1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include "blk.h" 34 #include "blk-mq.h" 35 #include "blk-mq-debugfs.h" 36 #include "blk-mq-tag.h" 37 #include "blk-pm.h" 38 #include "blk-stat.h" 39 #include "blk-mq-sched.h" 40 #include "blk-rq-qos.h" 41 42 static void blk_mq_poll_stats_start(struct request_queue *q); 43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 44 45 static int blk_mq_poll_stats_bkt(const struct request *rq) 46 { 47 int ddir, bytes, bucket; 48 49 ddir = rq_data_dir(rq); 50 bytes = blk_rq_bytes(rq); 51 52 bucket = ddir + 2*(ilog2(bytes) - 9); 53 54 if (bucket < 0) 55 return -1; 56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 58 59 return bucket; 60 } 61 62 /* 63 * Check if any of the ctx, dispatch list or elevator 64 * have pending work in this hardware queue. 65 */ 66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 67 { 68 return !list_empty_careful(&hctx->dispatch) || 69 sbitmap_any_bit_set(&hctx->ctx_map) || 70 blk_mq_sched_has_work(hctx); 71 } 72 73 /* 74 * Mark this ctx as having pending work in this hardware queue 75 */ 76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 77 struct blk_mq_ctx *ctx) 78 { 79 const int bit = ctx->index_hw[hctx->type]; 80 81 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 82 sbitmap_set_bit(&hctx->ctx_map, bit); 83 } 84 85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 86 struct blk_mq_ctx *ctx) 87 { 88 const int bit = ctx->index_hw[hctx->type]; 89 90 sbitmap_clear_bit(&hctx->ctx_map, bit); 91 } 92 93 struct mq_inflight { 94 struct hd_struct *part; 95 unsigned int *inflight; 96 }; 97 98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 99 struct request *rq, void *priv, 100 bool reserved) 101 { 102 struct mq_inflight *mi = priv; 103 104 /* 105 * index[0] counts the specific partition that was asked for. 106 */ 107 if (rq->part == mi->part) 108 mi->inflight[0]++; 109 110 return true; 111 } 112 113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 114 { 115 unsigned inflight[2]; 116 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 117 118 inflight[0] = inflight[1] = 0; 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 121 return inflight[0]; 122 } 123 124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 125 struct request *rq, void *priv, 126 bool reserved) 127 { 128 struct mq_inflight *mi = priv; 129 130 if (rq->part == mi->part) 131 mi->inflight[rq_data_dir(rq)]++; 132 133 return true; 134 } 135 136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 137 unsigned int inflight[2]) 138 { 139 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 140 141 inflight[0] = inflight[1] = 0; 142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 143 } 144 145 void blk_freeze_queue_start(struct request_queue *q) 146 { 147 mutex_lock(&q->mq_freeze_lock); 148 if (++q->mq_freeze_depth == 1) { 149 percpu_ref_kill(&q->q_usage_counter); 150 mutex_unlock(&q->mq_freeze_lock); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } else { 154 mutex_unlock(&q->mq_freeze_lock); 155 } 156 } 157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 158 159 void blk_mq_freeze_queue_wait(struct request_queue *q) 160 { 161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 164 165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 166 unsigned long timeout) 167 { 168 return wait_event_timeout(q->mq_freeze_wq, 169 percpu_ref_is_zero(&q->q_usage_counter), 170 timeout); 171 } 172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 173 174 /* 175 * Guarantee no request is in use, so we can change any data structure of 176 * the queue afterward. 177 */ 178 void blk_freeze_queue(struct request_queue *q) 179 { 180 /* 181 * In the !blk_mq case we are only calling this to kill the 182 * q_usage_counter, otherwise this increases the freeze depth 183 * and waits for it to return to zero. For this reason there is 184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 185 * exported to drivers as the only user for unfreeze is blk_mq. 186 */ 187 blk_freeze_queue_start(q); 188 blk_mq_freeze_queue_wait(q); 189 } 190 191 void blk_mq_freeze_queue(struct request_queue *q) 192 { 193 /* 194 * ...just an alias to keep freeze and unfreeze actions balanced 195 * in the blk_mq_* namespace 196 */ 197 blk_freeze_queue(q); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 200 201 void blk_mq_unfreeze_queue(struct request_queue *q) 202 { 203 mutex_lock(&q->mq_freeze_lock); 204 q->mq_freeze_depth--; 205 WARN_ON_ONCE(q->mq_freeze_depth < 0); 206 if (!q->mq_freeze_depth) { 207 percpu_ref_resurrect(&q->q_usage_counter); 208 wake_up_all(&q->mq_freeze_wq); 209 } 210 mutex_unlock(&q->mq_freeze_lock); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 213 214 /* 215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 216 * mpt3sas driver such that this function can be removed. 217 */ 218 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 219 { 220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 221 } 222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 223 224 /** 225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 226 * @q: request queue. 227 * 228 * Note: this function does not prevent that the struct request end_io() 229 * callback function is invoked. Once this function is returned, we make 230 * sure no dispatch can happen until the queue is unquiesced via 231 * blk_mq_unquiesce_queue(). 232 */ 233 void blk_mq_quiesce_queue(struct request_queue *q) 234 { 235 struct blk_mq_hw_ctx *hctx; 236 unsigned int i; 237 bool rcu = false; 238 239 blk_mq_quiesce_queue_nowait(q); 240 241 queue_for_each_hw_ctx(q, hctx, i) { 242 if (hctx->flags & BLK_MQ_F_BLOCKING) 243 synchronize_srcu(hctx->srcu); 244 else 245 rcu = true; 246 } 247 if (rcu) 248 synchronize_rcu(); 249 } 250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 251 252 /* 253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 254 * @q: request queue. 255 * 256 * This function recovers queue into the state before quiescing 257 * which is done by blk_mq_quiesce_queue. 258 */ 259 void blk_mq_unquiesce_queue(struct request_queue *q) 260 { 261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 262 263 /* dispatch requests which are inserted during quiescing */ 264 blk_mq_run_hw_queues(q, true); 265 } 266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 267 268 void blk_mq_wake_waiters(struct request_queue *q) 269 { 270 struct blk_mq_hw_ctx *hctx; 271 unsigned int i; 272 273 queue_for_each_hw_ctx(q, hctx, i) 274 if (blk_mq_hw_queue_mapped(hctx)) 275 blk_mq_tag_wakeup_all(hctx->tags, true); 276 } 277 278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 279 { 280 return blk_mq_has_free_tags(hctx->tags); 281 } 282 EXPORT_SYMBOL(blk_mq_can_queue); 283 284 /* 285 * Only need start/end time stamping if we have stats enabled, or using 286 * an IO scheduler. 287 */ 288 static inline bool blk_mq_need_time_stamp(struct request *rq) 289 { 290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 291 } 292 293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 294 unsigned int tag, unsigned int op) 295 { 296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 297 struct request *rq = tags->static_rqs[tag]; 298 req_flags_t rq_flags = 0; 299 300 if (data->flags & BLK_MQ_REQ_INTERNAL) { 301 rq->tag = -1; 302 rq->internal_tag = tag; 303 } else { 304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 305 rq_flags = RQF_MQ_INFLIGHT; 306 atomic_inc(&data->hctx->nr_active); 307 } 308 rq->tag = tag; 309 rq->internal_tag = -1; 310 data->hctx->tags->rqs[rq->tag] = rq; 311 } 312 313 /* csd/requeue_work/fifo_time is initialized before use */ 314 rq->q = data->q; 315 rq->mq_ctx = data->ctx; 316 rq->mq_hctx = data->hctx; 317 rq->rq_flags = rq_flags; 318 rq->cmd_flags = op; 319 if (data->flags & BLK_MQ_REQ_PREEMPT) 320 rq->rq_flags |= RQF_PREEMPT; 321 if (blk_queue_io_stat(data->q)) 322 rq->rq_flags |= RQF_IO_STAT; 323 INIT_LIST_HEAD(&rq->queuelist); 324 INIT_HLIST_NODE(&rq->hash); 325 RB_CLEAR_NODE(&rq->rb_node); 326 rq->rq_disk = NULL; 327 rq->part = NULL; 328 if (blk_mq_need_time_stamp(rq)) 329 rq->start_time_ns = ktime_get_ns(); 330 else 331 rq->start_time_ns = 0; 332 rq->io_start_time_ns = 0; 333 rq->nr_phys_segments = 0; 334 #if defined(CONFIG_BLK_DEV_INTEGRITY) 335 rq->nr_integrity_segments = 0; 336 #endif 337 /* tag was already set */ 338 rq->extra_len = 0; 339 WRITE_ONCE(rq->deadline, 0); 340 341 rq->timeout = 0; 342 343 rq->end_io = NULL; 344 rq->end_io_data = NULL; 345 346 data->ctx->rq_dispatched[op_is_sync(op)]++; 347 refcount_set(&rq->ref, 1); 348 return rq; 349 } 350 351 static struct request *blk_mq_get_request(struct request_queue *q, 352 struct bio *bio, 353 struct blk_mq_alloc_data *data) 354 { 355 struct elevator_queue *e = q->elevator; 356 struct request *rq; 357 unsigned int tag; 358 bool put_ctx_on_error = false; 359 360 blk_queue_enter_live(q); 361 data->q = q; 362 if (likely(!data->ctx)) { 363 data->ctx = blk_mq_get_ctx(q); 364 put_ctx_on_error = true; 365 } 366 if (likely(!data->hctx)) 367 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 368 data->ctx); 369 if (data->cmd_flags & REQ_NOWAIT) 370 data->flags |= BLK_MQ_REQ_NOWAIT; 371 372 if (e) { 373 data->flags |= BLK_MQ_REQ_INTERNAL; 374 375 /* 376 * Flush requests are special and go directly to the 377 * dispatch list. Don't include reserved tags in the 378 * limiting, as it isn't useful. 379 */ 380 if (!op_is_flush(data->cmd_flags) && 381 e->type->ops.limit_depth && 382 !(data->flags & BLK_MQ_REQ_RESERVED)) 383 e->type->ops.limit_depth(data->cmd_flags, data); 384 } else { 385 blk_mq_tag_busy(data->hctx); 386 } 387 388 tag = blk_mq_get_tag(data); 389 if (tag == BLK_MQ_TAG_FAIL) { 390 if (put_ctx_on_error) { 391 blk_mq_put_ctx(data->ctx); 392 data->ctx = NULL; 393 } 394 blk_queue_exit(q); 395 return NULL; 396 } 397 398 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 399 if (!op_is_flush(data->cmd_flags)) { 400 rq->elv.icq = NULL; 401 if (e && e->type->ops.prepare_request) { 402 if (e->type->icq_cache) 403 blk_mq_sched_assign_ioc(rq); 404 405 e->type->ops.prepare_request(rq, bio); 406 rq->rq_flags |= RQF_ELVPRIV; 407 } 408 } 409 data->hctx->queued++; 410 return rq; 411 } 412 413 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 414 blk_mq_req_flags_t flags) 415 { 416 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 417 struct request *rq; 418 int ret; 419 420 ret = blk_queue_enter(q, flags); 421 if (ret) 422 return ERR_PTR(ret); 423 424 rq = blk_mq_get_request(q, NULL, &alloc_data); 425 blk_queue_exit(q); 426 427 if (!rq) 428 return ERR_PTR(-EWOULDBLOCK); 429 430 blk_mq_put_ctx(alloc_data.ctx); 431 432 rq->__data_len = 0; 433 rq->__sector = (sector_t) -1; 434 rq->bio = rq->biotail = NULL; 435 return rq; 436 } 437 EXPORT_SYMBOL(blk_mq_alloc_request); 438 439 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 440 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 441 { 442 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 443 struct request *rq; 444 unsigned int cpu; 445 int ret; 446 447 /* 448 * If the tag allocator sleeps we could get an allocation for a 449 * different hardware context. No need to complicate the low level 450 * allocator for this for the rare use case of a command tied to 451 * a specific queue. 452 */ 453 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 454 return ERR_PTR(-EINVAL); 455 456 if (hctx_idx >= q->nr_hw_queues) 457 return ERR_PTR(-EIO); 458 459 ret = blk_queue_enter(q, flags); 460 if (ret) 461 return ERR_PTR(ret); 462 463 /* 464 * Check if the hardware context is actually mapped to anything. 465 * If not tell the caller that it should skip this queue. 