1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = blk_time_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = blk_time_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 406 { 407 unsigned int tag, tag_offset; 408 struct blk_mq_tags *tags; 409 struct request *rq; 410 unsigned long tag_mask; 411 int i, nr = 0; 412 413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 414 if (unlikely(!tag_mask)) 415 return NULL; 416 417 tags = blk_mq_tags_from_data(data); 418 for (i = 0; tag_mask; i++) { 419 if (!(tag_mask & (1UL << i))) 420 continue; 421 tag = tag_offset + i; 422 prefetch(tags->static_rqs[tag]); 423 tag_mask &= ~(1UL << i); 424 rq = blk_mq_rq_ctx_init(data, tags, tag); 425 rq_list_add(data->cached_rq, rq); 426 nr++; 427 } 428 if (!(data->rq_flags & RQF_SCHED_TAGS)) 429 blk_mq_add_active_requests(data->hctx, nr); 430 /* caller already holds a reference, add for remainder */ 431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 432 data->nr_tags -= nr; 433 434 return rq_list_pop(data->cached_rq); 435 } 436 437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 438 { 439 struct request_queue *q = data->q; 440 u64 alloc_time_ns = 0; 441 struct request *rq; 442 unsigned int tag; 443 444 /* alloc_time includes depth and tag waits */ 445 if (blk_queue_rq_alloc_time(q)) 446 alloc_time_ns = blk_time_get_ns(); 447 448 if (data->cmd_flags & REQ_NOWAIT) 449 data->flags |= BLK_MQ_REQ_NOWAIT; 450 451 if (q->elevator) { 452 /* 453 * All requests use scheduler tags when an I/O scheduler is 454 * enabled for the queue. 455 */ 456 data->rq_flags |= RQF_SCHED_TAGS; 457 458 /* 459 * Flush/passthrough requests are special and go directly to the 460 * dispatch list. 461 */ 462 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 463 !blk_op_is_passthrough(data->cmd_flags)) { 464 struct elevator_mq_ops *ops = &q->elevator->type->ops; 465 466 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 467 468 data->rq_flags |= RQF_USE_SCHED; 469 if (ops->limit_depth) 470 ops->limit_depth(data->cmd_flags, data); 471 } 472 } 473 474 retry: 475 data->ctx = blk_mq_get_ctx(q); 476 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 477 if (!(data->rq_flags & RQF_SCHED_TAGS)) 478 blk_mq_tag_busy(data->hctx); 479 480 if (data->flags & BLK_MQ_REQ_RESERVED) 481 data->rq_flags |= RQF_RESV; 482 483 /* 484 * Try batched alloc if we want more than 1 tag. 485 */ 486 if (data->nr_tags > 1) { 487 rq = __blk_mq_alloc_requests_batch(data); 488 if (rq) { 489 blk_mq_rq_time_init(rq, alloc_time_ns); 490 return rq; 491 } 492 data->nr_tags = 1; 493 } 494 495 /* 496 * Waiting allocations only fail because of an inactive hctx. In that 497 * case just retry the hctx assignment and tag allocation as CPU hotplug 498 * should have migrated us to an online CPU by now. 499 */ 500 tag = blk_mq_get_tag(data); 501 if (tag == BLK_MQ_NO_TAG) { 502 if (data->flags & BLK_MQ_REQ_NOWAIT) 503 return NULL; 504 /* 505 * Give up the CPU and sleep for a random short time to 506 * ensure that thread using a realtime scheduling class 507 * are migrated off the CPU, and thus off the hctx that 508 * is going away. 509 */ 510 msleep(3); 511 goto retry; 512 } 513 514 if (!(data->rq_flags & RQF_SCHED_TAGS)) 515 blk_mq_inc_active_requests(data->hctx); 516 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 517 blk_mq_rq_time_init(rq, alloc_time_ns); 518 return rq; 519 } 520 521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 522 struct blk_plug *plug, 523 blk_opf_t opf, 524 blk_mq_req_flags_t flags) 525 { 526 struct blk_mq_alloc_data data = { 527 .q = q, 528 .flags = flags, 529 .cmd_flags = opf, 530 .nr_tags = plug->nr_ios, 531 .cached_rq = &plug->cached_rq, 532 }; 533 struct request *rq; 534 535 if (blk_queue_enter(q, flags)) 536 return NULL; 537 538 plug->nr_ios = 1; 539 540 rq = __blk_mq_alloc_requests(&data); 541 if (unlikely(!rq)) 542 blk_queue_exit(q); 543 return rq; 544 } 545 546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 547 blk_opf_t opf, 548 blk_mq_req_flags_t flags) 549 { 550 struct blk_plug *plug = current->plug; 551 struct request *rq; 552 553 if (!plug) 554 return NULL; 555 556 if (rq_list_empty(plug->cached_rq)) { 557 if (plug->nr_ios == 1) 558 return NULL; 559 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 560 if (!rq) 561 return NULL; 562 } else { 563 rq = rq_list_peek(&plug->cached_rq); 564 if (!rq || rq->q != q) 565 return NULL; 566 567 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 568 return NULL; 569 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 570 return NULL; 571 572 plug->cached_rq = rq_list_next(rq); 573 blk_mq_rq_time_init(rq, 0); 574 } 575 576 rq->cmd_flags = opf; 577 INIT_LIST_HEAD(&rq->queuelist); 578 return rq; 579 } 580 581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 582 blk_mq_req_flags_t flags) 583 { 584 struct request *rq; 585 586 rq = blk_mq_alloc_cached_request(q, opf, flags); 587 if (!rq) { 588 struct blk_mq_alloc_data data = { 589 .q = q, 590 .flags = flags, 591 .cmd_flags = opf, 592 .nr_tags = 1, 593 }; 594 int ret; 595 596 ret = blk_queue_enter(q, flags); 597 if (ret) 598 return ERR_PTR(ret); 599 600 rq = __blk_mq_alloc_requests(&data); 601 if (!rq) 602 goto out_queue_exit; 603 } 604 rq->__data_len = 0; 605 rq->__sector = (sector_t) -1; 606 rq->bio = rq->biotail = NULL; 607 return rq; 608 out_queue_exit: 609 blk_queue_exit(q); 610 return ERR_PTR(-EWOULDBLOCK); 611 } 612 EXPORT_SYMBOL(blk_mq_alloc_request); 613 614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 615 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 616 { 617 struct blk_mq_alloc_data data = { 618 .q = q, 619 .flags = flags, 620 .cmd_flags = opf, 621 .nr_tags = 1, 622 }; 623 u64 alloc_time_ns = 0; 624 struct request *rq; 625 unsigned int cpu; 626 unsigned int tag; 627 int ret; 628 629 /* alloc_time includes depth and tag waits */ 630 if (blk_queue_rq_alloc_time(q)) 631 alloc_time_ns = blk_time_get_ns(); 632 633 /* 634 * If the tag allocator sleeps we could get an allocation for a 635 * different hardware context. No need to complicate the low level 636 * allocator for this for the rare use case of a command tied to 637 * a specific queue. 638 */ 639 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 640 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 641 return ERR_PTR(-EINVAL); 642 643 if (hctx_idx >= q->nr_hw_queues) 644 return ERR_PTR(-EIO); 645 646 ret = blk_queue_enter(q, flags); 647 if (ret) 648 return ERR_PTR(ret); 649 650 /* 651 * Check if the hardware context is actually mapped to anything. 652 * If not tell the caller that it should skip this queue. 653 */ 654 ret = -EXDEV; 655 data.hctx = xa_load(&q->hctx_table, hctx_idx); 656 if (!blk_mq_hw_queue_mapped(data.hctx)) 657 goto out_queue_exit; 658 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 659 if (cpu >= nr_cpu_ids) 660 goto out_queue_exit; 661 data.ctx = __blk_mq_get_ctx(q, cpu); 662 663 if (q->elevator) 664 data.rq_flags |= RQF_SCHED_TAGS; 665 else 666 blk_mq_tag_busy(data.hctx); 667 668 if (flags & BLK_MQ_REQ_RESERVED) 669 data.rq_flags |= RQF_RESV; 670 671 ret = -EWOULDBLOCK; 672 tag = blk_mq_get_tag(&data); 673 if (tag == BLK_MQ_NO_TAG) 674 goto out_queue_exit; 675 if (!(data.rq_flags & RQF_SCHED_TAGS)) 676 blk_mq_inc_active_requests(data.hctx); 677 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 678 blk_mq_rq_time_init(rq, alloc_time_ns); 679 rq->__data_len = 0; 680 rq->__sector = (sector_t) -1; 681 rq->bio = rq->biotail = NULL; 682 return rq; 683 684 out_queue_exit: 685 blk_queue_exit(q); 686 return ERR_PTR(ret); 687 } 688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 689 690 static void blk_mq_finish_request(struct request *rq) 691 { 692 struct request_queue *q = rq->q; 693 694 blk_zone_finish_request(rq); 695 696 if (rq->rq_flags & RQF_USE_SCHED) { 697 q->elevator->type->ops.finish_request(rq); 698 /* 699 * For postflush request that may need to be 700 * completed twice, we should clear this flag 701 * to avoid double finish_request() on the rq. 702 */ 703 rq->rq_flags &= ~RQF_USE_SCHED; 704 } 705 } 706 707 static void __blk_mq_free_request(struct request *rq) 708 { 709 struct request_queue *q = rq->q; 710 struct blk_mq_ctx *ctx = rq->mq_ctx; 711 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 712 const int sched_tag = rq->internal_tag; 713 714 blk_crypto_free_request(rq); 715 blk_pm_mark_last_busy(rq); 716 rq->mq_hctx = NULL; 717 718 if (rq->tag != BLK_MQ_NO_TAG) { 719 blk_mq_dec_active_requests(hctx); 720 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 721 } 722 if (sched_tag != BLK_MQ_NO_TAG) 723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 724 blk_mq_sched_restart(hctx); 725 blk_queue_exit(q); 726 } 727 728 void blk_mq_free_request(struct request *rq) 729 { 730 struct request_queue *q = rq->q; 731 732 blk_mq_finish_request(rq); 733 734 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 735 laptop_io_completion(q->disk->bdi); 736 737 rq_qos_done(q, rq); 738 739 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 740 if (req_ref_put_and_test(rq)) 741 __blk_mq_free_request(rq); 742 } 743 EXPORT_SYMBOL_GPL(blk_mq_free_request); 744 745 void blk_mq_free_plug_rqs(struct blk_plug *plug) 746 { 747 struct request *rq; 748 749 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 750 blk_mq_free_request(rq); 751 } 752 753 void blk_dump_rq_flags(struct request *rq, char *msg) 754 { 755 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 756 rq->q->disk ? rq->q->disk->disk_name : "?", 757 (__force unsigned long long) rq->cmd_flags); 758 759 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 760 (unsigned long long)blk_rq_pos(rq), 761 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 762 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 763 rq->bio, rq->biotail, blk_rq_bytes(rq)); 764 } 765 EXPORT_SYMBOL(blk_dump_rq_flags); 766 767 static void blk_account_io_completion(struct request *req, unsigned int bytes) 768 { 769 if (req->part && blk_do_io_stat(req)) { 770 const int sgrp = op_stat_group(req_op(req)); 771 772 part_stat_lock(); 773 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 774 part_stat_unlock(); 775 } 776 } 777 778 static void blk_print_req_error(struct request *req, blk_status_t status) 779 { 780 printk_ratelimited(KERN_ERR 781 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 782 "phys_seg %u prio class %u\n", 783 blk_status_to_str(status), 784 req->q->disk ? req->q->disk->disk_name : "?", 785 blk_rq_pos(req), (__force u32)req_op(req), 786 blk_op_str(req_op(req)), 787 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 788 req->nr_phys_segments, 789 IOPRIO_PRIO_CLASS(req->ioprio)); 790 } 791 792 /* 793 * Fully end IO on a request. Does not support partial completions, or 794 * errors. 795 */ 796 static void blk_complete_request(struct request *req) 797 { 798 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 799 int total_bytes = blk_rq_bytes(req); 800 struct bio *bio = req->bio; 801 802 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 803 804 if (!bio) 805 return; 806 807 #ifdef CONFIG_BLK_DEV_INTEGRITY 808 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 809 req->q->integrity.profile->complete_fn(req, total_bytes); 810 #endif 811 812 /* 813 * Upper layers may call blk_crypto_evict_key() anytime after the last 814 * bio_endio(). Therefore, the keyslot must be released before that. 815 */ 816 blk_crypto_rq_put_keyslot(req); 817 818 blk_account_io_completion(req, total_bytes); 819 820 do { 821 struct bio *next = bio->bi_next; 822 823 /* Completion has already been traced */ 824 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 825 826 blk_zone_update_request_bio(req, bio); 827 828 if (!is_flush) 829 bio_endio(bio); 830 bio = next; 831 } while (bio); 832 833 /* 834 * Reset counters so that the request stacking driver 835 * can find how many bytes remain in the request 836 * later. 837 */ 838 if (!req->end_io) { 839 req->bio = NULL; 840 req->__data_len = 0; 841 } 842 } 843 844 /** 845 * blk_update_request - Complete multiple bytes without completing the request 846 * @req: the request being processed 847 * @error: block status code 848 * @nr_bytes: number of bytes to complete for @req 849 * 850 * Description: 851 * Ends I/O on a number of bytes attached to @req, but doesn't complete 852 * the request structure even if @req doesn't have leftover. 853 * If @req has leftover, sets it up for the next range of segments. 854 * 855 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 856 * %false return from this function. 857 * 858 * Note: 859 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 860 * except in the consistency check at the end of this function. 861 * 862 * Return: 863 * %false - this request doesn't have any more data 864 * %true - this request has more data 865 **/ 866 bool blk_update_request(struct request *req, blk_status_t error, 867 unsigned int nr_bytes) 868 { 869 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 870 bool quiet = req->rq_flags & RQF_QUIET; 871 int total_bytes; 872 873 trace_block_rq_complete(req, error, nr_bytes); 874 875 if (!req->bio) 876 return false; 877 878 #ifdef CONFIG_BLK_DEV_INTEGRITY 879 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 880 error == BLK_STS_OK) 881 req->q->integrity.profile->complete_fn(req, nr_bytes); 882 #endif 883 884 /* 885 * Upper layers may call blk_crypto_evict_key() anytime after the last 886 * bio_endio(). Therefore, the keyslot must be released before that. 887 */ 888 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 889 __blk_crypto_rq_put_keyslot(req); 890 891 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 892 !test_bit(GD_DEAD, &req->q->disk->state)) { 893 blk_print_req_error(req, error); 894 trace_block_rq_error(req, error, nr_bytes); 895 } 896 897 blk_account_io_completion(req, nr_bytes); 898 899 total_bytes = 0; 900 while (req->bio) { 901 struct bio *bio = req->bio; 902 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 903 904 if (unlikely(error)) 905 bio->bi_status = error; 906 907 if (bio_bytes == bio->bi_iter.bi_size) { 908 req->bio = bio->bi_next; 909 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 910 /* 911 * Partial zone append completions cannot be supported 912 * as the BIO fragments may end up not being written 913 * sequentially. 914 */ 915 bio->bi_status = BLK_STS_IOERR; 916 } 917 918 /* Completion has already been traced */ 919 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 920 if (unlikely(quiet)) 921 bio_set_flag(bio, BIO_QUIET); 922 923 bio_advance(bio, bio_bytes); 924 925 /* Don't actually finish bio if it's part of flush sequence */ 926 if (!bio->bi_iter.bi_size) { 927 blk_zone_update_request_bio(req, bio); 928 if (!is_flush) 929 bio_endio(bio); 930 } 931 932 total_bytes += bio_bytes; 933 nr_bytes -= bio_bytes; 934 935 if (!nr_bytes) 936 break; 937 } 938 939 /* 940 * completely done 941 */ 942 if (!req->bio) { 943 /* 944 * Reset counters so that the request stacking driver 945 * can find how many bytes remain in the request 946 * later. 947 */ 948 req->__data_len = 0; 949 return false; 950 } 951 952 req->__data_len -= total_bytes; 953 954 /* update sector only for requests with clear definition of sector */ 955 if (!blk_rq_is_passthrough(req)) 956 req->__sector += total_bytes >> 9; 957 958 /* mixed attributes always follow the first bio */ 959 if (req->rq_flags & RQF_MIXED_MERGE) { 960 req->cmd_flags &= ~REQ_FAILFAST_MASK; 961 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 962 } 963 964 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 965 /* 966 * If total number of sectors is less than the first segment 967 * size, something has gone terribly wrong. 968 */ 969 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 970 blk_dump_rq_flags(req, "request botched"); 971 req->__data_len = blk_rq_cur_bytes(req); 972 } 973 974 /* recalculate the number of segments */ 975 req->nr_phys_segments = blk_recalc_rq_segments(req); 976 } 977 978 return true; 979 } 980 EXPORT_SYMBOL_GPL(blk_update_request); 981 982 static inline void blk_account_io_done(struct request *req, u64 now) 983 { 984 trace_block_io_done(req); 985 986 /* 987 * Account IO completion. flush_rq isn't accounted as a 988 * normal IO on queueing nor completion. Accounting the 989 * containing request is enough. 