *work)
1019 {
1020 	struct blk_mq_hw_ctx *hctx;
1021 
1022 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1023 
1024 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1025 		__blk_mq_run_hw_queue(hctx);
1026 }
1027 
1028 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1029 {
1030 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1031 		return;
1032 
1033 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1034 			&hctx->delay_work, msecs_to_jiffies(msecs));
1035 }
1036 EXPORT_SYMBOL(blk_mq_delay_queue);
1037 
1038 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1039 					    struct blk_mq_ctx *ctx,
1040 					    struct request *rq,
1041 					    bool at_head)
1042 {
1043 	trace_block_rq_insert(hctx->queue, rq);
1044 
1045 	if (at_head)
1046 		list_add(&rq->queuelist, &ctx->rq_list);
1047 	else
1048 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1049 }
1050 
1051 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1052 				    struct request *rq, bool at_head)
1053 {
1054 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1055 
1056 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1057 	blk_mq_hctx_mark_pending(hctx, ctx);
1058 }
1059 
1060 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1061 		bool async)
1062 {
1063 	struct request_queue *q = rq->q;
1064 	struct blk_mq_hw_ctx *hctx;
1065 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1066 
1067 	current_ctx = blk_mq_get_ctx(q);
1068 	if (!cpu_online(ctx->cpu))
1069 		rq->mq_ctx = ctx = current_ctx;
1070 
1071 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1072 
1073 	spin_lock(&ctx->lock);
1074 	__blk_mq_insert_request(hctx, rq, at_head);
1075 	spin_unlock(&ctx->lock);
1076 
1077 	if (run_queue)
1078 		blk_mq_run_hw_queue(hctx, async);
1079 
1080 	blk_mq_put_ctx(current_ctx);
1081 }
1082 
1083 static void blk_mq_insert_requests(struct request_queue *q,
1084 				     struct blk_mq_ctx *ctx,
1085 				     struct list_head *list,
1086 				     int depth,
1087 				     bool from_schedule)
1088 
1089 {
1090 	struct blk_mq_hw_ctx *hctx;
1091 	struct blk_mq_ctx *current_ctx;
1092 
1093 	trace_block_unplug(q, depth, !from_schedule);
1094 
1095 	current_ctx = blk_mq_get_ctx(q);
1096 
1097 	if (!cpu_online(ctx->cpu))
1098 		ctx = current_ctx;
1099 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1100 
1101 	/*
1102 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1103 	 * offline now
1104 	 */
1105 	spin_lock(&ctx->lock);
1106 	while (!list_empty(list)) {
1107 		struct request *rq;
1108 
1109 		rq = list_first_entry(list, struct request, queuelist);
1110 		list_del_init(&rq->queuelist);
1111 		rq->mq_ctx = ctx;
1112 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1113 	}
1114 	blk_mq_hctx_mark_pending(hctx, ctx);
1115 	spin_unlock(&ctx->lock);
1116 
1117 	blk_mq_run_hw_queue(hctx, from_schedule);
1118 	blk_mq_put_ctx(current_ctx);
1119 }
1120 
1121 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1122 {
1123 	struct request *rqa = container_of(a, struct request, queuelist);
1124 	struct request *rqb = container_of(b, struct request, queuelist);
1125 
1126 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1127 		 (rqa->mq_ctx == rqb->mq_ctx &&
1128 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1129 }
1130 
1131 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1132 {
1133 	struct blk_mq_ctx *this_ctx;
1134 	struct request_queue *this_q;
1135 	struct request *rq;
1136 	LIST_HEAD(list);
1137 	LIST_HEAD(ctx_list);
1138 	unsigned int depth;
1139 
1140 	list_splice_init(&plug->mq_list, &list);
1141 
1142 	list_sort(NULL, &list, plug_ctx_cmp);
1143 
1144 	this_q = NULL;
1145 	this_ctx = NULL;
1146 	depth = 0;
1147 
1148 	while (!list_empty(&list)) {
1149 		rq = list_entry_rq(list.next);
1150 		list_del_init(&rq->queuelist);
1151 		BUG_ON(!rq->q);
1152 		if (rq->mq_ctx != this_ctx) {
1153 			if (this_ctx) {
1154 				blk_mq_insert_requests(this_q, this_ctx,
1155 							&ctx_list, depth,
1156 							from_schedule);
1157 			}
1158 
1159 			this_ctx = rq->mq_ctx;
1160 			this_q = rq->q;
1161 			depth = 0;
1162 		}
1163 
1164 		depth++;
1165 		list_add_tail(&rq->queuelist, &ctx_list);
1166 	}
1167 
1168 	/*
1169 	 * If 'this_ctx' is set, we know we have entries to complete
1170 	 * on 'ctx_list'. Do those.
