1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113 } 114 115 unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117 { 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123 } 124 125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127 { 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133 } 134 135 void blk_freeze_queue_start(struct request_queue *q) 136 { 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146 } 147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149 void blk_mq_freeze_queue_wait(struct request_queue *q) 150 { 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157 { 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164 /* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168 void blk_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179 } 180 181 void blk_mq_freeze_queue(struct request_queue *q) 182 { 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191 void blk_mq_unfreeze_queue(struct request_queue *q) 192 { 193 mutex_lock(&q->mq_freeze_lock); 194 q->mq_freeze_depth--; 195 WARN_ON_ONCE(q->mq_freeze_depth < 0); 196 if (!q->mq_freeze_depth) { 197 percpu_ref_resurrect(&q->q_usage_counter); 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 mutex_unlock(&q->mq_freeze_lock); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 203 204 /* 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 206 * mpt3sas driver such that this function can be removed. 207 */ 208 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 209 { 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 216 * @q: request queue. 217 * 218 * Note: this function does not prevent that the struct request end_io() 219 * callback function is invoked. Once this function is returned, we make 220 * sure no dispatch can happen until the queue is unquiesced via 221 * blk_mq_unquiesce_queue(). 222 */ 223 void blk_mq_quiesce_queue(struct request_queue *q) 224 { 225 struct blk_mq_hw_ctx *hctx; 226 unsigned int i; 227 bool rcu = false; 228 229 blk_mq_quiesce_queue_nowait(q); 230 231 queue_for_each_hw_ctx(q, hctx, i) { 232 if (hctx->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(hctx->srcu); 234 else 235 rcu = true; 236 } 237 if (rcu) 238 synchronize_rcu(); 239 } 240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 241 242 /* 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 244 * @q: request queue. 245 * 246 * This function recovers queue into the state before quiescing 247 * which is done by blk_mq_quiesce_queue. 248 */ 249 void blk_mq_unquiesce_queue(struct request_queue *q) 250 { 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 252 253 /* dispatch requests which are inserted during quiescing */ 254 blk_mq_run_hw_queues(q, true); 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 257 258 void blk_mq_wake_waiters(struct request_queue *q) 259 { 260 struct blk_mq_hw_ctx *hctx; 261 unsigned int i; 262 263 queue_for_each_hw_ctx(q, hctx, i) 264 if (blk_mq_hw_queue_mapped(hctx)) 265 blk_mq_tag_wakeup_all(hctx->tags, true); 266 } 267 268 /* 269 * Only need start/end time stamping if we have iostat or 270 * blk stats enabled, or using an IO scheduler. 271 */ 272 static inline bool blk_mq_need_time_stamp(struct request *rq) 273 { 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 275 } 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, u64 alloc_time_ns) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 283 if (data->q->elevator) { 284 rq->tag = BLK_MQ_NO_TAG; 285 rq->internal_tag = tag; 286 } else { 287 rq->tag = tag; 288 rq->internal_tag = BLK_MQ_NO_TAG; 289 } 290 291 /* csd/requeue_work/fifo_time is initialized before use */ 292 rq->q = data->q; 293 rq->mq_ctx = data->ctx; 294 rq->mq_hctx = data->hctx; 295 rq->rq_flags = 0; 296 rq->cmd_flags = data->cmd_flags; 297 if (data->flags & BLK_MQ_REQ_PREEMPT) 298 rq->rq_flags |= RQF_PREEMPT; 299 if (blk_queue_io_stat(data->q)) 300 rq->rq_flags |= RQF_IO_STAT; 301 INIT_LIST_HEAD(&rq->queuelist); 302 INIT_HLIST_NODE(&rq->hash); 303 RB_CLEAR_NODE(&rq->rb_node); 304 rq->rq_disk = NULL; 305 rq->part = NULL; 306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 307 rq->alloc_time_ns = alloc_time_ns; 308 #endif 309 if (blk_mq_need_time_stamp(rq)) 310 rq->start_time_ns = ktime_get_ns(); 311 else 312 rq->start_time_ns = 0; 313 rq->io_start_time_ns = 0; 314 rq->stats_sectors = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 blk_crypto_rq_set_defaults(rq); 320 /* tag was already set */ 321 WRITE_ONCE(rq->deadline, 0); 322 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 329 refcount_set(&rq->ref, 1); 330 331 if (!op_is_flush(data->cmd_flags)) { 332 struct elevator_queue *e = data->q->elevator; 333 334 rq->elv.icq = NULL; 335 if (e && e->type->ops.prepare_request) { 336 if (e->type->icq_cache) 337 blk_mq_sched_assign_ioc(rq); 338 339 e->type->ops.prepare_request(rq); 340 rq->rq_flags |= RQF_ELVPRIV; 341 } 342 } 343 344 data->hctx->queued++; 345 return rq; 346 } 347 348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 349 { 350 struct request_queue *q = data->q; 351 struct elevator_queue *e = q->elevator; 352 u64 alloc_time_ns = 0; 353 unsigned int tag; 354 355 /* alloc_time includes depth and tag waits */ 356 if (blk_queue_rq_alloc_time(q)) 357 alloc_time_ns = ktime_get_ns(); 358 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 /* 364 * Flush requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(data->cmd_flags) && 369 e->type->ops.limit_depth && 370 !(data->flags & BLK_MQ_REQ_RESERVED)) 371 e->type->ops.limit_depth(data->cmd_flags, data); 372 } 373 374 retry: 375 data->ctx = blk_mq_get_ctx(q); 376 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 377 if (!e) 378 blk_mq_tag_busy(data->hctx); 379 380 /* 381 * Waiting allocations only fail because of an inactive hctx. In that 382 * case just retry the hctx assignment and tag allocation as CPU hotplug 383 * should have migrated us to an online CPU by now. 384 */ 385 tag = blk_mq_get_tag(data); 386 if (tag == BLK_MQ_NO_TAG) { 387 if (data->flags & BLK_MQ_REQ_NOWAIT) 388 return NULL; 389 390 /* 391 * Give up the CPU and sleep for a random short time to ensure 392 * that thread using a realtime scheduling class are migrated 393 * off the CPU, and thus off the hctx that is going away. 394 */ 395 msleep(3); 396 goto retry; 397 } 398 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 399 } 400 401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 402 blk_mq_req_flags_t flags) 403 { 404 struct blk_mq_alloc_data data = { 405 .q = q, 406 .flags = flags, 407 .cmd_flags = op, 408 }; 409 struct request *rq; 410 int ret; 411 412 ret = blk_queue_enter(q, flags); 413 if (ret) 414 return ERR_PTR(ret); 415 416 rq = __blk_mq_alloc_request(&data); 417 if (!rq) 418 goto out_queue_exit; 419 rq->__data_len = 0; 420 rq->__sector = (sector_t) -1; 421 rq->bio = rq->biotail = NULL; 422 return rq; 423 out_queue_exit: 424 blk_queue_exit(q); 425 return ERR_PTR(-EWOULDBLOCK); 426 } 427 EXPORT_SYMBOL(blk_mq_alloc_request); 428 429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 430 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 431 { 432 struct blk_mq_alloc_data data = { 433 .q = q, 434 .flags = flags, 435 .cmd_flags = op, 436 }; 437 u64 alloc_time_ns = 0; 438 unsigned int cpu; 439 unsigned int tag; 440 int ret; 441 442 /* alloc_time includes depth and tag waits */ 443 if (blk_queue_rq_alloc_time(q)) 444 alloc_time_ns = ktime_get_ns(); 445 446 /* 447 * If the tag allocator sleeps we could get an allocation for a 448 * different hardware context. No need to complicate the low level 449 * allocator for this for the rare use case of a command tied to 450 * a specific queue. 451 */ 452 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 453 return ERR_PTR(-EINVAL); 454 455 if (hctx_idx >= q->nr_hw_queues) 456 return ERR_PTR(-EIO); 457 458 ret = blk_queue_enter(q, flags); 459 if (ret) 460 return ERR_PTR(ret); 461 462 /* 463 * Check if the hardware context is actually mapped to anything. 464 * If not tell the caller that it should skip this queue. 465 */ 466 ret = -EXDEV; 467 data.hctx = q->queue_hw_ctx[hctx_idx]; 468 if (!blk_mq_hw_queue_mapped(data.hctx)) 469 goto out_queue_exit; 470 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 471 data.ctx = __blk_mq_get_ctx(q, cpu); 472 473 if (!q->elevator) 474 blk_mq_tag_busy(data.hctx); 475 476 ret = -EWOULDBLOCK; 477 tag = blk_mq_get_tag(&data); 478 if (tag == BLK_MQ_NO_TAG) 479 goto out_queue_exit; 480 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 481 482 out_queue_exit: 483 blk_queue_exit(q); 484 return ERR_PTR(ret); 485 } 486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 487 488 static void __blk_mq_free_request(struct request *rq) 489 { 490 struct request_queue *q = rq->q; 491 struct blk_mq_ctx *ctx = rq->mq_ctx; 492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 493 const int sched_tag = rq->internal_tag; 494 495 blk_crypto_free_request(rq); 496 blk_pm_mark_last_busy(rq); 497 rq->mq_hctx = NULL; 498 if (rq->tag != BLK_MQ_NO_TAG) 499 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 500 if (sched_tag != BLK_MQ_NO_TAG) 501 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 502 blk_mq_sched_restart(hctx); 503 blk_queue_exit(q); 504 } 505 506 void blk_mq_free_request(struct request *rq) 507 { 508 struct request_queue *q = rq->q; 509 struct elevator_queue *e = q->elevator; 510 struct blk_mq_ctx *ctx = rq->mq_ctx; 511 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 512 513 if (rq->rq_flags & RQF_ELVPRIV) { 514 if (e && e->type->ops.finish_request) 515 e->type->ops.finish_request(rq); 516 if (rq->elv.icq) { 517 put_io_context(rq->elv.icq->ioc); 518 rq->elv.icq = NULL; 519 } 520 } 521 522 ctx->rq_completed[rq_is_sync(rq)]++; 523 if (rq->rq_flags & RQF_MQ_INFLIGHT) 524 __blk_mq_dec_active_requests(hctx); 525 526 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 527 laptop_io_completion(q->backing_dev_info); 528 529 rq_qos_done(q, rq); 530 531 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 532 if (refcount_dec_and_test(&rq->ref)) 533 __blk_mq_free_request(rq); 534 } 535 EXPORT_SYMBOL_GPL(blk_mq_free_request); 536 537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 538 { 539 u64 now = 0; 540 541 if (blk_mq_need_time_stamp(rq)) 542 now = ktime_get_ns(); 543 544 if (rq->rq_flags & RQF_STATS) { 545 blk_mq_poll_stats_start(rq->q); 546 blk_stat_add(rq, now); 547 } 548 549 blk_mq_sched_completed_request(rq, now); 550 551 blk_account_io_done(rq, now); 552 553 if (rq->end_io) { 554 rq_qos_done(rq->q, rq); 555 rq->end_io(rq, error); 556 } else { 557 blk_mq_free_request(rq); 558 } 559 } 560 EXPORT_SYMBOL(__blk_mq_end_request); 561 562 void blk_mq_end_request(struct request *rq, blk_status_t error) 563 { 564 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 565 BUG(); 566 __blk_mq_end_request(rq, error); 567 } 568 EXPORT_SYMBOL(blk_mq_end_request); 569 570 /* 571 * Softirq action handler - move entries to local list and loop over them 572 * while passing them to the queue registered handler. 573 */ 574 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 575 { 576 struct list_head *cpu_list, local_list; 577 578 local_irq_disable(); 579 cpu_list = this_cpu_ptr(&blk_cpu_done); 580 list_replace_init(cpu_list, &local_list); 581 local_irq_enable(); 582 583 while (!list_empty(&local_list)) { 584 struct request *rq; 585 586 rq = list_entry(local_list.next, struct request, ipi_list); 587 list_del_init(&rq->ipi_list); 588 rq->q->mq_ops->complete(rq); 589 } 590 } 591 592 static void blk_mq_trigger_softirq(struct request *rq) 593 { 594 struct list_head *list; 595 unsigned long flags; 596 597 local_irq_save(flags); 598 list = this_cpu_ptr(&blk_cpu_done); 599 list_add_tail(&rq->ipi_list, list); 600 601 /* 602 * If the list only contains our just added request, signal a raise of 603 * the softirq. If there are already entries there, someone already 604 * raised the irq but it hasn't run yet. 605 */ 606 if (list->next == &rq->ipi_list) 607 raise_softirq_irqoff(BLOCK_SOFTIRQ); 608 local_irq_restore(flags); 609 } 610 611 static int blk_softirq_cpu_dead(unsigned int cpu) 612 { 613 /* 614 * If a CPU goes away, splice its entries to the current CPU 615 * and trigger a run of the softirq 616 */ 617 local_irq_disable(); 618 list_splice_init(&per_cpu(blk_cpu_done, cpu), 619 this_cpu_ptr(&blk_cpu_done)); 620 raise_softirq_irqoff(BLOCK_SOFTIRQ); 621 local_irq_enable(); 622 623 return 0; 624 } 625 626 627 static void __blk_mq_complete_request_remote(void *data) 628 { 629 struct request *rq = data; 630 631 /* 632 * For most of single queue controllers, there is only one irq vector 633 * for handling I/O completion, and the only irq's affinity is set 634 * to all possible CPUs. On most of ARCHs, this affinity means the irq 635 * is handled on one specific CPU. 636 * 637 * So complete I/O requests in softirq context in case of single queue 638 * devices to avoid degrading I/O performance due to irqsoff latency. 