990 */ 991 if (blk_do_io_stat(req) && req->part && 992 !(req->rq_flags & RQF_FLUSH_SEQ)) { 993 const int sgrp = op_stat_group(req_op(req)); 994 995 part_stat_lock(); 996 update_io_ticks(req->part, jiffies, true); 997 part_stat_inc(req->part, ios[sgrp]); 998 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 999 part_stat_local_dec(req->part, 1000 in_flight[op_is_write(req_op(req))]); 1001 part_stat_unlock(); 1002 } 1003 } 1004 1005 static inline void blk_account_io_start(struct request *req) 1006 { 1007 trace_block_io_start(req); 1008 1009 if (blk_do_io_stat(req)) { 1010 /* 1011 * All non-passthrough requests are created from a bio with one 1012 * exception: when a flush command that is part of a flush sequence 1013 * generated by the state machine in blk-flush.c is cloned onto the 1014 * lower device by dm-multipath we can get here without a bio. 1015 */ 1016 if (req->bio) 1017 req->part = req->bio->bi_bdev; 1018 else 1019 req->part = req->q->disk->part0; 1020 1021 part_stat_lock(); 1022 update_io_ticks(req->part, jiffies, false); 1023 part_stat_local_inc(req->part, 1024 in_flight[op_is_write(req_op(req))]); 1025 part_stat_unlock(); 1026 } 1027 } 1028 1029 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1030 { 1031 if (rq->rq_flags & RQF_STATS) 1032 blk_stat_add(rq, now); 1033 1034 blk_mq_sched_completed_request(rq, now); 1035 blk_account_io_done(rq, now); 1036 } 1037 1038 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1039 { 1040 if (blk_mq_need_time_stamp(rq)) 1041 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1042 1043 blk_mq_finish_request(rq); 1044 1045 if (rq->end_io) { 1046 rq_qos_done(rq->q, rq); 1047 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1048 blk_mq_free_request(rq); 1049 } else { 1050 blk_mq_free_request(rq); 1051 } 1052 } 1053 EXPORT_SYMBOL(__blk_mq_end_request); 1054 1055 void blk_mq_end_request(struct request *rq, blk_status_t error) 1056 { 1057 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1058 BUG(); 1059 __blk_mq_end_request(rq, error); 1060 } 1061 EXPORT_SYMBOL(blk_mq_end_request); 1062 1063 #define TAG_COMP_BATCH 32 1064 1065 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1066 int *tag_array, int nr_tags) 1067 { 1068 struct request_queue *q = hctx->queue; 1069 1070 blk_mq_sub_active_requests(hctx, nr_tags); 1071 1072 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1073 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1074 } 1075 1076 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1077 { 1078 int tags[TAG_COMP_BATCH], nr_tags = 0; 1079 struct blk_mq_hw_ctx *cur_hctx = NULL; 1080 struct request *rq; 1081 u64 now = 0; 1082 1083 if (iob->need_ts) 1084 now = blk_time_get_ns(); 1085 1086 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1087 prefetch(rq->bio); 1088 prefetch(rq->rq_next); 1089 1090 blk_complete_request(rq); 1091 if (iob->need_ts) 1092 __blk_mq_end_request_acct(rq, now); 1093 1094 blk_mq_finish_request(rq); 1095 1096 rq_qos_done(rq->q, rq); 1097 1098 /* 1099 * If end_io handler returns NONE, then it still has 1100 * ownership of the request. 1101 */ 1102 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1103 continue; 1104 1105 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1106 if (!req_ref_put_and_test(rq)) 1107 continue; 1108 1109 blk_crypto_free_request(rq); 1110 blk_pm_mark_last_busy(rq); 1111 1112 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1113 if (cur_hctx) 1114 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1115 nr_tags = 0; 1116 cur_hctx = rq->mq_hctx; 1117 } 1118 tags[nr_tags++] = rq->tag; 1119 } 1120 1121 if (nr_tags) 1122 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1123 } 1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1125 1126 static void blk_complete_reqs(struct llist_head *list) 1127 { 1128 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1129 struct request *rq, *next; 1130 1131 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1132 rq->q->mq_ops->complete(rq); 1133 } 1134 1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1136 { 1137 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1138 } 1139 1140 static int blk_softirq_cpu_dead(unsigned int cpu) 1141 { 1142 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1143 return 0; 1144 } 1145 1146 static void __blk_mq_complete_request_remote(void *data) 1147 { 1148 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1149 } 1150 1151 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1152 { 1153 int cpu = raw_smp_processor_id(); 1154 1155 if (!IS_ENABLED(CONFIG_SMP) || 1156 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1157 return false; 1158 /* 1159 * With force threaded interrupts enabled, raising softirq from an SMP 1160 * function call will always result in waking the ksoftirqd thread. 1161 * This is probably worse than completing the request on a different 1162 * cache domain. 1163 */ 1164 if (force_irqthreads()) 1165 return false; 1166 1167 /* same CPU or cache domain and capacity? Complete locally */ 1168 if (cpu == rq->mq_ctx->cpu || 1169 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1170 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1171 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1172 return false; 1173 1174 /* don't try to IPI to an offline CPU */ 1175 return cpu_online(rq->mq_ctx->cpu); 1176 } 1177 1178 static void blk_mq_complete_send_ipi(struct request *rq) 1179 { 1180 unsigned int cpu; 1181 1182 cpu = rq->mq_ctx->cpu; 1183 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1184 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1185 } 1186 1187 static void blk_mq_raise_softirq(struct request *rq) 1188 { 1189 struct llist_head *list; 1190 1191 preempt_disable(); 1192 list = this_cpu_ptr(&blk_cpu_done); 1193 if (llist_add(&rq->ipi_list, list)) 1194 raise_softirq(BLOCK_SOFTIRQ); 1195 preempt_enable(); 1196 } 1197 1198 bool blk_mq_complete_request_remote(struct request *rq) 1199 { 1200 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1201 1202 /* 1203 * For request which hctx has only one ctx mapping, 1204 * or a polled request, always complete locally, 1205 * it's pointless to redirect the completion. 1206 */ 1207 if ((rq->mq_hctx->nr_ctx == 1 && 1208 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1209 rq->cmd_flags & REQ_POLLED) 1210 return false; 1211 1212 if (blk_mq_complete_need_ipi(rq)) { 1213 blk_mq_complete_send_ipi(rq); 1214 return true; 1215 } 1216 1217 if (rq->q->nr_hw_queues == 1) { 1218 blk_mq_raise_softirq(rq); 1219 return true; 1220 } 1221 return false; 1222 } 1223 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1224 1225 /** 1226 * blk_mq_complete_request - end I/O on a request 1227 * @rq: the request being processed 1228 * 1229 * Description: 1230 * Complete a request by scheduling the ->complete_rq operation. 1231 **/ 1232 void blk_mq_complete_request(struct request *rq) 1233 { 1234 if (!blk_mq_complete_request_remote(rq)) 1235 rq->q->mq_ops->complete(rq); 1236 } 1237 EXPORT_SYMBOL(blk_mq_complete_request); 1238 1239 /** 1240 * blk_mq_start_request - Start processing a request 1241 * @rq: Pointer to request to be started 1242 * 1243 * Function used by device drivers to notify the block layer that a request 1244 * is going to be processed now, so blk layer can do proper initializations 1245 * such as starting the timeout timer. 1246 */ 1247 void blk_mq_start_request(struct request *rq) 1248 { 1249 struct request_queue *q = rq->q; 1250 1251 trace_block_rq_issue(rq); 1252 1253 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1254 !blk_rq_is_passthrough(rq)) { 1255 rq->io_start_time_ns = blk_time_get_ns(); 1256 rq->stats_sectors = blk_rq_sectors(rq); 1257 rq->rq_flags |= RQF_STATS; 1258 rq_qos_issue(q, rq); 1259 } 1260 1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1262 1263 blk_add_timer(rq); 1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1265 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1266 1267 #ifdef CONFIG_BLK_DEV_INTEGRITY 1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1269 q->integrity.profile->prepare_fn(rq); 1270 #endif 1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1272 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1273 } 1274 EXPORT_SYMBOL(blk_mq_start_request); 1275 1276 /* 1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1278 * queues. This is important for md arrays to benefit from merging 1279 * requests. 1280 */ 1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1282 { 1283 if (plug->multiple_queues) 1284 return BLK_MAX_REQUEST_COUNT * 2; 1285 return BLK_MAX_REQUEST_COUNT; 1286 } 1287 1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1289 { 1290 struct request *last = rq_list_peek(&plug->mq_list); 1291 1292 if (!plug->rq_count) { 1293 trace_block_plug(rq->q); 1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1295 (!blk_queue_nomerges(rq->q) && 1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1297 blk_mq_flush_plug_list(plug, false); 1298 last = NULL; 1299 trace_block_plug(rq->q); 1300 } 1301 1302 if (!plug->multiple_queues && last && last->q != rq->q) 1303 plug->multiple_queues = true; 1304 /* 1305 * Any request allocated from sched tags can't be issued to 1306 * ->queue_rqs() directly 1307 */ 1308 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1309 plug->has_elevator = true; 1310 rq->rq_next = NULL; 1311 rq_list_add(&plug->mq_list, rq); 1312 plug->rq_count++; 1313 } 1314 1315 /** 1316 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1317 * @rq: request to insert 1318 * @at_head: insert request at head or tail of queue 1319 * 1320 * Description: 1321 * Insert a fully prepared request at the back of the I/O scheduler queue 1322 * for execution. Don't wait for completion. 1323 * 1324 * Note: 1325 * This function will invoke @done directly if the queue is dead. 1326 */ 1327 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1328 { 1329 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1330 1331 WARN_ON(irqs_disabled()); 1332 WARN_ON(!blk_rq_is_passthrough(rq)); 1333 1334 blk_account_io_start(rq); 1335 1336 if (current->plug && !at_head) { 1337 blk_add_rq_to_plug(current->plug, rq); 1338 return; 1339 } 1340 1341 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1342 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1343 } 1344 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1345 1346 struct blk_rq_wait { 1347 struct completion done; 1348 blk_status_t ret; 1349 }; 1350 1351 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1352 { 1353 struct blk_rq_wait *wait = rq->end_io_data; 1354 1355 wait->ret = ret; 1356 complete(&wait->done); 1357 return RQ_END_IO_NONE; 1358 } 1359 1360 bool blk_rq_is_poll(struct request *rq) 1361 { 1362 if (!rq->mq_hctx) 1363 return false; 1364 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1365 return false; 1366 return true; 1367 } 1368 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1369 1370 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1371 { 1372 do { 1373 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1374 cond_resched(); 1375 } while (!completion_done(wait)); 1376 } 1377 1378 /** 1379 * blk_execute_rq - insert a request into queue for execution 1380 * @rq: request to insert 1381 * @at_head: insert request at head or tail of queue 1382 * 1383 * Description: 1384 * Insert a fully prepared request at the back of the I/O scheduler queue 1385 * for execution and wait for completion. 1386 * Return: The blk_status_t result provided to blk_mq_end_request(). 1387 */ 1388 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1389 { 1390 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1391 struct blk_rq_wait wait = { 1392 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1393 }; 1394 1395 WARN_ON(irqs_disabled()); 1396 WARN_ON(!blk_rq_is_passthrough(rq)); 1397 1398 rq->end_io_data = &wait; 1399 rq->end_io = blk_end_sync_rq; 1400 1401 blk_account_io_start(rq); 1402 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1403 blk_mq_run_hw_queue(hctx, false); 1404 1405 if (blk_rq_is_poll(rq)) 1406 blk_rq_poll_completion(rq, &wait.done); 1407 else 1408 blk_wait_io(&wait.done); 1409 1410 return wait.ret; 1411 } 1412 EXPORT_SYMBOL(blk_execute_rq); 1413 1414 static void __blk_mq_requeue_request(struct request *rq) 1415 { 1416 struct request_queue *q = rq->q; 1417 1418 blk_mq_put_driver_tag(rq); 1419 1420 trace_block_rq_requeue(rq); 1421 rq_qos_requeue(q, rq); 1422 1423 if (blk_mq_request_started(rq)) { 1424 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1425 rq->rq_flags &= ~RQF_TIMED_OUT; 1426 } 1427 } 1428 1429 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1430 { 1431 struct request_queue *q = rq->q; 1432 unsigned long flags; 1433 1434 __blk_mq_requeue_request(rq); 1435 1436 /* this request will be re-inserted to io scheduler queue */ 1437 blk_mq_sched_requeue_request(rq); 1438 1439 spin_lock_irqsave(&q->requeue_lock, flags); 1440 list_add_tail(&rq->queuelist, &q->requeue_list); 1441 spin_unlock_irqrestore(&q->requeue_lock, flags); 1442 1443 if (kick_requeue_list) 1444 blk_mq_kick_requeue_list(q); 1445 } 1446 EXPORT_SYMBOL(blk_mq_requeue_request); 1447 1448 static void blk_mq_requeue_work(struct work_struct *work) 1449 { 1450 struct request_queue *q = 1451 container_of(work, struct request_queue, requeue_work.work); 1452 LIST_HEAD(rq_list); 1453 LIST_HEAD(flush_list); 1454 struct request *rq; 1455 1456 spin_lock_irq(&q->requeue_lock); 1457 list_splice_init(&q->requeue_list, &rq_list); 1458 list_splice_init(&q->flush_list, &flush_list); 1459 spin_unlock_irq(&q->requeue_lock); 1460 1461 while (!list_empty(&rq_list)) { 1462 rq = list_entry(rq_list.next, struct request, queuelist); 1463 /* 1464 * If RQF_DONTPREP ist set, the request has been started by the 1465 * driver already and might have driver-specific data allocated 1466 * already. Insert it into the hctx dispatch list to avoid 1467 * block layer merges for the request. 1468 */ 1469 if (rq->rq_flags & RQF_DONTPREP) { 1470 list_del_init(&rq->queuelist); 1471 blk_mq_request_bypass_insert(rq, 0); 1472 } else { 1473 list_del_init(&rq->queuelist); 1474 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1475 } 1476 } 1477 1478 while (!list_empty(&flush_list)) { 1479 rq = list_entry(flush_list.next, struct request, queuelist); 1480 list_del_init(&rq->queuelist); 1481 blk_mq_insert_request(rq, 0); 1482 } 1483 1484 blk_mq_run_hw_queues(q, false); 1485 } 1486 1487 void blk_mq_kick_requeue_list(struct request_queue *q) 1488 { 1489 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1490 } 1491 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1492 1493 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1494 unsigned long msecs) 1495 { 1496 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1497 msecs_to_jiffies(msecs)); 1498 } 1499 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1500 1501 static bool blk_is_flush_data_rq(struct request *rq) 1502 { 1503 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1504 } 1505 1506 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1507 { 1508 /* 1509 * If we find a request that isn't idle we know the queue is busy 1510 * as it's checked in the iter. 1511 * Return false to stop the iteration. 