1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 #include "blk-ioprio.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->part && blk_do_io_stat(rq) && 97 (!mi->part->bd_partno || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 void blk_freeze_queue_start(struct request_queue *q) 125 { 126 mutex_lock(&q->mq_freeze_lock); 127 if (++q->mq_freeze_depth == 1) { 128 percpu_ref_kill(&q->q_usage_counter); 129 mutex_unlock(&q->mq_freeze_lock); 130 if (queue_is_mq(q)) 131 blk_mq_run_hw_queues(q, false); 132 } else { 133 mutex_unlock(&q->mq_freeze_lock); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 137 138 void blk_mq_freeze_queue_wait(struct request_queue *q) 139 { 140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 143 144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 145 unsigned long timeout) 146 { 147 return wait_event_timeout(q->mq_freeze_wq, 148 percpu_ref_is_zero(&q->q_usage_counter), 149 timeout); 150 } 151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 152 153 /* 154 * Guarantee no request is in use, so we can change any data structure of 155 * the queue afterward. 156 */ 157 void blk_freeze_queue(struct request_queue *q) 158 { 159 /* 160 * In the !blk_mq case we are only calling this to kill the 161 * q_usage_counter, otherwise this increases the freeze depth 162 * and waits for it to return to zero. For this reason there is 163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 164 * exported to drivers as the only user for unfreeze is blk_mq. 165 */ 166 blk_freeze_queue_start(q); 167 blk_mq_freeze_queue_wait(q); 168 } 169 170 void blk_mq_freeze_queue(struct request_queue *q) 171 { 172 /* 173 * ...just an alias to keep freeze and unfreeze actions balanced 174 * in the blk_mq_* namespace 175 */ 176 blk_freeze_queue(q); 177 } 178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 179 180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 181 { 182 mutex_lock(&q->mq_freeze_lock); 183 if (force_atomic) 184 q->q_usage_counter.data->force_atomic = true; 185 q->mq_freeze_depth--; 186 WARN_ON_ONCE(q->mq_freeze_depth < 0); 187 if (!q->mq_freeze_depth) { 188 percpu_ref_resurrect(&q->q_usage_counter); 189 wake_up_all(&q->mq_freeze_wq); 190 } 191 mutex_unlock(&q->mq_freeze_lock); 192 } 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 __blk_mq_unfreeze_queue(q, false); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&q->queue_lock, flags); 209 if (!q->quiesce_depth++) 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 spin_unlock_irqrestore(&q->queue_lock, flags); 212 } 213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 214 215 /** 216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 217 * @set: tag_set to wait on 218 * 219 * Note: it is driver's responsibility for making sure that quiesce has 220 * been started on or more of the request_queues of the tag_set. This 221 * function only waits for the quiesce on those request_queues that had 222 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 223 */ 224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 225 { 226 if (set->flags & BLK_MQ_F_BLOCKING) 227 synchronize_srcu(set->srcu); 228 else 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 232 233 /** 234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 235 * @q: request queue. 236 * 237 * Note: this function does not prevent that the struct request end_io() 238 * callback function is invoked. Once this function is returned, we make 239 * sure no dispatch can happen until the queue is unquiesced via 240 * blk_mq_unquiesce_queue(). 241 */ 242 void blk_mq_quiesce_queue(struct request_queue *q) 243 { 244 blk_mq_quiesce_queue_nowait(q); 245 /* nothing to wait for non-mq queues */ 246 if (queue_is_mq(q)) 247 blk_mq_wait_quiesce_done(q->tag_set); 248 } 249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 250 251 /* 252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 253 * @q: request queue. 254 * 255 * This function recovers queue into the state before quiescing 256 * which is done by blk_mq_quiesce_queue. 257 */ 258 void blk_mq_unquiesce_queue(struct request_queue *q) 259 { 260 unsigned long flags; 261 bool run_queue = false; 262 263 spin_lock_irqsave(&q->queue_lock, flags); 264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 265 ; 266 } else if (!--q->quiesce_depth) { 267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 268 run_queue = true; 269 } 270 spin_unlock_irqrestore(&q->queue_lock, flags); 271 272 /* dispatch requests which are inserted during quiescing */ 273 if (run_queue) 274 blk_mq_run_hw_queues(q, true); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 277 278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 279 { 280 struct request_queue *q; 281 282 mutex_lock(&set->tag_list_lock); 283 list_for_each_entry(q, &set->tag_list, tag_set_list) { 284 if (!blk_queue_skip_tagset_quiesce(q)) 285 blk_mq_quiesce_queue_nowait(q); 286 } 287 blk_mq_wait_quiesce_done(set); 288 mutex_unlock(&set->tag_list_lock); 289 } 290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 291 292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 293 { 294 struct request_queue *q; 295 296 mutex_lock(&set->tag_list_lock); 297 list_for_each_entry(q, &set->tag_list, tag_set_list) { 298 if (!blk_queue_skip_tagset_quiesce(q)) 299 blk_mq_unquiesce_queue(q); 300 } 301 mutex_unlock(&set->tag_list_lock); 302 } 303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 304 305 void blk_mq_wake_waiters(struct request_queue *q) 306 { 307 struct blk_mq_hw_ctx *hctx; 308 unsigned long i; 309 310 queue_for_each_hw_ctx(q, hctx, i) 311 if (blk_mq_hw_queue_mapped(hctx)) 312 blk_mq_tag_wakeup_all(hctx->tags, true); 313 } 314 315 void blk_rq_init(struct request_queue *q, struct request *rq) 316 { 317 memset(rq, 0, sizeof(*rq)); 318 319 INIT_LIST_HEAD(&rq->queuelist); 320 rq->q = q; 321 rq->__sector = (sector_t) -1; 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->tag = BLK_MQ_NO_TAG; 325 rq->internal_tag = BLK_MQ_NO_TAG; 326 rq->start_time_ns = ktime_get_ns(); 327 rq->part = NULL; 328 blk_crypto_rq_set_defaults(rq); 329 } 330 EXPORT_SYMBOL(blk_rq_init); 331 332 /* Set start and alloc time when the allocated request is actually used */ 333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 334 { 335 if (blk_mq_need_time_stamp(rq)) 336 rq->start_time_ns = ktime_get_ns(); 337 else 338 rq->start_time_ns = 0; 339 340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 341 if (blk_queue_rq_alloc_time(rq->q)) 342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 343 else 344 rq->alloc_time_ns = 0; 345 #endif 346 } 347 348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 349 struct blk_mq_tags *tags, unsigned int tag) 350 { 351 struct blk_mq_ctx *ctx = data->ctx; 352 struct blk_mq_hw_ctx *hctx = data->hctx; 353 struct request_queue *q = data->q; 354 struct request *rq = tags->static_rqs[tag]; 355 356 rq->q = q; 357 rq->mq_ctx = ctx; 358 rq->mq_hctx = hctx; 359 rq->cmd_flags = data->cmd_flags; 360 361 if (data->flags & BLK_MQ_REQ_PM) 362 data->rq_flags |= RQF_PM; 363 if (blk_queue_io_stat(q)) 364 data->rq_flags |= RQF_IO_STAT; 365 rq->rq_flags = data->rq_flags; 366 367 if (data->rq_flags & RQF_SCHED_TAGS) { 368 rq->tag = BLK_MQ_NO_TAG; 369 rq->internal_tag = tag; 370 } else { 371 rq->tag = tag; 372 rq->internal_tag = BLK_MQ_NO_TAG; 373 } 374 rq->timeout = 0; 375 376 rq->part = NULL; 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_USE_SCHED) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (e->type->ops.prepare_request) 399 e->type->ops.prepare_request(rq); 400 } 401 402 return rq; 403 } 404 405 static inline struct request * 406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 407 { 408 unsigned int tag, tag_offset; 409 struct blk_mq_tags *tags; 410 struct request *rq; 411 unsigned long tag_mask; 412 int i, nr = 0; 413 414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 415 if (unlikely(!tag_mask)) 416 return NULL; 417 418 tags = blk_mq_tags_from_data(data); 419 for (i = 0; tag_mask; i++) { 420 if (!(tag_mask & (1UL << i))) 421 continue; 422 tag = tag_offset + i; 423 prefetch(tags->static_rqs[tag]); 424 tag_mask &= ~(1UL << i); 425 rq = blk_mq_rq_ctx_init(data, tags, tag); 426 rq_list_add(data->cached_rq, rq); 427 nr++; 428 } 429 if (!(data->rq_flags & RQF_SCHED_TAGS)) 430 blk_mq_add_active_requests(data->hctx, nr); 431 /* caller already holds a reference, add for remainder */ 432 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 433 data->nr_tags -= nr; 434 435 return rq_list_pop(data->cached_rq); 436 } 437 438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 439 { 440 struct request_queue *q = data->q; 441 u64 alloc_time_ns = 0; 442 struct request *rq; 443 unsigned int tag; 444 445 /* alloc_time includes depth and tag waits */ 446 if (blk_queue_rq_alloc_time(q)) 447 alloc_time_ns = ktime_get_ns(); 448 449 if (data->cmd_flags & REQ_NOWAIT) 450 data->flags |= BLK_MQ_REQ_NOWAIT; 451 452 if (q->elevator) { 453 /* 454 * All requests use scheduler tags when an I/O scheduler is 455 * enabled for the queue. 456 */ 457 data->rq_flags |= RQF_SCHED_TAGS; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. 462 */ 463 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 464 !blk_op_is_passthrough(data->cmd_flags)) { 465 struct elevator_mq_ops *ops = &q->elevator->type->ops; 466 467 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 468 469 data->rq_flags |= RQF_USE_SCHED; 470 if (ops->limit_depth) 471 ops->limit_depth(data->cmd_flags, data); 472 } 473 } 474 475 retry: 476 data->ctx = blk_mq_get_ctx(q); 477 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 478 if (!(data->rq_flags & RQF_SCHED_TAGS)) 479 blk_mq_tag_busy(data->hctx); 480 481 if (data->flags & BLK_MQ_REQ_RESERVED) 482 data->rq_flags |= RQF_RESV; 483 484 /* 485 * Try batched alloc if we want more than 1 tag. 486 */ 487 if (data->nr_tags > 1) { 488 rq = __blk_mq_alloc_requests_batch(data); 489 if (rq) { 490 blk_mq_rq_time_init(rq, alloc_time_ns); 491 return rq; 492 } 493 data->nr_tags = 1; 494 } 495 496 /* 497 * Waiting allocations only fail because of an inactive hctx. In that 498 * case just retry the hctx assignment and tag allocation as CPU hotplug 499 * should have migrated us to an online CPU by now. 500 */ 501 tag = blk_mq_get_tag(data); 502 if (tag == BLK_MQ_NO_TAG) { 503 if (data->flags & BLK_MQ_REQ_NOWAIT) 504 return NULL; 505 /* 506 * Give up the CPU and sleep for a random short time to 507 * ensure that thread using a realtime scheduling class 508 * are migrated off the CPU, and thus off the hctx that 509 * is going away. 510 */ 511 msleep(3); 512 goto retry; 513 } 514 515 if (!(data->rq_flags & RQF_SCHED_TAGS)) 516 blk_mq_inc_active_requests(data->hctx); 517 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 518 blk_mq_rq_time_init(rq, alloc_time_ns); 519 return rq; 520 } 521 522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 523 struct blk_plug *plug, 524 blk_opf_t opf, 525 blk_mq_req_flags_t flags) 526 { 527 struct blk_mq_alloc_data data = { 528 .q = q, 529 .flags = flags, 530 .cmd_flags = opf, 531 .nr_tags = plug->nr_ios, 532 .cached_rq = &plug->cached_rq, 533 }; 534 struct request *rq; 535 536 if (blk_queue_enter(q, flags)) 537 return NULL; 538 539 plug->nr_ios = 1; 540 541 rq = __blk_mq_alloc_requests(&data); 542 if (unlikely(!rq)) 543 blk_queue_exit(q); 544 return rq; 545 } 546 547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 548 blk_opf_t opf, 549 blk_mq_req_flags_t flags) 550 { 551 struct blk_plug *plug = current->plug; 552 struct request *rq; 553 554 if (!plug) 555 return NULL; 556 557 if (rq_list_empty(plug->cached_rq)) { 558 if (plug->nr_ios == 1) 559 return NULL; 560 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 561 if (!rq) 562 return NULL; 563 } else { 564 rq = rq_list_peek(&plug->cached_rq); 565 if (!rq || rq->q != q) 566 return NULL; 567 568 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 569 return NULL; 570 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 571 return NULL; 572 573 plug->cached_rq = rq_list_next(rq); 574 blk_mq_rq_time_init(rq, 0); 575 } 576 577 rq->cmd_flags = opf; 578 INIT_LIST_HEAD(&rq->queuelist); 579 return rq; 580 } 581 582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 583 blk_mq_req_flags_t flags) 584 { 585 struct request *rq; 586 587 rq = blk_mq_alloc_cached_request(q, opf, flags); 588 if (!rq) { 589 struct blk_mq_alloc_data data = { 590 .q = q, 591 .flags = flags, 592 .cmd_flags = opf, 593 .nr_tags = 1, 594 }; 595 int ret; 596 597 ret = blk_queue_enter(q, flags); 598 if (ret) 599 return ERR_PTR(ret); 600 601 rq = __blk_mq_alloc_requests(&data); 602 if (!rq) 603 goto out_queue_exit; 604 } 605 rq->__data_len = 0; 606 rq->__sector = (sector_t) -1; 607 rq->bio = rq->biotail = NULL; 608 return rq; 609 out_queue_exit: 610 blk_queue_exit(q); 611 return ERR_PTR(-EWOULDBLOCK); 612 } 613 EXPORT_SYMBOL(blk_mq_alloc_request); 614 615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 616 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 617 { 618 struct blk_mq_alloc_data data = { 619 .q = q, 620 .flags = flags, 621 .cmd_flags = opf, 622 .nr_tags = 1, 623 }; 624 u64 alloc_time_ns = 0; 625 struct request *rq; 626 unsigned int cpu; 627 unsigned int tag; 628 int ret; 629 630 /* alloc_time includes depth and tag waits */ 631 if (blk_queue_rq_alloc_time(q)) 632 alloc_time_ns = ktime_get_ns(); 633 634 /* 635 * If the tag allocator sleeps we could get an allocation for a 636 * different hardware context. No need to complicate the low level 637 * allocator for this for the rare use case of a command tied to 638 * a specific queue. 639 */ 640 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 641 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 642 return ERR_PTR(-EINVAL); 643 644 if (hctx_idx >= q->nr_hw_queues) 645 return ERR_PTR(-EIO); 646 647 ret = blk_queue_enter(q, flags); 648 if (ret) 649 return ERR_PTR(ret); 650 651 /* 652 * Check if the hardware context is actually mapped to anything. 653 * If not tell the caller that it should skip this queue. 654 */ 655 ret = -EXDEV; 656 data.hctx = xa_load(&q->hctx_table, hctx_idx); 657 if (!blk_mq_hw_queue_mapped(data.hctx)) 658 goto out_queue_exit; 659 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 660 if (cpu >= nr_cpu_ids) 661 goto out_queue_exit; 662 data.ctx = __blk_mq_get_ctx(q, cpu); 663 664 if (q->elevator) 665 data.rq_flags |= RQF_SCHED_TAGS; 666 else 667 blk_mq_tag_busy(data.hctx); 668 669 if (flags & BLK_MQ_REQ_RESERVED) 670 data.rq_flags |= RQF_RESV; 671 672 ret = -EWOULDBLOCK; 673 tag = blk_mq_get_tag(&data); 674 if (tag == BLK_MQ_NO_TAG) 675 goto out_queue_exit; 676 if (!(data.rq_flags & RQF_SCHED_TAGS)) 677 blk_mq_inc_active_requests(data.hctx); 678 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 679 blk_mq_rq_time_init(rq, alloc_time_ns); 680 rq->__data_len = 0; 681 rq->__sector = (sector_t) -1; 682 rq->bio = rq->biotail = NULL; 683 return rq; 684 685 out_queue_exit: 686 blk_queue_exit(q); 687 return ERR_PTR(ret); 688 } 689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 690 691 static void blk_mq_finish_request(struct request *rq) 692 { 693 struct request_queue *q = rq->q; 694 695 if (rq->rq_flags & RQF_USE_SCHED) { 696 q->elevator->type->ops.finish_request(rq); 697 /* 698 * For postflush request that may need to be 699 * completed twice, we should clear this flag 700 * to avoid double finish_request() on the rq. 701 */ 702 rq->rq_flags &= ~RQF_USE_SCHED; 703 } 704 } 705 706 static void __blk_mq_free_request(struct request *rq) 707 { 708 struct request_queue *q = rq->q; 709 struct blk_mq_ctx *ctx = rq->mq_ctx; 710 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 711 const int sched_tag = rq->internal_tag; 712 713 blk_crypto_free_request(rq); 714 blk_pm_mark_last_busy(rq); 715 rq->mq_hctx = NULL; 716 717 if (rq->tag != BLK_MQ_NO_TAG) { 718 blk_mq_dec_active_requests(hctx); 719 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 720 } 721 if (sched_tag != BLK_MQ_NO_TAG) 722 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 723 blk_mq_sched_restart(hctx); 724 blk_queue_exit(q); 725 } 726 727 void blk_mq_free_request(struct request *rq) 728 { 729 struct request_queue *q = rq->q; 730 731 blk_mq_finish_request(rq); 732 733 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 734 laptop_io_completion(q->disk->bdi); 735 736 rq_qos_done(q, rq); 737 738 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 739 if (req_ref_put_and_test(rq)) 740 __blk_mq_free_request(rq); 741 } 742 EXPORT_SYMBOL_GPL(blk_mq_free_request); 743 744 void blk_mq_free_plug_rqs(struct blk_plug *plug) 745 { 746 struct request *rq; 747 748 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 749 blk_mq_free_request(rq); 750 } 751 752 void blk_dump_rq_flags(struct request *rq, char *msg) 753 { 754 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 755 rq->q->disk ? rq->q->disk->disk_name : "?", 756 (__force unsigned long long) rq->cmd_flags); 757 758 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 759 (unsigned long long)blk_rq_pos(rq), 760 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 761 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 762 rq->bio, rq->biotail, blk_rq_bytes(rq)); 763 } 764 EXPORT_SYMBOL(blk_dump_rq_flags); 765 766 static void req_bio_endio(struct request *rq, struct bio *bio, 767 unsigned int nbytes, blk_status_t error) 768 { 769 if (unlikely(error)) { 770 bio->bi_status = error; 771 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 772 /* 773 * Partial zone append completions cannot be supported as the 774 * BIO fragments may end up not being written sequentially. 