xref: /linux/block/blk-mq.c (revision b1a54551dd9ed5ef1763b97b35a0999ca002b95c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	if (!(data->rq_flags & RQF_SCHED_TAGS))
430 		blk_mq_add_active_requests(data->hctx, nr);
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		/*
454 		 * All requests use scheduler tags when an I/O scheduler is
455 		 * enabled for the queue.
456 		 */
457 		data->rq_flags |= RQF_SCHED_TAGS;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list.
462 		 */
463 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464 		    !blk_op_is_passthrough(data->cmd_flags)) {
465 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
466 
467 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468 
469 			data->rq_flags |= RQF_USE_SCHED;
470 			if (ops->limit_depth)
471 				ops->limit_depth(data->cmd_flags, data);
472 		}
473 	}
474 
475 retry:
476 	data->ctx = blk_mq_get_ctx(q);
477 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478 	if (!(data->rq_flags & RQF_SCHED_TAGS))
479 		blk_mq_tag_busy(data->hctx);
480 
481 	if (data->flags & BLK_MQ_REQ_RESERVED)
482 		data->rq_flags |= RQF_RESV;
483 
484 	/*
485 	 * Try batched alloc if we want more than 1 tag.
486 	 */
487 	if (data->nr_tags > 1) {
488 		rq = __blk_mq_alloc_requests_batch(data);
489 		if (rq) {
490 			blk_mq_rq_time_init(rq, alloc_time_ns);
491 			return rq;
492 		}
493 		data->nr_tags = 1;
494 	}
495 
496 	/*
497 	 * Waiting allocations only fail because of an inactive hctx.  In that
498 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
499 	 * should have migrated us to an online CPU by now.
500 	 */
501 	tag = blk_mq_get_tag(data);
502 	if (tag == BLK_MQ_NO_TAG) {
503 		if (data->flags & BLK_MQ_REQ_NOWAIT)
504 			return NULL;
505 		/*
506 		 * Give up the CPU and sleep for a random short time to
507 		 * ensure that thread using a realtime scheduling class
508 		 * are migrated off the CPU, and thus off the hctx that
509 		 * is going away.
510 		 */
511 		msleep(3);
512 		goto retry;
513 	}
514 
515 	if (!(data->rq_flags & RQF_SCHED_TAGS))
516 		blk_mq_inc_active_requests(data->hctx);
517 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518 	blk_mq_rq_time_init(rq, alloc_time_ns);
519 	return rq;
520 }
521 
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523 					    struct blk_plug *plug,
524 					    blk_opf_t opf,
525 					    blk_mq_req_flags_t flags)
526 {
527 	struct blk_mq_alloc_data data = {
528 		.q		= q,
529 		.flags		= flags,
530 		.cmd_flags	= opf,
531 		.nr_tags	= plug->nr_ios,
532 		.cached_rq	= &plug->cached_rq,
533 	};
534 	struct request *rq;
535 
536 	if (blk_queue_enter(q, flags))
537 		return NULL;
538 
539 	plug->nr_ios = 1;
540 
541 	rq = __blk_mq_alloc_requests(&data);
542 	if (unlikely(!rq))
543 		blk_queue_exit(q);
544 	return rq;
545 }
546 
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 						   blk_opf_t opf,
549 						   blk_mq_req_flags_t flags)
550 {
551 	struct blk_plug *plug = current->plug;
552 	struct request *rq;
553 
554 	if (!plug)
555 		return NULL;
556 
557 	if (rq_list_empty(plug->cached_rq)) {
558 		if (plug->nr_ios == 1)
559 			return NULL;
560 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561 		if (!rq)
562 			return NULL;
563 	} else {
564 		rq = rq_list_peek(&plug->cached_rq);
565 		if (!rq || rq->q != q)
566 			return NULL;
567 
568 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 			return NULL;
570 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571 			return NULL;
572 
573 		plug->cached_rq = rq_list_next(rq);
574 		blk_mq_rq_time_init(rq, 0);
575 	}
576 
577 	rq->cmd_flags = opf;
578 	INIT_LIST_HEAD(&rq->queuelist);
579 	return rq;
580 }
581 
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583 		blk_mq_req_flags_t flags)
584 {
585 	struct request *rq;
586 
587 	rq = blk_mq_alloc_cached_request(q, opf, flags);
588 	if (!rq) {
589 		struct blk_mq_alloc_data data = {
590 			.q		= q,
591 			.flags		= flags,
592 			.cmd_flags	= opf,
593 			.nr_tags	= 1,
594 		};
595 		int ret;
596 
597 		ret = blk_queue_enter(q, flags);
598 		if (ret)
599 			return ERR_PTR(ret);
600 
601 		rq = __blk_mq_alloc_requests(&data);
602 		if (!rq)
603 			goto out_queue_exit;
604 	}
605 	rq->__data_len = 0;
606 	rq->__sector = (sector_t) -1;
607 	rq->bio = rq->biotail = NULL;
608 	return rq;
609 out_queue_exit:
610 	blk_queue_exit(q);
611 	return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614 
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618 	struct blk_mq_alloc_data data = {
619 		.q		= q,
620 		.flags		= flags,
621 		.cmd_flags	= opf,
622 		.nr_tags	= 1,
623 	};
624 	u64 alloc_time_ns = 0;
625 	struct request *rq;
626 	unsigned int cpu;
627 	unsigned int tag;
628 	int ret;
629 
630 	/* alloc_time includes depth and tag waits */
631 	if (blk_queue_rq_alloc_time(q))
632 		alloc_time_ns = ktime_get_ns();
633 
634 	/*
635 	 * If the tag allocator sleeps we could get an allocation for a
636 	 * different hardware context.  No need to complicate the low level
637 	 * allocator for this for the rare use case of a command tied to
638 	 * a specific queue.
639 	 */
640 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642 		return ERR_PTR(-EINVAL);
643 
644 	if (hctx_idx >= q->nr_hw_queues)
645 		return ERR_PTR(-EIO);
646 
647 	ret = blk_queue_enter(q, flags);
648 	if (ret)
649 		return ERR_PTR(ret);
650 
651 	/*
652 	 * Check if the hardware context is actually mapped to anything.
653 	 * If not tell the caller that it should skip this queue.
654 	 */
655 	ret = -EXDEV;
656 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
657 	if (!blk_mq_hw_queue_mapped(data.hctx))
658 		goto out_queue_exit;
659 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660 	if (cpu >= nr_cpu_ids)
661 		goto out_queue_exit;
662 	data.ctx = __blk_mq_get_ctx(q, cpu);
663 
664 	if (q->elevator)
665 		data.rq_flags |= RQF_SCHED_TAGS;
666 	else
667 		blk_mq_tag_busy(data.hctx);
668 
669 	if (flags & BLK_MQ_REQ_RESERVED)
670 		data.rq_flags |= RQF_RESV;
671 
672 	ret = -EWOULDBLOCK;
673 	tag = blk_mq_get_tag(&data);
674 	if (tag == BLK_MQ_NO_TAG)
675 		goto out_queue_exit;
676 	if (!(data.rq_flags & RQF_SCHED_TAGS))
677 		blk_mq_inc_active_requests(data.hctx);
678 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679 	blk_mq_rq_time_init(rq, alloc_time_ns);
680 	rq->__data_len = 0;
681 	rq->__sector = (sector_t) -1;
682 	rq->bio = rq->biotail = NULL;
683 	return rq;
684 
685 out_queue_exit:
686 	blk_queue_exit(q);
687 	return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690 
691 static void blk_mq_finish_request(struct request *rq)
692 {
693 	struct request_queue *q = rq->q;
694 
695 	if (rq->rq_flags & RQF_USE_SCHED) {
696 		q->elevator->type->ops.finish_request(rq);
697 		/*
698 		 * For postflush request that may need to be
699 		 * completed twice, we should clear this flag
700 		 * to avoid double finish_request() on the rq.
701 		 */
702 		rq->rq_flags &= ~RQF_USE_SCHED;
703 	}
704 }
705 
706 static void __blk_mq_free_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 	struct blk_mq_ctx *ctx = rq->mq_ctx;
710 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711 	const int sched_tag = rq->internal_tag;
712 
713 	blk_crypto_free_request(rq);
714 	blk_pm_mark_last_busy(rq);
715 	rq->mq_hctx = NULL;
716 
717 	if (rq->tag != BLK_MQ_NO_TAG) {
718 		blk_mq_dec_active_requests(hctx);
719 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 	}
721 	if (sched_tag != BLK_MQ_NO_TAG)
722 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 	blk_mq_sched_restart(hctx);
724 	blk_queue_exit(q);
725 }
726 
727 void blk_mq_free_request(struct request *rq)
728 {
729 	struct request_queue *q = rq->q;
730 
731 	blk_mq_finish_request(rq);
732 
733 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734 		laptop_io_completion(q->disk->bdi);
735 
736 	rq_qos_done(q, rq);
737 
738 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739 	if (req_ref_put_and_test(rq))
740 		__blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746 	struct request *rq;
747 
748 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749 		blk_mq_free_request(rq);
750 }
751 
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755 		rq->q->disk ? rq->q->disk->disk_name : "?",
756 		(__force unsigned long long) rq->cmd_flags);
757 
758 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759 	       (unsigned long long)blk_rq_pos(rq),
760 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765 
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767 			  unsigned int nbytes, blk_status_t error)
768 {
769 	if (unlikely(error)) {
770 		bio->bi_status = error;
771 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 		/*
773 		 * Partial zone append completions cannot be supported as the
774 		 * BIO fragments may end up not being written sequentially.
775 		 * For such case, force the completed nbytes to be equal to
776 		 * the BIO size so that bio_advance() sets the BIO remaining
777 		 * size to 0 and we end up calling bio_endio() before returning.
778 		 */
779 		if (bio->bi_iter.bi_size != nbytes) {
780 			bio->bi_status = BLK_STS_IOERR;
781 			nbytes = bio->bi_iter.bi_size;
782 		} else {
783 			bio->bi_iter.bi_sector = rq->__sector;
784 		}
785 	}
786 
787 	bio_advance(bio, nbytes);
788 
789 	if (unlikely(rq->rq_flags & RQF_QUIET))
790 		bio_set_flag(bio, BIO_QUIET);
791 	/* don't actually finish bio if it's part of flush sequence */
792 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
793 		bio_endio(bio);
794 }
795 
796 static void blk_account_io_completion(struct request *req, unsigned int bytes)
797 {
798 	if (req->part && blk_do_io_stat(req)) {
799 		const int sgrp = op_stat_group(req_op(req));
800 
801 		part_stat_lock();
802 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
803 		part_stat_unlock();
804 	}
805 }
806 
807 static void blk_print_req_error(struct request *req, blk_status_t status)
808 {
809 	printk_ratelimited(KERN_ERR
810 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
811 		"phys_seg %u prio class %u\n",
812 		blk_status_to_str(status),
813 		req->q->disk ? req->q->disk->disk_name : "?",
814 		blk_rq_pos(req), (__force u32)req_op(req),
815 		blk_op_str(req_op(req)),
816 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
817 		req->nr_phys_segments,
818 		IOPRIO_PRIO_CLASS(req->ioprio));
819 }
820 
821 /*
822  * Fully end IO on a request. Does not support partial completions, or
823  * errors.
824  */
825 static void blk_complete_request(struct request *req)
826 {
827 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
828 	int total_bytes = blk_rq_bytes(req);
829 	struct bio *bio = req->bio;
830 
831 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
832 
833 	if (!bio)
834 		return;
835 
836 #ifdef CONFIG_BLK_DEV_INTEGRITY
837 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
838 		req->q->integrity.profile->complete_fn(req, total_bytes);
839 #endif
840 
841 	/*
842 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
843 	 * bio_endio().  Therefore, the keyslot must be released before that.
844 	 */
845 	blk_crypto_rq_put_keyslot(req);
846 
847 	blk_account_io_completion(req, total_bytes);
848 
849 	do {
850 		struct bio *next = bio->bi_next;
851 
852 		/* Completion has already been traced */
853 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
854 
855 		if (req_op(req) == REQ_OP_ZONE_APPEND)
856 			bio->bi_iter.bi_sector = req->__sector;
857 
858 		if (!is_flush)
859 			bio_endio(bio);
860 		bio = next;
861 	} while (bio);
862 
863 	/*
864 	 * Reset counters so that the request stacking driver
865 	 * can find how many bytes remain in the request
866 	 * later.
867 	 */
868 	if (!req->end_io) {
869 		req->bio = NULL;
870 		req->__data_len = 0;
871 	}
872 }
873 
874 /**
875  * blk_update_request - Complete multiple bytes without completing the request
876  * @req:      the request being processed
877  * @error:    block status code
878  * @nr_bytes: number of bytes to complete for @req
879  *
880  * Description:
881  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
882  *     the request structure even if @req doesn't have leftover.
883  *     If @req has leftover, sets it up for the next range of segments.
884  *
885  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
886  *     %false return from this function.
887  *
888  * Note:
889  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
890  *      except in the consistency check at the end of this function.
891  *
892  * Return:
893  *     %false - this request doesn't have any more data
894  *     %true  - this request has more data
895  **/
896 bool blk_update_request(struct request *req, blk_status_t error,
897 		unsigned int nr_bytes)
898 {
899 	int total_bytes;
900 
901 	trace_block_rq_complete(req, error, nr_bytes);
902 
903 	if (!req->bio)
904 		return false;
905 
906 #ifdef CONFIG_BLK_DEV_INTEGRITY
907 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
908 	    error == BLK_STS_OK)
909 		req->q->integrity.profile->complete_fn(req, nr_bytes);
910 #endif
911 
912 	/*
913 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
914 	 * bio_endio().  Therefore, the keyslot must be released before that.
915 	 */
916 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
917 		__blk_crypto_rq_put_keyslot(req);
918 
919 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
920 		     !(req->rq_flags & RQF_QUIET)) &&
921 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
922 		blk_print_req_error(req, error);
923 		trace_block_rq_error(req, error, nr_bytes);
924 	}
925 
926 	blk_account_io_completion(req, nr_bytes);
927 
928 	total_bytes = 0;
929 	while (req->bio) {
930 		struct bio *bio = req->bio;
931 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
932 
933 		if (bio_bytes == bio->bi_iter.bi_size)
934 			req->bio = bio->bi_next;
935 
936 		/* Completion has already been traced */
937 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
938 		req_bio_endio(req, bio, bio_bytes, error);
939 
940 		total_bytes += bio_bytes;
941 		nr_bytes -= bio_bytes;
942 
943 		if (!nr_bytes)
944 			break;
945 	}
946 
947 	/*
948 	 * completely done
949 	 */
950 	if (!req->bio) {
951 		/*
952 		 * Reset counters so that the request stacking driver
953 		 * can find how many bytes remain in the request
954 		 * later.
955 		 */
956 		req->__data_len = 0;
957 		return false;
958 	}
959 
960 	req->__data_len -= total_bytes;
961 
962 	/* update sector only for requests with clear definition of sector */
963 	if (!blk_rq_is_passthrough(req))
964 		req->__sector += total_bytes >> 9;
965 
966 	/* mixed attributes always follow the first bio */
967 	if (req->rq_flags & RQF_MIXED_MERGE) {
968 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
969 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
970 	}
971 
972 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
973 		/*
974 		 * If total number of sectors is less than the first segment
975 		 * size, something has gone terribly wrong.
976 		 */
977 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
978 			blk_dump_rq_flags(req, "request botched");
979 			req->__data_len = blk_rq_cur_bytes(req);
980 		}
981 
982 		/* recalculate the number of segments */
983 		req->nr_phys_segments = blk_recalc_rq_segments(req);
984 	}
985 
986 	return true;
987 }
988 EXPORT_SYMBOL_GPL(blk_update_request);
989 
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992 	trace_block_io_done(req);
993 
994 	/*
995 	 * Account IO completion.  flush_rq isn't accounted as a
996 	 * normal IO on queueing nor completion.  Accounting the
997 	 * containing request is enough.
998 	 */
999 	if (blk_do_io_stat(req) && req->part &&
1000 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1001 		const int sgrp = op_stat_group(req_op(req));
1002 
1003 		part_stat_lock();
1004 		update_io_ticks(req->part, jiffies, true);
1005 		part_stat_inc(req->part, ios[sgrp]);
1006 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1007 		part_stat_unlock();
1008 	}
1009 }
1010 
1011 static inline void blk_account_io_start(struct request *req)
1012 {
1013 	trace_block_io_start(req);
1014 
1015 	if (blk_do_io_stat(req)) {
1016 		/*
1017 		 * All non-passthrough requests are created from a bio with one
1018 		 * exception: when a flush command that is part of a flush sequence
1019 		 * generated by the state machine in blk-flush.c is cloned onto the
1020 		 * lower device by dm-multipath we can get here without a bio.