1512 * 1513 * In case of queue quiesce, if one flush data request is completed, 1514 * don't count it as inflight given the flush sequence is suspended, 1515 * and the original flush data request is invisible to driver, just 1516 * like other pending requests because of quiesce 1517 */ 1518 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1519 blk_is_flush_data_rq(rq) && 1520 blk_mq_request_completed(rq))) { 1521 bool *busy = priv; 1522 1523 *busy = true; 1524 return false; 1525 } 1526 1527 return true; 1528 } 1529 1530 bool blk_mq_queue_inflight(struct request_queue *q) 1531 { 1532 bool busy = false; 1533 1534 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1535 return busy; 1536 } 1537 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1538 1539 static void blk_mq_rq_timed_out(struct request *req) 1540 { 1541 req->rq_flags |= RQF_TIMED_OUT; 1542 if (req->q->mq_ops->timeout) { 1543 enum blk_eh_timer_return ret; 1544 1545 ret = req->q->mq_ops->timeout(req); 1546 if (ret == BLK_EH_DONE) 1547 return; 1548 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1549 } 1550 1551 blk_add_timer(req); 1552 } 1553 1554 struct blk_expired_data { 1555 bool has_timedout_rq; 1556 unsigned long next; 1557 unsigned long timeout_start; 1558 }; 1559 1560 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1561 { 1562 unsigned long deadline; 1563 1564 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1565 return false; 1566 if (rq->rq_flags & RQF_TIMED_OUT) 1567 return false; 1568 1569 deadline = READ_ONCE(rq->deadline); 1570 if (time_after_eq(expired->timeout_start, deadline)) 1571 return true; 1572 1573 if (expired->next == 0) 1574 expired->next = deadline; 1575 else if (time_after(expired->next, deadline)) 1576 expired->next = deadline; 1577 return false; 1578 } 1579 1580 void blk_mq_put_rq_ref(struct request *rq) 1581 { 1582 if (is_flush_rq(rq)) { 1583 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1584 blk_mq_free_request(rq); 1585 } else if (req_ref_put_and_test(rq)) { 1586 __blk_mq_free_request(rq); 1587 } 1588 } 1589 1590 static bool blk_mq_check_expired(struct request *rq, void *priv) 1591 { 1592 struct blk_expired_data *expired = priv; 1593 1594 /* 1595 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1596 * be reallocated underneath the timeout handler's processing, then 1597 * the expire check is reliable. If the request is not expired, then 1598 * it was completed and reallocated as a new request after returning 1599 * from blk_mq_check_expired(). 1600 */ 1601 if (blk_mq_req_expired(rq, expired)) { 1602 expired->has_timedout_rq = true; 1603 return false; 1604 } 1605 return true; 1606 } 1607 1608 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1609 { 1610 struct blk_expired_data *expired = priv; 1611 1612 if (blk_mq_req_expired(rq, expired)) 1613 blk_mq_rq_timed_out(rq); 1614 return true; 1615 } 1616 1617 static void blk_mq_timeout_work(struct work_struct *work) 1618 { 1619 struct request_queue *q = 1620 container_of(work, struct request_queue, timeout_work); 1621 struct blk_expired_data expired = { 1622 .timeout_start = jiffies, 1623 }; 1624 struct blk_mq_hw_ctx *hctx; 1625 unsigned long i; 1626 1627 /* A deadlock might occur if a request is stuck requiring a 1628 * timeout at the same time a queue freeze is waiting 1629 * completion, since the timeout code would not be able to 1630 * acquire the queue reference here. 1631 * 1632 * That's why we don't use blk_queue_enter here; instead, we use 1633 * percpu_ref_tryget directly, because we need to be able to 1634 * obtain a reference even in the short window between the queue 1635 * starting to freeze, by dropping the first reference in 1636 * blk_freeze_queue_start, and the moment the last request is 1637 * consumed, marked by the instant q_usage_counter reaches 1638 * zero. 1639 */ 1640 if (!percpu_ref_tryget(&q->q_usage_counter)) 1641 return; 1642 1643 /* check if there is any timed-out request */ 1644 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1645 if (expired.has_timedout_rq) { 1646 /* 1647 * Before walking tags, we must ensure any submit started 1648 * before the current time has finished. Since the submit 1649 * uses srcu or rcu, wait for a synchronization point to 1650 * ensure all running submits have finished 1651 */ 1652 blk_mq_wait_quiesce_done(q->tag_set); 1653 1654 expired.next = 0; 1655 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1656 } 1657 1658 if (expired.next != 0) { 1659 mod_timer(&q->timeout, expired.next); 1660 } else { 1661 /* 1662 * Request timeouts are handled as a forward rolling timer. If 1663 * we end up here it means that no requests are pending and 1664 * also that no request has been pending for a while. Mark 1665 * each hctx as idle. 1666 */ 1667 queue_for_each_hw_ctx(q, hctx, i) { 1668 /* the hctx may be unmapped, so check it here */ 1669 if (blk_mq_hw_queue_mapped(hctx)) 1670 blk_mq_tag_idle(hctx); 1671 } 1672 } 1673 blk_queue_exit(q); 1674 } 1675 1676 struct flush_busy_ctx_data { 1677 struct blk_mq_hw_ctx *hctx; 1678 struct list_head *list; 1679 }; 1680 1681 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1682 { 1683 struct flush_busy_ctx_data *flush_data = data; 1684 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1685 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1686 enum hctx_type type = hctx->type; 1687 1688 spin_lock(&ctx->lock); 1689 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1690 sbitmap_clear_bit(sb, bitnr); 1691 spin_unlock(&ctx->lock); 1692 return true; 1693 } 1694 1695 /* 1696 * Process software queues that have been marked busy, splicing them 1697 * to the for-dispatch 1698 */ 1699 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1700 { 1701 struct flush_busy_ctx_data data = { 1702 .hctx = hctx, 1703 .list = list, 1704 }; 1705 1706 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1707 } 1708 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1709 1710 struct dispatch_rq_data { 1711 struct blk_mq_hw_ctx *hctx; 1712 struct request *rq; 1713 }; 1714 1715 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1716 void *data) 1717 { 1718 struct dispatch_rq_data *dispatch_data = data; 1719 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1720 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1721 enum hctx_type type = hctx->type; 1722 1723 spin_lock(&ctx->lock); 1724 if (!list_empty(&ctx->rq_lists[type])) { 1725 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1726 list_del_init(&dispatch_data->rq->queuelist); 1727 if (list_empty(&ctx->rq_lists[type])) 1728 sbitmap_clear_bit(sb, bitnr); 1729 } 1730 spin_unlock(&ctx->lock); 1731 1732 return !dispatch_data->rq; 1733 } 1734 1735 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1736 struct blk_mq_ctx *start) 1737 { 1738 unsigned off = start ? start->index_hw[hctx->type] : 0; 1739 struct dispatch_rq_data data = { 1740 .hctx = hctx, 1741 .rq = NULL, 1742 }; 1743 1744 __sbitmap_for_each_set(&hctx->ctx_map, off, 1745 dispatch_rq_from_ctx, &data); 1746 1747 return data.rq; 1748 } 1749 1750 bool __blk_mq_alloc_driver_tag(struct request *rq) 1751 { 1752 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1753 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1754 int tag; 1755 1756 blk_mq_tag_busy(rq->mq_hctx); 1757 1758 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1759 bt = &rq->mq_hctx->tags->breserved_tags; 1760 tag_offset = 0; 1761 } else { 1762 if (!hctx_may_queue(rq->mq_hctx, bt)) 1763 return false; 1764 } 1765 1766 tag = __sbitmap_queue_get(bt); 1767 if (tag == BLK_MQ_NO_TAG) 1768 return false; 1769 1770 rq->tag = tag + tag_offset; 1771 blk_mq_inc_active_requests(rq->mq_hctx); 1772 return true; 1773 } 1774 1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1776 int flags, void *key) 1777 { 1778 struct blk_mq_hw_ctx *hctx; 1779 1780 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1781 1782 spin_lock(&hctx->dispatch_wait_lock); 1783 if (!list_empty(&wait->entry)) { 1784 struct sbitmap_queue *sbq; 1785 1786 list_del_init(&wait->entry); 1787 sbq = &hctx->tags->bitmap_tags; 1788 atomic_dec(&sbq->ws_active); 1789 } 1790 spin_unlock(&hctx->dispatch_wait_lock); 1791 1792 blk_mq_run_hw_queue(hctx, true); 1793 return 1; 1794 } 1795 1796 /* 1797 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1798 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1799 * restart. For both cases, take care to check the condition again after 1800 * marking us as waiting. 1801 */ 1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1803 struct request *rq) 1804 { 1805 struct sbitmap_queue *sbq; 1806 struct wait_queue_head *wq; 1807 wait_queue_entry_t *wait; 1808 bool ret; 1809 1810 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1811 !(blk_mq_is_shared_tags(hctx->flags))) { 1812 blk_mq_sched_mark_restart_hctx(hctx); 1813 1814 /* 1815 * It's possible that a tag was freed in the window between the 1816 * allocation failure and adding the hardware queue to the wait 1817 * queue. 1818 * 1819 * Don't clear RESTART here, someone else could have set it. 1820 * At most this will cost an extra queue run. 1821 */ 1822 return blk_mq_get_driver_tag(rq); 1823 } 1824 1825 wait = &hctx->dispatch_wait; 1826 if (!list_empty_careful(&wait->entry)) 1827 return false; 1828 1829 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1830 sbq = &hctx->tags->breserved_tags; 1831 else 1832 sbq = &hctx->tags->bitmap_tags; 1833 wq = &bt_wait_ptr(sbq, hctx)->wait; 1834 1835 spin_lock_irq(&wq->lock); 1836 spin_lock(&hctx->dispatch_wait_lock); 1837 if (!list_empty(&wait->entry)) { 1838 spin_unlock(&hctx->dispatch_wait_lock); 1839 spin_unlock_irq(&wq->lock); 1840 return false; 1841 } 1842 1843 atomic_inc(&sbq->ws_active); 1844 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1845 __add_wait_queue(wq, wait); 1846 1847 /* 1848 * Add one explicit barrier since blk_mq_get_driver_tag() may 1849 * not imply barrier in case of failure. 1850 * 1851 * Order adding us to wait queue and allocating driver tag. 1852 * 1853 * The pair is the one implied in sbitmap_queue_wake_up() which 1854 * orders clearing sbitmap tag bits and waitqueue_active() in 1855 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1856 * 1857 * Otherwise, re-order of adding wait queue and getting driver tag 1858 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1859 * the waitqueue_active() may not observe us in wait queue. 1860 */ 1861 smp_mb(); 1862 1863 /* 1864 * It's possible that a tag was freed in the window between the 1865 * allocation failure and adding the hardware queue to the wait 1866 * queue. 1867 */ 1868 ret = blk_mq_get_driver_tag(rq); 1869 if (!ret) { 1870 spin_unlock(&hctx->dispatch_wait_lock); 1871 spin_unlock_irq(&wq->lock); 1872 return false; 1873 } 1874 1875 /* 1876 * We got a tag, remove ourselves from the wait queue to ensure 1877 * someone else gets the wakeup. 1878 */ 1879 list_del_init(&wait->entry); 1880 atomic_dec(&sbq->ws_active); 1881 spin_unlock(&hctx->dispatch_wait_lock); 1882 spin_unlock_irq(&wq->lock); 1883 1884 return true; 1885 } 1886 1887 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1889 /* 1890 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1891 * - EWMA is one simple way to compute running average value 1892 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1893 * - take 4 as factor for avoiding to get too small(0) result, and this 1894 * factor doesn't matter because EWMA decreases exponentially 1895 */ 1896 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1897 { 1898 unsigned int ewma; 1899 1900 ewma = hctx->dispatch_busy; 1901 1902 if (!ewma && !busy) 1903 return; 1904 1905 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1906 if (busy) 1907 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1908 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1909 1910 hctx->dispatch_busy = ewma; 1911 } 1912 1913 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1914 1915 static void blk_mq_handle_dev_resource(struct request *rq, 1916 struct list_head *list) 1917 { 1918 list_add(&rq->queuelist, list); 1919 __blk_mq_requeue_request(rq); 1920 } 1921 1922 enum prep_dispatch { 1923 PREP_DISPATCH_OK, 1924 PREP_DISPATCH_NO_TAG, 1925 PREP_DISPATCH_NO_BUDGET, 1926 }; 1927 1928 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1929 bool need_budget) 1930 { 1931 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1932 int budget_token = -1; 1933 1934 if (need_budget) { 1935 budget_token = blk_mq_get_dispatch_budget(rq->q); 1936 if (budget_token < 0) { 1937 blk_mq_put_driver_tag(rq); 1938 return PREP_DISPATCH_NO_BUDGET; 1939 } 1940 blk_mq_set_rq_budget_token(rq, budget_token); 1941 } 1942 1943 if (!blk_mq_get_driver_tag(rq)) { 1944 /* 1945 * The initial allocation attempt failed, so we need to 1946 * rerun the hardware queue when a tag is freed. The 1947 * waitqueue takes care of that. If the queue is run 1948 * before we add this entry back on the dispatch list, 1949 * we'll re-run it below. 1950 */ 1951 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1952 /* 1953 * All budgets not got from this function will be put 1954 * together during handling partial dispatch 1955 */ 1956 if (need_budget) 1957 blk_mq_put_dispatch_budget(rq->q, budget_token); 1958 return PREP_DISPATCH_NO_TAG; 1959 } 1960 } 1961 1962 return PREP_DISPATCH_OK; 1963 } 1964 1965 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1966 static void blk_mq_release_budgets(struct request_queue *q, 1967 struct list_head *list) 1968 { 1969 struct request *rq; 1970 1971 list_for_each_entry(rq, list, queuelist) { 1972 int budget_token = blk_mq_get_rq_budget_token(rq); 1973 1974 if (budget_token >= 0) 1975 blk_mq_put_dispatch_budget(q, budget_token); 1976 } 1977 } 1978 1979 /* 1980 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1981 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1982 * details) 1983 * Attention, we should explicitly call this in unusual cases: 1984 * 1) did not queue everything initially scheduled to queue 1985 * 2) the last attempt to queue a request failed 1986 */ 1987 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1988 bool from_schedule) 1989 { 1990 if (hctx->queue->mq_ops->commit_rqs && queued) { 1991 trace_block_unplug(hctx->queue, queued, !from_schedule); 1992 hctx->queue->mq_ops->commit_rqs(hctx); 1993 } 1994 } 1995 1996 /* 1997 * Returns true if we did some work AND can potentially do more. 1998 */ 1999 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2000 unsigned int nr_budgets) 2001 { 2002 enum prep_dispatch prep; 2003 struct request_queue *q = hctx->queue; 2004 struct request *rq; 2005 int queued; 2006 blk_status_t ret = BLK_STS_OK; 2007 bool needs_resource = false; 2008 2009 if (list_empty(list)) 2010 return false; 2011 2012 /* 2013 * Now process all the entries, sending them to the driver. 2014 */ 2015 queued = 0; 2016 do { 2017 struct blk_mq_queue_data bd; 2018 2019 rq = list_first_entry(list, struct request, queuelist); 2020 2021 WARN_ON_ONCE(hctx != rq->mq_hctx); 2022 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2023 if (prep != PREP_DISPATCH_OK) 2024 break; 2025 2026 list_del_init(&rq->queuelist); 2027 2028 bd.rq = rq; 2029 bd.last = list_empty(list); 2030 2031 /* 2032 * once the request is queued to lld, no need to cover the 2033 * budget any more 2034 */ 2035 if (nr_budgets) 2036 nr_budgets--; 2037 ret = q->mq_ops->queue_rq(hctx, &bd); 2038 switch (ret) { 2039 case BLK_STS_OK: 2040 queued++; 2041 break; 2042 case BLK_STS_RESOURCE: 2043 needs_resource = true; 2044 fallthrough; 2045 case BLK_STS_DEV_RESOURCE: 2046 blk_mq_handle_dev_resource(rq, list); 2047 goto out; 2048 default: 2049 blk_mq_end_request(rq, ret); 2050 } 2051 } while (!list_empty(list)); 2052 out: 2053 /* If we didn't flush the entire list, we could have told the driver 2054 * there was more coming, but that turned out to be a lie. 2055 */ 2056 if (!list_empty(list) || ret != BLK_STS_OK) 2057 blk_mq_commit_rqs(hctx, queued, false); 2058 2059 /* 2060 * Any items that need requeuing? Stuff them into hctx->dispatch, 2061 * that is where we will continue on next queue run. 2062 */ 2063 if (!list_empty(list)) { 2064 bool needs_restart; 2065 /* For non-shared tags, the RESTART check will suffice */ 2066 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2067 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2068 blk_mq_is_shared_tags(hctx->flags)); 2069 2070 if (nr_budgets) 2071 blk_mq_release_budgets(q, list); 2072 2073 spin_lock(&hctx->lock); 2074 list_splice_tail_init(list, &hctx->dispatch); 2075 spin_unlock(&hctx->lock); 2076 2077 /* 2078 * Order adding requests to hctx->dispatch and checking 2079 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2080 * in blk_mq_sched_restart(). Avoid restart code path to 2081 * miss the new added requests to hctx->dispatch, meantime 2082 * SCHED_RESTART is observed here. 2083 */ 2084 smp_mb(); 2085 2086 /* 2087 * If SCHED_RESTART was set by the caller of this function and 2088 * it is no longer set that means that it was cleared by another 2089 * thread and hence that a queue rerun is needed. 