466 */ 467 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 468 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 469 blk_queue_exit(q); 470 return ERR_PTR(-EXDEV); 471 } 472 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 473 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 474 475 rq = blk_mq_get_request(q, NULL, &alloc_data); 476 blk_queue_exit(q); 477 478 if (!rq) 479 return ERR_PTR(-EWOULDBLOCK); 480 481 return rq; 482 } 483 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 484 485 static void __blk_mq_free_request(struct request *rq) 486 { 487 struct request_queue *q = rq->q; 488 struct blk_mq_ctx *ctx = rq->mq_ctx; 489 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 490 const int sched_tag = rq->internal_tag; 491 492 blk_pm_mark_last_busy(rq); 493 rq->mq_hctx = NULL; 494 if (rq->tag != -1) 495 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 496 if (sched_tag != -1) 497 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 498 blk_mq_sched_restart(hctx); 499 blk_queue_exit(q); 500 } 501 502 void blk_mq_free_request(struct request *rq) 503 { 504 struct request_queue *q = rq->q; 505 struct elevator_queue *e = q->elevator; 506 struct blk_mq_ctx *ctx = rq->mq_ctx; 507 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 508 509 if (rq->rq_flags & RQF_ELVPRIV) { 510 if (e && e->type->ops.finish_request) 511 e->type->ops.finish_request(rq); 512 if (rq->elv.icq) { 513 put_io_context(rq->elv.icq->ioc); 514 rq->elv.icq = NULL; 515 } 516 } 517 518 ctx->rq_completed[rq_is_sync(rq)]++; 519 if (rq->rq_flags & RQF_MQ_INFLIGHT) 520 atomic_dec(&hctx->nr_active); 521 522 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 523 laptop_io_completion(q->backing_dev_info); 524 525 rq_qos_done(q, rq); 526 527 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 528 if (refcount_dec_and_test(&rq->ref)) 529 __blk_mq_free_request(rq); 530 } 531 EXPORT_SYMBOL_GPL(blk_mq_free_request); 532 533 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 534 { 535 u64 now = 0; 536 537 if (blk_mq_need_time_stamp(rq)) 538 now = ktime_get_ns(); 539 540 if (rq->rq_flags & RQF_STATS) { 541 blk_mq_poll_stats_start(rq->q); 542 blk_stat_add(rq, now); 543 } 544 545 if (rq->internal_tag != -1) 546 blk_mq_sched_completed_request(rq, now); 547 548 blk_account_io_done(rq, now); 549 550 if (rq->end_io) { 551 rq_qos_done(rq->q, rq); 552 rq->end_io(rq, error); 553 } else { 554 blk_mq_free_request(rq); 555 } 556 } 557 EXPORT_SYMBOL(__blk_mq_end_request); 558 559 void blk_mq_end_request(struct request *rq, blk_status_t error) 560 { 561 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 562 BUG(); 563 __blk_mq_end_request(rq, error); 564 } 565 EXPORT_SYMBOL(blk_mq_end_request); 566 567 static void __blk_mq_complete_request_remote(void *data) 568 { 569 struct request *rq = data; 570 struct request_queue *q = rq->q; 571 572 q->mq_ops->complete(rq); 573 } 574 575 static void __blk_mq_complete_request(struct request *rq) 576 { 577 struct blk_mq_ctx *ctx = rq->mq_ctx; 578 struct request_queue *q = rq->q; 579 bool shared = false; 580 int cpu; 581 582 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 583 /* 584 * Most of single queue controllers, there is only one irq vector 585 * for handling IO completion, and the only irq's affinity is set 586 * as all possible CPUs. On most of ARCHs, this affinity means the 587 * irq is handled on one specific CPU. 588 * 589 * So complete IO reqeust in softirq context in case of single queue 590 * for not degrading IO performance by irqsoff latency. 591 */ 592 if (q->nr_hw_queues == 1) { 593 __blk_complete_request(rq); 594 return; 595 } 596 597 /* 598 * For a polled request, always complete locallly, it's pointless 599 * to redirect the completion. 600 */ 601 if ((rq->cmd_flags & REQ_HIPRI) || 602 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 603 q->mq_ops->complete(rq); 604 return; 605 } 606 607 cpu = get_cpu(); 608 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 609 shared = cpus_share_cache(cpu, ctx->cpu); 610 611 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 612 rq->csd.func = __blk_mq_complete_request_remote; 613 rq->csd.info = rq; 614 rq->csd.flags = 0; 615 smp_call_function_single_async(ctx->cpu, &rq->csd); 616 } else { 617 q->mq_ops->complete(rq); 618 } 619 put_cpu(); 620 } 621 622 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 623 __releases(hctx->srcu) 624 { 625 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 626 rcu_read_unlock(); 627 else 628 srcu_read_unlock(hctx->srcu, srcu_idx); 629 } 630 631 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 632 __acquires(hctx->srcu) 633 { 634 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 635 /* shut up gcc false positive */ 636 *srcu_idx = 0; 637 rcu_read_lock(); 638 } else 639 *srcu_idx = srcu_read_lock(hctx->srcu); 640 } 641 642 /** 643 * blk_mq_complete_request - end I/O on a request 644 * @rq: the request being processed 645 * 646 * Description: 647 * Ends all I/O on a request. It does not handle partial completions. 648 * The actual completion happens out-of-order, through a IPI handler. 649 **/ 650 bool blk_mq_complete_request(struct request *rq) 651 { 652 if (unlikely(blk_should_fake_timeout(rq->q))) 653 return false; 654 __blk_mq_complete_request(rq); 655 return true; 656 } 657 EXPORT_SYMBOL(blk_mq_complete_request); 658 659 void blk_mq_complete_request_sync(struct request *rq) 660 { 661 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 662 rq->q->mq_ops->complete(rq); 663 } 664 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync); 665 666 int blk_mq_request_started(struct request *rq) 667 { 668 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 669 } 670 EXPORT_SYMBOL_GPL(blk_mq_request_started); 671 672 void blk_mq_start_request(struct request *rq) 673 { 674 struct request_queue *q = rq->q; 675 676 blk_mq_sched_started_request(rq); 677 678 trace_block_rq_issue(q, rq); 679 680 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 681 rq->io_start_time_ns = ktime_get_ns(); 682 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 683 rq->throtl_size = blk_rq_sectors(rq); 684 #endif 685 rq->rq_flags |= RQF_STATS; 686 rq_qos_issue(q, rq); 687 } 688 689 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 690 691 blk_add_timer(rq); 692 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 693 694 if (q->dma_drain_size && blk_rq_bytes(rq)) { 695 /* 696 * Make sure space for the drain appears. We know we can do 697 * this because max_hw_segments has been adjusted to be one 698 * fewer than the device can handle. 699 */ 700 rq->nr_phys_segments++; 701 } 702 } 703 EXPORT_SYMBOL(blk_mq_start_request); 704 705 static void __blk_mq_requeue_request(struct request *rq) 706 { 707 struct request_queue *q = rq->q; 708 709 blk_mq_put_driver_tag(rq); 710 711 trace_block_rq_requeue(q, rq); 712 rq_qos_requeue(q, rq); 713 714 if (blk_mq_request_started(rq)) { 715 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 716 rq->rq_flags &= ~RQF_TIMED_OUT; 717 if (q->dma_drain_size && blk_rq_bytes(rq)) 718 rq->nr_phys_segments--; 719 } 720 } 721 722 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 723 { 724 __blk_mq_requeue_request(rq); 725 726 /* this request will be re-inserted to io scheduler queue */ 727 blk_mq_sched_requeue_request(rq); 728 729 BUG_ON(!list_empty(&rq->queuelist)); 730 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 731 } 732 EXPORT_SYMBOL(blk_mq_requeue_request); 733 734 static void blk_mq_requeue_work(struct work_struct *work) 735 { 736 struct request_queue *q = 737 container_of(work, struct request_queue, requeue_work.work); 738 LIST_HEAD(rq_list); 739 struct request *rq, *next; 740 741 spin_lock_irq(&q->requeue_lock); 742 list_splice_init(&q->requeue_list, &rq_list); 743 spin_unlock_irq(&q->requeue_lock); 744 745 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 746 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 747 continue; 748 749 rq->rq_flags &= ~RQF_SOFTBARRIER; 750 list_del_init(&rq->queuelist); 751 /* 752 * If RQF_DONTPREP, rq has contained some driver specific 753 * data, so insert it to hctx dispatch list to avoid any 754 * merge. 755 */ 756 if (rq->rq_flags & RQF_DONTPREP) 757 blk_mq_request_bypass_insert(rq, false); 758 else 759 blk_mq_sched_insert_request(rq, true, false, false); 760 } 761 762 while (!list_empty(&rq_list)) { 763 rq = list_entry(rq_list.next, struct request, queuelist); 764 list_del_init(&rq->queuelist); 765 blk_mq_sched_insert_request(rq, false, false, false); 766 } 767 768 blk_mq_run_hw_queues(q, false); 769 } 770 771 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 772 bool kick_requeue_list) 773 { 774 struct request_queue *q = rq->q; 775 unsigned long flags; 776 777 /* 778 * We abuse this flag that is otherwise used by the I/O scheduler to 779 * request head insertion from the workqueue. 780 */ 781 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 782 783 spin_lock_irqsave(&q->requeue_lock, flags); 784 if (at_head) { 785 rq->rq_flags |= RQF_SOFTBARRIER; 786 list_add(&rq->queuelist, &q->requeue_list); 787 } else { 788 list_add_tail(&rq->queuelist, &q->requeue_list); 789 } 790 spin_unlock_irqrestore(&q->requeue_lock, flags); 791 792 if (kick_requeue_list) 793 blk_mq_kick_requeue_list(q); 794 } 795 796 void blk_mq_kick_requeue_list(struct request_queue *q) 797 { 798 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 799 } 800 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 801 802 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 803 unsigned long msecs) 804 { 805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 806 msecs_to_jiffies(msecs)); 807 } 808 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 809 810 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 811 { 812 if (tag < tags->nr_tags) { 813 prefetch(tags->rqs[tag]); 814 return tags->rqs[tag]; 815 } 816 817 return NULL; 818 } 819 EXPORT_SYMBOL(blk_mq_tag_to_rq); 820 821 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 822 void *priv, bool reserved) 823 { 824 /* 825 * If we find a request that is inflight and the queue matches, 826 * we know the queue is busy. Return false to stop the iteration. 827 */ 828 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 829 bool *busy = priv; 830 831 *busy = true; 832 return false; 833 } 834 835 return true; 836 } 837 838 bool blk_mq_queue_inflight(struct request_queue *q) 839 { 840 bool busy = false; 841 842 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 843 return busy; 844 } 845 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 846 847 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 848 { 849 req->rq_flags |= RQF_TIMED_OUT; 850 if (req->q->mq_ops->timeout) { 851 enum blk_eh_timer_return ret; 852 853 ret = req->q->mq_ops->timeout(req, reserved); 854 if (ret == BLK_EH_DONE) 855 return; 856 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 857 } 858 859 blk_add_timer(req); 860 } 861 862 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 863 { 864 unsigned long deadline; 865 866 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 867 return false; 868 if (rq->rq_flags & RQF_TIMED_OUT) 869 return false; 870 871 deadline = READ_ONCE(rq->deadline); 872 if (time_after_eq(jiffies, deadline)) 873 return true; 874 875 if (*next == 0) 876 *next = deadline; 877 else if (time_after(*next, deadline)) 878 *next = deadline; 879 return false; 880 } 881 882 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 883 struct request *rq, void *priv, bool reserved) 884 { 885 unsigned long *next = priv; 886 887 /* 888 * Just do a quick check if it is expired before locking the request in 889 * so we're not unnecessarilly synchronizing across CPUs. 890 */ 891 if (!blk_mq_req_expired(rq, next)) 892 return true; 893 894 /* 895 * We have reason to believe the request may be expired. Take a 896 * reference on the request to lock this request lifetime into its 897 * currently allocated context to prevent it from being reallocated in 898 * the event the completion by-passes this timeout handler. 899 * 900 * If the reference was already released, then the driver beat the 901 * timeout handler to posting a natural completion. 902 */ 903 if (!refcount_inc_not_zero(&rq->ref)) 904 return true; 905 906 /* 907 * The request is now locked and cannot be reallocated underneath the 908 * timeout handler's processing. Re-verify this exact request is truly 909 * expired; if it is not expired, then the request was completed and 910 * reallocated as a new request. 