639 */ 640 if (rq->q->nr_hw_queues == 1) 641 blk_mq_trigger_softirq(rq); 642 else 643 rq->q->mq_ops->complete(rq); 644 } 645 646 static inline bool blk_mq_complete_need_ipi(struct request *rq) 647 { 648 int cpu = raw_smp_processor_id(); 649 650 if (!IS_ENABLED(CONFIG_SMP) || 651 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 652 return false; 653 654 /* same CPU or cache domain? Complete locally */ 655 if (cpu == rq->mq_ctx->cpu || 656 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 657 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 658 return false; 659 660 /* don't try to IPI to an offline CPU */ 661 return cpu_online(rq->mq_ctx->cpu); 662 } 663 664 bool blk_mq_complete_request_remote(struct request *rq) 665 { 666 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 667 668 /* 669 * For a polled request, always complete locallly, it's pointless 670 * to redirect the completion. 671 */ 672 if (rq->cmd_flags & REQ_HIPRI) 673 return false; 674 675 if (blk_mq_complete_need_ipi(rq)) { 676 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 677 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd); 678 } else { 679 if (rq->q->nr_hw_queues > 1) 680 return false; 681 blk_mq_trigger_softirq(rq); 682 } 683 684 return true; 685 } 686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 687 688 /** 689 * blk_mq_complete_request - end I/O on a request 690 * @rq: the request being processed 691 * 692 * Description: 693 * Complete a request by scheduling the ->complete_rq operation. 694 **/ 695 void blk_mq_complete_request(struct request *rq) 696 { 697 if (!blk_mq_complete_request_remote(rq)) 698 rq->q->mq_ops->complete(rq); 699 } 700 EXPORT_SYMBOL(blk_mq_complete_request); 701 702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 703 __releases(hctx->srcu) 704 { 705 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 706 rcu_read_unlock(); 707 else 708 srcu_read_unlock(hctx->srcu, srcu_idx); 709 } 710 711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 712 __acquires(hctx->srcu) 713 { 714 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 715 /* shut up gcc false positive */ 716 *srcu_idx = 0; 717 rcu_read_lock(); 718 } else 719 *srcu_idx = srcu_read_lock(hctx->srcu); 720 } 721 722 /** 723 * blk_mq_start_request - Start processing a request 724 * @rq: Pointer to request to be started 725 * 726 * Function used by device drivers to notify the block layer that a request 727 * is going to be processed now, so blk layer can do proper initializations 728 * such as starting the timeout timer. 729 */ 730 void blk_mq_start_request(struct request *rq) 731 { 732 struct request_queue *q = rq->q; 733 734 trace_block_rq_issue(rq); 735 736 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 737 rq->io_start_time_ns = ktime_get_ns(); 738 rq->stats_sectors = blk_rq_sectors(rq); 739 rq->rq_flags |= RQF_STATS; 740 rq_qos_issue(q, rq); 741 } 742 743 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 744 745 blk_add_timer(rq); 746 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 747 748 #ifdef CONFIG_BLK_DEV_INTEGRITY 749 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 750 q->integrity.profile->prepare_fn(rq); 751 #endif 752 } 753 EXPORT_SYMBOL(blk_mq_start_request); 754 755 static void __blk_mq_requeue_request(struct request *rq) 756 { 757 struct request_queue *q = rq->q; 758 759 blk_mq_put_driver_tag(rq); 760 761 trace_block_rq_requeue(rq); 762 rq_qos_requeue(q, rq); 763 764 if (blk_mq_request_started(rq)) { 765 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 766 rq->rq_flags &= ~RQF_TIMED_OUT; 767 } 768 } 769 770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 771 { 772 __blk_mq_requeue_request(rq); 773 774 /* this request will be re-inserted to io scheduler queue */ 775 blk_mq_sched_requeue_request(rq); 776 777 BUG_ON(!list_empty(&rq->queuelist)); 778 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 779 } 780 EXPORT_SYMBOL(blk_mq_requeue_request); 781 782 static void blk_mq_requeue_work(struct work_struct *work) 783 { 784 struct request_queue *q = 785 container_of(work, struct request_queue, requeue_work.work); 786 LIST_HEAD(rq_list); 787 struct request *rq, *next; 788 789 spin_lock_irq(&q->requeue_lock); 790 list_splice_init(&q->requeue_list, &rq_list); 791 spin_unlock_irq(&q->requeue_lock); 792 793 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 794 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 795 continue; 796 797 rq->rq_flags &= ~RQF_SOFTBARRIER; 798 list_del_init(&rq->queuelist); 799 /* 800 * If RQF_DONTPREP, rq has contained some driver specific 801 * data, so insert it to hctx dispatch list to avoid any 802 * merge. 803 */ 804 if (rq->rq_flags & RQF_DONTPREP) 805 blk_mq_request_bypass_insert(rq, false, false); 806 else 807 blk_mq_sched_insert_request(rq, true, false, false); 808 } 809 810 while (!list_empty(&rq_list)) { 811 rq = list_entry(rq_list.next, struct request, queuelist); 812 list_del_init(&rq->queuelist); 813 blk_mq_sched_insert_request(rq, false, false, false); 814 } 815 816 blk_mq_run_hw_queues(q, false); 817 } 818 819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 820 bool kick_requeue_list) 821 { 822 struct request_queue *q = rq->q; 823 unsigned long flags; 824 825 /* 826 * We abuse this flag that is otherwise used by the I/O scheduler to 827 * request head insertion from the workqueue. 828 */ 829 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 830 831 spin_lock_irqsave(&q->requeue_lock, flags); 832 if (at_head) { 833 rq->rq_flags |= RQF_SOFTBARRIER; 834 list_add(&rq->queuelist, &q->requeue_list); 835 } else { 836 list_add_tail(&rq->queuelist, &q->requeue_list); 837 } 838 spin_unlock_irqrestore(&q->requeue_lock, flags); 839 840 if (kick_requeue_list) 841 blk_mq_kick_requeue_list(q); 842 } 843 844 void blk_mq_kick_requeue_list(struct request_queue *q) 845 { 846 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 847 } 848 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 849 850 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 851 unsigned long msecs) 852 { 853 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 854 msecs_to_jiffies(msecs)); 855 } 856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 857 858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 859 { 860 if (tag < tags->nr_tags) { 861 prefetch(tags->rqs[tag]); 862 return tags->rqs[tag]; 863 } 864 865 return NULL; 866 } 867 EXPORT_SYMBOL(blk_mq_tag_to_rq); 868 869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 870 void *priv, bool reserved) 871 { 872 /* 873 * If we find a request that isn't idle and the queue matches, 874 * we know the queue is busy. Return false to stop the iteration. 875 */ 876 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 877 bool *busy = priv; 878 879 *busy = true; 880 return false; 881 } 882 883 return true; 884 } 885 886 bool blk_mq_queue_inflight(struct request_queue *q) 887 { 888 bool busy = false; 889 890 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 891 return busy; 892 } 893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 894 895 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 896 { 897 req->rq_flags |= RQF_TIMED_OUT; 898 if (req->q->mq_ops->timeout) { 899 enum blk_eh_timer_return ret; 900 901 ret = req->q->mq_ops->timeout(req, reserved); 902 if (ret == BLK_EH_DONE) 903 return; 904 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 905 } 906 907 blk_add_timer(req); 908 } 909 910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 911 { 912 unsigned long deadline; 913 914 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 915 return false; 916 if (rq->rq_flags & RQF_TIMED_OUT) 917 return false; 918 919 deadline = READ_ONCE(rq->deadline); 920 if (time_after_eq(jiffies, deadline)) 921 return true; 922 923 if (*next == 0) 924 *next = deadline; 925 else if (time_after(*next, deadline)) 926 *next = deadline; 927 return false; 928 } 929 930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 931 struct request *rq, void *priv, bool reserved) 932 { 933 unsigned long *next = priv; 934 935 /* 936 * Just do a quick check if it is expired before locking the request in 937 * so we're not unnecessarilly synchronizing across CPUs. 938 */ 939 if (!blk_mq_req_expired(rq, next)) 940 return true; 941 942 /* 943 * We have reason to believe the request may be expired. Take a 944 * reference on the request to lock this request lifetime into its 945 * currently allocated context to prevent it from being reallocated in 946 * the event the completion by-passes this timeout handler. 947 * 948 * If the reference was already released, then the driver beat the 949 * timeout handler to posting a natural completion. 950 */ 951 if (!refcount_inc_not_zero(&rq->ref)) 952 return true; 953 954 /* 955 * The request is now locked and cannot be reallocated underneath the 956 * timeout handler's processing. Re-verify this exact request is truly 957 * expired; if it is not expired, then the request was completed and 958 * reallocated as a new request. 959 */ 960 if (blk_mq_req_expired(rq, next)) 961 blk_mq_rq_timed_out(rq, reserved); 962 963 if (is_flush_rq(rq, hctx)) 964 rq->end_io(rq, 0); 965 else if (refcount_dec_and_test(&rq->ref)) 966 __blk_mq_free_request(rq); 967 968 return true; 969 } 970 971 static void blk_mq_timeout_work(struct work_struct *work) 972 { 973 struct request_queue *q = 974 container_of(work, struct request_queue, timeout_work); 975 unsigned long next = 0; 976 struct blk_mq_hw_ctx *hctx; 977 int i; 978 979 /* A deadlock might occur if a request is stuck requiring a 980 * timeout at the same time a queue freeze is waiting 981 * completion, since the timeout code would not be able to 982 * acquire the queue reference here. 983 * 984 * That's why we don't use blk_queue_enter here; instead, we use 985 * percpu_ref_tryget directly, because we need to be able to 986 * obtain a reference even in the short window between the queue 987 * starting to freeze, by dropping the first reference in 988 * blk_freeze_queue_start, and the moment the last request is 989 * consumed, marked by the instant q_usage_counter reaches 990 * zero. 991 */ 992 if (!percpu_ref_tryget(&q->q_usage_counter)) 993 return; 994 995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 996 997 if (next != 0) { 998 mod_timer(&q->timeout, next); 999 } else { 1000 /* 1001 * Request timeouts are handled as a forward rolling timer. If 1002 * we end up here it means that no requests are pending and 1003 * also that no request has been pending for a while. Mark 1004 * each hctx as idle. 1005 */ 1006 queue_for_each_hw_ctx(q, hctx, i) { 1007 /* the hctx may be unmapped, so check it here */ 1008 if (blk_mq_hw_queue_mapped(hctx)) 1009 blk_mq_tag_idle(hctx); 1010 } 1011 } 1012 blk_queue_exit(q); 1013 } 1014 1015 struct flush_busy_ctx_data { 1016 struct blk_mq_hw_ctx *hctx; 1017 struct list_head *list; 1018 }; 1019 1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1021 { 1022 struct flush_busy_ctx_data *flush_data = data; 1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1025 enum hctx_type type = hctx->type; 1026 1027 spin_lock(&ctx->lock); 1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1029 sbitmap_clear_bit(sb, bitnr); 1030 spin_unlock(&ctx->lock); 1031 return true; 1032 } 1033 1034 /* 1035 * Process software queues that have been marked busy, splicing them 1036 * to the for-dispatch 1037 */ 1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1039 { 1040 struct flush_busy_ctx_data data = { 1041 .hctx = hctx, 1042 .list = list, 1043 }; 1044 1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1046 } 1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1048 1049 struct dispatch_rq_data { 1050 struct blk_mq_hw_ctx *hctx; 1051 struct request *rq; 1052 }; 1053 1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1055 void *data) 1056 { 1057 struct dispatch_rq_data *dispatch_data = data; 1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1060 enum hctx_type type = hctx->type; 1061 1062 spin_lock(&ctx->lock); 1063 if (!list_empty(&ctx->rq_lists[type])) { 1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1065 list_del_init(&dispatch_data->rq->queuelist); 1066 if (list_empty(&ctx->rq_lists[type])) 1067 sbitmap_clear_bit(sb, bitnr); 1068 } 1069 spin_unlock(&ctx->lock); 1070 1071 return !dispatch_data->rq; 1072 } 1073 1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1075 struct blk_mq_ctx *start) 1076 { 1077 unsigned off = start ? start->index_hw[hctx->type] : 0; 1078 struct dispatch_rq_data data = { 1079 .hctx = hctx, 1080 .rq = NULL, 1081 }; 1082 1083 __sbitmap_for_each_set(&hctx->ctx_map, off, 1084 dispatch_rq_from_ctx, &data); 1085 1086 return data.rq; 1087 } 1088 1089 static inline unsigned int queued_to_index(unsigned int queued) 1090 { 1091 if (!queued) 1092 return 0; 1093 1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1095 } 1096 1097 static bool __blk_mq_get_driver_tag(struct request *rq) 1098 { 1099 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1101 int tag; 1102 1103 blk_mq_tag_busy(rq->mq_hctx); 1104 1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1106 bt = rq->mq_hctx->tags->breserved_tags; 1107 tag_offset = 0; 1108 } else { 1109 if (!hctx_may_queue(rq->mq_hctx, bt)) 1110 return false; 1111 } 1112 1113 tag = __sbitmap_queue_get(bt); 1114 if (tag == BLK_MQ_NO_TAG) 1115 return false; 1116 1117 rq->tag = tag + tag_offset; 1118 return true; 1119 } 1120 1121 static bool blk_mq_get_driver_tag(struct request *rq) 1122 { 1123 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1124 1125 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1126 return false; 1127 1128 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1129 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1130 rq->rq_flags |= RQF_MQ_INFLIGHT; 1131 __blk_mq_inc_active_requests(hctx); 1132 } 1133 hctx->tags->rqs[rq->tag] = rq; 1134 return true; 1135 } 1136 1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1138 int flags, void *key) 1139 { 1140 struct blk_mq_hw_ctx *hctx; 1141 1142 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1143 1144 spin_lock(&hctx->dispatch_wait_lock); 1145 if (!list_empty(&wait->entry)) { 1146 struct sbitmap_queue *sbq; 1147 1148 list_del_init(&wait->entry); 1149 sbq = hctx->tags->bitmap_tags; 1150 atomic_dec(&sbq->ws_active); 1151 } 1152 spin_unlock(&hctx->dispatch_wait_lock); 1153 1154 blk_mq_run_hw_queue(hctx, true); 1155 return 1; 1156 } 1157 1158 /* 1159 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1160 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1161 * restart. For both cases, take care to check the condition again after 1162 * marking us as waiting. 