2090 * 2091 * If 'no_tag' is set, that means that we failed getting 2092 * a driver tag with an I/O scheduler attached. If our dispatch 2093 * waitqueue is no longer active, ensure that we run the queue 2094 * AFTER adding our entries back to the list. 2095 * 2096 * If no I/O scheduler has been configured it is possible that 2097 * the hardware queue got stopped and restarted before requests 2098 * were pushed back onto the dispatch list. Rerun the queue to 2099 * avoid starvation. Notes: 2100 * - blk_mq_run_hw_queue() checks whether or not a queue has 2101 * been stopped before rerunning a queue. 2102 * - Some but not all block drivers stop a queue before 2103 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2104 * and dm-rq. 2105 * 2106 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2107 * bit is set, run queue after a delay to avoid IO stalls 2108 * that could otherwise occur if the queue is idle. We'll do 2109 * similar if we couldn't get budget or couldn't lock a zone 2110 * and SCHED_RESTART is set. 2111 */ 2112 needs_restart = blk_mq_sched_needs_restart(hctx); 2113 if (prep == PREP_DISPATCH_NO_BUDGET) 2114 needs_resource = true; 2115 if (!needs_restart || 2116 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2117 blk_mq_run_hw_queue(hctx, true); 2118 else if (needs_resource) 2119 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2120 2121 blk_mq_update_dispatch_busy(hctx, true); 2122 return false; 2123 } 2124 2125 blk_mq_update_dispatch_busy(hctx, false); 2126 return true; 2127 } 2128 2129 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2130 { 2131 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2132 2133 if (cpu >= nr_cpu_ids) 2134 cpu = cpumask_first(hctx->cpumask); 2135 return cpu; 2136 } 2137 2138 /* 2139 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2140 * it for speeding up the check 2141 */ 2142 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2143 { 2144 return hctx->next_cpu >= nr_cpu_ids; 2145 } 2146 2147 /* 2148 * It'd be great if the workqueue API had a way to pass 2149 * in a mask and had some smarts for more clever placement. 2150 * For now we just round-robin here, switching for every 2151 * BLK_MQ_CPU_WORK_BATCH queued items. 2152 */ 2153 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2154 { 2155 bool tried = false; 2156 int next_cpu = hctx->next_cpu; 2157 2158 /* Switch to unbound if no allowable CPUs in this hctx */ 2159 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2160 return WORK_CPU_UNBOUND; 2161 2162 if (--hctx->next_cpu_batch <= 0) { 2163 select_cpu: 2164 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2165 cpu_online_mask); 2166 if (next_cpu >= nr_cpu_ids) 2167 next_cpu = blk_mq_first_mapped_cpu(hctx); 2168 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2169 } 2170 2171 /* 2172 * Do unbound schedule if we can't find a online CPU for this hctx, 2173 * and it should only happen in the path of handling CPU DEAD. 2174 */ 2175 if (!cpu_online(next_cpu)) { 2176 if (!tried) { 2177 tried = true; 2178 goto select_cpu; 2179 } 2180 2181 /* 2182 * Make sure to re-select CPU next time once after CPUs 2183 * in hctx->cpumask become online again. 2184 */ 2185 hctx->next_cpu = next_cpu; 2186 hctx->next_cpu_batch = 1; 2187 return WORK_CPU_UNBOUND; 2188 } 2189 2190 hctx->next_cpu = next_cpu; 2191 return next_cpu; 2192 } 2193 2194 /** 2195 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2196 * @hctx: Pointer to the hardware queue to run. 2197 * @msecs: Milliseconds of delay to wait before running the queue. 2198 * 2199 * Run a hardware queue asynchronously with a delay of @msecs. 2200 */ 2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2202 { 2203 if (unlikely(blk_mq_hctx_stopped(hctx))) 2204 return; 2205 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2206 msecs_to_jiffies(msecs)); 2207 } 2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2209 2210 /** 2211 * blk_mq_run_hw_queue - Start to run a hardware queue. 2212 * @hctx: Pointer to the hardware queue to run. 2213 * @async: If we want to run the queue asynchronously. 2214 * 2215 * Check if the request queue is not in a quiesced state and if there are 2216 * pending requests to be sent. If this is true, run the queue to send requests 2217 * to hardware. 2218 */ 2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2220 { 2221 bool need_run; 2222 2223 /* 2224 * We can't run the queue inline with interrupts disabled. 2225 */ 2226 WARN_ON_ONCE(!async && in_interrupt()); 2227 2228 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2229 2230 /* 2231 * When queue is quiesced, we may be switching io scheduler, or 2232 * updating nr_hw_queues, or other things, and we can't run queue 2233 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2234 * 2235 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2236 * quiesced. 2237 */ 2238 __blk_mq_run_dispatch_ops(hctx->queue, false, 2239 need_run = !blk_queue_quiesced(hctx->queue) && 2240 blk_mq_hctx_has_pending(hctx)); 2241 2242 if (!need_run) 2243 return; 2244 2245 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2246 blk_mq_delay_run_hw_queue(hctx, 0); 2247 return; 2248 } 2249 2250 blk_mq_run_dispatch_ops(hctx->queue, 2251 blk_mq_sched_dispatch_requests(hctx)); 2252 } 2253 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2254 2255 /* 2256 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2257 * scheduler. 2258 */ 2259 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2260 { 2261 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2262 /* 2263 * If the IO scheduler does not respect hardware queues when 2264 * dispatching, we just don't bother with multiple HW queues and 2265 * dispatch from hctx for the current CPU since running multiple queues 2266 * just causes lock contention inside the scheduler and pointless cache 2267 * bouncing. 2268 */ 2269 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2270 2271 if (!blk_mq_hctx_stopped(hctx)) 2272 return hctx; 2273 return NULL; 2274 } 2275 2276 /** 2277 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2278 * @q: Pointer to the request queue to run. 2279 * @async: If we want to run the queue asynchronously. 2280 */ 2281 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2282 { 2283 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2284 unsigned long i; 2285 2286 sq_hctx = NULL; 2287 if (blk_queue_sq_sched(q)) 2288 sq_hctx = blk_mq_get_sq_hctx(q); 2289 queue_for_each_hw_ctx(q, hctx, i) { 2290 if (blk_mq_hctx_stopped(hctx)) 2291 continue; 2292 /* 2293 * Dispatch from this hctx either if there's no hctx preferred 2294 * by IO scheduler or if it has requests that bypass the 2295 * scheduler. 2296 */ 2297 if (!sq_hctx || sq_hctx == hctx || 2298 !list_empty_careful(&hctx->dispatch)) 2299 blk_mq_run_hw_queue(hctx, async); 2300 } 2301 } 2302 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2303 2304 /** 2305 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2306 * @q: Pointer to the request queue to run. 2307 * @msecs: Milliseconds of delay to wait before running the queues. 2308 */ 2309 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2310 { 2311 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2312 unsigned long i; 2313 2314 sq_hctx = NULL; 2315 if (blk_queue_sq_sched(q)) 2316 sq_hctx = blk_mq_get_sq_hctx(q); 2317 queue_for_each_hw_ctx(q, hctx, i) { 2318 if (blk_mq_hctx_stopped(hctx)) 2319 continue; 2320 /* 2321 * If there is already a run_work pending, leave the 2322 * pending delay untouched. Otherwise, a hctx can stall 2323 * if another hctx is re-delaying the other's work 2324 * before the work executes. 2325 */ 2326 if (delayed_work_pending(&hctx->run_work)) 2327 continue; 2328 /* 2329 * Dispatch from this hctx either if there's no hctx preferred 2330 * by IO scheduler or if it has requests that bypass the 2331 * scheduler. 2332 */ 2333 if (!sq_hctx || sq_hctx == hctx || 2334 !list_empty_careful(&hctx->dispatch)) 2335 blk_mq_delay_run_hw_queue(hctx, msecs); 2336 } 2337 } 2338 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2339 2340 /* 2341 * This function is often used for pausing .queue_rq() by driver when 2342 * there isn't enough resource or some conditions aren't satisfied, and 2343 * BLK_STS_RESOURCE is usually returned. 2344 * 2345 * We do not guarantee that dispatch can be drained or blocked 2346 * after blk_mq_stop_hw_queue() returns. Please use 2347 * blk_mq_quiesce_queue() for that requirement. 2348 */ 2349 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2350 { 2351 cancel_delayed_work(&hctx->run_work); 2352 2353 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2354 } 2355 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2356 2357 /* 2358 * This function is often used for pausing .queue_rq() by driver when 2359 * there isn't enough resource or some conditions aren't satisfied, and 2360 * BLK_STS_RESOURCE is usually returned. 2361 * 2362 * We do not guarantee that dispatch can be drained or blocked 2363 * after blk_mq_stop_hw_queues() returns. Please use 2364 * blk_mq_quiesce_queue() for that requirement. 2365 */ 2366 void blk_mq_stop_hw_queues(struct request_queue *q) 2367 { 2368 struct blk_mq_hw_ctx *hctx; 2369 unsigned long i; 2370 2371 queue_for_each_hw_ctx(q, hctx, i) 2372 blk_mq_stop_hw_queue(hctx); 2373 } 2374 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2375 2376 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2377 { 2378 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2379 2380 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2381 } 2382 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2383 2384 void blk_mq_start_hw_queues(struct request_queue *q) 2385 { 2386 struct blk_mq_hw_ctx *hctx; 2387 unsigned long i; 2388 2389 queue_for_each_hw_ctx(q, hctx, i) 2390 blk_mq_start_hw_queue(hctx); 2391 } 2392 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2393 2394 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2395 { 2396 if (!blk_mq_hctx_stopped(hctx)) 2397 return; 2398 2399 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2400 blk_mq_run_hw_queue(hctx, async); 2401 } 2402 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2403 2404 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2405 { 2406 struct blk_mq_hw_ctx *hctx; 2407 unsigned long i; 2408 2409 queue_for_each_hw_ctx(q, hctx, i) 2410 blk_mq_start_stopped_hw_queue(hctx, async || 2411 (hctx->flags & BLK_MQ_F_BLOCKING)); 2412 } 2413 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2414 2415 static void blk_mq_run_work_fn(struct work_struct *work) 2416 { 2417 struct blk_mq_hw_ctx *hctx = 2418 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2419 2420 blk_mq_run_dispatch_ops(hctx->queue, 2421 blk_mq_sched_dispatch_requests(hctx)); 2422 } 2423 2424 /** 2425 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2426 * @rq: Pointer to request to be inserted. 2427 * @flags: BLK_MQ_INSERT_* 2428 * 2429 * Should only be used carefully, when the caller knows we want to 2430 * bypass a potential IO scheduler on the target device. 2431 */ 2432 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2433 { 2434 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2435 2436 spin_lock(&hctx->lock); 2437 if (flags & BLK_MQ_INSERT_AT_HEAD) 2438 list_add(&rq->queuelist, &hctx->dispatch); 2439 else 2440 list_add_tail(&rq->queuelist, &hctx->dispatch); 2441 spin_unlock(&hctx->lock); 2442 } 2443 2444 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2445 struct blk_mq_ctx *ctx, struct list_head *list, 2446 bool run_queue_async) 2447 { 2448 struct request *rq; 2449 enum hctx_type type = hctx->type; 2450 2451 /* 2452 * Try to issue requests directly if the hw queue isn't busy to save an 2453 * extra enqueue & dequeue to the sw queue. 2454 */ 2455 if (!hctx->dispatch_busy && !run_queue_async) { 2456 blk_mq_run_dispatch_ops(hctx->queue, 2457 blk_mq_try_issue_list_directly(hctx, list)); 2458 if (list_empty(list)) 2459 goto out; 2460 } 2461 2462 /* 2463 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2464 * offline now 2465 */ 2466 list_for_each_entry(rq, list, queuelist) { 2467 BUG_ON(rq->mq_ctx != ctx); 2468 trace_block_rq_insert(rq); 2469 if (rq->cmd_flags & REQ_NOWAIT) 2470 run_queue_async = true; 2471 } 2472 2473 spin_lock(&ctx->lock); 2474 list_splice_tail_init(list, &ctx->rq_lists[type]); 2475 blk_mq_hctx_mark_pending(hctx, ctx); 2476 spin_unlock(&ctx->lock); 2477 out: 2478 blk_mq_run_hw_queue(hctx, run_queue_async); 2479 } 2480 2481 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2482 { 2483 struct request_queue *q = rq->q; 2484 struct blk_mq_ctx *ctx = rq->mq_ctx; 2485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2486 2487 if (blk_rq_is_passthrough(rq)) { 2488 /* 2489 * Passthrough request have to be added to hctx->dispatch 2490 * directly. The device may be in a situation where it can't 2491 * handle FS request, and always returns BLK_STS_RESOURCE for 2492 * them, which gets them added to hctx->dispatch. 2493 * 2494 * If a passthrough request is required to unblock the queues, 2495 * and it is added to the scheduler queue, there is no chance to 2496 * dispatch it given we prioritize requests in hctx->dispatch. 2497 */ 2498 blk_mq_request_bypass_insert(rq, flags); 2499 } else if (req_op(rq) == REQ_OP_FLUSH) { 2500 /* 2501 * Firstly normal IO request is inserted to scheduler queue or 2502 * sw queue, meantime we add flush request to dispatch queue( 2503 * hctx->dispatch) directly and there is at most one in-flight 2504 * flush request for each hw queue, so it doesn't matter to add 2505 * flush request to tail or front of the dispatch queue. 2506 * 2507 * Secondly in case of NCQ, flush request belongs to non-NCQ 2508 * command, and queueing it will fail when there is any 2509 * in-flight normal IO request(NCQ command). When adding flush 2510 * rq to the front of hctx->dispatch, it is easier to introduce 2511 * extra time to flush rq's latency because of S_SCHED_RESTART 2512 * compared with adding to the tail of dispatch queue, then 2513 * chance of flush merge is increased, and less flush requests 2514 * will be issued to controller. It is observed that ~10% time 2515 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2516 * drive when adding flush rq to the front of hctx->dispatch. 2517 * 2518 * Simply queue flush rq to the front of hctx->dispatch so that 2519 * intensive flush workloads can benefit in case of NCQ HW. 2520 */ 2521 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2522 } else if (q->elevator) { 2523 LIST_HEAD(list); 2524 2525 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2526 2527 list_add(&rq->queuelist, &list); 2528 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2529 } else { 2530 trace_block_rq_insert(rq); 2531 2532 spin_lock(&ctx->lock); 2533 if (flags & BLK_MQ_INSERT_AT_HEAD) 2534 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2535 else 2536 list_add_tail(&rq->queuelist, 2537 &ctx->rq_lists[hctx->type]); 2538 blk_mq_hctx_mark_pending(hctx, ctx); 2539 spin_unlock(&ctx->lock); 2540 } 2541 } 2542 2543 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2544 unsigned int nr_segs) 2545 { 2546 int err; 2547 2548 if (bio->bi_opf & REQ_RAHEAD) 2549 rq->cmd_flags |= REQ_FAILFAST_MASK; 2550 2551 rq->__sector = bio->bi_iter.bi_sector; 2552 rq->write_hint = bio->bi_write_hint; 2553 blk_rq_bio_prep(rq, bio, nr_segs); 2554 2555 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2556 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2557 WARN_ON_ONCE(err); 2558 2559 blk_account_io_start(rq); 2560 } 2561 2562 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2563 struct request *rq, bool last) 2564 { 2565 struct request_queue *q = rq->q; 2566 struct blk_mq_queue_data bd = { 2567 .rq = rq, 2568 .last = last, 2569 }; 2570 blk_status_t ret; 2571 2572 /* 2573 * For OK queue, we are done. For error, caller may kill it. 2574 * Any other error (busy), just add it to our list as we 2575 * previously would have done. 2576 */ 2577 ret = q->mq_ops->queue_rq(hctx, &bd); 2578 switch (ret) { 2579 case BLK_STS_OK: 2580 blk_mq_update_dispatch_busy(hctx, false); 2581 break; 2582 case BLK_STS_RESOURCE: 2583 case BLK_STS_DEV_RESOURCE: 2584 blk_mq_update_dispatch_busy(hctx, true); 2585 __blk_mq_requeue_request(rq); 2586 break; 2587 default: 2588 blk_mq_update_dispatch_busy(hctx, false); 2589 break; 2590 } 2591 2592 return ret; 2593 } 2594 2595 static bool blk_mq_get_budget_and_tag(struct request *rq) 2596 { 2597 int budget_token; 2598 2599 budget_token = blk_mq_get_dispatch_budget(rq->q); 2600 if (budget_token < 0) 2601 return false; 2602 blk_mq_set_rq_budget_token(rq, budget_token); 2603 if (!blk_mq_get_driver_tag(rq)) { 2604 blk_mq_put_dispatch_budget(rq->q, budget_token); 2605 return false; 2606 } 2607 return true; 2608 } 2609 2610 /** 2611 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2612 * @hctx: Pointer of the associated hardware queue. 