xref: /linux/block/blk-mq.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 
26 #include <trace/events/block.h>
27 
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32 
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35 
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37 
38 /*
39  * Check if any of the ctx's have pending work in this hardware queue
40  */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 	unsigned int i;
44 
45 	for (i = 0; i < hctx->ctx_map.size; i++)
46 		if (hctx->ctx_map.map[i].word)
47 			return true;
48 
49 	return false;
50 }
51 
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 					      struct blk_mq_ctx *ctx)
54 {
55 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57 
58 #define CTX_TO_BIT(hctx, ctx)	\
59 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60 
61 /*
62  * Mark this ctx as having pending work in this hardware queue
63  */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 				     struct blk_mq_ctx *ctx)
66 {
67 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 
69 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72 
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 				      struct blk_mq_ctx *ctx)
75 {
76 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 
78 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80 
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 	int freeze_depth;
84 
85 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 	if (freeze_depth == 1) {
87 		percpu_ref_kill(&q->q_usage_counter);
88 		blk_mq_run_hw_queues(q, false);
89 	}
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97 
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 	/*
105 	 * In the !blk_mq case we are only calling this to kill the
106 	 * q_usage_counter, otherwise this increases the freeze depth
107 	 * and waits for it to return to zero.  For this reason there is
108 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 	 * exported to drivers as the only user for unfreeze is blk_mq.
110 	 */
111 	blk_mq_freeze_queue_start(q);
112 	blk_mq_freeze_queue_wait(q);
113 }
114 
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 	/*
118 	 * ...just an alias to keep freeze and unfreeze actions balanced
119 	 * in the blk_mq_* namespace
120 	 */
121 	blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124 
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 	int freeze_depth;
128 
129 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 	WARN_ON_ONCE(freeze_depth < 0);
131 	if (!freeze_depth) {
132 		percpu_ref_reinit(&q->q_usage_counter);
133 		wake_up_all(&q->mq_freeze_wq);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137 
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 	struct blk_mq_hw_ctx *hctx;
141 	unsigned int i;
142 
143 	queue_for_each_hw_ctx(q, hctx, i)
144 		if (blk_mq_hw_queue_mapped(hctx))
145 			blk_mq_tag_wakeup_all(hctx->tags, true);
146 
147 	/*
148 	 * If we are called because the queue has now been marked as
149 	 * dying, we need to ensure that processes currently waiting on
150 	 * the queue are notified as well.
151 	 */
152 	wake_up_all(&q->mq_freeze_wq);
153 }
154 
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 	return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160 
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 			       struct request *rq, unsigned int rw_flags)
163 {
164 	if (blk_queue_io_stat(q))
165 		rw_flags |= REQ_IO_STAT;
166 
167 	INIT_LIST_HEAD(&rq->queuelist);
168 	/* csd/requeue_work/fifo_time is initialized before use */
169 	rq->q = q;
170 	rq->mq_ctx = ctx;
171 	rq->cmd_flags |= rw_flags;
172 	/* do not touch atomic flags, it needs atomic ops against the timer */
173 	rq->cpu = -1;
174 	INIT_HLIST_NODE(&rq->hash);
175 	RB_CLEAR_NODE(&rq->rb_node);
176 	rq->rq_disk = NULL;
177 	rq->part = NULL;
178 	rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 	rq->rl = NULL;
181 	set_start_time_ns(rq);
182 	rq->io_start_time_ns = 0;
183 #endif
184 	rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 	rq->nr_integrity_segments = 0;
187 #endif
188 	rq->special = NULL;
189 	/* tag was already set */
190 	rq->errors = 0;
191 
192 	rq->cmd = rq->__cmd;
193 
194 	rq->extra_len = 0;
195 	rq->sense_len = 0;
196 	rq->resid_len = 0;
197 	rq->sense = NULL;
198 
199 	INIT_LIST_HEAD(&rq->timeout_list);