1163 */ 1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1165 struct request *rq) 1166 { 1167 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1168 struct wait_queue_head *wq; 1169 wait_queue_entry_t *wait; 1170 bool ret; 1171 1172 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1173 blk_mq_sched_mark_restart_hctx(hctx); 1174 1175 /* 1176 * It's possible that a tag was freed in the window between the 1177 * allocation failure and adding the hardware queue to the wait 1178 * queue. 1179 * 1180 * Don't clear RESTART here, someone else could have set it. 1181 * At most this will cost an extra queue run. 1182 */ 1183 return blk_mq_get_driver_tag(rq); 1184 } 1185 1186 wait = &hctx->dispatch_wait; 1187 if (!list_empty_careful(&wait->entry)) 1188 return false; 1189 1190 wq = &bt_wait_ptr(sbq, hctx)->wait; 1191 1192 spin_lock_irq(&wq->lock); 1193 spin_lock(&hctx->dispatch_wait_lock); 1194 if (!list_empty(&wait->entry)) { 1195 spin_unlock(&hctx->dispatch_wait_lock); 1196 spin_unlock_irq(&wq->lock); 1197 return false; 1198 } 1199 1200 atomic_inc(&sbq->ws_active); 1201 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1202 __add_wait_queue(wq, wait); 1203 1204 /* 1205 * It's possible that a tag was freed in the window between the 1206 * allocation failure and adding the hardware queue to the wait 1207 * queue. 1208 */ 1209 ret = blk_mq_get_driver_tag(rq); 1210 if (!ret) { 1211 spin_unlock(&hctx->dispatch_wait_lock); 1212 spin_unlock_irq(&wq->lock); 1213 return false; 1214 } 1215 1216 /* 1217 * We got a tag, remove ourselves from the wait queue to ensure 1218 * someone else gets the wakeup. 1219 */ 1220 list_del_init(&wait->entry); 1221 atomic_dec(&sbq->ws_active); 1222 spin_unlock(&hctx->dispatch_wait_lock); 1223 spin_unlock_irq(&wq->lock); 1224 1225 return true; 1226 } 1227 1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1230 /* 1231 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1232 * - EWMA is one simple way to compute running average value 1233 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1234 * - take 4 as factor for avoiding to get too small(0) result, and this 1235 * factor doesn't matter because EWMA decreases exponentially 1236 */ 1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1238 { 1239 unsigned int ewma; 1240 1241 if (hctx->queue->elevator) 1242 return; 1243 1244 ewma = hctx->dispatch_busy; 1245 1246 if (!ewma && !busy) 1247 return; 1248 1249 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1250 if (busy) 1251 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1252 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1253 1254 hctx->dispatch_busy = ewma; 1255 } 1256 1257 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1258 1259 static void blk_mq_handle_dev_resource(struct request *rq, 1260 struct list_head *list) 1261 { 1262 struct request *next = 1263 list_first_entry_or_null(list, struct request, queuelist); 1264 1265 /* 1266 * If an I/O scheduler has been configured and we got a driver tag for 1267 * the next request already, free it. 1268 */ 1269 if (next) 1270 blk_mq_put_driver_tag(next); 1271 1272 list_add(&rq->queuelist, list); 1273 __blk_mq_requeue_request(rq); 1274 } 1275 1276 static void blk_mq_handle_zone_resource(struct request *rq, 1277 struct list_head *zone_list) 1278 { 1279 /* 1280 * If we end up here it is because we cannot dispatch a request to a 1281 * specific zone due to LLD level zone-write locking or other zone 1282 * related resource not being available. In this case, set the request 1283 * aside in zone_list for retrying it later. 1284 */ 1285 list_add(&rq->queuelist, zone_list); 1286 __blk_mq_requeue_request(rq); 1287 } 1288 1289 enum prep_dispatch { 1290 PREP_DISPATCH_OK, 1291 PREP_DISPATCH_NO_TAG, 1292 PREP_DISPATCH_NO_BUDGET, 1293 }; 1294 1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1296 bool need_budget) 1297 { 1298 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1299 1300 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) { 1301 blk_mq_put_driver_tag(rq); 1302 return PREP_DISPATCH_NO_BUDGET; 1303 } 1304 1305 if (!blk_mq_get_driver_tag(rq)) { 1306 /* 1307 * The initial allocation attempt failed, so we need to 1308 * rerun the hardware queue when a tag is freed. The 1309 * waitqueue takes care of that. If the queue is run 1310 * before we add this entry back on the dispatch list, 1311 * we'll re-run it below. 1312 */ 1313 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1314 /* 1315 * All budgets not got from this function will be put 1316 * together during handling partial dispatch 1317 */ 1318 if (need_budget) 1319 blk_mq_put_dispatch_budget(rq->q); 1320 return PREP_DISPATCH_NO_TAG; 1321 } 1322 } 1323 1324 return PREP_DISPATCH_OK; 1325 } 1326 1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1328 static void blk_mq_release_budgets(struct request_queue *q, 1329 unsigned int nr_budgets) 1330 { 1331 int i; 1332 1333 for (i = 0; i < nr_budgets; i++) 1334 blk_mq_put_dispatch_budget(q); 1335 } 1336 1337 /* 1338 * Returns true if we did some work AND can potentially do more. 1339 */ 1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1341 unsigned int nr_budgets) 1342 { 1343 enum prep_dispatch prep; 1344 struct request_queue *q = hctx->queue; 1345 struct request *rq, *nxt; 1346 int errors, queued; 1347 blk_status_t ret = BLK_STS_OK; 1348 LIST_HEAD(zone_list); 1349 1350 if (list_empty(list)) 1351 return false; 1352 1353 /* 1354 * Now process all the entries, sending them to the driver. 1355 */ 1356 errors = queued = 0; 1357 do { 1358 struct blk_mq_queue_data bd; 1359 1360 rq = list_first_entry(list, struct request, queuelist); 1361 1362 WARN_ON_ONCE(hctx != rq->mq_hctx); 1363 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1364 if (prep != PREP_DISPATCH_OK) 1365 break; 1366 1367 list_del_init(&rq->queuelist); 1368 1369 bd.rq = rq; 1370 1371 /* 1372 * Flag last if we have no more requests, or if we have more 1373 * but can't assign a driver tag to it. 1374 */ 1375 if (list_empty(list)) 1376 bd.last = true; 1377 else { 1378 nxt = list_first_entry(list, struct request, queuelist); 1379 bd.last = !blk_mq_get_driver_tag(nxt); 1380 } 1381 1382 /* 1383 * once the request is queued to lld, no need to cover the 1384 * budget any more 1385 */ 1386 if (nr_budgets) 1387 nr_budgets--; 1388 ret = q->mq_ops->queue_rq(hctx, &bd); 1389 switch (ret) { 1390 case BLK_STS_OK: 1391 queued++; 1392 break; 1393 case BLK_STS_RESOURCE: 1394 case BLK_STS_DEV_RESOURCE: 1395 blk_mq_handle_dev_resource(rq, list); 1396 goto out; 1397 case BLK_STS_ZONE_RESOURCE: 1398 /* 1399 * Move the request to zone_list and keep going through 1400 * the dispatch list to find more requests the drive can 1401 * accept. 1402 */ 1403 blk_mq_handle_zone_resource(rq, &zone_list); 1404 break; 1405 default: 1406 errors++; 1407 blk_mq_end_request(rq, ret); 1408 } 1409 } while (!list_empty(list)); 1410 out: 1411 if (!list_empty(&zone_list)) 1412 list_splice_tail_init(&zone_list, list); 1413 1414 hctx->dispatched[queued_to_index(queued)]++; 1415 1416 /* If we didn't flush the entire list, we could have told the driver 1417 * there was more coming, but that turned out to be a lie. 1418 */ 1419 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1420 q->mq_ops->commit_rqs(hctx); 1421 /* 1422 * Any items that need requeuing? Stuff them into hctx->dispatch, 1423 * that is where we will continue on next queue run. 1424 */ 1425 if (!list_empty(list)) { 1426 bool needs_restart; 1427 /* For non-shared tags, the RESTART check will suffice */ 1428 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1429 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1430 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1431 1432 blk_mq_release_budgets(q, nr_budgets); 1433 1434 spin_lock(&hctx->lock); 1435 list_splice_tail_init(list, &hctx->dispatch); 1436 spin_unlock(&hctx->lock); 1437 1438 /* 1439 * Order adding requests to hctx->dispatch and checking 1440 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1441 * in blk_mq_sched_restart(). Avoid restart code path to 1442 * miss the new added requests to hctx->dispatch, meantime 1443 * SCHED_RESTART is observed here. 1444 */ 1445 smp_mb(); 1446 1447 /* 1448 * If SCHED_RESTART was set by the caller of this function and 1449 * it is no longer set that means that it was cleared by another 1450 * thread and hence that a queue rerun is needed. 1451 * 1452 * If 'no_tag' is set, that means that we failed getting 1453 * a driver tag with an I/O scheduler attached. If our dispatch 1454 * waitqueue is no longer active, ensure that we run the queue 1455 * AFTER adding our entries back to the list. 1456 * 1457 * If no I/O scheduler has been configured it is possible that 1458 * the hardware queue got stopped and restarted before requests 1459 * were pushed back onto the dispatch list. Rerun the queue to 1460 * avoid starvation. Notes: 1461 * - blk_mq_run_hw_queue() checks whether or not a queue has 1462 * been stopped before rerunning a queue. 1463 * - Some but not all block drivers stop a queue before 1464 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1465 * and dm-rq. 1466 * 1467 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1468 * bit is set, run queue after a delay to avoid IO stalls 1469 * that could otherwise occur if the queue is idle. We'll do 1470 * similar if we couldn't get budget and SCHED_RESTART is set. 1471 */ 1472 needs_restart = blk_mq_sched_needs_restart(hctx); 1473 if (!needs_restart || 1474 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1475 blk_mq_run_hw_queue(hctx, true); 1476 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1477 no_budget_avail)) 1478 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1479 1480 blk_mq_update_dispatch_busy(hctx, true); 1481 return false; 1482 } else 1483 blk_mq_update_dispatch_busy(hctx, false); 1484 1485 return (queued + errors) != 0; 1486 } 1487 1488 /** 1489 * __blk_mq_run_hw_queue - Run a hardware queue. 1490 * @hctx: Pointer to the hardware queue to run. 1491 * 1492 * Send pending requests to the hardware. 1493 */ 1494 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1495 { 1496 int srcu_idx; 1497 1498 /* 1499 * We should be running this queue from one of the CPUs that 1500 * are mapped to it. 1501 * 1502 * There are at least two related races now between setting 1503 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1504 * __blk_mq_run_hw_queue(): 1505 * 1506 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1507 * but later it becomes online, then this warning is harmless 1508 * at all 1509 * 1510 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1511 * but later it becomes offline, then the warning can't be 1512 * triggered, and we depend on blk-mq timeout handler to 1513 * handle dispatched requests to this hctx 1514 */ 1515 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1516 cpu_online(hctx->next_cpu)) { 1517 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1518 raw_smp_processor_id(), 1519 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1520 dump_stack(); 1521 } 1522 1523 /* 1524 * We can't run the queue inline with ints disabled. Ensure that 1525 * we catch bad users of this early. 1526 */ 1527 WARN_ON_ONCE(in_interrupt()); 1528 1529 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1530 1531 hctx_lock(hctx, &srcu_idx); 1532 blk_mq_sched_dispatch_requests(hctx); 1533 hctx_unlock(hctx, srcu_idx); 1534 } 1535 1536 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1537 { 1538 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1539 1540 if (cpu >= nr_cpu_ids) 1541 cpu = cpumask_first(hctx->cpumask); 1542 return cpu; 1543 } 1544 1545 /* 1546 * It'd be great if the workqueue API had a way to pass 1547 * in a mask and had some smarts for more clever placement. 1548 * For now we just round-robin here, switching for every 1549 * BLK_MQ_CPU_WORK_BATCH queued items. 