2613 * @rq: Pointer to request to be sent. 2614 * 2615 * If the device has enough resources to accept a new request now, send the 2616 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2617 * we can try send it another time in the future. Requests inserted at this 2618 * queue have higher priority. 2619 */ 2620 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2621 struct request *rq) 2622 { 2623 blk_status_t ret; 2624 2625 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2626 blk_mq_insert_request(rq, 0); 2627 return; 2628 } 2629 2630 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2631 blk_mq_insert_request(rq, 0); 2632 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2633 return; 2634 } 2635 2636 ret = __blk_mq_issue_directly(hctx, rq, true); 2637 switch (ret) { 2638 case BLK_STS_OK: 2639 break; 2640 case BLK_STS_RESOURCE: 2641 case BLK_STS_DEV_RESOURCE: 2642 blk_mq_request_bypass_insert(rq, 0); 2643 blk_mq_run_hw_queue(hctx, false); 2644 break; 2645 default: 2646 blk_mq_end_request(rq, ret); 2647 break; 2648 } 2649 } 2650 2651 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2652 { 2653 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2654 2655 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2656 blk_mq_insert_request(rq, 0); 2657 return BLK_STS_OK; 2658 } 2659 2660 if (!blk_mq_get_budget_and_tag(rq)) 2661 return BLK_STS_RESOURCE; 2662 return __blk_mq_issue_directly(hctx, rq, last); 2663 } 2664 2665 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2666 { 2667 struct blk_mq_hw_ctx *hctx = NULL; 2668 struct request *rq; 2669 int queued = 0; 2670 blk_status_t ret = BLK_STS_OK; 2671 2672 while ((rq = rq_list_pop(&plug->mq_list))) { 2673 bool last = rq_list_empty(plug->mq_list); 2674 2675 if (hctx != rq->mq_hctx) { 2676 if (hctx) { 2677 blk_mq_commit_rqs(hctx, queued, false); 2678 queued = 0; 2679 } 2680 hctx = rq->mq_hctx; 2681 } 2682 2683 ret = blk_mq_request_issue_directly(rq, last); 2684 switch (ret) { 2685 case BLK_STS_OK: 2686 queued++; 2687 break; 2688 case BLK_STS_RESOURCE: 2689 case BLK_STS_DEV_RESOURCE: 2690 blk_mq_request_bypass_insert(rq, 0); 2691 blk_mq_run_hw_queue(hctx, false); 2692 goto out; 2693 default: 2694 blk_mq_end_request(rq, ret); 2695 break; 2696 } 2697 } 2698 2699 out: 2700 if (ret != BLK_STS_OK) 2701 blk_mq_commit_rqs(hctx, queued, false); 2702 } 2703 2704 static void __blk_mq_flush_plug_list(struct request_queue *q, 2705 struct blk_plug *plug) 2706 { 2707 if (blk_queue_quiesced(q)) 2708 return; 2709 q->mq_ops->queue_rqs(&plug->mq_list); 2710 } 2711 2712 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2713 { 2714 struct blk_mq_hw_ctx *this_hctx = NULL; 2715 struct blk_mq_ctx *this_ctx = NULL; 2716 struct request *requeue_list = NULL; 2717 struct request **requeue_lastp = &requeue_list; 2718 unsigned int depth = 0; 2719 bool is_passthrough = false; 2720 LIST_HEAD(list); 2721 2722 do { 2723 struct request *rq = rq_list_pop(&plug->mq_list); 2724 2725 if (!this_hctx) { 2726 this_hctx = rq->mq_hctx; 2727 this_ctx = rq->mq_ctx; 2728 is_passthrough = blk_rq_is_passthrough(rq); 2729 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2730 is_passthrough != blk_rq_is_passthrough(rq)) { 2731 rq_list_add_tail(&requeue_lastp, rq); 2732 continue; 2733 } 2734 list_add(&rq->queuelist, &list); 2735 depth++; 2736 } while (!rq_list_empty(plug->mq_list)); 2737 2738 plug->mq_list = requeue_list; 2739 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2740 2741 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2742 /* passthrough requests should never be issued to the I/O scheduler */ 2743 if (is_passthrough) { 2744 spin_lock(&this_hctx->lock); 2745 list_splice_tail_init(&list, &this_hctx->dispatch); 2746 spin_unlock(&this_hctx->lock); 2747 blk_mq_run_hw_queue(this_hctx, from_sched); 2748 } else if (this_hctx->queue->elevator) { 2749 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2750 &list, 0); 2751 blk_mq_run_hw_queue(this_hctx, from_sched); 2752 } else { 2753 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2754 } 2755 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2756 } 2757 2758 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2759 { 2760 struct request *rq; 2761 2762 /* 2763 * We may have been called recursively midway through handling 2764 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2765 * To avoid mq_list changing under our feet, clear rq_count early and 2766 * bail out specifically if rq_count is 0 rather than checking 2767 * whether the mq_list is empty. 2768 */ 2769 if (plug->rq_count == 0) 2770 return; 2771 plug->rq_count = 0; 2772 2773 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2774 struct request_queue *q; 2775 2776 rq = rq_list_peek(&plug->mq_list); 2777 q = rq->q; 2778 2779 /* 2780 * Peek first request and see if we have a ->queue_rqs() hook. 2781 * If we do, we can dispatch the whole plug list in one go. We 2782 * already know at this point that all requests belong to the 2783 * same queue, caller must ensure that's the case. 2784 */ 2785 if (q->mq_ops->queue_rqs) { 2786 blk_mq_run_dispatch_ops(q, 2787 __blk_mq_flush_plug_list(q, plug)); 2788 if (rq_list_empty(plug->mq_list)) 2789 return; 2790 } 2791 2792 blk_mq_run_dispatch_ops(q, 2793 blk_mq_plug_issue_direct(plug)); 2794 if (rq_list_empty(plug->mq_list)) 2795 return; 2796 } 2797 2798 do { 2799 blk_mq_dispatch_plug_list(plug, from_schedule); 2800 } while (!rq_list_empty(plug->mq_list)); 2801 } 2802 2803 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2804 struct list_head *list) 2805 { 2806 int queued = 0; 2807 blk_status_t ret = BLK_STS_OK; 2808 2809 while (!list_empty(list)) { 2810 struct request *rq = list_first_entry(list, struct request, 2811 queuelist); 2812 2813 list_del_init(&rq->queuelist); 2814 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2815 switch (ret) { 2816 case BLK_STS_OK: 2817 queued++; 2818 break; 2819 case BLK_STS_RESOURCE: 2820 case BLK_STS_DEV_RESOURCE: 2821 blk_mq_request_bypass_insert(rq, 0); 2822 if (list_empty(list)) 2823 blk_mq_run_hw_queue(hctx, false); 2824 goto out; 2825 default: 2826 blk_mq_end_request(rq, ret); 2827 break; 2828 } 2829 } 2830 2831 out: 2832 if (ret != BLK_STS_OK) 2833 blk_mq_commit_rqs(hctx, queued, false); 2834 } 2835 2836 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2837 struct bio *bio, unsigned int nr_segs) 2838 { 2839 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2840 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2841 return true; 2842 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2843 return true; 2844 } 2845 return false; 2846 } 2847 2848 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2849 struct blk_plug *plug, 2850 struct bio *bio, 2851 unsigned int nsegs) 2852 { 2853 struct blk_mq_alloc_data data = { 2854 .q = q, 2855 .nr_tags = 1, 2856 .cmd_flags = bio->bi_opf, 2857 }; 2858 struct request *rq; 2859 2860 rq_qos_throttle(q, bio); 2861 2862 if (plug) { 2863 data.nr_tags = plug->nr_ios; 2864 plug->nr_ios = 1; 2865 data.cached_rq = &plug->cached_rq; 2866 } 2867 2868 rq = __blk_mq_alloc_requests(&data); 2869 if (rq) 2870 return rq; 2871 rq_qos_cleanup(q, bio); 2872 if (bio->bi_opf & REQ_NOWAIT) 2873 bio_wouldblock_error(bio); 2874 return NULL; 2875 } 2876 2877 /* 2878 * Check if there is a suitable cached request and return it. 2879 */ 2880 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2881 struct request_queue *q, blk_opf_t opf) 2882 { 2883 enum hctx_type type = blk_mq_get_hctx_type(opf); 2884 struct request *rq; 2885 2886 if (!plug) 2887 return NULL; 2888 rq = rq_list_peek(&plug->cached_rq); 2889 if (!rq || rq->q != q) 2890 return NULL; 2891 if (type != rq->mq_hctx->type && 2892 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 2893 return NULL; 2894 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 2895 return NULL; 2896 return rq; 2897 } 2898 2899 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2900 struct bio *bio) 2901 { 2902 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2903 2904 /* 2905 * If any qos ->throttle() end up blocking, we will have flushed the 2906 * plug and hence killed the cached_rq list as well. Pop this entry 2907 * before we throttle. 2908 */ 2909 plug->cached_rq = rq_list_next(rq); 2910 rq_qos_throttle(rq->q, bio); 2911 2912 blk_mq_rq_time_init(rq, 0); 2913 rq->cmd_flags = bio->bi_opf; 2914 INIT_LIST_HEAD(&rq->queuelist); 2915 } 2916 2917 /** 2918 * blk_mq_submit_bio - Create and send a request to block device. 2919 * @bio: Bio pointer. 2920 * 2921 * Builds up a request structure from @q and @bio and send to the device. The 2922 * request may not be queued directly to hardware if: 2923 * * This request can be merged with another one 2924 * * We want to place request at plug queue for possible future merging 2925 * * There is an IO scheduler active at this queue 2926 * 2927 * It will not queue the request if there is an error with the bio, or at the 2928 * request creation. 2929 */ 2930 void blk_mq_submit_bio(struct bio *bio) 2931 { 2932 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2933 struct blk_plug *plug = current->plug; 2934 const int is_sync = op_is_sync(bio->bi_opf); 2935 struct blk_mq_hw_ctx *hctx; 2936 unsigned int nr_segs = 1; 2937 struct request *rq; 2938 blk_status_t ret; 2939 2940 /* 2941 * If the plug has a cached request for this queue, try to use it. 2942 */ 2943 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 2944 2945 /* 2946 * A BIO that was released from a zone write plug has already been 2947 * through the preparation in this function, already holds a reference 2948 * on the queue usage counter, and is the only write BIO in-flight for 2949 * the target zone. Go straight to preparing a request for it. 2950 */ 2951 if (bio_zone_write_plugging(bio)) { 2952 nr_segs = bio->__bi_nr_segments; 2953 if (rq) 2954 blk_queue_exit(q); 2955 goto new_request; 2956 } 2957 2958 bio = blk_queue_bounce(bio, q); 2959 2960 /* 2961 * The cached request already holds a q_usage_counter reference and we 2962 * don't have to acquire a new one if we use it. 2963 */ 2964 if (!rq) { 2965 if (unlikely(bio_queue_enter(bio))) 2966 return; 2967 } 2968 2969 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) { 2970 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2971 if (!bio) 2972 goto queue_exit; 2973 } 2974 if (!bio_integrity_prep(bio)) 2975 goto queue_exit; 2976 2977 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2978 goto queue_exit; 2979 2980 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 2981 goto queue_exit; 2982 2983 new_request: 2984 if (!rq) { 2985 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2986 if (unlikely(!rq)) 2987 goto queue_exit; 2988 } else { 2989 blk_mq_use_cached_rq(rq, plug, bio); 2990 } 2991 2992 trace_block_getrq(bio); 2993 2994 rq_qos_track(q, rq, bio); 2995 2996 blk_mq_bio_to_request(rq, bio, nr_segs); 2997 2998 ret = blk_crypto_rq_get_keyslot(rq); 2999 if (ret != BLK_STS_OK) { 3000 bio->bi_status = ret; 3001 bio_endio(bio); 3002 blk_mq_free_request(rq); 3003 return; 3004 } 3005 3006 if (bio_zone_write_plugging(bio)) 3007 blk_zone_write_plug_init_request(rq); 3008 3009 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3010 return; 3011 3012 if (plug) { 3013 blk_add_rq_to_plug(plug, rq); 3014 return; 3015 } 3016 3017 hctx = rq->mq_hctx; 3018 if ((rq->rq_flags & RQF_USE_SCHED) || 3019 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3020 blk_mq_insert_request(rq, 0); 3021 blk_mq_run_hw_queue(hctx, true); 3022 } else { 3023 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3024 } 3025 return; 3026 3027 queue_exit: 3028 /* 3029 * Don't drop the queue reference if we were trying to use a cached 3030 * request and thus didn't acquire one. 3031 */ 3032 if (!rq) 3033 blk_queue_exit(q); 3034 } 3035 3036 #ifdef CONFIG_BLK_MQ_STACKING 3037 /** 3038 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3039 * @rq: the request being queued 3040 */ 3041 blk_status_t blk_insert_cloned_request(struct request *rq) 3042 { 3043 struct request_queue *q = rq->q; 3044 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3045 unsigned int max_segments = blk_rq_get_max_segments(rq); 3046 blk_status_t ret; 3047 3048 if (blk_rq_sectors(rq) > max_sectors) { 3049 /* 3050 * SCSI device does not have a good way to return if 3051 * Write Same/Zero is actually supported. If a device rejects 3052 * a non-read/write command (discard, write same,etc.) the 3053 * low-level device driver will set the relevant queue limit to 3054 * 0 to prevent blk-lib from issuing more of the offending 3055 * operations. Commands queued prior to the queue limit being 3056 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3057 * errors being propagated to upper layers. 3058 */ 3059 if (max_sectors == 0) 3060 return BLK_STS_NOTSUPP; 3061 3062 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3063 __func__, blk_rq_sectors(rq), max_sectors); 3064 return BLK_STS_IOERR; 3065 } 3066 3067 /* 3068 * The queue settings related to segment counting may differ from the 3069 * original queue. 3070 */ 3071 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3072 if (rq->nr_phys_segments > max_segments) { 3073 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3074 __func__, rq->nr_phys_segments, max_segments); 3075 return BLK_STS_IOERR; 3076 } 3077 3078 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3079 return BLK_STS_IOERR; 3080 3081 ret = blk_crypto_rq_get_keyslot(rq); 3082 if (ret != BLK_STS_OK) 3083 return ret; 3084 3085 blk_account_io_start(rq); 3086 3087 /* 3088 * Since we have a scheduler attached on the top device, 3089 * bypass a potential scheduler on the bottom device for 3090 * insert. 3091 */ 3092 blk_mq_run_dispatch_ops(q, 3093 ret = blk_mq_request_issue_directly(rq, true)); 3094 if (ret) 3095 blk_account_io_done(rq, blk_time_get_ns()); 3096 return ret; 3097 } 3098 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3099 3100 /** 3101 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3102 * @rq: the clone request to be cleaned up 3103 * 3104 * Description: 3105 * Free all bios in @rq for a cloned request. 3106 */ 3107 void blk_rq_unprep_clone(struct request *rq) 3108 { 3109 struct bio *bio; 3110 3111 while ((bio = rq->bio) != NULL) { 3112 rq->bio = bio->bi_next; 3113 3114 bio_put(bio); 3115 } 3116 } 3117 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3118 3119 /** 3120 * blk_rq_prep_clone - Helper function to setup clone request 3121 * @rq: the request to be setup 3122 * @rq_src: original request to be cloned 3123 * @bs: bio_set that bios for clone are allocated from 3124 * @gfp_mask: memory allocation mask for bio 3125 * @bio_ctr: setup function to be called for each clone bio. 3126 * Returns %0 for success, non %0 for failure. 3127 * @data: private data to be passed to @bio_ctr 3128 * 3129 * Description: 3130 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3131 * Also, pages which the original bios are pointing to are not copied 3132 * and the cloned bios just point same pages. 