xref: /linux/block/blk-mq.c (revision b40f97b91a3b167ab22c9e9f1ef00b1615ff01e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
191 void blk_mq_unfreeze_queue(struct request_queue *q)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	q->mq_freeze_depth--;
195 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
196 	if (!q->mq_freeze_depth) {
197 		percpu_ref_resurrect(&q->q_usage_counter);
198 		wake_up_all(&q->mq_freeze_wq);
199 	}
200 	mutex_unlock(&q->mq_freeze_lock);
201 }
202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
203 
204 /*
205  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
206  * mpt3sas driver such that this function can be removed.
207  */
208 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
209 {
210 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
216  * @q: request queue.
217  *
218  * Note: this function does not prevent that the struct request end_io()
219  * callback function is invoked. Once this function is returned, we make
220  * sure no dispatch can happen until the queue is unquiesced via
221  * blk_mq_unquiesce_queue().
222  */
223 void blk_mq_quiesce_queue(struct request_queue *q)
224 {
225 	struct blk_mq_hw_ctx *hctx;
226 	unsigned int i;
227 	bool rcu = false;
228 
229 	blk_mq_quiesce_queue_nowait(q);
230 
231 	queue_for_each_hw_ctx(q, hctx, i) {
232 		if (hctx->flags & BLK_MQ_F_BLOCKING)
233 			synchronize_srcu(hctx->srcu);
234 		else
235 			rcu = true;
236 	}
237 	if (rcu)
238 		synchronize_rcu();
239 }
240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
241 
242 /*
243  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
244  * @q: request queue.
245  *
246  * This function recovers queue into the state before quiescing
247  * which is done by blk_mq_quiesce_queue.
248  */
249 void blk_mq_unquiesce_queue(struct request_queue *q)
250 {
251 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
252 
253 	/* dispatch requests which are inserted during quiescing */
254 	blk_mq_run_hw_queues(q, true);
255 }
256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
257 
258 void blk_mq_wake_waiters(struct request_queue *q)
259 {
260 	struct blk_mq_hw_ctx *hctx;
261 	unsigned int i;
262 
263 	queue_for_each_hw_ctx(q, hctx, i)
264 		if (blk_mq_hw_queue_mapped(hctx))
265 			blk_mq_tag_wakeup_all(hctx->tags, true);
266 }
267 
268 /*
269  * Only need start/end time stamping if we have iostat or
270  * blk stats enabled, or using an IO scheduler.
271  */
272 static inline bool blk_mq_need_time_stamp(struct request *rq)
273 {
274 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
275 }
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, u64 alloc_time_ns)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 
283 	if (data->q->elevator) {
284 		rq->tag = BLK_MQ_NO_TAG;
285 		rq->internal_tag = tag;
286 	} else {
287 		rq->tag = tag;
288 		rq->internal_tag = BLK_MQ_NO_TAG;
289 	}
290 
291 	/* csd/requeue_work/fifo_time is initialized before use */
292 	rq->q = data->q;
293 	rq->mq_ctx = data->ctx;
294 	rq->mq_hctx = data->hctx;
295 	rq->rq_flags = 0;
296 	rq->cmd_flags = data->cmd_flags;
297 	if (data->flags & BLK_MQ_REQ_PREEMPT)
298 		rq->rq_flags |= RQF_PREEMPT;
299 	if (blk_queue_io_stat(data->q))
300 		rq->rq_flags |= RQF_IO_STAT;
301 	INIT_LIST_HEAD(&rq->queuelist);
302 	INIT_HLIST_NODE(&rq->hash);
303 	RB_CLEAR_NODE(&rq->rb_node);
304 	rq->rq_disk = NULL;
305 	rq->part = NULL;
306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
307 	rq->alloc_time_ns = alloc_time_ns;
308 #endif
309 	if (blk_mq_need_time_stamp(rq))
310 		rq->start_time_ns = ktime_get_ns();
311 	else
312 		rq->start_time_ns = 0;
313 	rq->io_start_time_ns = 0;
314 	rq->stats_sectors = 0;
315 	rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 	rq->nr_integrity_segments = 0;
318 #endif
319 	blk_crypto_rq_set_defaults(rq);
320 	/* tag was already set */
321 	WRITE_ONCE(rq->deadline, 0);
322 
323 	rq->timeout = 0;
324 
325 	rq->end_io = NULL;
326 	rq->end_io_data = NULL;
327 
328 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
329 	refcount_set(&rq->ref, 1);
330 
331 	if (!op_is_flush(data->cmd_flags)) {
332 		struct elevator_queue *e = data->q->elevator;
333 
334 		rq->elv.icq = NULL;
335 		if (e && e->type->ops.prepare_request) {
336 			if (e->type->icq_cache)
337 				blk_mq_sched_assign_ioc(rq);
338 
339 			e->type->ops.prepare_request(rq);
340 			rq->rq_flags |= RQF_ELVPRIV;
341 		}
342 	}
343 
344 	data->hctx->queued++;
345 	return rq;
346 }
347 
348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
349 {
350 	struct request_queue *q = data->q;
351 	struct elevator_queue *e = q->elevator;
352 	u64 alloc_time_ns = 0;
353 	unsigned int tag;
354 
355 	/* alloc_time includes depth and tag waits */
356 	if (blk_queue_rq_alloc_time(q))
357 		alloc_time_ns = ktime_get_ns();
358 
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		/*
364 		 * Flush requests are special and go directly to the
365 		 * dispatch list. Don't include reserved tags in the
366 		 * limiting, as it isn't useful.
367 		 */
368 		if (!op_is_flush(data->cmd_flags) &&
369 		    e->type->ops.limit_depth &&
370 		    !(data->flags & BLK_MQ_REQ_RESERVED))
371 			e->type->ops.limit_depth(data->cmd_flags, data);
372 	}
373 
374 retry:
375 	data->ctx = blk_mq_get_ctx(q);
376 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
377 	if (!e)
378 		blk_mq_tag_busy(data->hctx);
379 
380 	/*
381 	 * Waiting allocations only fail because of an inactive hctx.  In that
382 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
383 	 * should have migrated us to an online CPU by now.
384 	 */
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_NO_TAG) {
387 		if (data->flags & BLK_MQ_REQ_NOWAIT)
388 			return NULL;
389 
390 		/*
391 		 * Give up the CPU and sleep for a random short time to ensure
392 		 * that thread using a realtime scheduling class are migrated
393 		 * off the CPU, and thus off the hctx that is going away.
394 		 */
395 		msleep(3);
396 		goto retry;
397 	}
398 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data data = {
405 		.q		= q,
406 		.flags		= flags,
407 		.cmd_flags	= op,
408 	};
409 	struct request *rq;
410 	int ret;
411 
412 	ret = blk_queue_enter(q, flags);
413 	if (ret)
414 		return ERR_PTR(ret);
415 
416 	rq = __blk_mq_alloc_request(&data);
417 	if (!rq)
418 		goto out_queue_exit;
419 	rq->__data_len = 0;
420 	rq->__sector = (sector_t) -1;
421 	rq->bio = rq->biotail = NULL;
422 	return rq;
423 out_queue_exit:
424 	blk_queue_exit(q);
425 	return ERR_PTR(-EWOULDBLOCK);
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428 
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 	struct blk_mq_alloc_data data = {
433 		.q		= q,
434 		.flags		= flags,
435 		.cmd_flags	= op,
436 	};
437 	u64 alloc_time_ns = 0;
438 	unsigned int cpu;
439 	unsigned int tag;
440 	int ret;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = ktime_get_ns();
445 
446 	/*
447 	 * If the tag allocator sleeps we could get an allocation for a
448 	 * different hardware context.  No need to complicate the low level
449 	 * allocator for this for the rare use case of a command tied to
450 	 * a specific queue.
451 	 */
452 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
453 		return ERR_PTR(-EINVAL);
454 
455 	if (hctx_idx >= q->nr_hw_queues)
456 		return ERR_PTR(-EIO);
457 
458 	ret = blk_queue_enter(q, flags);
459 	if (ret)
460 		return ERR_PTR(ret);
461 
462 	/*
463 	 * Check if the hardware context is actually mapped to anything.
464 	 * If not tell the caller that it should skip this queue.
465 	 */
466 	ret = -EXDEV;
467 	data.hctx = q->queue_hw_ctx[hctx_idx];
468 	if (!blk_mq_hw_queue_mapped(data.hctx))
469 		goto out_queue_exit;
470 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
471 	data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	if (!q->elevator)
474 		blk_mq_tag_busy(data.hctx);
475 
476 	ret = -EWOULDBLOCK;
477 	tag = blk_mq_get_tag(&data);
478 	if (tag == BLK_MQ_NO_TAG)
479 		goto out_queue_exit;
480 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
481 
482 out_queue_exit:
483 	blk_queue_exit(q);
484 	return ERR_PTR(ret);
485 }
486 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
487 
488 static void __blk_mq_free_request(struct request *rq)
489 {
490 	struct request_queue *q = rq->q;
491 	struct blk_mq_ctx *ctx = rq->mq_ctx;
492 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
493 	const int sched_tag = rq->internal_tag;
494 
495 	blk_crypto_free_request(rq);
496 	blk_pm_mark_last_busy(rq);
497 	rq->mq_hctx = NULL;
498 	if (rq->tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
500 	if (sched_tag != BLK_MQ_NO_TAG)
501 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
502 	blk_mq_sched_restart(hctx);
503 	blk_queue_exit(q);
504 }
505 
506 void blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct elevator_queue *e = q->elevator;
510 	struct blk_mq_ctx *ctx = rq->mq_ctx;
511 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
512 
513 	if (rq->rq_flags & RQF_ELVPRIV) {
514 		if (e && e->type->ops.finish_request)
515 			e->type->ops.finish_request(rq);
516 		if (rq->elv.icq) {
517 			put_io_context(rq->elv.icq->ioc);
518 			rq->elv.icq = NULL;
519 		}
520 	}
521 
522 	ctx->rq_completed[rq_is_sync(rq)]++;
523 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
524 		__blk_mq_dec_active_requests(hctx);
525 
526 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
527 		laptop_io_completion(q->backing_dev_info);
528 
529 	rq_qos_done(q, rq);
530 
531 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
532 	if (refcount_dec_and_test(&rq->ref))
533 		__blk_mq_free_request(rq);
534 }
535 EXPORT_SYMBOL_GPL(blk_mq_free_request);
536 
537 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
538 {
539 	u64 now = 0;
540 
541 	if (blk_mq_need_time_stamp(rq))
542 		now = ktime_get_ns();
543 
544 	if (rq->rq_flags & RQF_STATS) {
545 		blk_mq_poll_stats_start(rq->q);
546 		blk_stat_add(rq, now);
547 	}
548 
549 	blk_mq_sched_completed_request(rq, now);
550 
551 	blk_account_io_done(rq, now);
552 
553 	if (rq->end_io) {
554 		rq_qos_done(rq->q, rq);
555 		rq->end_io(rq, error);
556 	} else {
557 		blk_mq_free_request(rq);
558 	}
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561 
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 		BUG();
566 	__blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569 
570 /*
571  * Softirq action handler - move entries to local list and loop over them
572  * while passing them to the queue registered handler.
573  */
574 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
575 {
576 	struct list_head *cpu_list, local_list;
577 
578 	local_irq_disable();
579 	cpu_list = this_cpu_ptr(&blk_cpu_done);
580 	list_replace_init(cpu_list, &local_list);
581 	local_irq_enable();
582 
583 	while (!list_empty(&local_list)) {
584 		struct request *rq;
585 
586 		rq = list_entry(local_list.next, struct request, ipi_list);
587 		list_del_init(&rq->ipi_list);
588 		rq->q->mq_ops->complete(rq);
589 	}
590 }
591 
592 static void blk_mq_trigger_softirq(struct request *rq)
593 {
594 	struct list_head *list;
595 	unsigned long flags;
596 
597 	local_irq_save(flags);
598 	list = this_cpu_ptr(&blk_cpu_done);
599 	list_add_tail(&rq->ipi_list, list);
600 
601 	/*
602 	 * If the list only contains our just added request, signal a raise of
603 	 * the softirq.  If there are already entries there, someone already
604 	 * raised the irq but it hasn't run yet.
605 	 */
606 	if (list->next == &rq->ipi_list)
607 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
608 	local_irq_restore(flags);
609 }
610 
611 static int blk_softirq_cpu_dead(unsigned int cpu)
612 {
613 	/*
614 	 * If a CPU goes away, splice its entries to the current CPU
615 	 * and trigger a run of the softirq
616 	 */
617 	local_irq_disable();
618 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
619 			 this_cpu_ptr(&blk_cpu_done));
620 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
621 	local_irq_enable();
622 
623 	return 0;
624 }
625 
626 
627 static void __blk_mq_complete_request_remote(void *data)
628 {
629 	struct request *rq = data;
630 
631 	/*
632 	 * For most of single queue controllers, there is only one irq vector
633 	 * for handling I/O completion, and the only irq's affinity is set
634 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
635 	 * is handled on one specific CPU.
636 	 *
637 	 * So complete I/O requests in softirq context in case of single queue
638 	 * devices to avoid degrading I/O performance due to irqsoff latency.