1171 	 */
1172 	if (this_ctx) {
1173 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1174 				       from_schedule);
1175 	}
1176 }
1177 
1178 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1179 {
1180 	init_request_from_bio(rq, bio);
1181 
1182 	blk_account_io_start(rq, 1);
1183 }
1184 
1185 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1186 {
1187 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1188 		!blk_queue_nomerges(hctx->queue);
1189 }
1190 
1191 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1192 					 struct blk_mq_ctx *ctx,
1193 					 struct request *rq, struct bio *bio)
1194 {
1195 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1196 		blk_mq_bio_to_request(rq, bio);
1197 		spin_lock(&ctx->lock);
1198 insert_rq:
1199 		__blk_mq_insert_request(hctx, rq, false);
1200 		spin_unlock(&ctx->lock);
1201 		return false;
1202 	} else {
1203 		struct request_queue *q = hctx->queue;
1204 
1205 		spin_lock(&ctx->lock);
1206 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1207 			blk_mq_bio_to_request(rq, bio);
1208 			goto insert_rq;
1209 		}
1210 
1211 		spin_unlock(&ctx->lock);
1212 		__blk_mq_free_request(hctx, ctx, rq);
1213 		return true;
1214 	}
1215 }
1216 
1217 struct blk_map_ctx {
1218 	struct blk_mq_hw_ctx *hctx;
1219 	struct blk_mq_ctx *ctx;
1220 };
1221 
1222 static struct request *blk_mq_map_request(struct request_queue *q,
1223 					  struct bio *bio,
1224 					  struct blk_map_ctx *data)
1225 {
1226 	struct blk_mq_hw_ctx *hctx;
1227 	struct blk_mq_ctx *ctx;
1228 	struct request *rq;
1229 	int op = bio_data_dir(bio);
1230 	int op_flags = 0;
1231 	struct blk_mq_alloc_data alloc_data;
1232 
1233 	blk_queue_enter_live(q);
1234 	ctx = blk_mq_get_ctx(q);
1235 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1236 
1237 	if (rw_is_sync(bio_op(bio), bio->bi_opf))
1238 		op_flags |= REQ_SYNC;
1239 
1240 	trace_block_getrq(q, bio, op);
1241 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1242 	rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1243 	if (unlikely(!rq)) {
1244 		__blk_mq_run_hw_queue(hctx);
1245 		blk_mq_put_ctx(ctx);
1246 		trace_block_sleeprq(q, bio, op);
1247 
1248 		ctx = blk_mq_get_ctx(q);
1249 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1250 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1251 		rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1252 		ctx = alloc_data.ctx;
1253 		hctx = alloc_data.hctx;
1254 	}
1255 
1256 	hctx->queued++;
1257 	data->hctx = hctx;
1258 	data->ctx = ctx;
1259 	return rq;
1260 }
1261 
1262 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1263 {
1264 	int ret;
1265 	struct request_queue *q = rq->q;
1266 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1267 			rq->mq_ctx->cpu);
1268 	struct blk_mq_queue_data bd = {
1269 		.rq = rq,
1270 		.list = NULL,
1271 		.last = 1
1272 	};
1273 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1274 
1275 	/*
1276 	 * For OK queue, we are done. For error, kill it. Any other
1277 	 * error (busy), just add it to our list as we previously
1278 	 * would have done
1279 	 */
1280 	ret = q->mq_ops->queue_rq(hctx, &bd);
1281 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1282 		*cookie = new_cookie;
1283 		return 0;
1284 	}
1285 
1286 	__blk_mq_requeue_request(rq);
1287 
1288 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1289 		*cookie = BLK_QC_T_NONE;
1290 		rq->errors = -EIO;
1291 		blk_mq_end_request(rq, rq->errors);
1292 		return 0;
1293 	}
1294 
1295 	return -1;
1296 }
1297 
1298 /*
1299  * Multiple hardware queue variant. This will not use per-process plugs,
1300  * but will attempt to bypass the hctx queueing if we can go straight to
1301  * hardware for SYNC IO.
1302  */
1303 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1304 {
1305 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1306 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1307 	struct blk_map_ctx data;
1308 	struct request *rq;
1309 	unsigned int request_count = 0;
1310 	struct blk_plug *plug;
1311 	struct request *same_queue_rq = NULL;
1312 	blk_qc_t cookie;
1313 
1314 	blk_queue_bounce(q, &bio);
1315 
1316 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1317 		bio_io_error(bio);
1318 		return BLK_QC_T_NONE;
1319 	}
1320 
1321 	blk_queue_split(q, &bio, q->bio_split);
1322 
1323 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1324 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1325 		return BLK_QC_T_NONE;
1326 
1327 	rq = blk_mq_map_request(q, bio, &data);
1328 	if (unlikely(!rq))
1329 		return BLK_QC_T_NONE;
1330 
1331 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1332 
1333 	if (unlikely(is_flush_fua)) {
1334 		blk_mq_bio_to_request(rq, bio);
1335 		blk_insert_flush(rq);
1336 		goto run_queue;
1337 	}
1338 
1339 	plug = current->plug;
1340 	/*
1341 	 * If the driver supports defer issued based on 'last', then
1342 	 * queue it up like normal since we can potentially save some
1343 	 * CPU this way.
1344 	 */
1345 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1346 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1347 		struct request *old_rq = NULL;
1348 
1349 		blk_mq_bio_to_request(rq, bio);
1350 
1351 		/*
1352 		 * We do limited pluging. If the bio can be merged, do that.
1353 		 * Otherwise the existing request in the plug list will be
1354 		 * issued. So the plug list will have one request at most
1355 		 */
1356 		if (plug) {
1357 			/*
1358 			 * The plug list might get flushed before this. If that
1359 			 * happens, same_queue_rq is invalid and plug list is
1360 			 * empty
1361 			 */
1362 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1363 				old_rq = same_queue_rq;
1364 				list_del_init(&old_rq->queuelist);
1365 			}
1366 			list_add_tail(&rq->queuelist, &plug->mq_list);
1367 		} else /* is_sync */
1368 			old_rq = rq;
1369 		blk_mq_put_ctx(data.ctx);
1370 		if (!old_rq)
1371 			goto done;
1372 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1373 			goto done;
1374 		blk_mq_insert_request(old_rq, false, true, true);
1375 		goto done;
1376 	}
1377 
1378 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1379 		/*
1380 		 * For a SYNC request, send it to the hardware immediately. For
1381 		 * an ASYNC request, just ensure that we run it later on. The
1382 		 * latter allows for merging opportunities and more efficient
1383 		 * dispatching.