911 */ 912 if (blk_mq_req_expired(rq, next)) 913 blk_mq_rq_timed_out(rq, reserved); 914 if (refcount_dec_and_test(&rq->ref)) 915 __blk_mq_free_request(rq); 916 917 return true; 918 } 919 920 static void blk_mq_timeout_work(struct work_struct *work) 921 { 922 struct request_queue *q = 923 container_of(work, struct request_queue, timeout_work); 924 unsigned long next = 0; 925 struct blk_mq_hw_ctx *hctx; 926 int i; 927 928 /* A deadlock might occur if a request is stuck requiring a 929 * timeout at the same time a queue freeze is waiting 930 * completion, since the timeout code would not be able to 931 * acquire the queue reference here. 932 * 933 * That's why we don't use blk_queue_enter here; instead, we use 934 * percpu_ref_tryget directly, because we need to be able to 935 * obtain a reference even in the short window between the queue 936 * starting to freeze, by dropping the first reference in 937 * blk_freeze_queue_start, and the moment the last request is 938 * consumed, marked by the instant q_usage_counter reaches 939 * zero. 940 */ 941 if (!percpu_ref_tryget(&q->q_usage_counter)) 942 return; 943 944 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 945 946 if (next != 0) { 947 mod_timer(&q->timeout, next); 948 } else { 949 /* 950 * Request timeouts are handled as a forward rolling timer. If 951 * we end up here it means that no requests are pending and 952 * also that no request has been pending for a while. Mark 953 * each hctx as idle. 954 */ 955 queue_for_each_hw_ctx(q, hctx, i) { 956 /* the hctx may be unmapped, so check it here */ 957 if (blk_mq_hw_queue_mapped(hctx)) 958 blk_mq_tag_idle(hctx); 959 } 960 } 961 blk_queue_exit(q); 962 } 963 964 struct flush_busy_ctx_data { 965 struct blk_mq_hw_ctx *hctx; 966 struct list_head *list; 967 }; 968 969 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 970 { 971 struct flush_busy_ctx_data *flush_data = data; 972 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 973 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 974 enum hctx_type type = hctx->type; 975 976 spin_lock(&ctx->lock); 977 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 978 sbitmap_clear_bit(sb, bitnr); 979 spin_unlock(&ctx->lock); 980 return true; 981 } 982 983 /* 984 * Process software queues that have been marked busy, splicing them 985 * to the for-dispatch 986 */ 987 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 988 { 989 struct flush_busy_ctx_data data = { 990 .hctx = hctx, 991 .list = list, 992 }; 993 994 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 995 } 996 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 997 998 struct dispatch_rq_data { 999 struct blk_mq_hw_ctx *hctx; 1000 struct request *rq; 1001 }; 1002 1003 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1004 void *data) 1005 { 1006 struct dispatch_rq_data *dispatch_data = data; 1007 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1008 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1009 enum hctx_type type = hctx->type; 1010 1011 spin_lock(&ctx->lock); 1012 if (!list_empty(&ctx->rq_lists[type])) { 1013 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1014 list_del_init(&dispatch_data->rq->queuelist); 1015 if (list_empty(&ctx->rq_lists[type])) 1016 sbitmap_clear_bit(sb, bitnr); 1017 } 1018 spin_unlock(&ctx->lock); 1019 1020 return !dispatch_data->rq; 1021 } 1022 1023 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1024 struct blk_mq_ctx *start) 1025 { 1026 unsigned off = start ? start->index_hw[hctx->type] : 0; 1027 struct dispatch_rq_data data = { 1028 .hctx = hctx, 1029 .rq = NULL, 1030 }; 1031 1032 __sbitmap_for_each_set(&hctx->ctx_map, off, 1033 dispatch_rq_from_ctx, &data); 1034 1035 return data.rq; 1036 } 1037 1038 static inline unsigned int queued_to_index(unsigned int queued) 1039 { 1040 if (!queued) 1041 return 0; 1042 1043 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1044 } 1045 1046 bool blk_mq_get_driver_tag(struct request *rq) 1047 { 1048 struct blk_mq_alloc_data data = { 1049 .q = rq->q, 1050 .hctx = rq->mq_hctx, 1051 .flags = BLK_MQ_REQ_NOWAIT, 1052 .cmd_flags = rq->cmd_flags, 1053 }; 1054 bool shared; 1055 1056 if (rq->tag != -1) 1057 goto done; 1058 1059 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1060 data.flags |= BLK_MQ_REQ_RESERVED; 1061 1062 shared = blk_mq_tag_busy(data.hctx); 1063 rq->tag = blk_mq_get_tag(&data); 1064 if (rq->tag >= 0) { 1065 if (shared) { 1066 rq->rq_flags |= RQF_MQ_INFLIGHT; 1067 atomic_inc(&data.hctx->nr_active); 1068 } 1069 data.hctx->tags->rqs[rq->tag] = rq; 1070 } 1071 1072 done: 1073 return rq->tag != -1; 1074 } 1075 1076 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1077 int flags, void *key) 1078 { 1079 struct blk_mq_hw_ctx *hctx; 1080 1081 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1082 1083 spin_lock(&hctx->dispatch_wait_lock); 1084 if (!list_empty(&wait->entry)) { 1085 struct sbitmap_queue *sbq; 1086 1087 list_del_init(&wait->entry); 1088 sbq = &hctx->tags->bitmap_tags; 1089 atomic_dec(&sbq->ws_active); 1090 } 1091 spin_unlock(&hctx->dispatch_wait_lock); 1092 1093 blk_mq_run_hw_queue(hctx, true); 1094 return 1; 1095 } 1096 1097 /* 1098 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1099 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1100 * restart. For both cases, take care to check the condition again after 1101 * marking us as waiting. 1102 */ 1103 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1104 struct request *rq) 1105 { 1106 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1107 struct wait_queue_head *wq; 1108 wait_queue_entry_t *wait; 1109 bool ret; 1110 1111 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1112 blk_mq_sched_mark_restart_hctx(hctx); 1113 1114 /* 1115 * It's possible that a tag was freed in the window between the 1116 * allocation failure and adding the hardware queue to the wait 1117 * queue. 1118 * 1119 * Don't clear RESTART here, someone else could have set it. 1120 * At most this will cost an extra queue run. 1121 */ 1122 return blk_mq_get_driver_tag(rq); 1123 } 1124 1125 wait = &hctx->dispatch_wait; 1126 if (!list_empty_careful(&wait->entry)) 1127 return false; 1128 1129 wq = &bt_wait_ptr(sbq, hctx)->wait; 1130 1131 spin_lock_irq(&wq->lock); 1132 spin_lock(&hctx->dispatch_wait_lock); 1133 if (!list_empty(&wait->entry)) { 1134 spin_unlock(&hctx->dispatch_wait_lock); 1135 spin_unlock_irq(&wq->lock); 1136 return false; 1137 } 1138 1139 atomic_inc(&sbq->ws_active); 1140 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1141 __add_wait_queue(wq, wait); 1142 1143 /* 1144 * It's possible that a tag was freed in the window between the 1145 * allocation failure and adding the hardware queue to the wait 1146 * queue. 1147 */ 1148 ret = blk_mq_get_driver_tag(rq); 1149 if (!ret) { 1150 spin_unlock(&hctx->dispatch_wait_lock); 1151 spin_unlock_irq(&wq->lock); 1152 return false; 1153 } 1154 1155 /* 1156 * We got a tag, remove ourselves from the wait queue to ensure 1157 * someone else gets the wakeup. 1158 */ 1159 list_del_init(&wait->entry); 1160 atomic_dec(&sbq->ws_active); 1161 spin_unlock(&hctx->dispatch_wait_lock); 1162 spin_unlock_irq(&wq->lock); 1163 1164 return true; 1165 } 1166 1167 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1168 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1169 /* 1170 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1171 * - EWMA is one simple way to compute running average value 1172 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1173 * - take 4 as factor for avoiding to get too small(0) result, and this 1174 * factor doesn't matter because EWMA decreases exponentially 1175 */ 1176 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1177 { 1178 unsigned int ewma; 1179 1180 if (hctx->queue->elevator) 1181 return; 1182 1183 ewma = hctx->dispatch_busy; 1184 1185 if (!ewma && !busy) 1186 return; 1187 1188 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1189 if (busy) 1190 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1191 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1192 1193 hctx->dispatch_busy = ewma; 1194 } 1195 1196 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1197 1198 /* 1199 * Returns true if we did some work AND can potentially do more. 1200 */ 1201 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1202 bool got_budget) 1203 { 1204 struct blk_mq_hw_ctx *hctx; 1205 struct request *rq, *nxt; 1206 bool no_tag = false; 1207 int errors, queued; 1208 blk_status_t ret = BLK_STS_OK; 1209 1210 if (list_empty(list)) 1211 return false; 1212 1213 WARN_ON(!list_is_singular(list) && got_budget); 1214 1215 /* 1216 * Now process all the entries, sending them to the driver. 1217 */ 1218 errors = queued = 0; 1219 do { 1220 struct blk_mq_queue_data bd; 1221 1222 rq = list_first_entry(list, struct request, queuelist); 1223 1224 hctx = rq->mq_hctx; 1225 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1226 break; 1227 1228 if (!blk_mq_get_driver_tag(rq)) { 1229 /* 1230 * The initial allocation attempt failed, so we need to 1231 * rerun the hardware queue when a tag is freed. The 1232 * waitqueue takes care of that. If the queue is run 1233 * before we add this entry back on the dispatch list, 1234 * we'll re-run it below. 1235 */ 1236 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1237 blk_mq_put_dispatch_budget(hctx); 1238 /* 1239 * For non-shared tags, the RESTART check 1240 * will suffice. 1241 */ 1242 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1243 no_tag = true; 1244 break; 1245 } 1246 } 1247 1248 list_del_init(&rq->queuelist); 1249 1250 bd.rq = rq; 1251 1252 /* 1253 * Flag last if we have no more requests, or if we have more 1254 * but can't assign a driver tag to it. 1255 */ 1256 if (list_empty(list)) 1257 bd.last = true; 1258 else { 1259 nxt = list_first_entry(list, struct request, queuelist); 1260 bd.last = !blk_mq_get_driver_tag(nxt); 1261 } 1262 1263 ret = q->mq_ops->queue_rq(hctx, &bd); 1264 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1265 /* 1266 * If an I/O scheduler has been configured and we got a 1267 * driver tag for the next request already, free it 1268 * again. 1269 */ 1270 if (!list_empty(list)) { 1271 nxt = list_first_entry(list, struct request, queuelist); 1272 blk_mq_put_driver_tag(nxt); 1273 } 1274 list_add(&rq->queuelist, list); 1275 __blk_mq_requeue_request(rq); 1276 break; 1277 } 1278 1279 if (unlikely(ret != BLK_STS_OK)) { 1280 errors++; 1281 blk_mq_end_request(rq, BLK_STS_IOERR); 1282 continue; 1283 } 1284 1285 queued++; 1286 } while (!list_empty(list)); 1287 1288 hctx->dispatched[queued_to_index(queued)]++; 1289 1290 /* 1291 * Any items that need requeuing? Stuff them into hctx->dispatch, 1292 * that is where we will continue on next queue run. 1293 */ 1294 if (!list_empty(list)) { 1295 bool needs_restart; 1296 1297 /* 1298 * If we didn't flush the entire list, we could have told 1299 * the driver there was more coming, but that turned out to 1300 * be a lie. 1301 */ 1302 if (q->mq_ops->commit_rqs) 1303 q->mq_ops->commit_rqs(hctx); 1304 1305 spin_lock(&hctx->lock); 1306 list_splice_init(list, &hctx->dispatch); 1307 spin_unlock(&hctx->lock); 1308 1309 /* 1310 * If SCHED_RESTART was set by the caller of this function and 1311 * it is no longer set that means that it was cleared by another 1312 * thread and hence that a queue rerun is needed. 1313 * 1314 * If 'no_tag' is set, that means that we failed getting 1315 * a driver tag with an I/O scheduler attached. If our dispatch 1316 * waitqueue is no longer active, ensure that we run the queue 1317 * AFTER adding our entries back to the list. 1318 * 1319 * If no I/O scheduler has been configured it is possible that 1320 * the hardware queue got stopped and restarted before requests 1321 * were pushed back onto the dispatch list. Rerun the queue to 1322 * avoid starvation. Notes: 1323 * - blk_mq_run_hw_queue() checks whether or not a queue has 1324 * been stopped before rerunning a queue. 