639 	 */
640 	if (rq->q->nr_hw_queues == 1)
641 		blk_mq_trigger_softirq(rq);
642 	else
643 		rq->q->mq_ops->complete(rq);
644 }
645 
646 static inline bool blk_mq_complete_need_ipi(struct request *rq)
647 {
648 	int cpu = raw_smp_processor_id();
649 
650 	if (!IS_ENABLED(CONFIG_SMP) ||
651 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
652 		return false;
653 
654 	/* same CPU or cache domain?  Complete locally */
655 	if (cpu == rq->mq_ctx->cpu ||
656 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
657 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
658 		return false;
659 
660 	/* don't try to IPI to an offline CPU */
661 	return cpu_online(rq->mq_ctx->cpu);
662 }
663 
664 bool blk_mq_complete_request_remote(struct request *rq)
665 {
666 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
667 
668 	/*
669 	 * For a polled request, always complete locallly, it's pointless
670 	 * to redirect the completion.
671 	 */
672 	if (rq->cmd_flags & REQ_HIPRI)
673 		return false;
674 
675 	if (blk_mq_complete_need_ipi(rq)) {
676 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
677 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 	} else {
679 		if (rq->q->nr_hw_queues > 1)
680 			return false;
681 		blk_mq_trigger_softirq(rq);
682 	}
683 
684 	return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687 
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:		the request being processed
691  *
692  * Description:
693  *	Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697 	if (!blk_mq_complete_request_remote(rq))
698 		rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701 
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 	__releases(hctx->srcu)
704 {
705 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 		rcu_read_unlock();
707 	else
708 		srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710 
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 	__acquires(hctx->srcu)
713 {
714 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 		/* shut up gcc false positive */
716 		*srcu_idx = 0;
717 		rcu_read_lock();
718 	} else
719 		*srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721 
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732 	struct request_queue *q = rq->q;
733 
734 	trace_block_rq_issue(rq);
735 
736 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 		rq->io_start_time_ns = ktime_get_ns();
738 		rq->stats_sectors = blk_rq_sectors(rq);
739 		rq->rq_flags |= RQF_STATS;
740 		rq_qos_issue(q, rq);
741 	}
742 
743 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744 
745 	blk_add_timer(rq);
746 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747 
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 		q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754 
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757 	struct request_queue *q = rq->q;
758 
759 	blk_mq_put_driver_tag(rq);
760 
761 	trace_block_rq_requeue(rq);
762 	rq_qos_requeue(q, rq);
763 
764 	if (blk_mq_request_started(rq)) {
765 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 		rq->rq_flags &= ~RQF_TIMED_OUT;
767 	}
768 }
769 
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772 	__blk_mq_requeue_request(rq);
773 
774 	/* this request will be re-inserted to io scheduler queue */
775 	blk_mq_sched_requeue_request(rq);
776 
777 	BUG_ON(!list_empty(&rq->queuelist));
778 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781 
782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784 	struct request_queue *q =
785 		container_of(work, struct request_queue, requeue_work.work);
786 	LIST_HEAD(rq_list);
787 	struct request *rq, *next;
788 
789 	spin_lock_irq(&q->requeue_lock);
790 	list_splice_init(&q->requeue_list, &rq_list);
791 	spin_unlock_irq(&q->requeue_lock);
792 
793 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 			continue;
796 
797 		rq->rq_flags &= ~RQF_SOFTBARRIER;
798 		list_del_init(&rq->queuelist);
799 		/*
800 		 * If RQF_DONTPREP, rq has contained some driver specific
801 		 * data, so insert it to hctx dispatch list to avoid any
802 		 * merge.
803 		 */
804 		if (rq->rq_flags & RQF_DONTPREP)
805 			blk_mq_request_bypass_insert(rq, false, false);
806 		else
807 			blk_mq_sched_insert_request(rq, true, false, false);
808 	}
809 
810 	while (!list_empty(&rq_list)) {
811 		rq = list_entry(rq_list.next, struct request, queuelist);
812 		list_del_init(&rq->queuelist);
813 		blk_mq_sched_insert_request(rq, false, false, false);
814 	}
815 
816 	blk_mq_run_hw_queues(q, false);
817 }
818 
819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 				bool kick_requeue_list)
821 {
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	/*
826 	 * We abuse this flag that is otherwise used by the I/O scheduler to
827 	 * request head insertion from the workqueue.
828 	 */
829 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830 
831 	spin_lock_irqsave(&q->requeue_lock, flags);
832 	if (at_head) {
833 		rq->rq_flags |= RQF_SOFTBARRIER;
834 		list_add(&rq->queuelist, &q->requeue_list);
835 	} else {
836 		list_add_tail(&rq->queuelist, &q->requeue_list);
837 	}
838 	spin_unlock_irqrestore(&q->requeue_lock, flags);
839 
840 	if (kick_requeue_list)
841 		blk_mq_kick_requeue_list(q);
842 }
843 
844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849 
850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 				    unsigned long msecs)
852 {
853 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 				    msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857 
858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860 	if (tag < tags->nr_tags) {
861 		prefetch(tags->rqs[tag]);
862 		return tags->rqs[tag];
863 	}
864 
865 	return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868 
869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 			       void *priv, bool reserved)
871 {
872 	/*
873 	 * If we find a request that isn't idle and the queue matches,
874 	 * we know the queue is busy. Return false to stop the iteration.
875 	 */
876 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 		bool *busy = priv;
878 
879 		*busy = true;
880 		return false;
881 	}
882 
883 	return true;
884 }
885 
886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888 	bool busy = false;
889 
890 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 	return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894 
895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897 	req->rq_flags |= RQF_TIMED_OUT;
898 	if (req->q->mq_ops->timeout) {
899 		enum blk_eh_timer_return ret;
900 
901 		ret = req->q->mq_ops->timeout(req, reserved);
902 		if (ret == BLK_EH_DONE)
903 			return;
904 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 	}
906 
907 	blk_add_timer(req);
908 }
909 
910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912 	unsigned long deadline;
913 
914 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 		return false;
916 	if (rq->rq_flags & RQF_TIMED_OUT)
917 		return false;
918 
919 	deadline = READ_ONCE(rq->deadline);
920 	if (time_after_eq(jiffies, deadline))
921 		return true;
922 
923 	if (*next == 0)
924 		*next = deadline;
925 	else if (time_after(*next, deadline))
926 		*next = deadline;
927 	return false;
928 }
929 
930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 		struct request *rq, void *priv, bool reserved)
932 {
933 	unsigned long *next = priv;
934 
935 	/*
936 	 * Just do a quick check if it is expired before locking the request in
937 	 * so we're not unnecessarilly synchronizing across CPUs.
938 	 */
939 	if (!blk_mq_req_expired(rq, next))
940 		return true;
941 
942 	/*
943 	 * We have reason to believe the request may be expired. Take a
944 	 * reference on the request to lock this request lifetime into its
945 	 * currently allocated context to prevent it from being reallocated in
946 	 * the event the completion by-passes this timeout handler.
947 	 *
948 	 * If the reference was already released, then the driver beat the
949 	 * timeout handler to posting a natural completion.
950 	 */
951 	if (!refcount_inc_not_zero(&rq->ref))
952 		return true;
953 
954 	/*
955 	 * The request is now locked and cannot be reallocated underneath the
956 	 * timeout handler's processing. Re-verify this exact request is truly
957 	 * expired; if it is not expired, then the request was completed and
958 	 * reallocated as a new request.
959 	 */
960 	if (blk_mq_req_expired(rq, next))
961 		blk_mq_rq_timed_out(rq, reserved);
962 
963 	if (is_flush_rq(rq, hctx))
964 		rq->end_io(rq, 0);
965 	else if (refcount_dec_and_test(&rq->ref))
966 		__blk_mq_free_request(rq);
967 
968 	return true;
969 }
970 
971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 	struct request_queue *q =
974 		container_of(work, struct request_queue, timeout_work);
975 	unsigned long next = 0;
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	/* A deadlock might occur if a request is stuck requiring a
980 	 * timeout at the same time a queue freeze is waiting
981 	 * completion, since the timeout code would not be able to
982 	 * acquire the queue reference here.
983 	 *
984 	 * That's why we don't use blk_queue_enter here; instead, we use
985 	 * percpu_ref_tryget directly, because we need to be able to
986 	 * obtain a reference even in the short window between the queue
987 	 * starting to freeze, by dropping the first reference in
988 	 * blk_freeze_queue_start, and the moment the last request is
989 	 * consumed, marked by the instant q_usage_counter reaches
990 	 * zero.
991 	 */
992 	if (!percpu_ref_tryget(&q->q_usage_counter))
993 		return;
994 
995 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996 
997 	if (next != 0) {
998 		mod_timer(&q->timeout, next);
999 	} else {
1000 		/*
1001 		 * Request timeouts are handled as a forward rolling timer. If
1002 		 * we end up here it means that no requests are pending and
1003 		 * also that no request has been pending for a while. Mark
1004 		 * each hctx as idle.
1005 		 */
1006 		queue_for_each_hw_ctx(q, hctx, i) {
1007 			/* the hctx may be unmapped, so check it here */
1008 			if (blk_mq_hw_queue_mapped(hctx))
1009 				blk_mq_tag_idle(hctx);
1010 		}
1011 	}
1012 	blk_queue_exit(q);
1013 }
1014 
1015 struct flush_busy_ctx_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct list_head *list;
1018 };
1019 
1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 	struct flush_busy_ctx_data *flush_data = data;
1023 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 	enum hctx_type type = hctx->type;
1026 
1027 	spin_lock(&ctx->lock);
1028 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 	sbitmap_clear_bit(sb, bitnr);
1030 	spin_unlock(&ctx->lock);
1031 	return true;
1032 }
1033 
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 	struct flush_busy_ctx_data data = {
1041 		.hctx = hctx,
1042 		.list = list,
1043 	};
1044 
1045 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048 
1049 struct dispatch_rq_data {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct request *rq;
1052 };
1053 
1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 		void *data)
1056 {
1057 	struct dispatch_rq_data *dispatch_data = data;
1058 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 	enum hctx_type type = hctx->type;
1061 
1062 	spin_lock(&ctx->lock);
1063 	if (!list_empty(&ctx->rq_lists[type])) {
1064 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 		list_del_init(&dispatch_data->rq->queuelist);
1066 		if (list_empty(&ctx->rq_lists[type]))
1067 			sbitmap_clear_bit(sb, bitnr);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	return !dispatch_data->rq;
1072 }
1073 
1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 					struct blk_mq_ctx *start)
1076 {
1077 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 	struct dispatch_rq_data data = {
1079 		.hctx = hctx,
1080 		.rq   = NULL,
1081 	};
1082 
1083 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084 			       dispatch_rq_from_ctx, &data);
1085 
1086 	return data.rq;
1087 }
1088 
1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 	if (!queued)
1092 		return 0;
1093 
1094 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096 
1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 	int tag;
1102 
1103 	blk_mq_tag_busy(rq->mq_hctx);
1104 
1105 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 		bt = rq->mq_hctx->tags->breserved_tags;
1107 		tag_offset = 0;
1108 	} else {
1109 		if (!hctx_may_queue(rq->mq_hctx, bt))
1110 			return false;
1111 	}
1112 
1113 	tag = __sbitmap_queue_get(bt);
1114 	if (tag == BLK_MQ_NO_TAG)
1115 		return false;
1116 
1117 	rq->tag = tag + tag_offset;
1118 	return true;
1119 }
1120 
1121 static bool blk_mq_get_driver_tag(struct request *rq)
1122 {
1123 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124 
1125 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 		return false;
1127 
1128 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 		__blk_mq_inc_active_requests(hctx);
1132 	}
1133 	hctx->tags->rqs[rq->tag] = rq;
1134 	return true;
1135 }
1136 
1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 				int flags, void *key)
1139 {
1140 	struct blk_mq_hw_ctx *hctx;
1141 
1142 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143 
1144 	spin_lock(&hctx->dispatch_wait_lock);
1145 	if (!list_empty(&wait->entry)) {
1146 		struct sbitmap_queue *sbq;
1147 
1148 		list_del_init(&wait->entry);
1149 		sbq = hctx->tags->bitmap_tags;
1150 		atomic_dec(&sbq->ws_active);
1151 	}
1152 	spin_unlock(&hctx->dispatch_wait_lock);
1153 
1154 	blk_mq_run_hw_queue(hctx, true);
1155 	return 1;
1156 }
1157 
1158 /*
1159  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161  * restart. For both cases, take care to check the condition again after
1162  * marking us as waiting.
1163  */
1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 				 struct request *rq)
1166 {
1167 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 	struct wait_queue_head *wq;
1169 	wait_queue_entry_t *wait;
1170 	bool ret;
1171 
1172 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 		blk_mq_sched_mark_restart_hctx(hctx);
1174 
1175 		/*
1176 		 * It's possible that a tag was freed in the window between the
1177 		 * allocation failure and adding the hardware queue to the wait
1178 		 * queue.
1179 		 *
1180 		 * Don't clear RESTART here, someone else could have set it.
1181 		 * At most this will cost an extra queue run.
1182 		 */
1183 		return blk_mq_get_driver_tag(rq);
1184 	}
1185 
1186 	wait = &hctx->dispatch_wait;
1187 	if (!list_empty_careful(&wait->entry))
1188 		return false;
1189 
1190 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1191 
1192 	spin_lock_irq(&wq->lock);
1193 	spin_lock(&hctx->dispatch_wait_lock);
1194 	if (!list_empty(&wait->entry)) {
1195 		spin_unlock(&hctx->dispatch_wait_lock);
1196 		spin_unlock_irq(&wq->lock);
1197 		return false;
1198 	}
1199 
1200 	atomic_inc(&sbq->ws_active);
1201 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 	__add_wait_queue(wq, wait);
1203 
1204 	/*
1205 	 * It's possible that a tag was freed in the window between the
1206 	 * allocation failure and adding the hardware queue to the wait
1207 	 * queue.