1384 		 */
1385 run_queue:
1386 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1387 	}
1388 	blk_mq_put_ctx(data.ctx);
1389 done:
1390 	return cookie;
1391 }
1392 
1393 /*
1394  * Single hardware queue variant. This will attempt to use any per-process
1395  * plug for merging and IO deferral.
1396  */
1397 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1398 {
1399 	const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1400 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1401 	struct blk_plug *plug;
1402 	unsigned int request_count = 0;
1403 	struct blk_map_ctx data;
1404 	struct request *rq;
1405 	blk_qc_t cookie;
1406 
1407 	blk_queue_bounce(q, &bio);
1408 
1409 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1410 		bio_io_error(bio);
1411 		return BLK_QC_T_NONE;
1412 	}
1413 
1414 	blk_queue_split(q, &bio, q->bio_split);
1415 
1416 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1417 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1418 			return BLK_QC_T_NONE;
1419 	} else
1420 		request_count = blk_plug_queued_count(q);
1421 
1422 	rq = blk_mq_map_request(q, bio, &data);
1423 	if (unlikely(!rq))
1424 		return BLK_QC_T_NONE;
1425 
1426 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1427 
1428 	if (unlikely(is_flush_fua)) {
1429 		blk_mq_bio_to_request(rq, bio);
1430 		blk_insert_flush(rq);
1431 		goto run_queue;
1432 	}
1433 
1434 	/*
1435 	 * A task plug currently exists. Since this is completely lockless,
1436 	 * utilize that to temporarily store requests until the task is
1437 	 * either done or scheduled away.
1438 	 */
1439 	plug = current->plug;
1440 	if (plug) {
1441 		blk_mq_bio_to_request(rq, bio);
1442 		if (!request_count)
1443 			trace_block_plug(q);
1444 
1445 		blk_mq_put_ctx(data.ctx);
1446 
1447 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1448 			blk_flush_plug_list(plug, false);
1449 			trace_block_plug(q);
1450 		}
1451 
1452 		list_add_tail(&rq->queuelist, &plug->mq_list);
1453 		return cookie;
1454 	}
1455 
1456 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1457 		/*
1458 		 * For a SYNC request, send it to the hardware immediately. For
1459 		 * an ASYNC request, just ensure that we run it later on. The
1460 		 * latter allows for merging opportunities and more efficient
1461 		 * dispatching.
1462 		 */
1463 run_queue:
1464 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1465 	}
1466 
1467 	blk_mq_put_ctx(data.ctx);
1468 	return cookie;
1469 }
1470 
1471 /*
1472  * Default mapping to a software queue, since we use one per CPU.
1473  */
1474 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1475 {
1476 	return q->queue_hw_ctx[q->mq_map[cpu]];
1477 }
1478 EXPORT_SYMBOL(blk_mq_map_queue);
1479 
1480 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1481 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1482 {
1483 	struct page *page;
1484 
1485 	if (tags->rqs && set->ops->exit_request) {
1486 		int i;
1487 
1488 		for (i = 0; i < tags->nr_tags; i++) {
1489 			if (!tags->rqs[i])
1490 				continue;
1491 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1492 						hctx_idx, i);
1493 			tags->rqs[i] = NULL;
1494 		}
1495 	}
1496 
1497 	while (!list_empty(&tags->page_list)) {
1498 		page = list_first_entry(&tags->page_list, struct page, lru);
1499 		list_del_init(&page->lru);
1500 		/*
1501 		 * Remove kmemleak object previously allocated in
1502 		 * blk_mq_init_rq_map().
1503 		 */
1504 		kmemleak_free(page_address(page));
1505 		__free_pages(page, page->private);
1506 	}
1507 
1508 	kfree(tags->rqs);
1509 
1510 	blk_mq_free_tags(tags);
1511 }
1512 
1513 static size_t order_to_size(unsigned int order)
1514 {
1515 	return (size_t)PAGE_SIZE << order;
1516 }
1517 
1518 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1519 		unsigned int hctx_idx)
1520 {
1521 	struct blk_mq_tags *tags;
1522 	unsigned int i, j, entries_per_page, max_order = 4;
1523 	size_t rq_size, left;
1524 
1525 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1526 				set->numa_node,
1527 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1528 	if (!tags)
1529 		return NULL;
1530 
1531 	INIT_LIST_HEAD(&tags->page_list);
1532 
1533 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1534 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1535 				 set->numa_node);
1536 	if (!tags->rqs) {
1537 		blk_mq_free_tags(tags);
1538 		return NULL;
1539 	}
1540 
1541 	/*
1542 	 * rq_size is the size of the request plus driver payload, rounded
1543 	 * to the cacheline size
1544 	 */
1545 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1546 				cache_line_size());
1547 	left = rq_size * set->queue_depth;
1548 
1549 	for (i = 0; i < set->queue_depth; ) {
1550 		int this_order = max_order;
1551 		struct page *page;
1552 		int to_do;
1553 		void *p;
1554 
1555 		while (this_order && left < order_to_size(this_order - 1))
1556 			this_order--;
1557 
1558 		do {
1559 			page = alloc_pages_node(set->numa_node,
1560 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1561 				this_order);
1562 			if (page)
1563 				break;
1564 			if (!this_order--)
1565 				break;
1566 			if (order_to_size(this_order) < rq_size)
1567 				break;
1568 		} while (1);
1569 
1570 		if (!page)
1571 			goto fail;
1572 
1573 		page->private = this_order;
1574 		list_add_tail(&page->lru, &tags->page_list);
1575 
1576 		p = page_address(page);
1577 		/*
1578 		 * Allow kmemleak to scan these pages as they contain pointers
1579 		 * to additional allocations like via ops->init_request().