1325 * - Some but not all block drivers stop a queue before 1326 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1327 * and dm-rq. 1328 * 1329 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1330 * bit is set, run queue after a delay to avoid IO stalls 1331 * that could otherwise occur if the queue is idle. 1332 */ 1333 needs_restart = blk_mq_sched_needs_restart(hctx); 1334 if (!needs_restart || 1335 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1336 blk_mq_run_hw_queue(hctx, true); 1337 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1338 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1339 1340 blk_mq_update_dispatch_busy(hctx, true); 1341 return false; 1342 } else 1343 blk_mq_update_dispatch_busy(hctx, false); 1344 1345 /* 1346 * If the host/device is unable to accept more work, inform the 1347 * caller of that. 1348 */ 1349 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1350 return false; 1351 1352 return (queued + errors) != 0; 1353 } 1354 1355 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1356 { 1357 int srcu_idx; 1358 1359 /* 1360 * We should be running this queue from one of the CPUs that 1361 * are mapped to it. 1362 * 1363 * There are at least two related races now between setting 1364 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1365 * __blk_mq_run_hw_queue(): 1366 * 1367 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1368 * but later it becomes online, then this warning is harmless 1369 * at all 1370 * 1371 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1372 * but later it becomes offline, then the warning can't be 1373 * triggered, and we depend on blk-mq timeout handler to 1374 * handle dispatched requests to this hctx 1375 */ 1376 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1377 cpu_online(hctx->next_cpu)) { 1378 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1379 raw_smp_processor_id(), 1380 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1381 dump_stack(); 1382 } 1383 1384 /* 1385 * We can't run the queue inline with ints disabled. Ensure that 1386 * we catch bad users of this early. 1387 */ 1388 WARN_ON_ONCE(in_interrupt()); 1389 1390 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1391 1392 hctx_lock(hctx, &srcu_idx); 1393 blk_mq_sched_dispatch_requests(hctx); 1394 hctx_unlock(hctx, srcu_idx); 1395 } 1396 1397 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1398 { 1399 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1400 1401 if (cpu >= nr_cpu_ids) 1402 cpu = cpumask_first(hctx->cpumask); 1403 return cpu; 1404 } 1405 1406 /* 1407 * It'd be great if the workqueue API had a way to pass 1408 * in a mask and had some smarts for more clever placement. 1409 * For now we just round-robin here, switching for every 1410 * BLK_MQ_CPU_WORK_BATCH queued items. 1411 */ 1412 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1413 { 1414 bool tried = false; 1415 int next_cpu = hctx->next_cpu; 1416 1417 if (hctx->queue->nr_hw_queues == 1) 1418 return WORK_CPU_UNBOUND; 1419 1420 if (--hctx->next_cpu_batch <= 0) { 1421 select_cpu: 1422 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1423 cpu_online_mask); 1424 if (next_cpu >= nr_cpu_ids) 1425 next_cpu = blk_mq_first_mapped_cpu(hctx); 1426 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1427 } 1428 1429 /* 1430 * Do unbound schedule if we can't find a online CPU for this hctx, 1431 * and it should only happen in the path of handling CPU DEAD. 1432 */ 1433 if (!cpu_online(next_cpu)) { 1434 if (!tried) { 1435 tried = true; 1436 goto select_cpu; 1437 } 1438 1439 /* 1440 * Make sure to re-select CPU next time once after CPUs 1441 * in hctx->cpumask become online again. 1442 */ 1443 hctx->next_cpu = next_cpu; 1444 hctx->next_cpu_batch = 1; 1445 return WORK_CPU_UNBOUND; 1446 } 1447 1448 hctx->next_cpu = next_cpu; 1449 return next_cpu; 1450 } 1451 1452 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1453 unsigned long msecs) 1454 { 1455 if (unlikely(blk_mq_hctx_stopped(hctx))) 1456 return; 1457 1458 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1459 int cpu = get_cpu(); 1460 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1461 __blk_mq_run_hw_queue(hctx); 1462 put_cpu(); 1463 return; 1464 } 1465 1466 put_cpu(); 1467 } 1468 1469 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1470 msecs_to_jiffies(msecs)); 1471 } 1472 1473 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1474 { 1475 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1476 } 1477 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1478 1479 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1480 { 1481 int srcu_idx; 1482 bool need_run; 1483 1484 /* 1485 * When queue is quiesced, we may be switching io scheduler, or 1486 * updating nr_hw_queues, or other things, and we can't run queue 1487 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1488 * 1489 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1490 * quiesced. 1491 */ 1492 hctx_lock(hctx, &srcu_idx); 1493 need_run = !blk_queue_quiesced(hctx->queue) && 1494 blk_mq_hctx_has_pending(hctx); 1495 hctx_unlock(hctx, srcu_idx); 1496 1497 if (need_run) { 1498 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1499 return true; 1500 } 1501 1502 return false; 1503 } 1504 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1505 1506 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1507 { 1508 struct blk_mq_hw_ctx *hctx; 1509 int i; 1510 1511 queue_for_each_hw_ctx(q, hctx, i) { 1512 if (blk_mq_hctx_stopped(hctx)) 1513 continue; 1514 1515 blk_mq_run_hw_queue(hctx, async); 1516 } 1517 } 1518 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1519 1520 /** 1521 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1522 * @q: request queue. 1523 * 1524 * The caller is responsible for serializing this function against 1525 * blk_mq_{start,stop}_hw_queue(). 1526 */ 1527 bool blk_mq_queue_stopped(struct request_queue *q) 1528 { 1529 struct blk_mq_hw_ctx *hctx; 1530 int i; 1531 1532 queue_for_each_hw_ctx(q, hctx, i) 1533 if (blk_mq_hctx_stopped(hctx)) 1534 return true; 1535 1536 return false; 1537 } 1538 EXPORT_SYMBOL(blk_mq_queue_stopped); 1539 1540 /* 1541 * This function is often used for pausing .queue_rq() by driver when 1542 * there isn't enough resource or some conditions aren't satisfied, and 1543 * BLK_STS_RESOURCE is usually returned. 1544 * 1545 * We do not guarantee that dispatch can be drained or blocked 1546 * after blk_mq_stop_hw_queue() returns. Please use 1547 * blk_mq_quiesce_queue() for that requirement. 1548 */ 1549 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1550 { 1551 cancel_delayed_work(&hctx->run_work); 1552 1553 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1554 } 1555 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1556 1557 /* 1558 * This function is often used for pausing .queue_rq() by driver when 1559 * there isn't enough resource or some conditions aren't satisfied, and 1560 * BLK_STS_RESOURCE is usually returned. 1561 * 1562 * We do not guarantee that dispatch can be drained or blocked 1563 * after blk_mq_stop_hw_queues() returns. Please use 1564 * blk_mq_quiesce_queue() for that requirement. 1565 */ 1566 void blk_mq_stop_hw_queues(struct request_queue *q) 1567 { 1568 struct blk_mq_hw_ctx *hctx; 1569 int i; 1570 1571 queue_for_each_hw_ctx(q, hctx, i) 1572 blk_mq_stop_hw_queue(hctx); 1573 } 1574 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1575 1576 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1577 { 1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1579 1580 blk_mq_run_hw_queue(hctx, false); 1581 } 1582 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1583 1584 void blk_mq_start_hw_queues(struct request_queue *q) 1585 { 1586 struct blk_mq_hw_ctx *hctx; 1587 int i; 1588 1589 queue_for_each_hw_ctx(q, hctx, i) 1590 blk_mq_start_hw_queue(hctx); 1591 } 1592 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1593 1594 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1595 { 1596 if (!blk_mq_hctx_stopped(hctx)) 1597 return; 1598 1599 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1600 blk_mq_run_hw_queue(hctx, async); 1601 } 1602 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1603 1604 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1605 { 1606 struct blk_mq_hw_ctx *hctx; 1607 int i; 1608 1609 queue_for_each_hw_ctx(q, hctx, i) 1610 blk_mq_start_stopped_hw_queue(hctx, async); 1611 } 1612 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1613 1614 static void blk_mq_run_work_fn(struct work_struct *work) 1615 { 1616 struct blk_mq_hw_ctx *hctx; 1617 1618 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1619 1620 /* 1621 * If we are stopped, don't run the queue. 1622 */ 1623 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1624 return; 1625 1626 __blk_mq_run_hw_queue(hctx); 1627 } 1628 1629 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1630 struct request *rq, 1631 bool at_head) 1632 { 1633 struct blk_mq_ctx *ctx = rq->mq_ctx; 1634 enum hctx_type type = hctx->type; 1635 1636 lockdep_assert_held(&ctx->lock); 1637 1638 trace_block_rq_insert(hctx->queue, rq); 1639 1640 if (at_head) 1641 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1642 else 1643 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1644 } 1645 1646 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1647 bool at_head) 1648 { 1649 struct blk_mq_ctx *ctx = rq->mq_ctx; 1650 1651 lockdep_assert_held(&ctx->lock); 1652 1653 __blk_mq_insert_req_list(hctx, rq, at_head); 1654 blk_mq_hctx_mark_pending(hctx, ctx); 1655 } 1656 1657 /* 1658 * Should only be used carefully, when the caller knows we want to 1659 * bypass a potential IO scheduler on the target device. 1660 */ 1661 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1662 { 1663 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1664 1665 spin_lock(&hctx->lock); 1666 list_add_tail(&rq->queuelist, &hctx->dispatch); 1667 spin_unlock(&hctx->lock); 1668 1669 if (run_queue) 1670 blk_mq_run_hw_queue(hctx, false); 1671 } 1672 1673 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1674 struct list_head *list) 1675 1676 { 1677 struct request *rq; 1678 enum hctx_type type = hctx->type; 1679 1680 /* 1681 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1682 * offline now 1683 */ 1684 list_for_each_entry(rq, list, queuelist) { 1685 BUG_ON(rq->mq_ctx != ctx); 1686 trace_block_rq_insert(hctx->queue, rq); 1687 } 1688 1689 spin_lock(&ctx->lock); 1690 list_splice_tail_init(list, &ctx->rq_lists[type]); 1691 blk_mq_hctx_mark_pending(hctx, ctx); 1692 spin_unlock(&ctx->lock); 1693 } 1694 1695 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1696 { 1697 struct request *rqa = container_of(a, struct request, queuelist); 1698 struct request *rqb = container_of(b, struct request, queuelist); 1699 1700 if (rqa->mq_ctx < rqb->mq_ctx) 1701 return -1; 1702 else if (rqa->mq_ctx > rqb->mq_ctx) 1703 return 1; 1704 else if (rqa->mq_hctx < rqb->mq_hctx) 1705 return -1; 1706 else if (rqa->mq_hctx > rqb->mq_hctx) 1707 return 1; 1708 1709 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1710 } 1711 1712 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1713 { 1714 struct blk_mq_hw_ctx *this_hctx; 1715 struct blk_mq_ctx *this_ctx; 1716 struct request_queue *this_q; 1717 struct request *rq; 1718 LIST_HEAD(list); 1719 LIST_HEAD(rq_list); 1720 unsigned int depth; 1721 1722 list_splice_init(&plug->mq_list, &list); 1723 1724 if (plug->rq_count > 2 && plug->multiple_queues) 1725 list_sort(NULL, &list, plug_rq_cmp); 1726 1727 plug->rq_count = 0; 1728 1729 this_q = NULL; 1730 this_hctx = NULL; 1731 this_ctx = NULL; 1732 depth = 0; 1733 1734 while (!list_empty(&list)) { 1735 rq = list_entry_rq(list.next); 1736 list_del_init(&rq->queuelist); 1737 BUG_ON(!rq->q); 1738 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1739 if (this_hctx) { 1740 trace_block_unplug(this_q, depth, !from_schedule); 1741 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1742 &rq_list, 1743 from_schedule); 1744 } 1745 1746 this_q = rq->q; 1747 this_ctx = rq->mq_ctx; 1748 this_hctx = rq->mq_hctx; 1749 depth = 0; 1750 } 1751 1752 depth++; 1753 list_add_tail(&rq->queuelist, &rq_list); 1754 } 1755 1756 /* 1757 * If 'this_hctx' is set, we know we have entries to complete 1758 * on 'rq_list'. Do those. 