775 * For such case, force the completed nbytes to be equal to 776 * the BIO size so that bio_advance() sets the BIO remaining 777 * size to 0 and we end up calling bio_endio() before returning. 778 */ 779 if (bio->bi_iter.bi_size != nbytes) { 780 bio->bi_status = BLK_STS_IOERR; 781 nbytes = bio->bi_iter.bi_size; 782 } else { 783 bio->bi_iter.bi_sector = rq->__sector; 784 } 785 } 786 787 bio_advance(bio, nbytes); 788 789 if (unlikely(rq->rq_flags & RQF_QUIET)) 790 bio_set_flag(bio, BIO_QUIET); 791 /* don't actually finish bio if it's part of flush sequence */ 792 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 793 bio_endio(bio); 794 } 795 796 static void blk_account_io_completion(struct request *req, unsigned int bytes) 797 { 798 if (req->part && blk_do_io_stat(req)) { 799 const int sgrp = op_stat_group(req_op(req)); 800 801 part_stat_lock(); 802 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 803 part_stat_unlock(); 804 } 805 } 806 807 static void blk_print_req_error(struct request *req, blk_status_t status) 808 { 809 printk_ratelimited(KERN_ERR 810 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 811 "phys_seg %u prio class %u\n", 812 blk_status_to_str(status), 813 req->q->disk ? req->q->disk->disk_name : "?", 814 blk_rq_pos(req), (__force u32)req_op(req), 815 blk_op_str(req_op(req)), 816 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 817 req->nr_phys_segments, 818 IOPRIO_PRIO_CLASS(req->ioprio)); 819 } 820 821 /* 822 * Fully end IO on a request. Does not support partial completions, or 823 * errors. 824 */ 825 static void blk_complete_request(struct request *req) 826 { 827 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 828 int total_bytes = blk_rq_bytes(req); 829 struct bio *bio = req->bio; 830 831 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 832 833 if (!bio) 834 return; 835 836 #ifdef CONFIG_BLK_DEV_INTEGRITY 837 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 838 req->q->integrity.profile->complete_fn(req, total_bytes); 839 #endif 840 841 /* 842 * Upper layers may call blk_crypto_evict_key() anytime after the last 843 * bio_endio(). Therefore, the keyslot must be released before that. 844 */ 845 blk_crypto_rq_put_keyslot(req); 846 847 blk_account_io_completion(req, total_bytes); 848 849 do { 850 struct bio *next = bio->bi_next; 851 852 /* Completion has already been traced */ 853 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 854 855 if (req_op(req) == REQ_OP_ZONE_APPEND) 856 bio->bi_iter.bi_sector = req->__sector; 857 858 if (!is_flush) 859 bio_endio(bio); 860 bio = next; 861 } while (bio); 862 863 /* 864 * Reset counters so that the request stacking driver 865 * can find how many bytes remain in the request 866 * later. 867 */ 868 if (!req->end_io) { 869 req->bio = NULL; 870 req->__data_len = 0; 871 } 872 } 873 874 /** 875 * blk_update_request - Complete multiple bytes without completing the request 876 * @req: the request being processed 877 * @error: block status code 878 * @nr_bytes: number of bytes to complete for @req 879 * 880 * Description: 881 * Ends I/O on a number of bytes attached to @req, but doesn't complete 882 * the request structure even if @req doesn't have leftover. 883 * If @req has leftover, sets it up for the next range of segments. 884 * 885 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 886 * %false return from this function. 887 * 888 * Note: 889 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 890 * except in the consistency check at the end of this function. 891 * 892 * Return: 893 * %false - this request doesn't have any more data 894 * %true - this request has more data 895 **/ 896 bool blk_update_request(struct request *req, blk_status_t error, 897 unsigned int nr_bytes) 898 { 899 int total_bytes; 900 901 trace_block_rq_complete(req, error, nr_bytes); 902 903 if (!req->bio) 904 return false; 905 906 #ifdef CONFIG_BLK_DEV_INTEGRITY 907 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 908 error == BLK_STS_OK) 909 req->q->integrity.profile->complete_fn(req, nr_bytes); 910 #endif 911 912 /* 913 * Upper layers may call blk_crypto_evict_key() anytime after the last 914 * bio_endio(). Therefore, the keyslot must be released before that. 915 */ 916 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 917 __blk_crypto_rq_put_keyslot(req); 918 919 if (unlikely(error && !blk_rq_is_passthrough(req) && 920 !(req->rq_flags & RQF_QUIET)) && 921 !test_bit(GD_DEAD, &req->q->disk->state)) { 922 blk_print_req_error(req, error); 923 trace_block_rq_error(req, error, nr_bytes); 924 } 925 926 blk_account_io_completion(req, nr_bytes); 927 928 total_bytes = 0; 929 while (req->bio) { 930 struct bio *bio = req->bio; 931 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 932 933 if (bio_bytes == bio->bi_iter.bi_size) 934 req->bio = bio->bi_next; 935 936 /* Completion has already been traced */ 937 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 938 req_bio_endio(req, bio, bio_bytes, error); 939 940 total_bytes += bio_bytes; 941 nr_bytes -= bio_bytes; 942 943 if (!nr_bytes) 944 break; 945 } 946 947 /* 948 * completely done 949 */ 950 if (!req->bio) { 951 /* 952 * Reset counters so that the request stacking driver 953 * can find how many bytes remain in the request 954 * later. 955 */ 956 req->__data_len = 0; 957 return false; 958 } 959 960 req->__data_len -= total_bytes; 961 962 /* update sector only for requests with clear definition of sector */ 963 if (!blk_rq_is_passthrough(req)) 964 req->__sector += total_bytes >> 9; 965 966 /* mixed attributes always follow the first bio */ 967 if (req->rq_flags & RQF_MIXED_MERGE) { 968 req->cmd_flags &= ~REQ_FAILFAST_MASK; 969 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 970 } 971 972 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 973 /* 974 * If total number of sectors is less than the first segment 975 * size, something has gone terribly wrong. 976 */ 977 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 978 blk_dump_rq_flags(req, "request botched"); 979 req->__data_len = blk_rq_cur_bytes(req); 980 } 981 982 /* recalculate the number of segments */ 983 req->nr_phys_segments = blk_recalc_rq_segments(req); 984 } 985 986 return true; 987 } 988 EXPORT_SYMBOL_GPL(blk_update_request); 989 990 static inline void blk_account_io_done(struct request *req, u64 now) 991 { 992 trace_block_io_done(req); 993 994 /* 995 * Account IO completion. flush_rq isn't accounted as a 996 * normal IO on queueing nor completion. Accounting the 997 * containing request is enough. 998 */ 999 if (blk_do_io_stat(req) && req->part && 1000 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1001 const int sgrp = op_stat_group(req_op(req)); 1002 1003 part_stat_lock(); 1004 update_io_ticks(req->part, jiffies, true); 1005 part_stat_inc(req->part, ios[sgrp]); 1006 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1007 part_stat_unlock(); 1008 } 1009 } 1010 1011 static inline void blk_account_io_start(struct request *req) 1012 { 1013 trace_block_io_start(req); 1014 1015 if (blk_do_io_stat(req)) { 1016 /* 1017 * All non-passthrough requests are created from a bio with one 1018 * exception: when a flush command that is part of a flush sequence 1019 * generated by the state machine in blk-flush.c is cloned onto the 1020 * lower device by dm-multipath we can get here without a bio. 1021 */ 1022 if (req->bio) 1023 req->part = req->bio->bi_bdev; 1024 else 1025 req->part = req->q->disk->part0; 1026 1027 part_stat_lock(); 1028 update_io_ticks(req->part, jiffies, false); 1029 part_stat_unlock(); 1030 } 1031 } 1032 1033 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1034 { 1035 if (rq->rq_flags & RQF_STATS) 1036 blk_stat_add(rq, now); 1037 1038 blk_mq_sched_completed_request(rq, now); 1039 blk_account_io_done(rq, now); 1040 } 1041 1042 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1043 { 1044 if (blk_mq_need_time_stamp(rq)) 1045 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1046 1047 blk_mq_finish_request(rq); 1048 1049 if (rq->end_io) { 1050 rq_qos_done(rq->q, rq); 1051 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1052 blk_mq_free_request(rq); 1053 } else { 1054 blk_mq_free_request(rq); 1055 } 1056 } 1057 EXPORT_SYMBOL(__blk_mq_end_request); 1058 1059 void blk_mq_end_request(struct request *rq, blk_status_t error) 1060 { 1061 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1062 BUG(); 1063 __blk_mq_end_request(rq, error); 1064 } 1065 EXPORT_SYMBOL(blk_mq_end_request); 1066 1067 #define TAG_COMP_BATCH 32 1068 1069 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1070 int *tag_array, int nr_tags) 1071 { 1072 struct request_queue *q = hctx->queue; 1073 1074 blk_mq_sub_active_requests(hctx, nr_tags); 1075 1076 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1077 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1078 } 1079 1080 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1081 { 1082 int tags[TAG_COMP_BATCH], nr_tags = 0; 1083 struct blk_mq_hw_ctx *cur_hctx = NULL; 1084 struct request *rq; 1085 u64 now = 0; 1086 1087 if (iob->need_ts) 1088 now = ktime_get_ns(); 1089 1090 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1091 prefetch(rq->bio); 1092 prefetch(rq->rq_next); 1093 1094 blk_complete_request(rq); 1095 if (iob->need_ts) 1096 __blk_mq_end_request_acct(rq, now); 1097 1098 blk_mq_finish_request(rq); 1099 1100 rq_qos_done(rq->q, rq); 1101 1102 /* 1103 * If end_io handler returns NONE, then it still has 1104 * ownership of the request. 1105 */ 1106 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1107 continue; 1108 1109 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1110 if (!req_ref_put_and_test(rq)) 1111 continue; 1112 1113 blk_crypto_free_request(rq); 1114 blk_pm_mark_last_busy(rq); 1115 1116 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1117 if (cur_hctx) 1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1119 nr_tags = 0; 1120 cur_hctx = rq->mq_hctx; 1121 } 1122 tags[nr_tags++] = rq->tag; 1123 } 1124 1125 if (nr_tags) 1126 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1127 } 1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1129 1130 static void blk_complete_reqs(struct llist_head *list) 1131 { 1132 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1133 struct request *rq, *next; 1134 1135 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1136 rq->q->mq_ops->complete(rq); 1137 } 1138 1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1140 { 1141 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1142 } 1143 1144 static int blk_softirq_cpu_dead(unsigned int cpu) 1145 { 1146 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1147 return 0; 1148 } 1149 1150 static void __blk_mq_complete_request_remote(void *data) 1151 { 1152 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1153 } 1154 1155 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1156 { 1157 int cpu = raw_smp_processor_id(); 1158 1159 if (!IS_ENABLED(CONFIG_SMP) || 1160 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1161 return false; 1162 /* 1163 * With force threaded interrupts enabled, raising softirq from an SMP 1164 * function call will always result in waking the ksoftirqd thread. 1165 * This is probably worse than completing the request on a different 1166 * cache domain. 1167 */ 1168 if (force_irqthreads()) 1169 return false; 1170 1171 /* same CPU or cache domain? Complete locally */ 1172 if (cpu == rq->mq_ctx->cpu || 1173 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1174 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1175 return false; 1176 1177 /* don't try to IPI to an offline CPU */ 1178 return cpu_online(rq->mq_ctx->cpu); 1179 } 1180 1181 static void blk_mq_complete_send_ipi(struct request *rq) 1182 { 1183 unsigned int cpu; 1184 1185 cpu = rq->mq_ctx->cpu; 1186 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1187 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1188 } 1189 1190 static void blk_mq_raise_softirq(struct request *rq) 1191 { 1192 struct llist_head *list; 1193 1194 preempt_disable(); 1195 list = this_cpu_ptr(&blk_cpu_done); 1196 if (llist_add(&rq->ipi_list, list)) 1197 raise_softirq(BLOCK_SOFTIRQ); 1198 preempt_enable(); 1199 } 1200 1201 bool blk_mq_complete_request_remote(struct request *rq) 1202 { 1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1204 1205 /* 1206 * For request which hctx has only one ctx mapping, 1207 * or a polled request, always complete locally, 1208 * it's pointless to redirect the completion. 1209 */ 1210 if ((rq->mq_hctx->nr_ctx == 1 && 1211 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1212 rq->cmd_flags & REQ_POLLED) 1213 return false; 1214 1215 if (blk_mq_complete_need_ipi(rq)) { 1216 blk_mq_complete_send_ipi(rq); 1217 return true; 1218 } 1219 1220 if (rq->q->nr_hw_queues == 1) { 1221 blk_mq_raise_softirq(rq); 1222 return true; 1223 } 1224 return false; 1225 } 1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1227 1228 /** 1229 * blk_mq_complete_request - end I/O on a request 1230 * @rq: the request being processed 1231 * 1232 * Description: 1233 * Complete a request by scheduling the ->complete_rq operation. 1234 **/ 1235 void blk_mq_complete_request(struct request *rq) 1236 { 1237 if (!blk_mq_complete_request_remote(rq)) 1238 rq->q->mq_ops->complete(rq); 1239 } 1240 EXPORT_SYMBOL(blk_mq_complete_request); 1241 1242 /** 1243 * blk_mq_start_request - Start processing a request 1244 * @rq: Pointer to request to be started 1245 * 1246 * Function used by device drivers to notify the block layer that a request 1247 * is going to be processed now, so blk layer can do proper initializations 1248 * such as starting the timeout timer. 1249 */ 1250 void blk_mq_start_request(struct request *rq) 1251 { 1252 struct request_queue *q = rq->q; 1253 1254 trace_block_rq_issue(rq); 1255 1256 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1257 !blk_rq_is_passthrough(rq)) { 1258 rq->io_start_time_ns = ktime_get_ns(); 1259 rq->stats_sectors = blk_rq_sectors(rq); 1260 rq->rq_flags |= RQF_STATS; 1261 rq_qos_issue(q, rq); 1262 } 1263 1264 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1265 1266 blk_add_timer(rq); 1267 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1268 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1269 1270 #ifdef CONFIG_BLK_DEV_INTEGRITY 1271 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1272 q->integrity.profile->prepare_fn(rq); 1273 #endif 1274 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1275 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1276 } 1277 EXPORT_SYMBOL(blk_mq_start_request); 1278 1279 /* 1280 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1281 * queues. This is important for md arrays to benefit from merging 1282 * requests. 1283 */ 1284 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1285 { 1286 if (plug->multiple_queues) 1287 return BLK_MAX_REQUEST_COUNT * 2; 1288 return BLK_MAX_REQUEST_COUNT; 1289 } 1290 1291 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1292 { 1293 struct request *last = rq_list_peek(&plug->mq_list); 1294 1295 if (!plug->rq_count) { 1296 trace_block_plug(rq->q); 1297 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1298 (!blk_queue_nomerges(rq->q) && 1299 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1300 blk_mq_flush_plug_list(plug, false); 1301 last = NULL; 1302 trace_block_plug(rq->q); 1303 } 1304 1305 if (!plug->multiple_queues && last && last->q != rq->q) 1306 plug->multiple_queues = true; 1307 /* 1308 * Any request allocated from sched tags can't be issued to 1309 * ->queue_rqs() directly 1310 */ 1311 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1312 plug->has_elevator = true; 1313 rq->rq_next = NULL; 1314 rq_list_add(&plug->mq_list, rq); 1315 plug->rq_count++; 1316 } 1317 1318 /** 1319 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1320 * @rq: request to insert 1321 * @at_head: insert request at head or tail of queue 1322 * 1323 * Description: 1324 * Insert a fully prepared request at the back of the I/O scheduler queue 1325 * for execution. Don't wait for completion. 1326 * 1327 * Note: 1328 * This function will invoke @done directly if the queue is dead. 1329 */ 1330 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1331 { 1332 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1333 1334 WARN_ON(irqs_disabled()); 1335 WARN_ON(!blk_rq_is_passthrough(rq)); 1336 1337 blk_account_io_start(rq); 1338 1339 /* 1340 * As plugging can be enabled for passthrough requests on a zoned 1341 * device, directly accessing the plug instead of using blk_mq_plug() 1342 * should not have any consequences. 