1580 		 */
1581 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1582 		entries_per_page = order_to_size(this_order) / rq_size;
1583 		to_do = min(entries_per_page, set->queue_depth - i);
1584 		left -= to_do * rq_size;
1585 		for (j = 0; j < to_do; j++) {
1586 			tags->rqs[i] = p;
1587 			if (set->ops->init_request) {
1588 				if (set->ops->init_request(set->driver_data,
1589 						tags->rqs[i], hctx_idx, i,
1590 						set->numa_node)) {
1591 					tags->rqs[i] = NULL;
1592 					goto fail;
1593 				}
1594 			}
1595 
1596 			p += rq_size;
1597 			i++;
1598 		}
1599 	}
1600 	return tags;
1601 
1602 fail:
1603 	blk_mq_free_rq_map(set, tags, hctx_idx);
1604 	return NULL;
1605 }
1606 
1607 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1608 {
1609 	kfree(bitmap->map);
1610 }
1611 
1612 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1613 {
1614 	unsigned int bpw = 8, total, num_maps, i;
1615 
1616 	bitmap->bits_per_word = bpw;
1617 
1618 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1619 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1620 					GFP_KERNEL, node);
1621 	if (!bitmap->map)
1622 		return -ENOMEM;
1623 
1624 	total = nr_cpu_ids;
1625 	for (i = 0; i < num_maps; i++) {
1626 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1627 		total -= bitmap->map[i].depth;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1634 {
1635 	struct request_queue *q = hctx->queue;
1636 	struct blk_mq_ctx *ctx;
1637 	LIST_HEAD(tmp);
1638 
1639 	/*
1640 	 * Move ctx entries to new CPU, if this one is going away.
1641 	 */
1642 	ctx = __blk_mq_get_ctx(q, cpu);
1643 
1644 	spin_lock(&ctx->lock);
1645 	if (!list_empty(&ctx->rq_list)) {
1646 		list_splice_init(&ctx->rq_list, &tmp);
1647 		blk_mq_hctx_clear_pending(hctx, ctx);
1648 	}
1649 	spin_unlock(&ctx->lock);
1650 
1651 	if (list_empty(&tmp))
1652 		return NOTIFY_OK;
1653 
1654 	ctx = blk_mq_get_ctx(q);
1655 	spin_lock(&ctx->lock);
1656 
1657 	while (!list_empty(&tmp)) {
1658 		struct request *rq;
1659 
1660 		rq = list_first_entry(&tmp, struct request, queuelist);
1661 		rq->mq_ctx = ctx;
1662 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1663 	}
1664 
1665 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1666 	blk_mq_hctx_mark_pending(hctx, ctx);
1667 
1668 	spin_unlock(&ctx->lock);
1669 
1670 	blk_mq_run_hw_queue(hctx, true);
1671 	blk_mq_put_ctx(ctx);
1672 	return NOTIFY_OK;
1673 }
1674 
1675 static int blk_mq_hctx_notify(void *data, unsigned long action,
1676 			      unsigned int cpu)
1677 {
1678 	struct blk_mq_hw_ctx *hctx = data;
1679 
1680 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1681 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1682 
1683 	/*
1684 	 * In case of CPU online, tags may be reallocated
1685 	 * in blk_mq_map_swqueue() after mapping is updated.
1686 	 */
1687 
1688 	return NOTIFY_OK;
1689 }
1690 
1691 /* hctx->ctxs will be freed in queue's release handler */
1692 static void blk_mq_exit_hctx(struct request_queue *q,
1693 		struct blk_mq_tag_set *set,
1694 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1695 {
1696 	unsigned flush_start_tag = set->queue_depth;
1697 
1698 	blk_mq_tag_idle(hctx);
1699 
1700 	if (set->ops->exit_request)
1701 		set->ops->exit_request(set->driver_data,
1702 				       hctx->fq->flush_rq, hctx_idx,
1703 				       flush_start_tag + hctx_idx);
1704 
1705 	if (set->ops->exit_hctx)
1706 		set->ops->exit_hctx(hctx, hctx_idx);
1707 
1708 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1709 	blk_free_flush_queue(hctx->fq);
1710 	blk_mq_free_bitmap(&hctx->ctx_map);
1711 }
1712 
1713 static void blk_mq_exit_hw_queues(struct request_queue *q,
1714 		struct blk_mq_tag_set *set, int nr_queue)
1715 {
1716 	struct blk_mq_hw_ctx *hctx;
1717 	unsigned int i;
1718 
1719 	queue_for_each_hw_ctx(q, hctx, i) {
1720 		if (i == nr_queue)
1721 			break;
1722 		blk_mq_exit_hctx(q, set, hctx, i);
1723 	}
1724 }
1725 
1726 static void blk_mq_free_hw_queues(struct request_queue *q,
1727 		struct blk_mq_tag_set *set)
1728 {
1729 	struct blk_mq_hw_ctx *hctx;
1730 	unsigned int i;
1731 
1732 	queue_for_each_hw_ctx(q, hctx, i)
1733 		free_cpumask_var(hctx->cpumask);
1734 }
1735 
1736 static int blk_mq_init_hctx(struct request_queue *q,
1737 		struct blk_mq_tag_set *set,
1738 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1739 {
1740 	int node;
1741 	unsigned flush_start_tag = set->queue_depth;
1742 
1743 	node = hctx->numa_node;
1744 	if (node == NUMA_NO_NODE)
1745 		node = hctx->numa_node = set->numa_node;