1021 		 */
1022 		if (req->bio)
1023 			req->part = req->bio->bi_bdev;
1024 		else
1025 			req->part = req->q->disk->part0;
1026 
1027 		part_stat_lock();
1028 		update_io_ticks(req->part, jiffies, false);
1029 		part_stat_unlock();
1030 	}
1031 }
1032 
1033 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1034 {
1035 	if (rq->rq_flags & RQF_STATS)
1036 		blk_stat_add(rq, now);
1037 
1038 	blk_mq_sched_completed_request(rq, now);
1039 	blk_account_io_done(rq, now);
1040 }
1041 
1042 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1043 {
1044 	if (blk_mq_need_time_stamp(rq))
1045 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1046 
1047 	blk_mq_finish_request(rq);
1048 
1049 	if (rq->end_io) {
1050 		rq_qos_done(rq->q, rq);
1051 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1052 			blk_mq_free_request(rq);
1053 	} else {
1054 		blk_mq_free_request(rq);
1055 	}
1056 }
1057 EXPORT_SYMBOL(__blk_mq_end_request);
1058 
1059 void blk_mq_end_request(struct request *rq, blk_status_t error)
1060 {
1061 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1062 		BUG();
1063 	__blk_mq_end_request(rq, error);
1064 }
1065 EXPORT_SYMBOL(blk_mq_end_request);
1066 
1067 #define TAG_COMP_BATCH		32
1068 
1069 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1070 					  int *tag_array, int nr_tags)
1071 {
1072 	struct request_queue *q = hctx->queue;
1073 
1074 	blk_mq_sub_active_requests(hctx, nr_tags);
1075 
1076 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079 
1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1083 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1084 	struct request *rq;
1085 	u64 now = 0;
1086 
1087 	if (iob->need_ts)
1088 		now = ktime_get_ns();
1089 
1090 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091 		prefetch(rq->bio);
1092 		prefetch(rq->rq_next);
1093 
1094 		blk_complete_request(rq);
1095 		if (iob->need_ts)
1096 			__blk_mq_end_request_acct(rq, now);
1097 
1098 		blk_mq_finish_request(rq);
1099 
1100 		rq_qos_done(rq->q, rq);
1101 
1102 		/*
1103 		 * If end_io handler returns NONE, then it still has
1104 		 * ownership of the request.
1105 		 */
1106 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107 			continue;
1108 
1109 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110 		if (!req_ref_put_and_test(rq))
1111 			continue;
1112 
1113 		blk_crypto_free_request(rq);
1114 		blk_pm_mark_last_busy(rq);
1115 
1116 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117 			if (cur_hctx)
1118 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 			nr_tags = 0;
1120 			cur_hctx = rq->mq_hctx;
1121 		}
1122 		tags[nr_tags++] = rq->tag;
1123 	}
1124 
1125 	if (nr_tags)
1126 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129 
1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133 	struct request *rq, *next;
1134 
1135 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136 		rq->q->mq_ops->complete(rq);
1137 }
1138 
1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143 
1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147 	return 0;
1148 }
1149 
1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154 
1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157 	int cpu = raw_smp_processor_id();
1158 
1159 	if (!IS_ENABLED(CONFIG_SMP) ||
1160 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161 		return false;
1162 	/*
1163 	 * With force threaded interrupts enabled, raising softirq from an SMP
1164 	 * function call will always result in waking the ksoftirqd thread.
1165 	 * This is probably worse than completing the request on a different
1166 	 * cache domain.
1167 	 */
1168 	if (force_irqthreads())
1169 		return false;
1170 
1171 	/* same CPU or cache domain?  Complete locally */
1172 	if (cpu == rq->mq_ctx->cpu ||
1173 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175 		return false;
1176 
1177 	/* don't try to IPI to an offline CPU */
1178 	return cpu_online(rq->mq_ctx->cpu);
1179 }
1180 
1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183 	unsigned int cpu;
1184 
1185 	cpu = rq->mq_ctx->cpu;
1186 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189 
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 	struct llist_head *list;
1193 
1194 	preempt_disable();
1195 	list = this_cpu_ptr(&blk_cpu_done);
1196 	if (llist_add(&rq->ipi_list, list))
1197 		raise_softirq(BLOCK_SOFTIRQ);
1198 	preempt_enable();
1199 }
1200 
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204 
1205 	/*
1206 	 * For request which hctx has only one ctx mapping,
1207 	 * or a polled request, always complete locally,
1208 	 * it's pointless to redirect the completion.
1209 	 */
1210 	if ((rq->mq_hctx->nr_ctx == 1 &&
1211 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212 	     rq->cmd_flags & REQ_POLLED)
1213 		return false;
1214 
1215 	if (blk_mq_complete_need_ipi(rq)) {
1216 		blk_mq_complete_send_ipi(rq);
1217 		return true;
1218 	}
1219 
1220 	if (rq->q->nr_hw_queues == 1) {
1221 		blk_mq_raise_softirq(rq);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227 
1228 /**
1229  * blk_mq_complete_request - end I/O on a request
1230  * @rq:		the request being processed
1231  *
1232  * Description:
1233  *	Complete a request by scheduling the ->complete_rq operation.
1234  **/
1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237 	if (!blk_mq_complete_request_remote(rq))
1238 		rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241 
1242 /**
1243  * blk_mq_start_request - Start processing a request
1244  * @rq: Pointer to request to be started
1245  *
1246  * Function used by device drivers to notify the block layer that a request
1247  * is going to be processed now, so blk layer can do proper initializations
1248  * such as starting the timeout timer.
1249  */
1250 void blk_mq_start_request(struct request *rq)
1251 {
1252 	struct request_queue *q = rq->q;
1253 
1254 	trace_block_rq_issue(rq);
1255 
1256 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1257 	    !blk_rq_is_passthrough(rq)) {
1258 		rq->io_start_time_ns = ktime_get_ns();
1259 		rq->stats_sectors = blk_rq_sectors(rq);
1260 		rq->rq_flags |= RQF_STATS;
1261 		rq_qos_issue(q, rq);
1262 	}
1263 
1264 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1265 
1266 	blk_add_timer(rq);
1267 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1268 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1269 
1270 #ifdef CONFIG_BLK_DEV_INTEGRITY
1271 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1272 		q->integrity.profile->prepare_fn(rq);
1273 #endif
1274 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1275 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_request);
1278 
1279 /*
1280  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1281  * queues. This is important for md arrays to benefit from merging
1282  * requests.
1283  */
1284 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1285 {
1286 	if (plug->multiple_queues)
1287 		return BLK_MAX_REQUEST_COUNT * 2;
1288 	return BLK_MAX_REQUEST_COUNT;
1289 }
1290 
1291 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1292 {
1293 	struct request *last = rq_list_peek(&plug->mq_list);
1294 
1295 	if (!plug->rq_count) {
1296 		trace_block_plug(rq->q);
1297 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1298 		   (!blk_queue_nomerges(rq->q) &&
1299 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1300 		blk_mq_flush_plug_list(plug, false);
1301 		last = NULL;
1302 		trace_block_plug(rq->q);
1303 	}
1304 
1305 	if (!plug->multiple_queues && last && last->q != rq->q)
1306 		plug->multiple_queues = true;
1307 	/*
1308 	 * Any request allocated from sched tags can't be issued to
1309 	 * ->queue_rqs() directly
1310 	 */
1311 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1312 		plug->has_elevator = true;
1313 	rq->rq_next = NULL;
1314 	rq_list_add(&plug->mq_list, rq);
1315 	plug->rq_count++;
1316 }
1317 
1318 /**
1319  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1320  * @rq:		request to insert
1321  * @at_head:    insert request at head or tail of queue
1322  *
1323  * Description:
1324  *    Insert a fully prepared request at the back of the I/O scheduler queue
1325  *    for execution.  Don't wait for completion.
1326  *
1327  * Note:
1328  *    This function will invoke @done directly if the queue is dead.
1329  */
1330 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1331 {
1332 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1333 
1334 	WARN_ON(irqs_disabled());
1335 	WARN_ON(!blk_rq_is_passthrough(rq));
1336 
1337 	blk_account_io_start(rq);
1338 
1339 	/*
1340 	 * As plugging can be enabled for passthrough requests on a zoned
1341 	 * device, directly accessing the plug instead of using blk_mq_plug()
1342 	 * should not have any consequences.
1343 	 */
1344 	if (current->plug && !at_head) {
1345 		blk_add_rq_to_plug(current->plug, rq);
1346 		return;
1347 	}
1348 
1349 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1350 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1351 }
1352 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1353 
1354 struct blk_rq_wait {
1355 	struct completion done;
1356 	blk_status_t ret;
1357 };
1358 
1359 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1360 {
1361 	struct blk_rq_wait *wait = rq->end_io_data;
1362 
1363 	wait->ret = ret;
1364 	complete(&wait->done);
1365 	return RQ_END_IO_NONE;
1366 }
1367 
1368 bool blk_rq_is_poll(struct request *rq)
1369 {
1370 	if (!rq->mq_hctx)
1371 		return false;
1372 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1373 		return false;
1374 	return true;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1377 
1378 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1379 {
1380 	do {
1381 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1382 		cond_resched();
1383 	} while (!completion_done(wait));
1384 }
1385 
1386 /**
1387  * blk_execute_rq - insert a request into queue for execution
1388  * @rq:		request to insert
1389  * @at_head:    insert request at head or tail of queue
1390  *
1391  * Description:
1392  *    Insert a fully prepared request at the back of the I/O scheduler queue
1393  *    for execution and wait for completion.
1394  * Return: The blk_status_t result provided to blk_mq_end_request().
1395  */
1396 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1397 {
1398 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1399 	struct blk_rq_wait wait = {
1400 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1401 	};
1402 
1403 	WARN_ON(irqs_disabled());
1404 	WARN_ON(!blk_rq_is_passthrough(rq));
1405 
1406 	rq->end_io_data = &wait;
1407 	rq->end_io = blk_end_sync_rq;
1408 
1409 	blk_account_io_start(rq);
1410 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1411 	blk_mq_run_hw_queue(hctx, false);
1412 
1413 	if (blk_rq_is_poll(rq)) {
1414 		blk_rq_poll_completion(rq, &wait.done);
1415 	} else {
1416 		/*
1417 		 * Prevent hang_check timer from firing at us during very long
1418 		 * I/O
1419 		 */
1420 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1421 
1422 		if (hang_check)
1423 			while (!wait_for_completion_io_timeout(&wait.done,
1424 					hang_check * (HZ/2)))
1425 				;
1426 		else
1427 			wait_for_completion_io(&wait.done);
1428 	}
1429 
1430 	return wait.ret;
1431 }
1432 EXPORT_SYMBOL(blk_execute_rq);
1433 
1434 static void __blk_mq_requeue_request(struct request *rq)
1435 {
1436 	struct request_queue *q = rq->q;
1437 
1438 	blk_mq_put_driver_tag(rq);
1439 
1440 	trace_block_rq_requeue(rq);
1441 	rq_qos_requeue(q, rq);
1442 
1443 	if (blk_mq_request_started(rq)) {
1444 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1445 		rq->rq_flags &= ~RQF_TIMED_OUT;
1446 	}
1447 }
1448 
1449 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1450 {
1451 	struct request_queue *q = rq->q;
1452 	unsigned long flags;
1453 
1454 	__blk_mq_requeue_request(rq);
1455 
1456 	/* this request will be re-inserted to io scheduler queue */
1457 	blk_mq_sched_requeue_request(rq);
1458 
1459 	spin_lock_irqsave(&q->requeue_lock, flags);
1460 	list_add_tail(&rq->queuelist, &q->requeue_list);
1461 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1462 
1463 	if (kick_requeue_list)
1464 		blk_mq_kick_requeue_list(q);
1465 }
1466 EXPORT_SYMBOL(blk_mq_requeue_request);
1467 
1468 static void blk_mq_requeue_work(struct work_struct *work)
1469 {
1470 	struct request_queue *q =
1471 		container_of(work, struct request_queue, requeue_work.work);
1472 	LIST_HEAD(rq_list);
1473 	LIST_HEAD(flush_list);
1474 	struct request *rq;
1475 
1476 	spin_lock_irq(&q->requeue_lock);
1477 	list_splice_init(&q->requeue_list, &rq_list);
1478 	list_splice_init(&q->flush_list, &flush_list);
1479 	spin_unlock_irq(&q->requeue_lock);
1480 
1481 	while (!list_empty(&rq_list)) {
1482 		rq = list_entry(rq_list.next, struct request, queuelist);
1483 		/*
1484 		 * If RQF_DONTPREP ist set, the request has been started by the
1485 		 * driver already and might have driver-specific data allocated
1486 		 * already.  Insert it into the hctx dispatch list to avoid
1487 		 * block layer merges for the request.
1488 		 */
1489 		if (rq->rq_flags & RQF_DONTPREP) {
1490 			list_del_init(&rq->queuelist);
1491 			blk_mq_request_bypass_insert(rq, 0);
1492 		} else {
1493 			list_del_init(&rq->queuelist);
1494 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1495 		}
1496 	}
1497 
1498 	while (!list_empty(&flush_list)) {
1499 		rq = list_entry(flush_list.next, struct request, queuelist);
1500 		list_del_init(&rq->queuelist);
1501 		blk_mq_insert_request(rq, 0);
1502 	}
1503 
1504 	blk_mq_run_hw_queues(q, false);
1505 }
1506 
1507 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 {
1509 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 }
1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512 
1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1514 				    unsigned long msecs)
1515 {
1516 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1517 				    msecs_to_jiffies(msecs));
1518 }
1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520 
1521 static bool blk_is_flush_data_rq(struct request *rq)
1522 {
1523 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1524 }
1525 
1526 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1527 {
1528 	/*
1529 	 * If we find a request that isn't idle we know the queue is busy
1530 	 * as it's checked in the iter.
1531 	 * Return false to stop the iteration.
1532 	 *
1533 	 * In case of queue quiesce, if one flush data request is completed,
1534 	 * don't count it as inflight given the flush sequence is suspended,
1535 	 * and the original flush data request is invisible to driver, just
1536 	 * like other pending requests because of quiesce
1537 	 */
1538 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1539 				blk_is_flush_data_rq(rq) &&
1540 				blk_mq_request_completed(rq))) {
1541 		bool *busy = priv;
1542 
1543 		*busy = true;
1544 		return false;
1545 	}
1546 
1547 	return true;
1548 }
1549 
1550 bool blk_mq_queue_inflight(struct request_queue *q)
1551 {
1552 	bool busy = false;
1553 
1554 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1555 	return busy;
1556 }
1557 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1558 
1559 static void blk_mq_rq_timed_out(struct request *req)
1560 {
1561 	req->rq_flags |= RQF_TIMED_OUT;
1562 	if (req->q->mq_ops->timeout) {
1563 		enum blk_eh_timer_return ret;
1564 
1565 		ret = req->q->mq_ops->timeout(req);
1566 		if (ret == BLK_EH_DONE)
1567 			return;
1568 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1569 	}
1570 
1571 	blk_add_timer(req);
1572 }
1573 
1574 struct blk_expired_data {
1575 	bool has_timedout_rq;
1576 	unsigned long next;
1577 	unsigned long timeout_start;
1578 };
1579 
1580 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1581 {
1582 	unsigned long deadline;
1583 
1584 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1585 		return false;
1586 	if (rq->rq_flags & RQF_TIMED_OUT)
1587 		return false;
1588 
1589 	deadline = READ_ONCE(rq->deadline);
1590 	if (time_after_eq(expired->timeout_start, deadline))
1591 		return true;
1592 
1593 	if (expired->next == 0)
1594 		expired->next = deadline;
1595 	else if (time_after(expired->next, deadline))
1596 		expired->next = deadline;
1597 	return false;
1598 }
1599 
1600 void blk_mq_put_rq_ref(struct request *rq)
1601 {
1602 	if (is_flush_rq(rq)) {
1603 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1604 			blk_mq_free_request(rq);
1605 	} else if (req_ref_put_and_test(rq)) {
1606 		__blk_mq_free_request(rq);
1607 	}
1608 }
1609 
1610 static bool blk_mq_check_expired(struct request *rq, void *priv)
1611 {
1612 	struct blk_expired_data *expired = priv;
1613 
1614 	/*
1615 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1616 	 * be reallocated underneath the timeout handler's processing, then
1617 	 * the expire check is reliable. If the request is not expired, then
1618 	 * it was completed and reallocated as a new request after returning
1619 	 * from blk_mq_check_expired().