1343 */ 1344 if (current->plug && !at_head) { 1345 blk_add_rq_to_plug(current->plug, rq); 1346 return; 1347 } 1348 1349 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1350 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1351 } 1352 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1353 1354 struct blk_rq_wait { 1355 struct completion done; 1356 blk_status_t ret; 1357 }; 1358 1359 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1360 { 1361 struct blk_rq_wait *wait = rq->end_io_data; 1362 1363 wait->ret = ret; 1364 complete(&wait->done); 1365 return RQ_END_IO_NONE; 1366 } 1367 1368 bool blk_rq_is_poll(struct request *rq) 1369 { 1370 if (!rq->mq_hctx) 1371 return false; 1372 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1373 return false; 1374 return true; 1375 } 1376 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1377 1378 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1379 { 1380 do { 1381 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1382 cond_resched(); 1383 } while (!completion_done(wait)); 1384 } 1385 1386 /** 1387 * blk_execute_rq - insert a request into queue for execution 1388 * @rq: request to insert 1389 * @at_head: insert request at head or tail of queue 1390 * 1391 * Description: 1392 * Insert a fully prepared request at the back of the I/O scheduler queue 1393 * for execution and wait for completion. 1394 * Return: The blk_status_t result provided to blk_mq_end_request(). 1395 */ 1396 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1397 { 1398 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1399 struct blk_rq_wait wait = { 1400 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1401 }; 1402 1403 WARN_ON(irqs_disabled()); 1404 WARN_ON(!blk_rq_is_passthrough(rq)); 1405 1406 rq->end_io_data = &wait; 1407 rq->end_io = blk_end_sync_rq; 1408 1409 blk_account_io_start(rq); 1410 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1411 blk_mq_run_hw_queue(hctx, false); 1412 1413 if (blk_rq_is_poll(rq)) { 1414 blk_rq_poll_completion(rq, &wait.done); 1415 } else { 1416 /* 1417 * Prevent hang_check timer from firing at us during very long 1418 * I/O 1419 */ 1420 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1421 1422 if (hang_check) 1423 while (!wait_for_completion_io_timeout(&wait.done, 1424 hang_check * (HZ/2))) 1425 ; 1426 else 1427 wait_for_completion_io(&wait.done); 1428 } 1429 1430 return wait.ret; 1431 } 1432 EXPORT_SYMBOL(blk_execute_rq); 1433 1434 static void __blk_mq_requeue_request(struct request *rq) 1435 { 1436 struct request_queue *q = rq->q; 1437 1438 blk_mq_put_driver_tag(rq); 1439 1440 trace_block_rq_requeue(rq); 1441 rq_qos_requeue(q, rq); 1442 1443 if (blk_mq_request_started(rq)) { 1444 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1445 rq->rq_flags &= ~RQF_TIMED_OUT; 1446 } 1447 } 1448 1449 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1450 { 1451 struct request_queue *q = rq->q; 1452 unsigned long flags; 1453 1454 __blk_mq_requeue_request(rq); 1455 1456 /* this request will be re-inserted to io scheduler queue */ 1457 blk_mq_sched_requeue_request(rq); 1458 1459 spin_lock_irqsave(&q->requeue_lock, flags); 1460 list_add_tail(&rq->queuelist, &q->requeue_list); 1461 spin_unlock_irqrestore(&q->requeue_lock, flags); 1462 1463 if (kick_requeue_list) 1464 blk_mq_kick_requeue_list(q); 1465 } 1466 EXPORT_SYMBOL(blk_mq_requeue_request); 1467 1468 static void blk_mq_requeue_work(struct work_struct *work) 1469 { 1470 struct request_queue *q = 1471 container_of(work, struct request_queue, requeue_work.work); 1472 LIST_HEAD(rq_list); 1473 LIST_HEAD(flush_list); 1474 struct request *rq; 1475 1476 spin_lock_irq(&q->requeue_lock); 1477 list_splice_init(&q->requeue_list, &rq_list); 1478 list_splice_init(&q->flush_list, &flush_list); 1479 spin_unlock_irq(&q->requeue_lock); 1480 1481 while (!list_empty(&rq_list)) { 1482 rq = list_entry(rq_list.next, struct request, queuelist); 1483 /* 1484 * If RQF_DONTPREP ist set, the request has been started by the 1485 * driver already and might have driver-specific data allocated 1486 * already. Insert it into the hctx dispatch list to avoid 1487 * block layer merges for the request. 1488 */ 1489 if (rq->rq_flags & RQF_DONTPREP) { 1490 list_del_init(&rq->queuelist); 1491 blk_mq_request_bypass_insert(rq, 0); 1492 } else { 1493 list_del_init(&rq->queuelist); 1494 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1495 } 1496 } 1497 1498 while (!list_empty(&flush_list)) { 1499 rq = list_entry(flush_list.next, struct request, queuelist); 1500 list_del_init(&rq->queuelist); 1501 blk_mq_insert_request(rq, 0); 1502 } 1503 1504 blk_mq_run_hw_queues(q, false); 1505 } 1506 1507 void blk_mq_kick_requeue_list(struct request_queue *q) 1508 { 1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1510 } 1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1512 1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1514 unsigned long msecs) 1515 { 1516 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1517 msecs_to_jiffies(msecs)); 1518 } 1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1520 1521 static bool blk_is_flush_data_rq(struct request *rq) 1522 { 1523 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1524 } 1525 1526 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1527 { 1528 /* 1529 * If we find a request that isn't idle we know the queue is busy 1530 * as it's checked in the iter. 1531 * Return false to stop the iteration. 1532 * 1533 * In case of queue quiesce, if one flush data request is completed, 1534 * don't count it as inflight given the flush sequence is suspended, 1535 * and the original flush data request is invisible to driver, just 1536 * like other pending requests because of quiesce 1537 */ 1538 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1539 blk_is_flush_data_rq(rq) && 1540 blk_mq_request_completed(rq))) { 1541 bool *busy = priv; 1542 1543 *busy = true; 1544 return false; 1545 } 1546 1547 return true; 1548 } 1549 1550 bool blk_mq_queue_inflight(struct request_queue *q) 1551 { 1552 bool busy = false; 1553 1554 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1555 return busy; 1556 } 1557 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1558 1559 static void blk_mq_rq_timed_out(struct request *req) 1560 { 1561 req->rq_flags |= RQF_TIMED_OUT; 1562 if (req->q->mq_ops->timeout) { 1563 enum blk_eh_timer_return ret; 1564 1565 ret = req->q->mq_ops->timeout(req); 1566 if (ret == BLK_EH_DONE) 1567 return; 1568 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1569 } 1570 1571 blk_add_timer(req); 1572 } 1573 1574 struct blk_expired_data { 1575 bool has_timedout_rq; 1576 unsigned long next; 1577 unsigned long timeout_start; 1578 }; 1579 1580 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1581 { 1582 unsigned long deadline; 1583 1584 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1585 return false; 1586 if (rq->rq_flags & RQF_TIMED_OUT) 1587 return false; 1588 1589 deadline = READ_ONCE(rq->deadline); 1590 if (time_after_eq(expired->timeout_start, deadline)) 1591 return true; 1592 1593 if (expired->next == 0) 1594 expired->next = deadline; 1595 else if (time_after(expired->next, deadline)) 1596 expired->next = deadline; 1597 return false; 1598 } 1599 1600 void blk_mq_put_rq_ref(struct request *rq) 1601 { 1602 if (is_flush_rq(rq)) { 1603 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1604 blk_mq_free_request(rq); 1605 } else if (req_ref_put_and_test(rq)) { 1606 __blk_mq_free_request(rq); 1607 } 1608 } 1609 1610 static bool blk_mq_check_expired(struct request *rq, void *priv) 1611 { 1612 struct blk_expired_data *expired = priv; 1613 1614 /* 1615 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1616 * be reallocated underneath the timeout handler's processing, then 1617 * the expire check is reliable. If the request is not expired, then 1618 * it was completed and reallocated as a new request after returning 1619 * from blk_mq_check_expired(). 1620 */ 1621 if (blk_mq_req_expired(rq, expired)) { 1622 expired->has_timedout_rq = true; 1623 return false; 1624 } 1625 return true; 1626 } 1627 1628 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1629 { 1630 struct blk_expired_data *expired = priv; 1631 1632 if (blk_mq_req_expired(rq, expired)) 1633 blk_mq_rq_timed_out(rq); 1634 return true; 1635 } 1636 1637 static void blk_mq_timeout_work(struct work_struct *work) 1638 { 1639 struct request_queue *q = 1640 container_of(work, struct request_queue, timeout_work); 1641 struct blk_expired_data expired = { 1642 .timeout_start = jiffies, 1643 }; 1644 struct blk_mq_hw_ctx *hctx; 1645 unsigned long i; 1646 1647 /* A deadlock might occur if a request is stuck requiring a 1648 * timeout at the same time a queue freeze is waiting 1649 * completion, since the timeout code would not be able to 1650 * acquire the queue reference here. 1651 * 1652 * That's why we don't use blk_queue_enter here; instead, we use 1653 * percpu_ref_tryget directly, because we need to be able to 1654 * obtain a reference even in the short window between the queue 1655 * starting to freeze, by dropping the first reference in 1656 * blk_freeze_queue_start, and the moment the last request is 1657 * consumed, marked by the instant q_usage_counter reaches 1658 * zero. 1659 */ 1660 if (!percpu_ref_tryget(&q->q_usage_counter)) 1661 return; 1662 1663 /* check if there is any timed-out request */ 1664 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1665 if (expired.has_timedout_rq) { 1666 /* 1667 * Before walking tags, we must ensure any submit started 1668 * before the current time has finished. Since the submit 1669 * uses srcu or rcu, wait for a synchronization point to 1670 * ensure all running submits have finished 1671 */ 1672 blk_mq_wait_quiesce_done(q->tag_set); 1673 1674 expired.next = 0; 1675 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1676 } 1677 1678 if (expired.next != 0) { 1679 mod_timer(&q->timeout, expired.next); 1680 } else { 1681 /* 1682 * Request timeouts are handled as a forward rolling timer. If 1683 * we end up here it means that no requests are pending and 1684 * also that no request has been pending for a while. Mark 1685 * each hctx as idle. 1686 */ 1687 queue_for_each_hw_ctx(q, hctx, i) { 1688 /* the hctx may be unmapped, so check it here */ 1689 if (blk_mq_hw_queue_mapped(hctx)) 1690 blk_mq_tag_idle(hctx); 1691 } 1692 } 1693 blk_queue_exit(q); 1694 } 1695 1696 struct flush_busy_ctx_data { 1697 struct blk_mq_hw_ctx *hctx; 1698 struct list_head *list; 1699 }; 1700 1701 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1702 { 1703 struct flush_busy_ctx_data *flush_data = data; 1704 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1705 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1706 enum hctx_type type = hctx->type; 1707 1708 spin_lock(&ctx->lock); 1709 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1710 sbitmap_clear_bit(sb, bitnr); 1711 spin_unlock(&ctx->lock); 1712 return true; 1713 } 1714 1715 /* 1716 * Process software queues that have been marked busy, splicing them 1717 * to the for-dispatch 1718 */ 1719 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1720 { 1721 struct flush_busy_ctx_data data = { 1722 .hctx = hctx, 1723 .list = list, 1724 }; 1725 1726 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1727 } 1728 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1729 1730 struct dispatch_rq_data { 1731 struct blk_mq_hw_ctx *hctx; 1732 struct request *rq; 1733 }; 1734 1735 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1736 void *data) 1737 { 1738 struct dispatch_rq_data *dispatch_data = data; 1739 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1740 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1741 enum hctx_type type = hctx->type; 1742 1743 spin_lock(&ctx->lock); 1744 if (!list_empty(&ctx->rq_lists[type])) { 1745 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1746 list_del_init(&dispatch_data->rq->queuelist); 1747 if (list_empty(&ctx->rq_lists[type])) 1748 sbitmap_clear_bit(sb, bitnr); 1749 } 1750 spin_unlock(&ctx->lock); 1751 1752 return !dispatch_data->rq; 1753 } 1754 1755 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1756 struct blk_mq_ctx *start) 1757 { 1758 unsigned off = start ? start->index_hw[hctx->type] : 0; 1759 struct dispatch_rq_data data = { 1760 .hctx = hctx, 1761 .rq = NULL, 1762 }; 1763 1764 __sbitmap_for_each_set(&hctx->ctx_map, off, 1765 dispatch_rq_from_ctx, &data); 1766 1767 return data.rq; 1768 } 1769 1770 bool __blk_mq_alloc_driver_tag(struct request *rq) 1771 { 1772 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1773 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1774 int tag; 1775 1776 blk_mq_tag_busy(rq->mq_hctx); 1777 1778 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1779 bt = &rq->mq_hctx->tags->breserved_tags; 1780 tag_offset = 0; 1781 } else { 1782 if (!hctx_may_queue(rq->mq_hctx, bt)) 1783 return false; 1784 } 1785 1786 tag = __sbitmap_queue_get(bt); 1787 if (tag == BLK_MQ_NO_TAG) 1788 return false; 1789 1790 rq->tag = tag + tag_offset; 1791 blk_mq_inc_active_requests(rq->mq_hctx); 1792 return true; 1793 } 1794 1795 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1796 int flags, void *key) 1797 { 1798 struct blk_mq_hw_ctx *hctx; 1799 1800 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1801 1802 spin_lock(&hctx->dispatch_wait_lock); 1803 if (!list_empty(&wait->entry)) { 1804 struct sbitmap_queue *sbq; 1805 1806 list_del_init(&wait->entry); 1807 sbq = &hctx->tags->bitmap_tags; 1808 atomic_dec(&sbq->ws_active); 1809 } 1810 spin_unlock(&hctx->dispatch_wait_lock); 1811 1812 blk_mq_run_hw_queue(hctx, true); 1813 return 1; 1814 } 1815 1816 /* 1817 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1818 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1819 * restart. For both cases, take care to check the condition again after 1820 * marking us as waiting. 1821 */ 1822 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1823 struct request *rq) 1824 { 1825 struct sbitmap_queue *sbq; 1826 struct wait_queue_head *wq; 1827 wait_queue_entry_t *wait; 1828 bool ret; 1829 1830 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1831 !(blk_mq_is_shared_tags(hctx->flags))) { 1832 blk_mq_sched_mark_restart_hctx(hctx); 1833 1834 /* 1835 * It's possible that a tag was freed in the window between the 1836 * allocation failure and adding the hardware queue to the wait 1837 * queue. 1838 * 1839 * Don't clear RESTART here, someone else could have set it. 1840 * At most this will cost an extra queue run. 1841 */ 1842 return blk_mq_get_driver_tag(rq); 1843 } 1844 1845 wait = &hctx->dispatch_wait; 1846 if (!list_empty_careful(&wait->entry)) 1847 return false; 1848 1849 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1850 sbq = &hctx->tags->breserved_tags; 1851 else 1852 sbq = &hctx->tags->bitmap_tags; 1853 wq = &bt_wait_ptr(sbq, hctx)->wait; 1854 1855 spin_lock_irq(&wq->lock); 1856 spin_lock(&hctx->dispatch_wait_lock); 1857 if (!list_empty(&wait->entry)) { 1858 spin_unlock(&hctx->dispatch_wait_lock); 1859 spin_unlock_irq(&wq->lock); 1860 return false; 1861 } 1862 1863 atomic_inc(&sbq->ws_active); 1864 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1865 __add_wait_queue(wq, wait); 1866 1867 /* 1868 * Add one explicit barrier since blk_mq_get_driver_tag() may 1869 * not imply barrier in case of failure. 1870 * 1871 * Order adding us to wait queue and allocating driver tag. 1872 * 1873 * The pair is the one implied in sbitmap_queue_wake_up() which 1874 * orders clearing sbitmap tag bits and waitqueue_active() in 1875 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1876 * 1877 * Otherwise, re-order of adding wait queue and getting driver tag 1878 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1879 * the waitqueue_active() may not observe us in wait queue. 1880 */ 1881 smp_mb(); 1882 1883 /* 1884 * It's possible that a tag was freed in the window between the 1885 * allocation failure and adding the hardware queue to the wait 1886 * queue. 1887 */ 1888 ret = blk_mq_get_driver_tag(rq); 1889 if (!ret) { 1890 spin_unlock(&hctx->dispatch_wait_lock); 1891 spin_unlock_irq(&wq->lock); 1892 return false; 1893 } 1894 1895 /* 1896 * We got a tag, remove ourselves from the wait queue to ensure 1897 * someone else gets the wakeup. 