1550 */ 1551 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1552 { 1553 bool tried = false; 1554 int next_cpu = hctx->next_cpu; 1555 1556 if (hctx->queue->nr_hw_queues == 1) 1557 return WORK_CPU_UNBOUND; 1558 1559 if (--hctx->next_cpu_batch <= 0) { 1560 select_cpu: 1561 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1562 cpu_online_mask); 1563 if (next_cpu >= nr_cpu_ids) 1564 next_cpu = blk_mq_first_mapped_cpu(hctx); 1565 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1566 } 1567 1568 /* 1569 * Do unbound schedule if we can't find a online CPU for this hctx, 1570 * and it should only happen in the path of handling CPU DEAD. 1571 */ 1572 if (!cpu_online(next_cpu)) { 1573 if (!tried) { 1574 tried = true; 1575 goto select_cpu; 1576 } 1577 1578 /* 1579 * Make sure to re-select CPU next time once after CPUs 1580 * in hctx->cpumask become online again. 1581 */ 1582 hctx->next_cpu = next_cpu; 1583 hctx->next_cpu_batch = 1; 1584 return WORK_CPU_UNBOUND; 1585 } 1586 1587 hctx->next_cpu = next_cpu; 1588 return next_cpu; 1589 } 1590 1591 /** 1592 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1593 * @hctx: Pointer to the hardware queue to run. 1594 * @async: If we want to run the queue asynchronously. 1595 * @msecs: Milliseconds of delay to wait before running the queue. 1596 * 1597 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1598 * with a delay of @msecs. 1599 */ 1600 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1601 unsigned long msecs) 1602 { 1603 if (unlikely(blk_mq_hctx_stopped(hctx))) 1604 return; 1605 1606 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1607 int cpu = get_cpu(); 1608 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1609 __blk_mq_run_hw_queue(hctx); 1610 put_cpu(); 1611 return; 1612 } 1613 1614 put_cpu(); 1615 } 1616 1617 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1618 msecs_to_jiffies(msecs)); 1619 } 1620 1621 /** 1622 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1623 * @hctx: Pointer to the hardware queue to run. 1624 * @msecs: Milliseconds of delay to wait before running the queue. 1625 * 1626 * Run a hardware queue asynchronously with a delay of @msecs. 1627 */ 1628 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1629 { 1630 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1631 } 1632 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1633 1634 /** 1635 * blk_mq_run_hw_queue - Start to run a hardware queue. 1636 * @hctx: Pointer to the hardware queue to run. 1637 * @async: If we want to run the queue asynchronously. 1638 * 1639 * Check if the request queue is not in a quiesced state and if there are 1640 * pending requests to be sent. If this is true, run the queue to send requests 1641 * to hardware. 1642 */ 1643 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1644 { 1645 int srcu_idx; 1646 bool need_run; 1647 1648 /* 1649 * When queue is quiesced, we may be switching io scheduler, or 1650 * updating nr_hw_queues, or other things, and we can't run queue 1651 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1652 * 1653 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1654 * quiesced. 1655 */ 1656 hctx_lock(hctx, &srcu_idx); 1657 need_run = !blk_queue_quiesced(hctx->queue) && 1658 blk_mq_hctx_has_pending(hctx); 1659 hctx_unlock(hctx, srcu_idx); 1660 1661 if (need_run) 1662 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1663 } 1664 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1665 1666 /** 1667 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1668 * @q: Pointer to the request queue to run. 1669 * @async: If we want to run the queue asynchronously. 1670 */ 1671 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1672 { 1673 struct blk_mq_hw_ctx *hctx; 1674 int i; 1675 1676 queue_for_each_hw_ctx(q, hctx, i) { 1677 if (blk_mq_hctx_stopped(hctx)) 1678 continue; 1679 1680 blk_mq_run_hw_queue(hctx, async); 1681 } 1682 } 1683 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1684 1685 /** 1686 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1687 * @q: Pointer to the request queue to run. 1688 * @msecs: Milliseconds of delay to wait before running the queues. 1689 */ 1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1691 { 1692 struct blk_mq_hw_ctx *hctx; 1693 int i; 1694 1695 queue_for_each_hw_ctx(q, hctx, i) { 1696 if (blk_mq_hctx_stopped(hctx)) 1697 continue; 1698 1699 blk_mq_delay_run_hw_queue(hctx, msecs); 1700 } 1701 } 1702 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1703 1704 /** 1705 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1706 * @q: request queue. 1707 * 1708 * The caller is responsible for serializing this function against 1709 * blk_mq_{start,stop}_hw_queue(). 1710 */ 1711 bool blk_mq_queue_stopped(struct request_queue *q) 1712 { 1713 struct blk_mq_hw_ctx *hctx; 1714 int i; 1715 1716 queue_for_each_hw_ctx(q, hctx, i) 1717 if (blk_mq_hctx_stopped(hctx)) 1718 return true; 1719 1720 return false; 1721 } 1722 EXPORT_SYMBOL(blk_mq_queue_stopped); 1723 1724 /* 1725 * This function is often used for pausing .queue_rq() by driver when 1726 * there isn't enough resource or some conditions aren't satisfied, and 1727 * BLK_STS_RESOURCE is usually returned. 1728 * 1729 * We do not guarantee that dispatch can be drained or blocked 1730 * after blk_mq_stop_hw_queue() returns. Please use 1731 * blk_mq_quiesce_queue() for that requirement. 1732 */ 1733 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1734 { 1735 cancel_delayed_work(&hctx->run_work); 1736 1737 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1738 } 1739 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1740 1741 /* 1742 * This function is often used for pausing .queue_rq() by driver when 1743 * there isn't enough resource or some conditions aren't satisfied, and 1744 * BLK_STS_RESOURCE is usually returned. 1745 * 1746 * We do not guarantee that dispatch can be drained or blocked 1747 * after blk_mq_stop_hw_queues() returns. Please use 1748 * blk_mq_quiesce_queue() for that requirement. 1749 */ 1750 void blk_mq_stop_hw_queues(struct request_queue *q) 1751 { 1752 struct blk_mq_hw_ctx *hctx; 1753 int i; 1754 1755 queue_for_each_hw_ctx(q, hctx, i) 1756 blk_mq_stop_hw_queue(hctx); 1757 } 1758 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1759 1760 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1761 { 1762 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1763 1764 blk_mq_run_hw_queue(hctx, false); 1765 } 1766 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1767 1768 void blk_mq_start_hw_queues(struct request_queue *q) 1769 { 1770 struct blk_mq_hw_ctx *hctx; 1771 int i; 1772 1773 queue_for_each_hw_ctx(q, hctx, i) 1774 blk_mq_start_hw_queue(hctx); 1775 } 1776 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1777 1778 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1779 { 1780 if (!blk_mq_hctx_stopped(hctx)) 1781 return; 1782 1783 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1784 blk_mq_run_hw_queue(hctx, async); 1785 } 1786 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1787 1788 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1789 { 1790 struct blk_mq_hw_ctx *hctx; 1791 int i; 1792 1793 queue_for_each_hw_ctx(q, hctx, i) 1794 blk_mq_start_stopped_hw_queue(hctx, async); 1795 } 1796 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1797 1798 static void blk_mq_run_work_fn(struct work_struct *work) 1799 { 1800 struct blk_mq_hw_ctx *hctx; 1801 1802 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1803 1804 /* 1805 * If we are stopped, don't run the queue. 1806 */ 1807 if (blk_mq_hctx_stopped(hctx)) 1808 return; 1809 1810 __blk_mq_run_hw_queue(hctx); 1811 } 1812 1813 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1814 struct request *rq, 1815 bool at_head) 1816 { 1817 struct blk_mq_ctx *ctx = rq->mq_ctx; 1818 enum hctx_type type = hctx->type; 1819 1820 lockdep_assert_held(&ctx->lock); 1821 1822 trace_block_rq_insert(rq); 1823 1824 if (at_head) 1825 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1826 else 1827 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1828 } 1829 1830 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1831 bool at_head) 1832 { 1833 struct blk_mq_ctx *ctx = rq->mq_ctx; 1834 1835 lockdep_assert_held(&ctx->lock); 1836 1837 __blk_mq_insert_req_list(hctx, rq, at_head); 1838 blk_mq_hctx_mark_pending(hctx, ctx); 1839 } 1840 1841 /** 1842 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1843 * @rq: Pointer to request to be inserted. 1844 * @at_head: true if the request should be inserted at the head of the list. 1845 * @run_queue: If we should run the hardware queue after inserting the request. 1846 * 1847 * Should only be used carefully, when the caller knows we want to 1848 * bypass a potential IO scheduler on the target device. 1849 */ 1850 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1851 bool run_queue) 1852 { 1853 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1854 1855 spin_lock(&hctx->lock); 1856 if (at_head) 1857 list_add(&rq->queuelist, &hctx->dispatch); 1858 else 1859 list_add_tail(&rq->queuelist, &hctx->dispatch); 1860 spin_unlock(&hctx->lock); 1861 1862 if (run_queue) 1863 blk_mq_run_hw_queue(hctx, false); 1864 } 1865 1866 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1867 struct list_head *list) 1868 1869 { 1870 struct request *rq; 1871 enum hctx_type type = hctx->type; 1872 1873 /* 1874 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1875 * offline now 1876 */ 1877 list_for_each_entry(rq, list, queuelist) { 1878 BUG_ON(rq->mq_ctx != ctx); 1879 trace_block_rq_insert(rq); 1880 } 1881 1882 spin_lock(&ctx->lock); 1883 list_splice_tail_init(list, &ctx->rq_lists[type]); 1884 blk_mq_hctx_mark_pending(hctx, ctx); 1885 spin_unlock(&ctx->lock); 1886 } 1887 1888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1889 { 1890 struct request *rqa = container_of(a, struct request, queuelist); 1891 struct request *rqb = container_of(b, struct request, queuelist); 1892 1893 if (rqa->mq_ctx != rqb->mq_ctx) 1894 return rqa->mq_ctx > rqb->mq_ctx; 1895 if (rqa->mq_hctx != rqb->mq_hctx) 1896 return rqa->mq_hctx > rqb->mq_hctx; 1897 1898 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1899 } 1900 1901 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1902 { 1903 LIST_HEAD(list); 1904 1905 if (list_empty(&plug->mq_list)) 1906 return; 1907 list_splice_init(&plug->mq_list, &list); 1908 1909 if (plug->rq_count > 2 && plug->multiple_queues) 1910 list_sort(NULL, &list, plug_rq_cmp); 1911 1912 plug->rq_count = 0; 1913 1914 do { 1915 struct list_head rq_list; 1916 struct request *rq, *head_rq = list_entry_rq(list.next); 1917 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1918 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1919 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1920 unsigned int depth = 1; 1921 1922 list_for_each_continue(pos, &list) { 1923 rq = list_entry_rq(pos); 1924 BUG_ON(!rq->q); 1925 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1926 break; 1927 depth++; 1928 } 1929 1930 list_cut_before(&rq_list, &list, pos); 1931 trace_block_unplug(head_rq->q, depth, !from_schedule); 1932 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1933 from_schedule); 1934 } while(!list_empty(&list)); 1935 } 1936 1937 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1938 unsigned int nr_segs) 1939 { 1940 int err; 1941 1942 if (bio->bi_opf & REQ_RAHEAD) 1943 rq->cmd_flags |= REQ_FAILFAST_MASK; 1944 1945 rq->__sector = bio->bi_iter.bi_sector; 1946 rq->write_hint = bio->bi_write_hint; 1947 blk_rq_bio_prep(rq, bio, nr_segs); 1948 1949 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1950 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1951 WARN_ON_ONCE(err); 1952 1953 blk_account_io_start(rq); 1954 } 1955 1956 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1957 struct request *rq, 1958 blk_qc_t *cookie, bool last) 1959 { 1960 struct request_queue *q = rq->q; 1961 struct blk_mq_queue_data bd = { 1962 .rq = rq, 1963 .last = last, 1964 }; 1965 blk_qc_t new_cookie; 1966 blk_status_t ret; 1967 1968 new_cookie = request_to_qc_t(hctx, rq); 1969 1970 /* 1971 * For OK queue, we are done. For error, caller may kill it. 1972 * Any other error (busy), just add it to our list as we 1973 * previously would have done. 1974 */ 1975 ret = q->mq_ops->queue_rq(hctx, &bd); 1976 switch (ret) { 1977 case BLK_STS_OK: 1978 blk_mq_update_dispatch_busy(hctx, false); 1979 *cookie = new_cookie; 1980 break; 1981 case BLK_STS_RESOURCE: 1982 case BLK_STS_DEV_RESOURCE: 1983 blk_mq_update_dispatch_busy(hctx, true); 1984 __blk_mq_requeue_request(rq); 1985 break; 1986 default: 1987 blk_mq_update_dispatch_busy(hctx, false); 1988 *cookie = BLK_QC_T_NONE; 1989 break; 1990 } 1991 1992 return ret; 1993 } 1994 1995 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1996 struct request *rq, 1997 blk_qc_t *cookie, 1998 bool bypass_insert, bool last) 1999 { 2000 struct request_queue *q = rq->q; 2001 bool run_queue = true; 2002 2003 /* 2004 * RCU or SRCU read lock is needed before checking quiesced flag. 2005 * 2006 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2007 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2008 * and avoid driver to try to dispatch again. 