1746 
1747 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1748 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1749 	spin_lock_init(&hctx->lock);
1750 	INIT_LIST_HEAD(&hctx->dispatch);
1751 	hctx->queue = q;
1752 	hctx->queue_num = hctx_idx;
1753 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1754 
1755 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1756 					blk_mq_hctx_notify, hctx);
1757 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1758 
1759 	hctx->tags = set->tags[hctx_idx];
1760 
1761 	/*
1762 	 * Allocate space for all possible cpus to avoid allocation at
1763 	 * runtime
1764 	 */
1765 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1766 					GFP_KERNEL, node);
1767 	if (!hctx->ctxs)
1768 		goto unregister_cpu_notifier;
1769 
1770 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1771 		goto free_ctxs;
1772 
1773 	hctx->nr_ctx = 0;
1774 
1775 	if (set->ops->init_hctx &&
1776 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1777 		goto free_bitmap;
1778 
1779 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1780 	if (!hctx->fq)
1781 		goto exit_hctx;
1782 
1783 	if (set->ops->init_request &&
1784 	    set->ops->init_request(set->driver_data,
1785 				   hctx->fq->flush_rq, hctx_idx,
1786 				   flush_start_tag + hctx_idx, node))
1787 		goto free_fq;
1788 
1789 	return 0;
1790 
1791  free_fq:
1792 	kfree(hctx->fq);
1793  exit_hctx:
1794 	if (set->ops->exit_hctx)
1795 		set->ops->exit_hctx(hctx, hctx_idx);
1796  free_bitmap:
1797 	blk_mq_free_bitmap(&hctx->ctx_map);
1798  free_ctxs:
1799 	kfree(hctx->ctxs);
1800  unregister_cpu_notifier:
1801 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1802 
1803 	return -1;
1804 }
1805 
1806 static void blk_mq_init_cpu_queues(struct request_queue *q,
1807 				   unsigned int nr_hw_queues)
1808 {
1809 	unsigned int i;
1810 
1811 	for_each_possible_cpu(i) {
1812 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1813 		struct blk_mq_hw_ctx *hctx;
1814 
1815 		memset(__ctx, 0, sizeof(*__ctx));
1816 		__ctx->cpu = i;
1817 		spin_lock_init(&__ctx->lock);
1818 		INIT_LIST_HEAD(&__ctx->rq_list);
1819 		__ctx->queue = q;
1820 
1821 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1822 		if (!cpu_online(i))
1823 			continue;
1824 
1825 		hctx = q->mq_ops->map_queue(q, i);
1826 
1827 		/*
1828 		 * Set local node, IFF we have more than one hw queue. If
1829 		 * not, we remain on the home node of the device
1830 		 */
1831 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1832 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1833 	}
1834 }
1835 
1836 static void blk_mq_map_swqueue(struct request_queue *q,
1837 			       const struct cpumask *online_mask)
1838 {
1839 	unsigned int i;
1840 	struct blk_mq_hw_ctx *hctx;
1841 	struct blk_mq_ctx *ctx;
1842 	struct blk_mq_tag_set *set = q->tag_set;
1843 
1844 	/*
1845 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1846 	 */
1847 	mutex_lock(&q->sysfs_lock);
1848 
1849 	queue_for_each_hw_ctx(q, hctx, i) {
1850 		cpumask_clear(hctx->cpumask);
1851 		hctx->nr_ctx = 0;
1852 	}
1853 
1854 	/*
1855 	 * Map software to hardware queues
1856 	 */
1857 	for_each_possible_cpu(i) {
1858 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1859 		if (!cpumask_test_cpu(i, online_mask))
1860 			continue;
1861 
1862 		ctx = per_cpu_ptr(q->queue_ctx, i);
1863 		hctx = q->mq_ops->map_queue(q, i);
1864 
1865 		cpumask_set_cpu(i, hctx->cpumask);
1866 		ctx->index_hw = hctx->nr_ctx;
1867 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1868 	}
1869 
1870 	mutex_unlock(&q->sysfs_lock);
1871 
1872 	queue_for_each_hw_ctx(q, hctx, i) {
1873 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1874 
1875 		/*
1876 		 * If no software queues are mapped to this hardware queue,
1877 		 * disable it and free the request entries.
1878 		 */
1879 		if (!hctx->nr_ctx) {
1880 			if (set->tags[i]) {
1881 				blk_mq_free_rq_map(set, set->tags[i], i);
1882 				set->tags[i] = NULL;
1883 			}
1884 			hctx->tags = NULL;
1885 			continue;
1886 		}
1887 
1888 		/* unmapped hw queue can be remapped after CPU topo changed */
1889 		if (!set->tags[i])
1890 			set->tags[i] = blk_mq_init_rq_map(set, i);
1891 		hctx->tags = set->tags[i];
1892 		WARN_ON(!hctx->tags);
1893 
1894 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1895 		/*
1896 		 * Set the map size to the number of mapped software queues.
1897 		 * This is more accurate and more efficient than looping
1898 		 * over all possibly mapped software queues.