200 	rq->timeout = 0;
201 
202 	rq->end_io = NULL;
203 	rq->end_io_data = NULL;
204 	rq->next_rq = NULL;
205 
206 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208 
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 	struct request *rq;
213 	unsigned int tag;
214 
215 	tag = blk_mq_get_tag(data);
216 	if (tag != BLK_MQ_TAG_FAIL) {
217 		rq = data->hctx->tags->rqs[tag];
218 
219 		if (blk_mq_tag_busy(data->hctx)) {
220 			rq->cmd_flags = REQ_MQ_INFLIGHT;
221 			atomic_inc(&data->hctx->nr_active);
222 		}
223 
224 		rq->tag = tag;
225 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 		return rq;
227 	}
228 
229 	return NULL;
230 }
231 
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
233 		unsigned int flags)
234 {
235 	struct blk_mq_ctx *ctx;
236 	struct blk_mq_hw_ctx *hctx;
237 	struct request *rq;
238 	struct blk_mq_alloc_data alloc_data;
239 	int ret;
240 
241 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 	if (ret)
243 		return ERR_PTR(ret);
244 
245 	ctx = blk_mq_get_ctx(q);
246 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248 
249 	rq = __blk_mq_alloc_request(&alloc_data, rw);
250 	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 		__blk_mq_run_hw_queue(hctx);
252 		blk_mq_put_ctx(ctx);
253 
254 		ctx = blk_mq_get_ctx(q);
255 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
258 		ctx = alloc_data.ctx;
259 	}
260 	blk_mq_put_ctx(ctx);
261 	if (!rq) {
262 		blk_queue_exit(q);
263 		return ERR_PTR(-EWOULDBLOCK);
264 	}
265 	return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268 
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 				  struct blk_mq_ctx *ctx, struct request *rq)
271 {
272 	const int tag = rq->tag;
273 	struct request_queue *q = rq->q;
274 
275 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 		atomic_dec(&hctx->nr_active);
277 	rq->cmd_flags = 0;
278 
279 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281 	blk_queue_exit(q);
282 }
283 
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 {
286 	struct blk_mq_ctx *ctx = rq->mq_ctx;
287 
288 	ctx->rq_completed[rq_is_sync(rq)]++;
289 	__blk_mq_free_request(hctx, ctx, rq);
290 
291 }
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293 
294 void blk_mq_free_request(struct request *rq)
295 {
296 	struct blk_mq_hw_ctx *hctx;
297 	struct request_queue *q = rq->q;
298 
299 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 	blk_mq_free_hctx_request(hctx, rq);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
303 
304 inline void __blk_mq_end_request(struct request *rq, int error)
305 {
306 	blk_account_io_done(rq);
307 
308 	if (rq->end_io) {
309 		rq->end_io(rq, error);
310 	} else {
311 		if (unlikely(blk_bidi_rq(rq)))
312 			blk_mq_free_request(rq->next_rq);
313 		blk_mq_free_request(rq);
314 	}
315 }
316 EXPORT_SYMBOL(__blk_mq_end_request);
317 
318 void blk_mq_end_request(struct request *rq, int error)
319 {
320 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 		BUG();
322 	__blk_mq_end_request(rq, error);
323 }
324 EXPORT_SYMBOL(blk_mq_end_request);
325 
326 static void __blk_mq_complete_request_remote(void *data)
327 {
328 	struct request *rq = data;
329 
330 	rq->q->softirq_done_fn(rq);
331 }
332 
333 static void blk_mq_ipi_complete_request(struct request *rq)
334 {
335 	struct blk_mq_ctx *ctx = rq->mq_ctx;
336 	bool shared = false;
337 	int cpu;
338 
339 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 		rq->q->softirq_done_fn(rq);
341 		return;
342 	}
343 
344 	cpu = get_cpu();
345 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 		shared = cpus_share_cache(cpu, ctx->cpu);
347 
348 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 		rq->csd.func = __blk_mq_complete_request_remote;
350 		rq->csd.info = rq;
351 		rq->csd.flags = 0;
352 		smp_call_function_single_async(ctx->cpu, &rq->csd);
353 	} else {
354 		rq->q->softirq_done_fn(rq);
355 	}
356 	put_cpu();
357 }
358 
359 static void __blk_mq_complete_request(struct request *rq)
360 {
361 	struct request_queue *q = rq->q;
362 
363 	if (!q->softirq_done_fn)
364 		blk_mq_end_request(rq, rq->errors);
365 	else
366 		blk_mq_ipi_complete_request(rq);
367 }
368 
369 /**
370  * blk_mq_complete_request - end I/O on a request
371  * @rq:		the request being processed
372  *
373  * Description:
374  *	Ends all I/O on a request. It does not handle partial completions.