2009 */ 2010 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2011 run_queue = false; 2012 bypass_insert = false; 2013 goto insert; 2014 } 2015 2016 if (q->elevator && !bypass_insert) 2017 goto insert; 2018 2019 if (!blk_mq_get_dispatch_budget(q)) 2020 goto insert; 2021 2022 if (!blk_mq_get_driver_tag(rq)) { 2023 blk_mq_put_dispatch_budget(q); 2024 goto insert; 2025 } 2026 2027 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2028 insert: 2029 if (bypass_insert) 2030 return BLK_STS_RESOURCE; 2031 2032 blk_mq_sched_insert_request(rq, false, run_queue, false); 2033 2034 return BLK_STS_OK; 2035 } 2036 2037 /** 2038 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2039 * @hctx: Pointer of the associated hardware queue. 2040 * @rq: Pointer to request to be sent. 2041 * @cookie: Request queue cookie. 2042 * 2043 * If the device has enough resources to accept a new request now, send the 2044 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2045 * we can try send it another time in the future. Requests inserted at this 2046 * queue have higher priority. 2047 */ 2048 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2049 struct request *rq, blk_qc_t *cookie) 2050 { 2051 blk_status_t ret; 2052 int srcu_idx; 2053 2054 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2055 2056 hctx_lock(hctx, &srcu_idx); 2057 2058 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2059 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2060 blk_mq_request_bypass_insert(rq, false, true); 2061 else if (ret != BLK_STS_OK) 2062 blk_mq_end_request(rq, ret); 2063 2064 hctx_unlock(hctx, srcu_idx); 2065 } 2066 2067 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2068 { 2069 blk_status_t ret; 2070 int srcu_idx; 2071 blk_qc_t unused_cookie; 2072 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2073 2074 hctx_lock(hctx, &srcu_idx); 2075 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2076 hctx_unlock(hctx, srcu_idx); 2077 2078 return ret; 2079 } 2080 2081 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2082 struct list_head *list) 2083 { 2084 int queued = 0; 2085 int errors = 0; 2086 2087 while (!list_empty(list)) { 2088 blk_status_t ret; 2089 struct request *rq = list_first_entry(list, struct request, 2090 queuelist); 2091 2092 list_del_init(&rq->queuelist); 2093 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2094 if (ret != BLK_STS_OK) { 2095 if (ret == BLK_STS_RESOURCE || 2096 ret == BLK_STS_DEV_RESOURCE) { 2097 blk_mq_request_bypass_insert(rq, false, 2098 list_empty(list)); 2099 break; 2100 } 2101 blk_mq_end_request(rq, ret); 2102 errors++; 2103 } else 2104 queued++; 2105 } 2106 2107 /* 2108 * If we didn't flush the entire list, we could have told 2109 * the driver there was more coming, but that turned out to 2110 * be a lie. 2111 */ 2112 if ((!list_empty(list) || errors) && 2113 hctx->queue->mq_ops->commit_rqs && queued) 2114 hctx->queue->mq_ops->commit_rqs(hctx); 2115 } 2116 2117 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2118 { 2119 list_add_tail(&rq->queuelist, &plug->mq_list); 2120 plug->rq_count++; 2121 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2122 struct request *tmp; 2123 2124 tmp = list_first_entry(&plug->mq_list, struct request, 2125 queuelist); 2126 if (tmp->q != rq->q) 2127 plug->multiple_queues = true; 2128 } 2129 } 2130 2131 /** 2132 * blk_mq_submit_bio - Create and send a request to block device. 2133 * @bio: Bio pointer. 2134 * 2135 * Builds up a request structure from @q and @bio and send to the device. The 2136 * request may not be queued directly to hardware if: 2137 * * This request can be merged with another one 2138 * * We want to place request at plug queue for possible future merging 2139 * * There is an IO scheduler active at this queue 2140 * 2141 * It will not queue the request if there is an error with the bio, or at the 2142 * request creation. 2143 * 2144 * Returns: Request queue cookie. 2145 */ 2146 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2147 { 2148 struct request_queue *q = bio->bi_disk->queue; 2149 const int is_sync = op_is_sync(bio->bi_opf); 2150 const int is_flush_fua = op_is_flush(bio->bi_opf); 2151 struct blk_mq_alloc_data data = { 2152 .q = q, 2153 }; 2154 struct request *rq; 2155 struct blk_plug *plug; 2156 struct request *same_queue_rq = NULL; 2157 unsigned int nr_segs; 2158 blk_qc_t cookie; 2159 blk_status_t ret; 2160 bool hipri; 2161 2162 blk_queue_bounce(q, &bio); 2163 __blk_queue_split(&bio, &nr_segs); 2164 2165 if (!bio_integrity_prep(bio)) 2166 goto queue_exit; 2167 2168 if (!is_flush_fua && !blk_queue_nomerges(q) && 2169 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2170 goto queue_exit; 2171 2172 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2173 goto queue_exit; 2174 2175 rq_qos_throttle(q, bio); 2176 2177 hipri = bio->bi_opf & REQ_HIPRI; 2178 2179 data.cmd_flags = bio->bi_opf; 2180 rq = __blk_mq_alloc_request(&data); 2181 if (unlikely(!rq)) { 2182 rq_qos_cleanup(q, bio); 2183 if (bio->bi_opf & REQ_NOWAIT) 2184 bio_wouldblock_error(bio); 2185 goto queue_exit; 2186 } 2187 2188 trace_block_getrq(bio); 2189 2190 rq_qos_track(q, rq, bio); 2191 2192 cookie = request_to_qc_t(data.hctx, rq); 2193 2194 blk_mq_bio_to_request(rq, bio, nr_segs); 2195 2196 ret = blk_crypto_init_request(rq); 2197 if (ret != BLK_STS_OK) { 2198 bio->bi_status = ret; 2199 bio_endio(bio); 2200 blk_mq_free_request(rq); 2201 return BLK_QC_T_NONE; 2202 } 2203 2204 plug = blk_mq_plug(q, bio); 2205 if (unlikely(is_flush_fua)) { 2206 /* Bypass scheduler for flush requests */ 2207 blk_insert_flush(rq); 2208 blk_mq_run_hw_queue(data.hctx, true); 2209 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2210 !blk_queue_nonrot(q))) { 2211 /* 2212 * Use plugging if we have a ->commit_rqs() hook as well, as 2213 * we know the driver uses bd->last in a smart fashion. 2214 * 2215 * Use normal plugging if this disk is slow HDD, as sequential 2216 * IO may benefit a lot from plug merging. 2217 */ 2218 unsigned int request_count = plug->rq_count; 2219 struct request *last = NULL; 2220 2221 if (!request_count) 2222 trace_block_plug(q); 2223 else 2224 last = list_entry_rq(plug->mq_list.prev); 2225 2226 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2227 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2228 blk_flush_plug_list(plug, false); 2229 trace_block_plug(q); 2230 } 2231 2232 blk_add_rq_to_plug(plug, rq); 2233 } else if (q->elevator) { 2234 /* Insert the request at the IO scheduler queue */ 2235 blk_mq_sched_insert_request(rq, false, true, true); 2236 } else if (plug && !blk_queue_nomerges(q)) { 2237 /* 2238 * We do limited plugging. If the bio can be merged, do that. 2239 * Otherwise the existing request in the plug list will be 2240 * issued. So the plug list will have one request at most 2241 * The plug list might get flushed before this. If that happens, 2242 * the plug list is empty, and same_queue_rq is invalid. 2243 */ 2244 if (list_empty(&plug->mq_list)) 2245 same_queue_rq = NULL; 2246 if (same_queue_rq) { 2247 list_del_init(&same_queue_rq->queuelist); 2248 plug->rq_count--; 2249 } 2250 blk_add_rq_to_plug(plug, rq); 2251 trace_block_plug(q); 2252 2253 if (same_queue_rq) { 2254 data.hctx = same_queue_rq->mq_hctx; 2255 trace_block_unplug(q, 1, true); 2256 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2257 &cookie); 2258 } 2259 } else if ((q->nr_hw_queues > 1 && is_sync) || 2260 !data.hctx->dispatch_busy) { 2261 /* 2262 * There is no scheduler and we can try to send directly 2263 * to the hardware. 2264 */ 2265 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2266 } else { 2267 /* Default case. */ 2268 blk_mq_sched_insert_request(rq, false, true, true); 2269 } 2270 2271 if (!hipri) 2272 return BLK_QC_T_NONE; 2273 return cookie; 2274 queue_exit: 2275 blk_queue_exit(q); 2276 return BLK_QC_T_NONE; 2277 } 2278 2279 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2280 unsigned int hctx_idx) 2281 { 2282 struct page *page; 2283 2284 if (tags->rqs && set->ops->exit_request) { 2285 int i; 2286 2287 for (i = 0; i < tags->nr_tags; i++) { 2288 struct request *rq = tags->static_rqs[i]; 2289 2290 if (!rq) 2291 continue; 2292 set->ops->exit_request(set, rq, hctx_idx); 2293 tags->static_rqs[i] = NULL; 2294 } 2295 } 2296 2297 while (!list_empty(&tags->page_list)) { 2298 page = list_first_entry(&tags->page_list, struct page, lru); 2299 list_del_init(&page->lru); 2300 /* 2301 * Remove kmemleak object previously allocated in 2302 * blk_mq_alloc_rqs(). 2303 */ 2304 kmemleak_free(page_address(page)); 2305 __free_pages(page, page->private); 2306 } 2307 } 2308 2309 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2310 { 2311 kfree(tags->rqs); 2312 tags->rqs = NULL; 2313 kfree(tags->static_rqs); 2314 tags->static_rqs = NULL; 2315 2316 blk_mq_free_tags(tags, flags); 2317 } 2318 2319 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2320 unsigned int hctx_idx, 2321 unsigned int nr_tags, 2322 unsigned int reserved_tags, 2323 unsigned int flags) 2324 { 2325 struct blk_mq_tags *tags; 2326 int node; 2327 2328 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2329 if (node == NUMA_NO_NODE) 2330 node = set->numa_node; 2331 2332 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2333 if (!tags) 2334 return NULL; 2335 2336 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2337 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2338 node); 2339 if (!tags->rqs) { 2340 blk_mq_free_tags(tags, flags); 2341 return NULL; 2342 } 2343 2344 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2345 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2346 node); 2347 if (!tags->static_rqs) { 2348 kfree(tags->rqs); 2349 blk_mq_free_tags(tags, flags); 2350 return NULL; 2351 } 2352 2353 return tags; 2354 } 2355 2356 static size_t order_to_size(unsigned int order) 2357 { 2358 return (size_t)PAGE_SIZE << order; 2359 } 2360 2361 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2362 unsigned int hctx_idx, int node) 2363 { 2364 int ret; 2365 2366 if (set->ops->init_request) { 2367 ret = set->ops->init_request(set, rq, hctx_idx, node); 2368 if (ret) 2369 return ret; 2370 } 2371 2372 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2373 return 0; 2374 } 2375 2376 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2377 unsigned int hctx_idx, unsigned int depth) 2378 { 2379 unsigned int i, j, entries_per_page, max_order = 4; 2380 size_t rq_size, left; 2381 int node; 2382 2383 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2384 if (node == NUMA_NO_NODE) 2385 node = set->numa_node; 2386 2387 INIT_LIST_HEAD(&tags->page_list); 2388 2389 /* 2390 * rq_size is the size of the request plus driver payload, rounded 2391 * to the cacheline size 2392 */ 2393 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2394 cache_line_size()); 2395 left = rq_size * depth; 2396 2397 for (i = 0; i < depth; ) { 2398 int this_order = max_order; 2399 struct page *page; 2400 int to_do; 2401 void *p; 2402 2403 while (this_order && left < order_to_size(this_order - 1)) 2404 this_order--; 2405 2406 do { 2407 page = alloc_pages_node(node, 2408 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2409 this_order); 2410 if (page) 2411 break; 2412 if (!this_order--) 2413 break; 2414 if (order_to_size(this_order) < rq_size) 2415 break; 2416 } while (1); 2417 2418 if (!page) 2419 goto fail; 2420 2421 page->private = this_order; 2422 list_add_tail(&page->lru, &tags->page_list); 2423 2424 p = page_address(page); 2425 /* 2426 * Allow kmemleak to scan these pages as they contain pointers 2427 * to additional allocations like via ops->init_request(). 2428 */ 2429 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2430 entries_per_page = order_to_size(this_order) / rq_size; 2431 to_do = min(entries_per_page, depth - i); 2432 left -= to_do * rq_size; 2433 for (j = 0; j < to_do; j++) { 2434 struct request *rq = p; 2435 2436 tags->static_rqs[i] = rq; 2437 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2438 tags->static_rqs[i] = NULL; 2439 goto fail; 2440 } 2441 2442 p += rq_size; 2443 i++; 2444 } 2445 } 2446 return 0; 2447 2448 fail: 2449 blk_mq_free_rqs(set, tags, hctx_idx); 2450 return -ENOMEM; 2451 } 2452 2453 struct rq_iter_data { 2454 struct blk_mq_hw_ctx *hctx; 2455 bool has_rq; 2456 }; 2457 2458 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2459 { 2460 struct rq_iter_data *iter_data = data; 2461 2462 if (rq->mq_hctx != iter_data->hctx) 2463 return true; 2464 iter_data->has_rq = true; 2465 return false; 2466 } 2467 2468 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2469 { 2470 struct blk_mq_tags *tags = hctx->sched_tags ? 2471 hctx->sched_tags : hctx->tags; 2472 struct rq_iter_data data = { 2473 .hctx = hctx, 2474 }; 2475 2476 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2477 return data.has_rq; 2478 } 2479 2480 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2481 struct blk_mq_hw_ctx *hctx) 2482 { 2483 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2484 return false; 2485 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2486 return false; 2487 return true; 2488 } 2489 2490 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2491 { 2492 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2493 struct blk_mq_hw_ctx, cpuhp_online); 2494 2495 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2496 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2497 return 0; 2498 2499 /* 2500 * Prevent new request from being allocated on the current hctx. 2501 * 2502 * The smp_mb__after_atomic() Pairs with the implied barrier in 2503 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2504 * seen once we return from the tag allocator. 