1899 		 */
1900 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1901 
1902 		/*
1903 		 * Initialize batch roundrobin counts
1904 		 */
1905 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1906 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1907 	}
1908 }
1909 
1910 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1911 {
1912 	struct blk_mq_hw_ctx *hctx;
1913 	int i;
1914 
1915 	queue_for_each_hw_ctx(q, hctx, i) {
1916 		if (shared)
1917 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1918 		else
1919 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1920 	}
1921 }
1922 
1923 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1924 {
1925 	struct request_queue *q;
1926 
1927 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1928 		blk_mq_freeze_queue(q);
1929 		queue_set_hctx_shared(q, shared);
1930 		blk_mq_unfreeze_queue(q);
1931 	}
1932 }
1933 
1934 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1935 {
1936 	struct blk_mq_tag_set *set = q->tag_set;
1937 
1938 	mutex_lock(&set->tag_list_lock);
1939 	list_del_init(&q->tag_set_list);
1940 	if (list_is_singular(&set->tag_list)) {
1941 		/* just transitioned to unshared */
1942 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1943 		/* update existing queue */
1944 		blk_mq_update_tag_set_depth(set, false);
1945 	}
1946 	mutex_unlock(&set->tag_list_lock);
1947 }
1948 
1949 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1950 				     struct request_queue *q)
1951 {
1952 	q->tag_set = set;
1953 
1954 	mutex_lock(&set->tag_list_lock);
1955 
1956 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1957 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1958 		set->flags |= BLK_MQ_F_TAG_SHARED;
1959 		/* update existing queue */
1960 		blk_mq_update_tag_set_depth(set, true);
1961 	}
1962 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1963 		queue_set_hctx_shared(q, true);
1964 	list_add_tail(&q->tag_set_list, &set->tag_list);
1965 
1966 	mutex_unlock(&set->tag_list_lock);
1967 }
1968 
1969 /*
1970  * It is the actual release handler for mq, but we do it from
1971  * request queue's release handler for avoiding use-after-free
1972  * and headache because q->mq_kobj shouldn't have been introduced,
1973  * but we can't group ctx/kctx kobj without it.
1974  */
1975 void blk_mq_release(struct request_queue *q)
1976 {
1977 	struct blk_mq_hw_ctx *hctx;
1978 	unsigned int i;
1979 
1980 	/* hctx kobj stays in hctx */
1981 	queue_for_each_hw_ctx(q, hctx, i) {
1982 		if (!hctx)
1983 			continue;
1984 		kfree(hctx->ctxs);
1985 		kfree(hctx);
1986 	}
1987 
1988 	kfree(q->mq_map);
1989 	q->mq_map = NULL;
1990 
1991 	kfree(q->queue_hw_ctx);
1992 
1993 	/* ctx kobj stays in queue_ctx */
1994 	free_percpu(q->queue_ctx);
1995 }
1996 
1997 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1998 {
1999 	struct request_queue *uninit_q, *q;
2000 
2001 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2002 	if (!uninit_q)
2003 		return ERR_PTR(-ENOMEM);
2004 
2005 	q = blk_mq_init_allocated_queue(set, uninit_q);
2006 	if (IS_ERR(q))
2007 		blk_cleanup_queue(uninit_q);
2008 
2009 	return q;
2010 }
2011 EXPORT_SYMBOL(blk_mq_init_queue);
2012 
2013 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2014 						struct request_queue *q)
2015 {
2016 	int i, j;
2017 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2018 
2019 	blk_mq_sysfs_unregister(q);
2020 	for (i = 0; i < set->nr_hw_queues; i++) {
2021 		int node;
2022 
2023 		if (hctxs[i])
2024 			continue;
2025 
2026 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2027 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2028 					GFP_KERNEL, node);
2029 		if (!hctxs[i])
2030 			break;
2031 
2032 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2033 						node)) {
2034 			kfree(hctxs[i]);
2035 			hctxs[i] = NULL;
2036 			break;
2037 		}
2038 
2039 		atomic_set(&hctxs[i]->nr_active, 0);
2040 		hctxs[i]->numa_node = node;
2041 		hctxs[i]->queue_num = i;
2042 
2043 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2044 			free_cpumask_var(hctxs[i]->cpumask);
2045 			kfree(hctxs[i]);
2046 			hctxs[i] = NULL;
2047 			break;
2048 		}
2049 		blk_mq_hctx_kobj_init(hctxs[i]);
2050 	}
2051 	for (j = i; j < q->nr_hw_queues; j++) {
2052 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2053 
2054 		if (hctx) {
2055 			if (hctx->tags) {
2056 				blk_mq_free_rq_map(set, hctx->tags, j);
2057 				set->tags[j] = NULL;
2058 			}
2059 			blk_mq_exit_hctx(q, set, hctx, j);
2060 			free_cpumask_var(hctx->cpumask);
2061 			kobject_put(&hctx->kobj);
2062 			kfree(hctx->ctxs);
2063 			kfree(hctx);
2064 			hctxs[j] = NULL;
2065 
2066 		}
2067 	}
2068 	q->nr_hw_queues = i;
2069 	blk_mq_sysfs_register(q);
2070 }
2071 
2072 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2073 						  struct request_queue *q)
2074 {
2075 	/* mark the queue as mq asap */
2076 	q->mq_ops = set->ops;
2077 
2078 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2079 	if (!q->queue_ctx)
2080 		goto err_exit;
2081 
2082 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2083 						GFP_KERNEL, set->numa_node);
2084 	if (!q->queue_hw_ctx)
2085 		goto err_percpu;
2086 
2087 	q->mq_map = blk_mq_make_queue_map(set);
2088 	if (!q->mq_map)
2089 		goto err_map;
2090 
2091 	blk_mq_realloc_hw_ctxs(set, q);
2092 	if (!q->nr_hw_queues)
2093 		goto err_hctxs;
2094 
2095 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2096 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2097 
2098 	q->nr_queues = nr_cpu_ids;
2099 
2100 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2101 
2102 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2103 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2104 
2105 	q->sg_reserved_size = INT_MAX;
2106 
2107 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2108 	INIT_LIST_HEAD(&q->requeue_list);
2109 	spin_lock_init(&q->requeue_lock);
2110 
2111 	if (q->nr_hw_queues > 1)
2112 		blk_queue_make_request(q, blk_mq_make_request);
2113 	else
2114 		blk_queue_make_request(q, blk_sq_make_request);
2115 
2116 	/*
2117 	 * Do this after blk_queue_make_request() overrides it...