1620 	 */
1621 	if (blk_mq_req_expired(rq, expired)) {
1622 		expired->has_timedout_rq = true;
1623 		return false;
1624 	}
1625 	return true;
1626 }
1627 
1628 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1629 {
1630 	struct blk_expired_data *expired = priv;
1631 
1632 	if (blk_mq_req_expired(rq, expired))
1633 		blk_mq_rq_timed_out(rq);
1634 	return true;
1635 }
1636 
1637 static void blk_mq_timeout_work(struct work_struct *work)
1638 {
1639 	struct request_queue *q =
1640 		container_of(work, struct request_queue, timeout_work);
1641 	struct blk_expired_data expired = {
1642 		.timeout_start = jiffies,
1643 	};
1644 	struct blk_mq_hw_ctx *hctx;
1645 	unsigned long i;
1646 
1647 	/* A deadlock might occur if a request is stuck requiring a
1648 	 * timeout at the same time a queue freeze is waiting
1649 	 * completion, since the timeout code would not be able to
1650 	 * acquire the queue reference here.
1651 	 *
1652 	 * That's why we don't use blk_queue_enter here; instead, we use
1653 	 * percpu_ref_tryget directly, because we need to be able to
1654 	 * obtain a reference even in the short window between the queue
1655 	 * starting to freeze, by dropping the first reference in
1656 	 * blk_freeze_queue_start, and the moment the last request is
1657 	 * consumed, marked by the instant q_usage_counter reaches
1658 	 * zero.
1659 	 */
1660 	if (!percpu_ref_tryget(&q->q_usage_counter))
1661 		return;
1662 
1663 	/* check if there is any timed-out request */
1664 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1665 	if (expired.has_timedout_rq) {
1666 		/*
1667 		 * Before walking tags, we must ensure any submit started
1668 		 * before the current time has finished. Since the submit
1669 		 * uses srcu or rcu, wait for a synchronization point to
1670 		 * ensure all running submits have finished
1671 		 */
1672 		blk_mq_wait_quiesce_done(q->tag_set);
1673 
1674 		expired.next = 0;
1675 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1676 	}
1677 
1678 	if (expired.next != 0) {
1679 		mod_timer(&q->timeout, expired.next);
1680 	} else {
1681 		/*
1682 		 * Request timeouts are handled as a forward rolling timer. If
1683 		 * we end up here it means that no requests are pending and
1684 		 * also that no request has been pending for a while. Mark
1685 		 * each hctx as idle.
1686 		 */
1687 		queue_for_each_hw_ctx(q, hctx, i) {
1688 			/* the hctx may be unmapped, so check it here */
1689 			if (blk_mq_hw_queue_mapped(hctx))
1690 				blk_mq_tag_idle(hctx);
1691 		}
1692 	}
1693 	blk_queue_exit(q);
1694 }
1695 
1696 struct flush_busy_ctx_data {
1697 	struct blk_mq_hw_ctx *hctx;
1698 	struct list_head *list;
1699 };
1700 
1701 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1702 {
1703 	struct flush_busy_ctx_data *flush_data = data;
1704 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1705 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1706 	enum hctx_type type = hctx->type;
1707 
1708 	spin_lock(&ctx->lock);
1709 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1710 	sbitmap_clear_bit(sb, bitnr);
1711 	spin_unlock(&ctx->lock);
1712 	return true;
1713 }
1714 
1715 /*
1716  * Process software queues that have been marked busy, splicing them
1717  * to the for-dispatch
1718  */
1719 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1720 {
1721 	struct flush_busy_ctx_data data = {
1722 		.hctx = hctx,
1723 		.list = list,
1724 	};
1725 
1726 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1727 }
1728 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1729 
1730 struct dispatch_rq_data {
1731 	struct blk_mq_hw_ctx *hctx;
1732 	struct request *rq;
1733 };
1734 
1735 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1736 		void *data)
1737 {
1738 	struct dispatch_rq_data *dispatch_data = data;
1739 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1740 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1741 	enum hctx_type type = hctx->type;
1742 
1743 	spin_lock(&ctx->lock);
1744 	if (!list_empty(&ctx->rq_lists[type])) {
1745 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1746 		list_del_init(&dispatch_data->rq->queuelist);
1747 		if (list_empty(&ctx->rq_lists[type]))
1748 			sbitmap_clear_bit(sb, bitnr);
1749 	}
1750 	spin_unlock(&ctx->lock);
1751 
1752 	return !dispatch_data->rq;
1753 }
1754 
1755 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1756 					struct blk_mq_ctx *start)
1757 {
1758 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1759 	struct dispatch_rq_data data = {
1760 		.hctx = hctx,
1761 		.rq   = NULL,
1762 	};
1763 
1764 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1765 			       dispatch_rq_from_ctx, &data);
1766 
1767 	return data.rq;
1768 }
1769 
1770 bool __blk_mq_alloc_driver_tag(struct request *rq)
1771 {
1772 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1773 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1774 	int tag;
1775 
1776 	blk_mq_tag_busy(rq->mq_hctx);
1777 
1778 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1779 		bt = &rq->mq_hctx->tags->breserved_tags;
1780 		tag_offset = 0;
1781 	} else {
1782 		if (!hctx_may_queue(rq->mq_hctx, bt))
1783 			return false;
1784 	}
1785 
1786 	tag = __sbitmap_queue_get(bt);
1787 	if (tag == BLK_MQ_NO_TAG)
1788 		return false;
1789 
1790 	rq->tag = tag + tag_offset;
1791 	blk_mq_inc_active_requests(rq->mq_hctx);
1792 	return true;
1793 }
1794 
1795 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1796 				int flags, void *key)
1797 {
1798 	struct blk_mq_hw_ctx *hctx;
1799 
1800 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1801 
1802 	spin_lock(&hctx->dispatch_wait_lock);
1803 	if (!list_empty(&wait->entry)) {
1804 		struct sbitmap_queue *sbq;
1805 
1806 		list_del_init(&wait->entry);
1807 		sbq = &hctx->tags->bitmap_tags;
1808 		atomic_dec(&sbq->ws_active);
1809 	}
1810 	spin_unlock(&hctx->dispatch_wait_lock);
1811 
1812 	blk_mq_run_hw_queue(hctx, true);
1813 	return 1;
1814 }
1815 
1816 /*
1817  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1818  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1819  * restart. For both cases, take care to check the condition again after
1820  * marking us as waiting.
1821  */
1822 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1823 				 struct request *rq)
1824 {
1825 	struct sbitmap_queue *sbq;
1826 	struct wait_queue_head *wq;
1827 	wait_queue_entry_t *wait;
1828 	bool ret;
1829 
1830 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1831 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1832 		blk_mq_sched_mark_restart_hctx(hctx);
1833 
1834 		/*
1835 		 * It's possible that a tag was freed in the window between the
1836 		 * allocation failure and adding the hardware queue to the wait
1837 		 * queue.
1838 		 *
1839 		 * Don't clear RESTART here, someone else could have set it.
1840 		 * At most this will cost an extra queue run.
1841 		 */
1842 		return blk_mq_get_driver_tag(rq);
1843 	}
1844 
1845 	wait = &hctx->dispatch_wait;
1846 	if (!list_empty_careful(&wait->entry))
1847 		return false;
1848 
1849 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1850 		sbq = &hctx->tags->breserved_tags;
1851 	else
1852 		sbq = &hctx->tags->bitmap_tags;
1853 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1854 
1855 	spin_lock_irq(&wq->lock);
1856 	spin_lock(&hctx->dispatch_wait_lock);
1857 	if (!list_empty(&wait->entry)) {
1858 		spin_unlock(&hctx->dispatch_wait_lock);
1859 		spin_unlock_irq(&wq->lock);
1860 		return false;
1861 	}
1862 
1863 	atomic_inc(&sbq->ws_active);
1864 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1865 	__add_wait_queue(wq, wait);
1866 
1867 	/*
1868 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1869 	 * not imply barrier in case of failure.
1870 	 *
1871 	 * Order adding us to wait queue and allocating driver tag.
1872 	 *
1873 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1874 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1875 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1876 	 *
1877 	 * Otherwise, re-order of adding wait queue and getting driver tag
1878 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1879 	 * the waitqueue_active() may not observe us in wait queue.
1880 	 */
1881 	smp_mb();
1882 
1883 	/*
1884 	 * It's possible that a tag was freed in the window between the
1885 	 * allocation failure and adding the hardware queue to the wait
1886 	 * queue.
1887 	 */
1888 	ret = blk_mq_get_driver_tag(rq);
1889 	if (!ret) {
1890 		spin_unlock(&hctx->dispatch_wait_lock);
1891 		spin_unlock_irq(&wq->lock);
1892 		return false;
1893 	}
1894 
1895 	/*
1896 	 * We got a tag, remove ourselves from the wait queue to ensure
1897 	 * someone else gets the wakeup.
1898 	 */
1899 	list_del_init(&wait->entry);
1900 	atomic_dec(&sbq->ws_active);
1901 	spin_unlock(&hctx->dispatch_wait_lock);
1902 	spin_unlock_irq(&wq->lock);
1903 
1904 	return true;
1905 }
1906 
1907 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1908 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1909 /*
1910  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1911  * - EWMA is one simple way to compute running average value
1912  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1913  * - take 4 as factor for avoiding to get too small(0) result, and this
1914  *   factor doesn't matter because EWMA decreases exponentially
1915  */
1916 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1917 {
1918 	unsigned int ewma;
1919 
1920 	ewma = hctx->dispatch_busy;
1921 
1922 	if (!ewma && !busy)
1923 		return;
1924 
1925 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1926 	if (busy)
1927 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1928 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1929 
1930 	hctx->dispatch_busy = ewma;
1931 }
1932 
1933 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1934 
1935 static void blk_mq_handle_dev_resource(struct request *rq,
1936 				       struct list_head *list)
1937 {
1938 	list_add(&rq->queuelist, list);
1939 	__blk_mq_requeue_request(rq);
1940 }
1941 
1942 static void blk_mq_handle_zone_resource(struct request *rq,
1943 					struct list_head *zone_list)
1944 {
1945 	/*
1946 	 * If we end up here it is because we cannot dispatch a request to a
1947 	 * specific zone due to LLD level zone-write locking or other zone
1948 	 * related resource not being available. In this case, set the request
1949 	 * aside in zone_list for retrying it later.
1950 	 */
1951 	list_add(&rq->queuelist, zone_list);
1952 	__blk_mq_requeue_request(rq);
1953 }
1954 
1955 enum prep_dispatch {
1956 	PREP_DISPATCH_OK,
1957 	PREP_DISPATCH_NO_TAG,
1958 	PREP_DISPATCH_NO_BUDGET,
1959 };
1960 
1961 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1962 						  bool need_budget)
1963 {
1964 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1965 	int budget_token = -1;
1966 
1967 	if (need_budget) {
1968 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1969 		if (budget_token < 0) {
1970 			blk_mq_put_driver_tag(rq);
1971 			return PREP_DISPATCH_NO_BUDGET;
1972 		}
1973 		blk_mq_set_rq_budget_token(rq, budget_token);
1974 	}
1975 
1976 	if (!blk_mq_get_driver_tag(rq)) {
1977 		/*
1978 		 * The initial allocation attempt failed, so we need to
1979 		 * rerun the hardware queue when a tag is freed. The
1980 		 * waitqueue takes care of that. If the queue is run
1981 		 * before we add this entry back on the dispatch list,
1982 		 * we'll re-run it below.
1983 		 */
1984 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1985 			/*
1986 			 * All budgets not got from this function will be put
1987 			 * together during handling partial dispatch
1988 			 */
1989 			if (need_budget)
1990 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1991 			return PREP_DISPATCH_NO_TAG;
1992 		}
1993 	}
1994 
1995 	return PREP_DISPATCH_OK;
1996 }
1997 
1998 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1999 static void blk_mq_release_budgets(struct request_queue *q,
2000 		struct list_head *list)
2001 {
2002 	struct request *rq;
2003 
2004 	list_for_each_entry(rq, list, queuelist) {
2005 		int budget_token = blk_mq_get_rq_budget_token(rq);
2006 
2007 		if (budget_token >= 0)
2008 			blk_mq_put_dispatch_budget(q, budget_token);
2009 	}
2010 }
2011 
2012 /*
2013  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2014  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2015  * details)
2016  * Attention, we should explicitly call this in unusual cases:
2017  *  1) did not queue everything initially scheduled to queue
2018  *  2) the last attempt to queue a request failed
2019  */
2020 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2021 			      bool from_schedule)
2022 {
2023 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2024 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2025 		hctx->queue->mq_ops->commit_rqs(hctx);
2026 	}
2027 }
2028 
2029 /*
2030  * Returns true if we did some work AND can potentially do more.
2031  */
2032 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2033 			     unsigned int nr_budgets)
2034 {
2035 	enum prep_dispatch prep;
2036 	struct request_queue *q = hctx->queue;
2037 	struct request *rq;
2038 	int queued;
2039 	blk_status_t ret = BLK_STS_OK;
2040 	LIST_HEAD(zone_list);
2041 	bool needs_resource = false;
2042 
2043 	if (list_empty(list))
2044 		return false;
2045 
2046 	/*
2047 	 * Now process all the entries, sending them to the driver.
2048 	 */
2049 	queued = 0;
2050 	do {
2051 		struct blk_mq_queue_data bd;
2052 
2053 		rq = list_first_entry(list, struct request, queuelist);
2054 
2055 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2056 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2057 		if (prep != PREP_DISPATCH_OK)
2058 			break;
2059 
2060 		list_del_init(&rq->queuelist);
2061 
2062 		bd.rq = rq;
2063 		bd.last = list_empty(list);
2064 
2065 		/*
2066 		 * once the request is queued to lld, no need to cover the
2067 		 * budget any more
2068 		 */
2069 		if (nr_budgets)
2070 			nr_budgets--;
2071 		ret = q->mq_ops->queue_rq(hctx, &bd);
2072 		switch (ret) {
2073 		case BLK_STS_OK:
2074 			queued++;
2075 			break;
2076 		case BLK_STS_RESOURCE:
2077 			needs_resource = true;
2078 			fallthrough;
2079 		case BLK_STS_DEV_RESOURCE:
2080 			blk_mq_handle_dev_resource(rq, list);
2081 			goto out;
2082 		case BLK_STS_ZONE_RESOURCE:
2083 			/*
2084 			 * Move the request to zone_list and keep going through
2085 			 * the dispatch list to find more requests the drive can
2086 			 * accept.
2087 			 */
2088 			blk_mq_handle_zone_resource(rq, &zone_list);
2089 			needs_resource = true;
2090 			break;
2091 		default:
2092 			blk_mq_end_request(rq, ret);
2093 		}
2094 	} while (!list_empty(list));
2095 out:
2096 	if (!list_empty(&zone_list))
2097 		list_splice_tail_init(&zone_list, list);
2098 
2099 	/* If we didn't flush the entire list, we could have told the driver
2100 	 * there was more coming, but that turned out to be a lie.
2101 	 */
2102 	if (!list_empty(list) || ret != BLK_STS_OK)
2103 		blk_mq_commit_rqs(hctx, queued, false);
2104 
2105 	/*
2106 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2107 	 * that is where we will continue on next queue run.
2108 	 */
2109 	if (!list_empty(list)) {
2110 		bool needs_restart;
2111 		/* For non-shared tags, the RESTART check will suffice */
2112 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2113 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2114 			blk_mq_is_shared_tags(hctx->flags));
2115 
2116 		if (nr_budgets)
2117 			blk_mq_release_budgets(q, list);
2118 
2119 		spin_lock(&hctx->lock);
2120 		list_splice_tail_init(list, &hctx->dispatch);
2121 		spin_unlock(&hctx->lock);
2122 
2123 		/*
2124 		 * Order adding requests to hctx->dispatch and checking
2125 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2126 		 * in blk_mq_sched_restart(). Avoid restart code path to
2127 		 * miss the new added requests to hctx->dispatch, meantime
2128 		 * SCHED_RESTART is observed here.
2129 		 */
2130 		smp_mb();
2131 
2132 		/*
2133 		 * If SCHED_RESTART was set by the caller of this function and
2134 		 * it is no longer set that means that it was cleared by another
2135 		 * thread and hence that a queue rerun is needed.
2136 		 *
2137 		 * If 'no_tag' is set, that means that we failed getting
2138 		 * a driver tag with an I/O scheduler attached. If our dispatch
2139 		 * waitqueue is no longer active, ensure that we run the queue
2140 		 * AFTER adding our entries back to the list.
2141 		 *
2142 		 * If no I/O scheduler has been configured it is possible that
2143 		 * the hardware queue got stopped and restarted before requests
2144 		 * were pushed back onto the dispatch list. Rerun the queue to
2145 		 * avoid starvation. Notes:
2146 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2147 		 *   been stopped before rerunning a queue.
2148 		 * - Some but not all block drivers stop a queue before
2149 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2150 		 *   and dm-rq.
2151 		 *
2152 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2153 		 * bit is set, run queue after a delay to avoid IO stalls
2154 		 * that could otherwise occur if the queue is idle.  We'll do
2155 		 * similar if we couldn't get budget or couldn't lock a zone
2156 		 * and SCHED_RESTART is set.