3133 * So cloned bios must be completed before original bios, which means 3134 * the caller must complete @rq before @rq_src. 3135 */ 3136 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3137 struct bio_set *bs, gfp_t gfp_mask, 3138 int (*bio_ctr)(struct bio *, struct bio *, void *), 3139 void *data) 3140 { 3141 struct bio *bio, *bio_src; 3142 3143 if (!bs) 3144 bs = &fs_bio_set; 3145 3146 __rq_for_each_bio(bio_src, rq_src) { 3147 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3148 bs); 3149 if (!bio) 3150 goto free_and_out; 3151 3152 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3153 goto free_and_out; 3154 3155 if (rq->bio) { 3156 rq->biotail->bi_next = bio; 3157 rq->biotail = bio; 3158 } else { 3159 rq->bio = rq->biotail = bio; 3160 } 3161 bio = NULL; 3162 } 3163 3164 /* Copy attributes of the original request to the clone request. */ 3165 rq->__sector = blk_rq_pos(rq_src); 3166 rq->__data_len = blk_rq_bytes(rq_src); 3167 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3168 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3169 rq->special_vec = rq_src->special_vec; 3170 } 3171 rq->nr_phys_segments = rq_src->nr_phys_segments; 3172 rq->ioprio = rq_src->ioprio; 3173 rq->write_hint = rq_src->write_hint; 3174 3175 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3176 goto free_and_out; 3177 3178 return 0; 3179 3180 free_and_out: 3181 if (bio) 3182 bio_put(bio); 3183 blk_rq_unprep_clone(rq); 3184 3185 return -ENOMEM; 3186 } 3187 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3188 #endif /* CONFIG_BLK_MQ_STACKING */ 3189 3190 /* 3191 * Steal bios from a request and add them to a bio list. 3192 * The request must not have been partially completed before. 3193 */ 3194 void blk_steal_bios(struct bio_list *list, struct request *rq) 3195 { 3196 if (rq->bio) { 3197 if (list->tail) 3198 list->tail->bi_next = rq->bio; 3199 else 3200 list->head = rq->bio; 3201 list->tail = rq->biotail; 3202 3203 rq->bio = NULL; 3204 rq->biotail = NULL; 3205 } 3206 3207 rq->__data_len = 0; 3208 } 3209 EXPORT_SYMBOL_GPL(blk_steal_bios); 3210 3211 static size_t order_to_size(unsigned int order) 3212 { 3213 return (size_t)PAGE_SIZE << order; 3214 } 3215 3216 /* called before freeing request pool in @tags */ 3217 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3218 struct blk_mq_tags *tags) 3219 { 3220 struct page *page; 3221 unsigned long flags; 3222 3223 /* 3224 * There is no need to clear mapping if driver tags is not initialized 3225 * or the mapping belongs to the driver tags. 3226 */ 3227 if (!drv_tags || drv_tags == tags) 3228 return; 3229 3230 list_for_each_entry(page, &tags->page_list, lru) { 3231 unsigned long start = (unsigned long)page_address(page); 3232 unsigned long end = start + order_to_size(page->private); 3233 int i; 3234 3235 for (i = 0; i < drv_tags->nr_tags; i++) { 3236 struct request *rq = drv_tags->rqs[i]; 3237 unsigned long rq_addr = (unsigned long)rq; 3238 3239 if (rq_addr >= start && rq_addr < end) { 3240 WARN_ON_ONCE(req_ref_read(rq) != 0); 3241 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3242 } 3243 } 3244 } 3245 3246 /* 3247 * Wait until all pending iteration is done. 3248 * 3249 * Request reference is cleared and it is guaranteed to be observed 3250 * after the ->lock is released. 3251 */ 3252 spin_lock_irqsave(&drv_tags->lock, flags); 3253 spin_unlock_irqrestore(&drv_tags->lock, flags); 3254 } 3255 3256 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3257 unsigned int hctx_idx) 3258 { 3259 struct blk_mq_tags *drv_tags; 3260 struct page *page; 3261 3262 if (list_empty(&tags->page_list)) 3263 return; 3264 3265 if (blk_mq_is_shared_tags(set->flags)) 3266 drv_tags = set->shared_tags; 3267 else 3268 drv_tags = set->tags[hctx_idx]; 3269 3270 if (tags->static_rqs && set->ops->exit_request) { 3271 int i; 3272 3273 for (i = 0; i < tags->nr_tags; i++) { 3274 struct request *rq = tags->static_rqs[i]; 3275 3276 if (!rq) 3277 continue; 3278 set->ops->exit_request(set, rq, hctx_idx); 3279 tags->static_rqs[i] = NULL; 3280 } 3281 } 3282 3283 blk_mq_clear_rq_mapping(drv_tags, tags); 3284 3285 while (!list_empty(&tags->page_list)) { 3286 page = list_first_entry(&tags->page_list, struct page, lru); 3287 list_del_init(&page->lru); 3288 /* 3289 * Remove kmemleak object previously allocated in 3290 * blk_mq_alloc_rqs(). 3291 */ 3292 kmemleak_free(page_address(page)); 3293 __free_pages(page, page->private); 3294 } 3295 } 3296 3297 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3298 { 3299 kfree(tags->rqs); 3300 tags->rqs = NULL; 3301 kfree(tags->static_rqs); 3302 tags->static_rqs = NULL; 3303 3304 blk_mq_free_tags(tags); 3305 } 3306 3307 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3308 unsigned int hctx_idx) 3309 { 3310 int i; 3311 3312 for (i = 0; i < set->nr_maps; i++) { 3313 unsigned int start = set->map[i].queue_offset; 3314 unsigned int end = start + set->map[i].nr_queues; 3315 3316 if (hctx_idx >= start && hctx_idx < end) 3317 break; 3318 } 3319 3320 if (i >= set->nr_maps) 3321 i = HCTX_TYPE_DEFAULT; 3322 3323 return i; 3324 } 3325 3326 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3327 unsigned int hctx_idx) 3328 { 3329 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3330 3331 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3332 } 3333 3334 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3335 unsigned int hctx_idx, 3336 unsigned int nr_tags, 3337 unsigned int reserved_tags) 3338 { 3339 int node = blk_mq_get_hctx_node(set, hctx_idx); 3340 struct blk_mq_tags *tags; 3341 3342 if (node == NUMA_NO_NODE) 3343 node = set->numa_node; 3344 3345 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3346 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3347 if (!tags) 3348 return NULL; 3349 3350 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3351 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3352 node); 3353 if (!tags->rqs) 3354 goto err_free_tags; 3355 3356 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3357 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3358 node); 3359 if (!tags->static_rqs) 3360 goto err_free_rqs; 3361 3362 return tags; 3363 3364 err_free_rqs: 3365 kfree(tags->rqs); 3366 err_free_tags: 3367 blk_mq_free_tags(tags); 3368 return NULL; 3369 } 3370 3371 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3372 unsigned int hctx_idx, int node) 3373 { 3374 int ret; 3375 3376 if (set->ops->init_request) { 3377 ret = set->ops->init_request(set, rq, hctx_idx, node); 3378 if (ret) 3379 return ret; 3380 } 3381 3382 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3383 return 0; 3384 } 3385 3386 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3387 struct blk_mq_tags *tags, 3388 unsigned int hctx_idx, unsigned int depth) 3389 { 3390 unsigned int i, j, entries_per_page, max_order = 4; 3391 int node = blk_mq_get_hctx_node(set, hctx_idx); 3392 size_t rq_size, left; 3393 3394 if (node == NUMA_NO_NODE) 3395 node = set->numa_node; 3396 3397 INIT_LIST_HEAD(&tags->page_list); 3398 3399 /* 3400 * rq_size is the size of the request plus driver payload, rounded 3401 * to the cacheline size 3402 */ 3403 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3404 cache_line_size()); 3405 left = rq_size * depth; 3406 3407 for (i = 0; i < depth; ) { 3408 int this_order = max_order; 3409 struct page *page; 3410 int to_do; 3411 void *p; 3412 3413 while (this_order && left < order_to_size(this_order - 1)) 3414 this_order--; 3415 3416 do { 3417 page = alloc_pages_node(node, 3418 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3419 this_order); 3420 if (page) 3421 break; 3422 if (!this_order--) 3423 break; 3424 if (order_to_size(this_order) < rq_size) 3425 break; 3426 } while (1); 3427 3428 if (!page) 3429 goto fail; 3430 3431 page->private = this_order; 3432 list_add_tail(&page->lru, &tags->page_list); 3433 3434 p = page_address(page); 3435 /* 3436 * Allow kmemleak to scan these pages as they contain pointers 3437 * to additional allocations like via ops->init_request(). 3438 */ 3439 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3440 entries_per_page = order_to_size(this_order) / rq_size; 3441 to_do = min(entries_per_page, depth - i); 3442 left -= to_do * rq_size; 3443 for (j = 0; j < to_do; j++) { 3444 struct request *rq = p; 3445 3446 tags->static_rqs[i] = rq; 3447 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3448 tags->static_rqs[i] = NULL; 3449 goto fail; 3450 } 3451 3452 p += rq_size; 3453 i++; 3454 } 3455 } 3456 return 0; 3457 3458 fail: 3459 blk_mq_free_rqs(set, tags, hctx_idx); 3460 return -ENOMEM; 3461 } 3462 3463 struct rq_iter_data { 3464 struct blk_mq_hw_ctx *hctx; 3465 bool has_rq; 3466 }; 3467 3468 static bool blk_mq_has_request(struct request *rq, void *data) 3469 { 3470 struct rq_iter_data *iter_data = data; 3471 3472 if (rq->mq_hctx != iter_data->hctx) 3473 return true; 3474 iter_data->has_rq = true; 3475 return false; 3476 } 3477 3478 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3479 { 3480 struct blk_mq_tags *tags = hctx->sched_tags ? 3481 hctx->sched_tags : hctx->tags; 3482 struct rq_iter_data data = { 3483 .hctx = hctx, 3484 }; 3485 3486 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3487 return data.has_rq; 3488 } 3489 3490 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3491 unsigned int this_cpu) 3492 { 3493 enum hctx_type type = hctx->type; 3494 int cpu; 3495 3496 /* 3497 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3498 * might submit IOs on these isolated CPUs, so use the queue map to 3499 * check if all CPUs mapped to this hctx are offline 3500 */ 3501 for_each_online_cpu(cpu) { 3502 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3503 type, cpu); 3504 3505 if (h != hctx) 3506 continue; 3507 3508 /* this hctx has at least one online CPU */ 3509 if (this_cpu != cpu) 3510 return true; 3511 } 3512 3513 return false; 3514 } 3515 3516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3517 { 3518 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3519 struct blk_mq_hw_ctx, cpuhp_online); 3520 3521 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3522 return 0; 3523 3524 /* 3525 * Prevent new request from being allocated on the current hctx. 3526 * 3527 * The smp_mb__after_atomic() Pairs with the implied barrier in 3528 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3529 * seen once we return from the tag allocator. 3530 */ 3531 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3532 smp_mb__after_atomic(); 3533 3534 /* 3535 * Try to grab a reference to the queue and wait for any outstanding 3536 * requests. If we could not grab a reference the queue has been 3537 * frozen and there are no requests. 3538 */ 3539 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3540 while (blk_mq_hctx_has_requests(hctx)) 3541 msleep(5); 3542 percpu_ref_put(&hctx->queue->q_usage_counter); 3543 } 3544 3545 return 0; 3546 } 3547 3548 /* 3549 * Check if one CPU is mapped to the specified hctx 3550 * 3551 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3552 * to be used for scheduling kworker only. For other usage, please call this 3553 * helper for checking if one CPU belongs to the specified hctx 3554 */ 3555 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3556 const struct blk_mq_hw_ctx *hctx) 3557 { 3558 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3559 hctx->type, cpu); 3560 3561 return mapped_hctx == hctx; 3562 } 3563 3564 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3565 { 3566 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3567 struct blk_mq_hw_ctx, cpuhp_online); 3568 3569 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3570 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3571 return 0; 3572 } 3573 3574 /* 3575 * 'cpu' is going away. splice any existing rq_list entries from this 3576 * software queue to the hw queue dispatch list, and ensure that it 3577 * gets run. 3578 */ 3579 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3580 { 3581 struct blk_mq_hw_ctx *hctx; 3582 struct blk_mq_ctx *ctx; 3583 LIST_HEAD(tmp); 3584 enum hctx_type type; 3585 3586 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3587 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3588 return 0; 3589 3590 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3591 type = hctx->type; 3592 3593 spin_lock(&ctx->lock); 3594 if (!list_empty(&ctx->rq_lists[type])) { 3595 list_splice_init(&ctx->rq_lists[type], &tmp); 3596 blk_mq_hctx_clear_pending(hctx, ctx); 3597 } 3598 spin_unlock(&ctx->lock); 3599 3600 if (list_empty(&tmp)) 3601 return 0; 3602 3603 spin_lock(&hctx->lock); 3604 list_splice_tail_init(&tmp, &hctx->dispatch); 3605 spin_unlock(&hctx->lock); 3606 3607 blk_mq_run_hw_queue(hctx, true); 3608 return 0; 3609 } 3610 3611 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3612 { 3613 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3614 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3615 &hctx->cpuhp_online); 3616 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3617 &hctx->cpuhp_dead); 3618 } 3619 3620 /* 3621 * Before freeing hw queue, clearing the flush request reference in 3622 * tags->rqs[] for avoiding potential UAF. 3623 */ 3624 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3625 unsigned int queue_depth, struct request *flush_rq) 3626 { 3627 int i; 3628 unsigned long flags; 3629 3630 /* The hw queue may not be mapped yet */ 3631 if (!tags) 3632 return; 3633 3634 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3635 3636 for (i = 0; i < queue_depth; i++) 3637 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3638 3639 /* 3640 * Wait until all pending iteration is done. 3641 * 3642 * Request reference is cleared and it is guaranteed to be observed 3643 * after the ->lock is released. 3644 */ 3645 spin_lock_irqsave(&tags->lock, flags); 3646 spin_unlock_irqrestore(&tags->lock, flags); 3647 } 3648 3649 /* hctx->ctxs will be freed in queue's release handler */ 3650 static void blk_mq_exit_hctx(struct request_queue *q, 3651 struct blk_mq_tag_set *set, 3652 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3653 { 3654 struct request *flush_rq = hctx->fq->flush_rq; 3655 3656 if (blk_mq_hw_queue_mapped(hctx)) 3657 blk_mq_tag_idle(hctx); 3658 3659 if (blk_queue_init_done(q)) 3660 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3661 set->queue_depth, flush_rq); 3662 if (set->ops->exit_request) 3663 set->ops->exit_request(set, flush_rq, hctx_idx); 3664 3665 if (set->ops->exit_hctx) 3666 set->ops->exit_hctx(hctx, hctx_idx); 3667 3668 blk_mq_remove_cpuhp(hctx); 3669 3670 xa_erase(&q->hctx_table, hctx_idx); 3671 3672 spin_lock(&q->unused_hctx_lock); 3673 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3674 spin_unlock(&q->unused_hctx_lock); 3675 } 3676 3677 static void blk_mq_exit_hw_queues(struct request_queue *q, 3678 struct blk_mq_tag_set *set, int nr_queue) 3679 { 3680 struct blk_mq_hw_ctx *hctx; 3681 unsigned long i; 3682 3683 queue_for_each_hw_ctx(q, hctx, i) { 3684 if (i == nr_queue) 3685 break; 3686 blk_mq_exit_hctx(q, set, hctx, i); 3687 } 3688 } 3689 3690 static int blk_mq_init_hctx(struct request_queue *q, 3691 struct blk_mq_tag_set *set, 3692 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3693 { 3694 hctx->queue_num = hctx_idx; 3695 3696 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3697 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3698 &hctx->cpuhp_online); 3699 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3700 3701 hctx->tags = set->tags[hctx_idx]; 3702 3703 if (set->ops->init_hctx && 3704 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3705 goto unregister_cpu_notifier; 3706 3707 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3708 hctx->numa_node)) 3709 goto exit_hctx; 3710 3711 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3712 goto exit_flush_rq; 3713 3714 return 0; 3715 3716 exit_flush_rq: 3717 if (set->ops->exit_request) 3718 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3719 exit_hctx: 3720 if (set->ops->exit_hctx) 3721 set->ops->exit_hctx(hctx, hctx_idx); 3722 unregister_cpu_notifier: 3723 blk_mq_remove_cpuhp(hctx); 3724 return -1; 3725 } 3726 3727 static struct blk_mq_hw_ctx * 3728 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3729 int node) 3730 { 3731 struct blk_mq_hw_ctx *hctx; 3732 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3733 3734 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3735 if (!hctx) 3736 goto fail_alloc_hctx; 3737 3738 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3739 