2505 */ 2506 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2507 smp_mb__after_atomic(); 2508 2509 /* 2510 * Try to grab a reference to the queue and wait for any outstanding 2511 * requests. If we could not grab a reference the queue has been 2512 * frozen and there are no requests. 2513 */ 2514 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2515 while (blk_mq_hctx_has_requests(hctx)) 2516 msleep(5); 2517 percpu_ref_put(&hctx->queue->q_usage_counter); 2518 } 2519 2520 return 0; 2521 } 2522 2523 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2524 { 2525 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2526 struct blk_mq_hw_ctx, cpuhp_online); 2527 2528 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2529 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2530 return 0; 2531 } 2532 2533 /* 2534 * 'cpu' is going away. splice any existing rq_list entries from this 2535 * software queue to the hw queue dispatch list, and ensure that it 2536 * gets run. 2537 */ 2538 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2539 { 2540 struct blk_mq_hw_ctx *hctx; 2541 struct blk_mq_ctx *ctx; 2542 LIST_HEAD(tmp); 2543 enum hctx_type type; 2544 2545 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2546 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2547 return 0; 2548 2549 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2550 type = hctx->type; 2551 2552 spin_lock(&ctx->lock); 2553 if (!list_empty(&ctx->rq_lists[type])) { 2554 list_splice_init(&ctx->rq_lists[type], &tmp); 2555 blk_mq_hctx_clear_pending(hctx, ctx); 2556 } 2557 spin_unlock(&ctx->lock); 2558 2559 if (list_empty(&tmp)) 2560 return 0; 2561 2562 spin_lock(&hctx->lock); 2563 list_splice_tail_init(&tmp, &hctx->dispatch); 2564 spin_unlock(&hctx->lock); 2565 2566 blk_mq_run_hw_queue(hctx, true); 2567 return 0; 2568 } 2569 2570 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2571 { 2572 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2573 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2574 &hctx->cpuhp_online); 2575 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2576 &hctx->cpuhp_dead); 2577 } 2578 2579 /* hctx->ctxs will be freed in queue's release handler */ 2580 static void blk_mq_exit_hctx(struct request_queue *q, 2581 struct blk_mq_tag_set *set, 2582 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2583 { 2584 if (blk_mq_hw_queue_mapped(hctx)) 2585 blk_mq_tag_idle(hctx); 2586 2587 if (set->ops->exit_request) 2588 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2589 2590 if (set->ops->exit_hctx) 2591 set->ops->exit_hctx(hctx, hctx_idx); 2592 2593 blk_mq_remove_cpuhp(hctx); 2594 2595 spin_lock(&q->unused_hctx_lock); 2596 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2597 spin_unlock(&q->unused_hctx_lock); 2598 } 2599 2600 static void blk_mq_exit_hw_queues(struct request_queue *q, 2601 struct blk_mq_tag_set *set, int nr_queue) 2602 { 2603 struct blk_mq_hw_ctx *hctx; 2604 unsigned int i; 2605 2606 queue_for_each_hw_ctx(q, hctx, i) { 2607 if (i == nr_queue) 2608 break; 2609 blk_mq_debugfs_unregister_hctx(hctx); 2610 blk_mq_exit_hctx(q, set, hctx, i); 2611 } 2612 } 2613 2614 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2615 { 2616 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2617 2618 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2619 __alignof__(struct blk_mq_hw_ctx)) != 2620 sizeof(struct blk_mq_hw_ctx)); 2621 2622 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2623 hw_ctx_size += sizeof(struct srcu_struct); 2624 2625 return hw_ctx_size; 2626 } 2627 2628 static int blk_mq_init_hctx(struct request_queue *q, 2629 struct blk_mq_tag_set *set, 2630 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2631 { 2632 hctx->queue_num = hctx_idx; 2633 2634 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2635 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2636 &hctx->cpuhp_online); 2637 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2638 2639 hctx->tags = set->tags[hctx_idx]; 2640 2641 if (set->ops->init_hctx && 2642 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2643 goto unregister_cpu_notifier; 2644 2645 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2646 hctx->numa_node)) 2647 goto exit_hctx; 2648 return 0; 2649 2650 exit_hctx: 2651 if (set->ops->exit_hctx) 2652 set->ops->exit_hctx(hctx, hctx_idx); 2653 unregister_cpu_notifier: 2654 blk_mq_remove_cpuhp(hctx); 2655 return -1; 2656 } 2657 2658 static struct blk_mq_hw_ctx * 2659 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2660 int node) 2661 { 2662 struct blk_mq_hw_ctx *hctx; 2663 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2664 2665 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2666 if (!hctx) 2667 goto fail_alloc_hctx; 2668 2669 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2670 goto free_hctx; 2671 2672 atomic_set(&hctx->nr_active, 0); 2673 atomic_set(&hctx->elevator_queued, 0); 2674 if (node == NUMA_NO_NODE) 2675 node = set->numa_node; 2676 hctx->numa_node = node; 2677 2678 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2679 spin_lock_init(&hctx->lock); 2680 INIT_LIST_HEAD(&hctx->dispatch); 2681 hctx->queue = q; 2682 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2683 2684 INIT_LIST_HEAD(&hctx->hctx_list); 2685 2686 /* 2687 * Allocate space for all possible cpus to avoid allocation at 2688 * runtime 2689 */ 2690 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2691 gfp, node); 2692 if (!hctx->ctxs) 2693 goto free_cpumask; 2694 2695 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2696 gfp, node)) 2697 goto free_ctxs; 2698 hctx->nr_ctx = 0; 2699 2700 spin_lock_init(&hctx->dispatch_wait_lock); 2701 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2702 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2703 2704 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2705 if (!hctx->fq) 2706 goto free_bitmap; 2707 2708 if (hctx->flags & BLK_MQ_F_BLOCKING) 2709 init_srcu_struct(hctx->srcu); 2710 blk_mq_hctx_kobj_init(hctx); 2711 2712 return hctx; 2713 2714 free_bitmap: 2715 sbitmap_free(&hctx->ctx_map); 2716 free_ctxs: 2717 kfree(hctx->ctxs); 2718 free_cpumask: 2719 free_cpumask_var(hctx->cpumask); 2720 free_hctx: 2721 kfree(hctx); 2722 fail_alloc_hctx: 2723 return NULL; 2724 } 2725 2726 static void blk_mq_init_cpu_queues(struct request_queue *q, 2727 unsigned int nr_hw_queues) 2728 { 2729 struct blk_mq_tag_set *set = q->tag_set; 2730 unsigned int i, j; 2731 2732 for_each_possible_cpu(i) { 2733 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2734 struct blk_mq_hw_ctx *hctx; 2735 int k; 2736 2737 __ctx->cpu = i; 2738 spin_lock_init(&__ctx->lock); 2739 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2740 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2741 2742 __ctx->queue = q; 2743 2744 /* 2745 * Set local node, IFF we have more than one hw queue. If 2746 * not, we remain on the home node of the device 2747 */ 2748 for (j = 0; j < set->nr_maps; j++) { 2749 hctx = blk_mq_map_queue_type(q, j, i); 2750 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2751 hctx->numa_node = cpu_to_node(i); 2752 } 2753 } 2754 } 2755 2756 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2757 int hctx_idx) 2758 { 2759 unsigned int flags = set->flags; 2760 int ret = 0; 2761 2762 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2763 set->queue_depth, set->reserved_tags, flags); 2764 if (!set->tags[hctx_idx]) 2765 return false; 2766 2767 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2768 set->queue_depth); 2769 if (!ret) 2770 return true; 2771 2772 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2773 set->tags[hctx_idx] = NULL; 2774 return false; 2775 } 2776 2777 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2778 unsigned int hctx_idx) 2779 { 2780 unsigned int flags = set->flags; 2781 2782 if (set->tags && set->tags[hctx_idx]) { 2783 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2784 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2785 set->tags[hctx_idx] = NULL; 2786 } 2787 } 2788 2789 static void blk_mq_map_swqueue(struct request_queue *q) 2790 { 2791 unsigned int i, j, hctx_idx; 2792 struct blk_mq_hw_ctx *hctx; 2793 struct blk_mq_ctx *ctx; 2794 struct blk_mq_tag_set *set = q->tag_set; 2795 2796 queue_for_each_hw_ctx(q, hctx, i) { 2797 cpumask_clear(hctx->cpumask); 2798 hctx->nr_ctx = 0; 2799 hctx->dispatch_from = NULL; 2800 } 2801 2802 /* 2803 * Map software to hardware queues. 2804 * 2805 * If the cpu isn't present, the cpu is mapped to first hctx. 2806 */ 2807 for_each_possible_cpu(i) { 2808 2809 ctx = per_cpu_ptr(q->queue_ctx, i); 2810 for (j = 0; j < set->nr_maps; j++) { 2811 if (!set->map[j].nr_queues) { 2812 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2813 HCTX_TYPE_DEFAULT, i); 2814 continue; 2815 } 2816 hctx_idx = set->map[j].mq_map[i]; 2817 /* unmapped hw queue can be remapped after CPU topo changed */ 2818 if (!set->tags[hctx_idx] && 2819 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2820 /* 2821 * If tags initialization fail for some hctx, 2822 * that hctx won't be brought online. In this 2823 * case, remap the current ctx to hctx[0] which 2824 * is guaranteed to always have tags allocated 2825 */ 2826 set->map[j].mq_map[i] = 0; 2827 } 2828 2829 hctx = blk_mq_map_queue_type(q, j, i); 2830 ctx->hctxs[j] = hctx; 2831 /* 2832 * If the CPU is already set in the mask, then we've 2833 * mapped this one already. This can happen if 2834 * devices share queues across queue maps. 2835 */ 2836 if (cpumask_test_cpu(i, hctx->cpumask)) 2837 continue; 2838 2839 cpumask_set_cpu(i, hctx->cpumask); 2840 hctx->type = j; 2841 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2842 hctx->ctxs[hctx->nr_ctx++] = ctx; 2843 2844 /* 2845 * If the nr_ctx type overflows, we have exceeded the 2846 * amount of sw queues we can support. 2847 */ 2848 BUG_ON(!hctx->nr_ctx); 2849 } 2850 2851 for (; j < HCTX_MAX_TYPES; j++) 2852 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2853 HCTX_TYPE_DEFAULT, i); 2854 } 2855 2856 queue_for_each_hw_ctx(q, hctx, i) { 2857 /* 2858 * If no software queues are mapped to this hardware queue, 2859 * disable it and free the request entries. 2860 */ 2861 if (!hctx->nr_ctx) { 2862 /* Never unmap queue 0. We need it as a 2863 * fallback in case of a new remap fails 2864 * allocation 2865 */ 2866 if (i && set->tags[i]) 2867 blk_mq_free_map_and_requests(set, i); 2868 2869 hctx->tags = NULL; 2870 continue; 2871 } 2872 2873 hctx->tags = set->tags[i]; 2874 WARN_ON(!hctx->tags); 2875 2876 /* 2877 * Set the map size to the number of mapped software queues. 2878 * This is more accurate and more efficient than looping 2879 * over all possibly mapped software queues. 2880 */ 2881 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2882 2883 /* 2884 * Initialize batch roundrobin counts 2885 */ 2886 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2887 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2888 } 2889 } 2890 2891 /* 2892 * Caller needs to ensure that we're either frozen/quiesced, or that 2893 * the queue isn't live yet. 2894 */ 2895 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2896 { 2897 struct blk_mq_hw_ctx *hctx; 2898 int i; 2899 2900 queue_for_each_hw_ctx(q, hctx, i) { 2901 if (shared) 2902 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2903 else 2904 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2905 } 2906 } 2907 2908 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2909 bool shared) 2910 { 2911 struct request_queue *q; 2912 2913 lockdep_assert_held(&set->tag_list_lock); 2914 2915 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2916 blk_mq_freeze_queue(q); 2917 queue_set_hctx_shared(q, shared); 2918 blk_mq_unfreeze_queue(q); 2919 } 2920 } 2921 2922 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2923 { 2924 struct blk_mq_tag_set *set = q->tag_set; 2925 2926 mutex_lock(&set->tag_list_lock); 2927 list_del(&q->tag_set_list); 2928 if (list_is_singular(&set->tag_list)) { 2929 /* just transitioned to unshared */ 2930 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2931 /* update existing queue */ 2932 blk_mq_update_tag_set_shared(set, false); 2933 } 2934 mutex_unlock(&set->tag_list_lock); 2935 INIT_LIST_HEAD(&q->tag_set_list); 2936 } 2937 2938 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2939 struct request_queue *q) 2940 { 2941 mutex_lock(&set->tag_list_lock); 2942 2943 /* 2944 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2945 */ 2946 if (!list_empty(&set->tag_list) && 2947 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2948 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2949 /* update existing queue */ 2950 blk_mq_update_tag_set_shared(set, true); 2951 } 2952 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 2953 queue_set_hctx_shared(q, true); 2954 list_add_tail(&q->tag_set_list, &set->tag_list); 2955 2956 mutex_unlock(&set->tag_list_lock); 2957 } 2958 2959 /* All allocations will be freed in release handler of q->mq_kobj */ 2960 static int blk_mq_alloc_ctxs(struct request_queue *q) 2961 { 2962 struct blk_mq_ctxs *ctxs; 2963 int cpu; 2964 2965 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2966 if (!ctxs) 2967 return -ENOMEM; 2968 2969 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2970 if (!ctxs->queue_ctx) 2971 goto fail; 2972 2973 for_each_possible_cpu(cpu) { 2974 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2975 ctx->ctxs = ctxs; 2976 } 2977 2978 q->mq_kobj = &ctxs->kobj; 2979 q->queue_ctx = ctxs->queue_ctx; 2980 2981 return 0; 2982 fail: 2983 kfree(ctxs); 2984 return -ENOMEM; 2985 } 2986 2987 /* 2988 * It is the actual release handler for mq, but we do it from 2989 * request queue's release handler for avoiding use-after-free 2990 * and headache because q->mq_kobj shouldn't have been introduced, 2991 * but we can't group ctx/kctx kobj without it. 2992 */ 2993 void blk_mq_release(struct request_queue *q) 2994 { 2995 struct blk_mq_hw_ctx *hctx, *next; 2996 int i; 2997 2998 queue_for_each_hw_ctx(q, hctx, i) 2999 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3000 3001 /* all hctx are in .unused_hctx_list now */ 3002 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3003 list_del_init(&hctx->hctx_list); 3004 kobject_put(&hctx->kobj); 3005 } 3006 3007 kfree(q->queue_hw_ctx); 3008 3009 /* 3010 * release .mq_kobj and sw queue's kobject now because 3011 * both share lifetime with request queue. 