375  *	The actual completion happens out-of-order, through a IPI handler.
376  **/
377 void blk_mq_complete_request(struct request *rq, int error)
378 {
379 	struct request_queue *q = rq->q;
380 
381 	if (unlikely(blk_should_fake_timeout(q)))
382 		return;
383 	if (!blk_mark_rq_complete(rq)) {
384 		rq->errors = error;
385 		__blk_mq_complete_request(rq);
386 	}
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389 
390 int blk_mq_request_started(struct request *rq)
391 {
392 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
395 
396 void blk_mq_start_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	trace_block_rq_issue(q, rq);
401 
402 	rq->resid_len = blk_rq_bytes(rq);
403 	if (unlikely(blk_bidi_rq(rq)))
404 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
405 
406 	blk_add_timer(rq);
407 
408 	/*
409 	 * Ensure that ->deadline is visible before set the started
410 	 * flag and clear the completed flag.
411 	 */
412 	smp_mb__before_atomic();
413 
414 	/*
415 	 * Mark us as started and clear complete. Complete might have been
416 	 * set if requeue raced with timeout, which then marked it as
417 	 * complete. So be sure to clear complete again when we start
418 	 * the request, otherwise we'll ignore the completion event.
419 	 */
420 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 
425 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
426 		/*
427 		 * Make sure space for the drain appears.  We know we can do
428 		 * this because max_hw_segments has been adjusted to be one
429 		 * fewer than the device can handle.
430 		 */
431 		rq->nr_phys_segments++;
432 	}
433 }
434 EXPORT_SYMBOL(blk_mq_start_request);
435 
436 static void __blk_mq_requeue_request(struct request *rq)
437 {
438 	struct request_queue *q = rq->q;
439 
440 	trace_block_rq_requeue(q, rq);
441 
442 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 		if (q->dma_drain_size && blk_rq_bytes(rq))
444 			rq->nr_phys_segments--;
445 	}
446 }
447 
448 void blk_mq_requeue_request(struct request *rq)
449 {
450 	__blk_mq_requeue_request(rq);
451 
452 	BUG_ON(blk_queued_rq(rq));
453 	blk_mq_add_to_requeue_list(rq, true);
454 }
455 EXPORT_SYMBOL(blk_mq_requeue_request);
456 
457 static void blk_mq_requeue_work(struct work_struct *work)
458 {
459 	struct request_queue *q =
460 		container_of(work, struct request_queue, requeue_work);
461 	LIST_HEAD(rq_list);
462 	struct request *rq, *next;
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&q->requeue_lock, flags);
466 	list_splice_init(&q->requeue_list, &rq_list);
467 	spin_unlock_irqrestore(&q->requeue_lock, flags);
468 
469 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 			continue;
472 
473 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 		list_del_init(&rq->queuelist);
475 		blk_mq_insert_request(rq, true, false, false);
476 	}
477 
478 	while (!list_empty(&rq_list)) {
479 		rq = list_entry(rq_list.next, struct request, queuelist);
480 		list_del_init(&rq->queuelist);
481 		blk_mq_insert_request(rq, false, false, false);
482 	}
483 
484 	/*
485 	 * Use the start variant of queue running here, so that running
486 	 * the requeue work will kick stopped queues.
487 	 */
488 	blk_mq_start_hw_queues(q);
489 }
490 
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
492 {
493 	struct request_queue *q = rq->q;
494 	unsigned long flags;
495 
496 	/*
497 	 * We abuse this flag that is otherwise used by the I/O scheduler to
498 	 * request head insertation from the workqueue.