1759 */ 1760 if (this_hctx) { 1761 trace_block_unplug(this_q, depth, !from_schedule); 1762 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1763 from_schedule); 1764 } 1765 } 1766 1767 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1768 { 1769 blk_init_request_from_bio(rq, bio); 1770 1771 blk_account_io_start(rq, true); 1772 } 1773 1774 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1775 struct request *rq, 1776 blk_qc_t *cookie, bool last) 1777 { 1778 struct request_queue *q = rq->q; 1779 struct blk_mq_queue_data bd = { 1780 .rq = rq, 1781 .last = last, 1782 }; 1783 blk_qc_t new_cookie; 1784 blk_status_t ret; 1785 1786 new_cookie = request_to_qc_t(hctx, rq); 1787 1788 /* 1789 * For OK queue, we are done. For error, caller may kill it. 1790 * Any other error (busy), just add it to our list as we 1791 * previously would have done. 1792 */ 1793 ret = q->mq_ops->queue_rq(hctx, &bd); 1794 switch (ret) { 1795 case BLK_STS_OK: 1796 blk_mq_update_dispatch_busy(hctx, false); 1797 *cookie = new_cookie; 1798 break; 1799 case BLK_STS_RESOURCE: 1800 case BLK_STS_DEV_RESOURCE: 1801 blk_mq_update_dispatch_busy(hctx, true); 1802 __blk_mq_requeue_request(rq); 1803 break; 1804 default: 1805 blk_mq_update_dispatch_busy(hctx, false); 1806 *cookie = BLK_QC_T_NONE; 1807 break; 1808 } 1809 1810 return ret; 1811 } 1812 1813 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1814 struct request *rq, 1815 blk_qc_t *cookie, 1816 bool bypass_insert, bool last) 1817 { 1818 struct request_queue *q = rq->q; 1819 bool run_queue = true; 1820 1821 /* 1822 * RCU or SRCU read lock is needed before checking quiesced flag. 1823 * 1824 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1825 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1826 * and avoid driver to try to dispatch again. 1827 */ 1828 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1829 run_queue = false; 1830 bypass_insert = false; 1831 goto insert; 1832 } 1833 1834 if (q->elevator && !bypass_insert) 1835 goto insert; 1836 1837 if (!blk_mq_get_dispatch_budget(hctx)) 1838 goto insert; 1839 1840 if (!blk_mq_get_driver_tag(rq)) { 1841 blk_mq_put_dispatch_budget(hctx); 1842 goto insert; 1843 } 1844 1845 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1846 insert: 1847 if (bypass_insert) 1848 return BLK_STS_RESOURCE; 1849 1850 blk_mq_request_bypass_insert(rq, run_queue); 1851 return BLK_STS_OK; 1852 } 1853 1854 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1855 struct request *rq, blk_qc_t *cookie) 1856 { 1857 blk_status_t ret; 1858 int srcu_idx; 1859 1860 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1861 1862 hctx_lock(hctx, &srcu_idx); 1863 1864 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1865 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1866 blk_mq_request_bypass_insert(rq, true); 1867 else if (ret != BLK_STS_OK) 1868 blk_mq_end_request(rq, ret); 1869 1870 hctx_unlock(hctx, srcu_idx); 1871 } 1872 1873 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1874 { 1875 blk_status_t ret; 1876 int srcu_idx; 1877 blk_qc_t unused_cookie; 1878 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1879 1880 hctx_lock(hctx, &srcu_idx); 1881 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1882 hctx_unlock(hctx, srcu_idx); 1883 1884 return ret; 1885 } 1886 1887 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1888 struct list_head *list) 1889 { 1890 while (!list_empty(list)) { 1891 blk_status_t ret; 1892 struct request *rq = list_first_entry(list, struct request, 1893 queuelist); 1894 1895 list_del_init(&rq->queuelist); 1896 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1897 if (ret != BLK_STS_OK) { 1898 if (ret == BLK_STS_RESOURCE || 1899 ret == BLK_STS_DEV_RESOURCE) { 1900 blk_mq_request_bypass_insert(rq, 1901 list_empty(list)); 1902 break; 1903 } 1904 blk_mq_end_request(rq, ret); 1905 } 1906 } 1907 1908 /* 1909 * If we didn't flush the entire list, we could have told 1910 * the driver there was more coming, but that turned out to 1911 * be a lie. 1912 */ 1913 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1914 hctx->queue->mq_ops->commit_rqs(hctx); 1915 } 1916 1917 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1918 { 1919 list_add_tail(&rq->queuelist, &plug->mq_list); 1920 plug->rq_count++; 1921 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1922 struct request *tmp; 1923 1924 tmp = list_first_entry(&plug->mq_list, struct request, 1925 queuelist); 1926 if (tmp->q != rq->q) 1927 plug->multiple_queues = true; 1928 } 1929 } 1930 1931 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1932 { 1933 const int is_sync = op_is_sync(bio->bi_opf); 1934 const int is_flush_fua = op_is_flush(bio->bi_opf); 1935 struct blk_mq_alloc_data data = { .flags = 0}; 1936 struct request *rq; 1937 struct blk_plug *plug; 1938 struct request *same_queue_rq = NULL; 1939 blk_qc_t cookie; 1940 1941 blk_queue_bounce(q, &bio); 1942 1943 blk_queue_split(q, &bio); 1944 1945 if (!bio_integrity_prep(bio)) 1946 return BLK_QC_T_NONE; 1947 1948 if (!is_flush_fua && !blk_queue_nomerges(q) && 1949 blk_attempt_plug_merge(q, bio, &same_queue_rq)) 1950 return BLK_QC_T_NONE; 1951 1952 if (blk_mq_sched_bio_merge(q, bio)) 1953 return BLK_QC_T_NONE; 1954 1955 rq_qos_throttle(q, bio); 1956 1957 data.cmd_flags = bio->bi_opf; 1958 rq = blk_mq_get_request(q, bio, &data); 1959 if (unlikely(!rq)) { 1960 rq_qos_cleanup(q, bio); 1961 if (bio->bi_opf & REQ_NOWAIT) 1962 bio_wouldblock_error(bio); 1963 return BLK_QC_T_NONE; 1964 } 1965 1966 trace_block_getrq(q, bio, bio->bi_opf); 1967 1968 rq_qos_track(q, rq, bio); 1969 1970 cookie = request_to_qc_t(data.hctx, rq); 1971 1972 plug = current->plug; 1973 if (unlikely(is_flush_fua)) { 1974 blk_mq_put_ctx(data.ctx); 1975 blk_mq_bio_to_request(rq, bio); 1976 1977 /* bypass scheduler for flush rq */ 1978 blk_insert_flush(rq); 1979 blk_mq_run_hw_queue(data.hctx, true); 1980 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1981 /* 1982 * Use plugging if we have a ->commit_rqs() hook as well, as 1983 * we know the driver uses bd->last in a smart fashion. 1984 */ 1985 unsigned int request_count = plug->rq_count; 1986 struct request *last = NULL; 1987 1988 blk_mq_put_ctx(data.ctx); 1989 blk_mq_bio_to_request(rq, bio); 1990 1991 if (!request_count) 1992 trace_block_plug(q); 1993 else 1994 last = list_entry_rq(plug->mq_list.prev); 1995 1996 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1997 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1998 blk_flush_plug_list(plug, false); 1999 trace_block_plug(q); 2000 } 2001 2002 blk_add_rq_to_plug(plug, rq); 2003 } else if (plug && !blk_queue_nomerges(q)) { 2004 blk_mq_bio_to_request(rq, bio); 2005 2006 /* 2007 * We do limited plugging. If the bio can be merged, do that. 2008 * Otherwise the existing request in the plug list will be 2009 * issued. So the plug list will have one request at most 2010 * The plug list might get flushed before this. If that happens, 2011 * the plug list is empty, and same_queue_rq is invalid. 2012 */ 2013 if (list_empty(&plug->mq_list)) 2014 same_queue_rq = NULL; 2015 if (same_queue_rq) { 2016 list_del_init(&same_queue_rq->queuelist); 2017 plug->rq_count--; 2018 } 2019 blk_add_rq_to_plug(plug, rq); 2020 trace_block_plug(q); 2021 2022 blk_mq_put_ctx(data.ctx); 2023 2024 if (same_queue_rq) { 2025 data.hctx = same_queue_rq->mq_hctx; 2026 trace_block_unplug(q, 1, true); 2027 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2028 &cookie); 2029 } 2030 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2031 !data.hctx->dispatch_busy)) { 2032 blk_mq_put_ctx(data.ctx); 2033 blk_mq_bio_to_request(rq, bio); 2034 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2035 } else { 2036 blk_mq_put_ctx(data.ctx); 2037 blk_mq_bio_to_request(rq, bio); 2038 blk_mq_sched_insert_request(rq, false, true, true); 2039 } 2040 2041 return cookie; 2042 } 2043 2044 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2045 unsigned int hctx_idx) 2046 { 2047 struct page *page; 2048 2049 if (tags->rqs && set->ops->exit_request) { 2050 int i; 2051 2052 for (i = 0; i < tags->nr_tags; i++) { 2053 struct request *rq = tags->static_rqs[i]; 2054 2055 if (!rq) 2056 continue; 2057 set->ops->exit_request(set, rq, hctx_idx); 2058 tags->static_rqs[i] = NULL; 2059 } 2060 } 2061 2062 while (!list_empty(&tags->page_list)) { 2063 page = list_first_entry(&tags->page_list, struct page, lru); 2064 list_del_init(&page->lru); 2065 /* 2066 * Remove kmemleak object previously allocated in 2067 * blk_mq_alloc_rqs(). 2068 */ 2069 kmemleak_free(page_address(page)); 2070 __free_pages(page, page->private); 2071 } 2072 } 2073 2074 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2075 { 2076 kfree(tags->rqs); 2077 tags->rqs = NULL; 2078 kfree(tags->static_rqs); 2079 tags->static_rqs = NULL; 2080 2081 blk_mq_free_tags(tags); 2082 } 2083 2084 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2085 unsigned int hctx_idx, 2086 unsigned int nr_tags, 2087 unsigned int reserved_tags) 2088 { 2089 struct blk_mq_tags *tags; 2090 int node; 2091 2092 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2093 if (node == NUMA_NO_NODE) 2094 node = set->numa_node; 2095 2096 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2097 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2098 if (!tags) 2099 return NULL; 2100 2101 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2102 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2103 node); 2104 if (!tags->rqs) { 2105 blk_mq_free_tags(tags); 2106 return NULL; 2107 } 2108 2109 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2110 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2111 node); 2112 if (!tags->static_rqs) { 2113 kfree(tags->rqs); 2114 blk_mq_free_tags(tags); 2115 return NULL; 2116 } 2117 2118 return tags; 2119 } 2120 2121 static size_t order_to_size(unsigned int order) 2122 { 2123 return (size_t)PAGE_SIZE << order; 2124 } 2125 2126 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2127 unsigned int hctx_idx, int node) 2128 { 2129 int ret; 2130 2131 if (set->ops->init_request) { 2132 ret = set->ops->init_request(set, rq, hctx_idx, node); 2133 if (ret) 2134 return ret; 2135 } 2136 2137 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2138 return 0; 2139 } 2140 2141 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2142 unsigned int hctx_idx, unsigned int depth) 2143 { 2144 unsigned int i, j, entries_per_page, max_order = 4; 2145 size_t rq_size, left; 2146 int node; 2147 2148 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2149 if (node == NUMA_NO_NODE) 2150 node = set->numa_node; 2151 2152 INIT_LIST_HEAD(&tags->page_list); 2153 2154 /* 2155 * rq_size is the size of the request plus driver payload, rounded 2156 * to the cacheline size 2157 */ 2158 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2159 cache_line_size()); 2160 left = rq_size * depth; 2161 2162 for (i = 0; i < depth; ) { 2163 int this_order = max_order; 2164 struct page *page; 2165 int to_do; 2166 void *p; 2167 2168 while (this_order && left < order_to_size(this_order - 1)) 2169 this_order--; 2170 2171 do { 2172 page = alloc_pages_node(node, 2173 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2174 this_order); 2175 if (page) 2176 break; 2177 if (!this_order--) 2178 break; 2179 if (order_to_size(this_order) < rq_size) 2180 break; 2181 } while (1); 2182 2183 if (!page) 2184 goto fail; 2185 2186 page->private = this_order; 2187 list_add_tail(&page->lru, &tags->page_list); 2188 2189 p = page_address(page); 2190 /* 2191 * Allow kmemleak to scan these pages as they contain pointers 2192 * to additional allocations like via ops->init_request(). 