2157 		 */
2158 		needs_restart = blk_mq_sched_needs_restart(hctx);
2159 		if (prep == PREP_DISPATCH_NO_BUDGET)
2160 			needs_resource = true;
2161 		if (!needs_restart ||
2162 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2163 			blk_mq_run_hw_queue(hctx, true);
2164 		else if (needs_resource)
2165 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2166 
2167 		blk_mq_update_dispatch_busy(hctx, true);
2168 		return false;
2169 	}
2170 
2171 	blk_mq_update_dispatch_busy(hctx, false);
2172 	return true;
2173 }
2174 
2175 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2176 {
2177 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2178 
2179 	if (cpu >= nr_cpu_ids)
2180 		cpu = cpumask_first(hctx->cpumask);
2181 	return cpu;
2182 }
2183 
2184 /*
2185  * It'd be great if the workqueue API had a way to pass
2186  * in a mask and had some smarts for more clever placement.
2187  * For now we just round-robin here, switching for every
2188  * BLK_MQ_CPU_WORK_BATCH queued items.
2189  */
2190 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2191 {
2192 	bool tried = false;
2193 	int next_cpu = hctx->next_cpu;
2194 
2195 	if (hctx->queue->nr_hw_queues == 1)
2196 		return WORK_CPU_UNBOUND;
2197 
2198 	if (--hctx->next_cpu_batch <= 0) {
2199 select_cpu:
2200 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2201 				cpu_online_mask);
2202 		if (next_cpu >= nr_cpu_ids)
2203 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2204 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2205 	}
2206 
2207 	/*
2208 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2209 	 * and it should only happen in the path of handling CPU DEAD.
2210 	 */
2211 	if (!cpu_online(next_cpu)) {
2212 		if (!tried) {
2213 			tried = true;
2214 			goto select_cpu;
2215 		}
2216 
2217 		/*
2218 		 * Make sure to re-select CPU next time once after CPUs
2219 		 * in hctx->cpumask become online again.
2220 		 */
2221 		hctx->next_cpu = next_cpu;
2222 		hctx->next_cpu_batch = 1;
2223 		return WORK_CPU_UNBOUND;
2224 	}
2225 
2226 	hctx->next_cpu = next_cpu;
2227 	return next_cpu;
2228 }
2229 
2230 /**
2231  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2232  * @hctx: Pointer to the hardware queue to run.
2233  * @msecs: Milliseconds of delay to wait before running the queue.
2234  *
2235  * Run a hardware queue asynchronously with a delay of @msecs.
2236  */
2237 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2238 {
2239 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2240 		return;
2241 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2242 				    msecs_to_jiffies(msecs));
2243 }
2244 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2245 
2246 /**
2247  * blk_mq_run_hw_queue - Start to run a hardware queue.
2248  * @hctx: Pointer to the hardware queue to run.
2249  * @async: If we want to run the queue asynchronously.
2250  *
2251  * Check if the request queue is not in a quiesced state and if there are
2252  * pending requests to be sent. If this is true, run the queue to send requests
2253  * to hardware.
2254  */
2255 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2256 {
2257 	bool need_run;
2258 
2259 	/*
2260 	 * We can't run the queue inline with interrupts disabled.
2261 	 */
2262 	WARN_ON_ONCE(!async && in_interrupt());
2263 
2264 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2265 
2266 	/*
2267 	 * When queue is quiesced, we may be switching io scheduler, or
2268 	 * updating nr_hw_queues, or other things, and we can't run queue
2269 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2270 	 *
2271 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2272 	 * quiesced.
2273 	 */
2274 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2275 		need_run = !blk_queue_quiesced(hctx->queue) &&
2276 		blk_mq_hctx_has_pending(hctx));
2277 
2278 	if (!need_run)
2279 		return;
2280 
2281 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2282 		blk_mq_delay_run_hw_queue(hctx, 0);
2283 		return;
2284 	}
2285 
2286 	blk_mq_run_dispatch_ops(hctx->queue,
2287 				blk_mq_sched_dispatch_requests(hctx));
2288 }
2289 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2290 
2291 /*
2292  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2293  * scheduler.
2294  */
2295 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2296 {
2297 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2298 	/*
2299 	 * If the IO scheduler does not respect hardware queues when
2300 	 * dispatching, we just don't bother with multiple HW queues and
2301 	 * dispatch from hctx for the current CPU since running multiple queues
2302 	 * just causes lock contention inside the scheduler and pointless cache
2303 	 * bouncing.
2304 	 */
2305 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2306 
2307 	if (!blk_mq_hctx_stopped(hctx))
2308 		return hctx;
2309 	return NULL;
2310 }
2311 
2312 /**
2313  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2314  * @q: Pointer to the request queue to run.
2315  * @async: If we want to run the queue asynchronously.
2316  */
2317 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2318 {
2319 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2320 	unsigned long i;
2321 
2322 	sq_hctx = NULL;
2323 	if (blk_queue_sq_sched(q))
2324 		sq_hctx = blk_mq_get_sq_hctx(q);
2325 	queue_for_each_hw_ctx(q, hctx, i) {
2326 		if (blk_mq_hctx_stopped(hctx))
2327 			continue;
2328 		/*
2329 		 * Dispatch from this hctx either if there's no hctx preferred
2330 		 * by IO scheduler or if it has requests that bypass the
2331 		 * scheduler.
2332 		 */
2333 		if (!sq_hctx || sq_hctx == hctx ||
2334 		    !list_empty_careful(&hctx->dispatch))
2335 			blk_mq_run_hw_queue(hctx, async);
2336 	}
2337 }
2338 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2339 
2340 /**
2341  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2342  * @q: Pointer to the request queue to run.
2343  * @msecs: Milliseconds of delay to wait before running the queues.
2344  */
2345 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2346 {
2347 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2348 	unsigned long i;
2349 
2350 	sq_hctx = NULL;
2351 	if (blk_queue_sq_sched(q))
2352 		sq_hctx = blk_mq_get_sq_hctx(q);
2353 	queue_for_each_hw_ctx(q, hctx, i) {
2354 		if (blk_mq_hctx_stopped(hctx))
2355 			continue;
2356 		/*
2357 		 * If there is already a run_work pending, leave the
2358 		 * pending delay untouched. Otherwise, a hctx can stall
2359 		 * if another hctx is re-delaying the other's work
2360 		 * before the work executes.
2361 		 */
2362 		if (delayed_work_pending(&hctx->run_work))
2363 			continue;
2364 		/*
2365 		 * Dispatch from this hctx either if there's no hctx preferred
2366 		 * by IO scheduler or if it has requests that bypass the
2367 		 * scheduler.
2368 		 */
2369 		if (!sq_hctx || sq_hctx == hctx ||
2370 		    !list_empty_careful(&hctx->dispatch))
2371 			blk_mq_delay_run_hw_queue(hctx, msecs);
2372 	}
2373 }
2374 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2375 
2376 /*
2377  * This function is often used for pausing .queue_rq() by driver when
2378  * there isn't enough resource or some conditions aren't satisfied, and
2379  * BLK_STS_RESOURCE is usually returned.
2380  *
2381  * We do not guarantee that dispatch can be drained or blocked
2382  * after blk_mq_stop_hw_queue() returns. Please use
2383  * blk_mq_quiesce_queue() for that requirement.
2384  */
2385 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2386 {
2387 	cancel_delayed_work(&hctx->run_work);
2388 
2389 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2390 }
2391 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2392 
2393 /*
2394  * This function is often used for pausing .queue_rq() by driver when
2395  * there isn't enough resource or some conditions aren't satisfied, and
2396  * BLK_STS_RESOURCE is usually returned.
2397  *
2398  * We do not guarantee that dispatch can be drained or blocked
2399  * after blk_mq_stop_hw_queues() returns. Please use
2400  * blk_mq_quiesce_queue() for that requirement.
2401  */
2402 void blk_mq_stop_hw_queues(struct request_queue *q)
2403 {
2404 	struct blk_mq_hw_ctx *hctx;
2405 	unsigned long i;
2406 
2407 	queue_for_each_hw_ctx(q, hctx, i)
2408 		blk_mq_stop_hw_queue(hctx);
2409 }
2410 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2411 
2412 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2413 {
2414 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415 
2416 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2417 }
2418 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2419 
2420 void blk_mq_start_hw_queues(struct request_queue *q)
2421 {
2422 	struct blk_mq_hw_ctx *hctx;
2423 	unsigned long i;
2424 
2425 	queue_for_each_hw_ctx(q, hctx, i)
2426 		blk_mq_start_hw_queue(hctx);
2427 }
2428 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2429 
2430 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2431 {
2432 	if (!blk_mq_hctx_stopped(hctx))
2433 		return;
2434 
2435 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2436 	blk_mq_run_hw_queue(hctx, async);
2437 }
2438 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2439 
2440 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2441 {
2442 	struct blk_mq_hw_ctx *hctx;
2443 	unsigned long i;
2444 
2445 	queue_for_each_hw_ctx(q, hctx, i)
2446 		blk_mq_start_stopped_hw_queue(hctx, async ||
2447 					(hctx->flags & BLK_MQ_F_BLOCKING));
2448 }
2449 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2450 
2451 static void blk_mq_run_work_fn(struct work_struct *work)
2452 {
2453 	struct blk_mq_hw_ctx *hctx =
2454 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2455 
2456 	blk_mq_run_dispatch_ops(hctx->queue,
2457 				blk_mq_sched_dispatch_requests(hctx));
2458 }
2459 
2460 /**
2461  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2462  * @rq: Pointer to request to be inserted.
2463  * @flags: BLK_MQ_INSERT_*
2464  *
2465  * Should only be used carefully, when the caller knows we want to
2466  * bypass a potential IO scheduler on the target device.
2467  */
2468 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2469 {
2470 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2471 
2472 	spin_lock(&hctx->lock);
2473 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2474 		list_add(&rq->queuelist, &hctx->dispatch);
2475 	else
2476 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2477 	spin_unlock(&hctx->lock);
2478 }
2479 
2480 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2481 		struct blk_mq_ctx *ctx, struct list_head *list,
2482 		bool run_queue_async)
2483 {
2484 	struct request *rq;
2485 	enum hctx_type type = hctx->type;
2486 
2487 	/*
2488 	 * Try to issue requests directly if the hw queue isn't busy to save an
2489 	 * extra enqueue & dequeue to the sw queue.
2490 	 */
2491 	if (!hctx->dispatch_busy && !run_queue_async) {
2492 		blk_mq_run_dispatch_ops(hctx->queue,
2493 			blk_mq_try_issue_list_directly(hctx, list));
2494 		if (list_empty(list))
2495 			goto out;
2496 	}
2497 
2498 	/*
2499 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2500 	 * offline now
2501 	 */
2502 	list_for_each_entry(rq, list, queuelist) {
2503 		BUG_ON(rq->mq_ctx != ctx);
2504 		trace_block_rq_insert(rq);
2505 		if (rq->cmd_flags & REQ_NOWAIT)
2506 			run_queue_async = true;
2507 	}
2508 
2509 	spin_lock(&ctx->lock);
2510 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2511 	blk_mq_hctx_mark_pending(hctx, ctx);
2512 	spin_unlock(&ctx->lock);
2513 out:
2514 	blk_mq_run_hw_queue(hctx, run_queue_async);
2515 }
2516 
2517 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2518 {
2519 	struct request_queue *q = rq->q;
2520 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2521 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2522 
2523 	if (blk_rq_is_passthrough(rq)) {
2524 		/*
2525 		 * Passthrough request have to be added to hctx->dispatch
2526 		 * directly.  The device may be in a situation where it can't
2527 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2528 		 * them, which gets them added to hctx->dispatch.
2529 		 *
2530 		 * If a passthrough request is required to unblock the queues,
2531 		 * and it is added to the scheduler queue, there is no chance to
2532 		 * dispatch it given we prioritize requests in hctx->dispatch.
2533 		 */
2534 		blk_mq_request_bypass_insert(rq, flags);
2535 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2536 		/*
2537 		 * Firstly normal IO request is inserted to scheduler queue or
2538 		 * sw queue, meantime we add flush request to dispatch queue(
2539 		 * hctx->dispatch) directly and there is at most one in-flight
2540 		 * flush request for each hw queue, so it doesn't matter to add
2541 		 * flush request to tail or front of the dispatch queue.
2542 		 *
2543 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2544 		 * command, and queueing it will fail when there is any
2545 		 * in-flight normal IO request(NCQ command). When adding flush
2546 		 * rq to the front of hctx->dispatch, it is easier to introduce
2547 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2548 		 * compared with adding to the tail of dispatch queue, then
2549 		 * chance of flush merge is increased, and less flush requests
2550 		 * will be issued to controller. It is observed that ~10% time
2551 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2552 		 * drive when adding flush rq to the front of hctx->dispatch.
2553 		 *
2554 		 * Simply queue flush rq to the front of hctx->dispatch so that
2555 		 * intensive flush workloads can benefit in case of NCQ HW.
2556 		 */
2557 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2558 	} else if (q->elevator) {
2559 		LIST_HEAD(list);
2560 
2561 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2562 
2563 		list_add(&rq->queuelist, &list);
2564 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2565 	} else {
2566 		trace_block_rq_insert(rq);
2567 
2568 		spin_lock(&ctx->lock);
2569 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2570 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2571 		else
2572 			list_add_tail(&rq->queuelist,
2573 				      &ctx->rq_lists[hctx->type]);
2574 		blk_mq_hctx_mark_pending(hctx, ctx);
2575 		spin_unlock(&ctx->lock);
2576 	}
2577 }
2578 
2579 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2580 		unsigned int nr_segs)
2581 {
2582 	int err;
2583 
2584 	if (bio->bi_opf & REQ_RAHEAD)
2585 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2586 
2587 	rq->__sector = bio->bi_iter.bi_sector;
2588 	blk_rq_bio_prep(rq, bio, nr_segs);
2589 
2590 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2591 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2592 	WARN_ON_ONCE(err);
2593 
2594 	blk_account_io_start(rq);
2595 }
2596 
2597 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2598 					    struct request *rq, bool last)
2599 {
2600 	struct request_queue *q = rq->q;
2601 	struct blk_mq_queue_data bd = {
2602 		.rq = rq,
2603 		.last = last,
2604 	};
2605 	blk_status_t ret;
2606 
2607 	/*
2608 	 * For OK queue, we are done. For error, caller may kill it.
2609 	 * Any other error (busy), just add it to our list as we
2610 	 * previously would have done.
2611 	 */
2612 	ret = q->mq_ops->queue_rq(hctx, &bd);
2613 	switch (ret) {
2614 	case BLK_STS_OK:
2615 		blk_mq_update_dispatch_busy(hctx, false);
2616 		break;
2617 	case BLK_STS_RESOURCE:
2618 	case BLK_STS_DEV_RESOURCE:
2619 		blk_mq_update_dispatch_busy(hctx, true);
2620 		__blk_mq_requeue_request(rq);
2621 		break;
2622 	default:
2623 		blk_mq_update_dispatch_busy(hctx, false);
2624 		break;
2625 	}
2626 
2627 	return ret;
2628 }
2629 
2630 static bool blk_mq_get_budget_and_tag(struct request *rq)
2631 {
2632 	int budget_token;
2633 
2634 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2635 	if (budget_token < 0)
2636 		return false;
2637 	blk_mq_set_rq_budget_token(rq, budget_token);
2638 	if (!blk_mq_get_driver_tag(rq)) {
2639 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2640 		return false;
2641 	}
2642 	return true;
2643 }
2644 
2645 /**
2646  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2647  * @hctx: Pointer of the associated hardware queue.
2648  * @rq: Pointer to request to be sent.
2649  *
2650  * If the device has enough resources to accept a new request now, send the
2651  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2652  * we can try send it another time in the future. Requests inserted at this
2653  * queue have higher priority.