goto free_hctx; 3740 3741 atomic_set(&hctx->nr_active, 0); 3742 if (node == NUMA_NO_NODE) 3743 node = set->numa_node; 3744 hctx->numa_node = node; 3745 3746 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3747 spin_lock_init(&hctx->lock); 3748 INIT_LIST_HEAD(&hctx->dispatch); 3749 hctx->queue = q; 3750 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3751 3752 INIT_LIST_HEAD(&hctx->hctx_list); 3753 3754 /* 3755 * Allocate space for all possible cpus to avoid allocation at 3756 * runtime 3757 */ 3758 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3759 gfp, node); 3760 if (!hctx->ctxs) 3761 goto free_cpumask; 3762 3763 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3764 gfp, node, false, false)) 3765 goto free_ctxs; 3766 hctx->nr_ctx = 0; 3767 3768 spin_lock_init(&hctx->dispatch_wait_lock); 3769 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3770 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3771 3772 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3773 if (!hctx->fq) 3774 goto free_bitmap; 3775 3776 blk_mq_hctx_kobj_init(hctx); 3777 3778 return hctx; 3779 3780 free_bitmap: 3781 sbitmap_free(&hctx->ctx_map); 3782 free_ctxs: 3783 kfree(hctx->ctxs); 3784 free_cpumask: 3785 free_cpumask_var(hctx->cpumask); 3786 free_hctx: 3787 kfree(hctx); 3788 fail_alloc_hctx: 3789 return NULL; 3790 } 3791 3792 static void blk_mq_init_cpu_queues(struct request_queue *q, 3793 unsigned int nr_hw_queues) 3794 { 3795 struct blk_mq_tag_set *set = q->tag_set; 3796 unsigned int i, j; 3797 3798 for_each_possible_cpu(i) { 3799 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3800 struct blk_mq_hw_ctx *hctx; 3801 int k; 3802 3803 __ctx->cpu = i; 3804 spin_lock_init(&__ctx->lock); 3805 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3806 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3807 3808 __ctx->queue = q; 3809 3810 /* 3811 * Set local node, IFF we have more than one hw queue. If 3812 * not, we remain on the home node of the device 3813 */ 3814 for (j = 0; j < set->nr_maps; j++) { 3815 hctx = blk_mq_map_queue_type(q, j, i); 3816 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3817 hctx->numa_node = cpu_to_node(i); 3818 } 3819 } 3820 } 3821 3822 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3823 unsigned int hctx_idx, 3824 unsigned int depth) 3825 { 3826 struct blk_mq_tags *tags; 3827 int ret; 3828 3829 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3830 if (!tags) 3831 return NULL; 3832 3833 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3834 if (ret) { 3835 blk_mq_free_rq_map(tags); 3836 return NULL; 3837 } 3838 3839 return tags; 3840 } 3841 3842 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3843 int hctx_idx) 3844 { 3845 if (blk_mq_is_shared_tags(set->flags)) { 3846 set->tags[hctx_idx] = set->shared_tags; 3847 3848 return true; 3849 } 3850 3851 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3852 set->queue_depth); 3853 3854 return set->tags[hctx_idx]; 3855 } 3856 3857 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3858 struct blk_mq_tags *tags, 3859 unsigned int hctx_idx) 3860 { 3861 if (tags) { 3862 blk_mq_free_rqs(set, tags, hctx_idx); 3863 blk_mq_free_rq_map(tags); 3864 } 3865 } 3866 3867 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3868 unsigned int hctx_idx) 3869 { 3870 if (!blk_mq_is_shared_tags(set->flags)) 3871 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3872 3873 set->tags[hctx_idx] = NULL; 3874 } 3875 3876 static void blk_mq_map_swqueue(struct request_queue *q) 3877 { 3878 unsigned int j, hctx_idx; 3879 unsigned long i; 3880 struct blk_mq_hw_ctx *hctx; 3881 struct blk_mq_ctx *ctx; 3882 struct blk_mq_tag_set *set = q->tag_set; 3883 3884 queue_for_each_hw_ctx(q, hctx, i) { 3885 cpumask_clear(hctx->cpumask); 3886 hctx->nr_ctx = 0; 3887 hctx->dispatch_from = NULL; 3888 } 3889 3890 /* 3891 * Map software to hardware queues. 3892 * 3893 * If the cpu isn't present, the cpu is mapped to first hctx. 3894 */ 3895 for_each_possible_cpu(i) { 3896 3897 ctx = per_cpu_ptr(q->queue_ctx, i); 3898 for (j = 0; j < set->nr_maps; j++) { 3899 if (!set->map[j].nr_queues) { 3900 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3901 HCTX_TYPE_DEFAULT, i); 3902 continue; 3903 } 3904 hctx_idx = set->map[j].mq_map[i]; 3905 /* unmapped hw queue can be remapped after CPU topo changed */ 3906 if (!set->tags[hctx_idx] && 3907 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3908 /* 3909 * If tags initialization fail for some hctx, 3910 * that hctx won't be brought online. In this 3911 * case, remap the current ctx to hctx[0] which 3912 * is guaranteed to always have tags allocated 3913 */ 3914 set->map[j].mq_map[i] = 0; 3915 } 3916 3917 hctx = blk_mq_map_queue_type(q, j, i); 3918 ctx->hctxs[j] = hctx; 3919 /* 3920 * If the CPU is already set in the mask, then we've 3921 * mapped this one already. This can happen if 3922 * devices share queues across queue maps. 3923 */ 3924 if (cpumask_test_cpu(i, hctx->cpumask)) 3925 continue; 3926 3927 cpumask_set_cpu(i, hctx->cpumask); 3928 hctx->type = j; 3929 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3930 hctx->ctxs[hctx->nr_ctx++] = ctx; 3931 3932 /* 3933 * If the nr_ctx type overflows, we have exceeded the 3934 * amount of sw queues we can support. 3935 */ 3936 BUG_ON(!hctx->nr_ctx); 3937 } 3938 3939 for (; j < HCTX_MAX_TYPES; j++) 3940 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3941 HCTX_TYPE_DEFAULT, i); 3942 } 3943 3944 queue_for_each_hw_ctx(q, hctx, i) { 3945 int cpu; 3946 3947 /* 3948 * If no software queues are mapped to this hardware queue, 3949 * disable it and free the request entries. 3950 */ 3951 if (!hctx->nr_ctx) { 3952 /* Never unmap queue 0. We need it as a 3953 * fallback in case of a new remap fails 3954 * allocation 3955 */ 3956 if (i) 3957 __blk_mq_free_map_and_rqs(set, i); 3958 3959 hctx->tags = NULL; 3960 continue; 3961 } 3962 3963 hctx->tags = set->tags[i]; 3964 WARN_ON(!hctx->tags); 3965 3966 /* 3967 * Set the map size to the number of mapped software queues. 3968 * This is more accurate and more efficient than looping 3969 * over all possibly mapped software queues. 3970 */ 3971 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3972 3973 /* 3974 * Rule out isolated CPUs from hctx->cpumask to avoid 3975 * running block kworker on isolated CPUs 3976 */ 3977 for_each_cpu(cpu, hctx->cpumask) { 3978 if (cpu_is_isolated(cpu)) 3979 cpumask_clear_cpu(cpu, hctx->cpumask); 3980 } 3981 3982 /* 3983 * Initialize batch roundrobin counts 3984 */ 3985 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3986 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3987 } 3988 } 3989 3990 /* 3991 * Caller needs to ensure that we're either frozen/quiesced, or that 3992 * the queue isn't live yet. 3993 */ 3994 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3995 { 3996 struct blk_mq_hw_ctx *hctx; 3997 unsigned long i; 3998 3999 queue_for_each_hw_ctx(q, hctx, i) { 4000 if (shared) { 4001 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4002 } else { 4003 blk_mq_tag_idle(hctx); 4004 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4005 } 4006 } 4007 } 4008 4009 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4010 bool shared) 4011 { 4012 struct request_queue *q; 4013 4014 lockdep_assert_held(&set->tag_list_lock); 4015 4016 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4017 blk_mq_freeze_queue(q); 4018 queue_set_hctx_shared(q, shared); 4019 blk_mq_unfreeze_queue(q); 4020 } 4021 } 4022 4023 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4024 { 4025 struct blk_mq_tag_set *set = q->tag_set; 4026 4027 mutex_lock(&set->tag_list_lock); 4028 list_del(&q->tag_set_list); 4029 if (list_is_singular(&set->tag_list)) { 4030 /* just transitioned to unshared */ 4031 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4032 /* update existing queue */ 4033 blk_mq_update_tag_set_shared(set, false); 4034 } 4035 mutex_unlock(&set->tag_list_lock); 4036 INIT_LIST_HEAD(&q->tag_set_list); 4037 } 4038 4039 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4040 struct request_queue *q) 4041 { 4042 mutex_lock(&set->tag_list_lock); 4043 4044 /* 4045 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4046 */ 4047 if (!list_empty(&set->tag_list) && 4048 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4049 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4050 /* update existing queue */ 4051 blk_mq_update_tag_set_shared(set, true); 4052 } 4053 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4054 queue_set_hctx_shared(q, true); 4055 list_add_tail(&q->tag_set_list, &set->tag_list); 4056 4057 mutex_unlock(&set->tag_list_lock); 4058 } 4059 4060 /* All allocations will be freed in release handler of q->mq_kobj */ 4061 static int blk_mq_alloc_ctxs(struct request_queue *q) 4062 { 4063 struct blk_mq_ctxs *ctxs; 4064 int cpu; 4065 4066 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4067 if (!ctxs) 4068 return -ENOMEM; 4069 4070 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4071 if (!ctxs->queue_ctx) 4072 goto fail; 4073 4074 for_each_possible_cpu(cpu) { 4075 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4076 ctx->ctxs = ctxs; 4077 } 4078 4079 q->mq_kobj = &ctxs->kobj; 4080 q->queue_ctx = ctxs->queue_ctx; 4081 4082 return 0; 4083 fail: 4084 kfree(ctxs); 4085 return -ENOMEM; 4086 } 4087 4088 /* 4089 * It is the actual release handler for mq, but we do it from 4090 * request queue's release handler for avoiding use-after-free 4091 * and headache because q->mq_kobj shouldn't have been introduced, 4092 * but we can't group ctx/kctx kobj without it. 4093 */ 4094 void blk_mq_release(struct request_queue *q) 4095 { 4096 struct blk_mq_hw_ctx *hctx, *next; 4097 unsigned long i; 4098 4099 queue_for_each_hw_ctx(q, hctx, i) 4100 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4101 4102 /* all hctx are in .unused_hctx_list now */ 4103 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4104 list_del_init(&hctx->hctx_list); 4105 kobject_put(&hctx->kobj); 4106 } 4107 4108 xa_destroy(&q->hctx_table); 4109 4110 /* 4111 * release .mq_kobj and sw queue's kobject now because 4112 * both share lifetime with request queue. 4113 */ 4114 blk_mq_sysfs_deinit(q); 4115 } 4116 4117 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4118 struct queue_limits *lim, void *queuedata) 4119 { 4120 struct queue_limits default_lim = { }; 4121 struct request_queue *q; 4122 int ret; 4123 4124 q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node); 4125 if (IS_ERR(q)) 4126 return q; 4127 q->queuedata = queuedata; 4128 ret = blk_mq_init_allocated_queue(set, q); 4129 if (ret) { 4130 blk_put_queue(q); 4131 return ERR_PTR(ret); 4132 } 4133 return q; 4134 } 4135 EXPORT_SYMBOL(blk_mq_alloc_queue); 4136 4137 /** 4138 * blk_mq_destroy_queue - shutdown a request queue 4139 * @q: request queue to shutdown 4140 * 4141 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4142 * requests will be failed with -ENODEV. The caller is responsible for dropping 4143 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4144 * 4145 * Context: can sleep 4146 */ 4147 void blk_mq_destroy_queue(struct request_queue *q) 4148 { 4149 WARN_ON_ONCE(!queue_is_mq(q)); 4150 WARN_ON_ONCE(blk_queue_registered(q)); 4151 4152 might_sleep(); 4153 4154 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4155 blk_queue_start_drain(q); 4156 blk_mq_freeze_queue_wait(q); 4157 4158 blk_sync_queue(q); 4159 blk_mq_cancel_work_sync(q); 4160 blk_mq_exit_queue(q); 4161 } 4162 EXPORT_SYMBOL(blk_mq_destroy_queue); 4163 4164 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4165 struct queue_limits *lim, void *queuedata, 4166 struct lock_class_key *lkclass) 4167 { 4168 struct request_queue *q; 4169 struct gendisk *disk; 4170 4171 q = blk_mq_alloc_queue(set, lim, queuedata); 4172 if (IS_ERR(q)) 4173 return ERR_CAST(q); 4174 4175 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4176 if (!disk) { 4177 blk_mq_destroy_queue(q); 4178 blk_put_queue(q); 4179 return ERR_PTR(-ENOMEM); 4180 } 4181 set_bit(GD_OWNS_QUEUE, &disk->state); 4182 return disk; 4183 } 4184 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4185 4186 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4187 struct lock_class_key *lkclass) 4188 { 4189 struct gendisk *disk; 4190 4191 if (!blk_get_queue(q)) 4192 return NULL; 4193 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4194 if (!disk) 4195 blk_put_queue(q); 4196 return disk; 4197 } 4198 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4199 4200 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4201 struct blk_mq_tag_set *set, struct request_queue *q, 4202 int hctx_idx, int node) 4203 { 4204 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4205 4206 /* reuse dead hctx first */ 4207 spin_lock(&q->unused_hctx_lock); 4208 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4209 if (tmp->numa_node == node) { 4210 hctx = tmp; 4211 break; 4212 } 4213 } 4214 if (hctx) 4215 list_del_init(&hctx->hctx_list); 4216 spin_unlock(&q->unused_hctx_lock); 4217 4218 if (!hctx) 4219 hctx = blk_mq_alloc_hctx(q, set, node); 4220 if (!hctx) 4221 goto fail; 4222 4223 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4224 goto free_hctx; 4225 4226 return hctx; 4227 4228 free_hctx: 4229 kobject_put(&hctx->kobj); 4230 fail: 4231 return NULL; 4232 } 4233 4234 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4235 struct request_queue *q) 4236 { 4237 struct blk_mq_hw_ctx *hctx; 4238 unsigned long i, j; 4239 4240 /* protect against switching io scheduler */ 4241 mutex_lock(&q->sysfs_lock); 4242 for (i = 0; i < set->nr_hw_queues; i++) { 4243 int old_node; 4244 int node = blk_mq_get_hctx_node(set, i); 4245 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4246 4247 if (old_hctx) { 4248 old_node = old_hctx->numa_node; 4249 blk_mq_exit_hctx(q, set, old_hctx, i); 4250 } 4251 4252 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4253 if (!old_hctx) 4254 break; 4255 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4256 node, old_node); 4257 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4258 WARN_ON_ONCE(!hctx); 4259 } 4260 } 4261 /* 4262 * Increasing nr_hw_queues fails. Free the newly allocated 4263 * hctxs and keep the previous q->nr_hw_queues. 4264 */ 4265 if (i != set->nr_hw_queues) { 4266 j = q->nr_hw_queues; 4267 } else { 4268 j = i; 4269 q->nr_hw_queues = set->nr_hw_queues; 4270 } 4271 4272 xa_for_each_start(&q->hctx_table, j, hctx, j) 4273 blk_mq_exit_hctx(q, set, hctx, j); 4274 mutex_unlock(&q->sysfs_lock); 4275 } 4276 4277 static void blk_mq_update_poll_flag(struct request_queue *q) 4278 { 4279 struct blk_mq_tag_set *set = q->tag_set; 4280 4281 if (set->nr_maps > HCTX_TYPE_POLL && 4282 set->map[HCTX_TYPE_POLL].nr_queues) 4283 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4284 else 4285 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4286 } 4287 4288 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4289 struct request_queue *q) 4290 { 4291 /* mark the queue as mq asap */ 4292 q->mq_ops = set->ops; 4293 4294 if (blk_mq_alloc_ctxs(q)) 4295 goto err_exit; 4296 4297 /* init q->mq_kobj and sw queues' kobjects */ 4298 blk_mq_sysfs_init(q); 4299 4300 INIT_LIST_HEAD(&q->unused_hctx_list); 4301 spin_lock_init(&q->unused_hctx_lock); 4302 4303 xa_init(&q->hctx_table); 4304 4305 blk_mq_realloc_hw_ctxs(set, q); 4306 if (!q->nr_hw_queues) 4307 goto err_hctxs; 4308 4309 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4310 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4311 4312 q->tag_set = set; 4313 4314 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4315 blk_mq_update_poll_flag(q); 4316 4317 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4318 INIT_LIST_HEAD(&q->flush_list); 4319 INIT_LIST_HEAD(&q->requeue_list); 4320 spin_lock_init(&q->requeue_lock); 4321 4322 q->nr_requests = set->queue_depth; 4323 4324 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4325 blk_mq_add_queue_tag_set(set, q); 4326 blk_mq_map_swqueue(q); 4327 return 0; 4328 4329 err_hctxs: 4330 blk_mq_release(q); 4331 err_exit: 4332 q->mq_ops = NULL; 4333 return -ENOMEM; 4334 } 4335 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4336 4337 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4338 void blk_mq_exit_queue(struct request_queue *q) 4339 { 4340 struct blk_mq_tag_set *set = q->tag_set; 4341 4342 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4343 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4344 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4345 blk_mq_del_queue_tag_set(q); 4346 } 4347 4348 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4349 { 4350 int i; 4351 4352 if (blk_mq_is_shared_tags(set->flags)) { 4353 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4354 BLK_MQ_NO_HCTX_IDX, 4355 set->queue_depth); 4356 if (!set->shared_tags) 4357 return -ENOMEM; 4358 } 4359 4360 for (i = 0; i < set->nr_hw_queues; i++) { 4361 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4362 goto out_unwind; 4363 cond_resched(); 4364 } 4365 4366 return 0; 4367 4368 out_unwind: 4369 while (--i >= 0) 4370 __blk_mq_free_map_and_rqs(set, i); 4371 4372 if (blk_mq_is_shared_tags(set->flags)) { 4373 blk_mq_free_map_and_rqs(set, set->shared_tags, 4374 BLK_MQ_NO_HCTX_IDX); 4375 } 4376 4377 return -ENOMEM; 4378 } 4379 4380 /* 4381 * Allocate the request maps associated with this tag_set. Note that this 4382 * may reduce the depth asked for, if memory is tight. set->queue_depth 4383 * will be updated to reflect the allocated depth. 