3012 */ 3013 blk_mq_sysfs_deinit(q); 3014 } 3015 3016 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3017 void *queuedata) 3018 { 3019 struct request_queue *uninit_q, *q; 3020 3021 uninit_q = blk_alloc_queue(set->numa_node); 3022 if (!uninit_q) 3023 return ERR_PTR(-ENOMEM); 3024 uninit_q->queuedata = queuedata; 3025 3026 /* 3027 * Initialize the queue without an elevator. device_add_disk() will do 3028 * the initialization. 3029 */ 3030 q = blk_mq_init_allocated_queue(set, uninit_q, false); 3031 if (IS_ERR(q)) 3032 blk_cleanup_queue(uninit_q); 3033 3034 return q; 3035 } 3036 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 3037 3038 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3039 { 3040 return blk_mq_init_queue_data(set, NULL); 3041 } 3042 EXPORT_SYMBOL(blk_mq_init_queue); 3043 3044 /* 3045 * Helper for setting up a queue with mq ops, given queue depth, and 3046 * the passed in mq ops flags. 3047 */ 3048 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 3049 const struct blk_mq_ops *ops, 3050 unsigned int queue_depth, 3051 unsigned int set_flags) 3052 { 3053 struct request_queue *q; 3054 int ret; 3055 3056 memset(set, 0, sizeof(*set)); 3057 set->ops = ops; 3058 set->nr_hw_queues = 1; 3059 set->nr_maps = 1; 3060 set->queue_depth = queue_depth; 3061 set->numa_node = NUMA_NO_NODE; 3062 set->flags = set_flags; 3063 3064 ret = blk_mq_alloc_tag_set(set); 3065 if (ret) 3066 return ERR_PTR(ret); 3067 3068 q = blk_mq_init_queue(set); 3069 if (IS_ERR(q)) { 3070 blk_mq_free_tag_set(set); 3071 return q; 3072 } 3073 3074 return q; 3075 } 3076 EXPORT_SYMBOL(blk_mq_init_sq_queue); 3077 3078 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3079 struct blk_mq_tag_set *set, struct request_queue *q, 3080 int hctx_idx, int node) 3081 { 3082 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3083 3084 /* reuse dead hctx first */ 3085 spin_lock(&q->unused_hctx_lock); 3086 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3087 if (tmp->numa_node == node) { 3088 hctx = tmp; 3089 break; 3090 } 3091 } 3092 if (hctx) 3093 list_del_init(&hctx->hctx_list); 3094 spin_unlock(&q->unused_hctx_lock); 3095 3096 if (!hctx) 3097 hctx = blk_mq_alloc_hctx(q, set, node); 3098 if (!hctx) 3099 goto fail; 3100 3101 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3102 goto free_hctx; 3103 3104 return hctx; 3105 3106 free_hctx: 3107 kobject_put(&hctx->kobj); 3108 fail: 3109 return NULL; 3110 } 3111 3112 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3113 struct request_queue *q) 3114 { 3115 int i, j, end; 3116 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3117 3118 if (q->nr_hw_queues < set->nr_hw_queues) { 3119 struct blk_mq_hw_ctx **new_hctxs; 3120 3121 new_hctxs = kcalloc_node(set->nr_hw_queues, 3122 sizeof(*new_hctxs), GFP_KERNEL, 3123 set->numa_node); 3124 if (!new_hctxs) 3125 return; 3126 if (hctxs) 3127 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3128 sizeof(*hctxs)); 3129 q->queue_hw_ctx = new_hctxs; 3130 kfree(hctxs); 3131 hctxs = new_hctxs; 3132 } 3133 3134 /* protect against switching io scheduler */ 3135 mutex_lock(&q->sysfs_lock); 3136 for (i = 0; i < set->nr_hw_queues; i++) { 3137 int node; 3138 struct blk_mq_hw_ctx *hctx; 3139 3140 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3141 /* 3142 * If the hw queue has been mapped to another numa node, 3143 * we need to realloc the hctx. If allocation fails, fallback 3144 * to use the previous one. 3145 */ 3146 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3147 continue; 3148 3149 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3150 if (hctx) { 3151 if (hctxs[i]) 3152 blk_mq_exit_hctx(q, set, hctxs[i], i); 3153 hctxs[i] = hctx; 3154 } else { 3155 if (hctxs[i]) 3156 pr_warn("Allocate new hctx on node %d fails,\ 3157 fallback to previous one on node %d\n", 3158 node, hctxs[i]->numa_node); 3159 else 3160 break; 3161 } 3162 } 3163 /* 3164 * Increasing nr_hw_queues fails. Free the newly allocated 3165 * hctxs and keep the previous q->nr_hw_queues. 3166 */ 3167 if (i != set->nr_hw_queues) { 3168 j = q->nr_hw_queues; 3169 end = i; 3170 } else { 3171 j = i; 3172 end = q->nr_hw_queues; 3173 q->nr_hw_queues = set->nr_hw_queues; 3174 } 3175 3176 for (; j < end; j++) { 3177 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3178 3179 if (hctx) { 3180 if (hctx->tags) 3181 blk_mq_free_map_and_requests(set, j); 3182 blk_mq_exit_hctx(q, set, hctx, j); 3183 hctxs[j] = NULL; 3184 } 3185 } 3186 mutex_unlock(&q->sysfs_lock); 3187 } 3188 3189 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3190 struct request_queue *q, 3191 bool elevator_init) 3192 { 3193 /* mark the queue as mq asap */ 3194 q->mq_ops = set->ops; 3195 3196 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3197 blk_mq_poll_stats_bkt, 3198 BLK_MQ_POLL_STATS_BKTS, q); 3199 if (!q->poll_cb) 3200 goto err_exit; 3201 3202 if (blk_mq_alloc_ctxs(q)) 3203 goto err_poll; 3204 3205 /* init q->mq_kobj and sw queues' kobjects */ 3206 blk_mq_sysfs_init(q); 3207 3208 INIT_LIST_HEAD(&q->unused_hctx_list); 3209 spin_lock_init(&q->unused_hctx_lock); 3210 3211 blk_mq_realloc_hw_ctxs(set, q); 3212 if (!q->nr_hw_queues) 3213 goto err_hctxs; 3214 3215 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3216 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3217 3218 q->tag_set = set; 3219 3220 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3221 if (set->nr_maps > HCTX_TYPE_POLL && 3222 set->map[HCTX_TYPE_POLL].nr_queues) 3223 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3224 3225 q->sg_reserved_size = INT_MAX; 3226 3227 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3228 INIT_LIST_HEAD(&q->requeue_list); 3229 spin_lock_init(&q->requeue_lock); 3230 3231 q->nr_requests = set->queue_depth; 3232 3233 /* 3234 * Default to classic polling 3235 */ 3236 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3237 3238 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3239 blk_mq_add_queue_tag_set(set, q); 3240 blk_mq_map_swqueue(q); 3241 3242 if (elevator_init) 3243 elevator_init_mq(q); 3244 3245 return q; 3246 3247 err_hctxs: 3248 kfree(q->queue_hw_ctx); 3249 q->nr_hw_queues = 0; 3250 blk_mq_sysfs_deinit(q); 3251 err_poll: 3252 blk_stat_free_callback(q->poll_cb); 3253 q->poll_cb = NULL; 3254 err_exit: 3255 q->mq_ops = NULL; 3256 return ERR_PTR(-ENOMEM); 3257 } 3258 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3259 3260 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3261 void blk_mq_exit_queue(struct request_queue *q) 3262 { 3263 struct blk_mq_tag_set *set = q->tag_set; 3264 3265 blk_mq_del_queue_tag_set(q); 3266 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3267 } 3268 3269 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3270 { 3271 int i; 3272 3273 for (i = 0; i < set->nr_hw_queues; i++) { 3274 if (!__blk_mq_alloc_map_and_request(set, i)) 3275 goto out_unwind; 3276 cond_resched(); 3277 } 3278 3279 return 0; 3280 3281 out_unwind: 3282 while (--i >= 0) 3283 blk_mq_free_map_and_requests(set, i); 3284 3285 return -ENOMEM; 3286 } 3287 3288 /* 3289 * Allocate the request maps associated with this tag_set. Note that this 3290 * may reduce the depth asked for, if memory is tight. set->queue_depth 3291 * will be updated to reflect the allocated depth. 3292 */ 3293 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3294 { 3295 unsigned int depth; 3296 int err; 3297 3298 depth = set->queue_depth; 3299 do { 3300 err = __blk_mq_alloc_rq_maps(set); 3301 if (!err) 3302 break; 3303 3304 set->queue_depth >>= 1; 3305 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3306 err = -ENOMEM; 3307 break; 3308 } 3309 } while (set->queue_depth); 3310 3311 if (!set->queue_depth || err) { 3312 pr_err("blk-mq: failed to allocate request map\n"); 3313 return -ENOMEM; 3314 } 3315 3316 if (depth != set->queue_depth) 3317 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3318 depth, set->queue_depth); 3319 3320 return 0; 3321 } 3322 3323 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3324 { 3325 /* 3326 * blk_mq_map_queues() and multiple .map_queues() implementations 3327 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3328 * number of hardware queues. 3329 */ 3330 if (set->nr_maps == 1) 3331 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3332 3333 if (set->ops->map_queues && !is_kdump_kernel()) { 3334 int i; 3335 3336 /* 3337 * transport .map_queues is usually done in the following 3338 * way: 3339 * 3340 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3341 * mask = get_cpu_mask(queue) 3342 * for_each_cpu(cpu, mask) 3343 * set->map[x].mq_map[cpu] = queue; 3344 * } 3345 * 3346 * When we need to remap, the table has to be cleared for 3347 * killing stale mapping since one CPU may not be mapped 3348 * to any hw queue. 3349 */ 3350 for (i = 0; i < set->nr_maps; i++) 3351 blk_mq_clear_mq_map(&set->map[i]); 3352 3353 return set->ops->map_queues(set); 3354 } else { 3355 BUG_ON(set->nr_maps > 1); 3356 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3357 } 3358 } 3359 3360 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3361 int cur_nr_hw_queues, int new_nr_hw_queues) 3362 { 3363 struct blk_mq_tags **new_tags; 3364 3365 if (cur_nr_hw_queues >= new_nr_hw_queues) 3366 return 0; 3367 3368 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3369 GFP_KERNEL, set->numa_node); 3370 if (!new_tags) 3371 return -ENOMEM; 3372 3373 if (set->tags) 3374 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3375 sizeof(*set->tags)); 3376 kfree(set->tags); 3377 set->tags = new_tags; 3378 set->nr_hw_queues = new_nr_hw_queues; 3379 3380 return 0; 3381 } 3382 3383 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3384 int new_nr_hw_queues) 3385 { 3386 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3387 } 3388 3389 /* 3390 * Alloc a tag set to be associated with one or more request queues. 3391 * May fail with EINVAL for various error conditions. May adjust the 3392 * requested depth down, if it's too large. In that case, the set 3393 * value will be stored in set->queue_depth. 3394 */ 3395 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3396 { 3397 int i, ret; 3398 3399 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3400 3401 if (!set->nr_hw_queues) 3402 return -EINVAL; 3403 if (!set->queue_depth) 3404 return -EINVAL; 3405 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3406 return -EINVAL; 3407 3408 if (!set->ops->queue_rq) 3409 return -EINVAL; 3410 3411 if (!set->ops->get_budget ^ !set->ops->put_budget) 3412 return -EINVAL; 3413 3414 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3415 pr_info("blk-mq: reduced tag depth to %u\n", 3416 BLK_MQ_MAX_DEPTH); 3417 set->queue_depth = BLK_MQ_MAX_DEPTH; 3418 } 3419 3420 if (!set->nr_maps) 3421 set->nr_maps = 1; 3422 else if (set->nr_maps > HCTX_MAX_TYPES) 3423 return -EINVAL; 3424 3425 /* 3426 * If a crashdump is active, then we are potentially in a very 3427 * memory constrained environment. Limit us to 1 queue and 3428 * 64 tags to prevent using too much memory. 