2654  */
2655 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2656 		struct request *rq)
2657 {
2658 	blk_status_t ret;
2659 
2660 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2661 		blk_mq_insert_request(rq, 0);
2662 		return;
2663 	}
2664 
2665 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2666 		blk_mq_insert_request(rq, 0);
2667 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2668 		return;
2669 	}
2670 
2671 	ret = __blk_mq_issue_directly(hctx, rq, true);
2672 	switch (ret) {
2673 	case BLK_STS_OK:
2674 		break;
2675 	case BLK_STS_RESOURCE:
2676 	case BLK_STS_DEV_RESOURCE:
2677 		blk_mq_request_bypass_insert(rq, 0);
2678 		blk_mq_run_hw_queue(hctx, false);
2679 		break;
2680 	default:
2681 		blk_mq_end_request(rq, ret);
2682 		break;
2683 	}
2684 }
2685 
2686 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2687 {
2688 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2689 
2690 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2691 		blk_mq_insert_request(rq, 0);
2692 		return BLK_STS_OK;
2693 	}
2694 
2695 	if (!blk_mq_get_budget_and_tag(rq))
2696 		return BLK_STS_RESOURCE;
2697 	return __blk_mq_issue_directly(hctx, rq, last);
2698 }
2699 
2700 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2701 {
2702 	struct blk_mq_hw_ctx *hctx = NULL;
2703 	struct request *rq;
2704 	int queued = 0;
2705 	blk_status_t ret = BLK_STS_OK;
2706 
2707 	while ((rq = rq_list_pop(&plug->mq_list))) {
2708 		bool last = rq_list_empty(plug->mq_list);
2709 
2710 		if (hctx != rq->mq_hctx) {
2711 			if (hctx) {
2712 				blk_mq_commit_rqs(hctx, queued, false);
2713 				queued = 0;
2714 			}
2715 			hctx = rq->mq_hctx;
2716 		}
2717 
2718 		ret = blk_mq_request_issue_directly(rq, last);
2719 		switch (ret) {
2720 		case BLK_STS_OK:
2721 			queued++;
2722 			break;
2723 		case BLK_STS_RESOURCE:
2724 		case BLK_STS_DEV_RESOURCE:
2725 			blk_mq_request_bypass_insert(rq, 0);
2726 			blk_mq_run_hw_queue(hctx, false);
2727 			goto out;
2728 		default:
2729 			blk_mq_end_request(rq, ret);
2730 			break;
2731 		}
2732 	}
2733 
2734 out:
2735 	if (ret != BLK_STS_OK)
2736 		blk_mq_commit_rqs(hctx, queued, false);
2737 }
2738 
2739 static void __blk_mq_flush_plug_list(struct request_queue *q,
2740 				     struct blk_plug *plug)
2741 {
2742 	if (blk_queue_quiesced(q))
2743 		return;
2744 	q->mq_ops->queue_rqs(&plug->mq_list);
2745 }
2746 
2747 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2748 {
2749 	struct blk_mq_hw_ctx *this_hctx = NULL;
2750 	struct blk_mq_ctx *this_ctx = NULL;
2751 	struct request *requeue_list = NULL;
2752 	struct request **requeue_lastp = &requeue_list;
2753 	unsigned int depth = 0;
2754 	bool is_passthrough = false;
2755 	LIST_HEAD(list);
2756 
2757 	do {
2758 		struct request *rq = rq_list_pop(&plug->mq_list);
2759 
2760 		if (!this_hctx) {
2761 			this_hctx = rq->mq_hctx;
2762 			this_ctx = rq->mq_ctx;
2763 			is_passthrough = blk_rq_is_passthrough(rq);
2764 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2765 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2766 			rq_list_add_tail(&requeue_lastp, rq);
2767 			continue;
2768 		}
2769 		list_add(&rq->queuelist, &list);
2770 		depth++;
2771 	} while (!rq_list_empty(plug->mq_list));
2772 
2773 	plug->mq_list = requeue_list;
2774 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2775 
2776 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2777 	/* passthrough requests should never be issued to the I/O scheduler */
2778 	if (is_passthrough) {
2779 		spin_lock(&this_hctx->lock);
2780 		list_splice_tail_init(&list, &this_hctx->dispatch);
2781 		spin_unlock(&this_hctx->lock);
2782 		blk_mq_run_hw_queue(this_hctx, from_sched);
2783 	} else if (this_hctx->queue->elevator) {
2784 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2785 				&list, 0);
2786 		blk_mq_run_hw_queue(this_hctx, from_sched);
2787 	} else {
2788 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2789 	}
2790 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2791 }
2792 
2793 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2794 {
2795 	struct request *rq;
2796 
2797 	/*
2798 	 * We may have been called recursively midway through handling
2799 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2800 	 * To avoid mq_list changing under our feet, clear rq_count early and
2801 	 * bail out specifically if rq_count is 0 rather than checking
2802 	 * whether the mq_list is empty.
2803 	 */
2804 	if (plug->rq_count == 0)
2805 		return;
2806 	plug->rq_count = 0;
2807 
2808 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2809 		struct request_queue *q;
2810 
2811 		rq = rq_list_peek(&plug->mq_list);
2812 		q = rq->q;
2813 
2814 		/*
2815 		 * Peek first request and see if we have a ->queue_rqs() hook.
2816 		 * If we do, we can dispatch the whole plug list in one go. We
2817 		 * already know at this point that all requests belong to the
2818 		 * same queue, caller must ensure that's the case.
2819 		 */
2820 		if (q->mq_ops->queue_rqs) {
2821 			blk_mq_run_dispatch_ops(q,
2822 				__blk_mq_flush_plug_list(q, plug));
2823 			if (rq_list_empty(plug->mq_list))
2824 				return;
2825 		}
2826 
2827 		blk_mq_run_dispatch_ops(q,
2828 				blk_mq_plug_issue_direct(plug));
2829 		if (rq_list_empty(plug->mq_list))
2830 			return;
2831 	}
2832 
2833 	do {
2834 		blk_mq_dispatch_plug_list(plug, from_schedule);
2835 	} while (!rq_list_empty(plug->mq_list));
2836 }
2837 
2838 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2839 		struct list_head *list)
2840 {
2841 	int queued = 0;
2842 	blk_status_t ret = BLK_STS_OK;
2843 
2844 	while (!list_empty(list)) {
2845 		struct request *rq = list_first_entry(list, struct request,
2846 				queuelist);
2847 
2848 		list_del_init(&rq->queuelist);
2849 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2850 		switch (ret) {
2851 		case BLK_STS_OK:
2852 			queued++;
2853 			break;
2854 		case BLK_STS_RESOURCE:
2855 		case BLK_STS_DEV_RESOURCE:
2856 			blk_mq_request_bypass_insert(rq, 0);
2857 			if (list_empty(list))
2858 				blk_mq_run_hw_queue(hctx, false);
2859 			goto out;
2860 		default:
2861 			blk_mq_end_request(rq, ret);
2862 			break;
2863 		}
2864 	}
2865 
2866 out:
2867 	if (ret != BLK_STS_OK)
2868 		blk_mq_commit_rqs(hctx, queued, false);
2869 }
2870 
2871 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2872 				     struct bio *bio, unsigned int nr_segs)
2873 {
2874 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2875 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2876 			return true;
2877 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2878 			return true;
2879 	}
2880 	return false;
2881 }
2882 
2883 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2884 					       struct blk_plug *plug,
2885 					       struct bio *bio,
2886 					       unsigned int nsegs)
2887 {
2888 	struct blk_mq_alloc_data data = {
2889 		.q		= q,
2890 		.nr_tags	= 1,
2891 		.cmd_flags	= bio->bi_opf,
2892 	};
2893 	struct request *rq;
2894 
2895 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2896 		return NULL;
2897 
2898 	rq_qos_throttle(q, bio);
2899 
2900 	if (plug) {
2901 		data.nr_tags = plug->nr_ios;
2902 		plug->nr_ios = 1;
2903 		data.cached_rq = &plug->cached_rq;
2904 	}
2905 
2906 	rq = __blk_mq_alloc_requests(&data);
2907 	if (rq)
2908 		return rq;
2909 	rq_qos_cleanup(q, bio);
2910 	if (bio->bi_opf & REQ_NOWAIT)
2911 		bio_wouldblock_error(bio);
2912 	return NULL;
2913 }
2914 
2915 /*
2916  * Check if we can use the passed on request for submitting the passed in bio,
2917  * and remove it from the request list if it can be used.
2918  */
2919 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2920 		struct bio *bio)
2921 {
2922 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2923 	enum hctx_type hctx_type = rq->mq_hctx->type;
2924 
2925 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2926 
2927 	if (type != hctx_type &&
2928 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2929 		return false;
2930 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2931 		return false;
2932 
2933 	/*
2934 	 * If any qos ->throttle() end up blocking, we will have flushed the
2935 	 * plug and hence killed the cached_rq list as well. Pop this entry
2936 	 * before we throttle.
2937 	 */
2938 	plug->cached_rq = rq_list_next(rq);
2939 	rq_qos_throttle(rq->q, bio);
2940 
2941 	blk_mq_rq_time_init(rq, 0);
2942 	rq->cmd_flags = bio->bi_opf;
2943 	INIT_LIST_HEAD(&rq->queuelist);
2944 	return true;
2945 }
2946 
2947 static void bio_set_ioprio(struct bio *bio)
2948 {
2949 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2950 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2951 		bio->bi_ioprio = get_current_ioprio();
2952 	blkcg_set_ioprio(bio);
2953 }
2954 
2955 /**
2956  * blk_mq_submit_bio - Create and send a request to block device.
2957  * @bio: Bio pointer.
2958  *
2959  * Builds up a request structure from @q and @bio and send to the device. The
2960  * request may not be queued directly to hardware if:
2961  * * This request can be merged with another one
2962  * * We want to place request at plug queue for possible future merging
2963  * * There is an IO scheduler active at this queue
2964  *
2965  * It will not queue the request if there is an error with the bio, or at the
2966  * request creation.
2967  */
2968 void blk_mq_submit_bio(struct bio *bio)
2969 {
2970 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2971 	struct blk_plug *plug = blk_mq_plug(bio);
2972 	const int is_sync = op_is_sync(bio->bi_opf);
2973 	struct blk_mq_hw_ctx *hctx;
2974 	struct request *rq = NULL;
2975 	unsigned int nr_segs = 1;
2976 	blk_status_t ret;
2977 
2978 	bio = blk_queue_bounce(bio, q);
2979 	bio_set_ioprio(bio);
2980 
2981 	if (plug) {
2982 		rq = rq_list_peek(&plug->cached_rq);
2983 		if (rq && rq->q != q)
2984 			rq = NULL;
2985 	}
2986 	if (rq) {
2987 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2988 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2989 			if (!bio)
2990 				return;
2991 		}
2992 		if (!bio_integrity_prep(bio))
2993 			return;
2994 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2995 			return;
2996 		if (blk_mq_use_cached_rq(rq, plug, bio))
2997 			goto done;
2998 		percpu_ref_get(&q->q_usage_counter);
2999 	} else {
3000 		if (unlikely(bio_queue_enter(bio)))
3001 			return;
3002 		if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
3003 			bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3004 			if (!bio)
3005 				goto fail;
3006 		}
3007 		if (!bio_integrity_prep(bio))
3008 			goto fail;
3009 	}
3010 
3011 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3012 	if (unlikely(!rq)) {
3013 fail:
3014 		blk_queue_exit(q);
3015 		return;
3016 	}
3017 
3018 done:
3019 	trace_block_getrq(bio);
3020 
3021 	rq_qos_track(q, rq, bio);
3022 
3023 	blk_mq_bio_to_request(rq, bio, nr_segs);
3024 
3025 	ret = blk_crypto_rq_get_keyslot(rq);
3026 	if (ret != BLK_STS_OK) {
3027 		bio->bi_status = ret;
3028 		bio_endio(bio);
3029 		blk_mq_free_request(rq);
3030 		return;
3031 	}
3032 
3033 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3034 		return;
3035 
3036 	if (plug) {
3037 		blk_add_rq_to_plug(plug, rq);
3038 		return;
3039 	}
3040 
3041 	hctx = rq->mq_hctx;
3042 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3043 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3044 		blk_mq_insert_request(rq, 0);
3045 		blk_mq_run_hw_queue(hctx, true);
3046 	} else {
3047 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3048 	}
3049 }
3050 
3051 #ifdef CONFIG_BLK_MQ_STACKING
3052 /**
3053  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3054  * @rq: the request being queued
3055  */
3056 blk_status_t blk_insert_cloned_request(struct request *rq)
3057 {
3058 	struct request_queue *q = rq->q;
3059 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3060 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3061 	blk_status_t ret;
3062 
3063 	if (blk_rq_sectors(rq) > max_sectors) {
3064 		/*
3065 		 * SCSI device does not have a good way to return if
3066 		 * Write Same/Zero is actually supported. If a device rejects
3067 		 * a non-read/write command (discard, write same,etc.) the
3068 		 * low-level device driver will set the relevant queue limit to
3069 		 * 0 to prevent blk-lib from issuing more of the offending
3070 		 * operations. Commands queued prior to the queue limit being
3071 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3072 		 * errors being propagated to upper layers.
3073 		 */
3074 		if (max_sectors == 0)
3075 			return BLK_STS_NOTSUPP;
3076 
3077 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3078 			__func__, blk_rq_sectors(rq), max_sectors);
3079 		return BLK_STS_IOERR;
3080 	}
3081 
3082 	/*
3083 	 * The queue settings related to segment counting may differ from the
3084 	 * original queue.
3085 	 */
3086 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3087 	if (rq->nr_phys_segments > max_segments) {
3088 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3089 			__func__, rq->nr_phys_segments, max_segments);
3090 		return BLK_STS_IOERR;
3091 	}
3092 
3093 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3094 		return BLK_STS_IOERR;
3095 
3096 	ret = blk_crypto_rq_get_keyslot(rq);
3097 	if (ret != BLK_STS_OK)
3098 		return ret;
3099 
3100 	blk_account_io_start(rq);
3101 
3102 	/*
3103 	 * Since we have a scheduler attached on the top device,
3104 	 * bypass a potential scheduler on the bottom device for
3105 	 * insert.
3106 	 */
3107 	blk_mq_run_dispatch_ops(q,
3108 			ret = blk_mq_request_issue_directly(rq, true));
3109 	if (ret)
3110 		blk_account_io_done(rq, ktime_get_ns());
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3114 
3115 /**
3116  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3117  * @rq: the clone request to be cleaned up
3118  *
3119  * Description:
3120  *     Free all bios in @rq for a cloned request.
3121  */
3122 void blk_rq_unprep_clone(struct request *rq)
3123 {
3124 	struct bio *bio;
3125 
3126 	while ((bio = rq->bio) != NULL) {
3127 		rq->bio = bio->bi_next;
3128 
3129 		bio_put(bio);
3130 	}
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3133 
3134 /**
3135  * blk_rq_prep_clone - Helper function to setup clone request
3136  * @rq: the request to be setup
3137  * @rq_src: original request to be cloned
3138  * @bs: bio_set that bios for clone are allocated from
3139  * @gfp_mask: memory allocation mask for bio
3140  * @bio_ctr: setup function to be called for each clone bio.
3141  *           Returns %0 for success, non %0 for failure.
3142  * @data: private data to be passed to @bio_ctr
3143  *
3144  * Description:
3145  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3146  *     Also, pages which the original bios are pointing to are not copied
3147  *     and the cloned bios just point same pages.
3148  *     So cloned bios must be completed before original bios, which means
3149  *     the caller must complete @rq before @rq_src.
3150  */
3151 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3152 		      struct bio_set *bs, gfp_t gfp_mask,
3153 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3154 		      void *data)
3155 {
3156 	struct bio *bio, *bio_src;
3157 
3158 	if (!bs)
3159 		bs = &fs_bio_set;
3160 
3161 	__rq_for_each_bio(bio_src, rq_src) {
3162 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3163 				      bs);
3164 		if (!bio)
3165 			goto free_and_out;
3166 
3167 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3168 			goto free_and_out;
3169 
3170 		if (rq->bio) {
3171 			rq->biotail->bi_next = bio;
3172 			rq->biotail = bio;
3173 		} else {
3174 			rq->bio = rq->biotail = bio;
3175 		}
3176 		bio = NULL;
3177 	}
3178 
3179 	/* Copy attributes of the original request to the clone request. */
3180 	rq->__sector = blk_rq_pos(rq_src);
3181 	rq->__data_len = blk_rq_bytes(rq_src);
3182 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3183 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3184 		rq->special_vec = rq_src->special_vec;
3185 	}
3186 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3187 	rq->ioprio = rq_src->ioprio;
3188 
3189 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3190 		goto free_and_out;
3191 
3192 	return 0;
3193 
3194 free_and_out:
3195 	if (bio)
3196 		bio_put(bio);
3197 	blk_rq_unprep_clone(rq);
3198 
3199 	return -ENOMEM;
3200 }
3201 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3202 #endif /* CONFIG_BLK_MQ_STACKING */
3203 
3204 /*
3205  * Steal bios from a request and add them to a bio list.
3206  * The request must not have been partially completed before.