499 	 */
500 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
501 
502 	spin_lock_irqsave(&q->requeue_lock, flags);
503 	if (at_head) {
504 		rq->cmd_flags |= REQ_SOFTBARRIER;
505 		list_add(&rq->queuelist, &q->requeue_list);
506 	} else {
507 		list_add_tail(&rq->queuelist, &q->requeue_list);
508 	}
509 	spin_unlock_irqrestore(&q->requeue_lock, flags);
510 }
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
512 
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
514 {
515 	cancel_work_sync(&q->requeue_work);
516 }
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
518 
519 void blk_mq_kick_requeue_list(struct request_queue *q)
520 {
521 	kblockd_schedule_work(&q->requeue_work);
522 }
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524 
525 void blk_mq_abort_requeue_list(struct request_queue *q)
526 {
527 	unsigned long flags;
528 	LIST_HEAD(rq_list);
529 
530 	spin_lock_irqsave(&q->requeue_lock, flags);
531 	list_splice_init(&q->requeue_list, &rq_list);
532 	spin_unlock_irqrestore(&q->requeue_lock, flags);
533 
534 	while (!list_empty(&rq_list)) {
535 		struct request *rq;
536 
537 		rq = list_first_entry(&rq_list, struct request, queuelist);
538 		list_del_init(&rq->queuelist);
539 		rq->errors = -EIO;
540 		blk_mq_end_request(rq, rq->errors);
541 	}
542 }
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
544 
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
546 {
547 	return tags->rqs[tag];
548 }
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
550 
551 struct blk_mq_timeout_data {
552 	unsigned long next;
553 	unsigned int next_set;
554 };
555 
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
557 {
558 	struct blk_mq_ops *ops = req->q->mq_ops;
559 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560 
561 	/*
562 	 * We know that complete is set at this point. If STARTED isn't set
563 	 * anymore, then the request isn't active and the "timeout" should
564 	 * just be ignored. This can happen due to the bitflag ordering.
565 	 * Timeout first checks if STARTED is set, and if it is, assumes
566 	 * the request is active. But if we race with completion, then
567 	 * we both flags will get cleared. So check here again, and ignore
568 	 * a timeout event with a request that isn't active.
569 	 */
570 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
571 		return;
572 
573 	if (ops->timeout)
574 		ret = ops->timeout(req, reserved);
575 
576 	switch (ret) {
577 	case BLK_EH_HANDLED:
578 		__blk_mq_complete_request(req);
579 		break;
580 	case BLK_EH_RESET_TIMER:
581 		blk_add_timer(req);
582 		blk_clear_rq_complete(req);
583 		break;
584 	case BLK_EH_NOT_HANDLED:
585 		break;
586 	default:
587 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
588 		break;
589 	}
590 }
591 
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 		struct request *rq, void *priv, bool reserved)
594 {
595 	struct blk_mq_timeout_data *data = priv;
596 
597 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
598 		/*
599 		 * If a request wasn't started before the queue was
600 		 * marked dying, kill it here or it'll go unnoticed.
601 		 */
602 		if (unlikely(blk_queue_dying(rq->q)))
603 			blk_mq_complete_request(rq, -EIO);
604 		return;
605 	}
606 
607 	if (time_after_eq(jiffies, rq->deadline)) {
608 		if (!blk_mark_rq_complete(rq))
609 			blk_mq_rq_timed_out(rq, reserved);
610 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
611 		data->next = rq->deadline;
612 		data->next_set = 1;
613 	}
614 }
615 
616 static void blk_mq_timeout_work(struct work_struct *work)
617 {
618 	struct request_queue *q =
619 		container_of(work, struct request_queue, timeout_work);
620 	struct blk_mq_timeout_data data = {
621 		.next		= 0,
622 		.next_set	= 0,
623 	};
624 	int i;
625 
626 	if (blk_queue_enter(q, true))
627 		return;
628 
629 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630 
631 	if (data.next_set) {
632 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 		mod_timer(&q->timeout, data.next);
634 	} else {
635 		struct blk_mq_hw_ctx *hctx;
636 
637 		queue_for_each_hw_ctx(q, hctx, i) {
638 			/* the hctx may be unmapped, so check it here */
639 			if (blk_mq_hw_queue_mapped(hctx))
640 				blk_mq_tag_idle(hctx);
641 		}
642 	}
643 	blk_queue_exit(q);
644 }
645 
646 /*
647  * Reverse check our software queue for entries that we could potentially
648  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
649  * too much time checking for merges.