1208 	 */
1209 	ret = blk_mq_get_driver_tag(rq);
1210 	if (!ret) {
1211 		spin_unlock(&hctx->dispatch_wait_lock);
1212 		spin_unlock_irq(&wq->lock);
1213 		return false;
1214 	}
1215 
1216 	/*
1217 	 * We got a tag, remove ourselves from the wait queue to ensure
1218 	 * someone else gets the wakeup.
1219 	 */
1220 	list_del_init(&wait->entry);
1221 	atomic_dec(&sbq->ws_active);
1222 	spin_unlock(&hctx->dispatch_wait_lock);
1223 	spin_unlock_irq(&wq->lock);
1224 
1225 	return true;
1226 }
1227 
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1230 /*
1231  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232  * - EWMA is one simple way to compute running average value
1233  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234  * - take 4 as factor for avoiding to get too small(0) result, and this
1235  *   factor doesn't matter because EWMA decreases exponentially
1236  */
1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238 {
1239 	unsigned int ewma;
1240 
1241 	if (hctx->queue->elevator)
1242 		return;
1243 
1244 	ewma = hctx->dispatch_busy;
1245 
1246 	if (!ewma && !busy)
1247 		return;
1248 
1249 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 	if (busy)
1251 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253 
1254 	hctx->dispatch_busy = ewma;
1255 }
1256 
1257 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1258 
1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260 				       struct list_head *list)
1261 {
1262 	struct request *next =
1263 		list_first_entry_or_null(list, struct request, queuelist);
1264 
1265 	/*
1266 	 * If an I/O scheduler has been configured and we got a driver tag for
1267 	 * the next request already, free it.
1268 	 */
1269 	if (next)
1270 		blk_mq_put_driver_tag(next);
1271 
1272 	list_add(&rq->queuelist, list);
1273 	__blk_mq_requeue_request(rq);
1274 }
1275 
1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277 					struct list_head *zone_list)
1278 {
1279 	/*
1280 	 * If we end up here it is because we cannot dispatch a request to a
1281 	 * specific zone due to LLD level zone-write locking or other zone
1282 	 * related resource not being available. In this case, set the request
1283 	 * aside in zone_list for retrying it later.
1284 	 */
1285 	list_add(&rq->queuelist, zone_list);
1286 	__blk_mq_requeue_request(rq);
1287 }
1288 
1289 enum prep_dispatch {
1290 	PREP_DISPATCH_OK,
1291 	PREP_DISPATCH_NO_TAG,
1292 	PREP_DISPATCH_NO_BUDGET,
1293 };
1294 
1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 						  bool need_budget)
1297 {
1298 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299 
1300 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 		blk_mq_put_driver_tag(rq);
1302 		return PREP_DISPATCH_NO_BUDGET;
1303 	}
1304 
1305 	if (!blk_mq_get_driver_tag(rq)) {
1306 		/*
1307 		 * The initial allocation attempt failed, so we need to
1308 		 * rerun the hardware queue when a tag is freed. The
1309 		 * waitqueue takes care of that. If the queue is run
1310 		 * before we add this entry back on the dispatch list,
1311 		 * we'll re-run it below.
1312 		 */
1313 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 			/*
1315 			 * All budgets not got from this function will be put
1316 			 * together during handling partial dispatch
1317 			 */
1318 			if (need_budget)
1319 				blk_mq_put_dispatch_budget(rq->q);
1320 			return PREP_DISPATCH_NO_TAG;
1321 		}
1322 	}
1323 
1324 	return PREP_DISPATCH_OK;
1325 }
1326 
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1328 static void blk_mq_release_budgets(struct request_queue *q,
1329 		unsigned int nr_budgets)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < nr_budgets; i++)
1334 		blk_mq_put_dispatch_budget(q);
1335 }
1336 
1337 /*
1338  * Returns true if we did some work AND can potentially do more.
1339  */
1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 			     unsigned int nr_budgets)
1342 {
1343 	enum prep_dispatch prep;
1344 	struct request_queue *q = hctx->queue;
1345 	struct request *rq, *nxt;
1346 	int errors, queued;
1347 	blk_status_t ret = BLK_STS_OK;
1348 	LIST_HEAD(zone_list);
1349 
1350 	if (list_empty(list))
1351 		return false;
1352 
1353 	/*
1354 	 * Now process all the entries, sending them to the driver.
1355 	 */
1356 	errors = queued = 0;
1357 	do {
1358 		struct blk_mq_queue_data bd;
1359 
1360 		rq = list_first_entry(list, struct request, queuelist);
1361 
1362 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1363 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1364 		if (prep != PREP_DISPATCH_OK)
1365 			break;
1366 
1367 		list_del_init(&rq->queuelist);
1368 
1369 		bd.rq = rq;
1370 
1371 		/*
1372 		 * Flag last if we have no more requests, or if we have more
1373 		 * but can't assign a driver tag to it.
1374 		 */
1375 		if (list_empty(list))
1376 			bd.last = true;
1377 		else {
1378 			nxt = list_first_entry(list, struct request, queuelist);
1379 			bd.last = !blk_mq_get_driver_tag(nxt);
1380 		}
1381 
1382 		/*
1383 		 * once the request is queued to lld, no need to cover the
1384 		 * budget any more
1385 		 */
1386 		if (nr_budgets)
1387 			nr_budgets--;
1388 		ret = q->mq_ops->queue_rq(hctx, &bd);
1389 		switch (ret) {
1390 		case BLK_STS_OK:
1391 			queued++;
1392 			break;
1393 		case BLK_STS_RESOURCE:
1394 		case BLK_STS_DEV_RESOURCE:
1395 			blk_mq_handle_dev_resource(rq, list);
1396 			goto out;
1397 		case BLK_STS_ZONE_RESOURCE:
1398 			/*
1399 			 * Move the request to zone_list and keep going through
1400 			 * the dispatch list to find more requests the drive can
1401 			 * accept.
1402 			 */
1403 			blk_mq_handle_zone_resource(rq, &zone_list);
1404 			break;
1405 		default:
1406 			errors++;
1407 			blk_mq_end_request(rq, ret);
1408 		}
1409 	} while (!list_empty(list));
1410 out:
1411 	if (!list_empty(&zone_list))
1412 		list_splice_tail_init(&zone_list, list);
1413 
1414 	hctx->dispatched[queued_to_index(queued)]++;
1415 
1416 	/* If we didn't flush the entire list, we could have told the driver
1417 	 * there was more coming, but that turned out to be a lie.
1418 	 */
1419 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1420 		q->mq_ops->commit_rqs(hctx);
1421 	/*
1422 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1423 	 * that is where we will continue on next queue run.
1424 	 */
1425 	if (!list_empty(list)) {
1426 		bool needs_restart;
1427 		/* For non-shared tags, the RESTART check will suffice */
1428 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1429 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1430 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1431 
1432 		blk_mq_release_budgets(q, nr_budgets);
1433 
1434 		spin_lock(&hctx->lock);
1435 		list_splice_tail_init(list, &hctx->dispatch);
1436 		spin_unlock(&hctx->lock);
1437 
1438 		/*
1439 		 * Order adding requests to hctx->dispatch and checking
1440 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1441 		 * in blk_mq_sched_restart(). Avoid restart code path to
1442 		 * miss the new added requests to hctx->dispatch, meantime
1443 		 * SCHED_RESTART is observed here.
1444 		 */
1445 		smp_mb();
1446 
1447 		/*
1448 		 * If SCHED_RESTART was set by the caller of this function and
1449 		 * it is no longer set that means that it was cleared by another
1450 		 * thread and hence that a queue rerun is needed.
1451 		 *
1452 		 * If 'no_tag' is set, that means that we failed getting
1453 		 * a driver tag with an I/O scheduler attached. If our dispatch
1454 		 * waitqueue is no longer active, ensure that we run the queue
1455 		 * AFTER adding our entries back to the list.
1456 		 *
1457 		 * If no I/O scheduler has been configured it is possible that
1458 		 * the hardware queue got stopped and restarted before requests
1459 		 * were pushed back onto the dispatch list. Rerun the queue to
1460 		 * avoid starvation. Notes:
1461 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1462 		 *   been stopped before rerunning a queue.
1463 		 * - Some but not all block drivers stop a queue before
1464 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1465 		 *   and dm-rq.
1466 		 *
1467 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1468 		 * bit is set, run queue after a delay to avoid IO stalls
1469 		 * that could otherwise occur if the queue is idle.  We'll do
1470 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1471 		 */
1472 		needs_restart = blk_mq_sched_needs_restart(hctx);
1473 		if (!needs_restart ||
1474 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1475 			blk_mq_run_hw_queue(hctx, true);
1476 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1477 					   no_budget_avail))
1478 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1479 
1480 		blk_mq_update_dispatch_busy(hctx, true);
1481 		return false;
1482 	} else
1483 		blk_mq_update_dispatch_busy(hctx, false);
1484 
1485 	return (queued + errors) != 0;
1486 }
1487 
1488 /**
1489  * __blk_mq_run_hw_queue - Run a hardware queue.
1490  * @hctx: Pointer to the hardware queue to run.
1491  *
1492  * Send pending requests to the hardware.
1493  */
1494 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1495 {
1496 	int srcu_idx;
1497 
1498 	/*
1499 	 * We should be running this queue from one of the CPUs that
1500 	 * are mapped to it.
1501 	 *
1502 	 * There are at least two related races now between setting
1503 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1504 	 * __blk_mq_run_hw_queue():
1505 	 *
1506 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1507 	 *   but later it becomes online, then this warning is harmless
1508 	 *   at all
1509 	 *
1510 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1511 	 *   but later it becomes offline, then the warning can't be
1512 	 *   triggered, and we depend on blk-mq timeout handler to
1513 	 *   handle dispatched requests to this hctx
1514 	 */
1515 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1516 		cpu_online(hctx->next_cpu)) {
1517 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1518 			raw_smp_processor_id(),
1519 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1520 		dump_stack();
1521 	}
1522 
1523 	/*
1524 	 * We can't run the queue inline with ints disabled. Ensure that
1525 	 * we catch bad users of this early.
1526 	 */
1527 	WARN_ON_ONCE(in_interrupt());
1528 
1529 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1530 
1531 	hctx_lock(hctx, &srcu_idx);
1532 	blk_mq_sched_dispatch_requests(hctx);
1533 	hctx_unlock(hctx, srcu_idx);
1534 }
1535 
1536 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1537 {
1538 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1539 
1540 	if (cpu >= nr_cpu_ids)
1541 		cpu = cpumask_first(hctx->cpumask);
1542 	return cpu;
1543 }
1544 
1545 /*
1546  * It'd be great if the workqueue API had a way to pass
1547  * in a mask and had some smarts for more clever placement.
1548  * For now we just round-robin here, switching for every
1549  * BLK_MQ_CPU_WORK_BATCH queued items.
1550  */
1551 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1552 {
1553 	bool tried = false;
1554 	int next_cpu = hctx->next_cpu;
1555 
1556 	if (hctx->queue->nr_hw_queues == 1)
1557 		return WORK_CPU_UNBOUND;
1558 
1559 	if (--hctx->next_cpu_batch <= 0) {
1560 select_cpu:
1561 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1562 				cpu_online_mask);
1563 		if (next_cpu >= nr_cpu_ids)
1564 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1565 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1566 	}
1567 
1568 	/*
1569 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1570 	 * and it should only happen in the path of handling CPU DEAD.
1571 	 */
1572 	if (!cpu_online(next_cpu)) {
1573 		if (!tried) {
1574 			tried = true;
1575 			goto select_cpu;
1576 		}
1577 
1578 		/*
1579 		 * Make sure to re-select CPU next time once after CPUs
1580 		 * in hctx->cpumask become online again.
1581 		 */
1582 		hctx->next_cpu = next_cpu;
1583 		hctx->next_cpu_batch = 1;
1584 		return WORK_CPU_UNBOUND;
1585 	}
1586 
1587 	hctx->next_cpu = next_cpu;
1588 	return next_cpu;
1589 }
1590 
1591 /**
1592  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1593  * @hctx: Pointer to the hardware queue to run.
1594  * @async: If we want to run the queue asynchronously.
1595  * @msecs: Milliseconds of delay to wait before running the queue.
1596  *
1597  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1598  * with a delay of @msecs.
1599  */
1600 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1601 					unsigned long msecs)
1602 {
1603 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1604 		return;
1605 
1606 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1607 		int cpu = get_cpu();
1608 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1609 			__blk_mq_run_hw_queue(hctx);
1610 			put_cpu();
1611 			return;
1612 		}
1613 
1614 		put_cpu();
1615 	}
1616 
1617 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1618 				    msecs_to_jiffies(msecs));
1619 }
1620 
1621 /**
1622  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1623  * @hctx: Pointer to the hardware queue to run.
1624  * @msecs: Milliseconds of delay to wait before running the queue.
1625  *
1626  * Run a hardware queue asynchronously with a delay of @msecs.
1627  */
1628 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1629 {
1630 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1631 }
1632 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1633 
1634 /**
1635  * blk_mq_run_hw_queue - Start to run a hardware queue.
1636  * @hctx: Pointer to the hardware queue to run.
1637  * @async: If we want to run the queue asynchronously.
1638  *
1639  * Check if the request queue is not in a quiesced state and if there are
1640  * pending requests to be sent. If this is true, run the queue to send requests
1641  * to hardware.
1642  */
1643 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1644 {
1645 	int srcu_idx;
1646 	bool need_run;
1647 
1648 	/*
1649 	 * When queue is quiesced, we may be switching io scheduler, or
1650 	 * updating nr_hw_queues, or other things, and we can't run queue
1651 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1652 	 *
1653 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1654 	 * quiesced.