3207  */
3208 void blk_steal_bios(struct bio_list *list, struct request *rq)
3209 {
3210 	if (rq->bio) {
3211 		if (list->tail)
3212 			list->tail->bi_next = rq->bio;
3213 		else
3214 			list->head = rq->bio;
3215 		list->tail = rq->biotail;
3216 
3217 		rq->bio = NULL;
3218 		rq->biotail = NULL;
3219 	}
3220 
3221 	rq->__data_len = 0;
3222 }
3223 EXPORT_SYMBOL_GPL(blk_steal_bios);
3224 
3225 static size_t order_to_size(unsigned int order)
3226 {
3227 	return (size_t)PAGE_SIZE << order;
3228 }
3229 
3230 /* called before freeing request pool in @tags */
3231 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3232 				    struct blk_mq_tags *tags)
3233 {
3234 	struct page *page;
3235 	unsigned long flags;
3236 
3237 	/*
3238 	 * There is no need to clear mapping if driver tags is not initialized
3239 	 * or the mapping belongs to the driver tags.
3240 	 */
3241 	if (!drv_tags || drv_tags == tags)
3242 		return;
3243 
3244 	list_for_each_entry(page, &tags->page_list, lru) {
3245 		unsigned long start = (unsigned long)page_address(page);
3246 		unsigned long end = start + order_to_size(page->private);
3247 		int i;
3248 
3249 		for (i = 0; i < drv_tags->nr_tags; i++) {
3250 			struct request *rq = drv_tags->rqs[i];
3251 			unsigned long rq_addr = (unsigned long)rq;
3252 
3253 			if (rq_addr >= start && rq_addr < end) {
3254 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3255 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3256 			}
3257 		}
3258 	}
3259 
3260 	/*
3261 	 * Wait until all pending iteration is done.
3262 	 *
3263 	 * Request reference is cleared and it is guaranteed to be observed
3264 	 * after the ->lock is released.
3265 	 */
3266 	spin_lock_irqsave(&drv_tags->lock, flags);
3267 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3268 }
3269 
3270 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3271 		     unsigned int hctx_idx)
3272 {
3273 	struct blk_mq_tags *drv_tags;
3274 	struct page *page;
3275 
3276 	if (list_empty(&tags->page_list))
3277 		return;
3278 
3279 	if (blk_mq_is_shared_tags(set->flags))
3280 		drv_tags = set->shared_tags;
3281 	else
3282 		drv_tags = set->tags[hctx_idx];
3283 
3284 	if (tags->static_rqs && set->ops->exit_request) {
3285 		int i;
3286 
3287 		for (i = 0; i < tags->nr_tags; i++) {
3288 			struct request *rq = tags->static_rqs[i];
3289 
3290 			if (!rq)
3291 				continue;
3292 			set->ops->exit_request(set, rq, hctx_idx);
3293 			tags->static_rqs[i] = NULL;
3294 		}
3295 	}
3296 
3297 	blk_mq_clear_rq_mapping(drv_tags, tags);
3298 
3299 	while (!list_empty(&tags->page_list)) {
3300 		page = list_first_entry(&tags->page_list, struct page, lru);
3301 		list_del_init(&page->lru);
3302 		/*
3303 		 * Remove kmemleak object previously allocated in
3304 		 * blk_mq_alloc_rqs().
3305 		 */
3306 		kmemleak_free(page_address(page));
3307 		__free_pages(page, page->private);
3308 	}
3309 }
3310 
3311 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3312 {
3313 	kfree(tags->rqs);
3314 	tags->rqs = NULL;
3315 	kfree(tags->static_rqs);
3316 	tags->static_rqs = NULL;
3317 
3318 	blk_mq_free_tags(tags);
3319 }
3320 
3321 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3322 		unsigned int hctx_idx)
3323 {
3324 	int i;
3325 
3326 	for (i = 0; i < set->nr_maps; i++) {
3327 		unsigned int start = set->map[i].queue_offset;
3328 		unsigned int end = start + set->map[i].nr_queues;
3329 
3330 		if (hctx_idx >= start && hctx_idx < end)
3331 			break;
3332 	}
3333 
3334 	if (i >= set->nr_maps)
3335 		i = HCTX_TYPE_DEFAULT;
3336 
3337 	return i;
3338 }
3339 
3340 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3341 		unsigned int hctx_idx)
3342 {
3343 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3344 
3345 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3346 }
3347 
3348 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3349 					       unsigned int hctx_idx,
3350 					       unsigned int nr_tags,
3351 					       unsigned int reserved_tags)
3352 {
3353 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3354 	struct blk_mq_tags *tags;
3355 
3356 	if (node == NUMA_NO_NODE)
3357 		node = set->numa_node;
3358 
3359 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3360 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3361 	if (!tags)
3362 		return NULL;
3363 
3364 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3365 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3366 				 node);
3367 	if (!tags->rqs)
3368 		goto err_free_tags;
3369 
3370 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3371 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3372 					node);
3373 	if (!tags->static_rqs)
3374 		goto err_free_rqs;
3375 
3376 	return tags;
3377 
3378 err_free_rqs:
3379 	kfree(tags->rqs);
3380 err_free_tags:
3381 	blk_mq_free_tags(tags);
3382 	return NULL;
3383 }
3384 
3385 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3386 			       unsigned int hctx_idx, int node)
3387 {
3388 	int ret;
3389 
3390 	if (set->ops->init_request) {
3391 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3392 		if (ret)
3393 			return ret;
3394 	}
3395 
3396 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3397 	return 0;
3398 }
3399 
3400 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3401 			    struct blk_mq_tags *tags,
3402 			    unsigned int hctx_idx, unsigned int depth)
3403 {
3404 	unsigned int i, j, entries_per_page, max_order = 4;
3405 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3406 	size_t rq_size, left;
3407 
3408 	if (node == NUMA_NO_NODE)
3409 		node = set->numa_node;
3410 
3411 	INIT_LIST_HEAD(&tags->page_list);
3412 
3413 	/*
3414 	 * rq_size is the size of the request plus driver payload, rounded
3415 	 * to the cacheline size
3416 	 */
3417 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3418 				cache_line_size());
3419 	left = rq_size * depth;
3420 
3421 	for (i = 0; i < depth; ) {
3422 		int this_order = max_order;
3423 		struct page *page;
3424 		int to_do;
3425 		void *p;
3426 
3427 		while (this_order && left < order_to_size(this_order - 1))
3428 			this_order--;
3429 
3430 		do {
3431 			page = alloc_pages_node(node,
3432 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3433 				this_order);
3434 			if (page)
3435 				break;
3436 			if (!this_order--)
3437 				break;
3438 			if (order_to_size(this_order) < rq_size)
3439 				break;
3440 		} while (1);
3441 
3442 		if (!page)
3443 			goto fail;
3444 
3445 		page->private = this_order;
3446 		list_add_tail(&page->lru, &tags->page_list);
3447 
3448 		p = page_address(page);
3449 		/*
3450 		 * Allow kmemleak to scan these pages as they contain pointers
3451 		 * to additional allocations like via ops->init_request().
3452 		 */
3453 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3454 		entries_per_page = order_to_size(this_order) / rq_size;
3455 		to_do = min(entries_per_page, depth - i);
3456 		left -= to_do * rq_size;
3457 		for (j = 0; j < to_do; j++) {
3458 			struct request *rq = p;
3459 
3460 			tags->static_rqs[i] = rq;
3461 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3462 				tags->static_rqs[i] = NULL;
3463 				goto fail;
3464 			}
3465 
3466 			p += rq_size;
3467 			i++;
3468 		}
3469 	}
3470 	return 0;
3471 
3472 fail:
3473 	blk_mq_free_rqs(set, tags, hctx_idx);
3474 	return -ENOMEM;
3475 }
3476 
3477 struct rq_iter_data {
3478 	struct blk_mq_hw_ctx *hctx;
3479 	bool has_rq;
3480 };
3481 
3482 static bool blk_mq_has_request(struct request *rq, void *data)
3483 {
3484 	struct rq_iter_data *iter_data = data;
3485 
3486 	if (rq->mq_hctx != iter_data->hctx)
3487 		return true;
3488 	iter_data->has_rq = true;
3489 	return false;
3490 }
3491 
3492 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3493 {
3494 	struct blk_mq_tags *tags = hctx->sched_tags ?
3495 			hctx->sched_tags : hctx->tags;
3496 	struct rq_iter_data data = {
3497 		.hctx	= hctx,
3498 	};
3499 
3500 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3501 	return data.has_rq;
3502 }
3503 
3504 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3505 		struct blk_mq_hw_ctx *hctx)
3506 {
3507 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3508 		return false;
3509 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3510 		return false;
3511 	return true;
3512 }
3513 
3514 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3515 {
3516 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3517 			struct blk_mq_hw_ctx, cpuhp_online);
3518 
3519 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3520 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3521 		return 0;
3522 
3523 	/*
3524 	 * Prevent new request from being allocated on the current hctx.
3525 	 *
3526 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3527 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3528 	 * seen once we return from the tag allocator.
3529 	 */
3530 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3531 	smp_mb__after_atomic();
3532 
3533 	/*
3534 	 * Try to grab a reference to the queue and wait for any outstanding
3535 	 * requests.  If we could not grab a reference the queue has been
3536 	 * frozen and there are no requests.
3537 	 */
3538 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3539 		while (blk_mq_hctx_has_requests(hctx))
3540 			msleep(5);
3541 		percpu_ref_put(&hctx->queue->q_usage_counter);
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3548 {
3549 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3550 			struct blk_mq_hw_ctx, cpuhp_online);
3551 
3552 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3553 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3554 	return 0;
3555 }
3556 
3557 /*
3558  * 'cpu' is going away. splice any existing rq_list entries from this
3559  * software queue to the hw queue dispatch list, and ensure that it
3560  * gets run.
3561  */
3562 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3563 {
3564 	struct blk_mq_hw_ctx *hctx;
3565 	struct blk_mq_ctx *ctx;
3566 	LIST_HEAD(tmp);
3567 	enum hctx_type type;
3568 
3569 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3570 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3571 		return 0;
3572 
3573 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3574 	type = hctx->type;
3575 
3576 	spin_lock(&ctx->lock);
3577 	if (!list_empty(&ctx->rq_lists[type])) {
3578 		list_splice_init(&ctx->rq_lists[type], &tmp);
3579 		blk_mq_hctx_clear_pending(hctx, ctx);
3580 	}
3581 	spin_unlock(&ctx->lock);
3582 
3583 	if (list_empty(&tmp))
3584 		return 0;
3585 
3586 	spin_lock(&hctx->lock);
3587 	list_splice_tail_init(&tmp, &hctx->dispatch);
3588 	spin_unlock(&hctx->lock);
3589 
3590 	blk_mq_run_hw_queue(hctx, true);
3591 	return 0;
3592 }
3593 
3594 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3595 {
3596 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3597 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3598 						    &hctx->cpuhp_online);
3599 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3600 					    &hctx->cpuhp_dead);
3601 }
3602 
3603 /*
3604  * Before freeing hw queue, clearing the flush request reference in
3605  * tags->rqs[] for avoiding potential UAF.
3606  */
3607 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3608 		unsigned int queue_depth, struct request *flush_rq)
3609 {
3610 	int i;
3611 	unsigned long flags;
3612 
3613 	/* The hw queue may not be mapped yet */
3614 	if (!tags)
3615 		return;
3616 
3617 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3618 
3619 	for (i = 0; i < queue_depth; i++)
3620 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3621 
3622 	/*
3623 	 * Wait until all pending iteration is done.
3624 	 *
3625 	 * Request reference is cleared and it is guaranteed to be observed
3626 	 * after the ->lock is released.
3627 	 */
3628 	spin_lock_irqsave(&tags->lock, flags);
3629 	spin_unlock_irqrestore(&tags->lock, flags);
3630 }
3631 
3632 /* hctx->ctxs will be freed in queue's release handler */
3633 static void blk_mq_exit_hctx(struct request_queue *q,
3634 		struct blk_mq_tag_set *set,
3635 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3636 {
3637 	struct request *flush_rq = hctx->fq->flush_rq;
3638 
3639 	if (blk_mq_hw_queue_mapped(hctx))
3640 		blk_mq_tag_idle(hctx);
3641 
3642 	if (blk_queue_init_done(q))
3643 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3644 				set->queue_depth, flush_rq);
3645 	if (set->ops->exit_request)
3646 		set->ops->exit_request(set, flush_rq, hctx_idx);
3647 
3648 	if (set->ops->exit_hctx)
3649 		set->ops->exit_hctx(hctx, hctx_idx);
3650 
3651 	blk_mq_remove_cpuhp(hctx);
3652 
3653 	xa_erase(&q->hctx_table, hctx_idx);
3654 
3655 	spin_lock(&q->unused_hctx_lock);
3656 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3657 	spin_unlock(&q->unused_hctx_lock);
3658 }
3659 
3660 static void blk_mq_exit_hw_queues(struct request_queue *q,
3661 		struct blk_mq_tag_set *set, int nr_queue)
3662 {
3663 	struct blk_mq_hw_ctx *hctx;
3664 	unsigned long i;
3665 
3666 	queue_for_each_hw_ctx(q, hctx, i) {
3667 		if (i == nr_queue)
3668 			break;
3669 		blk_mq_exit_hctx(q, set, hctx, i);
3670 	}
3671 }
3672 
3673 static int blk_mq_init_hctx(struct request_queue *q,
3674 		struct blk_mq_tag_set *set,
3675 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3676 {
3677 	hctx->queue_num = hctx_idx;
3678 
3679 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3680 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3681 				&hctx->cpuhp_online);
3682 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3683 
3684 	hctx->tags = set->tags[hctx_idx];
3685 
3686 	if (set->ops->init_hctx &&
3687 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3688 		goto unregister_cpu_notifier;
3689 
3690 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3691 				hctx->numa_node))
3692 		goto exit_hctx;
3693 
3694 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3695 		goto exit_flush_rq;
3696 
3697 	return 0;
3698 
3699  exit_flush_rq:
3700 	if (set->ops->exit_request)
3701 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3702  exit_hctx:
3703 	if (set->ops->exit_hctx)
3704 		set->ops->exit_hctx(hctx, hctx_idx);
3705  unregister_cpu_notifier:
3706 	blk_mq_remove_cpuhp(hctx);
3707 	return -1;
3708 }
3709 
3710 static struct blk_mq_hw_ctx *
3711 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3712 		int node)
3713 {
3714 	struct blk_mq_hw_ctx *hctx;
3715 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3716 
3717 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3718 	if (!hctx)
3719 		goto fail_alloc_hctx;
3720 
3721 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3722 		goto free_hctx;
3723 
3724 	atomic_set(&hctx->nr_active, 0);
3725 	if (node == NUMA_NO_NODE)
3726 		node = set->numa_node;
3727 	hctx->numa_node = node;
3728 
3729 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3730 	spin_lock_init(&hctx->lock);
3731 	INIT_LIST_HEAD(&hctx->dispatch);
3732 	hctx->queue = q;
3733 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3734 
3735 	INIT_LIST_HEAD(&hctx->hctx_list);
3736 
3737 	/*
3738 	 * Allocate space for all possible cpus to avoid allocation at
3739 	 * runtime
3740 	 */
3741 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3742 			gfp, node);
3743 	if (!hctx->ctxs)
3744 		goto free_cpumask;
3745 
3746 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3747 				gfp, node, false, false))
3748 		goto free_ctxs;
3749 	hctx->nr_ctx = 0;
3750 
3751 	spin_lock_init(&hctx->dispatch_wait_lock);
3752 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3753 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3754 
3755 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3756 	if (!hctx->fq)
3757 		goto free_bitmap;
3758 
3759 	blk_mq_hctx_kobj_init(hctx);
3760 
3761 	return hctx;
3762 
3763  free_bitmap:
3764 	sbitmap_free(&hctx->ctx_map);
3765  free_ctxs:
3766 	kfree(hctx->ctxs);
3767  free_cpumask:
3768 	free_cpumask_var(hctx->cpumask);
3769  free_hctx:
3770 	kfree(hctx);
3771  fail_alloc_hctx:
3772 	return NULL;
3773 }
3774 
3775 static void blk_mq_init_cpu_queues(struct request_queue *q,
3776 				   unsigned int nr_hw_queues)
3777 {
3778 	struct blk_mq_tag_set *set = q->tag_set;
3779 	unsigned int i, j;
3780 
3781 	for_each_possible_cpu(i) {
3782 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3783 		struct blk_mq_hw_ctx *hctx;
3784 		int k;
3785 
3786 		__ctx->cpu = i;
3787 		spin_lock_init(&__ctx->lock);
3788 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3789 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3790 
3791 		__ctx->queue = q;
3792 
3793 		/*
3794 		 * Set local node, IFF we have more than one hw queue. If
3795 		 * not, we remain on the home node of the device
3796 		 */
3797 		for (j = 0; j < set->nr_maps; j++) {
3798 			hctx = blk_mq_map_queue_type(q, j, i);
3799 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3800 				hctx->numa_node = cpu_to_node(i);
3801 		}
3802 	}
3803 }
3804 
3805 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3806 					     unsigned int hctx_idx,
3807 					     unsigned int depth)
3808 {
3809 	struct blk_mq_tags *tags;
3810 	int ret;
3811 
3812 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3813 	if (!tags)
3814 		return NULL;
3815 
3816 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3817 	if (ret) {
3818 		blk_mq_free_rq_map(tags);
3819 		return NULL;
3820 	}
3821 
3822 	return tags;
3823 }
3824 
3825 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3826 				       int hctx_idx)
3827 {
3828 	if (blk_mq_is_shared_tags(set->flags)) {
3829 		set->tags[hctx_idx] = set->shared_tags;
3830 
3831 		return true;
3832 	}
3833 
3834 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3835 						       set->queue_depth);
3836 
3837 	return set->tags[hctx_idx];
3838 }
3839 
3840 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3841 			     struct blk_mq_tags *tags,
3842 			     unsigned int hctx_idx)
3843 {
3844 	if (tags) {
3845 		blk_mq_free_rqs(set, tags, hctx_idx);
3846 		blk_mq_free_rq_map(tags);
3847 	}
3848 }
3849 
3850 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3851 				      unsigned int hctx_idx)
3852 {
3853 	if (!blk_mq_is_shared_tags(set->flags))
3854 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3855 
3856 	set->tags[hctx_idx] = NULL;
3857 }
3858 
3859 static void blk_mq_map_swqueue(struct request_queue *q)
3860 {
3861 	unsigned int j, hctx_idx;
3862 	unsigned long i;
3863 	struct blk_mq_hw_ctx *hctx;
3864 	struct blk_mq_ctx *ctx;
3865 	struct blk_mq_tag_set *set = q->tag_set;
3866 
3867 	queue_for_each_hw_ctx(q, hctx, i) {
3868 		cpumask_clear(hctx->cpumask);
3869 		hctx->nr_ctx = 0;
3870 		hctx->dispatch_from = NULL;
3871 	}
3872 
3873 	/*
3874 	 * Map software to hardware queues.