2193 */ 2194 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2195 entries_per_page = order_to_size(this_order) / rq_size; 2196 to_do = min(entries_per_page, depth - i); 2197 left -= to_do * rq_size; 2198 for (j = 0; j < to_do; j++) { 2199 struct request *rq = p; 2200 2201 tags->static_rqs[i] = rq; 2202 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2203 tags->static_rqs[i] = NULL; 2204 goto fail; 2205 } 2206 2207 p += rq_size; 2208 i++; 2209 } 2210 } 2211 return 0; 2212 2213 fail: 2214 blk_mq_free_rqs(set, tags, hctx_idx); 2215 return -ENOMEM; 2216 } 2217 2218 /* 2219 * 'cpu' is going away. splice any existing rq_list entries from this 2220 * software queue to the hw queue dispatch list, and ensure that it 2221 * gets run. 2222 */ 2223 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2224 { 2225 struct blk_mq_hw_ctx *hctx; 2226 struct blk_mq_ctx *ctx; 2227 LIST_HEAD(tmp); 2228 enum hctx_type type; 2229 2230 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2231 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2232 type = hctx->type; 2233 2234 spin_lock(&ctx->lock); 2235 if (!list_empty(&ctx->rq_lists[type])) { 2236 list_splice_init(&ctx->rq_lists[type], &tmp); 2237 blk_mq_hctx_clear_pending(hctx, ctx); 2238 } 2239 spin_unlock(&ctx->lock); 2240 2241 if (list_empty(&tmp)) 2242 return 0; 2243 2244 spin_lock(&hctx->lock); 2245 list_splice_tail_init(&tmp, &hctx->dispatch); 2246 spin_unlock(&hctx->lock); 2247 2248 blk_mq_run_hw_queue(hctx, true); 2249 return 0; 2250 } 2251 2252 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2253 { 2254 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2255 &hctx->cpuhp_dead); 2256 } 2257 2258 /* hctx->ctxs will be freed in queue's release handler */ 2259 static void blk_mq_exit_hctx(struct request_queue *q, 2260 struct blk_mq_tag_set *set, 2261 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2262 { 2263 if (blk_mq_hw_queue_mapped(hctx)) 2264 blk_mq_tag_idle(hctx); 2265 2266 if (set->ops->exit_request) 2267 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2268 2269 if (set->ops->exit_hctx) 2270 set->ops->exit_hctx(hctx, hctx_idx); 2271 2272 blk_mq_remove_cpuhp(hctx); 2273 2274 spin_lock(&q->unused_hctx_lock); 2275 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2276 spin_unlock(&q->unused_hctx_lock); 2277 } 2278 2279 static void blk_mq_exit_hw_queues(struct request_queue *q, 2280 struct blk_mq_tag_set *set, int nr_queue) 2281 { 2282 struct blk_mq_hw_ctx *hctx; 2283 unsigned int i; 2284 2285 queue_for_each_hw_ctx(q, hctx, i) { 2286 if (i == nr_queue) 2287 break; 2288 blk_mq_debugfs_unregister_hctx(hctx); 2289 blk_mq_exit_hctx(q, set, hctx, i); 2290 } 2291 } 2292 2293 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2294 { 2295 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2296 2297 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2298 __alignof__(struct blk_mq_hw_ctx)) != 2299 sizeof(struct blk_mq_hw_ctx)); 2300 2301 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2302 hw_ctx_size += sizeof(struct srcu_struct); 2303 2304 return hw_ctx_size; 2305 } 2306 2307 static int blk_mq_init_hctx(struct request_queue *q, 2308 struct blk_mq_tag_set *set, 2309 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2310 { 2311 hctx->queue_num = hctx_idx; 2312 2313 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2314 2315 hctx->tags = set->tags[hctx_idx]; 2316 2317 if (set->ops->init_hctx && 2318 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2319 goto unregister_cpu_notifier; 2320 2321 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2322 hctx->numa_node)) 2323 goto exit_hctx; 2324 return 0; 2325 2326 exit_hctx: 2327 if (set->ops->exit_hctx) 2328 set->ops->exit_hctx(hctx, hctx_idx); 2329 unregister_cpu_notifier: 2330 blk_mq_remove_cpuhp(hctx); 2331 return -1; 2332 } 2333 2334 static struct blk_mq_hw_ctx * 2335 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2336 int node) 2337 { 2338 struct blk_mq_hw_ctx *hctx; 2339 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2340 2341 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2342 if (!hctx) 2343 goto fail_alloc_hctx; 2344 2345 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2346 goto free_hctx; 2347 2348 atomic_set(&hctx->nr_active, 0); 2349 if (node == NUMA_NO_NODE) 2350 node = set->numa_node; 2351 hctx->numa_node = node; 2352 2353 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2354 spin_lock_init(&hctx->lock); 2355 INIT_LIST_HEAD(&hctx->dispatch); 2356 hctx->queue = q; 2357 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2358 2359 INIT_LIST_HEAD(&hctx->hctx_list); 2360 2361 /* 2362 * Allocate space for all possible cpus to avoid allocation at 2363 * runtime 2364 */ 2365 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2366 gfp, node); 2367 if (!hctx->ctxs) 2368 goto free_cpumask; 2369 2370 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2371 gfp, node)) 2372 goto free_ctxs; 2373 hctx->nr_ctx = 0; 2374 2375 spin_lock_init(&hctx->dispatch_wait_lock); 2376 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2377 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2378 2379 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2380 gfp); 2381 if (!hctx->fq) 2382 goto free_bitmap; 2383 2384 if (hctx->flags & BLK_MQ_F_BLOCKING) 2385 init_srcu_struct(hctx->srcu); 2386 blk_mq_hctx_kobj_init(hctx); 2387 2388 return hctx; 2389 2390 free_bitmap: 2391 sbitmap_free(&hctx->ctx_map); 2392 free_ctxs: 2393 kfree(hctx->ctxs); 2394 free_cpumask: 2395 free_cpumask_var(hctx->cpumask); 2396 free_hctx: 2397 kfree(hctx); 2398 fail_alloc_hctx: 2399 return NULL; 2400 } 2401 2402 static void blk_mq_init_cpu_queues(struct request_queue *q, 2403 unsigned int nr_hw_queues) 2404 { 2405 struct blk_mq_tag_set *set = q->tag_set; 2406 unsigned int i, j; 2407 2408 for_each_possible_cpu(i) { 2409 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2410 struct blk_mq_hw_ctx *hctx; 2411 int k; 2412 2413 __ctx->cpu = i; 2414 spin_lock_init(&__ctx->lock); 2415 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2416 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2417 2418 __ctx->queue = q; 2419 2420 /* 2421 * Set local node, IFF we have more than one hw queue. If 2422 * not, we remain on the home node of the device 2423 */ 2424 for (j = 0; j < set->nr_maps; j++) { 2425 hctx = blk_mq_map_queue_type(q, j, i); 2426 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2427 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2428 } 2429 } 2430 } 2431 2432 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2433 { 2434 int ret = 0; 2435 2436 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2437 set->queue_depth, set->reserved_tags); 2438 if (!set->tags[hctx_idx]) 2439 return false; 2440 2441 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2442 set->queue_depth); 2443 if (!ret) 2444 return true; 2445 2446 blk_mq_free_rq_map(set->tags[hctx_idx]); 2447 set->tags[hctx_idx] = NULL; 2448 return false; 2449 } 2450 2451 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2452 unsigned int hctx_idx) 2453 { 2454 if (set->tags && set->tags[hctx_idx]) { 2455 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2456 blk_mq_free_rq_map(set->tags[hctx_idx]); 2457 set->tags[hctx_idx] = NULL; 2458 } 2459 } 2460 2461 static void blk_mq_map_swqueue(struct request_queue *q) 2462 { 2463 unsigned int i, j, hctx_idx; 2464 struct blk_mq_hw_ctx *hctx; 2465 struct blk_mq_ctx *ctx; 2466 struct blk_mq_tag_set *set = q->tag_set; 2467 2468 /* 2469 * Avoid others reading imcomplete hctx->cpumask through sysfs 2470 */ 2471 mutex_lock(&q->sysfs_lock); 2472 2473 queue_for_each_hw_ctx(q, hctx, i) { 2474 cpumask_clear(hctx->cpumask); 2475 hctx->nr_ctx = 0; 2476 hctx->dispatch_from = NULL; 2477 } 2478 2479 /* 2480 * Map software to hardware queues. 2481 * 2482 * If the cpu isn't present, the cpu is mapped to first hctx. 2483 */ 2484 for_each_possible_cpu(i) { 2485 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2486 /* unmapped hw queue can be remapped after CPU topo changed */ 2487 if (!set->tags[hctx_idx] && 2488 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2489 /* 2490 * If tags initialization fail for some hctx, 2491 * that hctx won't be brought online. In this 2492 * case, remap the current ctx to hctx[0] which 2493 * is guaranteed to always have tags allocated 2494 */ 2495 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2496 } 2497 2498 ctx = per_cpu_ptr(q->queue_ctx, i); 2499 for (j = 0; j < set->nr_maps; j++) { 2500 if (!set->map[j].nr_queues) { 2501 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2502 HCTX_TYPE_DEFAULT, i); 2503 continue; 2504 } 2505 2506 hctx = blk_mq_map_queue_type(q, j, i); 2507 ctx->hctxs[j] = hctx; 2508 /* 2509 * If the CPU is already set in the mask, then we've 2510 * mapped this one already. This can happen if 2511 * devices share queues across queue maps. 2512 */ 2513 if (cpumask_test_cpu(i, hctx->cpumask)) 2514 continue; 2515 2516 cpumask_set_cpu(i, hctx->cpumask); 2517 hctx->type = j; 2518 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2519 hctx->ctxs[hctx->nr_ctx++] = ctx; 2520 2521 /* 2522 * If the nr_ctx type overflows, we have exceeded the 2523 * amount of sw queues we can support. 2524 */ 2525 BUG_ON(!hctx->nr_ctx); 2526 } 2527 2528 for (; j < HCTX_MAX_TYPES; j++) 2529 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2530 HCTX_TYPE_DEFAULT, i); 2531 } 2532 2533 mutex_unlock(&q->sysfs_lock); 2534 2535 queue_for_each_hw_ctx(q, hctx, i) { 2536 /* 2537 * If no software queues are mapped to this hardware queue, 2538 * disable it and free the request entries. 2539 */ 2540 if (!hctx->nr_ctx) { 2541 /* Never unmap queue 0. We need it as a 2542 * fallback in case of a new remap fails 2543 * allocation 2544 */ 2545 if (i && set->tags[i]) 2546 blk_mq_free_map_and_requests(set, i); 2547 2548 hctx->tags = NULL; 2549 continue; 2550 } 2551 2552 hctx->tags = set->tags[i]; 2553 WARN_ON(!hctx->tags); 2554 2555 /* 2556 * Set the map size to the number of mapped software queues. 2557 * This is more accurate and more efficient than looping 2558 * over all possibly mapped software queues. 2559 */ 2560 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2561 2562 /* 2563 * Initialize batch roundrobin counts 2564 */ 2565 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2566 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2567 } 2568 } 2569 2570 /* 2571 * Caller needs to ensure that we're either frozen/quiesced, or that 2572 * the queue isn't live yet. 2573 */ 2574 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2575 { 2576 struct blk_mq_hw_ctx *hctx; 2577 int i; 2578 2579 queue_for_each_hw_ctx(q, hctx, i) { 2580 if (shared) 2581 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2582 else 2583 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2584 } 2585 } 2586 2587 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2588 bool shared) 2589 { 2590 struct request_queue *q; 2591 2592 lockdep_assert_held(&set->tag_list_lock); 2593 2594 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2595 blk_mq_freeze_queue(q); 2596 queue_set_hctx_shared(q, shared); 2597 blk_mq_unfreeze_queue(q); 2598 } 2599 } 2600 2601 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2602 { 2603 struct blk_mq_tag_set *set = q->tag_set; 2604 2605 mutex_lock(&set->tag_list_lock); 2606 list_del_rcu(&q->tag_set_list); 2607 if (list_is_singular(&set->tag_list)) { 2608 /* just transitioned to unshared */ 2609 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2610 /* update existing queue */ 2611 blk_mq_update_tag_set_depth(set, false); 2612 } 2613 mutex_unlock(&set->tag_list_lock); 2614 INIT_LIST_HEAD(&q->tag_set_list); 2615 } 2616 2617 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2618 struct request_queue *q) 2619 { 2620 mutex_lock(&set->tag_list_lock); 2621 2622 /* 2623 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2624 */ 2625 if (!list_empty(&set->tag_list) && 2626 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2627 set->flags |= BLK_MQ_F_TAG_SHARED; 2628 /* update existing queue */ 2629 blk_mq_update_tag_set_depth(set, true); 2630 } 2631 if (set->flags & BLK_MQ_F_TAG_SHARED) 2632 queue_set_hctx_shared(q, true); 2633 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2634 2635 mutex_unlock(&set->tag_list_lock); 2636 } 2637 2638 /* All allocations will be freed in release handler of q->mq_kobj */ 2639 static int blk_mq_alloc_ctxs(struct request_queue *q) 2640 { 2641 struct blk_mq_ctxs *ctxs; 2642 int cpu; 2643 2644 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2645 if (!ctxs) 2646 return -ENOMEM; 2647 2648 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2649 if (!ctxs->queue_ctx) 2650 goto fail; 2651 2652 for_each_possible_cpu(cpu) { 2653 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2654 ctx->ctxs = ctxs; 2655 } 2656 2657 q->mq_kobj = &ctxs->kobj; 2658 q->queue_ctx = ctxs->queue_ctx; 2659 2660 return 0; 2661 fail: 2662 kfree(ctxs); 2663 return -ENOMEM; 2664 } 2665 2666 /* 2667 * It is the actual release handler for mq, but we do it from 2668 * request queue's release handler for avoiding use-after-free 2669 * and headache because q->mq_kobj shouldn't have been introduced, 2670 * but we can't group ctx/kctx kobj without it. 2671 */ 2672 void blk_mq_release(struct request_queue *q) 2673 { 2674 struct blk_mq_hw_ctx *hctx, *next; 2675 int i; 2676 2677 cancel_delayed_work_sync(&q->requeue_work); 2678 2679 queue_for_each_hw_ctx(q, hctx, i) 2680 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2681 2682 /* all hctx are in .unused_hctx_list now */ 2683 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2684 list_del_init(&hctx->hctx_list); 2685 kobject_put(&hctx->kobj); 2686 } 2687 2688 kfree(q->queue_hw_ctx); 2689 2690 /* 2691 * release .mq_kobj and sw queue's kobject now because 2692 * both share lifetime with request queue. 