2118 	 */
2119 	q->nr_requests = set->queue_depth;
2120 
2121 	if (set->ops->complete)
2122 		blk_queue_softirq_done(q, set->ops->complete);
2123 
2124 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2125 
2126 	get_online_cpus();
2127 	mutex_lock(&all_q_mutex);
2128 
2129 	list_add_tail(&q->all_q_node, &all_q_list);
2130 	blk_mq_add_queue_tag_set(set, q);
2131 	blk_mq_map_swqueue(q, cpu_online_mask);
2132 
2133 	mutex_unlock(&all_q_mutex);
2134 	put_online_cpus();
2135 
2136 	return q;
2137 
2138 err_hctxs:
2139 	kfree(q->mq_map);
2140 err_map:
2141 	kfree(q->queue_hw_ctx);
2142 err_percpu:
2143 	free_percpu(q->queue_ctx);
2144 err_exit:
2145 	q->mq_ops = NULL;
2146 	return ERR_PTR(-ENOMEM);
2147 }
2148 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2149 
2150 void blk_mq_free_queue(struct request_queue *q)
2151 {
2152 	struct blk_mq_tag_set	*set = q->tag_set;
2153 
2154 	mutex_lock(&all_q_mutex);
2155 	list_del_init(&q->all_q_node);
2156 	mutex_unlock(&all_q_mutex);
2157 
2158 	blk_mq_del_queue_tag_set(q);
2159 
2160 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2161 	blk_mq_free_hw_queues(q, set);
2162 }
2163 
2164 /* Basically redo blk_mq_init_queue with queue frozen */
2165 static void blk_mq_queue_reinit(struct request_queue *q,
2166 				const struct cpumask *online_mask)
2167 {
2168 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2169 
2170 	blk_mq_sysfs_unregister(q);
2171 
2172 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2173 
2174 	/*
2175 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2176 	 * we should change hctx numa_node according to new topology (this
2177 	 * involves free and re-allocate memory, worthy doing?)
2178 	 */
2179 
2180 	blk_mq_map_swqueue(q, online_mask);
2181 
2182 	blk_mq_sysfs_register(q);
2183 }
2184 
2185 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2186 				      unsigned long action, void *hcpu)
2187 {
2188 	struct request_queue *q;
2189 	int cpu = (unsigned long)hcpu;
2190 	/*
2191 	 * New online cpumask which is going to be set in this hotplug event.
2192 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2193 	 * one-by-one and dynamically allocating this could result in a failure.
2194 	 */
2195 	static struct cpumask online_new;
2196 
2197 	/*
2198 	 * Before hotadded cpu starts handling requests, new mappings must
2199 	 * be established.  Otherwise, these requests in hw queue might
2200 	 * never be dispatched.
2201 	 *
2202 	 * For example, there is a single hw queue (hctx) and two CPU queues
2203 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2204 	 *
2205 	 * Now CPU1 is just onlined and a request is inserted into
2206 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2207 	 * still zero.
2208 	 *
2209 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2210 	 * set in pending bitmap and tries to retrieve requests in
2211 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2212 	 * so the request in ctx1->rq_list is ignored.
2213 	 */
2214 	switch (action & ~CPU_TASKS_FROZEN) {
2215 	case CPU_DEAD:
2216 	case CPU_UP_CANCELED:
2217 		cpumask_copy(&online_new, cpu_online_mask);
2218 		break;
2219 	case CPU_UP_PREPARE:
2220 		cpumask_copy(&online_new, cpu_online_mask);
2221 		cpumask_set_cpu(cpu, &online_new);
2222 		break;
2223 	default:
2224 		return NOTIFY_OK;
2225 	}
2226 
2227 	mutex_lock(&all_q_mutex);
2228 
2229 	/*
2230 	 * We need to freeze and reinit all existing queues.  Freezing
2231 	 * involves synchronous wait for an RCU grace period and doing it
2232 	 * one by one may take a long time.  Start freezing all queues in
2233 	 * one swoop and then wait for the completions so that freezing can
2234 	 * take place in parallel.
2235 	 */
2236 	list_for_each_entry(q, &all_q_list, all_q_node)
2237 		blk_mq_freeze_queue_start(q);
2238 	list_for_each_entry(q, &all_q_list, all_q_node) {
2239 		blk_mq_freeze_queue_wait(q);
2240 
2241 		/*
2242 		 * timeout handler can't touch hw queue during the
2243 		 * reinitialization
2244 		 */
2245 		del_timer_sync(&q->timeout);
2246 	}
2247 
2248 	list_for_each_entry(q, &all_q_list, all_q_node)
2249 		blk_mq_queue_reinit(q, &online_new);
2250 
2251 	list_for_each_entry(q, &all_q_list, all_q_node)
2252 		blk_mq_unfreeze_queue(q);
2253 
2254 	mutex_unlock(&all_q_mutex);
2255 	return NOTIFY_OK;
2256 }
2257 
2258 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2259 {
2260 	int i;
2261 
2262 	for (i = 0; i < set->nr_hw_queues; i++) {
2263 		set->tags[i] = blk_mq_init_rq_map(set, i);
2264 		if (!set->tags[i])
2265 			goto out_unwind;
2266 	}
2267 
2268 	return 0;
2269 
2270 out_unwind:
2271 	while (--i >= 0)
2272 		blk_mq_free_rq_map(set, set->tags[i], i);
2273 
2274 	return -ENOMEM;
2275 }
2276 
2277 /*
2278  * Allocate the request maps associated with this tag_set. Note that this
2279  * may reduce the depth asked for, if memory is tight. set->queue_depth
2280  * will be updated to reflect the allocated depth.