650  */
651 static bool blk_mq_attempt_merge(struct request_queue *q,
652 				 struct blk_mq_ctx *ctx, struct bio *bio)
653 {
654 	struct request *rq;
655 	int checked = 8;
656 
657 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
658 		int el_ret;
659 
660 		if (!checked--)
661 			break;
662 
663 		if (!blk_rq_merge_ok(rq, bio))
664 			continue;
665 
666 		el_ret = blk_try_merge(rq, bio);
667 		if (el_ret == ELEVATOR_BACK_MERGE) {
668 			if (bio_attempt_back_merge(q, rq, bio)) {
669 				ctx->rq_merged++;
670 				return true;
671 			}
672 			break;
673 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
674 			if (bio_attempt_front_merge(q, rq, bio)) {
675 				ctx->rq_merged++;
676 				return true;
677 			}
678 			break;
679 		}
680 	}
681 
682 	return false;
683 }
684 
685 /*
686  * Process software queues that have been marked busy, splicing them
687  * to the for-dispatch
688  */
689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
690 {
691 	struct blk_mq_ctx *ctx;
692 	int i;
693 
694 	for (i = 0; i < hctx->ctx_map.size; i++) {
695 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
696 		unsigned int off, bit;
697 
698 		if (!bm->word)
699 			continue;
700 
701 		bit = 0;
702 		off = i * hctx->ctx_map.bits_per_word;
703 		do {
704 			bit = find_next_bit(&bm->word, bm->depth, bit);
705 			if (bit >= bm->depth)
706 				break;
707 
708 			ctx = hctx->ctxs[bit + off];
709 			clear_bit(bit, &bm->word);
710 			spin_lock(&ctx->lock);
711 			list_splice_tail_init(&ctx->rq_list, list);
712 			spin_unlock(&ctx->lock);
713 
714 			bit++;
715 		} while (1);
716 	}
717 }
718 
719 /*
720  * Run this hardware queue, pulling any software queues mapped to it in.
721  * Note that this function currently has various problems around ordering
722  * of IO. In particular, we'd like FIFO behaviour on handling existing
723  * items on the hctx->dispatch list. Ignore that for now.
724  */
725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
726 {
727 	struct request_queue *q = hctx->queue;
728 	struct request *rq;
729 	LIST_HEAD(rq_list);
730 	LIST_HEAD(driver_list);
731 	struct list_head *dptr;
732 	int queued;
733 
734 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
735 
736 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
737 		return;
738 
739 	hctx->run++;
740 
741 	/*
742 	 * Touch any software queue that has pending entries.
743 	 */
744 	flush_busy_ctxs(hctx, &rq_list);
745 
746 	/*
747 	 * If we have previous entries on our dispatch list, grab them
748 	 * and stuff them at the front for more fair dispatch.
749 	 */
750 	if (!list_empty_careful(&hctx->dispatch)) {
751 		spin_lock(&hctx->lock);
752 		if (!list_empty(&hctx->dispatch))
753 			list_splice_init(&hctx->dispatch, &rq_list);
754 		spin_unlock(&hctx->lock);
755 	}
756 
757 	/*
758 	 * Start off with dptr being NULL, so we start the first request
759 	 * immediately, even if we have more pending.
760 	 */
761 	dptr = NULL;
762 
763 	/*
764 	 * Now process all the entries, sending them to the driver.