2693 */ 2694 blk_mq_sysfs_deinit(q); 2695 } 2696 2697 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2698 { 2699 struct request_queue *uninit_q, *q; 2700 2701 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2702 if (!uninit_q) 2703 return ERR_PTR(-ENOMEM); 2704 2705 q = blk_mq_init_allocated_queue(set, uninit_q); 2706 if (IS_ERR(q)) 2707 blk_cleanup_queue(uninit_q); 2708 2709 return q; 2710 } 2711 EXPORT_SYMBOL(blk_mq_init_queue); 2712 2713 /* 2714 * Helper for setting up a queue with mq ops, given queue depth, and 2715 * the passed in mq ops flags. 2716 */ 2717 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2718 const struct blk_mq_ops *ops, 2719 unsigned int queue_depth, 2720 unsigned int set_flags) 2721 { 2722 struct request_queue *q; 2723 int ret; 2724 2725 memset(set, 0, sizeof(*set)); 2726 set->ops = ops; 2727 set->nr_hw_queues = 1; 2728 set->nr_maps = 1; 2729 set->queue_depth = queue_depth; 2730 set->numa_node = NUMA_NO_NODE; 2731 set->flags = set_flags; 2732 2733 ret = blk_mq_alloc_tag_set(set); 2734 if (ret) 2735 return ERR_PTR(ret); 2736 2737 q = blk_mq_init_queue(set); 2738 if (IS_ERR(q)) { 2739 blk_mq_free_tag_set(set); 2740 return q; 2741 } 2742 2743 return q; 2744 } 2745 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2746 2747 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2748 struct blk_mq_tag_set *set, struct request_queue *q, 2749 int hctx_idx, int node) 2750 { 2751 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2752 2753 /* reuse dead hctx first */ 2754 spin_lock(&q->unused_hctx_lock); 2755 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2756 if (tmp->numa_node == node) { 2757 hctx = tmp; 2758 break; 2759 } 2760 } 2761 if (hctx) 2762 list_del_init(&hctx->hctx_list); 2763 spin_unlock(&q->unused_hctx_lock); 2764 2765 if (!hctx) 2766 hctx = blk_mq_alloc_hctx(q, set, node); 2767 if (!hctx) 2768 goto fail; 2769 2770 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2771 goto free_hctx; 2772 2773 return hctx; 2774 2775 free_hctx: 2776 kobject_put(&hctx->kobj); 2777 fail: 2778 return NULL; 2779 } 2780 2781 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2782 struct request_queue *q) 2783 { 2784 int i, j, end; 2785 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2786 2787 /* protect against switching io scheduler */ 2788 mutex_lock(&q->sysfs_lock); 2789 for (i = 0; i < set->nr_hw_queues; i++) { 2790 int node; 2791 struct blk_mq_hw_ctx *hctx; 2792 2793 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2794 /* 2795 * If the hw queue has been mapped to another numa node, 2796 * we need to realloc the hctx. If allocation fails, fallback 2797 * to use the previous one. 2798 */ 2799 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2800 continue; 2801 2802 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2803 if (hctx) { 2804 if (hctxs[i]) 2805 blk_mq_exit_hctx(q, set, hctxs[i], i); 2806 hctxs[i] = hctx; 2807 } else { 2808 if (hctxs[i]) 2809 pr_warn("Allocate new hctx on node %d fails,\ 2810 fallback to previous one on node %d\n", 2811 node, hctxs[i]->numa_node); 2812 else 2813 break; 2814 } 2815 } 2816 /* 2817 * Increasing nr_hw_queues fails. Free the newly allocated 2818 * hctxs and keep the previous q->nr_hw_queues. 2819 */ 2820 if (i != set->nr_hw_queues) { 2821 j = q->nr_hw_queues; 2822 end = i; 2823 } else { 2824 j = i; 2825 end = q->nr_hw_queues; 2826 q->nr_hw_queues = set->nr_hw_queues; 2827 } 2828 2829 for (; j < end; j++) { 2830 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2831 2832 if (hctx) { 2833 if (hctx->tags) 2834 blk_mq_free_map_and_requests(set, j); 2835 blk_mq_exit_hctx(q, set, hctx, j); 2836 hctxs[j] = NULL; 2837 } 2838 } 2839 mutex_unlock(&q->sysfs_lock); 2840 } 2841 2842 /* 2843 * Maximum number of hardware queues we support. For single sets, we'll never 2844 * have more than the CPUs (software queues). For multiple sets, the tag_set 2845 * user may have set ->nr_hw_queues larger. 2846 */ 2847 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2848 { 2849 if (set->nr_maps == 1) 2850 return nr_cpu_ids; 2851 2852 return max(set->nr_hw_queues, nr_cpu_ids); 2853 } 2854 2855 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2856 struct request_queue *q) 2857 { 2858 /* mark the queue as mq asap */ 2859 q->mq_ops = set->ops; 2860 2861 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2862 blk_mq_poll_stats_bkt, 2863 BLK_MQ_POLL_STATS_BKTS, q); 2864 if (!q->poll_cb) 2865 goto err_exit; 2866 2867 if (blk_mq_alloc_ctxs(q)) 2868 goto err_poll; 2869 2870 /* init q->mq_kobj and sw queues' kobjects */ 2871 blk_mq_sysfs_init(q); 2872 2873 q->nr_queues = nr_hw_queues(set); 2874 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2875 GFP_KERNEL, set->numa_node); 2876 if (!q->queue_hw_ctx) 2877 goto err_sys_init; 2878 2879 INIT_LIST_HEAD(&q->unused_hctx_list); 2880 spin_lock_init(&q->unused_hctx_lock); 2881 2882 blk_mq_realloc_hw_ctxs(set, q); 2883 if (!q->nr_hw_queues) 2884 goto err_hctxs; 2885 2886 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2887 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2888 2889 q->tag_set = set; 2890 2891 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2892 if (set->nr_maps > HCTX_TYPE_POLL && 2893 set->map[HCTX_TYPE_POLL].nr_queues) 2894 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2895 2896 q->sg_reserved_size = INT_MAX; 2897 2898 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2899 INIT_LIST_HEAD(&q->requeue_list); 2900 spin_lock_init(&q->requeue_lock); 2901 2902 blk_queue_make_request(q, blk_mq_make_request); 2903 2904 /* 2905 * Do this after blk_queue_make_request() overrides it... 2906 */ 2907 q->nr_requests = set->queue_depth; 2908 2909 /* 2910 * Default to classic polling 2911 */ 2912 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2913 2914 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2915 blk_mq_add_queue_tag_set(set, q); 2916 blk_mq_map_swqueue(q); 2917 2918 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2919 int ret; 2920 2921 ret = elevator_init_mq(q); 2922 if (ret) 2923 return ERR_PTR(ret); 2924 } 2925 2926 return q; 2927 2928 err_hctxs: 2929 kfree(q->queue_hw_ctx); 2930 err_sys_init: 2931 blk_mq_sysfs_deinit(q); 2932 err_poll: 2933 blk_stat_free_callback(q->poll_cb); 2934 q->poll_cb = NULL; 2935 err_exit: 2936 q->mq_ops = NULL; 2937 return ERR_PTR(-ENOMEM); 2938 } 2939 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2940 2941 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2942 void blk_mq_exit_queue(struct request_queue *q) 2943 { 2944 struct blk_mq_tag_set *set = q->tag_set; 2945 2946 blk_mq_del_queue_tag_set(q); 2947 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2948 } 2949 2950 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2951 { 2952 int i; 2953 2954 for (i = 0; i < set->nr_hw_queues; i++) 2955 if (!__blk_mq_alloc_rq_map(set, i)) 2956 goto out_unwind; 2957 2958 return 0; 2959 2960 out_unwind: 2961 while (--i >= 0) 2962 blk_mq_free_rq_map(set->tags[i]); 2963 2964 return -ENOMEM; 2965 } 2966 2967 /* 2968 * Allocate the request maps associated with this tag_set. Note that this 2969 * may reduce the depth asked for, if memory is tight. set->queue_depth 2970 * will be updated to reflect the allocated depth. 2971 */ 2972 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2973 { 2974 unsigned int depth; 2975 int err; 2976 2977 depth = set->queue_depth; 2978 do { 2979 err = __blk_mq_alloc_rq_maps(set); 2980 if (!err) 2981 break; 2982 2983 set->queue_depth >>= 1; 2984 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2985 err = -ENOMEM; 2986 break; 2987 } 2988 } while (set->queue_depth); 2989 2990 if (!set->queue_depth || err) { 2991 pr_err("blk-mq: failed to allocate request map\n"); 2992 return -ENOMEM; 2993 } 2994 2995 if (depth != set->queue_depth) 2996 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2997 depth, set->queue_depth); 2998 2999 return 0; 3000 } 3001 3002 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3003 { 3004 if (set->ops->map_queues && !is_kdump_kernel()) { 3005 int i; 3006 3007 /* 3008 * transport .map_queues is usually done in the following 3009 * way: 3010 * 3011 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3012 * mask = get_cpu_mask(queue) 3013 * for_each_cpu(cpu, mask) 3014 * set->map[x].mq_map[cpu] = queue; 3015 * } 3016 * 3017 * When we need to remap, the table has to be cleared for 3018 * killing stale mapping since one CPU may not be mapped 3019 * to any hw queue. 3020 */ 3021 for (i = 0; i < set->nr_maps; i++) 3022 blk_mq_clear_mq_map(&set->map[i]); 3023 3024 return set->ops->map_queues(set); 3025 } else { 3026 BUG_ON(set->nr_maps > 1); 3027 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3028 } 3029 } 3030 3031 /* 3032 * Alloc a tag set to be associated with one or more request queues. 3033 * May fail with EINVAL for various error conditions. May adjust the 3034 * requested depth down, if it's too large. In that case, the set 3035 * value will be stored in set->queue_depth. 3036 */ 3037 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3038 { 3039 int i, ret; 3040 3041 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3042 3043 if (!set->nr_hw_queues) 3044 return -EINVAL; 3045 if (!set->queue_depth) 3046 return -EINVAL; 3047 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3048 return -EINVAL; 3049 3050 if (!set->ops->queue_rq) 3051 return -EINVAL; 3052 3053 if (!set->ops->get_budget ^ !set->ops->put_budget) 3054 return -EINVAL; 3055 3056 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3057 pr_info("blk-mq: reduced tag depth to %u\n", 3058 BLK_MQ_MAX_DEPTH); 3059 set->queue_depth = BLK_MQ_MAX_DEPTH; 3060 } 3061 3062 if (!set->nr_maps) 3063 set->nr_maps = 1; 3064 else if (set->nr_maps > HCTX_MAX_TYPES) 3065 return -EINVAL; 3066 3067 /* 3068 * If a crashdump is active, then we are potentially in a very 3069 * memory constrained environment. Limit us to 1 queue and 3070 * 64 tags to prevent using too much memory. 