2281  */
2282 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2283 {
2284 	unsigned int depth;
2285 	int err;
2286 
2287 	depth = set->queue_depth;
2288 	do {
2289 		err = __blk_mq_alloc_rq_maps(set);
2290 		if (!err)
2291 			break;
2292 
2293 		set->queue_depth >>= 1;
2294 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2295 			err = -ENOMEM;
2296 			break;
2297 		}
2298 	} while (set->queue_depth);
2299 
2300 	if (!set->queue_depth || err) {
2301 		pr_err("blk-mq: failed to allocate request map\n");
2302 		return -ENOMEM;
2303 	}
2304 
2305 	if (depth != set->queue_depth)
2306 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2307 						depth, set->queue_depth);
2308 
2309 	return 0;
2310 }
2311 
2312 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2313 {
2314 	return tags->cpumask;
2315 }
2316 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2317 
2318 /*
2319  * Alloc a tag set to be associated with one or more request queues.
2320  * May fail with EINVAL for various error conditions. May adjust the
2321  * requested depth down, if if it too large. In that case, the set
2322  * value will be stored in set->queue_depth.
2323  */
2324 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2325 {
2326 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2327 
2328 	if (!set->nr_hw_queues)
2329 		return -EINVAL;
2330 	if (!set->queue_depth)
2331 		return -EINVAL;
2332 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2333 		return -EINVAL;
2334 
2335 	if (!set->ops->queue_rq || !set->ops->map_queue)
2336 		return -EINVAL;
2337 
2338 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2339 		pr_info("blk-mq: reduced tag depth to %u\n",
2340 			BLK_MQ_MAX_DEPTH);
2341 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2342 	}
2343 
2344 	/*
2345 	 * If a crashdump is active, then we are potentially in a very
2346 	 * memory constrained environment. Limit us to 1 queue and
2347 	 * 64 tags to prevent using too much memory.
2348 	 */
2349 	if (is_kdump_kernel()) {
2350 		set->nr_hw_queues = 1;
2351 		set->queue_depth = min(64U, set->queue_depth);
2352 	}
2353 	/*
2354 	 * There is no use for more h/w queues than cpus.
2355 	 */
2356 	if (set->nr_hw_queues > nr_cpu_ids)
2357 		set->nr_hw_queues = nr_cpu_ids;
2358 
2359 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2360 				 GFP_KERNEL, set->numa_node);
2361 	if (!set->tags)
2362 		return -ENOMEM;
2363 
2364 	if (blk_mq_alloc_rq_maps(set))
2365 		goto enomem;
2366 
2367 	mutex_init(&set->tag_list_lock);
2368 	INIT_LIST_HEAD(&set->tag_list);
2369 
2370 	return 0;
2371 enomem:
2372 	kfree(set->tags);
2373 	set->tags = NULL;
2374 	return -ENOMEM;
2375 }
2376 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2377 
2378 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2379 {
2380 	int i;
2381 
2382 	for (i = 0; i < nr_cpu_ids; i++) {
2383 		if (set->tags[i])
2384 			blk_mq_free_rq_map(set, set->tags[i], i);
2385 	}
2386 
2387 	kfree(set->tags);
2388 	set->tags = NULL;
2389 }
2390 EXPORT_SYMBOL(blk_mq_free_tag_set);
2391 
2392 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2393 {
2394 	struct blk_mq_tag_set *set = q->tag_set;
2395 	struct blk_mq_hw_ctx *hctx;
2396 	int i, ret;
2397 
2398 	if (!set || nr > set->queue_depth)
2399 		return -EINVAL;
2400 
2401 	ret = 0;
2402 	queue_for_each_hw_ctx(q, hctx, i) {
2403 		if (!hctx->tags)
2404 			continue;
2405 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2406 		if (ret)
2407 			break;
2408 	}
2409 
2410 	if (!ret)
2411 		q->nr_requests = nr;
2412 
2413 	return ret;
2414 }
2415 
2416 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2417 {
2418 	struct request_queue *q;
2419 
2420 	if (nr_hw_queues > nr_cpu_ids)
2421 		nr_hw_queues = nr_cpu_ids;
2422 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2423 		return;
2424 
2425 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2426 		blk_mq_freeze_queue(q);
2427 
2428 	set->nr_hw_queues = nr_hw_queues;
2429 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2430 		blk_mq_realloc_hw_ctxs(set, q);
2431 
2432 		if (q->nr_hw_queues > 1)
2433 			blk_queue_make_request(q, blk_mq_make_request);
2434 		else
2435 			blk_queue_make_request(q, blk_sq_make_request);
2436 
2437 		blk_mq_queue_reinit(q, cpu_online_mask);
2438 	}
2439 
2440 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2441 		blk_mq_unfreeze_queue(q);
2442 }
2443 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2444 
2445 void blk_mq_disable_hotplug(void)
2446 {
2447 	mutex_lock(&all_q_mutex);
2448 }
2449 
2450 void blk_mq_enable_hotplug(void)
2451 {
2452 	mutex_unlock(&all_q_mutex);
2453 }
2454 
2455 static int __init blk_mq_init(void)
2456 {
2457 	blk_mq_cpu_init();
2458 
2459 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2460 
2461 	return 0;
2462 }
2463 subsys_initcall(blk_mq_init);
2464