1655 	 */
1656 	hctx_lock(hctx, &srcu_idx);
1657 	need_run = !blk_queue_quiesced(hctx->queue) &&
1658 		blk_mq_hctx_has_pending(hctx);
1659 	hctx_unlock(hctx, srcu_idx);
1660 
1661 	if (need_run)
1662 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1663 }
1664 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1665 
1666 /**
1667  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1668  * @q: Pointer to the request queue to run.
1669  * @async: If we want to run the queue asynchronously.
1670  */
1671 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1672 {
1673 	struct blk_mq_hw_ctx *hctx;
1674 	int i;
1675 
1676 	queue_for_each_hw_ctx(q, hctx, i) {
1677 		if (blk_mq_hctx_stopped(hctx))
1678 			continue;
1679 
1680 		blk_mq_run_hw_queue(hctx, async);
1681 	}
1682 }
1683 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1684 
1685 /**
1686  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1687  * @q: Pointer to the request queue to run.
1688  * @msecs: Milliseconds of delay to wait before running the queues.
1689  */
1690 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1691 {
1692 	struct blk_mq_hw_ctx *hctx;
1693 	int i;
1694 
1695 	queue_for_each_hw_ctx(q, hctx, i) {
1696 		if (blk_mq_hctx_stopped(hctx))
1697 			continue;
1698 
1699 		blk_mq_delay_run_hw_queue(hctx, msecs);
1700 	}
1701 }
1702 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1703 
1704 /**
1705  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1706  * @q: request queue.
1707  *
1708  * The caller is responsible for serializing this function against
1709  * blk_mq_{start,stop}_hw_queue().
1710  */
1711 bool blk_mq_queue_stopped(struct request_queue *q)
1712 {
1713 	struct blk_mq_hw_ctx *hctx;
1714 	int i;
1715 
1716 	queue_for_each_hw_ctx(q, hctx, i)
1717 		if (blk_mq_hctx_stopped(hctx))
1718 			return true;
1719 
1720 	return false;
1721 }
1722 EXPORT_SYMBOL(blk_mq_queue_stopped);
1723 
1724 /*
1725  * This function is often used for pausing .queue_rq() by driver when
1726  * there isn't enough resource or some conditions aren't satisfied, and
1727  * BLK_STS_RESOURCE is usually returned.
1728  *
1729  * We do not guarantee that dispatch can be drained or blocked
1730  * after blk_mq_stop_hw_queue() returns. Please use
1731  * blk_mq_quiesce_queue() for that requirement.
1732  */
1733 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1734 {
1735 	cancel_delayed_work(&hctx->run_work);
1736 
1737 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1738 }
1739 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1740 
1741 /*
1742  * This function is often used for pausing .queue_rq() by driver when
1743  * there isn't enough resource or some conditions aren't satisfied, and
1744  * BLK_STS_RESOURCE is usually returned.
1745  *
1746  * We do not guarantee that dispatch can be drained or blocked
1747  * after blk_mq_stop_hw_queues() returns. Please use
1748  * blk_mq_quiesce_queue() for that requirement.
1749  */
1750 void blk_mq_stop_hw_queues(struct request_queue *q)
1751 {
1752 	struct blk_mq_hw_ctx *hctx;
1753 	int i;
1754 
1755 	queue_for_each_hw_ctx(q, hctx, i)
1756 		blk_mq_stop_hw_queue(hctx);
1757 }
1758 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1759 
1760 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1761 {
1762 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1763 
1764 	blk_mq_run_hw_queue(hctx, false);
1765 }
1766 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1767 
1768 void blk_mq_start_hw_queues(struct request_queue *q)
1769 {
1770 	struct blk_mq_hw_ctx *hctx;
1771 	int i;
1772 
1773 	queue_for_each_hw_ctx(q, hctx, i)
1774 		blk_mq_start_hw_queue(hctx);
1775 }
1776 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1777 
1778 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1779 {
1780 	if (!blk_mq_hctx_stopped(hctx))
1781 		return;
1782 
1783 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1784 	blk_mq_run_hw_queue(hctx, async);
1785 }
1786 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1787 
1788 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1789 {
1790 	struct blk_mq_hw_ctx *hctx;
1791 	int i;
1792 
1793 	queue_for_each_hw_ctx(q, hctx, i)
1794 		blk_mq_start_stopped_hw_queue(hctx, async);
1795 }
1796 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1797 
1798 static void blk_mq_run_work_fn(struct work_struct *work)
1799 {
1800 	struct blk_mq_hw_ctx *hctx;
1801 
1802 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1803 
1804 	/*
1805 	 * If we are stopped, don't run the queue.
1806 	 */
1807 	if (blk_mq_hctx_stopped(hctx))
1808 		return;
1809 
1810 	__blk_mq_run_hw_queue(hctx);
1811 }
1812 
1813 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1814 					    struct request *rq,
1815 					    bool at_head)
1816 {
1817 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1818 	enum hctx_type type = hctx->type;
1819 
1820 	lockdep_assert_held(&ctx->lock);
1821 
1822 	trace_block_rq_insert(rq);
1823 
1824 	if (at_head)
1825 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1826 	else
1827 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1828 }
1829 
1830 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1831 			     bool at_head)
1832 {
1833 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1834 
1835 	lockdep_assert_held(&ctx->lock);
1836 
1837 	__blk_mq_insert_req_list(hctx, rq, at_head);
1838 	blk_mq_hctx_mark_pending(hctx, ctx);
1839 }
1840 
1841 /**
1842  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1843  * @rq: Pointer to request to be inserted.
1844  * @at_head: true if the request should be inserted at the head of the list.
1845  * @run_queue: If we should run the hardware queue after inserting the request.
1846  *
1847  * Should only be used carefully, when the caller knows we want to
1848  * bypass a potential IO scheduler on the target device.
1849  */
1850 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1851 				  bool run_queue)
1852 {
1853 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1854 
1855 	spin_lock(&hctx->lock);
1856 	if (at_head)
1857 		list_add(&rq->queuelist, &hctx->dispatch);
1858 	else
1859 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1860 	spin_unlock(&hctx->lock);
1861 
1862 	if (run_queue)
1863 		blk_mq_run_hw_queue(hctx, false);
1864 }
1865 
1866 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1867 			    struct list_head *list)
1868 
1869 {
1870 	struct request *rq;
1871 	enum hctx_type type = hctx->type;
1872 
1873 	/*
1874 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1875 	 * offline now
1876 	 */
1877 	list_for_each_entry(rq, list, queuelist) {
1878 		BUG_ON(rq->mq_ctx != ctx);
1879 		trace_block_rq_insert(rq);
1880 	}
1881 
1882 	spin_lock(&ctx->lock);
1883 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1884 	blk_mq_hctx_mark_pending(hctx, ctx);
1885 	spin_unlock(&ctx->lock);
1886 }
1887 
1888 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1889 {
1890 	struct request *rqa = container_of(a, struct request, queuelist);
1891 	struct request *rqb = container_of(b, struct request, queuelist);
1892 
1893 	if (rqa->mq_ctx != rqb->mq_ctx)
1894 		return rqa->mq_ctx > rqb->mq_ctx;
1895 	if (rqa->mq_hctx != rqb->mq_hctx)
1896 		return rqa->mq_hctx > rqb->mq_hctx;
1897 
1898 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1899 }
1900 
1901 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1902 {
1903 	LIST_HEAD(list);
1904 
1905 	if (list_empty(&plug->mq_list))
1906 		return;
1907 	list_splice_init(&plug->mq_list, &list);
1908 
1909 	if (plug->rq_count > 2 && plug->multiple_queues)
1910 		list_sort(NULL, &list, plug_rq_cmp);
1911 
1912 	plug->rq_count = 0;
1913 
1914 	do {
1915 		struct list_head rq_list;
1916 		struct request *rq, *head_rq = list_entry_rq(list.next);
1917 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1918 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1919 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1920 		unsigned int depth = 1;
1921 
1922 		list_for_each_continue(pos, &list) {
1923 			rq = list_entry_rq(pos);
1924 			BUG_ON(!rq->q);
1925 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1926 				break;
1927 			depth++;
1928 		}
1929 
1930 		list_cut_before(&rq_list, &list, pos);
1931 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1932 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1933 						from_schedule);
1934 	} while(!list_empty(&list));
1935 }
1936 
1937 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1938 		unsigned int nr_segs)
1939 {
1940 	int err;
1941 
1942 	if (bio->bi_opf & REQ_RAHEAD)
1943 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1944 
1945 	rq->__sector = bio->bi_iter.bi_sector;
1946 	rq->write_hint = bio->bi_write_hint;
1947 	blk_rq_bio_prep(rq, bio, nr_segs);
1948 
1949 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1950 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1951 	WARN_ON_ONCE(err);
1952 
1953 	blk_account_io_start(rq);
1954 }
1955 
1956 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1957 					    struct request *rq,
1958 					    blk_qc_t *cookie, bool last)
1959 {
1960 	struct request_queue *q = rq->q;
1961 	struct blk_mq_queue_data bd = {
1962 		.rq = rq,
1963 		.last = last,
1964 	};
1965 	blk_qc_t new_cookie;
1966 	blk_status_t ret;
1967 
1968 	new_cookie = request_to_qc_t(hctx, rq);
1969 
1970 	/*
1971 	 * For OK queue, we are done. For error, caller may kill it.
1972 	 * Any other error (busy), just add it to our list as we
1973 	 * previously would have done.
1974 	 */
1975 	ret = q->mq_ops->queue_rq(hctx, &bd);
1976 	switch (ret) {
1977 	case BLK_STS_OK:
1978 		blk_mq_update_dispatch_busy(hctx, false);
1979 		*cookie = new_cookie;
1980 		break;
1981 	case BLK_STS_RESOURCE:
1982 	case BLK_STS_DEV_RESOURCE:
1983 		blk_mq_update_dispatch_busy(hctx, true);
1984 		__blk_mq_requeue_request(rq);
1985 		break;
1986 	default:
1987 		blk_mq_update_dispatch_busy(hctx, false);
1988 		*cookie = BLK_QC_T_NONE;
1989 		break;
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1996 						struct request *rq,
1997 						blk_qc_t *cookie,
1998 						bool bypass_insert, bool last)
1999 {
2000 	struct request_queue *q = rq->q;
2001 	bool run_queue = true;
2002 
2003 	/*
2004 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2005 	 *
2006 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2007 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2008 	 * and avoid driver to try to dispatch again.
2009 	 */
2010 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2011 		run_queue = false;
2012 		bypass_insert = false;
2013 		goto insert;
2014 	}
2015 
2016 	if (q->elevator && !bypass_insert)
2017 		goto insert;
2018 
2019 	if (!blk_mq_get_dispatch_budget(q))
2020 		goto insert;
2021 
2022 	if (!blk_mq_get_driver_tag(rq)) {
2023 		blk_mq_put_dispatch_budget(q);
2024 		goto insert;
2025 	}
2026 
2027 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2028 insert:
2029 	if (bypass_insert)
2030 		return BLK_STS_RESOURCE;
2031 
2032 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2033 
2034 	return BLK_STS_OK;
2035 }
2036 
2037 /**
2038  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2039  * @hctx: Pointer of the associated hardware queue.
2040  * @rq: Pointer to request to be sent.
2041  * @cookie: Request queue cookie.
2042  *
2043  * If the device has enough resources to accept a new request now, send the
2044  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2045  * we can try send it another time in the future. Requests inserted at this
2046  * queue have higher priority.
2047  */
2048 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2049 		struct request *rq, blk_qc_t *cookie)
2050 {
2051 	blk_status_t ret;
2052 	int srcu_idx;
2053 
2054 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2055 
2056 	hctx_lock(hctx, &srcu_idx);
2057 
2058 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2059 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2060 		blk_mq_request_bypass_insert(rq, false, true);
2061 	else if (ret != BLK_STS_OK)
2062 		blk_mq_end_request(rq, ret);
2063 
2064 	hctx_unlock(hctx, srcu_idx);
2065 }
2066 
2067 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2068 {
2069 	blk_status_t ret;
2070 	int srcu_idx;
2071 	blk_qc_t unused_cookie;
2072 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2073 
2074 	hctx_lock(hctx, &srcu_idx);
2075 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2076 	hctx_unlock(hctx, srcu_idx);
2077 
2078 	return ret;
2079 }
2080 
2081 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2082 		struct list_head *list)
2083 {
2084 	int queued = 0;
2085 	int errors = 0;
2086 
2087 	while (!list_empty(list)) {
2088 		blk_status_t ret;
2089 		struct request *rq = list_first_entry(list, struct request,
2090 				queuelist);
2091 
2092 		list_del_init(&rq->queuelist);
2093 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2094 		if (ret != BLK_STS_OK) {
2095 			if (ret == BLK_STS_RESOURCE ||
2096 					ret == BLK_STS_DEV_RESOURCE) {
2097 				blk_mq_request_bypass_insert(rq, false,
2098 							list_empty(list));
2099 				break;
2100 			}
2101 			blk_mq_end_request(rq, ret);
2102 			errors++;
2103 		} else
2104 			queued++;
2105 	}
2106 
2107 	/*
2108 	 * If we didn't flush the entire list, we could have told
2109 	 * the driver there was more coming, but that turned out to
2110 	 * be a lie.
2111 	 */
2112 	if ((!list_empty(list) || errors) &&
2113 	     hctx->queue->mq_ops->commit_rqs && queued)
2114 		hctx->queue->mq_ops->commit_rqs(hctx);
2115 }
2116 
2117 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2118 {
2119 	list_add_tail(&rq->queuelist, &plug->mq_list);
2120 	plug->rq_count++;
2121 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2122 		struct request *tmp;
2123 
2124 		tmp = list_first_entry(&plug->mq_list, struct request,
2125 						queuelist);
2126 		if (tmp->q != rq->q)
2127 			plug->multiple_queues = true;
2128 	}
2129 }
2130 
2131 /**
2132  * blk_mq_submit_bio - Create and send a request to block device.