765 	 */
766 	queued = 0;
767 	while (!list_empty(&rq_list)) {
768 		struct blk_mq_queue_data bd;
769 		int ret;
770 
771 		rq = list_first_entry(&rq_list, struct request, queuelist);
772 		list_del_init(&rq->queuelist);
773 
774 		bd.rq = rq;
775 		bd.list = dptr;
776 		bd.last = list_empty(&rq_list);
777 
778 		ret = q->mq_ops->queue_rq(hctx, &bd);
779 		switch (ret) {
780 		case BLK_MQ_RQ_QUEUE_OK:
781 			queued++;
782 			continue;
783 		case BLK_MQ_RQ_QUEUE_BUSY:
784 			list_add(&rq->queuelist, &rq_list);
785 			__blk_mq_requeue_request(rq);
786 			break;
787 		default:
788 			pr_err("blk-mq: bad return on queue: %d\n", ret);
789 		case BLK_MQ_RQ_QUEUE_ERROR:
790 			rq->errors = -EIO;
791 			blk_mq_end_request(rq, rq->errors);
792 			break;
793 		}
794 
795 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
796 			break;
797 
798 		/*
799 		 * We've done the first request. If we have more than 1
800 		 * left in the list, set dptr to defer issue.
801 		 */
802 		if (!dptr && rq_list.next != rq_list.prev)
803 			dptr = &driver_list;
804 	}
805 
806 	if (!queued)
807 		hctx->dispatched[0]++;
808 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
809 		hctx->dispatched[ilog2(queued) + 1]++;
810 
811 	/*
812 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
813 	 * that is where we will continue on next queue run.
814 	 */
815 	if (!list_empty(&rq_list)) {
816 		spin_lock(&hctx->lock);
817 		list_splice(&rq_list, &hctx->dispatch);
818 		spin_unlock(&hctx->lock);
819 		/*
820 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
821 		 * it's possible the queue is stopped and restarted again
822 		 * before this. Queue restart will dispatch requests. And since
823 		 * requests in rq_list aren't added into hctx->dispatch yet,
824 		 * the requests in rq_list might get lost.
825 		 *
826 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
827 		 **/
828 		blk_mq_run_hw_queue(hctx, true);
829 	}
830 }
831 
832 /*
833  * It'd be great if the workqueue API had a way to pass
834  * in a mask and had some smarts for more clever placement.
835  * For now we just round-robin here, switching for every
836  * BLK_MQ_CPU_WORK_BATCH queued items.
837  */
838 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
839 {
840 	if (hctx->queue->nr_hw_queues == 1)
841 		return WORK_CPU_UNBOUND;
842 
843 	if (--hctx->next_cpu_batch <= 0) {
844 		int cpu = hctx->next_cpu, next_cpu;
845 
846 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
847 		if (next_cpu >= nr_cpu_ids)
848 			next_cpu = cpumask_first(hctx->cpumask);
849 
850 		hctx->next_cpu = next_cpu;
851 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
852 
853 		return cpu;
854 	}
855 
856 	return hctx->next_cpu;
857 }
858 
859 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
860 {
861 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
862 	    !blk_mq_hw_queue_mapped(hctx)))
863 		return;
864 
865 	if (!async) {
866 		int cpu = get_cpu();
867 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
868 			__blk_mq_run_hw_queue(hctx);
869 			put_cpu();
870 			return;
871 		}
872 
873 		put_cpu();
874 	}
875 
876 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
877 			&hctx->run_work, 0);
878 }
879 
880 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
881 {
882 	struct blk_mq_hw_ctx *hctx;
883 	int i;
884 
885 	queue_for_each_hw_ctx(q, hctx, i) {
886 		if ((!blk_mq_hctx_has_pending(hctx) &&
887 		    list_empty_careful(&hctx->dispatch)) ||
888 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
889 			continue;
890 
891 		blk_mq_run_hw_queue(hctx, async);
892 	}
893 }
894 EXPORT_SYMBOL(blk_mq_run_hw_queues);
895 
896 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