3429 */ 3430 if (is_kdump_kernel()) { 3431 set->nr_hw_queues = 1; 3432 set->nr_maps = 1; 3433 set->queue_depth = min(64U, set->queue_depth); 3434 } 3435 /* 3436 * There is no use for more h/w queues than cpus if we just have 3437 * a single map 3438 */ 3439 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3440 set->nr_hw_queues = nr_cpu_ids; 3441 3442 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3443 return -ENOMEM; 3444 3445 ret = -ENOMEM; 3446 for (i = 0; i < set->nr_maps; i++) { 3447 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3448 sizeof(set->map[i].mq_map[0]), 3449 GFP_KERNEL, set->numa_node); 3450 if (!set->map[i].mq_map) 3451 goto out_free_mq_map; 3452 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3453 } 3454 3455 ret = blk_mq_update_queue_map(set); 3456 if (ret) 3457 goto out_free_mq_map; 3458 3459 ret = blk_mq_alloc_map_and_requests(set); 3460 if (ret) 3461 goto out_free_mq_map; 3462 3463 if (blk_mq_is_sbitmap_shared(set->flags)) { 3464 atomic_set(&set->active_queues_shared_sbitmap, 0); 3465 3466 if (blk_mq_init_shared_sbitmap(set, set->flags)) { 3467 ret = -ENOMEM; 3468 goto out_free_mq_rq_maps; 3469 } 3470 } 3471 3472 mutex_init(&set->tag_list_lock); 3473 INIT_LIST_HEAD(&set->tag_list); 3474 3475 return 0; 3476 3477 out_free_mq_rq_maps: 3478 for (i = 0; i < set->nr_hw_queues; i++) 3479 blk_mq_free_map_and_requests(set, i); 3480 out_free_mq_map: 3481 for (i = 0; i < set->nr_maps; i++) { 3482 kfree(set->map[i].mq_map); 3483 set->map[i].mq_map = NULL; 3484 } 3485 kfree(set->tags); 3486 set->tags = NULL; 3487 return ret; 3488 } 3489 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3490 3491 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3492 { 3493 int i, j; 3494 3495 for (i = 0; i < set->nr_hw_queues; i++) 3496 blk_mq_free_map_and_requests(set, i); 3497 3498 if (blk_mq_is_sbitmap_shared(set->flags)) 3499 blk_mq_exit_shared_sbitmap(set); 3500 3501 for (j = 0; j < set->nr_maps; j++) { 3502 kfree(set->map[j].mq_map); 3503 set->map[j].mq_map = NULL; 3504 } 3505 3506 kfree(set->tags); 3507 set->tags = NULL; 3508 } 3509 EXPORT_SYMBOL(blk_mq_free_tag_set); 3510 3511 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3512 { 3513 struct blk_mq_tag_set *set = q->tag_set; 3514 struct blk_mq_hw_ctx *hctx; 3515 int i, ret; 3516 3517 if (!set) 3518 return -EINVAL; 3519 3520 if (q->nr_requests == nr) 3521 return 0; 3522 3523 blk_mq_freeze_queue(q); 3524 blk_mq_quiesce_queue(q); 3525 3526 ret = 0; 3527 queue_for_each_hw_ctx(q, hctx, i) { 3528 if (!hctx->tags) 3529 continue; 3530 /* 3531 * If we're using an MQ scheduler, just update the scheduler 3532 * queue depth. This is similar to what the old code would do. 3533 */ 3534 if (!hctx->sched_tags) { 3535 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3536 false); 3537 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3538 blk_mq_tag_resize_shared_sbitmap(set, nr); 3539 } else { 3540 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3541 nr, true); 3542 } 3543 if (ret) 3544 break; 3545 if (q->elevator && q->elevator->type->ops.depth_updated) 3546 q->elevator->type->ops.depth_updated(hctx); 3547 } 3548 3549 if (!ret) 3550 q->nr_requests = nr; 3551 3552 blk_mq_unquiesce_queue(q); 3553 blk_mq_unfreeze_queue(q); 3554 3555 return ret; 3556 } 3557 3558 /* 3559 * request_queue and elevator_type pair. 3560 * It is just used by __blk_mq_update_nr_hw_queues to cache 3561 * the elevator_type associated with a request_queue. 3562 */ 3563 struct blk_mq_qe_pair { 3564 struct list_head node; 3565 struct request_queue *q; 3566 struct elevator_type *type; 3567 }; 3568 3569 /* 3570 * Cache the elevator_type in qe pair list and switch the 3571 * io scheduler to 'none' 3572 */ 3573 static bool blk_mq_elv_switch_none(struct list_head *head, 3574 struct request_queue *q) 3575 { 3576 struct blk_mq_qe_pair *qe; 3577 3578 if (!q->elevator) 3579 return true; 3580 3581 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3582 if (!qe) 3583 return false; 3584 3585 INIT_LIST_HEAD(&qe->node); 3586 qe->q = q; 3587 qe->type = q->elevator->type; 3588 list_add(&qe->node, head); 3589 3590 mutex_lock(&q->sysfs_lock); 3591 /* 3592 * After elevator_switch_mq, the previous elevator_queue will be 3593 * released by elevator_release. The reference of the io scheduler 3594 * module get by elevator_get will also be put. So we need to get 3595 * a reference of the io scheduler module here to prevent it to be 3596 * removed. 3597 */ 3598 __module_get(qe->type->elevator_owner); 3599 elevator_switch_mq(q, NULL); 3600 mutex_unlock(&q->sysfs_lock); 3601 3602 return true; 3603 } 3604 3605 static void blk_mq_elv_switch_back(struct list_head *head, 3606 struct request_queue *q) 3607 { 3608 struct blk_mq_qe_pair *qe; 3609 struct elevator_type *t = NULL; 3610 3611 list_for_each_entry(qe, head, node) 3612 if (qe->q == q) { 3613 t = qe->type; 3614 break; 3615 } 3616 3617 if (!t) 3618 return; 3619 3620 list_del(&qe->node); 3621 kfree(qe); 3622 3623 mutex_lock(&q->sysfs_lock); 3624 elevator_switch_mq(q, t); 3625 mutex_unlock(&q->sysfs_lock); 3626 } 3627 3628 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3629 int nr_hw_queues) 3630 { 3631 struct request_queue *q; 3632 LIST_HEAD(head); 3633 int prev_nr_hw_queues; 3634 3635 lockdep_assert_held(&set->tag_list_lock); 3636 3637 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3638 nr_hw_queues = nr_cpu_ids; 3639 if (nr_hw_queues < 1) 3640 return; 3641 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3642 return; 3643 3644 list_for_each_entry(q, &set->tag_list, tag_set_list) 3645 blk_mq_freeze_queue(q); 3646 /* 3647 * Switch IO scheduler to 'none', cleaning up the data associated 3648 * with the previous scheduler. We will switch back once we are done 3649 * updating the new sw to hw queue mappings. 3650 */ 3651 list_for_each_entry(q, &set->tag_list, tag_set_list) 3652 if (!blk_mq_elv_switch_none(&head, q)) 3653 goto switch_back; 3654 3655 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3656 blk_mq_debugfs_unregister_hctxs(q); 3657 blk_mq_sysfs_unregister(q); 3658 } 3659 3660 prev_nr_hw_queues = set->nr_hw_queues; 3661 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3662 0) 3663 goto reregister; 3664 3665 set->nr_hw_queues = nr_hw_queues; 3666 fallback: 3667 blk_mq_update_queue_map(set); 3668 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3669 blk_mq_realloc_hw_ctxs(set, q); 3670 if (q->nr_hw_queues != set->nr_hw_queues) { 3671 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3672 nr_hw_queues, prev_nr_hw_queues); 3673 set->nr_hw_queues = prev_nr_hw_queues; 3674 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3675 goto fallback; 3676 } 3677 blk_mq_map_swqueue(q); 3678 } 3679 3680 reregister: 3681 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3682 blk_mq_sysfs_register(q); 3683 blk_mq_debugfs_register_hctxs(q); 3684 } 3685 3686 switch_back: 3687 list_for_each_entry(q, &set->tag_list, tag_set_list) 3688 blk_mq_elv_switch_back(&head, q); 3689 3690 list_for_each_entry(q, &set->tag_list, tag_set_list) 3691 blk_mq_unfreeze_queue(q); 3692 } 3693 3694 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3695 { 3696 mutex_lock(&set->tag_list_lock); 3697 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3698 mutex_unlock(&set->tag_list_lock); 3699 } 3700 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3701 3702 /* Enable polling stats and return whether they were already enabled. */ 3703 static bool blk_poll_stats_enable(struct request_queue *q) 3704 { 3705 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3706 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3707 return true; 3708 blk_stat_add_callback(q, q->poll_cb); 3709 return false; 3710 } 3711 3712 static void blk_mq_poll_stats_start(struct request_queue *q) 3713 { 3714 /* 3715 * We don't arm the callback if polling stats are not enabled or the 3716 * callback is already active. 3717 */ 3718 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3719 blk_stat_is_active(q->poll_cb)) 3720 return; 3721 3722 blk_stat_activate_msecs(q->poll_cb, 100); 3723 } 3724 3725 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3726 { 3727 struct request_queue *q = cb->data; 3728 int bucket; 3729 3730 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3731 if (cb->stat[bucket].nr_samples) 3732 q->poll_stat[bucket] = cb->stat[bucket]; 3733 } 3734 } 3735 3736 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3737 struct request *rq) 3738 { 3739 unsigned long ret = 0; 3740 int bucket; 3741 3742 /* 3743 * If stats collection isn't on, don't sleep but turn it on for 3744 * future users 3745 */ 3746 if (!blk_poll_stats_enable(q)) 3747 return 0; 3748 3749 /* 3750 * As an optimistic guess, use half of the mean service time 3751 * for this type of request. We can (and should) make this smarter. 3752 * For instance, if the completion latencies are tight, we can 3753 * get closer than just half the mean. This is especially 3754 * important on devices where the completion latencies are longer 3755 * than ~10 usec. We do use the stats for the relevant IO size 3756 * if available which does lead to better estimates. 3757 */ 3758 bucket = blk_mq_poll_stats_bkt(rq); 3759 if (bucket < 0) 3760 return ret; 3761 3762 if (q->poll_stat[bucket].nr_samples) 3763 ret = (q->poll_stat[bucket].mean + 1) / 2; 3764 3765 return ret; 3766 } 3767 3768 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3769 struct request *rq) 3770 { 3771 struct hrtimer_sleeper hs; 3772 enum hrtimer_mode mode; 3773 unsigned int nsecs; 3774 ktime_t kt; 3775 3776 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3777 return false; 3778 3779 /* 3780 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3781 * 3782 * 0: use half of prev avg 3783 * >0: use this specific value 3784 */ 3785 if (q->poll_nsec > 0) 3786 nsecs = q->poll_nsec; 3787 else 3788 nsecs = blk_mq_poll_nsecs(q, rq); 3789 3790 if (!nsecs) 3791 return false; 3792 3793 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3794 3795 /* 3796 * This will be replaced with the stats tracking code, using 3797 * 'avg_completion_time / 2' as the pre-sleep target. 3798 */ 3799 kt = nsecs; 3800 3801 mode = HRTIMER_MODE_REL; 3802 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3803 hrtimer_set_expires(&hs.timer, kt); 3804 3805 do { 3806 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3807 break; 3808 set_current_state(TASK_UNINTERRUPTIBLE); 3809 hrtimer_sleeper_start_expires(&hs, mode); 3810 if (hs.task) 3811 io_schedule(); 3812 hrtimer_cancel(&hs.timer); 3813 mode = HRTIMER_MODE_ABS; 3814 } while (hs.task && !signal_pending(current)); 3815 3816 __set_current_state(TASK_RUNNING); 3817 destroy_hrtimer_on_stack(&hs.timer); 3818 return true; 3819 } 3820 3821 static bool blk_mq_poll_hybrid(struct request_queue *q, 3822 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3823 { 3824 struct request *rq; 3825 3826 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3827 return false; 3828 3829 if (!blk_qc_t_is_internal(cookie)) 3830 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3831 else { 3832 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3833 /* 3834 * With scheduling, if the request has completed, we'll 3835 * get a NULL return here, as we clear the sched tag when 3836 * that happens. The request still remains valid, like always, 3837 * so we should be safe with just the NULL check. 3838 */ 3839 if (!rq) 3840 return false; 3841 } 3842 3843 return blk_mq_poll_hybrid_sleep(q, rq); 3844 } 3845 3846 /** 3847 * blk_poll - poll for IO completions 3848 * @q: the queue 3849 * @cookie: cookie passed back at IO submission time 3850 * @spin: whether to spin for completions 3851 * 3852 * Description: 3853 * Poll for completions on the passed in queue. Returns number of 3854 * completed entries found. If @spin is true, then blk_poll will continue 3855 * looping until at least one completion is found, unless the task is 3856 * otherwise marked running (or we need to reschedule). 3857 */ 3858 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3859 { 3860 struct blk_mq_hw_ctx *hctx; 3861 long state; 3862 3863 if (!blk_qc_t_valid(cookie) || 3864 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3865 return 0; 3866 3867 if (current->plug) 3868 blk_flush_plug_list(current->plug, false); 3869 3870 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3871 3872 /* 3873 * If we sleep, have the caller restart the poll loop to reset 3874 * the state. Like for the other success return cases, the 3875 * caller is responsible for checking if the IO completed. If 3876 * the IO isn't complete, we'll get called again and will go 3877 * straight to the busy poll loop. If specified not to spin, 3878 * we also should not sleep. 3879 */ 3880 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3881 return 1; 3882 3883 hctx->poll_considered++; 3884 3885 state = current->state; 3886 do { 3887 int ret; 3888 3889 hctx->poll_invoked++; 3890 3891 ret = q->mq_ops->poll(hctx); 3892 if (ret > 0) { 3893 hctx->poll_success++; 3894 __set_current_state(TASK_RUNNING); 3895 return ret; 3896 } 3897 3898 if (signal_pending_state(state, current)) 3899 __set_current_state(TASK_RUNNING); 3900 3901 if (current->state == TASK_RUNNING) 3902 return 1; 3903 if (ret < 0 || !spin) 3904 break; 3905 cpu_relax(); 3906 } while (!need_resched()); 3907 3908 __set_current_state(TASK_RUNNING); 3909 return 0; 3910 } 3911 EXPORT_SYMBOL_GPL(blk_poll); 3912 3913 unsigned int blk_mq_rq_cpu(struct request *rq) 3914 { 3915 return rq->mq_ctx->cpu; 3916 } 3917 EXPORT_SYMBOL(blk_mq_rq_cpu); 3918 3919 static int __init blk_mq_init(void) 3920 { 3921 int i; 3922 3923 for_each_possible_cpu(i) 3924 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 3925 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 3926 3927 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 3928 "block/softirq:dead", NULL, 3929 blk_softirq_cpu_dead); 3930 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3931 blk_mq_hctx_notify_dead); 3932 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 3933 blk_mq_hctx_notify_online, 3934 blk_mq_hctx_notify_offline); 3935 return 0; 3936 } 3937 subsys_initcall(blk_mq_init); 3938