2133  * @bio: Bio pointer.
2134  *
2135  * Builds up a request structure from @q and @bio and send to the device. The
2136  * request may not be queued directly to hardware if:
2137  * * This request can be merged with another one
2138  * * We want to place request at plug queue for possible future merging
2139  * * There is an IO scheduler active at this queue
2140  *
2141  * It will not queue the request if there is an error with the bio, or at the
2142  * request creation.
2143  *
2144  * Returns: Request queue cookie.
2145  */
2146 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2147 {
2148 	struct request_queue *q = bio->bi_disk->queue;
2149 	const int is_sync = op_is_sync(bio->bi_opf);
2150 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2151 	struct blk_mq_alloc_data data = {
2152 		.q		= q,
2153 	};
2154 	struct request *rq;
2155 	struct blk_plug *plug;
2156 	struct request *same_queue_rq = NULL;
2157 	unsigned int nr_segs;
2158 	blk_qc_t cookie;
2159 	blk_status_t ret;
2160 	bool hipri;
2161 
2162 	blk_queue_bounce(q, &bio);
2163 	__blk_queue_split(&bio, &nr_segs);
2164 
2165 	if (!bio_integrity_prep(bio))
2166 		goto queue_exit;
2167 
2168 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2169 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2170 		goto queue_exit;
2171 
2172 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2173 		goto queue_exit;
2174 
2175 	rq_qos_throttle(q, bio);
2176 
2177 	hipri = bio->bi_opf & REQ_HIPRI;
2178 
2179 	data.cmd_flags = bio->bi_opf;
2180 	rq = __blk_mq_alloc_request(&data);
2181 	if (unlikely(!rq)) {
2182 		rq_qos_cleanup(q, bio);
2183 		if (bio->bi_opf & REQ_NOWAIT)
2184 			bio_wouldblock_error(bio);
2185 		goto queue_exit;
2186 	}
2187 
2188 	trace_block_getrq(bio);
2189 
2190 	rq_qos_track(q, rq, bio);
2191 
2192 	cookie = request_to_qc_t(data.hctx, rq);
2193 
2194 	blk_mq_bio_to_request(rq, bio, nr_segs);
2195 
2196 	ret = blk_crypto_init_request(rq);
2197 	if (ret != BLK_STS_OK) {
2198 		bio->bi_status = ret;
2199 		bio_endio(bio);
2200 		blk_mq_free_request(rq);
2201 		return BLK_QC_T_NONE;
2202 	}
2203 
2204 	plug = blk_mq_plug(q, bio);
2205 	if (unlikely(is_flush_fua)) {
2206 		/* Bypass scheduler for flush requests */
2207 		blk_insert_flush(rq);
2208 		blk_mq_run_hw_queue(data.hctx, true);
2209 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2210 				!blk_queue_nonrot(q))) {
2211 		/*
2212 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2213 		 * we know the driver uses bd->last in a smart fashion.
2214 		 *
2215 		 * Use normal plugging if this disk is slow HDD, as sequential
2216 		 * IO may benefit a lot from plug merging.
2217 		 */
2218 		unsigned int request_count = plug->rq_count;
2219 		struct request *last = NULL;
2220 
2221 		if (!request_count)
2222 			trace_block_plug(q);
2223 		else
2224 			last = list_entry_rq(plug->mq_list.prev);
2225 
2226 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2227 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2228 			blk_flush_plug_list(plug, false);
2229 			trace_block_plug(q);
2230 		}
2231 
2232 		blk_add_rq_to_plug(plug, rq);
2233 	} else if (q->elevator) {
2234 		/* Insert the request at the IO scheduler queue */
2235 		blk_mq_sched_insert_request(rq, false, true, true);
2236 	} else if (plug && !blk_queue_nomerges(q)) {
2237 		/*
2238 		 * We do limited plugging. If the bio can be merged, do that.
2239 		 * Otherwise the existing request in the plug list will be
2240 		 * issued. So the plug list will have one request at most
2241 		 * The plug list might get flushed before this. If that happens,
2242 		 * the plug list is empty, and same_queue_rq is invalid.
2243 		 */
2244 		if (list_empty(&plug->mq_list))
2245 			same_queue_rq = NULL;
2246 		if (same_queue_rq) {
2247 			list_del_init(&same_queue_rq->queuelist);
2248 			plug->rq_count--;
2249 		}
2250 		blk_add_rq_to_plug(plug, rq);
2251 		trace_block_plug(q);
2252 
2253 		if (same_queue_rq) {
2254 			data.hctx = same_queue_rq->mq_hctx;
2255 			trace_block_unplug(q, 1, true);
2256 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2257 					&cookie);
2258 		}
2259 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2260 			!data.hctx->dispatch_busy) {
2261 		/*
2262 		 * There is no scheduler and we can try to send directly
2263 		 * to the hardware.
2264 		 */
2265 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2266 	} else {
2267 		/* Default case. */
2268 		blk_mq_sched_insert_request(rq, false, true, true);
2269 	}
2270 
2271 	if (!hipri)
2272 		return BLK_QC_T_NONE;
2273 	return cookie;
2274 queue_exit:
2275 	blk_queue_exit(q);
2276 	return BLK_QC_T_NONE;
2277 }
2278 
2279 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2280 		     unsigned int hctx_idx)
2281 {
2282 	struct page *page;
2283 
2284 	if (tags->rqs && set->ops->exit_request) {
2285 		int i;
2286 
2287 		for (i = 0; i < tags->nr_tags; i++) {
2288 			struct request *rq = tags->static_rqs[i];
2289 
2290 			if (!rq)
2291 				continue;
2292 			set->ops->exit_request(set, rq, hctx_idx);
2293 			tags->static_rqs[i] = NULL;
2294 		}
2295 	}
2296 
2297 	while (!list_empty(&tags->page_list)) {
2298 		page = list_first_entry(&tags->page_list, struct page, lru);
2299 		list_del_init(&page->lru);
2300 		/*
2301 		 * Remove kmemleak object previously allocated in
2302 		 * blk_mq_alloc_rqs().
2303 		 */
2304 		kmemleak_free(page_address(page));
2305 		__free_pages(page, page->private);
2306 	}
2307 }
2308 
2309 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2310 {
2311 	kfree(tags->rqs);
2312 	tags->rqs = NULL;
2313 	kfree(tags->static_rqs);
2314 	tags->static_rqs = NULL;
2315 
2316 	blk_mq_free_tags(tags, flags);
2317 }
2318 
2319 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2320 					unsigned int hctx_idx,
2321 					unsigned int nr_tags,
2322 					unsigned int reserved_tags,
2323 					unsigned int flags)
2324 {
2325 	struct blk_mq_tags *tags;
2326 	int node;
2327 
2328 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2329 	if (node == NUMA_NO_NODE)
2330 		node = set->numa_node;
2331 
2332 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2333 	if (!tags)
2334 		return NULL;
2335 
2336 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2337 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2338 				 node);
2339 	if (!tags->rqs) {
2340 		blk_mq_free_tags(tags, flags);
2341 		return NULL;
2342 	}
2343 
2344 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2345 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2346 					node);
2347 	if (!tags->static_rqs) {
2348 		kfree(tags->rqs);
2349 		blk_mq_free_tags(tags, flags);
2350 		return NULL;
2351 	}
2352 
2353 	return tags;
2354 }
2355 
2356 static size_t order_to_size(unsigned int order)
2357 {
2358 	return (size_t)PAGE_SIZE << order;
2359 }
2360 
2361 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2362 			       unsigned int hctx_idx, int node)
2363 {
2364 	int ret;
2365 
2366 	if (set->ops->init_request) {
2367 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2368 		if (ret)
2369 			return ret;
2370 	}
2371 
2372 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2373 	return 0;
2374 }
2375 
2376 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2377 		     unsigned int hctx_idx, unsigned int depth)
2378 {
2379 	unsigned int i, j, entries_per_page, max_order = 4;
2380 	size_t rq_size, left;
2381 	int node;
2382 
2383 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2384 	if (node == NUMA_NO_NODE)
2385 		node = set->numa_node;
2386 
2387 	INIT_LIST_HEAD(&tags->page_list);
2388 
2389 	/*
2390 	 * rq_size is the size of the request plus driver payload, rounded
2391 	 * to the cacheline size
2392 	 */
2393 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2394 				cache_line_size());
2395 	left = rq_size * depth;
2396 
2397 	for (i = 0; i < depth; ) {
2398 		int this_order = max_order;
2399 		struct page *page;
2400 		int to_do;
2401 		void *p;
2402 
2403 		while (this_order && left < order_to_size(this_order - 1))
2404 			this_order--;
2405 
2406 		do {
2407 			page = alloc_pages_node(node,
2408 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2409 				this_order);
2410 			if (page)
2411 				break;
2412 			if (!this_order--)
2413 				break;
2414 			if (order_to_size(this_order) < rq_size)
2415 				break;
2416 		} while (1);
2417 
2418 		if (!page)
2419 			goto fail;
2420 
2421 		page->private = this_order;
2422 		list_add_tail(&page->lru, &tags->page_list);
2423 
2424 		p = page_address(page);
2425 		/*
2426 		 * Allow kmemleak to scan these pages as they contain pointers
2427 		 * to additional allocations like via ops->init_request().
2428 		 */
2429 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2430 		entries_per_page = order_to_size(this_order) / rq_size;
2431 		to_do = min(entries_per_page, depth - i);
2432 		left -= to_do * rq_size;
2433 		for (j = 0; j < to_do; j++) {
2434 			struct request *rq = p;
2435 
2436 			tags->static_rqs[i] = rq;
2437 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2438 				tags->static_rqs[i] = NULL;
2439 				goto fail;
2440 			}
2441 
2442 			p += rq_size;
2443 			i++;
2444 		}
2445 	}
2446 	return 0;
2447 
2448 fail:
2449 	blk_mq_free_rqs(set, tags, hctx_idx);
2450 	return -ENOMEM;
2451 }
2452 
2453 struct rq_iter_data {
2454 	struct blk_mq_hw_ctx *hctx;
2455 	bool has_rq;
2456 };
2457 
2458 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2459 {
2460 	struct rq_iter_data *iter_data = data;
2461 
2462 	if (rq->mq_hctx != iter_data->hctx)
2463 		return true;
2464 	iter_data->has_rq = true;
2465 	return false;
2466 }
2467 
2468 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2469 {
2470 	struct blk_mq_tags *tags = hctx->sched_tags ?
2471 			hctx->sched_tags : hctx->tags;
2472 	struct rq_iter_data data = {
2473 		.hctx	= hctx,
2474 	};
2475 
2476 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2477 	return data.has_rq;
2478 }
2479 
2480 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2481 		struct blk_mq_hw_ctx *hctx)
2482 {
2483 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2484 		return false;
2485 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2486 		return false;
2487 	return true;
2488 }
2489 
2490 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2491 {
2492 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2493 			struct blk_mq_hw_ctx, cpuhp_online);
2494 
2495 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2496 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2497 		return 0;
2498 
2499 	/*
2500 	 * Prevent new request from being allocated on the current hctx.
2501 	 *
2502 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2503 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2504 	 * seen once we return from the tag allocator.
2505 	 */
2506 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2507 	smp_mb__after_atomic();
2508 
2509 	/*
2510 	 * Try to grab a reference to the queue and wait for any outstanding
2511 	 * requests.  If we could not grab a reference the queue has been
2512 	 * frozen and there are no requests.
2513 	 */
2514 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2515 		while (blk_mq_hctx_has_requests(hctx))
2516 			msleep(5);
2517 		percpu_ref_put(&hctx->queue->q_usage_counter);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2524 {
2525 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2526 			struct blk_mq_hw_ctx, cpuhp_online);
2527 
2528 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2529 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2530 	return 0;
2531 }
2532 
2533 /*
2534  * 'cpu' is going away. splice any existing rq_list entries from this
2535  * software queue to the hw queue dispatch list, and ensure that it
2536  * gets run.