3071 */ 3072 if (is_kdump_kernel()) { 3073 set->nr_hw_queues = 1; 3074 set->nr_maps = 1; 3075 set->queue_depth = min(64U, set->queue_depth); 3076 } 3077 /* 3078 * There is no use for more h/w queues than cpus if we just have 3079 * a single map 3080 */ 3081 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3082 set->nr_hw_queues = nr_cpu_ids; 3083 3084 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3085 GFP_KERNEL, set->numa_node); 3086 if (!set->tags) 3087 return -ENOMEM; 3088 3089 ret = -ENOMEM; 3090 for (i = 0; i < set->nr_maps; i++) { 3091 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3092 sizeof(set->map[i].mq_map[0]), 3093 GFP_KERNEL, set->numa_node); 3094 if (!set->map[i].mq_map) 3095 goto out_free_mq_map; 3096 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3097 } 3098 3099 ret = blk_mq_update_queue_map(set); 3100 if (ret) 3101 goto out_free_mq_map; 3102 3103 ret = blk_mq_alloc_rq_maps(set); 3104 if (ret) 3105 goto out_free_mq_map; 3106 3107 mutex_init(&set->tag_list_lock); 3108 INIT_LIST_HEAD(&set->tag_list); 3109 3110 return 0; 3111 3112 out_free_mq_map: 3113 for (i = 0; i < set->nr_maps; i++) { 3114 kfree(set->map[i].mq_map); 3115 set->map[i].mq_map = NULL; 3116 } 3117 kfree(set->tags); 3118 set->tags = NULL; 3119 return ret; 3120 } 3121 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3122 3123 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3124 { 3125 int i, j; 3126 3127 for (i = 0; i < nr_hw_queues(set); i++) 3128 blk_mq_free_map_and_requests(set, i); 3129 3130 for (j = 0; j < set->nr_maps; j++) { 3131 kfree(set->map[j].mq_map); 3132 set->map[j].mq_map = NULL; 3133 } 3134 3135 kfree(set->tags); 3136 set->tags = NULL; 3137 } 3138 EXPORT_SYMBOL(blk_mq_free_tag_set); 3139 3140 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3141 { 3142 struct blk_mq_tag_set *set = q->tag_set; 3143 struct blk_mq_hw_ctx *hctx; 3144 int i, ret; 3145 3146 if (!set) 3147 return -EINVAL; 3148 3149 if (q->nr_requests == nr) 3150 return 0; 3151 3152 blk_mq_freeze_queue(q); 3153 blk_mq_quiesce_queue(q); 3154 3155 ret = 0; 3156 queue_for_each_hw_ctx(q, hctx, i) { 3157 if (!hctx->tags) 3158 continue; 3159 /* 3160 * If we're using an MQ scheduler, just update the scheduler 3161 * queue depth. This is similar to what the old code would do. 3162 */ 3163 if (!hctx->sched_tags) { 3164 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3165 false); 3166 } else { 3167 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3168 nr, true); 3169 } 3170 if (ret) 3171 break; 3172 if (q->elevator && q->elevator->type->ops.depth_updated) 3173 q->elevator->type->ops.depth_updated(hctx); 3174 } 3175 3176 if (!ret) 3177 q->nr_requests = nr; 3178 3179 blk_mq_unquiesce_queue(q); 3180 blk_mq_unfreeze_queue(q); 3181 3182 return ret; 3183 } 3184 3185 /* 3186 * request_queue and elevator_type pair. 3187 * It is just used by __blk_mq_update_nr_hw_queues to cache 3188 * the elevator_type associated with a request_queue. 3189 */ 3190 struct blk_mq_qe_pair { 3191 struct list_head node; 3192 struct request_queue *q; 3193 struct elevator_type *type; 3194 }; 3195 3196 /* 3197 * Cache the elevator_type in qe pair list and switch the 3198 * io scheduler to 'none' 3199 */ 3200 static bool blk_mq_elv_switch_none(struct list_head *head, 3201 struct request_queue *q) 3202 { 3203 struct blk_mq_qe_pair *qe; 3204 3205 if (!q->elevator) 3206 return true; 3207 3208 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3209 if (!qe) 3210 return false; 3211 3212 INIT_LIST_HEAD(&qe->node); 3213 qe->q = q; 3214 qe->type = q->elevator->type; 3215 list_add(&qe->node, head); 3216 3217 mutex_lock(&q->sysfs_lock); 3218 /* 3219 * After elevator_switch_mq, the previous elevator_queue will be 3220 * released by elevator_release. The reference of the io scheduler 3221 * module get by elevator_get will also be put. So we need to get 3222 * a reference of the io scheduler module here to prevent it to be 3223 * removed. 3224 */ 3225 __module_get(qe->type->elevator_owner); 3226 elevator_switch_mq(q, NULL); 3227 mutex_unlock(&q->sysfs_lock); 3228 3229 return true; 3230 } 3231 3232 static void blk_mq_elv_switch_back(struct list_head *head, 3233 struct request_queue *q) 3234 { 3235 struct blk_mq_qe_pair *qe; 3236 struct elevator_type *t = NULL; 3237 3238 list_for_each_entry(qe, head, node) 3239 if (qe->q == q) { 3240 t = qe->type; 3241 break; 3242 } 3243 3244 if (!t) 3245 return; 3246 3247 list_del(&qe->node); 3248 kfree(qe); 3249 3250 mutex_lock(&q->sysfs_lock); 3251 elevator_switch_mq(q, t); 3252 mutex_unlock(&q->sysfs_lock); 3253 } 3254 3255 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3256 int nr_hw_queues) 3257 { 3258 struct request_queue *q; 3259 LIST_HEAD(head); 3260 int prev_nr_hw_queues; 3261 3262 lockdep_assert_held(&set->tag_list_lock); 3263 3264 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3265 nr_hw_queues = nr_cpu_ids; 3266 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3267 return; 3268 3269 list_for_each_entry(q, &set->tag_list, tag_set_list) 3270 blk_mq_freeze_queue(q); 3271 /* 3272 * Sync with blk_mq_queue_tag_busy_iter. 3273 */ 3274 synchronize_rcu(); 3275 /* 3276 * Switch IO scheduler to 'none', cleaning up the data associated 3277 * with the previous scheduler. We will switch back once we are done 3278 * updating the new sw to hw queue mappings. 3279 */ 3280 list_for_each_entry(q, &set->tag_list, tag_set_list) 3281 if (!blk_mq_elv_switch_none(&head, q)) 3282 goto switch_back; 3283 3284 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3285 blk_mq_debugfs_unregister_hctxs(q); 3286 blk_mq_sysfs_unregister(q); 3287 } 3288 3289 prev_nr_hw_queues = set->nr_hw_queues; 3290 set->nr_hw_queues = nr_hw_queues; 3291 blk_mq_update_queue_map(set); 3292 fallback: 3293 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3294 blk_mq_realloc_hw_ctxs(set, q); 3295 if (q->nr_hw_queues != set->nr_hw_queues) { 3296 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3297 nr_hw_queues, prev_nr_hw_queues); 3298 set->nr_hw_queues = prev_nr_hw_queues; 3299 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3300 goto fallback; 3301 } 3302 blk_mq_map_swqueue(q); 3303 } 3304 3305 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3306 blk_mq_sysfs_register(q); 3307 blk_mq_debugfs_register_hctxs(q); 3308 } 3309 3310 switch_back: 3311 list_for_each_entry(q, &set->tag_list, tag_set_list) 3312 blk_mq_elv_switch_back(&head, q); 3313 3314 list_for_each_entry(q, &set->tag_list, tag_set_list) 3315 blk_mq_unfreeze_queue(q); 3316 } 3317 3318 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3319 { 3320 mutex_lock(&set->tag_list_lock); 3321 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3322 mutex_unlock(&set->tag_list_lock); 3323 } 3324 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3325 3326 /* Enable polling stats and return whether they were already enabled. */ 3327 static bool blk_poll_stats_enable(struct request_queue *q) 3328 { 3329 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3330 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3331 return true; 3332 blk_stat_add_callback(q, q->poll_cb); 3333 return false; 3334 } 3335 3336 static void blk_mq_poll_stats_start(struct request_queue *q) 3337 { 3338 /* 3339 * We don't arm the callback if polling stats are not enabled or the 3340 * callback is already active. 3341 */ 3342 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3343 blk_stat_is_active(q->poll_cb)) 3344 return; 3345 3346 blk_stat_activate_msecs(q->poll_cb, 100); 3347 } 3348 3349 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3350 { 3351 struct request_queue *q = cb->data; 3352 int bucket; 3353 3354 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3355 if (cb->stat[bucket].nr_samples) 3356 q->poll_stat[bucket] = cb->stat[bucket]; 3357 } 3358 } 3359 3360 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3361 struct blk_mq_hw_ctx *hctx, 3362 struct request *rq) 3363 { 3364 unsigned long ret = 0; 3365 int bucket; 3366 3367 /* 3368 * If stats collection isn't on, don't sleep but turn it on for 3369 * future users 3370 */ 3371 if (!blk_poll_stats_enable(q)) 3372 return 0; 3373 3374 /* 3375 * As an optimistic guess, use half of the mean service time 3376 * for this type of request. We can (and should) make this smarter. 3377 * For instance, if the completion latencies are tight, we can 3378 * get closer than just half the mean. This is especially 3379 * important on devices where the completion latencies are longer 3380 * than ~10 usec. We do use the stats for the relevant IO size 3381 * if available which does lead to better estimates. 3382 */ 3383 bucket = blk_mq_poll_stats_bkt(rq); 3384 if (bucket < 0) 3385 return ret; 3386 3387 if (q->poll_stat[bucket].nr_samples) 3388 ret = (q->poll_stat[bucket].mean + 1) / 2; 3389 3390 return ret; 3391 } 3392 3393 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3394 struct blk_mq_hw_ctx *hctx, 3395 struct request *rq) 3396 { 3397 struct hrtimer_sleeper hs; 3398 enum hrtimer_mode mode; 3399 unsigned int nsecs; 3400 ktime_t kt; 3401 3402 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3403 return false; 3404 3405 /* 3406 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3407 * 3408 * 0: use half of prev avg 3409 * >0: use this specific value 3410 */ 3411 if (q->poll_nsec > 0) 3412 nsecs = q->poll_nsec; 3413 else 3414 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3415 3416 if (!nsecs) 3417 return false; 3418 3419 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3420 3421 /* 3422 * This will be replaced with the stats tracking code, using 3423 * 'avg_completion_time / 2' as the pre-sleep target. 3424 */ 3425 kt = nsecs; 3426 3427 mode = HRTIMER_MODE_REL; 3428 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3429 hrtimer_set_expires(&hs.timer, kt); 3430 3431 hrtimer_init_sleeper(&hs, current); 3432 do { 3433 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3434 break; 3435 set_current_state(TASK_UNINTERRUPTIBLE); 3436 hrtimer_start_expires(&hs.timer, mode); 3437 if (hs.task) 3438 io_schedule(); 3439 hrtimer_cancel(&hs.timer); 3440 mode = HRTIMER_MODE_ABS; 3441 } while (hs.task && !signal_pending(current)); 3442 3443 __set_current_state(TASK_RUNNING); 3444 destroy_hrtimer_on_stack(&hs.timer); 3445 return true; 3446 } 3447 3448 static bool blk_mq_poll_hybrid(struct request_queue *q, 3449 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3450 { 3451 struct request *rq; 3452 3453 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3454 return false; 3455 3456 if (!blk_qc_t_is_internal(cookie)) 3457 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3458 else { 3459 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3460 /* 3461 * With scheduling, if the request has completed, we'll 3462 * get a NULL return here, as we clear the sched tag when 3463 * that happens. The request still remains valid, like always, 3464 * so we should be safe with just the NULL check. 3465 */ 3466 if (!rq) 3467 return false; 3468 } 3469 3470 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3471 } 3472 3473 /** 3474 * blk_poll - poll for IO completions 3475 * @q: the queue 3476 * @cookie: cookie passed back at IO submission time 3477 * @spin: whether to spin for completions 3478 * 3479 * Description: 3480 * Poll for completions on the passed in queue. Returns number of 3481 * completed entries found. If @spin is true, then blk_poll will continue 3482 * looping until at least one completion is found, unless the task is 3483 * otherwise marked running (or we need to reschedule). 3484 */ 3485 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3486 { 3487 struct blk_mq_hw_ctx *hctx; 3488 long state; 3489 3490 if (!blk_qc_t_valid(cookie) || 3491 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3492 return 0; 3493 3494 if (current->plug) 3495 blk_flush_plug_list(current->plug, false); 3496 3497 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3498 3499 /* 3500 * If we sleep, have the caller restart the poll loop to reset 3501 * the state. Like for the other success return cases, the 3502 * caller is responsible for checking if the IO completed. If 3503 * the IO isn't complete, we'll get called again and will go 3504 * straight to the busy poll loop. 3505 */ 3506 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3507 return 1; 3508 3509 hctx->poll_considered++; 3510 3511 state = current->state; 3512 do { 3513 int ret; 3514 3515 hctx->poll_invoked++; 3516 3517 ret = q->mq_ops->poll(hctx); 3518 if (ret > 0) { 3519 hctx->poll_success++; 3520 __set_current_state(TASK_RUNNING); 3521 return ret; 3522 } 3523 3524 if (signal_pending_state(state, current)) 3525 __set_current_state(TASK_RUNNING); 3526 3527 if (current->state == TASK_RUNNING) 3528 return 1; 3529 if (ret < 0 || !spin) 3530 break; 3531 cpu_relax(); 3532 } while (!need_resched()); 3533 3534 __set_current_state(TASK_RUNNING); 3535 return 0; 3536 } 3537 EXPORT_SYMBOL_GPL(blk_poll); 3538 3539 unsigned int blk_mq_rq_cpu(struct request *rq) 3540 { 3541 return rq->mq_ctx->cpu; 3542 } 3543 EXPORT_SYMBOL(blk_mq_rq_cpu); 3544 3545 static int __init blk_mq_init(void) 3546 { 3547 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3548 blk_mq_hctx_notify_dead); 3549 return 0; 3550 } 3551 subsys_initcall(blk_mq_init); 3552