1898 */ 1899 list_del_init(&wait->entry); 1900 atomic_dec(&sbq->ws_active); 1901 spin_unlock(&hctx->dispatch_wait_lock); 1902 spin_unlock_irq(&wq->lock); 1903 1904 return true; 1905 } 1906 1907 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1908 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1909 /* 1910 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1911 * - EWMA is one simple way to compute running average value 1912 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1913 * - take 4 as factor for avoiding to get too small(0) result, and this 1914 * factor doesn't matter because EWMA decreases exponentially 1915 */ 1916 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1917 { 1918 unsigned int ewma; 1919 1920 ewma = hctx->dispatch_busy; 1921 1922 if (!ewma && !busy) 1923 return; 1924 1925 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1926 if (busy) 1927 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1928 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1929 1930 hctx->dispatch_busy = ewma; 1931 } 1932 1933 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1934 1935 static void blk_mq_handle_dev_resource(struct request *rq, 1936 struct list_head *list) 1937 { 1938 list_add(&rq->queuelist, list); 1939 __blk_mq_requeue_request(rq); 1940 } 1941 1942 static void blk_mq_handle_zone_resource(struct request *rq, 1943 struct list_head *zone_list) 1944 { 1945 /* 1946 * If we end up here it is because we cannot dispatch a request to a 1947 * specific zone due to LLD level zone-write locking or other zone 1948 * related resource not being available. In this case, set the request 1949 * aside in zone_list for retrying it later. 1950 */ 1951 list_add(&rq->queuelist, zone_list); 1952 __blk_mq_requeue_request(rq); 1953 } 1954 1955 enum prep_dispatch { 1956 PREP_DISPATCH_OK, 1957 PREP_DISPATCH_NO_TAG, 1958 PREP_DISPATCH_NO_BUDGET, 1959 }; 1960 1961 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1962 bool need_budget) 1963 { 1964 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1965 int budget_token = -1; 1966 1967 if (need_budget) { 1968 budget_token = blk_mq_get_dispatch_budget(rq->q); 1969 if (budget_token < 0) { 1970 blk_mq_put_driver_tag(rq); 1971 return PREP_DISPATCH_NO_BUDGET; 1972 } 1973 blk_mq_set_rq_budget_token(rq, budget_token); 1974 } 1975 1976 if (!blk_mq_get_driver_tag(rq)) { 1977 /* 1978 * The initial allocation attempt failed, so we need to 1979 * rerun the hardware queue when a tag is freed. The 1980 * waitqueue takes care of that. If the queue is run 1981 * before we add this entry back on the dispatch list, 1982 * we'll re-run it below. 1983 */ 1984 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1985 /* 1986 * All budgets not got from this function will be put 1987 * together during handling partial dispatch 1988 */ 1989 if (need_budget) 1990 blk_mq_put_dispatch_budget(rq->q, budget_token); 1991 return PREP_DISPATCH_NO_TAG; 1992 } 1993 } 1994 1995 return PREP_DISPATCH_OK; 1996 } 1997 1998 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1999 static void blk_mq_release_budgets(struct request_queue *q, 2000 struct list_head *list) 2001 { 2002 struct request *rq; 2003 2004 list_for_each_entry(rq, list, queuelist) { 2005 int budget_token = blk_mq_get_rq_budget_token(rq); 2006 2007 if (budget_token >= 0) 2008 blk_mq_put_dispatch_budget(q, budget_token); 2009 } 2010 } 2011 2012 /* 2013 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2014 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2015 * details) 2016 * Attention, we should explicitly call this in unusual cases: 2017 * 1) did not queue everything initially scheduled to queue 2018 * 2) the last attempt to queue a request failed 2019 */ 2020 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2021 bool from_schedule) 2022 { 2023 if (hctx->queue->mq_ops->commit_rqs && queued) { 2024 trace_block_unplug(hctx->queue, queued, !from_schedule); 2025 hctx->queue->mq_ops->commit_rqs(hctx); 2026 } 2027 } 2028 2029 /* 2030 * Returns true if we did some work AND can potentially do more. 2031 */ 2032 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2033 unsigned int nr_budgets) 2034 { 2035 enum prep_dispatch prep; 2036 struct request_queue *q = hctx->queue; 2037 struct request *rq; 2038 int queued; 2039 blk_status_t ret = BLK_STS_OK; 2040 LIST_HEAD(zone_list); 2041 bool needs_resource = false; 2042 2043 if (list_empty(list)) 2044 return false; 2045 2046 /* 2047 * Now process all the entries, sending them to the driver. 2048 */ 2049 queued = 0; 2050 do { 2051 struct blk_mq_queue_data bd; 2052 2053 rq = list_first_entry(list, struct request, queuelist); 2054 2055 WARN_ON_ONCE(hctx != rq->mq_hctx); 2056 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2057 if (prep != PREP_DISPATCH_OK) 2058 break; 2059 2060 list_del_init(&rq->queuelist); 2061 2062 bd.rq = rq; 2063 bd.last = list_empty(list); 2064 2065 /* 2066 * once the request is queued to lld, no need to cover the 2067 * budget any more 2068 */ 2069 if (nr_budgets) 2070 nr_budgets--; 2071 ret = q->mq_ops->queue_rq(hctx, &bd); 2072 switch (ret) { 2073 case BLK_STS_OK: 2074 queued++; 2075 break; 2076 case BLK_STS_RESOURCE: 2077 needs_resource = true; 2078 fallthrough; 2079 case BLK_STS_DEV_RESOURCE: 2080 blk_mq_handle_dev_resource(rq, list); 2081 goto out; 2082 case BLK_STS_ZONE_RESOURCE: 2083 /* 2084 * Move the request to zone_list and keep going through 2085 * the dispatch list to find more requests the drive can 2086 * accept. 2087 */ 2088 blk_mq_handle_zone_resource(rq, &zone_list); 2089 needs_resource = true; 2090 break; 2091 default: 2092 blk_mq_end_request(rq, ret); 2093 } 2094 } while (!list_empty(list)); 2095 out: 2096 if (!list_empty(&zone_list)) 2097 list_splice_tail_init(&zone_list, list); 2098 2099 /* If we didn't flush the entire list, we could have told the driver 2100 * there was more coming, but that turned out to be a lie. 2101 */ 2102 if (!list_empty(list) || ret != BLK_STS_OK) 2103 blk_mq_commit_rqs(hctx, queued, false); 2104 2105 /* 2106 * Any items that need requeuing? Stuff them into hctx->dispatch, 2107 * that is where we will continue on next queue run. 2108 */ 2109 if (!list_empty(list)) { 2110 bool needs_restart; 2111 /* For non-shared tags, the RESTART check will suffice */ 2112 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2113 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2114 blk_mq_is_shared_tags(hctx->flags)); 2115 2116 if (nr_budgets) 2117 blk_mq_release_budgets(q, list); 2118 2119 spin_lock(&hctx->lock); 2120 list_splice_tail_init(list, &hctx->dispatch); 2121 spin_unlock(&hctx->lock); 2122 2123 /* 2124 * Order adding requests to hctx->dispatch and checking 2125 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2126 * in blk_mq_sched_restart(). Avoid restart code path to 2127 * miss the new added requests to hctx->dispatch, meantime 2128 * SCHED_RESTART is observed here. 2129 */ 2130 smp_mb(); 2131 2132 /* 2133 * If SCHED_RESTART was set by the caller of this function and 2134 * it is no longer set that means that it was cleared by another 2135 * thread and hence that a queue rerun is needed. 2136 * 2137 * If 'no_tag' is set, that means that we failed getting 2138 * a driver tag with an I/O scheduler attached. If our dispatch 2139 * waitqueue is no longer active, ensure that we run the queue 2140 * AFTER adding our entries back to the list. 2141 * 2142 * If no I/O scheduler has been configured it is possible that 2143 * the hardware queue got stopped and restarted before requests 2144 * were pushed back onto the dispatch list. Rerun the queue to 2145 * avoid starvation. Notes: 2146 * - blk_mq_run_hw_queue() checks whether or not a queue has 2147 * been stopped before rerunning a queue. 2148 * - Some but not all block drivers stop a queue before 2149 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2150 * and dm-rq. 2151 * 2152 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2153 * bit is set, run queue after a delay to avoid IO stalls 2154 * that could otherwise occur if the queue is idle. We'll do 2155 * similar if we couldn't get budget or couldn't lock a zone 2156 * and SCHED_RESTART is set. 2157 */ 2158 needs_restart = blk_mq_sched_needs_restart(hctx); 2159 if (prep == PREP_DISPATCH_NO_BUDGET) 2160 needs_resource = true; 2161 if (!needs_restart || 2162 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2163 blk_mq_run_hw_queue(hctx, true); 2164 else if (needs_resource) 2165 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2166 2167 blk_mq_update_dispatch_busy(hctx, true); 2168 return false; 2169 } 2170 2171 blk_mq_update_dispatch_busy(hctx, false); 2172 return true; 2173 } 2174 2175 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2176 { 2177 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2178 2179 if (cpu >= nr_cpu_ids) 2180 cpu = cpumask_first(hctx->cpumask); 2181 return cpu; 2182 } 2183 2184 /* 2185 * It'd be great if the workqueue API had a way to pass 2186 * in a mask and had some smarts for more clever placement. 2187 * For now we just round-robin here, switching for every 2188 * BLK_MQ_CPU_WORK_BATCH queued items. 2189 */ 2190 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2191 { 2192 bool tried = false; 2193 int next_cpu = hctx->next_cpu; 2194 2195 if (hctx->queue->nr_hw_queues == 1) 2196 return WORK_CPU_UNBOUND; 2197 2198 if (--hctx->next_cpu_batch <= 0) { 2199 select_cpu: 2200 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2201 cpu_online_mask); 2202 if (next_cpu >= nr_cpu_ids) 2203 next_cpu = blk_mq_first_mapped_cpu(hctx); 2204 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2205 } 2206 2207 /* 2208 * Do unbound schedule if we can't find a online CPU for this hctx, 2209 * and it should only happen in the path of handling CPU DEAD. 2210 */ 2211 if (!cpu_online(next_cpu)) { 2212 if (!tried) { 2213 tried = true; 2214 goto select_cpu; 2215 } 2216 2217 /* 2218 * Make sure to re-select CPU next time once after CPUs 2219 * in hctx->cpumask become online again. 2220 */ 2221 hctx->next_cpu = next_cpu; 2222 hctx->next_cpu_batch = 1; 2223 return WORK_CPU_UNBOUND; 2224 } 2225 2226 hctx->next_cpu = next_cpu; 2227 return next_cpu; 2228 } 2229 2230 /** 2231 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2232 * @hctx: Pointer to the hardware queue to run. 2233 * @msecs: Milliseconds of delay to wait before running the queue. 2234 * 2235 * Run a hardware queue asynchronously with a delay of @msecs. 2236 */ 2237 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2238 { 2239 if (unlikely(blk_mq_hctx_stopped(hctx))) 2240 return; 2241 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2242 msecs_to_jiffies(msecs)); 2243 } 2244 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2245 2246 /** 2247 * blk_mq_run_hw_queue - Start to run a hardware queue. 2248 * @hctx: Pointer to the hardware queue to run. 2249 * @async: If we want to run the queue asynchronously. 2250 * 2251 * Check if the request queue is not in a quiesced state and if there are 2252 * pending requests to be sent. If this is true, run the queue to send requests 2253 * to hardware. 2254 */ 2255 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2256 { 2257 bool need_run; 2258 2259 /* 2260 * We can't run the queue inline with interrupts disabled. 2261 */ 2262 WARN_ON_ONCE(!async && in_interrupt()); 2263 2264 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2265 2266 /* 2267 * When queue is quiesced, we may be switching io scheduler, or 2268 * updating nr_hw_queues, or other things, and we can't run queue 2269 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2270 * 2271 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2272 * quiesced. 2273 */ 2274 __blk_mq_run_dispatch_ops(hctx->queue, false, 2275 need_run = !blk_queue_quiesced(hctx->queue) && 2276 blk_mq_hctx_has_pending(hctx)); 2277 2278 if (!need_run) 2279 return; 2280 2281 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2282 blk_mq_delay_run_hw_queue(hctx, 0); 2283 return; 2284 } 2285 2286 blk_mq_run_dispatch_ops(hctx->queue, 2287 blk_mq_sched_dispatch_requests(hctx)); 2288 } 2289 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2290 2291 /* 2292 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2293 * scheduler. 2294 */ 2295 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2296 { 2297 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2298 /* 2299 * If the IO scheduler does not respect hardware queues when 2300 * dispatching, we just don't bother with multiple HW queues and 2301 * dispatch from hctx for the current CPU since running multiple queues 2302 * just causes lock contention inside the scheduler and pointless cache 2303 * bouncing. 2304 */ 2305 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2306 2307 if (!blk_mq_hctx_stopped(hctx)) 2308 return hctx; 2309 return NULL; 2310 } 2311 2312 /** 2313 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2314 * @q: Pointer to the request queue to run. 2315 * @async: If we want to run the queue asynchronously. 2316 */ 2317 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2318 { 2319 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2320 unsigned long i; 2321 2322 sq_hctx = NULL; 2323 if (blk_queue_sq_sched(q)) 2324 sq_hctx = blk_mq_get_sq_hctx(q); 2325 queue_for_each_hw_ctx(q, hctx, i) { 2326 if (blk_mq_hctx_stopped(hctx)) 2327 continue; 2328 /* 2329 * Dispatch from this hctx either if there's no hctx preferred 2330 * by IO scheduler or if it has requests that bypass the 2331 * scheduler. 2332 */ 2333 if (!sq_hctx || sq_hctx == hctx || 2334 !list_empty_careful(&hctx->dispatch)) 2335 blk_mq_run_hw_queue(hctx, async); 2336 } 2337 } 2338 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2339 2340 /** 2341 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2342 * @q: Pointer to the request queue to run. 2343 * @msecs: Milliseconds of delay to wait before running the queues. 2344 */ 2345 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2346 { 2347 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2348 unsigned long i; 2349 2350 sq_hctx = NULL; 2351 if (blk_queue_sq_sched(q)) 2352 sq_hctx = blk_mq_get_sq_hctx(q); 2353 queue_for_each_hw_ctx(q, hctx, i) { 2354 if (blk_mq_hctx_stopped(hctx)) 2355 continue; 2356 /* 2357 * If there is already a run_work pending, leave the 2358 * pending delay untouched. Otherwise, a hctx can stall 2359 * if another hctx is re-delaying the other's work 2360 * before the work executes. 2361 */ 2362 if (delayed_work_pending(&hctx->run_work)) 2363 continue; 2364 /* 2365 * Dispatch from this hctx either if there's no hctx preferred 2366 * by IO scheduler or if it has requests that bypass the 2367 * scheduler. 2368 */ 2369 if (!sq_hctx || sq_hctx == hctx || 2370 !list_empty_careful(&hctx->dispatch)) 2371 blk_mq_delay_run_hw_queue(hctx, msecs); 2372 } 2373 } 2374 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2375 2376 /* 2377 * This function is often used for pausing .queue_rq() by driver when 2378 * there isn't enough resource or some conditions aren't satisfied, and 2379 * BLK_STS_RESOURCE is usually returned. 2380 * 2381 * We do not guarantee that dispatch can be drained or blocked 2382 * after blk_mq_stop_hw_queue() returns. Please use 2383 * blk_mq_quiesce_queue() for that requirement. 2384 */ 2385 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2386 { 2387 cancel_delayed_work(&hctx->run_work); 2388 2389 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2390 } 2391 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2392 2393 /* 2394 * This function is often used for pausing .queue_rq() by driver when 2395 * there isn't enough resource or some conditions aren't satisfied, and 2396 * BLK_STS_RESOURCE is usually returned. 2397 * 2398 * We do not guarantee that dispatch can be drained or blocked 2399 * after blk_mq_stop_hw_queues() returns. Please use 2400 * blk_mq_quiesce_queue() for that requirement. 2401 */ 2402 void blk_mq_stop_hw_queues(struct request_queue *q) 2403 { 2404 struct blk_mq_hw_ctx *hctx; 2405 unsigned long i; 2406 2407 queue_for_each_hw_ctx(q, hctx, i) 2408 blk_mq_stop_hw_queue(hctx); 2409 } 2410 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2411 2412 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2413 { 2414 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2415 2416 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2417 } 2418 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2419 2420 void blk_mq_start_hw_queues(struct request_queue *q) 2421 { 2422 struct blk_mq_hw_ctx *hctx; 2423 unsigned long i; 2424 2425 queue_for_each_hw_ctx(q, hctx, i) 2426 blk_mq_start_hw_queue(hctx); 2427 } 2428 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2429 2430 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2431 { 2432 if (!blk_mq_hctx_stopped(hctx)) 2433 return; 2434 2435 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2436 blk_mq_run_hw_queue(hctx, async); 2437 } 2438 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2439 2440 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2441 { 2442 struct blk_mq_hw_ctx *hctx; 2443 unsigned long i; 2444 2445 queue_for_each_hw_ctx(q, hctx, i) 2446 blk_mq_start_stopped_hw_queue(hctx, async || 2447 (hctx->flags & BLK_MQ_F_BLOCKING)); 2448 } 2449 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2450 2451 static void blk_mq_run_work_fn(struct work_struct *work) 2452 { 2453 struct blk_mq_hw_ctx *hctx = 2454 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2455 2456 blk_mq_run_dispatch_ops(hctx->queue, 2457 blk_mq_sched_dispatch_requests(hctx)); 2458 } 2459 2460 /** 2461 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2462 * @rq: Pointer to request to be inserted. 