2537  */
2538 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2539 {
2540 	struct blk_mq_hw_ctx *hctx;
2541 	struct blk_mq_ctx *ctx;
2542 	LIST_HEAD(tmp);
2543 	enum hctx_type type;
2544 
2545 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2546 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2547 		return 0;
2548 
2549 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2550 	type = hctx->type;
2551 
2552 	spin_lock(&ctx->lock);
2553 	if (!list_empty(&ctx->rq_lists[type])) {
2554 		list_splice_init(&ctx->rq_lists[type], &tmp);
2555 		blk_mq_hctx_clear_pending(hctx, ctx);
2556 	}
2557 	spin_unlock(&ctx->lock);
2558 
2559 	if (list_empty(&tmp))
2560 		return 0;
2561 
2562 	spin_lock(&hctx->lock);
2563 	list_splice_tail_init(&tmp, &hctx->dispatch);
2564 	spin_unlock(&hctx->lock);
2565 
2566 	blk_mq_run_hw_queue(hctx, true);
2567 	return 0;
2568 }
2569 
2570 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2571 {
2572 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2573 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2574 						    &hctx->cpuhp_online);
2575 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2576 					    &hctx->cpuhp_dead);
2577 }
2578 
2579 /* hctx->ctxs will be freed in queue's release handler */
2580 static void blk_mq_exit_hctx(struct request_queue *q,
2581 		struct blk_mq_tag_set *set,
2582 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2583 {
2584 	if (blk_mq_hw_queue_mapped(hctx))
2585 		blk_mq_tag_idle(hctx);
2586 
2587 	if (set->ops->exit_request)
2588 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2589 
2590 	if (set->ops->exit_hctx)
2591 		set->ops->exit_hctx(hctx, hctx_idx);
2592 
2593 	blk_mq_remove_cpuhp(hctx);
2594 
2595 	spin_lock(&q->unused_hctx_lock);
2596 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2597 	spin_unlock(&q->unused_hctx_lock);
2598 }
2599 
2600 static void blk_mq_exit_hw_queues(struct request_queue *q,
2601 		struct blk_mq_tag_set *set, int nr_queue)
2602 {
2603 	struct blk_mq_hw_ctx *hctx;
2604 	unsigned int i;
2605 
2606 	queue_for_each_hw_ctx(q, hctx, i) {
2607 		if (i == nr_queue)
2608 			break;
2609 		blk_mq_debugfs_unregister_hctx(hctx);
2610 		blk_mq_exit_hctx(q, set, hctx, i);
2611 	}
2612 }
2613 
2614 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2615 {
2616 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2617 
2618 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2619 			   __alignof__(struct blk_mq_hw_ctx)) !=
2620 		     sizeof(struct blk_mq_hw_ctx));
2621 
2622 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2623 		hw_ctx_size += sizeof(struct srcu_struct);
2624 
2625 	return hw_ctx_size;
2626 }
2627 
2628 static int blk_mq_init_hctx(struct request_queue *q,
2629 		struct blk_mq_tag_set *set,
2630 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2631 {
2632 	hctx->queue_num = hctx_idx;
2633 
2634 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2635 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2636 				&hctx->cpuhp_online);
2637 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2638 
2639 	hctx->tags = set->tags[hctx_idx];
2640 
2641 	if (set->ops->init_hctx &&
2642 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2643 		goto unregister_cpu_notifier;
2644 
2645 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2646 				hctx->numa_node))
2647 		goto exit_hctx;
2648 	return 0;
2649 
2650  exit_hctx:
2651 	if (set->ops->exit_hctx)
2652 		set->ops->exit_hctx(hctx, hctx_idx);
2653  unregister_cpu_notifier:
2654 	blk_mq_remove_cpuhp(hctx);
2655 	return -1;
2656 }
2657 
2658 static struct blk_mq_hw_ctx *
2659 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2660 		int node)
2661 {
2662 	struct blk_mq_hw_ctx *hctx;
2663 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2664 
2665 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2666 	if (!hctx)
2667 		goto fail_alloc_hctx;
2668 
2669 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2670 		goto free_hctx;
2671 
2672 	atomic_set(&hctx->nr_active, 0);
2673 	atomic_set(&hctx->elevator_queued, 0);
2674 	if (node == NUMA_NO_NODE)
2675 		node = set->numa_node;
2676 	hctx->numa_node = node;
2677 
2678 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2679 	spin_lock_init(&hctx->lock);
2680 	INIT_LIST_HEAD(&hctx->dispatch);
2681 	hctx->queue = q;
2682 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2683 
2684 	INIT_LIST_HEAD(&hctx->hctx_list);
2685 
2686 	/*
2687 	 * Allocate space for all possible cpus to avoid allocation at
2688 	 * runtime
2689 	 */
2690 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2691 			gfp, node);
2692 	if (!hctx->ctxs)
2693 		goto free_cpumask;
2694 
2695 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2696 				gfp, node))
2697 		goto free_ctxs;
2698 	hctx->nr_ctx = 0;
2699 
2700 	spin_lock_init(&hctx->dispatch_wait_lock);
2701 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2702 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2703 
2704 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2705 	if (!hctx->fq)
2706 		goto free_bitmap;
2707 
2708 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2709 		init_srcu_struct(hctx->srcu);
2710 	blk_mq_hctx_kobj_init(hctx);
2711 
2712 	return hctx;
2713 
2714  free_bitmap:
2715 	sbitmap_free(&hctx->ctx_map);
2716  free_ctxs:
2717 	kfree(hctx->ctxs);
2718  free_cpumask:
2719 	free_cpumask_var(hctx->cpumask);
2720  free_hctx:
2721 	kfree(hctx);
2722  fail_alloc_hctx:
2723 	return NULL;
2724 }
2725 
2726 static void blk_mq_init_cpu_queues(struct request_queue *q,
2727 				   unsigned int nr_hw_queues)
2728 {
2729 	struct blk_mq_tag_set *set = q->tag_set;
2730 	unsigned int i, j;
2731 
2732 	for_each_possible_cpu(i) {
2733 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2734 		struct blk_mq_hw_ctx *hctx;
2735 		int k;
2736 
2737 		__ctx->cpu = i;
2738 		spin_lock_init(&__ctx->lock);
2739 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2740 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2741 
2742 		__ctx->queue = q;
2743 
2744 		/*
2745 		 * Set local node, IFF we have more than one hw queue. If
2746 		 * not, we remain on the home node of the device
2747 		 */
2748 		for (j = 0; j < set->nr_maps; j++) {
2749 			hctx = blk_mq_map_queue_type(q, j, i);
2750 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2751 				hctx->numa_node = cpu_to_node(i);
2752 		}
2753 	}
2754 }
2755 
2756 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2757 					int hctx_idx)
2758 {
2759 	unsigned int flags = set->flags;
2760 	int ret = 0;
2761 
2762 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2763 					set->queue_depth, set->reserved_tags, flags);
2764 	if (!set->tags[hctx_idx])
2765 		return false;
2766 
2767 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2768 				set->queue_depth);
2769 	if (!ret)
2770 		return true;
2771 
2772 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2773 	set->tags[hctx_idx] = NULL;
2774 	return false;
2775 }
2776 
2777 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2778 					 unsigned int hctx_idx)
2779 {
2780 	unsigned int flags = set->flags;
2781 
2782 	if (set->tags && set->tags[hctx_idx]) {
2783 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2784 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2785 		set->tags[hctx_idx] = NULL;
2786 	}
2787 }
2788 
2789 static void blk_mq_map_swqueue(struct request_queue *q)
2790 {
2791 	unsigned int i, j, hctx_idx;
2792 	struct blk_mq_hw_ctx *hctx;
2793 	struct blk_mq_ctx *ctx;
2794 	struct blk_mq_tag_set *set = q->tag_set;
2795 
2796 	queue_for_each_hw_ctx(q, hctx, i) {
2797 		cpumask_clear(hctx->cpumask);
2798 		hctx->nr_ctx = 0;
2799 		hctx->dispatch_from = NULL;
2800 	}
2801 
2802 	/*
2803 	 * Map software to hardware queues.
2804 	 *
2805 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2806 	 */
2807 	for_each_possible_cpu(i) {
2808 
2809 		ctx = per_cpu_ptr(q->queue_ctx, i);
2810 		for (j = 0; j < set->nr_maps; j++) {
2811 			if (!set->map[j].nr_queues) {
2812 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2813 						HCTX_TYPE_DEFAULT, i);
2814 				continue;
2815 			}
2816 			hctx_idx = set->map[j].mq_map[i];
2817 			/* unmapped hw queue can be remapped after CPU topo changed */
2818 			if (!set->tags[hctx_idx] &&
2819 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2820 				/*
2821 				 * If tags initialization fail for some hctx,
2822 				 * that hctx won't be brought online.  In this
2823 				 * case, remap the current ctx to hctx[0] which
2824 				 * is guaranteed to always have tags allocated
2825 				 */
2826 				set->map[j].mq_map[i] = 0;
2827 			}
2828 
2829 			hctx = blk_mq_map_queue_type(q, j, i);
2830 			ctx->hctxs[j] = hctx;
2831 			/*
2832 			 * If the CPU is already set in the mask, then we've
2833 			 * mapped this one already. This can happen if
2834 			 * devices share queues across queue maps.
2835 			 */
2836 			if (cpumask_test_cpu(i, hctx->cpumask))
2837 				continue;
2838 
2839 			cpumask_set_cpu(i, hctx->cpumask);
2840 			hctx->type = j;
2841 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2842 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2843 
2844 			/*
2845 			 * If the nr_ctx type overflows, we have exceeded the
2846 			 * amount of sw queues we can support.
2847 			 */
2848 			BUG_ON(!hctx->nr_ctx);
2849 		}
2850 
2851 		for (; j < HCTX_MAX_TYPES; j++)
2852 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2853 					HCTX_TYPE_DEFAULT, i);
2854 	}
2855 
2856 	queue_for_each_hw_ctx(q, hctx, i) {
2857 		/*
2858 		 * If no software queues are mapped to this hardware queue,
2859 		 * disable it and free the request entries.
2860 		 */
2861 		if (!hctx->nr_ctx) {
2862 			/* Never unmap queue 0.  We need it as a
2863 			 * fallback in case of a new remap fails
2864 			 * allocation
2865 			 */
2866 			if (i && set->tags[i])
2867 				blk_mq_free_map_and_requests(set, i);
2868 
2869 			hctx->tags = NULL;
2870 			continue;
2871 		}
2872 
2873 		hctx->tags = set->tags[i];
2874 		WARN_ON(!hctx->tags);
2875 
2876 		/*
2877 		 * Set the map size to the number of mapped software queues.
2878 		 * This is more accurate and more efficient than looping
2879 		 * over all possibly mapped software queues.
2880 		 */
2881 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2882 
2883 		/*
2884 		 * Initialize batch roundrobin counts
2885 		 */
2886 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2887 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2888 	}
2889 }
2890 
2891 /*
2892  * Caller needs to ensure that we're either frozen/quiesced, or that
2893  * the queue isn't live yet.
2894  */
2895 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2896 {
2897 	struct blk_mq_hw_ctx *hctx;
2898 	int i;
2899 
2900 	queue_for_each_hw_ctx(q, hctx, i) {
2901 		if (shared)
2902 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2903 		else
2904 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2905 	}
2906 }
2907 
2908 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2909 					 bool shared)
2910 {
2911 	struct request_queue *q;
2912 
2913 	lockdep_assert_held(&set->tag_list_lock);
2914 
2915 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2916 		blk_mq_freeze_queue(q);
2917 		queue_set_hctx_shared(q, shared);
2918 		blk_mq_unfreeze_queue(q);
2919 	}
2920 }
2921 
2922 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2923 {
2924 	struct blk_mq_tag_set *set = q->tag_set;
2925 
2926 	mutex_lock(&set->tag_list_lock);
2927 	list_del(&q->tag_set_list);
2928 	if (list_is_singular(&set->tag_list)) {
2929 		/* just transitioned to unshared */
2930 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2931 		/* update existing queue */
2932 		blk_mq_update_tag_set_shared(set, false);
2933 	}
2934 	mutex_unlock(&set->tag_list_lock);
2935 	INIT_LIST_HEAD(&q->tag_set_list);
2936 }
2937 
2938 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2939 				     struct request_queue *q)
2940 {
2941 	mutex_lock(&set->tag_list_lock);
2942 
2943 	/*
2944 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2945 	 */
2946 	if (!list_empty(&set->tag_list) &&
2947 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2948 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2949 		/* update existing queue */
2950 		blk_mq_update_tag_set_shared(set, true);
2951 	}
2952 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2953 		queue_set_hctx_shared(q, true);
2954 	list_add_tail(&q->tag_set_list, &set->tag_list);
2955 
2956 	mutex_unlock(&set->tag_list_lock);
2957 }
2958 
2959 /* All allocations will be freed in release handler of q->mq_kobj */
2960 static int blk_mq_alloc_ctxs(struct request_queue *q)
2961 {
2962 	struct blk_mq_ctxs *ctxs;
2963 	int cpu;
2964 
2965 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2966 	if (!ctxs)
2967 		return -ENOMEM;
2968 
2969 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2970 	if (!ctxs->queue_ctx)
2971 		goto fail;
2972 
2973 	for_each_possible_cpu(cpu) {
2974 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2975 		ctx->ctxs = ctxs;
2976 	}
2977 
2978 	q->mq_kobj = &ctxs->kobj;
2979 	q->queue_ctx = ctxs->queue_ctx;
2980 
2981 	return 0;
2982  fail:
2983 	kfree(ctxs);
2984 	return -ENOMEM;
2985 }
2986 
2987 /*
2988  * It is the actual release handler for mq, but we do it from
2989  * request queue's release handler for avoiding use-after-free
2990  * and headache because q->mq_kobj shouldn't have been introduced,
2991  * but we can't group ctx/kctx kobj without it.
2992  */
2993 void blk_mq_release(struct request_queue *q)
2994 {
2995 	struct blk_mq_hw_ctx *hctx, *next;
2996 	int i;
2997 
2998 	queue_for_each_hw_ctx(q, hctx, i)
2999 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3000 
3001 	/* all hctx are in .unused_hctx_list now */
3002 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3003 		list_del_init(&hctx->hctx_list);
3004 		kobject_put(&hctx->kobj);
3005 	}
3006 
3007 	kfree(q->queue_hw_ctx);
3008 
3009 	/*
3010 	 * release .mq_kobj and sw queue's kobject now because
3011 	 * both share lifetime with request queue.
3012 	 */
3013 	blk_mq_sysfs_deinit(q);
3014 }
3015 
3016 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3017 		void *queuedata)
3018 {
3019 	struct request_queue *uninit_q, *q;
3020 
3021 	uninit_q = blk_alloc_queue(set->numa_node);
3022 	if (!uninit_q)
3023 		return ERR_PTR(-ENOMEM);
3024 	uninit_q->queuedata = queuedata;
3025 
3026 	/*
3027 	 * Initialize the queue without an elevator. device_add_disk() will do
3028 	 * the initialization.