897 {
898 	cancel_delayed_work(&hctx->run_work);
899 	cancel_delayed_work(&hctx->delay_work);
900 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
901 }
902 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
903 
904 void blk_mq_stop_hw_queues(struct request_queue *q)
905 {
906 	struct blk_mq_hw_ctx *hctx;
907 	int i;
908 
909 	queue_for_each_hw_ctx(q, hctx, i)
910 		blk_mq_stop_hw_queue(hctx);
911 }
912 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
913 
914 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
915 {
916 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
917 
918 	blk_mq_run_hw_queue(hctx, false);
919 }
920 EXPORT_SYMBOL(blk_mq_start_hw_queue);
921 
922 void blk_mq_start_hw_queues(struct request_queue *q)
923 {
924 	struct blk_mq_hw_ctx *hctx;
925 	int i;
926 
927 	queue_for_each_hw_ctx(q, hctx, i)
928 		blk_mq_start_hw_queue(hctx);
929 }
930 EXPORT_SYMBOL(blk_mq_start_hw_queues);
931 
932 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
933 {
934 	struct blk_mq_hw_ctx *hctx;
935 	int i;
936 
937 	queue_for_each_hw_ctx(q, hctx, i) {
938 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
939 			continue;
940 
941 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
942 		blk_mq_run_hw_queue(hctx, async);
943 	}
944 }
945 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
946 
947 static void blk_mq_run_work_fn(struct work_struct *work)
948 {
949 	struct blk_mq_hw_ctx *hctx;
950 
951 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
952 
953 	__blk_mq_run_hw_queue(hctx);
954 }
955 
956 static void blk_mq_delay_work_fn(struct work_struct *work)
957 {
958 	struct blk_mq_hw_ctx *hctx;
959 
960 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
961 
962 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
963 		__blk_mq_run_hw_queue(hctx);
964 }
965 
966 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
967 {
968 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
969 		return;
970 
971 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
972 			&hctx->delay_work, msecs_to_jiffies(msecs));
973 }
974 EXPORT_SYMBOL(blk_mq_delay_queue);
975 
976 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
977 					    struct blk_mq_ctx *ctx,
978 					    struct request *rq,
979 					    bool at_head)
980 {
981 	trace_block_rq_insert(hctx->queue, rq);
982 
983 	if (at_head)
984 		list_add(&rq->queuelist, &ctx->rq_list);
985 	else
986 		list_add_tail(&rq->queuelist, &ctx->rq_list);
987 }
988 
989 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
990 				    struct request *rq, bool at_head)
991 {
992 	struct blk_mq_ctx *ctx = rq->mq_ctx;
993 
994 	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
995 	blk_mq_hctx_mark_pending(hctx, ctx);
996 }
997 
998 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
999 		bool async)
1000 {
1001 	struct request_queue *q = rq->q;
1002 	struct blk_mq_hw_ctx *hctx;
1003 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1004 
1005 	current_ctx = blk_mq_get_ctx(q);
1006 	if (!cpu_online(ctx->cpu))
1007 		rq->mq_ctx = ctx = current_ctx;
1008 
1009 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1010 
1011 	spin_lock(&ctx->lock);
1012 	__blk_mq_insert_request(hctx, rq, at_head);
1013 	spin_unlock(&ctx->lock);
1014 
1015 	if (run_queue)
1016 		blk_mq_run_hw_queue(hctx, async);
1017 
1018 	blk_mq_put_ctx(current_ctx);
1019 }
1020 
1021 static void blk_mq_insert_requests(struct request_queue *q,
1022 				     struct blk_mq_ctx *ctx,
1023 				     struct list_head *list,
1024 				     int depth,
1025 				     bool from_schedule)
1026 
1027 {
1028 	struct blk_mq_hw_ctx *hctx;
1029 	struct blk_mq_ctx *current_ctx;
1030 