3875 	 *
3876 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3877 	 */
3878 	for_each_possible_cpu(i) {
3879 
3880 		ctx = per_cpu_ptr(q->queue_ctx, i);
3881 		for (j = 0; j < set->nr_maps; j++) {
3882 			if (!set->map[j].nr_queues) {
3883 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3884 						HCTX_TYPE_DEFAULT, i);
3885 				continue;
3886 			}
3887 			hctx_idx = set->map[j].mq_map[i];
3888 			/* unmapped hw queue can be remapped after CPU topo changed */
3889 			if (!set->tags[hctx_idx] &&
3890 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3891 				/*
3892 				 * If tags initialization fail for some hctx,
3893 				 * that hctx won't be brought online.  In this
3894 				 * case, remap the current ctx to hctx[0] which
3895 				 * is guaranteed to always have tags allocated
3896 				 */
3897 				set->map[j].mq_map[i] = 0;
3898 			}
3899 
3900 			hctx = blk_mq_map_queue_type(q, j, i);
3901 			ctx->hctxs[j] = hctx;
3902 			/*
3903 			 * If the CPU is already set in the mask, then we've
3904 			 * mapped this one already. This can happen if
3905 			 * devices share queues across queue maps.
3906 			 */
3907 			if (cpumask_test_cpu(i, hctx->cpumask))
3908 				continue;
3909 
3910 			cpumask_set_cpu(i, hctx->cpumask);
3911 			hctx->type = j;
3912 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3913 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3914 
3915 			/*
3916 			 * If the nr_ctx type overflows, we have exceeded the
3917 			 * amount of sw queues we can support.
3918 			 */
3919 			BUG_ON(!hctx->nr_ctx);
3920 		}
3921 
3922 		for (; j < HCTX_MAX_TYPES; j++)
3923 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3924 					HCTX_TYPE_DEFAULT, i);
3925 	}
3926 
3927 	queue_for_each_hw_ctx(q, hctx, i) {
3928 		/*
3929 		 * If no software queues are mapped to this hardware queue,
3930 		 * disable it and free the request entries.
3931 		 */
3932 		if (!hctx->nr_ctx) {
3933 			/* Never unmap queue 0.  We need it as a
3934 			 * fallback in case of a new remap fails
3935 			 * allocation
3936 			 */
3937 			if (i)
3938 				__blk_mq_free_map_and_rqs(set, i);
3939 
3940 			hctx->tags = NULL;
3941 			continue;
3942 		}
3943 
3944 		hctx->tags = set->tags[i];
3945 		WARN_ON(!hctx->tags);
3946 
3947 		/*
3948 		 * Set the map size to the number of mapped software queues.
3949 		 * This is more accurate and more efficient than looping
3950 		 * over all possibly mapped software queues.
3951 		 */
3952 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3953 
3954 		/*
3955 		 * Initialize batch roundrobin counts
3956 		 */
3957 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3958 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3959 	}
3960 }
3961 
3962 /*
3963  * Caller needs to ensure that we're either frozen/quiesced, or that
3964  * the queue isn't live yet.
3965  */
3966 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3967 {
3968 	struct blk_mq_hw_ctx *hctx;
3969 	unsigned long i;
3970 
3971 	queue_for_each_hw_ctx(q, hctx, i) {
3972 		if (shared) {
3973 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3974 		} else {
3975 			blk_mq_tag_idle(hctx);
3976 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3977 		}
3978 	}
3979 }
3980 
3981 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3982 					 bool shared)
3983 {
3984 	struct request_queue *q;
3985 
3986 	lockdep_assert_held(&set->tag_list_lock);
3987 
3988 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3989 		blk_mq_freeze_queue(q);
3990 		queue_set_hctx_shared(q, shared);
3991 		blk_mq_unfreeze_queue(q);
3992 	}
3993 }
3994 
3995 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3996 {
3997 	struct blk_mq_tag_set *set = q->tag_set;
3998 
3999 	mutex_lock(&set->tag_list_lock);
4000 	list_del(&q->tag_set_list);
4001 	if (list_is_singular(&set->tag_list)) {
4002 		/* just transitioned to unshared */
4003 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4004 		/* update existing queue */
4005 		blk_mq_update_tag_set_shared(set, false);
4006 	}
4007 	mutex_unlock(&set->tag_list_lock);
4008 	INIT_LIST_HEAD(&q->tag_set_list);
4009 }
4010 
4011 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4012 				     struct request_queue *q)
4013 {
4014 	mutex_lock(&set->tag_list_lock);
4015 
4016 	/*
4017 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4018 	 */
4019 	if (!list_empty(&set->tag_list) &&
4020 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4021 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4022 		/* update existing queue */
4023 		blk_mq_update_tag_set_shared(set, true);
4024 	}
4025 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4026 		queue_set_hctx_shared(q, true);
4027 	list_add_tail(&q->tag_set_list, &set->tag_list);
4028 
4029 	mutex_unlock(&set->tag_list_lock);
4030 }
4031 
4032 /* All allocations will be freed in release handler of q->mq_kobj */
4033 static int blk_mq_alloc_ctxs(struct request_queue *q)
4034 {
4035 	struct blk_mq_ctxs *ctxs;
4036 	int cpu;
4037 
4038 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4039 	if (!ctxs)
4040 		return -ENOMEM;
4041 
4042 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4043 	if (!ctxs->queue_ctx)
4044 		goto fail;
4045 
4046 	for_each_possible_cpu(cpu) {
4047 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4048 		ctx->ctxs = ctxs;
4049 	}
4050 
4051 	q->mq_kobj = &ctxs->kobj;
4052 	q->queue_ctx = ctxs->queue_ctx;
4053 
4054 	return 0;
4055  fail:
4056 	kfree(ctxs);
4057 	return -ENOMEM;
4058 }
4059 
4060 /*
4061  * It is the actual release handler for mq, but we do it from
4062  * request queue's release handler for avoiding use-after-free
4063  * and headache because q->mq_kobj shouldn't have been introduced,
4064  * but we can't group ctx/kctx kobj without it.
4065  */
4066 void blk_mq_release(struct request_queue *q)
4067 {
4068 	struct blk_mq_hw_ctx *hctx, *next;
4069 	unsigned long i;
4070 
4071 	queue_for_each_hw_ctx(q, hctx, i)
4072 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4073 
4074 	/* all hctx are in .unused_hctx_list now */
4075 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4076 		list_del_init(&hctx->hctx_list);
4077 		kobject_put(&hctx->kobj);
4078 	}
4079 
4080 	xa_destroy(&q->hctx_table);
4081 
4082 	/*
4083 	 * release .mq_kobj and sw queue's kobject now because
4084 	 * both share lifetime with request queue.
4085 	 */
4086 	blk_mq_sysfs_deinit(q);
4087 }
4088 
4089 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4090 		void *queuedata)
4091 {
4092 	struct request_queue *q;
4093 	int ret;
4094 
4095 	q = blk_alloc_queue(set->numa_node);
4096 	if (!q)
4097 		return ERR_PTR(-ENOMEM);
4098 	q->queuedata = queuedata;
4099 	ret = blk_mq_init_allocated_queue(set, q);
4100 	if (ret) {
4101 		blk_put_queue(q);
4102 		return ERR_PTR(ret);
4103 	}
4104 	return q;
4105 }
4106 
4107 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4108 {
4109 	return blk_mq_init_queue_data(set, NULL);
4110 }
4111 EXPORT_SYMBOL(blk_mq_init_queue);
4112 
4113 /**
4114  * blk_mq_destroy_queue - shutdown a request queue
4115  * @q: request queue to shutdown
4116  *
4117  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4118  * requests will be failed with -ENODEV. The caller is responsible for dropping
4119  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4120  *
4121  * Context: can sleep
4122  */
4123 void blk_mq_destroy_queue(struct request_queue *q)
4124 {
4125 	WARN_ON_ONCE(!queue_is_mq(q));
4126 	WARN_ON_ONCE(blk_queue_registered(q));
4127 
4128 	might_sleep();
4129 
4130 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4131 	blk_queue_start_drain(q);
4132 	blk_mq_freeze_queue_wait(q);
4133 
4134 	blk_sync_queue(q);
4135 	blk_mq_cancel_work_sync(q);
4136 	blk_mq_exit_queue(q);
4137 }
4138 EXPORT_SYMBOL(blk_mq_destroy_queue);
4139 
4140 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4141 		struct lock_class_key *lkclass)
4142 {
4143 	struct request_queue *q;
4144 	struct gendisk *disk;
4145 
4146 	q = blk_mq_init_queue_data(set, queuedata);
4147 	if (IS_ERR(q))
4148 		return ERR_CAST(q);
4149 
4150 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4151 	if (!disk) {
4152 		blk_mq_destroy_queue(q);
4153 		blk_put_queue(q);
4154 		return ERR_PTR(-ENOMEM);
4155 	}
4156 	set_bit(GD_OWNS_QUEUE, &disk->state);
4157 	return disk;
4158 }
4159 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4160 
4161 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4162 		struct lock_class_key *lkclass)
4163 {
4164 	struct gendisk *disk;
4165 
4166 	if (!blk_get_queue(q))
4167 		return NULL;
4168 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4169 	if (!disk)
4170 		blk_put_queue(q);
4171 	return disk;
4172 }
4173 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4174 
4175 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4176 		struct blk_mq_tag_set *set, struct request_queue *q,
4177 		int hctx_idx, int node)
4178 {
4179 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4180 
4181 	/* reuse dead hctx first */
4182 	spin_lock(&q->unused_hctx_lock);
4183 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4184 		if (tmp->numa_node == node) {
4185 			hctx = tmp;
4186 			break;
4187 		}
4188 	}
4189 	if (hctx)
4190 		list_del_init(&hctx->hctx_list);
4191 	spin_unlock(&q->unused_hctx_lock);
4192 
4193 	if (!hctx)
4194 		hctx = blk_mq_alloc_hctx(q, set, node);
4195 	if (!hctx)
4196 		goto fail;
4197 
4198 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4199 		goto free_hctx;
4200 
4201 	return hctx;
4202 
4203  free_hctx:
4204 	kobject_put(&hctx->kobj);
4205  fail:
4206 	return NULL;
4207 }
4208 
4209 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4210 						struct request_queue *q)
4211 {
4212 	struct blk_mq_hw_ctx *hctx;
4213 	unsigned long i, j;
4214 
4215 	/* protect against switching io scheduler  */
4216 	mutex_lock(&q->sysfs_lock);
4217 	for (i = 0; i < set->nr_hw_queues; i++) {
4218 		int old_node;
4219 		int node = blk_mq_get_hctx_node(set, i);
4220 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4221 
4222 		if (old_hctx) {
4223 			old_node = old_hctx->numa_node;
4224 			blk_mq_exit_hctx(q, set, old_hctx, i);
4225 		}
4226 
4227 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4228 			if (!old_hctx)
4229 				break;
4230 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4231 					node, old_node);
4232 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4233 			WARN_ON_ONCE(!hctx);
4234 		}
4235 	}
4236 	/*
4237 	 * Increasing nr_hw_queues fails. Free the newly allocated
4238 	 * hctxs and keep the previous q->nr_hw_queues.
4239 	 */
4240 	if (i != set->nr_hw_queues) {
4241 		j = q->nr_hw_queues;
4242 	} else {
4243 		j = i;
4244 		q->nr_hw_queues = set->nr_hw_queues;
4245 	}
4246 
4247 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4248 		blk_mq_exit_hctx(q, set, hctx, j);
4249 	mutex_unlock(&q->sysfs_lock);
4250 }
4251 
4252 static void blk_mq_update_poll_flag(struct request_queue *q)
4253 {
4254 	struct blk_mq_tag_set *set = q->tag_set;
4255 
4256 	if (set->nr_maps > HCTX_TYPE_POLL &&
4257 	    set->map[HCTX_TYPE_POLL].nr_queues)
4258 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4259 	else
4260 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4261 }
4262 
4263 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4264 		struct request_queue *q)
4265 {
4266 	/* mark the queue as mq asap */
4267 	q->mq_ops = set->ops;
4268 
4269 	if (blk_mq_alloc_ctxs(q))
4270 		goto err_exit;
4271 
4272 	/* init q->mq_kobj and sw queues' kobjects */
4273 	blk_mq_sysfs_init(q);
4274 
4275 	INIT_LIST_HEAD(&q->unused_hctx_list);
4276 	spin_lock_init(&q->unused_hctx_lock);
4277 
4278 	xa_init(&q->hctx_table);
4279 
4280 	blk_mq_realloc_hw_ctxs(set, q);
4281 	if (!q->nr_hw_queues)
4282 		goto err_hctxs;
4283 
4284 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4285 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4286 
4287 	q->tag_set = set;
4288 
4289 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4290 	blk_mq_update_poll_flag(q);
4291 
4292 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4293 	INIT_LIST_HEAD(&q->flush_list);
4294 	INIT_LIST_HEAD(&q->requeue_list);
4295 	spin_lock_init(&q->requeue_lock);
4296 
4297 	q->nr_requests = set->queue_depth;
4298 
4299 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4300 	blk_mq_add_queue_tag_set(set, q);
4301 	blk_mq_map_swqueue(q);
4302 	return 0;
4303 
4304 err_hctxs:
4305 	blk_mq_release(q);
4306 err_exit:
4307 	q->mq_ops = NULL;
4308 	return -ENOMEM;
4309 }
4310 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4311 
4312 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4313 void blk_mq_exit_queue(struct request_queue *q)
4314 {
4315 	struct blk_mq_tag_set *set = q->tag_set;
4316 
4317 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4318 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4319 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4320 	blk_mq_del_queue_tag_set(q);
4321 }
4322 
4323 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4324 {
4325 	int i;
4326 
4327 	if (blk_mq_is_shared_tags(set->flags)) {
4328 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4329 						BLK_MQ_NO_HCTX_IDX,
4330 						set->queue_depth);
4331 		if (!set->shared_tags)
4332 			return -ENOMEM;
4333 	}
4334 
4335 	for (i = 0; i < set->nr_hw_queues; i++) {
4336 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4337 			goto out_unwind;
4338 		cond_resched();
4339 	}
4340 
4341 	return 0;
4342 
4343 out_unwind:
4344 	while (--i >= 0)
4345 		__blk_mq_free_map_and_rqs(set, i);
4346 
4347 	if (blk_mq_is_shared_tags(set->flags)) {
4348 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4349 					BLK_MQ_NO_HCTX_IDX);
4350 	}
4351 
4352 	return -ENOMEM;
4353 }
4354 
4355 /*
4356  * Allocate the request maps associated with this tag_set. Note that this
4357  * may reduce the depth asked for, if memory is tight. set->queue_depth
4358  * will be updated to reflect the allocated depth.