2463 * @flags: BLK_MQ_INSERT_* 2464 * 2465 * Should only be used carefully, when the caller knows we want to 2466 * bypass a potential IO scheduler on the target device. 2467 */ 2468 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2469 { 2470 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2471 2472 spin_lock(&hctx->lock); 2473 if (flags & BLK_MQ_INSERT_AT_HEAD) 2474 list_add(&rq->queuelist, &hctx->dispatch); 2475 else 2476 list_add_tail(&rq->queuelist, &hctx->dispatch); 2477 spin_unlock(&hctx->lock); 2478 } 2479 2480 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2481 struct blk_mq_ctx *ctx, struct list_head *list, 2482 bool run_queue_async) 2483 { 2484 struct request *rq; 2485 enum hctx_type type = hctx->type; 2486 2487 /* 2488 * Try to issue requests directly if the hw queue isn't busy to save an 2489 * extra enqueue & dequeue to the sw queue. 2490 */ 2491 if (!hctx->dispatch_busy && !run_queue_async) { 2492 blk_mq_run_dispatch_ops(hctx->queue, 2493 blk_mq_try_issue_list_directly(hctx, list)); 2494 if (list_empty(list)) 2495 goto out; 2496 } 2497 2498 /* 2499 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2500 * offline now 2501 */ 2502 list_for_each_entry(rq, list, queuelist) { 2503 BUG_ON(rq->mq_ctx != ctx); 2504 trace_block_rq_insert(rq); 2505 if (rq->cmd_flags & REQ_NOWAIT) 2506 run_queue_async = true; 2507 } 2508 2509 spin_lock(&ctx->lock); 2510 list_splice_tail_init(list, &ctx->rq_lists[type]); 2511 blk_mq_hctx_mark_pending(hctx, ctx); 2512 spin_unlock(&ctx->lock); 2513 out: 2514 blk_mq_run_hw_queue(hctx, run_queue_async); 2515 } 2516 2517 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2518 { 2519 struct request_queue *q = rq->q; 2520 struct blk_mq_ctx *ctx = rq->mq_ctx; 2521 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2522 2523 if (blk_rq_is_passthrough(rq)) { 2524 /* 2525 * Passthrough request have to be added to hctx->dispatch 2526 * directly. The device may be in a situation where it can't 2527 * handle FS request, and always returns BLK_STS_RESOURCE for 2528 * them, which gets them added to hctx->dispatch. 2529 * 2530 * If a passthrough request is required to unblock the queues, 2531 * and it is added to the scheduler queue, there is no chance to 2532 * dispatch it given we prioritize requests in hctx->dispatch. 2533 */ 2534 blk_mq_request_bypass_insert(rq, flags); 2535 } else if (req_op(rq) == REQ_OP_FLUSH) { 2536 /* 2537 * Firstly normal IO request is inserted to scheduler queue or 2538 * sw queue, meantime we add flush request to dispatch queue( 2539 * hctx->dispatch) directly and there is at most one in-flight 2540 * flush request for each hw queue, so it doesn't matter to add 2541 * flush request to tail or front of the dispatch queue. 2542 * 2543 * Secondly in case of NCQ, flush request belongs to non-NCQ 2544 * command, and queueing it will fail when there is any 2545 * in-flight normal IO request(NCQ command). When adding flush 2546 * rq to the front of hctx->dispatch, it is easier to introduce 2547 * extra time to flush rq's latency because of S_SCHED_RESTART 2548 * compared with adding to the tail of dispatch queue, then 2549 * chance of flush merge is increased, and less flush requests 2550 * will be issued to controller. It is observed that ~10% time 2551 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2552 * drive when adding flush rq to the front of hctx->dispatch. 2553 * 2554 * Simply queue flush rq to the front of hctx->dispatch so that 2555 * intensive flush workloads can benefit in case of NCQ HW. 2556 */ 2557 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2558 } else if (q->elevator) { 2559 LIST_HEAD(list); 2560 2561 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2562 2563 list_add(&rq->queuelist, &list); 2564 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2565 } else { 2566 trace_block_rq_insert(rq); 2567 2568 spin_lock(&ctx->lock); 2569 if (flags & BLK_MQ_INSERT_AT_HEAD) 2570 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2571 else 2572 list_add_tail(&rq->queuelist, 2573 &ctx->rq_lists[hctx->type]); 2574 blk_mq_hctx_mark_pending(hctx, ctx); 2575 spin_unlock(&ctx->lock); 2576 } 2577 } 2578 2579 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2580 unsigned int nr_segs) 2581 { 2582 int err; 2583 2584 if (bio->bi_opf & REQ_RAHEAD) 2585 rq->cmd_flags |= REQ_FAILFAST_MASK; 2586 2587 rq->__sector = bio->bi_iter.bi_sector; 2588 blk_rq_bio_prep(rq, bio, nr_segs); 2589 2590 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2591 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2592 WARN_ON_ONCE(err); 2593 2594 blk_account_io_start(rq); 2595 } 2596 2597 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2598 struct request *rq, bool last) 2599 { 2600 struct request_queue *q = rq->q; 2601 struct blk_mq_queue_data bd = { 2602 .rq = rq, 2603 .last = last, 2604 }; 2605 blk_status_t ret; 2606 2607 /* 2608 * For OK queue, we are done. For error, caller may kill it. 2609 * Any other error (busy), just add it to our list as we 2610 * previously would have done. 2611 */ 2612 ret = q->mq_ops->queue_rq(hctx, &bd); 2613 switch (ret) { 2614 case BLK_STS_OK: 2615 blk_mq_update_dispatch_busy(hctx, false); 2616 break; 2617 case BLK_STS_RESOURCE: 2618 case BLK_STS_DEV_RESOURCE: 2619 blk_mq_update_dispatch_busy(hctx, true); 2620 __blk_mq_requeue_request(rq); 2621 break; 2622 default: 2623 blk_mq_update_dispatch_busy(hctx, false); 2624 break; 2625 } 2626 2627 return ret; 2628 } 2629 2630 static bool blk_mq_get_budget_and_tag(struct request *rq) 2631 { 2632 int budget_token; 2633 2634 budget_token = blk_mq_get_dispatch_budget(rq->q); 2635 if (budget_token < 0) 2636 return false; 2637 blk_mq_set_rq_budget_token(rq, budget_token); 2638 if (!blk_mq_get_driver_tag(rq)) { 2639 blk_mq_put_dispatch_budget(rq->q, budget_token); 2640 return false; 2641 } 2642 return true; 2643 } 2644 2645 /** 2646 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2647 * @hctx: Pointer of the associated hardware queue. 2648 * @rq: Pointer to request to be sent. 2649 * 2650 * If the device has enough resources to accept a new request now, send the 2651 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2652 * we can try send it another time in the future. Requests inserted at this 2653 * queue have higher priority. 2654 */ 2655 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2656 struct request *rq) 2657 { 2658 blk_status_t ret; 2659 2660 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2661 blk_mq_insert_request(rq, 0); 2662 return; 2663 } 2664 2665 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2666 blk_mq_insert_request(rq, 0); 2667 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2668 return; 2669 } 2670 2671 ret = __blk_mq_issue_directly(hctx, rq, true); 2672 switch (ret) { 2673 case BLK_STS_OK: 2674 break; 2675 case BLK_STS_RESOURCE: 2676 case BLK_STS_DEV_RESOURCE: 2677 blk_mq_request_bypass_insert(rq, 0); 2678 blk_mq_run_hw_queue(hctx, false); 2679 break; 2680 default: 2681 blk_mq_end_request(rq, ret); 2682 break; 2683 } 2684 } 2685 2686 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2687 { 2688 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2689 2690 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2691 blk_mq_insert_request(rq, 0); 2692 return BLK_STS_OK; 2693 } 2694 2695 if (!blk_mq_get_budget_and_tag(rq)) 2696 return BLK_STS_RESOURCE; 2697 return __blk_mq_issue_directly(hctx, rq, last); 2698 } 2699 2700 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2701 { 2702 struct blk_mq_hw_ctx *hctx = NULL; 2703 struct request *rq; 2704 int queued = 0; 2705 blk_status_t ret = BLK_STS_OK; 2706 2707 while ((rq = rq_list_pop(&plug->mq_list))) { 2708 bool last = rq_list_empty(plug->mq_list); 2709 2710 if (hctx != rq->mq_hctx) { 2711 if (hctx) { 2712 blk_mq_commit_rqs(hctx, queued, false); 2713 queued = 0; 2714 } 2715 hctx = rq->mq_hctx; 2716 } 2717 2718 ret = blk_mq_request_issue_directly(rq, last); 2719 switch (ret) { 2720 case BLK_STS_OK: 2721 queued++; 2722 break; 2723 case BLK_STS_RESOURCE: 2724 case BLK_STS_DEV_RESOURCE: 2725 blk_mq_request_bypass_insert(rq, 0); 2726 blk_mq_run_hw_queue(hctx, false); 2727 goto out; 2728 default: 2729 blk_mq_end_request(rq, ret); 2730 break; 2731 } 2732 } 2733 2734 out: 2735 if (ret != BLK_STS_OK) 2736 blk_mq_commit_rqs(hctx, queued, false); 2737 } 2738 2739 static void __blk_mq_flush_plug_list(struct request_queue *q, 2740 struct blk_plug *plug) 2741 { 2742 if (blk_queue_quiesced(q)) 2743 return; 2744 q->mq_ops->queue_rqs(&plug->mq_list); 2745 } 2746 2747 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2748 { 2749 struct blk_mq_hw_ctx *this_hctx = NULL; 2750 struct blk_mq_ctx *this_ctx = NULL; 2751 struct request *requeue_list = NULL; 2752 struct request **requeue_lastp = &requeue_list; 2753 unsigned int depth = 0; 2754 bool is_passthrough = false; 2755 LIST_HEAD(list); 2756 2757 do { 2758 struct request *rq = rq_list_pop(&plug->mq_list); 2759 2760 if (!this_hctx) { 2761 this_hctx = rq->mq_hctx; 2762 this_ctx = rq->mq_ctx; 2763 is_passthrough = blk_rq_is_passthrough(rq); 2764 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2765 is_passthrough != blk_rq_is_passthrough(rq)) { 2766 rq_list_add_tail(&requeue_lastp, rq); 2767 continue; 2768 } 2769 list_add(&rq->queuelist, &list); 2770 depth++; 2771 } while (!rq_list_empty(plug->mq_list)); 2772 2773 plug->mq_list = requeue_list; 2774 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2775 2776 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2777 /* passthrough requests should never be issued to the I/O scheduler */ 2778 if (is_passthrough) { 2779 spin_lock(&this_hctx->lock); 2780 list_splice_tail_init(&list, &this_hctx->dispatch); 2781 spin_unlock(&this_hctx->lock); 2782 blk_mq_run_hw_queue(this_hctx, from_sched); 2783 } else if (this_hctx->queue->elevator) { 2784 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2785 &list, 0); 2786 blk_mq_run_hw_queue(this_hctx, from_sched); 2787 } else { 2788 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2789 } 2790 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2791 } 2792 2793 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2794 { 2795 struct request *rq; 2796 2797 /* 2798 * We may have been called recursively midway through handling 2799 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2800 * To avoid mq_list changing under our feet, clear rq_count early and 2801 * bail out specifically if rq_count is 0 rather than checking 2802 * whether the mq_list is empty. 2803 */ 2804 if (plug->rq_count == 0) 2805 return; 2806 plug->rq_count = 0; 2807 2808 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2809 struct request_queue *q; 2810 2811 rq = rq_list_peek(&plug->mq_list); 2812 q = rq->q; 2813 2814 /* 2815 * Peek first request and see if we have a ->queue_rqs() hook. 2816 * If we do, we can dispatch the whole plug list in one go. We 2817 * already know at this point that all requests belong to the 2818 * same queue, caller must ensure that's the case. 2819 */ 2820 if (q->mq_ops->queue_rqs) { 2821 blk_mq_run_dispatch_ops(q, 2822 __blk_mq_flush_plug_list(q, plug)); 2823 if (rq_list_empty(plug->mq_list)) 2824 return; 2825 } 2826 2827 blk_mq_run_dispatch_ops(q, 2828 blk_mq_plug_issue_direct(plug)); 2829 if (rq_list_empty(plug->mq_list)) 2830 return; 2831 } 2832 2833 do { 2834 blk_mq_dispatch_plug_list(plug, from_schedule); 2835 } while (!rq_list_empty(plug->mq_list)); 2836 } 2837 2838 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2839 struct list_head *list) 2840 { 2841 int queued = 0; 2842 blk_status_t ret = BLK_STS_OK; 2843 2844 while (!list_empty(list)) { 2845 struct request *rq = list_first_entry(list, struct request, 2846 queuelist); 2847 2848 list_del_init(&rq->queuelist); 2849 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2850 switch (ret) { 2851 case BLK_STS_OK: 2852 queued++; 2853 break; 2854 case BLK_STS_RESOURCE: 2855 case BLK_STS_DEV_RESOURCE: 2856 blk_mq_request_bypass_insert(rq, 0); 2857 if (list_empty(list)) 2858 blk_mq_run_hw_queue(hctx, false); 2859 goto out; 2860 default: 2861 blk_mq_end_request(rq, ret); 2862 break; 2863 } 2864 } 2865 2866 out: 2867 if (ret != BLK_STS_OK) 2868 blk_mq_commit_rqs(hctx, queued, false); 2869 } 2870 2871 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2872 struct bio *bio, unsigned int nr_segs) 2873 { 2874 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2875 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2876 return true; 2877 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2878 return true; 2879 } 2880 return false; 2881 } 2882 2883 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2884 struct blk_plug *plug, 2885 struct bio *bio, 2886 unsigned int nsegs) 2887 { 2888 struct blk_mq_alloc_data data = { 2889 .q = q, 2890 .nr_tags = 1, 2891 .cmd_flags = bio->bi_opf, 2892 }; 2893 struct request *rq; 2894 2895 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2896 return NULL; 2897 2898 rq_qos_throttle(q, bio); 2899 2900 if (plug) { 2901 data.nr_tags = plug->nr_ios; 2902 plug->nr_ios = 1; 2903 data.cached_rq = &plug->cached_rq; 2904 } 2905 2906 rq = __blk_mq_alloc_requests(&data); 2907 if (rq) 2908 return rq; 2909 rq_qos_cleanup(q, bio); 2910 if (bio->bi_opf & REQ_NOWAIT) 2911 bio_wouldblock_error(bio); 2912 return NULL; 2913 } 2914 2915 /* 2916 * Check if we can use the passed on request for submitting the passed in bio, 2917 * and remove it from the request list if it can be used. 2918 */ 2919 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2920 struct bio *bio) 2921 { 2922 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf); 2923 enum hctx_type hctx_type = rq->mq_hctx->type; 2924 2925 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2926 2927 if (type != hctx_type && 2928 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2929 return false; 2930 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf)) 2931 return false; 2932 2933 /* 2934 * If any qos ->throttle() end up blocking, we will have flushed the 2935 * plug and hence killed the cached_rq list as well. Pop this entry 2936 * before we throttle. 2937 */ 2938 plug->cached_rq = rq_list_next(rq); 2939 rq_qos_throttle(rq->q, bio); 2940 2941 blk_mq_rq_time_init(rq, 0); 2942 rq->cmd_flags = bio->bi_opf; 2943 INIT_LIST_HEAD(&rq->queuelist); 2944 return true; 2945 } 2946 2947 static void bio_set_ioprio(struct bio *bio) 2948 { 2949 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2950 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2951 bio->bi_ioprio = get_current_ioprio(); 2952 blkcg_set_ioprio(bio); 2953 } 2954 2955 /** 2956 * blk_mq_submit_bio - Create and send a request to block device. 2957 * @bio: Bio pointer. 2958 * 2959 * Builds up a request structure from @q and @bio and send to the device. The 2960 * request may not be queued directly to hardware if: 2961 * * This request can be merged with another one 2962 * * We want to place request at plug queue for possible future merging 2963 * * There is an IO scheduler active at this queue 2964 * 2965 * It will not queue the request if there is an error with the bio, or at the 2966 * request creation. 2967 */ 2968 void blk_mq_submit_bio(struct bio *bio) 2969 { 2970 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2971 struct blk_plug *plug = blk_mq_plug(bio); 2972 const int is_sync = op_is_sync(bio->bi_opf); 2973 struct blk_mq_hw_ctx *hctx; 2974 struct request *rq = NULL; 2975 unsigned int nr_segs = 1; 2976 blk_status_t ret; 2977 2978 bio = blk_queue_bounce(bio, q); 2979 bio_set_ioprio(bio); 2980 2981 if (plug) { 2982 rq = rq_list_peek(&plug->cached_rq); 2983 if (rq && rq->q != q) 2984 rq = NULL; 2985 } 2986 if (rq) { 2987 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2988 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2989 if (!bio) 2990 return; 2991 } 2992 if (!bio_integrity_prep(bio)) 2993 return; 2994 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2995 return; 2996 if (blk_mq_use_cached_rq(rq, plug, bio)) 2997 goto done; 2998 percpu_ref_get(&q->q_usage_counter); 2999 } else { 3000 if (unlikely(bio_queue_enter(bio))) 3001 return; 3002 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 3003 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3004 if (!bio) 3005 goto fail; 3006 } 3007 if (!bio_integrity_prep(bio)) 3008 goto fail; 3009 } 3010 3011 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3012 if (unlikely(!rq)) { 3013 fail: 3014 blk_queue_exit(q); 3015 return; 3016 } 3017 3018 done: 3019 trace_block_getrq(bio); 3020 3021 rq_qos_track(q, rq, bio); 3022 3023 blk_mq_bio_to_request(rq, bio, nr_segs); 3024 3025 ret = blk_crypto_rq_get_keyslot(rq); 3026 if (ret != BLK_STS_OK) { 3027 bio->bi_status = ret; 3028 bio_endio(bio); 3029 blk_mq_free_request(rq); 3030 return; 3031 } 3032 3033 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3034 return; 3035 3036 if (plug) { 3037 blk_add_rq_to_plug(plug, rq); 3038 return; 3039 } 3040 3041 hctx = rq->mq_hctx; 3042 if ((rq->rq_flags & RQF_USE_SCHED) || 3043 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3044 blk_mq_insert_request(rq, 0); 3045 blk_mq_run_hw_queue(hctx, true); 3046 } else { 3047 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3048 } 3049 } 3050 3051 #ifdef CONFIG_BLK_MQ_STACKING 3052 /** 3053 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3054 * @rq: the request being queued 3055 */ 3056 blk_status_t blk_insert_cloned_request(struct request *rq) 3057 { 3058 struct request_queue *q = rq->q; 3059 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3060 unsigned int max_segments = blk_rq_get_max_segments(rq); 3061 blk_status_t ret; 3062 3063 if (blk_rq_sectors(rq) > max_sectors) { 3064 /* 3065 * SCSI device does not have a good way to return if 3066 * Write Same/Zero is actually supported. If a device rejects 3067 * a non-read/write command (discard, write same,etc.) the 3068 * low-level device driver will set the relevant queue limit to 3069 * 0 to prevent blk-lib from issuing more of the offending 3070 * operations. Commands queued prior to the queue limit being 3071 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3072 * errors being propagated to upper layers. 