3029 	 */
3030 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3031 	if (IS_ERR(q))
3032 		blk_cleanup_queue(uninit_q);
3033 
3034 	return q;
3035 }
3036 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3037 
3038 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3039 {
3040 	return blk_mq_init_queue_data(set, NULL);
3041 }
3042 EXPORT_SYMBOL(blk_mq_init_queue);
3043 
3044 /*
3045  * Helper for setting up a queue with mq ops, given queue depth, and
3046  * the passed in mq ops flags.
3047  */
3048 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3049 					   const struct blk_mq_ops *ops,
3050 					   unsigned int queue_depth,
3051 					   unsigned int set_flags)
3052 {
3053 	struct request_queue *q;
3054 	int ret;
3055 
3056 	memset(set, 0, sizeof(*set));
3057 	set->ops = ops;
3058 	set->nr_hw_queues = 1;
3059 	set->nr_maps = 1;
3060 	set->queue_depth = queue_depth;
3061 	set->numa_node = NUMA_NO_NODE;
3062 	set->flags = set_flags;
3063 
3064 	ret = blk_mq_alloc_tag_set(set);
3065 	if (ret)
3066 		return ERR_PTR(ret);
3067 
3068 	q = blk_mq_init_queue(set);
3069 	if (IS_ERR(q)) {
3070 		blk_mq_free_tag_set(set);
3071 		return q;
3072 	}
3073 
3074 	return q;
3075 }
3076 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3077 
3078 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3079 		struct blk_mq_tag_set *set, struct request_queue *q,
3080 		int hctx_idx, int node)
3081 {
3082 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3083 
3084 	/* reuse dead hctx first */
3085 	spin_lock(&q->unused_hctx_lock);
3086 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3087 		if (tmp->numa_node == node) {
3088 			hctx = tmp;
3089 			break;
3090 		}
3091 	}
3092 	if (hctx)
3093 		list_del_init(&hctx->hctx_list);
3094 	spin_unlock(&q->unused_hctx_lock);
3095 
3096 	if (!hctx)
3097 		hctx = blk_mq_alloc_hctx(q, set, node);
3098 	if (!hctx)
3099 		goto fail;
3100 
3101 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3102 		goto free_hctx;
3103 
3104 	return hctx;
3105 
3106  free_hctx:
3107 	kobject_put(&hctx->kobj);
3108  fail:
3109 	return NULL;
3110 }
3111 
3112 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3113 						struct request_queue *q)
3114 {
3115 	int i, j, end;
3116 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3117 
3118 	if (q->nr_hw_queues < set->nr_hw_queues) {
3119 		struct blk_mq_hw_ctx **new_hctxs;
3120 
3121 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3122 				       sizeof(*new_hctxs), GFP_KERNEL,
3123 				       set->numa_node);
3124 		if (!new_hctxs)
3125 			return;
3126 		if (hctxs)
3127 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3128 			       sizeof(*hctxs));
3129 		q->queue_hw_ctx = new_hctxs;
3130 		kfree(hctxs);
3131 		hctxs = new_hctxs;
3132 	}
3133 
3134 	/* protect against switching io scheduler  */
3135 	mutex_lock(&q->sysfs_lock);
3136 	for (i = 0; i < set->nr_hw_queues; i++) {
3137 		int node;
3138 		struct blk_mq_hw_ctx *hctx;
3139 
3140 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3141 		/*
3142 		 * If the hw queue has been mapped to another numa node,
3143 		 * we need to realloc the hctx. If allocation fails, fallback
3144 		 * to use the previous one.
3145 		 */
3146 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3147 			continue;
3148 
3149 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3150 		if (hctx) {
3151 			if (hctxs[i])
3152 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3153 			hctxs[i] = hctx;
3154 		} else {
3155 			if (hctxs[i])
3156 				pr_warn("Allocate new hctx on node %d fails,\
3157 						fallback to previous one on node %d\n",
3158 						node, hctxs[i]->numa_node);
3159 			else
3160 				break;
3161 		}
3162 	}
3163 	/*
3164 	 * Increasing nr_hw_queues fails. Free the newly allocated
3165 	 * hctxs and keep the previous q->nr_hw_queues.
3166 	 */
3167 	if (i != set->nr_hw_queues) {
3168 		j = q->nr_hw_queues;
3169 		end = i;
3170 	} else {
3171 		j = i;
3172 		end = q->nr_hw_queues;
3173 		q->nr_hw_queues = set->nr_hw_queues;
3174 	}
3175 
3176 	for (; j < end; j++) {
3177 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3178 
3179 		if (hctx) {
3180 			if (hctx->tags)
3181 				blk_mq_free_map_and_requests(set, j);
3182 			blk_mq_exit_hctx(q, set, hctx, j);
3183 			hctxs[j] = NULL;
3184 		}
3185 	}
3186 	mutex_unlock(&q->sysfs_lock);
3187 }
3188 
3189 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3190 						  struct request_queue *q,
3191 						  bool elevator_init)
3192 {
3193 	/* mark the queue as mq asap */
3194 	q->mq_ops = set->ops;
3195 
3196 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3197 					     blk_mq_poll_stats_bkt,
3198 					     BLK_MQ_POLL_STATS_BKTS, q);
3199 	if (!q->poll_cb)
3200 		goto err_exit;
3201 
3202 	if (blk_mq_alloc_ctxs(q))
3203 		goto err_poll;
3204 
3205 	/* init q->mq_kobj and sw queues' kobjects */
3206 	blk_mq_sysfs_init(q);
3207 
3208 	INIT_LIST_HEAD(&q->unused_hctx_list);
3209 	spin_lock_init(&q->unused_hctx_lock);
3210 
3211 	blk_mq_realloc_hw_ctxs(set, q);
3212 	if (!q->nr_hw_queues)
3213 		goto err_hctxs;
3214 
3215 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3216 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3217 
3218 	q->tag_set = set;
3219 
3220 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3221 	if (set->nr_maps > HCTX_TYPE_POLL &&
3222 	    set->map[HCTX_TYPE_POLL].nr_queues)
3223 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3224 
3225 	q->sg_reserved_size = INT_MAX;
3226 
3227 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3228 	INIT_LIST_HEAD(&q->requeue_list);
3229 	spin_lock_init(&q->requeue_lock);
3230 
3231 	q->nr_requests = set->queue_depth;
3232 
3233 	/*
3234 	 * Default to classic polling
3235 	 */
3236 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3237 
3238 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3239 	blk_mq_add_queue_tag_set(set, q);
3240 	blk_mq_map_swqueue(q);
3241 
3242 	if (elevator_init)
3243 		elevator_init_mq(q);
3244 
3245 	return q;
3246 
3247 err_hctxs:
3248 	kfree(q->queue_hw_ctx);
3249 	q->nr_hw_queues = 0;
3250 	blk_mq_sysfs_deinit(q);
3251 err_poll:
3252 	blk_stat_free_callback(q->poll_cb);
3253 	q->poll_cb = NULL;
3254 err_exit:
3255 	q->mq_ops = NULL;
3256 	return ERR_PTR(-ENOMEM);
3257 }
3258 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3259 
3260 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3261 void blk_mq_exit_queue(struct request_queue *q)
3262 {
3263 	struct blk_mq_tag_set	*set = q->tag_set;
3264 
3265 	blk_mq_del_queue_tag_set(q);
3266 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3267 }
3268 
3269 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3270 {
3271 	int i;
3272 
3273 	for (i = 0; i < set->nr_hw_queues; i++) {
3274 		if (!__blk_mq_alloc_map_and_request(set, i))
3275 			goto out_unwind;
3276 		cond_resched();
3277 	}
3278 
3279 	return 0;
3280 
3281 out_unwind:
3282 	while (--i >= 0)
3283 		blk_mq_free_map_and_requests(set, i);
3284 
3285 	return -ENOMEM;
3286 }
3287 
3288 /*
3289  * Allocate the request maps associated with this tag_set. Note that this
3290  * may reduce the depth asked for, if memory is tight. set->queue_depth
3291  * will be updated to reflect the allocated depth.
3292  */
3293 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3294 {
3295 	unsigned int depth;
3296 	int err;
3297 
3298 	depth = set->queue_depth;
3299 	do {
3300 		err = __blk_mq_alloc_rq_maps(set);
3301 		if (!err)
3302 			break;
3303 
3304 		set->queue_depth >>= 1;
3305 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3306 			err = -ENOMEM;
3307 			break;
3308 		}
3309 	} while (set->queue_depth);
3310 
3311 	if (!set->queue_depth || err) {
3312 		pr_err("blk-mq: failed to allocate request map\n");
3313 		return -ENOMEM;
3314 	}
3315 
3316 	if (depth != set->queue_depth)
3317 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3318 						depth, set->queue_depth);
3319 
3320 	return 0;
3321 }
3322 
3323 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3324 {
3325 	/*
3326 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3327 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3328 	 * number of hardware queues.
3329 	 */
3330 	if (set->nr_maps == 1)
3331 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3332 
3333 	if (set->ops->map_queues && !is_kdump_kernel()) {
3334 		int i;
3335 
3336 		/*
3337 		 * transport .map_queues is usually done in the following
3338 		 * way:
3339 		 *
3340 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3341 		 * 	mask = get_cpu_mask(queue)
3342 		 * 	for_each_cpu(cpu, mask)
3343 		 * 		set->map[x].mq_map[cpu] = queue;
3344 		 * }
3345 		 *
3346 		 * When we need to remap, the table has to be cleared for
3347 		 * killing stale mapping since one CPU may not be mapped
3348 		 * to any hw queue.
3349 		 */
3350 		for (i = 0; i < set->nr_maps; i++)
3351 			blk_mq_clear_mq_map(&set->map[i]);
3352 
3353 		return set->ops->map_queues(set);
3354 	} else {
3355 		BUG_ON(set->nr_maps > 1);
3356 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3357 	}
3358 }
3359 
3360 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3361 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3362 {
3363 	struct blk_mq_tags **new_tags;
3364 
3365 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3366 		return 0;
3367 
3368 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3369 				GFP_KERNEL, set->numa_node);
3370 	if (!new_tags)
3371 		return -ENOMEM;
3372 
3373 	if (set->tags)
3374 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3375 		       sizeof(*set->tags));
3376 	kfree(set->tags);
3377 	set->tags = new_tags;
3378 	set->nr_hw_queues = new_nr_hw_queues;
3379 
3380 	return 0;
3381 }
3382 
3383 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3384 				int new_nr_hw_queues)
3385 {
3386 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3387 }
3388 
3389 /*
3390  * Alloc a tag set to be associated with one or more request queues.
3391  * May fail with EINVAL for various error conditions. May adjust the
3392  * requested depth down, if it's too large. In that case, the set
3393  * value will be stored in set->queue_depth.
3394  */
3395 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3396 {
3397 	int i, ret;
3398 
3399 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3400 
3401 	if (!set->nr_hw_queues)
3402 		return -EINVAL;
3403 	if (!set->queue_depth)
3404 		return -EINVAL;
3405 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3406 		return -EINVAL;
3407 
3408 	if (!set->ops->queue_rq)
3409 		return -EINVAL;
3410 
3411 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3412 		return -EINVAL;
3413 
3414 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3415 		pr_info("blk-mq: reduced tag depth to %u\n",
3416 			BLK_MQ_MAX_DEPTH);
3417 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3418 	}
3419 
3420 	if (!set->nr_maps)
3421 		set->nr_maps = 1;
3422 	else if (set->nr_maps > HCTX_MAX_TYPES)
3423 		return -EINVAL;
3424 
3425 	/*
3426 	 * If a crashdump is active, then we are potentially in a very
3427 	 * memory constrained environment. Limit us to 1 queue and
3428 	 * 64 tags to prevent using too much memory.
3429 	 */
3430 	if (is_kdump_kernel()) {
3431 		set->nr_hw_queues = 1;
3432 		set->nr_maps = 1;
3433 		set->queue_depth = min(64U, set->queue_depth);
3434 	}
3435 	/*
3436 	 * There is no use for more h/w queues than cpus if we just have
3437 	 * a single map
3438 	 */
3439 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3440 		set->nr_hw_queues = nr_cpu_ids;
3441 
3442 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3443 		return -ENOMEM;
3444 
3445 	ret = -ENOMEM;
3446 	for (i = 0; i < set->nr_maps; i++) {
3447 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3448 						  sizeof(set->map[i].mq_map[0]),
3449 						  GFP_KERNEL, set->numa_node);
3450 		if (!set->map[i].mq_map)
3451 			goto out_free_mq_map;
3452 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3453 	}
3454 
3455 	ret = blk_mq_update_queue_map(set);
3456 	if (ret)
3457 		goto out_free_mq_map;
3458 
3459 	ret = blk_mq_alloc_map_and_requests(set);
3460 	if (ret)
3461 		goto out_free_mq_map;
3462 
3463 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3464 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3465 
3466 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3467 			ret = -ENOMEM;
3468 			goto out_free_mq_rq_maps;
3469 		}
3470 	}
3471 
3472 	mutex_init(&set->tag_list_lock);
3473 	INIT_LIST_HEAD(&set->tag_list);
3474 
3475 	return 0;
3476 
3477 out_free_mq_rq_maps:
3478 	for (i = 0; i < set->nr_hw_queues; i++)
3479 		blk_mq_free_map_and_requests(set, i);
3480 out_free_mq_map:
3481 	for (i = 0; i < set->nr_maps; i++) {
3482 		kfree(set->map[i].mq_map);
3483 		set->map[i].mq_map = NULL;
3484 	}
3485 	kfree(set->tags);
3486 	set->tags = NULL;
3487 	return ret;
3488 }
3489 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3490 
3491 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3492 {
3493 	int i, j;
3494 
3495 	for (i = 0; i < set->nr_hw_queues; i++)
3496 		blk_mq_free_map_and_requests(set, i);
3497 
3498 	if (blk_mq_is_sbitmap_shared(set->flags))
3499 		blk_mq_exit_shared_sbitmap(set);
3500 
3501 	for (j = 0; j < set->nr_maps; j++) {
3502 		kfree(set->map[j].mq_map);
3503 		set->map[j].mq_map = NULL;
3504 	}
3505 
3506 	kfree(set->tags);
3507 	set->tags = NULL;
3508 }
3509 EXPORT_SYMBOL(blk_mq_free_tag_set);
3510 
3511 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3512 {
3513 	struct blk_mq_tag_set *set = q->tag_set;
3514 	struct blk_mq_hw_ctx *hctx;
3515 	int i, ret;
3516 
3517 	if (!set)
3518 		return -EINVAL;
3519 
3520 	if (q->nr_requests == nr)
3521 		return 0;
3522 
3523 	blk_mq_freeze_queue(q);
3524 	blk_mq_quiesce_queue(q);
3525 
3526 	ret = 0;
3527 	queue_for_each_hw_ctx(q, hctx, i) {
3528 		if (!hctx->tags)
3529 			continue;
3530 		/*
3531 		 * If we're using an MQ scheduler, just update the scheduler
3532 		 * queue depth. This is similar to what the old code would do.