4359  */
4360 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4361 {
4362 	unsigned int depth;
4363 	int err;
4364 
4365 	depth = set->queue_depth;
4366 	do {
4367 		err = __blk_mq_alloc_rq_maps(set);
4368 		if (!err)
4369 			break;
4370 
4371 		set->queue_depth >>= 1;
4372 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4373 			err = -ENOMEM;
4374 			break;
4375 		}
4376 	} while (set->queue_depth);
4377 
4378 	if (!set->queue_depth || err) {
4379 		pr_err("blk-mq: failed to allocate request map\n");
4380 		return -ENOMEM;
4381 	}
4382 
4383 	if (depth != set->queue_depth)
4384 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4385 						depth, set->queue_depth);
4386 
4387 	return 0;
4388 }
4389 
4390 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4391 {
4392 	/*
4393 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4394 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4395 	 * number of hardware queues.
4396 	 */
4397 	if (set->nr_maps == 1)
4398 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4399 
4400 	if (set->ops->map_queues && !is_kdump_kernel()) {
4401 		int i;
4402 
4403 		/*
4404 		 * transport .map_queues is usually done in the following
4405 		 * way:
4406 		 *
4407 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4408 		 * 	mask = get_cpu_mask(queue)
4409 		 * 	for_each_cpu(cpu, mask)
4410 		 * 		set->map[x].mq_map[cpu] = queue;
4411 		 * }
4412 		 *
4413 		 * When we need to remap, the table has to be cleared for
4414 		 * killing stale mapping since one CPU may not be mapped
4415 		 * to any hw queue.
4416 		 */
4417 		for (i = 0; i < set->nr_maps; i++)
4418 			blk_mq_clear_mq_map(&set->map[i]);
4419 
4420 		set->ops->map_queues(set);
4421 	} else {
4422 		BUG_ON(set->nr_maps > 1);
4423 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4424 	}
4425 }
4426 
4427 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4428 				       int new_nr_hw_queues)
4429 {
4430 	struct blk_mq_tags **new_tags;
4431 	int i;
4432 
4433 	if (set->nr_hw_queues >= new_nr_hw_queues)
4434 		goto done;
4435 
4436 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4437 				GFP_KERNEL, set->numa_node);
4438 	if (!new_tags)
4439 		return -ENOMEM;
4440 
4441 	if (set->tags)
4442 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4443 		       sizeof(*set->tags));
4444 	kfree(set->tags);
4445 	set->tags = new_tags;
4446 
4447 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4448 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4449 			while (--i >= set->nr_hw_queues)
4450 				__blk_mq_free_map_and_rqs(set, i);
4451 			return -ENOMEM;
4452 		}
4453 		cond_resched();
4454 	}
4455 
4456 done:
4457 	set->nr_hw_queues = new_nr_hw_queues;
4458 	return 0;
4459 }
4460 
4461 /*
4462  * Alloc a tag set to be associated with one or more request queues.
4463  * May fail with EINVAL for various error conditions. May adjust the
4464  * requested depth down, if it's too large. In that case, the set
4465  * value will be stored in set->queue_depth.
4466  */
4467 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4468 {
4469 	int i, ret;
4470 
4471 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4472 
4473 	if (!set->nr_hw_queues)
4474 		return -EINVAL;
4475 	if (!set->queue_depth)
4476 		return -EINVAL;
4477 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4478 		return -EINVAL;
4479 
4480 	if (!set->ops->queue_rq)
4481 		return -EINVAL;
4482 
4483 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4484 		return -EINVAL;
4485 
4486 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4487 		pr_info("blk-mq: reduced tag depth to %u\n",
4488 			BLK_MQ_MAX_DEPTH);
4489 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4490 	}
4491 
4492 	if (!set->nr_maps)
4493 		set->nr_maps = 1;
4494 	else if (set->nr_maps > HCTX_MAX_TYPES)
4495 		return -EINVAL;
4496 
4497 	/*
4498 	 * If a crashdump is active, then we are potentially in a very
4499 	 * memory constrained environment. Limit us to 1 queue and
4500 	 * 64 tags to prevent using too much memory.
4501 	 */
4502 	if (is_kdump_kernel()) {
4503 		set->nr_hw_queues = 1;
4504 		set->nr_maps = 1;
4505 		set->queue_depth = min(64U, set->queue_depth);
4506 	}
4507 	/*
4508 	 * There is no use for more h/w queues than cpus if we just have
4509 	 * a single map
4510 	 */
4511 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4512 		set->nr_hw_queues = nr_cpu_ids;
4513 
4514 	if (set->flags & BLK_MQ_F_BLOCKING) {
4515 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4516 		if (!set->srcu)
4517 			return -ENOMEM;
4518 		ret = init_srcu_struct(set->srcu);
4519 		if (ret)
4520 			goto out_free_srcu;
4521 	}
4522 
4523 	ret = -ENOMEM;
4524 	set->tags = kcalloc_node(set->nr_hw_queues,
4525 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4526 				 set->numa_node);
4527 	if (!set->tags)
4528 		goto out_cleanup_srcu;
4529 
4530 	for (i = 0; i < set->nr_maps; i++) {
4531 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4532 						  sizeof(set->map[i].mq_map[0]),
4533 						  GFP_KERNEL, set->numa_node);
4534 		if (!set->map[i].mq_map)
4535 			goto out_free_mq_map;
4536 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4537 	}
4538 
4539 	blk_mq_update_queue_map(set);
4540 
4541 	ret = blk_mq_alloc_set_map_and_rqs(set);
4542 	if (ret)
4543 		goto out_free_mq_map;
4544 
4545 	mutex_init(&set->tag_list_lock);
4546 	INIT_LIST_HEAD(&set->tag_list);
4547 
4548 	return 0;
4549 
4550 out_free_mq_map:
4551 	for (i = 0; i < set->nr_maps; i++) {
4552 		kfree(set->map[i].mq_map);
4553 		set->map[i].mq_map = NULL;
4554 	}
4555 	kfree(set->tags);
4556 	set->tags = NULL;
4557 out_cleanup_srcu:
4558 	if (set->flags & BLK_MQ_F_BLOCKING)
4559 		cleanup_srcu_struct(set->srcu);
4560 out_free_srcu:
4561 	if (set->flags & BLK_MQ_F_BLOCKING)
4562 		kfree(set->srcu);
4563 	return ret;
4564 }
4565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4566 
4567 /* allocate and initialize a tagset for a simple single-queue device */
4568 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4569 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4570 		unsigned int set_flags)
4571 {
4572 	memset(set, 0, sizeof(*set));
4573 	set->ops = ops;
4574 	set->nr_hw_queues = 1;
4575 	set->nr_maps = 1;
4576 	set->queue_depth = queue_depth;
4577 	set->numa_node = NUMA_NO_NODE;
4578 	set->flags = set_flags;
4579 	return blk_mq_alloc_tag_set(set);
4580 }
4581 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4582 
4583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4584 {
4585 	int i, j;
4586 
4587 	for (i = 0; i < set->nr_hw_queues; i++)
4588 		__blk_mq_free_map_and_rqs(set, i);
4589 
4590 	if (blk_mq_is_shared_tags(set->flags)) {
4591 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4592 					BLK_MQ_NO_HCTX_IDX);
4593 	}
4594 
4595 	for (j = 0; j < set->nr_maps; j++) {
4596 		kfree(set->map[j].mq_map);
4597 		set->map[j].mq_map = NULL;
4598 	}
4599 
4600 	kfree(set->tags);
4601 	set->tags = NULL;
4602 	if (set->flags & BLK_MQ_F_BLOCKING) {
4603 		cleanup_srcu_struct(set->srcu);
4604 		kfree(set->srcu);
4605 	}
4606 }
4607 EXPORT_SYMBOL(blk_mq_free_tag_set);
4608 
4609 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4610 {
4611 	struct blk_mq_tag_set *set = q->tag_set;
4612 	struct blk_mq_hw_ctx *hctx;
4613 	int ret;
4614 	unsigned long i;
4615 
4616 	if (!set)
4617 		return -EINVAL;
4618 
4619 	if (q->nr_requests == nr)
4620 		return 0;
4621 
4622 	blk_mq_freeze_queue(q);
4623 	blk_mq_quiesce_queue(q);
4624 
4625 	ret = 0;
4626 	queue_for_each_hw_ctx(q, hctx, i) {
4627 		if (!hctx->tags)
4628 			continue;
4629 		/*
4630 		 * If we're using an MQ scheduler, just update the scheduler
4631 		 * queue depth. This is similar to what the old code would do.
4632 		 */
4633 		if (hctx->sched_tags) {
4634 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4635 						      nr, true);
4636 		} else {
4637 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4638 						      false);
4639 		}
4640 		if (ret)
4641 			break;
4642 		if (q->elevator && q->elevator->type->ops.depth_updated)
4643 			q->elevator->type->ops.depth_updated(hctx);
4644 	}
4645 	if (!ret) {
4646 		q->nr_requests = nr;
4647 		if (blk_mq_is_shared_tags(set->flags)) {
4648 			if (q->elevator)
4649 				blk_mq_tag_update_sched_shared_tags(q);
4650 			else
4651 				blk_mq_tag_resize_shared_tags(set, nr);
4652 		}
4653 	}
4654 
4655 	blk_mq_unquiesce_queue(q);
4656 	blk_mq_unfreeze_queue(q);
4657 
4658 	return ret;
4659 }
4660 
4661 /*
4662  * request_queue and elevator_type pair.
4663  * It is just used by __blk_mq_update_nr_hw_queues to cache
4664  * the elevator_type associated with a request_queue.
4665  */
4666 struct blk_mq_qe_pair {
4667 	struct list_head node;
4668 	struct request_queue *q;
4669 	struct elevator_type *type;
4670 };
4671 
4672 /*
4673  * Cache the elevator_type in qe pair list and switch the
4674  * io scheduler to 'none'
4675  */
4676 static bool blk_mq_elv_switch_none(struct list_head *head,
4677 		struct request_queue *q)
4678 {
4679 	struct blk_mq_qe_pair *qe;
4680 
4681 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4682 	if (!qe)
4683 		return false;
4684 
4685 	/* q->elevator needs protection from ->sysfs_lock */
4686 	mutex_lock(&q->sysfs_lock);
4687 
4688 	/* the check has to be done with holding sysfs_lock */
4689 	if (!q->elevator) {
4690 		kfree(qe);
4691 		goto unlock;
4692 	}
4693 
4694 	INIT_LIST_HEAD(&qe->node);
4695 	qe->q = q;
4696 	qe->type = q->elevator->type;
4697 	/* keep a reference to the elevator module as we'll switch back */
4698 	__elevator_get(qe->type);
4699 	list_add(&qe->node, head);
4700 	elevator_disable(q);
4701 unlock:
4702 	mutex_unlock(&q->sysfs_lock);
4703 
4704 	return true;
4705 }
4706 
4707 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4708 						struct request_queue *q)
4709 {
4710 	struct blk_mq_qe_pair *qe;
4711 
4712 	list_for_each_entry(qe, head, node)
4713 		if (qe->q == q)
4714 			return qe;
4715 
4716 	return NULL;
4717 }
4718 
4719 static void blk_mq_elv_switch_back(struct list_head *head,
4720 				  struct request_queue *q)
4721 {
4722 	struct blk_mq_qe_pair *qe;
4723 	struct elevator_type *t;
4724 
4725 	qe = blk_lookup_qe_pair(head, q);
4726 	if (!qe)
4727 		return;
4728 	t = qe->type;
4729 	list_del(&qe->node);
4730 	kfree(qe);
4731 
4732 	mutex_lock(&q->sysfs_lock);
4733 	elevator_switch(q, t);
4734 	/* drop the reference acquired in blk_mq_elv_switch_none */
4735 	elevator_put(t);
4736 	mutex_unlock(&q->sysfs_lock);
4737 }
4738 
4739 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4740 							int nr_hw_queues)
4741 {
4742 	struct request_queue *q;
4743 	LIST_HEAD(head);
4744 	int prev_nr_hw_queues = set->nr_hw_queues;
4745 	int i;
4746 
4747 	lockdep_assert_held(&set->tag_list_lock);
4748 
4749 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4750 		nr_hw_queues = nr_cpu_ids;
4751 	if (nr_hw_queues < 1)
4752 		return;
4753 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4754 		return;
4755 
4756 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4757 		blk_mq_freeze_queue(q);
4758 	/*
4759 	 * Switch IO scheduler to 'none', cleaning up the data associated
4760 	 * with the previous scheduler. We will switch back once we are done
4761 	 * updating the new sw to hw queue mappings.
4762 	 */
4763 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4764 		if (!blk_mq_elv_switch_none(&head, q))
4765 			goto switch_back;
4766 
4767 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768 		blk_mq_debugfs_unregister_hctxs(q);
4769 		blk_mq_sysfs_unregister_hctxs(q);
4770 	}
4771 
4772 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4773 		goto reregister;
4774 
4775 fallback:
4776 	blk_mq_update_queue_map(set);
4777 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4778 		blk_mq_realloc_hw_ctxs(set, q);
4779 		blk_mq_update_poll_flag(q);
4780 		if (q->nr_hw_queues != set->nr_hw_queues) {
4781 			int i = prev_nr_hw_queues;
4782 
4783 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4784 					nr_hw_queues, prev_nr_hw_queues);
4785 			for (; i < set->nr_hw_queues; i++)
4786 				__blk_mq_free_map_and_rqs(set, i);
4787 
4788 			set->nr_hw_queues = prev_nr_hw_queues;
4789 			goto fallback;
4790 		}
4791 		blk_mq_map_swqueue(q);
4792 	}
4793 
4794 reregister:
4795 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4796 		blk_mq_sysfs_register_hctxs(q);
4797 		blk_mq_debugfs_register_hctxs(q);
4798 	}
4799 
4800 switch_back:
4801 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4802 		blk_mq_elv_switch_back(&head, q);
4803 
4804 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4805 		blk_mq_unfreeze_queue(q);
4806 
4807 	/* Free the excess tags when nr_hw_queues shrink. */
4808 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4809 		__blk_mq_free_map_and_rqs(set, i);
4810 }
4811 
4812 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4813 {
4814 	mutex_lock(&set->tag_list_lock);
4815 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4816 	mutex_unlock(&set->tag_list_lock);
4817 }
4818 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4819 
4820 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4821 			 struct io_comp_batch *iob, unsigned int flags)
4822 {
4823 	long state = get_current_state();
4824 	int ret;
4825 
4826 	do {
4827 		ret = q->mq_ops->poll(hctx, iob);
4828 		if (ret > 0) {
4829 			__set_current_state(TASK_RUNNING);
4830 			return ret;
4831 		}
4832 
4833 		if (signal_pending_state(state, current))
4834 			__set_current_state(TASK_RUNNING);
4835 		if (task_is_running(current))
4836 			return 1;
4837 
4838 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4839 			break;
4840 		cpu_relax();
4841 	} while (!need_resched());
4842 
4843 	__set_current_state(TASK_RUNNING);
4844 	return 0;
4845 }
4846 
4847 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4848 		struct io_comp_batch *iob, unsigned int flags)
4849 {
4850 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4851 
4852 	return blk_hctx_poll(q, hctx, iob, flags);
4853 }
4854 
4855 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4856 		unsigned int poll_flags)
4857 {
4858 	struct request_queue *q = rq->q;
4859 	int ret;
4860 
4861 	if (!blk_rq_is_poll(rq))
4862 		return 0;
4863 	if (!percpu_ref_tryget(&q->q_usage_counter))
4864 		return 0;
4865 
4866 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4867 	blk_queue_exit(q);
4868 
4869 	return ret;
4870 }
4871 EXPORT_SYMBOL_GPL(blk_rq_poll);
4872 
4873 unsigned int blk_mq_rq_cpu(struct request *rq)
4874 {
4875 	return rq->mq_ctx->cpu;
4876 }
4877 EXPORT_SYMBOL(blk_mq_rq_cpu);
4878 
4879 void blk_mq_cancel_work_sync(struct request_queue *q)
4880 {
4881 	struct blk_mq_hw_ctx *hctx;
4882 	unsigned long i;
4883 
4884 	cancel_delayed_work_sync(&q->requeue_work);
4885 
4886 	queue_for_each_hw_ctx(q, hctx, i)
4887 		cancel_delayed_work_sync(&hctx->run_work);
4888 }
4889 
4890 static int __init blk_mq_init(void)
4891 {
4892 	int i;
4893 
4894 	for_each_possible_cpu(i)
4895 		init_llist_head(&per_cpu(blk_cpu_done, i));
4896 	for_each_possible_cpu(i)
4897 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4898 			 __blk_mq_complete_request_remote, NULL);
4899 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4900 
4901 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4902 				  "block/softirq:dead", NULL,
4903 				  blk_softirq_cpu_dead);
4904 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4905 				blk_mq_hctx_notify_dead);
4906 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4907 				blk_mq_hctx_notify_online,
4908 				blk_mq_hctx_notify_offline);
4909 	return 0;
4910 }
4911 subsys_initcall(blk_mq_init);
4912