3073 */ 3074 if (max_sectors == 0) 3075 return BLK_STS_NOTSUPP; 3076 3077 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3078 __func__, blk_rq_sectors(rq), max_sectors); 3079 return BLK_STS_IOERR; 3080 } 3081 3082 /* 3083 * The queue settings related to segment counting may differ from the 3084 * original queue. 3085 */ 3086 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3087 if (rq->nr_phys_segments > max_segments) { 3088 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3089 __func__, rq->nr_phys_segments, max_segments); 3090 return BLK_STS_IOERR; 3091 } 3092 3093 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3094 return BLK_STS_IOERR; 3095 3096 ret = blk_crypto_rq_get_keyslot(rq); 3097 if (ret != BLK_STS_OK) 3098 return ret; 3099 3100 blk_account_io_start(rq); 3101 3102 /* 3103 * Since we have a scheduler attached on the top device, 3104 * bypass a potential scheduler on the bottom device for 3105 * insert. 3106 */ 3107 blk_mq_run_dispatch_ops(q, 3108 ret = blk_mq_request_issue_directly(rq, true)); 3109 if (ret) 3110 blk_account_io_done(rq, ktime_get_ns()); 3111 return ret; 3112 } 3113 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3114 3115 /** 3116 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3117 * @rq: the clone request to be cleaned up 3118 * 3119 * Description: 3120 * Free all bios in @rq for a cloned request. 3121 */ 3122 void blk_rq_unprep_clone(struct request *rq) 3123 { 3124 struct bio *bio; 3125 3126 while ((bio = rq->bio) != NULL) { 3127 rq->bio = bio->bi_next; 3128 3129 bio_put(bio); 3130 } 3131 } 3132 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3133 3134 /** 3135 * blk_rq_prep_clone - Helper function to setup clone request 3136 * @rq: the request to be setup 3137 * @rq_src: original request to be cloned 3138 * @bs: bio_set that bios for clone are allocated from 3139 * @gfp_mask: memory allocation mask for bio 3140 * @bio_ctr: setup function to be called for each clone bio. 3141 * Returns %0 for success, non %0 for failure. 3142 * @data: private data to be passed to @bio_ctr 3143 * 3144 * Description: 3145 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3146 * Also, pages which the original bios are pointing to are not copied 3147 * and the cloned bios just point same pages. 3148 * So cloned bios must be completed before original bios, which means 3149 * the caller must complete @rq before @rq_src. 3150 */ 3151 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3152 struct bio_set *bs, gfp_t gfp_mask, 3153 int (*bio_ctr)(struct bio *, struct bio *, void *), 3154 void *data) 3155 { 3156 struct bio *bio, *bio_src; 3157 3158 if (!bs) 3159 bs = &fs_bio_set; 3160 3161 __rq_for_each_bio(bio_src, rq_src) { 3162 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3163 bs); 3164 if (!bio) 3165 goto free_and_out; 3166 3167 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3168 goto free_and_out; 3169 3170 if (rq->bio) { 3171 rq->biotail->bi_next = bio; 3172 rq->biotail = bio; 3173 } else { 3174 rq->bio = rq->biotail = bio; 3175 } 3176 bio = NULL; 3177 } 3178 3179 /* Copy attributes of the original request to the clone request. */ 3180 rq->__sector = blk_rq_pos(rq_src); 3181 rq->__data_len = blk_rq_bytes(rq_src); 3182 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3183 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3184 rq->special_vec = rq_src->special_vec; 3185 } 3186 rq->nr_phys_segments = rq_src->nr_phys_segments; 3187 rq->ioprio = rq_src->ioprio; 3188 3189 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3190 goto free_and_out; 3191 3192 return 0; 3193 3194 free_and_out: 3195 if (bio) 3196 bio_put(bio); 3197 blk_rq_unprep_clone(rq); 3198 3199 return -ENOMEM; 3200 } 3201 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3202 #endif /* CONFIG_BLK_MQ_STACKING */ 3203 3204 /* 3205 * Steal bios from a request and add them to a bio list. 3206 * The request must not have been partially completed before. 3207 */ 3208 void blk_steal_bios(struct bio_list *list, struct request *rq) 3209 { 3210 if (rq->bio) { 3211 if (list->tail) 3212 list->tail->bi_next = rq->bio; 3213 else 3214 list->head = rq->bio; 3215 list->tail = rq->biotail; 3216 3217 rq->bio = NULL; 3218 rq->biotail = NULL; 3219 } 3220 3221 rq->__data_len = 0; 3222 } 3223 EXPORT_SYMBOL_GPL(blk_steal_bios); 3224 3225 static size_t order_to_size(unsigned int order) 3226 { 3227 return (size_t)PAGE_SIZE << order; 3228 } 3229 3230 /* called before freeing request pool in @tags */ 3231 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3232 struct blk_mq_tags *tags) 3233 { 3234 struct page *page; 3235 unsigned long flags; 3236 3237 /* 3238 * There is no need to clear mapping if driver tags is not initialized 3239 * or the mapping belongs to the driver tags. 3240 */ 3241 if (!drv_tags || drv_tags == tags) 3242 return; 3243 3244 list_for_each_entry(page, &tags->page_list, lru) { 3245 unsigned long start = (unsigned long)page_address(page); 3246 unsigned long end = start + order_to_size(page->private); 3247 int i; 3248 3249 for (i = 0; i < drv_tags->nr_tags; i++) { 3250 struct request *rq = drv_tags->rqs[i]; 3251 unsigned long rq_addr = (unsigned long)rq; 3252 3253 if (rq_addr >= start && rq_addr < end) { 3254 WARN_ON_ONCE(req_ref_read(rq) != 0); 3255 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3256 } 3257 } 3258 } 3259 3260 /* 3261 * Wait until all pending iteration is done. 3262 * 3263 * Request reference is cleared and it is guaranteed to be observed 3264 * after the ->lock is released. 3265 */ 3266 spin_lock_irqsave(&drv_tags->lock, flags); 3267 spin_unlock_irqrestore(&drv_tags->lock, flags); 3268 } 3269 3270 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3271 unsigned int hctx_idx) 3272 { 3273 struct blk_mq_tags *drv_tags; 3274 struct page *page; 3275 3276 if (list_empty(&tags->page_list)) 3277 return; 3278 3279 if (blk_mq_is_shared_tags(set->flags)) 3280 drv_tags = set->shared_tags; 3281 else 3282 drv_tags = set->tags[hctx_idx]; 3283 3284 if (tags->static_rqs && set->ops->exit_request) { 3285 int i; 3286 3287 for (i = 0; i < tags->nr_tags; i++) { 3288 struct request *rq = tags->static_rqs[i]; 3289 3290 if (!rq) 3291 continue; 3292 set->ops->exit_request(set, rq, hctx_idx); 3293 tags->static_rqs[i] = NULL; 3294 } 3295 } 3296 3297 blk_mq_clear_rq_mapping(drv_tags, tags); 3298 3299 while (!list_empty(&tags->page_list)) { 3300 page = list_first_entry(&tags->page_list, struct page, lru); 3301 list_del_init(&page->lru); 3302 /* 3303 * Remove kmemleak object previously allocated in 3304 * blk_mq_alloc_rqs(). 3305 */ 3306 kmemleak_free(page_address(page)); 3307 __free_pages(page, page->private); 3308 } 3309 } 3310 3311 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3312 { 3313 kfree(tags->rqs); 3314 tags->rqs = NULL; 3315 kfree(tags->static_rqs); 3316 tags->static_rqs = NULL; 3317 3318 blk_mq_free_tags(tags); 3319 } 3320 3321 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3322 unsigned int hctx_idx) 3323 { 3324 int i; 3325 3326 for (i = 0; i < set->nr_maps; i++) { 3327 unsigned int start = set->map[i].queue_offset; 3328 unsigned int end = start + set->map[i].nr_queues; 3329 3330 if (hctx_idx >= start && hctx_idx < end) 3331 break; 3332 } 3333 3334 if (i >= set->nr_maps) 3335 i = HCTX_TYPE_DEFAULT; 3336 3337 return i; 3338 } 3339 3340 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3341 unsigned int hctx_idx) 3342 { 3343 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3344 3345 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3346 } 3347 3348 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3349 unsigned int hctx_idx, 3350 unsigned int nr_tags, 3351 unsigned int reserved_tags) 3352 { 3353 int node = blk_mq_get_hctx_node(set, hctx_idx); 3354 struct blk_mq_tags *tags; 3355 3356 if (node == NUMA_NO_NODE) 3357 node = set->numa_node; 3358 3359 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3360 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3361 if (!tags) 3362 return NULL; 3363 3364 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3365 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3366 node); 3367 if (!tags->rqs) 3368 goto err_free_tags; 3369 3370 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3371 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3372 node); 3373 if (!tags->static_rqs) 3374 goto err_free_rqs; 3375 3376 return tags; 3377 3378 err_free_rqs: 3379 kfree(tags->rqs); 3380 err_free_tags: 3381 blk_mq_free_tags(tags); 3382 return NULL; 3383 } 3384 3385 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3386 unsigned int hctx_idx, int node) 3387 { 3388 int ret; 3389 3390 if (set->ops->init_request) { 3391 ret = set->ops->init_request(set, rq, hctx_idx, node); 3392 if (ret) 3393 return ret; 3394 } 3395 3396 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3397 return 0; 3398 } 3399 3400 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3401 struct blk_mq_tags *tags, 3402 unsigned int hctx_idx, unsigned int depth) 3403 { 3404 unsigned int i, j, entries_per_page, max_order = 4; 3405 int node = blk_mq_get_hctx_node(set, hctx_idx); 3406 size_t rq_size, left; 3407 3408 if (node == NUMA_NO_NODE) 3409 node = set->numa_node; 3410 3411 INIT_LIST_HEAD(&tags->page_list); 3412 3413 /* 3414 * rq_size is the size of the request plus driver payload, rounded 3415 * to the cacheline size 3416 */ 3417 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3418 cache_line_size()); 3419 left = rq_size * depth; 3420 3421 for (i = 0; i < depth; ) { 3422 int this_order = max_order; 3423 struct page *page; 3424 int to_do; 3425 void *p; 3426 3427 while (this_order && left < order_to_size(this_order - 1)) 3428 this_order--; 3429 3430 do { 3431 page = alloc_pages_node(node, 3432 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3433 this_order); 3434 if (page) 3435 break; 3436 if (!this_order--) 3437 break; 3438 if (order_to_size(this_order) < rq_size) 3439 break; 3440 } while (1); 3441 3442 if (!page) 3443 goto fail; 3444 3445 page->private = this_order; 3446 list_add_tail(&page->lru, &tags->page_list); 3447 3448 p = page_address(page); 3449 /* 3450 * Allow kmemleak to scan these pages as they contain pointers 3451 * to additional allocations like via ops->init_request(). 3452 */ 3453 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3454 entries_per_page = order_to_size(this_order) / rq_size; 3455 to_do = min(entries_per_page, depth - i); 3456 left -= to_do * rq_size; 3457 for (j = 0; j < to_do; j++) { 3458 struct request *rq = p; 3459 3460 tags->static_rqs[i] = rq; 3461 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3462 tags->static_rqs[i] = NULL; 3463 goto fail; 3464 } 3465 3466 p += rq_size; 3467 i++; 3468 } 3469 } 3470 return 0; 3471 3472 fail: 3473 blk_mq_free_rqs(set, tags, hctx_idx); 3474 return -ENOMEM; 3475 } 3476 3477 struct rq_iter_data { 3478 struct blk_mq_hw_ctx *hctx; 3479 bool has_rq; 3480 }; 3481 3482 static bool blk_mq_has_request(struct request *rq, void *data) 3483 { 3484 struct rq_iter_data *iter_data = data; 3485 3486 if (rq->mq_hctx != iter_data->hctx) 3487 return true; 3488 iter_data->has_rq = true; 3489 return false; 3490 } 3491 3492 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3493 { 3494 struct blk_mq_tags *tags = hctx->sched_tags ? 3495 hctx->sched_tags : hctx->tags; 3496 struct rq_iter_data data = { 3497 .hctx = hctx, 3498 }; 3499 3500 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3501 return data.has_rq; 3502 } 3503 3504 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3505 struct blk_mq_hw_ctx *hctx) 3506 { 3507 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3508 return false; 3509 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3510 return false; 3511 return true; 3512 } 3513 3514 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3515 { 3516 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3517 struct blk_mq_hw_ctx, cpuhp_online); 3518 3519 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3520 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3521 return 0; 3522 3523 /* 3524 * Prevent new request from being allocated on the current hctx. 3525 * 3526 * The smp_mb__after_atomic() Pairs with the implied barrier in 3527 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3528 * seen once we return from the tag allocator. 3529 */ 3530 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3531 smp_mb__after_atomic(); 3532 3533 /* 3534 * Try to grab a reference to the queue and wait for any outstanding 3535 * requests. If we could not grab a reference the queue has been 3536 * frozen and there are no requests. 3537 */ 3538 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3539 while (blk_mq_hctx_has_requests(hctx)) 3540 msleep(5); 3541 percpu_ref_put(&hctx->queue->q_usage_counter); 3542 } 3543 3544 return 0; 3545 } 3546 3547 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3548 { 3549 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3550 struct blk_mq_hw_ctx, cpuhp_online); 3551 3552 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3553 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3554 return 0; 3555 } 3556 3557 /* 3558 * 'cpu' is going away. splice any existing rq_list entries from this 3559 * software queue to the hw queue dispatch list, and ensure that it 3560 * gets run. 3561 */ 3562 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3563 { 3564 struct blk_mq_hw_ctx *hctx; 3565 struct blk_mq_ctx *ctx; 3566 LIST_HEAD(tmp); 3567 enum hctx_type type; 3568 3569 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3570 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3571 return 0; 3572 3573 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3574 type = hctx->type; 3575 3576 spin_lock(&ctx->lock); 3577 if (!list_empty(&ctx->rq_lists[type])) { 3578 list_splice_init(&ctx->rq_lists[type], &tmp); 3579 blk_mq_hctx_clear_pending(hctx, ctx); 3580 } 3581 spin_unlock(&ctx->lock); 3582 3583 if (list_empty(&tmp)) 3584 return 0; 3585 3586 spin_lock(&hctx->lock); 3587 list_splice_tail_init(&tmp, &hctx->dispatch); 3588 spin_unlock(&hctx->lock); 3589 3590 blk_mq_run_hw_queue(hctx, true); 3591 return 0; 3592 } 3593 3594 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3595 { 3596 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3597 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3598 &hctx->cpuhp_online); 3599 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3600 &hctx->cpuhp_dead); 3601 } 3602 3603 /* 3604 * Before freeing hw queue, clearing the flush request reference in 3605 * tags->rqs[] for avoiding potential UAF. 3606 */ 3607 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3608 unsigned int queue_depth, struct request *flush_rq) 3609 { 3610 int i; 3611 unsigned long flags; 3612 3613 /* The hw queue may not be mapped yet */ 3614 if (!tags) 3615 return; 3616 3617 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3618 3619 for (i = 0; i < queue_depth; i++) 3620 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3621 3622 /* 3623 * Wait until all pending iteration is done. 3624 * 3625 * Request reference is cleared and it is guaranteed to be observed 3626 * after the ->lock is released. 