3533 		 */
3534 		if (!hctx->sched_tags) {
3535 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3536 							false);
3537 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3538 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3539 		} else {
3540 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3541 							nr, true);
3542 		}
3543 		if (ret)
3544 			break;
3545 		if (q->elevator && q->elevator->type->ops.depth_updated)
3546 			q->elevator->type->ops.depth_updated(hctx);
3547 	}
3548 
3549 	if (!ret)
3550 		q->nr_requests = nr;
3551 
3552 	blk_mq_unquiesce_queue(q);
3553 	blk_mq_unfreeze_queue(q);
3554 
3555 	return ret;
3556 }
3557 
3558 /*
3559  * request_queue and elevator_type pair.
3560  * It is just used by __blk_mq_update_nr_hw_queues to cache
3561  * the elevator_type associated with a request_queue.
3562  */
3563 struct blk_mq_qe_pair {
3564 	struct list_head node;
3565 	struct request_queue *q;
3566 	struct elevator_type *type;
3567 };
3568 
3569 /*
3570  * Cache the elevator_type in qe pair list and switch the
3571  * io scheduler to 'none'
3572  */
3573 static bool blk_mq_elv_switch_none(struct list_head *head,
3574 		struct request_queue *q)
3575 {
3576 	struct blk_mq_qe_pair *qe;
3577 
3578 	if (!q->elevator)
3579 		return true;
3580 
3581 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3582 	if (!qe)
3583 		return false;
3584 
3585 	INIT_LIST_HEAD(&qe->node);
3586 	qe->q = q;
3587 	qe->type = q->elevator->type;
3588 	list_add(&qe->node, head);
3589 
3590 	mutex_lock(&q->sysfs_lock);
3591 	/*
3592 	 * After elevator_switch_mq, the previous elevator_queue will be
3593 	 * released by elevator_release. The reference of the io scheduler
3594 	 * module get by elevator_get will also be put. So we need to get
3595 	 * a reference of the io scheduler module here to prevent it to be
3596 	 * removed.
3597 	 */
3598 	__module_get(qe->type->elevator_owner);
3599 	elevator_switch_mq(q, NULL);
3600 	mutex_unlock(&q->sysfs_lock);
3601 
3602 	return true;
3603 }
3604 
3605 static void blk_mq_elv_switch_back(struct list_head *head,
3606 		struct request_queue *q)
3607 {
3608 	struct blk_mq_qe_pair *qe;
3609 	struct elevator_type *t = NULL;
3610 
3611 	list_for_each_entry(qe, head, node)
3612 		if (qe->q == q) {
3613 			t = qe->type;
3614 			break;
3615 		}
3616 
3617 	if (!t)
3618 		return;
3619 
3620 	list_del(&qe->node);
3621 	kfree(qe);
3622 
3623 	mutex_lock(&q->sysfs_lock);
3624 	elevator_switch_mq(q, t);
3625 	mutex_unlock(&q->sysfs_lock);
3626 }
3627 
3628 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3629 							int nr_hw_queues)
3630 {
3631 	struct request_queue *q;
3632 	LIST_HEAD(head);
3633 	int prev_nr_hw_queues;
3634 
3635 	lockdep_assert_held(&set->tag_list_lock);
3636 
3637 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3638 		nr_hw_queues = nr_cpu_ids;
3639 	if (nr_hw_queues < 1)
3640 		return;
3641 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3642 		return;
3643 
3644 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3645 		blk_mq_freeze_queue(q);
3646 	/*
3647 	 * Switch IO scheduler to 'none', cleaning up the data associated
3648 	 * with the previous scheduler. We will switch back once we are done
3649 	 * updating the new sw to hw queue mappings.
3650 	 */
3651 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3652 		if (!blk_mq_elv_switch_none(&head, q))
3653 			goto switch_back;
3654 
3655 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3656 		blk_mq_debugfs_unregister_hctxs(q);
3657 		blk_mq_sysfs_unregister(q);
3658 	}
3659 
3660 	prev_nr_hw_queues = set->nr_hw_queues;
3661 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3662 	    0)
3663 		goto reregister;
3664 
3665 	set->nr_hw_queues = nr_hw_queues;
3666 fallback:
3667 	blk_mq_update_queue_map(set);
3668 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3669 		blk_mq_realloc_hw_ctxs(set, q);
3670 		if (q->nr_hw_queues != set->nr_hw_queues) {
3671 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3672 					nr_hw_queues, prev_nr_hw_queues);
3673 			set->nr_hw_queues = prev_nr_hw_queues;
3674 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3675 			goto fallback;
3676 		}
3677 		blk_mq_map_swqueue(q);
3678 	}
3679 
3680 reregister:
3681 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3682 		blk_mq_sysfs_register(q);
3683 		blk_mq_debugfs_register_hctxs(q);
3684 	}
3685 
3686 switch_back:
3687 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3688 		blk_mq_elv_switch_back(&head, q);
3689 
3690 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3691 		blk_mq_unfreeze_queue(q);
3692 }
3693 
3694 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3695 {
3696 	mutex_lock(&set->tag_list_lock);
3697 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3698 	mutex_unlock(&set->tag_list_lock);
3699 }
3700 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3701 
3702 /* Enable polling stats and return whether they were already enabled. */
3703 static bool blk_poll_stats_enable(struct request_queue *q)
3704 {
3705 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3706 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3707 		return true;
3708 	blk_stat_add_callback(q, q->poll_cb);
3709 	return false;
3710 }
3711 
3712 static void blk_mq_poll_stats_start(struct request_queue *q)
3713 {
3714 	/*
3715 	 * We don't arm the callback if polling stats are not enabled or the
3716 	 * callback is already active.
3717 	 */
3718 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3719 	    blk_stat_is_active(q->poll_cb))
3720 		return;
3721 
3722 	blk_stat_activate_msecs(q->poll_cb, 100);
3723 }
3724 
3725 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3726 {
3727 	struct request_queue *q = cb->data;
3728 	int bucket;
3729 
3730 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3731 		if (cb->stat[bucket].nr_samples)
3732 			q->poll_stat[bucket] = cb->stat[bucket];
3733 	}
3734 }
3735 
3736 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3737 				       struct request *rq)
3738 {
3739 	unsigned long ret = 0;
3740 	int bucket;
3741 
3742 	/*
3743 	 * If stats collection isn't on, don't sleep but turn it on for
3744 	 * future users
3745 	 */
3746 	if (!blk_poll_stats_enable(q))
3747 		return 0;
3748 
3749 	/*
3750 	 * As an optimistic guess, use half of the mean service time
3751 	 * for this type of request. We can (and should) make this smarter.
3752 	 * For instance, if the completion latencies are tight, we can
3753 	 * get closer than just half the mean. This is especially
3754 	 * important on devices where the completion latencies are longer
3755 	 * than ~10 usec. We do use the stats for the relevant IO size
3756 	 * if available which does lead to better estimates.
3757 	 */
3758 	bucket = blk_mq_poll_stats_bkt(rq);
3759 	if (bucket < 0)
3760 		return ret;
3761 
3762 	if (q->poll_stat[bucket].nr_samples)
3763 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3764 
3765 	return ret;
3766 }
3767 
3768 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3769 				     struct request *rq)
3770 {
3771 	struct hrtimer_sleeper hs;
3772 	enum hrtimer_mode mode;
3773 	unsigned int nsecs;
3774 	ktime_t kt;
3775 
3776 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3777 		return false;
3778 
3779 	/*
3780 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3781 	 *
3782 	 *  0:	use half of prev avg
3783 	 * >0:	use this specific value
3784 	 */
3785 	if (q->poll_nsec > 0)
3786 		nsecs = q->poll_nsec;
3787 	else
3788 		nsecs = blk_mq_poll_nsecs(q, rq);
3789 
3790 	if (!nsecs)
3791 		return false;
3792 
3793 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3794 
3795 	/*
3796 	 * This will be replaced with the stats tracking code, using
3797 	 * 'avg_completion_time / 2' as the pre-sleep target.
3798 	 */
3799 	kt = nsecs;
3800 
3801 	mode = HRTIMER_MODE_REL;
3802 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3803 	hrtimer_set_expires(&hs.timer, kt);
3804 
3805 	do {
3806 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3807 			break;
3808 		set_current_state(TASK_UNINTERRUPTIBLE);
3809 		hrtimer_sleeper_start_expires(&hs, mode);
3810 		if (hs.task)
3811 			io_schedule();
3812 		hrtimer_cancel(&hs.timer);
3813 		mode = HRTIMER_MODE_ABS;
3814 	} while (hs.task && !signal_pending(current));
3815 
3816 	__set_current_state(TASK_RUNNING);
3817 	destroy_hrtimer_on_stack(&hs.timer);
3818 	return true;
3819 }
3820 
3821 static bool blk_mq_poll_hybrid(struct request_queue *q,
3822 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3823 {
3824 	struct request *rq;
3825 
3826 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3827 		return false;
3828 
3829 	if (!blk_qc_t_is_internal(cookie))
3830 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3831 	else {
3832 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3833 		/*
3834 		 * With scheduling, if the request has completed, we'll
3835 		 * get a NULL return here, as we clear the sched tag when
3836 		 * that happens. The request still remains valid, like always,
3837 		 * so we should be safe with just the NULL check.
3838 		 */
3839 		if (!rq)
3840 			return false;
3841 	}
3842 
3843 	return blk_mq_poll_hybrid_sleep(q, rq);
3844 }
3845 
3846 /**
3847  * blk_poll - poll for IO completions
3848  * @q:  the queue
3849  * @cookie: cookie passed back at IO submission time
3850  * @spin: whether to spin for completions
3851  *
3852  * Description:
3853  *    Poll for completions on the passed in queue. Returns number of
3854  *    completed entries found. If @spin is true, then blk_poll will continue
3855  *    looping until at least one completion is found, unless the task is
3856  *    otherwise marked running (or we need to reschedule).
3857  */
3858 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3859 {
3860 	struct blk_mq_hw_ctx *hctx;
3861 	long state;
3862 
3863 	if (!blk_qc_t_valid(cookie) ||
3864 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3865 		return 0;
3866 
3867 	if (current->plug)
3868 		blk_flush_plug_list(current->plug, false);
3869 
3870 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3871 
3872 	/*
3873 	 * If we sleep, have the caller restart the poll loop to reset
3874 	 * the state. Like for the other success return cases, the
3875 	 * caller is responsible for checking if the IO completed. If
3876 	 * the IO isn't complete, we'll get called again and will go
3877 	 * straight to the busy poll loop. If specified not to spin,
3878 	 * we also should not sleep.
3879 	 */
3880 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3881 		return 1;
3882 
3883 	hctx->poll_considered++;
3884 
3885 	state = current->state;
3886 	do {
3887 		int ret;
3888 
3889 		hctx->poll_invoked++;
3890 
3891 		ret = q->mq_ops->poll(hctx);
3892 		if (ret > 0) {
3893 			hctx->poll_success++;
3894 			__set_current_state(TASK_RUNNING);
3895 			return ret;
3896 		}
3897 
3898 		if (signal_pending_state(state, current))
3899 			__set_current_state(TASK_RUNNING);
3900 
3901 		if (current->state == TASK_RUNNING)
3902 			return 1;
3903 		if (ret < 0 || !spin)
3904 			break;
3905 		cpu_relax();
3906 	} while (!need_resched());
3907 
3908 	__set_current_state(TASK_RUNNING);
3909 	return 0;
3910 }
3911 EXPORT_SYMBOL_GPL(blk_poll);
3912 
3913 unsigned int blk_mq_rq_cpu(struct request *rq)
3914 {
3915 	return rq->mq_ctx->cpu;
3916 }
3917 EXPORT_SYMBOL(blk_mq_rq_cpu);
3918 
3919 static int __init blk_mq_init(void)
3920 {
3921 	int i;
3922 
3923 	for_each_possible_cpu(i)
3924 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3925 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3926 
3927 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3928 				  "block/softirq:dead", NULL,
3929 				  blk_softirq_cpu_dead);
3930 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3931 				blk_mq_hctx_notify_dead);
3932 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3933 				blk_mq_hctx_notify_online,
3934 				blk_mq_hctx_notify_offline);
3935 	return 0;
3936 }
3937 subsys_initcall(blk_mq_init);
3938