4384 */ 4385 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4386 { 4387 unsigned int depth; 4388 int err; 4389 4390 depth = set->queue_depth; 4391 do { 4392 err = __blk_mq_alloc_rq_maps(set); 4393 if (!err) 4394 break; 4395 4396 set->queue_depth >>= 1; 4397 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4398 err = -ENOMEM; 4399 break; 4400 } 4401 } while (set->queue_depth); 4402 4403 if (!set->queue_depth || err) { 4404 pr_err("blk-mq: failed to allocate request map\n"); 4405 return -ENOMEM; 4406 } 4407 4408 if (depth != set->queue_depth) 4409 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4410 depth, set->queue_depth); 4411 4412 return 0; 4413 } 4414 4415 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4416 { 4417 /* 4418 * blk_mq_map_queues() and multiple .map_queues() implementations 4419 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4420 * number of hardware queues. 4421 */ 4422 if (set->nr_maps == 1) 4423 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4424 4425 if (set->ops->map_queues) { 4426 int i; 4427 4428 /* 4429 * transport .map_queues is usually done in the following 4430 * way: 4431 * 4432 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4433 * mask = get_cpu_mask(queue) 4434 * for_each_cpu(cpu, mask) 4435 * set->map[x].mq_map[cpu] = queue; 4436 * } 4437 * 4438 * When we need to remap, the table has to be cleared for 4439 * killing stale mapping since one CPU may not be mapped 4440 * to any hw queue. 4441 */ 4442 for (i = 0; i < set->nr_maps; i++) 4443 blk_mq_clear_mq_map(&set->map[i]); 4444 4445 set->ops->map_queues(set); 4446 } else { 4447 BUG_ON(set->nr_maps > 1); 4448 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4449 } 4450 } 4451 4452 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4453 int new_nr_hw_queues) 4454 { 4455 struct blk_mq_tags **new_tags; 4456 int i; 4457 4458 if (set->nr_hw_queues >= new_nr_hw_queues) 4459 goto done; 4460 4461 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4462 GFP_KERNEL, set->numa_node); 4463 if (!new_tags) 4464 return -ENOMEM; 4465 4466 if (set->tags) 4467 memcpy(new_tags, set->tags, set->nr_hw_queues * 4468 sizeof(*set->tags)); 4469 kfree(set->tags); 4470 set->tags = new_tags; 4471 4472 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4473 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4474 while (--i >= set->nr_hw_queues) 4475 __blk_mq_free_map_and_rqs(set, i); 4476 return -ENOMEM; 4477 } 4478 cond_resched(); 4479 } 4480 4481 done: 4482 set->nr_hw_queues = new_nr_hw_queues; 4483 return 0; 4484 } 4485 4486 /* 4487 * Alloc a tag set to be associated with one or more request queues. 4488 * May fail with EINVAL for various error conditions. May adjust the 4489 * requested depth down, if it's too large. In that case, the set 4490 * value will be stored in set->queue_depth. 4491 */ 4492 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4493 { 4494 int i, ret; 4495 4496 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4497 4498 if (!set->nr_hw_queues) 4499 return -EINVAL; 4500 if (!set->queue_depth) 4501 return -EINVAL; 4502 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4503 return -EINVAL; 4504 4505 if (!set->ops->queue_rq) 4506 return -EINVAL; 4507 4508 if (!set->ops->get_budget ^ !set->ops->put_budget) 4509 return -EINVAL; 4510 4511 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4512 pr_info("blk-mq: reduced tag depth to %u\n", 4513 BLK_MQ_MAX_DEPTH); 4514 set->queue_depth = BLK_MQ_MAX_DEPTH; 4515 } 4516 4517 if (!set->nr_maps) 4518 set->nr_maps = 1; 4519 else if (set->nr_maps > HCTX_MAX_TYPES) 4520 return -EINVAL; 4521 4522 /* 4523 * If a crashdump is active, then we are potentially in a very 4524 * memory constrained environment. Limit us to 64 tags to prevent 4525 * using too much memory. 4526 */ 4527 if (is_kdump_kernel()) 4528 set->queue_depth = min(64U, set->queue_depth); 4529 4530 /* 4531 * There is no use for more h/w queues than cpus if we just have 4532 * a single map 4533 */ 4534 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4535 set->nr_hw_queues = nr_cpu_ids; 4536 4537 if (set->flags & BLK_MQ_F_BLOCKING) { 4538 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4539 if (!set->srcu) 4540 return -ENOMEM; 4541 ret = init_srcu_struct(set->srcu); 4542 if (ret) 4543 goto out_free_srcu; 4544 } 4545 4546 ret = -ENOMEM; 4547 set->tags = kcalloc_node(set->nr_hw_queues, 4548 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4549 set->numa_node); 4550 if (!set->tags) 4551 goto out_cleanup_srcu; 4552 4553 for (i = 0; i < set->nr_maps; i++) { 4554 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4555 sizeof(set->map[i].mq_map[0]), 4556 GFP_KERNEL, set->numa_node); 4557 if (!set->map[i].mq_map) 4558 goto out_free_mq_map; 4559 set->map[i].nr_queues = set->nr_hw_queues; 4560 } 4561 4562 blk_mq_update_queue_map(set); 4563 4564 ret = blk_mq_alloc_set_map_and_rqs(set); 4565 if (ret) 4566 goto out_free_mq_map; 4567 4568 mutex_init(&set->tag_list_lock); 4569 INIT_LIST_HEAD(&set->tag_list); 4570 4571 return 0; 4572 4573 out_free_mq_map: 4574 for (i = 0; i < set->nr_maps; i++) { 4575 kfree(set->map[i].mq_map); 4576 set->map[i].mq_map = NULL; 4577 } 4578 kfree(set->tags); 4579 set->tags = NULL; 4580 out_cleanup_srcu: 4581 if (set->flags & BLK_MQ_F_BLOCKING) 4582 cleanup_srcu_struct(set->srcu); 4583 out_free_srcu: 4584 if (set->flags & BLK_MQ_F_BLOCKING) 4585 kfree(set->srcu); 4586 return ret; 4587 } 4588 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4589 4590 /* allocate and initialize a tagset for a simple single-queue device */ 4591 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4592 const struct blk_mq_ops *ops, unsigned int queue_depth, 4593 unsigned int set_flags) 4594 { 4595 memset(set, 0, sizeof(*set)); 4596 set->ops = ops; 4597 set->nr_hw_queues = 1; 4598 set->nr_maps = 1; 4599 set->queue_depth = queue_depth; 4600 set->numa_node = NUMA_NO_NODE; 4601 set->flags = set_flags; 4602 return blk_mq_alloc_tag_set(set); 4603 } 4604 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4605 4606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4607 { 4608 int i, j; 4609 4610 for (i = 0; i < set->nr_hw_queues; i++) 4611 __blk_mq_free_map_and_rqs(set, i); 4612 4613 if (blk_mq_is_shared_tags(set->flags)) { 4614 blk_mq_free_map_and_rqs(set, set->shared_tags, 4615 BLK_MQ_NO_HCTX_IDX); 4616 } 4617 4618 for (j = 0; j < set->nr_maps; j++) { 4619 kfree(set->map[j].mq_map); 4620 set->map[j].mq_map = NULL; 4621 } 4622 4623 kfree(set->tags); 4624 set->tags = NULL; 4625 if (set->flags & BLK_MQ_F_BLOCKING) { 4626 cleanup_srcu_struct(set->srcu); 4627 kfree(set->srcu); 4628 } 4629 } 4630 EXPORT_SYMBOL(blk_mq_free_tag_set); 4631 4632 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4633 { 4634 struct blk_mq_tag_set *set = q->tag_set; 4635 struct blk_mq_hw_ctx *hctx; 4636 int ret; 4637 unsigned long i; 4638 4639 if (!set) 4640 return -EINVAL; 4641 4642 if (q->nr_requests == nr) 4643 return 0; 4644 4645 blk_mq_freeze_queue(q); 4646 blk_mq_quiesce_queue(q); 4647 4648 ret = 0; 4649 queue_for_each_hw_ctx(q, hctx, i) { 4650 if (!hctx->tags) 4651 continue; 4652 /* 4653 * If we're using an MQ scheduler, just update the scheduler 4654 * queue depth. This is similar to what the old code would do. 4655 */ 4656 if (hctx->sched_tags) { 4657 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4658 nr, true); 4659 } else { 4660 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4661 false); 4662 } 4663 if (ret) 4664 break; 4665 if (q->elevator && q->elevator->type->ops.depth_updated) 4666 q->elevator->type->ops.depth_updated(hctx); 4667 } 4668 if (!ret) { 4669 q->nr_requests = nr; 4670 if (blk_mq_is_shared_tags(set->flags)) { 4671 if (q->elevator) 4672 blk_mq_tag_update_sched_shared_tags(q); 4673 else 4674 blk_mq_tag_resize_shared_tags(set, nr); 4675 } 4676 } 4677 4678 blk_mq_unquiesce_queue(q); 4679 blk_mq_unfreeze_queue(q); 4680 4681 return ret; 4682 } 4683 4684 /* 4685 * request_queue and elevator_type pair. 4686 * It is just used by __blk_mq_update_nr_hw_queues to cache 4687 * the elevator_type associated with a request_queue. 4688 */ 4689 struct blk_mq_qe_pair { 4690 struct list_head node; 4691 struct request_queue *q; 4692 struct elevator_type *type; 4693 }; 4694 4695 /* 4696 * Cache the elevator_type in qe pair list and switch the 4697 * io scheduler to 'none' 4698 */ 4699 static bool blk_mq_elv_switch_none(struct list_head *head, 4700 struct request_queue *q) 4701 { 4702 struct blk_mq_qe_pair *qe; 4703 4704 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4705 if (!qe) 4706 return false; 4707 4708 /* q->elevator needs protection from ->sysfs_lock */ 4709 mutex_lock(&q->sysfs_lock); 4710 4711 /* the check has to be done with holding sysfs_lock */ 4712 if (!q->elevator) { 4713 kfree(qe); 4714 goto unlock; 4715 } 4716 4717 INIT_LIST_HEAD(&qe->node); 4718 qe->q = q; 4719 qe->type = q->elevator->type; 4720 /* keep a reference to the elevator module as we'll switch back */ 4721 __elevator_get(qe->type); 4722 list_add(&qe->node, head); 4723 elevator_disable(q); 4724 unlock: 4725 mutex_unlock(&q->sysfs_lock); 4726 4727 return true; 4728 } 4729 4730 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4731 struct request_queue *q) 4732 { 4733 struct blk_mq_qe_pair *qe; 4734 4735 list_for_each_entry(qe, head, node) 4736 if (qe->q == q) 4737 return qe; 4738 4739 return NULL; 4740 } 4741 4742 static void blk_mq_elv_switch_back(struct list_head *head, 4743 struct request_queue *q) 4744 { 4745 struct blk_mq_qe_pair *qe; 4746 struct elevator_type *t; 4747 4748 qe = blk_lookup_qe_pair(head, q); 4749 if (!qe) 4750 return; 4751 t = qe->type; 4752 list_del(&qe->node); 4753 kfree(qe); 4754 4755 mutex_lock(&q->sysfs_lock); 4756 elevator_switch(q, t); 4757 /* drop the reference acquired in blk_mq_elv_switch_none */ 4758 elevator_put(t); 4759 mutex_unlock(&q->sysfs_lock); 4760 } 4761 4762 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4763 int nr_hw_queues) 4764 { 4765 struct request_queue *q; 4766 LIST_HEAD(head); 4767 int prev_nr_hw_queues = set->nr_hw_queues; 4768 int i; 4769 4770 lockdep_assert_held(&set->tag_list_lock); 4771 4772 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4773 nr_hw_queues = nr_cpu_ids; 4774 if (nr_hw_queues < 1) 4775 return; 4776 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4777 return; 4778 4779 list_for_each_entry(q, &set->tag_list, tag_set_list) 4780 blk_mq_freeze_queue(q); 4781 /* 4782 * Switch IO scheduler to 'none', cleaning up the data associated 4783 * with the previous scheduler. We will switch back once we are done 4784 * updating the new sw to hw queue mappings. 4785 */ 4786 list_for_each_entry(q, &set->tag_list, tag_set_list) 4787 if (!blk_mq_elv_switch_none(&head, q)) 4788 goto switch_back; 4789 4790 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4791 blk_mq_debugfs_unregister_hctxs(q); 4792 blk_mq_sysfs_unregister_hctxs(q); 4793 } 4794 4795 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4796 goto reregister; 4797 4798 fallback: 4799 blk_mq_update_queue_map(set); 4800 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4801 blk_mq_realloc_hw_ctxs(set, q); 4802 blk_mq_update_poll_flag(q); 4803 if (q->nr_hw_queues != set->nr_hw_queues) { 4804 int i = prev_nr_hw_queues; 4805 4806 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4807 nr_hw_queues, prev_nr_hw_queues); 4808 for (; i < set->nr_hw_queues; i++) 4809 __blk_mq_free_map_and_rqs(set, i); 4810 4811 set->nr_hw_queues = prev_nr_hw_queues; 4812 goto fallback; 4813 } 4814 blk_mq_map_swqueue(q); 4815 } 4816 4817 reregister: 4818 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4819 blk_mq_sysfs_register_hctxs(q); 4820 blk_mq_debugfs_register_hctxs(q); 4821 } 4822 4823 switch_back: 4824 list_for_each_entry(q, &set->tag_list, tag_set_list) 4825 blk_mq_elv_switch_back(&head, q); 4826 4827 list_for_each_entry(q, &set->tag_list, tag_set_list) 4828 blk_mq_unfreeze_queue(q); 4829 4830 /* Free the excess tags when nr_hw_queues shrink. */ 4831 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4832 __blk_mq_free_map_and_rqs(set, i); 4833 } 4834 4835 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4836 { 4837 mutex_lock(&set->tag_list_lock); 4838 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4839 mutex_unlock(&set->tag_list_lock); 4840 } 4841 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4842 4843 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4844 struct io_comp_batch *iob, unsigned int flags) 4845 { 4846 long state = get_current_state(); 4847 int ret; 4848 4849 do { 4850 ret = q->mq_ops->poll(hctx, iob); 4851 if (ret > 0) { 4852 __set_current_state(TASK_RUNNING); 4853 return ret; 4854 } 4855 4856 if (signal_pending_state(state, current)) 4857 __set_current_state(TASK_RUNNING); 4858 if (task_is_running(current)) 4859 return 1; 4860 4861 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4862 break; 4863 cpu_relax(); 4864 } while (!need_resched()); 4865 4866 __set_current_state(TASK_RUNNING); 4867 return 0; 4868 } 4869 4870 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4871 struct io_comp_batch *iob, unsigned int flags) 4872 { 4873 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4874 4875 return blk_hctx_poll(q, hctx, iob, flags); 4876 } 4877 4878 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4879 unsigned int poll_flags) 4880 { 4881 struct request_queue *q = rq->q; 4882 int ret; 4883 4884 if (!blk_rq_is_poll(rq)) 4885 return 0; 4886 if (!percpu_ref_tryget(&q->q_usage_counter)) 4887 return 0; 4888 4889 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4890 blk_queue_exit(q); 4891 4892 return ret; 4893 } 4894 EXPORT_SYMBOL_GPL(blk_rq_poll); 4895 4896 unsigned int blk_mq_rq_cpu(struct request *rq) 4897 { 4898 return rq->mq_ctx->cpu; 4899 } 4900 EXPORT_SYMBOL(blk_mq_rq_cpu); 4901 4902 void blk_mq_cancel_work_sync(struct request_queue *q) 4903 { 4904 struct blk_mq_hw_ctx *hctx; 4905 unsigned long i; 4906 4907 cancel_delayed_work_sync(&q->requeue_work); 4908 4909 queue_for_each_hw_ctx(q, hctx, i) 4910 cancel_delayed_work_sync(&hctx->run_work); 4911 } 4912 4913 static int __init blk_mq_init(void) 4914 { 4915 int i; 4916 4917 for_each_possible_cpu(i) 4918 init_llist_head(&per_cpu(blk_cpu_done, i)); 4919 for_each_possible_cpu(i) 4920 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4921 __blk_mq_complete_request_remote, NULL); 4922 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4923 4924 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4925 "block/softirq:dead", NULL, 4926 blk_softirq_cpu_dead); 4927 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4928 blk_mq_hctx_notify_dead); 4929 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4930 blk_mq_hctx_notify_online, 4931 blk_mq_hctx_notify_offline); 4932 return 0; 4933 } 4934 subsys_initcall(blk_mq_init); 4935