3627 */ 3628 spin_lock_irqsave(&tags->lock, flags); 3629 spin_unlock_irqrestore(&tags->lock, flags); 3630 } 3631 3632 /* hctx->ctxs will be freed in queue's release handler */ 3633 static void blk_mq_exit_hctx(struct request_queue *q, 3634 struct blk_mq_tag_set *set, 3635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3636 { 3637 struct request *flush_rq = hctx->fq->flush_rq; 3638 3639 if (blk_mq_hw_queue_mapped(hctx)) 3640 blk_mq_tag_idle(hctx); 3641 3642 if (blk_queue_init_done(q)) 3643 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3644 set->queue_depth, flush_rq); 3645 if (set->ops->exit_request) 3646 set->ops->exit_request(set, flush_rq, hctx_idx); 3647 3648 if (set->ops->exit_hctx) 3649 set->ops->exit_hctx(hctx, hctx_idx); 3650 3651 blk_mq_remove_cpuhp(hctx); 3652 3653 xa_erase(&q->hctx_table, hctx_idx); 3654 3655 spin_lock(&q->unused_hctx_lock); 3656 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3657 spin_unlock(&q->unused_hctx_lock); 3658 } 3659 3660 static void blk_mq_exit_hw_queues(struct request_queue *q, 3661 struct blk_mq_tag_set *set, int nr_queue) 3662 { 3663 struct blk_mq_hw_ctx *hctx; 3664 unsigned long i; 3665 3666 queue_for_each_hw_ctx(q, hctx, i) { 3667 if (i == nr_queue) 3668 break; 3669 blk_mq_exit_hctx(q, set, hctx, i); 3670 } 3671 } 3672 3673 static int blk_mq_init_hctx(struct request_queue *q, 3674 struct blk_mq_tag_set *set, 3675 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3676 { 3677 hctx->queue_num = hctx_idx; 3678 3679 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3680 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3681 &hctx->cpuhp_online); 3682 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3683 3684 hctx->tags = set->tags[hctx_idx]; 3685 3686 if (set->ops->init_hctx && 3687 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3688 goto unregister_cpu_notifier; 3689 3690 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3691 hctx->numa_node)) 3692 goto exit_hctx; 3693 3694 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3695 goto exit_flush_rq; 3696 3697 return 0; 3698 3699 exit_flush_rq: 3700 if (set->ops->exit_request) 3701 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3702 exit_hctx: 3703 if (set->ops->exit_hctx) 3704 set->ops->exit_hctx(hctx, hctx_idx); 3705 unregister_cpu_notifier: 3706 blk_mq_remove_cpuhp(hctx); 3707 return -1; 3708 } 3709 3710 static struct blk_mq_hw_ctx * 3711 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3712 int node) 3713 { 3714 struct blk_mq_hw_ctx *hctx; 3715 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3716 3717 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3718 if (!hctx) 3719 goto fail_alloc_hctx; 3720 3721 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3722 goto free_hctx; 3723 3724 atomic_set(&hctx->nr_active, 0); 3725 if (node == NUMA_NO_NODE) 3726 node = set->numa_node; 3727 hctx->numa_node = node; 3728 3729 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3730 spin_lock_init(&hctx->lock); 3731 INIT_LIST_HEAD(&hctx->dispatch); 3732 hctx->queue = q; 3733 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3734 3735 INIT_LIST_HEAD(&hctx->hctx_list); 3736 3737 /* 3738 * Allocate space for all possible cpus to avoid allocation at 3739 * runtime 3740 */ 3741 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3742 gfp, node); 3743 if (!hctx->ctxs) 3744 goto free_cpumask; 3745 3746 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3747 gfp, node, false, false)) 3748 goto free_ctxs; 3749 hctx->nr_ctx = 0; 3750 3751 spin_lock_init(&hctx->dispatch_wait_lock); 3752 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3753 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3754 3755 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3756 if (!hctx->fq) 3757 goto free_bitmap; 3758 3759 blk_mq_hctx_kobj_init(hctx); 3760 3761 return hctx; 3762 3763 free_bitmap: 3764 sbitmap_free(&hctx->ctx_map); 3765 free_ctxs: 3766 kfree(hctx->ctxs); 3767 free_cpumask: 3768 free_cpumask_var(hctx->cpumask); 3769 free_hctx: 3770 kfree(hctx); 3771 fail_alloc_hctx: 3772 return NULL; 3773 } 3774 3775 static void blk_mq_init_cpu_queues(struct request_queue *q, 3776 unsigned int nr_hw_queues) 3777 { 3778 struct blk_mq_tag_set *set = q->tag_set; 3779 unsigned int i, j; 3780 3781 for_each_possible_cpu(i) { 3782 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3783 struct blk_mq_hw_ctx *hctx; 3784 int k; 3785 3786 __ctx->cpu = i; 3787 spin_lock_init(&__ctx->lock); 3788 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3789 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3790 3791 __ctx->queue = q; 3792 3793 /* 3794 * Set local node, IFF we have more than one hw queue. If 3795 * not, we remain on the home node of the device 3796 */ 3797 for (j = 0; j < set->nr_maps; j++) { 3798 hctx = blk_mq_map_queue_type(q, j, i); 3799 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3800 hctx->numa_node = cpu_to_node(i); 3801 } 3802 } 3803 } 3804 3805 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3806 unsigned int hctx_idx, 3807 unsigned int depth) 3808 { 3809 struct blk_mq_tags *tags; 3810 int ret; 3811 3812 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3813 if (!tags) 3814 return NULL; 3815 3816 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3817 if (ret) { 3818 blk_mq_free_rq_map(tags); 3819 return NULL; 3820 } 3821 3822 return tags; 3823 } 3824 3825 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3826 int hctx_idx) 3827 { 3828 if (blk_mq_is_shared_tags(set->flags)) { 3829 set->tags[hctx_idx] = set->shared_tags; 3830 3831 return true; 3832 } 3833 3834 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3835 set->queue_depth); 3836 3837 return set->tags[hctx_idx]; 3838 } 3839 3840 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3841 struct blk_mq_tags *tags, 3842 unsigned int hctx_idx) 3843 { 3844 if (tags) { 3845 blk_mq_free_rqs(set, tags, hctx_idx); 3846 blk_mq_free_rq_map(tags); 3847 } 3848 } 3849 3850 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3851 unsigned int hctx_idx) 3852 { 3853 if (!blk_mq_is_shared_tags(set->flags)) 3854 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3855 3856 set->tags[hctx_idx] = NULL; 3857 } 3858 3859 static void blk_mq_map_swqueue(struct request_queue *q) 3860 { 3861 unsigned int j, hctx_idx; 3862 unsigned long i; 3863 struct blk_mq_hw_ctx *hctx; 3864 struct blk_mq_ctx *ctx; 3865 struct blk_mq_tag_set *set = q->tag_set; 3866 3867 queue_for_each_hw_ctx(q, hctx, i) { 3868 cpumask_clear(hctx->cpumask); 3869 hctx->nr_ctx = 0; 3870 hctx->dispatch_from = NULL; 3871 } 3872 3873 /* 3874 * Map software to hardware queues. 3875 * 3876 * If the cpu isn't present, the cpu is mapped to first hctx. 3877 */ 3878 for_each_possible_cpu(i) { 3879 3880 ctx = per_cpu_ptr(q->queue_ctx, i); 3881 for (j = 0; j < set->nr_maps; j++) { 3882 if (!set->map[j].nr_queues) { 3883 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3884 HCTX_TYPE_DEFAULT, i); 3885 continue; 3886 } 3887 hctx_idx = set->map[j].mq_map[i]; 3888 /* unmapped hw queue can be remapped after CPU topo changed */ 3889 if (!set->tags[hctx_idx] && 3890 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3891 /* 3892 * If tags initialization fail for some hctx, 3893 * that hctx won't be brought online. In this 3894 * case, remap the current ctx to hctx[0] which 3895 * is guaranteed to always have tags allocated 3896 */ 3897 set->map[j].mq_map[i] = 0; 3898 } 3899 3900 hctx = blk_mq_map_queue_type(q, j, i); 3901 ctx->hctxs[j] = hctx; 3902 /* 3903 * If the CPU is already set in the mask, then we've 3904 * mapped this one already. This can happen if 3905 * devices share queues across queue maps. 3906 */ 3907 if (cpumask_test_cpu(i, hctx->cpumask)) 3908 continue; 3909 3910 cpumask_set_cpu(i, hctx->cpumask); 3911 hctx->type = j; 3912 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3913 hctx->ctxs[hctx->nr_ctx++] = ctx; 3914 3915 /* 3916 * If the nr_ctx type overflows, we have exceeded the 3917 * amount of sw queues we can support. 3918 */ 3919 BUG_ON(!hctx->nr_ctx); 3920 } 3921 3922 for (; j < HCTX_MAX_TYPES; j++) 3923 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3924 HCTX_TYPE_DEFAULT, i); 3925 } 3926 3927 queue_for_each_hw_ctx(q, hctx, i) { 3928 /* 3929 * If no software queues are mapped to this hardware queue, 3930 * disable it and free the request entries. 3931 */ 3932 if (!hctx->nr_ctx) { 3933 /* Never unmap queue 0. We need it as a 3934 * fallback in case of a new remap fails 3935 * allocation 3936 */ 3937 if (i) 3938 __blk_mq_free_map_and_rqs(set, i); 3939 3940 hctx->tags = NULL; 3941 continue; 3942 } 3943 3944 hctx->tags = set->tags[i]; 3945 WARN_ON(!hctx->tags); 3946 3947 /* 3948 * Set the map size to the number of mapped software queues. 3949 * This is more accurate and more efficient than looping 3950 * over all possibly mapped software queues. 3951 */ 3952 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3953 3954 /* 3955 * Initialize batch roundrobin counts 3956 */ 3957 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3958 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3959 } 3960 } 3961 3962 /* 3963 * Caller needs to ensure that we're either frozen/quiesced, or that 3964 * the queue isn't live yet. 3965 */ 3966 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3967 { 3968 struct blk_mq_hw_ctx *hctx; 3969 unsigned long i; 3970 3971 queue_for_each_hw_ctx(q, hctx, i) { 3972 if (shared) { 3973 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3974 } else { 3975 blk_mq_tag_idle(hctx); 3976 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3977 } 3978 } 3979 } 3980 3981 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3982 bool shared) 3983 { 3984 struct request_queue *q; 3985 3986 lockdep_assert_held(&set->tag_list_lock); 3987 3988 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3989 blk_mq_freeze_queue(q); 3990 queue_set_hctx_shared(q, shared); 3991 blk_mq_unfreeze_queue(q); 3992 } 3993 } 3994 3995 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3996 { 3997 struct blk_mq_tag_set *set = q->tag_set; 3998 3999 mutex_lock(&set->tag_list_lock); 4000 list_del(&q->tag_set_list); 4001 if (list_is_singular(&set->tag_list)) { 4002 /* just transitioned to unshared */ 4003 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4004 /* update existing queue */ 4005 blk_mq_update_tag_set_shared(set, false); 4006 } 4007 mutex_unlock(&set->tag_list_lock); 4008 INIT_LIST_HEAD(&q->tag_set_list); 4009 } 4010 4011 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4012 struct request_queue *q) 4013 { 4014 mutex_lock(&set->tag_list_lock); 4015 4016 /* 4017 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4018 */ 4019 if (!list_empty(&set->tag_list) && 4020 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4021 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4022 /* update existing queue */ 4023 blk_mq_update_tag_set_shared(set, true); 4024 } 4025 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4026 queue_set_hctx_shared(q, true); 4027 list_add_tail(&q->tag_set_list, &set->tag_list); 4028 4029 mutex_unlock(&set->tag_list_lock); 4030 } 4031 4032 /* All allocations will be freed in release handler of q->mq_kobj */ 4033 static int blk_mq_alloc_ctxs(struct request_queue *q) 4034 { 4035 struct blk_mq_ctxs *ctxs; 4036 int cpu; 4037 4038 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4039 if (!ctxs) 4040 return -ENOMEM; 4041 4042 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4043 if (!ctxs->queue_ctx) 4044 goto fail; 4045 4046 for_each_possible_cpu(cpu) { 4047 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4048 ctx->ctxs = ctxs; 4049 } 4050 4051 q->mq_kobj = &ctxs->kobj; 4052 q->queue_ctx = ctxs->queue_ctx; 4053 4054 return 0; 4055 fail: 4056 kfree(ctxs); 4057 return -ENOMEM; 4058 } 4059 4060 /* 4061 * It is the actual release handler for mq, but we do it from 4062 * request queue's release handler for avoiding use-after-free 4063 * and headache because q->mq_kobj shouldn't have been introduced, 4064 * but we can't group ctx/kctx kobj without it. 4065 */ 4066 void blk_mq_release(struct request_queue *q) 4067 { 4068 struct blk_mq_hw_ctx *hctx, *next; 4069 unsigned long i; 4070 4071 queue_for_each_hw_ctx(q, hctx, i) 4072 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4073 4074 /* all hctx are in .unused_hctx_list now */ 4075 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4076 list_del_init(&hctx->hctx_list); 4077 kobject_put(&hctx->kobj); 4078 } 4079 4080 xa_destroy(&q->hctx_table); 4081 4082 /* 4083 * release .mq_kobj and sw queue's kobject now because 4084 * both share lifetime with request queue. 4085 */ 4086 blk_mq_sysfs_deinit(q); 4087 } 4088 4089 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4090 void *queuedata) 4091 { 4092 struct request_queue *q; 4093 int ret; 4094 4095 q = blk_alloc_queue(set->numa_node); 4096 if (!q) 4097 return ERR_PTR(-ENOMEM); 4098 q->queuedata = queuedata; 4099 ret = blk_mq_init_allocated_queue(set, q); 4100 if (ret) { 4101 blk_put_queue(q); 4102 return ERR_PTR(ret); 4103 } 4104 return q; 4105 } 4106 4107 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4108 { 4109 return blk_mq_init_queue_data(set, NULL); 4110 } 4111 EXPORT_SYMBOL(blk_mq_init_queue); 4112 4113 /** 4114 * blk_mq_destroy_queue - shutdown a request queue 4115 * @q: request queue to shutdown 4116 * 4117 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4118 * requests will be failed with -ENODEV. The caller is responsible for dropping 4119 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4120 * 4121 * Context: can sleep 4122 */ 4123 void blk_mq_destroy_queue(struct request_queue *q) 4124 { 4125 WARN_ON_ONCE(!queue_is_mq(q)); 4126 WARN_ON_ONCE(blk_queue_registered(q)); 4127 4128 might_sleep(); 4129 4130 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4131 blk_queue_start_drain(q); 4132 blk_mq_freeze_queue_wait(q); 4133 4134 blk_sync_queue(q); 4135 blk_mq_cancel_work_sync(q); 4136 blk_mq_exit_queue(q); 4137 } 4138 EXPORT_SYMBOL(blk_mq_destroy_queue); 4139 4140 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4141 struct lock_class_key *lkclass) 4142 { 4143 struct request_queue *q; 4144 struct gendisk *disk; 4145 4146 q = blk_mq_init_queue_data(set, queuedata); 4147 if (IS_ERR(q)) 4148 return ERR_CAST(q); 4149 4150 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4151 if (!disk) { 4152 blk_mq_destroy_queue(q); 4153 blk_put_queue(q); 4154 return ERR_PTR(-ENOMEM); 4155 } 4156 set_bit(GD_OWNS_QUEUE, &disk->state); 4157 return disk; 4158 } 4159 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4160 4161 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4162 struct lock_class_key *lkclass) 4163 { 4164 struct gendisk *disk; 4165 4166 if (!blk_get_queue(q)) 4167 return NULL; 4168 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4169 if (!disk) 4170 blk_put_queue(q); 4171 return disk; 4172 } 4173 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4174 4175 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4176 struct blk_mq_tag_set *set, struct request_queue *q, 4177 int hctx_idx, int node) 4178 { 4179 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4180 4181 /* reuse dead hctx first */ 4182 spin_lock(&q->unused_hctx_lock); 4183 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4184 if (tmp->numa_node == node) { 4185 hctx = tmp; 4186 break; 4187 } 4188 } 4189 if (hctx) 4190 list_del_init(&hctx->hctx_list); 4191 spin_unlock(&q->unused_hctx_lock); 4192 4193 if (!hctx) 4194 hctx = blk_mq_alloc_hctx(q, set, node); 4195 if (!hctx) 4196 goto fail; 4197 4198 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4199 goto free_hctx; 4200 4201 return hctx; 4202 4203 free_hctx: 4204 kobject_put(&hctx->kobj); 4205 fail: 4206 return NULL; 4207 } 4208 4209 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4210 struct request_queue *q) 4211 { 4212 struct blk_mq_hw_ctx *hctx; 4213 unsigned long i, j; 4214 4215 /* protect against switching io scheduler */ 4216 mutex_lock(&q->sysfs_lock); 4217 for (i = 0; i < set->nr_hw_queues; i++) { 4218 int old_node; 4219 int node = blk_mq_get_hctx_node(set, i); 4220 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4221 4222 if (old_hctx) { 4223 old_node = old_hctx->numa_node; 4224 blk_mq_exit_hctx(q, set, old_hctx, i); 4225 } 4226 4227 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4228 if (!old_hctx) 4229 break; 4230 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4231 node, old_node); 4232 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4233 WARN_ON_ONCE(!hctx); 4234 } 4235 } 4236 /* 4237 * Increasing nr_hw_queues fails. Free the newly allocated 4238 * hctxs and keep the previous q->nr_hw_queues. 4239 */ 4240 if (i != set->nr_hw_queues) { 4241 j = q->nr_hw_queues; 4242 } else { 4243 j = i; 4244 q->nr_hw_queues = set->nr_hw_queues; 4245 } 4246 4247 xa_for_each_start(&q->hctx_table, j, hctx, j) 4248 blk_mq_exit_hctx(q, set, hctx, j); 4249 mutex_unlock(&q->sysfs_lock); 4250 } 4251 4252 static void blk_mq_update_poll_flag(struct request_queue *q) 4253 { 4254 struct blk_mq_tag_set *set = q->tag_set; 4255 4256 if (set->nr_maps > HCTX_TYPE_POLL && 4257 set->map[HCTX_TYPE_POLL].nr_queues) 4258 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4259 else 4260 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4261 } 4262 4263 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4264 struct request_queue *q) 4265 { 4266 /* mark the queue as mq asap */ 4267 q->mq_ops = set->ops; 4268 4269 if (blk_mq_alloc_ctxs(q)) 4270 goto err_exit; 4271 4272 /* init q->mq_kobj and sw queues' kobjects */ 4273 blk_mq_sysfs_init(q); 4274 4275 INIT_LIST_HEAD(&q->unused_hctx_list); 4276 spin_lock_init(&q->unused_hctx_lock); 4277 4278 xa_init(&q->hctx_table); 4279 4280 blk_mq_realloc_hw_ctxs(set, q); 4281 if (!q->nr_hw_queues) 4282 goto err_hctxs; 4283 4284 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4285 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4286 4287 q->tag_set = set; 4288 4289 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4290 blk_mq_update_poll_flag(q); 4291 4292 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4293 INIT_LIST_HEAD(&q->flush_list); 4294 INIT_LIST_HEAD(&q->requeue_list); 4295 spin_lock_init(&q->requeue_lock); 4296 4297 q->nr_requests = set->queue_depth; 4298 4299 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4300 blk_mq_add_queue_tag_set(set, q); 4301 blk_mq_map_swqueue(q); 4302 return 0; 4303 4304 err_hctxs: 4305 blk_mq_release(q); 4306 err_exit: 4307 q->mq_ops = NULL; 4308 return -ENOMEM; 4309 } 4310 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4311 4312 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4313 void blk_mq_exit_queue(struct request_queue *q) 4314 { 4315 struct blk_mq_tag_set *set = q->tag_set; 4316 4317 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4318 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4319 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4320 blk_mq_del_queue_tag_set(q); 4321 } 4322 4323 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4324 { 4325 int i; 4326 4327 if (blk_mq_is_shared_tags(set->flags)) { 4328 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4329 BLK_MQ_NO_HCTX_IDX, 4330 set->queue_depth); 4331 if (!set->shared_tags) 4332 return -ENOMEM; 4333 } 4334 4335 for (i = 0; i < set->nr_hw_queues; i++) { 4336 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4337 goto out_unwind; 4338 cond_resched(); 4339 } 4340 4341 return 0; 4342 4343 out_unwind: 4344 while (--i >= 0) 4345 __blk_mq_free_map_and_rqs(set, i); 4346 4347 if (blk_mq_is_shared_tags(set->flags)) { 4348 blk_mq_free_map_and_rqs(set, set->shared_tags, 4349 BLK_MQ_NO_HCTX_IDX); 4350 } 4351 4352 return -ENOMEM; 4353 } 4354 4355 /* 4356 * Allocate the request maps associated with this tag_set. Note that this 4357 * may reduce the depth asked for, if memory is tight. set->queue_depth 4358 * will be updated to reflect the allocated depth. 4359 */ 4360 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4361 { 4362 unsigned int depth; 4363 int err; 4364 4365 depth = set->queue_depth; 4366 do { 4367 err = __blk_mq_alloc_rq_maps(set); 4368 if (!err) 4369 break; 4370 4371 set->queue_depth >>= 1; 4372 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4373 err = -ENOMEM; 4374 break; 4375 } 4376 } while (set->queue_depth); 4377 4378 if (!set->queue_depth || err) { 4379 pr_err("blk-mq: failed to allocate request map\n"); 4380 return -ENOMEM; 4381 } 4382 4383 if (depth != set->queue_depth) 4384 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4385 depth, set->queue_depth); 4386 4387 return 0; 4388 } 4389 4390 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4391 { 4392 /* 4393 * blk_mq_map_queues() and multiple .map_queues() implementations 4394 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4395 * number of hardware queues. 4396 */ 4397 if (set->nr_maps == 1) 4398 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4399 4400 if (set->ops->map_queues && !is_kdump_kernel()) { 4401 int i; 4402 4403 /* 4404 * transport .map_queues is usually done in the following 4405 * way: 4406 * 4407 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4408 * mask = get_cpu_mask(queue) 4409 * for_each_cpu(cpu, mask) 4410 * set->map[x].mq_map[cpu] = queue; 4411 * } 4412 * 4413 * When we need to remap, the table has to be cleared for 4414 * killing stale mapping since one CPU may not be mapped 4415 * to any hw queue. 4416 */ 4417 for (i = 0; i < set->nr_maps; i++) 4418 blk_mq_clear_mq_map(&set->map[i]); 4419 4420 set->ops->map_queues(set); 4421 } else { 4422 BUG_ON(set->nr_maps > 1); 4423 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4424 } 4425 } 4426 4427 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4428 int new_nr_hw_queues) 4429 { 4430 struct blk_mq_tags **new_tags; 4431 int i; 4432 4433 if (set->nr_hw_queues >= new_nr_hw_queues) 4434 goto done; 4435 4436 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4437 GFP_KERNEL, set->numa_node); 4438 if (!new_tags) 4439 return -ENOMEM; 4440 4441 if (set->tags) 4442 memcpy(new_tags, set->tags, set->nr_hw_queues * 4443 sizeof(*set->tags)); 4444 kfree(set->tags); 4445 set->tags = new_tags; 4446 4447 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4448 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4449 while (--i >= set->nr_hw_queues) 4450 __blk_mq_free_map_and_rqs(set, i); 4451 return -ENOMEM; 4452 } 4453 cond_resched(); 4454 } 4455 4456 done: 4457 set->nr_hw_queues = new_nr_hw_queues; 4458 return 0; 4459 } 4460 4461 /* 4462 * Alloc a tag set to be associated with one or more request queues. 4463 * May fail with EINVAL for various error conditions. May adjust the 4464 * requested depth down, if it's too large. In that case, the set 4465 * value will be stored in set->queue_depth. 4466 */ 4467 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4468 { 4469 int i, ret; 4470 4471 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4472 4473 if (!set->nr_hw_queues) 4474 return -EINVAL; 4475 if (!set->queue_depth) 4476 return -EINVAL; 4477 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4478 return -EINVAL; 4479 4480 if (!set->ops->queue_rq) 4481 return -EINVAL; 4482 4483 if (!set->ops->get_budget ^ !set->ops->put_budget) 4484 return -EINVAL; 4485 4486 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4487 pr_info("blk-mq: reduced tag depth to %u\n", 4488 BLK_MQ_MAX_DEPTH); 4489 set->queue_depth = BLK_MQ_MAX_DEPTH; 4490 } 4491 4492 if (!set->nr_maps) 4493 set->nr_maps = 1; 4494 else if (set->nr_maps > HCTX_MAX_TYPES) 4495 return -EINVAL; 4496 4497 /* 4498 * If a crashdump is active, then we are potentially in a very 4499 * memory constrained environment. Limit us to 1 queue and 4500 * 64 tags to prevent using too much memory. 4501 */ 4502 if (is_kdump_kernel()) { 4503 set->nr_hw_queues = 1; 4504 set->nr_maps = 1; 4505 set->queue_depth = min(64U, set->queue_depth); 4506 } 4507 /* 4508 * There is no use for more h/w queues than cpus if we just have 4509 * a single map 4510 */ 4511 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4512 set->nr_hw_queues = nr_cpu_ids; 4513 4514 if (set->flags & BLK_MQ_F_BLOCKING) { 4515 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4516 if (!set->srcu) 4517 return -ENOMEM; 4518 ret = init_srcu_struct(set->srcu); 4519 if (ret) 4520 goto out_free_srcu; 4521 } 4522 4523 ret = -ENOMEM; 4524 set->tags = kcalloc_node(set->nr_hw_queues, 4525 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4526 set->numa_node); 4527 if (!set->tags) 4528 goto out_cleanup_srcu; 4529 4530 for (i = 0; i < set->nr_maps; i++) { 4531 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4532 sizeof(set->map[i].mq_map[0]), 4533 GFP_KERNEL, set->numa_node); 4534 if (!set->map[i].mq_map) 4535 goto out_free_mq_map; 4536 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4537 } 4538 4539 blk_mq_update_queue_map(set); 4540 4541 ret = blk_mq_alloc_set_map_and_rqs(set); 4542 if (ret) 4543 goto out_free_mq_map; 4544 4545 mutex_init(&set->tag_list_lock); 4546 INIT_LIST_HEAD(&set->tag_list); 4547 4548 return 0; 4549 4550 out_free_mq_map: 4551 for (i = 0; i < set->nr_maps; i++) { 4552 kfree(set->map[i].mq_map); 4553 set->map[i].mq_map = NULL; 4554 } 4555 kfree(set->tags); 4556 set->tags = NULL; 4557 out_cleanup_srcu: 4558 if (set->flags & BLK_MQ_F_BLOCKING) 4559 cleanup_srcu_struct(set->srcu); 4560 out_free_srcu: 4561 if (set->flags & BLK_MQ_F_BLOCKING) 4562 kfree(set->srcu); 4563 return ret; 4564 } 4565 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4566 4567 /* allocate and initialize a tagset for a simple single-queue device */ 4568 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4569 const struct blk_mq_ops *ops, unsigned int queue_depth, 4570 unsigned int set_flags) 4571 { 4572 memset(set, 0, sizeof(*set)); 4573 set->ops = ops; 4574 set->nr_hw_queues = 1; 4575 set->nr_maps = 1; 4576 set->queue_depth = queue_depth; 4577 set->numa_node = NUMA_NO_NODE; 4578 set->flags = set_flags; 4579 return blk_mq_alloc_tag_set(set); 4580 } 4581 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4582 4583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4584 { 4585 int i, j; 4586 4587 for (i = 0; i < set->nr_hw_queues; i++) 4588 __blk_mq_free_map_and_rqs(set, i); 4589 4590 if (blk_mq_is_shared_tags(set->flags)) { 4591 blk_mq_free_map_and_rqs(set, set->shared_tags, 4592 BLK_MQ_NO_HCTX_IDX); 4593 } 4594 4595 for (j = 0; j < set->nr_maps; j++) { 4596 kfree(set->map[j].mq_map); 4597 set->map[j].mq_map = NULL; 4598 } 4599 4600 kfree(set->tags); 4601 set->tags = NULL; 4602 if (set->flags & BLK_MQ_F_BLOCKING) { 4603 cleanup_srcu_struct(set->srcu); 4604 kfree(set->srcu); 4605 } 4606 } 4607 EXPORT_SYMBOL(blk_mq_free_tag_set); 4608 4609 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4610 { 4611 struct blk_mq_tag_set *set = q->tag_set; 4612 struct blk_mq_hw_ctx *hctx; 4613 int ret; 4614 unsigned long i; 4615 4616 if (!set) 4617 return -EINVAL; 4618 4619 if (q->nr_requests == nr) 4620 return 0; 4621 4622 blk_mq_freeze_queue(q); 4623 blk_mq_quiesce_queue(q); 4624 4625 ret = 0; 4626 queue_for_each_hw_ctx(q, hctx, i) { 4627 if (!hctx->tags) 4628 continue; 4629 /* 4630 * If we're using an MQ scheduler, just update the scheduler 4631 * queue depth. This is similar to what the old code would do. 4632 */ 4633 if (hctx->sched_tags) { 4634 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4635 nr, true); 4636 } else { 4637 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4638 false); 4639 } 4640 if (ret) 4641 break; 4642 if (q->elevator && q->elevator->type->ops.depth_updated) 4643 q->elevator->type->ops.depth_updated(hctx); 4644 } 4645 if (!ret) { 4646 q->nr_requests = nr; 4647 if (blk_mq_is_shared_tags(set->flags)) { 4648 if (q->elevator) 4649 blk_mq_tag_update_sched_shared_tags(q); 4650 else 4651 blk_mq_tag_resize_shared_tags(set, nr); 4652 } 4653 } 4654 4655 blk_mq_unquiesce_queue(q); 4656 blk_mq_unfreeze_queue(q); 4657 4658 return ret; 4659 } 4660 4661 /* 4662 * request_queue and elevator_type pair. 4663 * It is just used by __blk_mq_update_nr_hw_queues to cache 4664 * the elevator_type associated with a request_queue. 4665 */ 4666 struct blk_mq_qe_pair { 4667 struct list_head node; 4668 struct request_queue *q; 4669 struct elevator_type *type; 4670 }; 4671 4672 /* 4673 * Cache the elevator_type in qe pair list and switch the 4674 * io scheduler to 'none' 4675 */ 4676 static bool blk_mq_elv_switch_none(struct list_head *head, 4677 struct request_queue *q) 4678 { 4679 struct blk_mq_qe_pair *qe; 4680 4681 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4682 if (!qe) 4683 return false; 4684 4685 /* q->elevator needs protection from ->sysfs_lock */ 4686 mutex_lock(&q->sysfs_lock); 4687 4688 /* the check has to be done with holding sysfs_lock */ 4689 if (!q->elevator) { 4690 kfree(qe); 4691 goto unlock; 4692 } 4693 4694 INIT_LIST_HEAD(&qe->node); 4695 qe->q = q; 4696 qe->type = q->elevator->type; 4697 /* keep a reference to the elevator module as we'll switch back */ 4698 __elevator_get(qe->type); 4699 list_add(&qe->node, head); 4700 elevator_disable(q); 4701 unlock: 4702 mutex_unlock(&q->sysfs_lock); 4703 4704 return true; 4705 } 4706 4707 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4708 struct request_queue *q) 4709 { 4710 struct blk_mq_qe_pair *qe; 4711 4712 list_for_each_entry(qe, head, node) 4713 if (qe->q == q) 4714 return qe; 4715 4716 return NULL; 4717 } 4718 4719 static void blk_mq_elv_switch_back(struct list_head *head, 4720 struct request_queue *q) 4721 { 4722 struct blk_mq_qe_pair *qe; 4723 struct elevator_type *t; 4724 4725 qe = blk_lookup_qe_pair(head, q); 4726 if (!qe) 4727 return; 4728 t = qe->type; 4729 list_del(&qe->node); 4730 kfree(qe); 4731 4732 mutex_lock(&q->sysfs_lock); 4733 elevator_switch(q, t); 4734 /* drop the reference acquired in blk_mq_elv_switch_none */ 4735 elevator_put(t); 4736 mutex_unlock(&q->sysfs_lock); 4737 } 4738 4739 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4740 int nr_hw_queues) 4741 { 4742 struct request_queue *q; 4743 LIST_HEAD(head); 4744 int prev_nr_hw_queues = set->nr_hw_queues; 4745 int i; 4746 4747 lockdep_assert_held(&set->tag_list_lock); 4748 4749 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4750 nr_hw_queues = nr_cpu_ids; 4751 if (nr_hw_queues < 1) 4752 return; 4753 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4754 return; 4755 4756 list_for_each_entry(q, &set->tag_list, tag_set_list) 4757 blk_mq_freeze_queue(q); 4758 /* 4759 * Switch IO scheduler to 'none', cleaning up the data associated 4760 * with the previous scheduler. We will switch back once we are done 4761 * updating the new sw to hw queue mappings. 4762 */ 4763 list_for_each_entry(q, &set->tag_list, tag_set_list) 4764 if (!blk_mq_elv_switch_none(&head, q)) 4765 goto switch_back; 4766 4767 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4768 blk_mq_debugfs_unregister_hctxs(q); 4769 blk_mq_sysfs_unregister_hctxs(q); 4770 } 4771 4772 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4773 goto reregister; 4774 4775 fallback: 4776 blk_mq_update_queue_map(set); 4777 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4778 blk_mq_realloc_hw_ctxs(set, q); 4779 blk_mq_update_poll_flag(q); 4780 if (q->nr_hw_queues != set->nr_hw_queues) { 4781 int i = prev_nr_hw_queues; 4782 4783 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4784 nr_hw_queues, prev_nr_hw_queues); 4785 for (; i < set->nr_hw_queues; i++) 4786 __blk_mq_free_map_and_rqs(set, i); 4787 4788 set->nr_hw_queues = prev_nr_hw_queues; 4789 goto fallback; 4790 } 4791 blk_mq_map_swqueue(q); 4792 } 4793 4794 reregister: 4795 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4796 blk_mq_sysfs_register_hctxs(q); 4797 blk_mq_debugfs_register_hctxs(q); 4798 } 4799 4800 switch_back: 4801 list_for_each_entry(q, &set->tag_list, tag_set_list) 4802 blk_mq_elv_switch_back(&head, q); 4803 4804 list_for_each_entry(q, &set->tag_list, tag_set_list) 4805 blk_mq_unfreeze_queue(q); 4806 4807 /* Free the excess tags when nr_hw_queues shrink. */ 4808 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4809 __blk_mq_free_map_and_rqs(set, i); 4810 } 4811 4812 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4813 { 4814 mutex_lock(&set->tag_list_lock); 4815 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4816 mutex_unlock(&set->tag_list_lock); 4817 } 4818 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4819 4820 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4821 struct io_comp_batch *iob, unsigned int flags) 4822 { 4823 long state = get_current_state(); 4824 int ret; 4825 4826 do { 4827 ret = q->mq_ops->poll(hctx, iob); 4828 if (ret > 0) { 4829 __set_current_state(TASK_RUNNING); 4830 return ret; 4831 } 4832 4833 if (signal_pending_state(state, current)) 4834 __set_current_state(TASK_RUNNING); 4835 if (task_is_running(current)) 4836 return 1; 4837 4838 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4839 break; 4840 cpu_relax(); 4841 } while (!need_resched()); 4842 4843 __set_current_state(TASK_RUNNING); 4844 return 0; 4845 } 4846 4847 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4848 struct io_comp_batch *iob, unsigned int flags) 4849 { 4850 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4851 4852 return blk_hctx_poll(q, hctx, iob, flags); 4853 } 4854 4855 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4856 unsigned int poll_flags) 4857 { 4858 struct request_queue *q = rq->q; 4859 int ret; 4860 4861 if (!blk_rq_is_poll(rq)) 4862 return 0; 4863 if (!percpu_ref_tryget(&q->q_usage_counter)) 4864 return 0; 4865 4866 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4867 blk_queue_exit(q); 4868 4869 return ret; 4870 } 4871 EXPORT_SYMBOL_GPL(blk_rq_poll); 4872 4873 unsigned int blk_mq_rq_cpu(struct request *rq) 4874 { 4875 return rq->mq_ctx->cpu; 4876 } 4877 EXPORT_SYMBOL(blk_mq_rq_cpu); 4878 4879 void blk_mq_cancel_work_sync(struct request_queue *q) 4880 { 4881 struct blk_mq_hw_ctx *hctx; 4882 unsigned long i; 4883 4884 cancel_delayed_work_sync(&q->requeue_work); 4885 4886 queue_for_each_hw_ctx(q, hctx, i) 4887 cancel_delayed_work_sync(&hctx->run_work); 4888 } 4889 4890 static int __init blk_mq_init(void) 4891 { 4892 int i; 4893 4894 for_each_possible_cpu(i) 4895 init_llist_head(&per_cpu(blk_cpu_done, i)); 4896 for_each_possible_cpu(i) 4897 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4898 __blk_mq_complete_request_remote, NULL); 4899 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4900 4901 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4902 "block/softirq:dead", NULL, 4903 blk_softirq_cpu_dead); 4904 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4905 blk_mq_hctx_notify_dead); 4906 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4907 blk_mq_hctx_notify_online, 4908 blk_mq_hctx_notify_offline); 4909 return 0; 4910 } 4911 subsys_initcall(blk_mq_init); 4912