1031 	trace_block_unplug(q, depth, !from_schedule);
1032 
1033 	current_ctx = blk_mq_get_ctx(q);
1034 
1035 	if (!cpu_online(ctx->cpu))
1036 		ctx = current_ctx;
1037 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1038 
1039 	/*
1040 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1041 	 * offline now
1042 	 */
1043 	spin_lock(&ctx->lock);
1044 	while (!list_empty(list)) {
1045 		struct request *rq;
1046 
1047 		rq = list_first_entry(list, struct request, queuelist);
1048 		list_del_init(&rq->queuelist);
1049 		rq->mq_ctx = ctx;
1050 		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1051 	}
1052 	blk_mq_hctx_mark_pending(hctx, ctx);
1053 	spin_unlock(&ctx->lock);
1054 
1055 	blk_mq_run_hw_queue(hctx, from_schedule);
1056 	blk_mq_put_ctx(current_ctx);
1057 }
1058 
1059 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1060 {
1061 	struct request *rqa = container_of(a, struct request, queuelist);
1062 	struct request *rqb = container_of(b, struct request, queuelist);
1063 
1064 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1065 		 (rqa->mq_ctx == rqb->mq_ctx &&
1066 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1067 }
1068 
1069 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1070 {
1071 	struct blk_mq_ctx *this_ctx;
1072 	struct request_queue *this_q;
1073 	struct request *rq;
1074 	LIST_HEAD(list);
1075 	LIST_HEAD(ctx_list);
1076 	unsigned int depth;
1077 
1078 	list_splice_init(&plug->mq_list, &list);
1079 
1080 	list_sort(NULL, &list, plug_ctx_cmp);
1081 
1082 	this_q = NULL;
1083 	this_ctx = NULL;
1084 	depth = 0;
1085 
1086 	while (!list_empty(&list)) {
1087 		rq = list_entry_rq(list.next);
1088 		list_del_init(&rq->queuelist);
1089 		BUG_ON(!rq->q);
1090 		if (rq->mq_ctx != this_ctx) {
1091 			if (this_ctx) {
1092 				blk_mq_insert_requests(this_q, this_ctx,
1093 							&ctx_list, depth,
1094 							from_schedule);
1095 			}
1096 
1097 			this_ctx = rq->mq_ctx;
1098 			this_q = rq->q;
1099 			depth = 0;
1100 		}
1101 
1102 		depth++;
1103 		list_add_tail(&rq->queuelist, &ctx_list);
1104 	}
1105 
1106 	/*
1107 	 * If 'this_ctx' is set, we know we have entries to complete
1108 	 * on 'ctx_list'. Do those.
1109 	 */
1110 	if (this_ctx) {
1111 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1112 				       from_schedule);
1113 	}
1114 }
1115 
1116 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1117 {
1118 	init_request_from_bio(rq, bio);
1119 
1120 	if (blk_do_io_stat(rq))
1121 		blk_account_io_start(rq, 1);
1122 }
1123 
1124 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1125 {
1126 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1127 		!blk_queue_nomerges(hctx->queue);
1128 }
1129 
1130 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1131 					 struct blk_mq_ctx *ctx,
1132 					 struct request *rq, struct bio *bio)
1133 {
1134 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1135 		blk_mq_bio_to_request(rq, bio);
1136 		spin_lock(&ctx->lock);
1137 insert_rq:
1138 		__blk_mq_insert_request(hctx, rq, false);
1139 		spin_unlock(&ctx->lock);
1140 		return false;
1141 	} else {
1142 		struct request_queue *q = hctx->queue;
1143 
1144 		spin_lock(&ctx->lock);
1145 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1146 			blk_mq_bio_to_request(rq, bio);
1147 			goto insert_rq;
1148 		}
1149 
1150 		spin_unlock(&ctx->lock);
1151 		__blk_mq_free_request(hctx, ctx, rq);
1152 		return true;
1153 	}
1154 }
1155 
1156 struct blk_map_ctx {
1157 	struct blk_mq_hw_ctx *hctx;
1158 	struct blk_mq_ctx *ctx;
1159 };
1160 
1161 static struct request *blk_mq_map_request(struct request_queue *q,
1162 					  struct bio *bio,
1163 					  struct blk_map_ctx *data)
1164 {
1165 	struct blk_mq_hw_ctx *hctx;
1166 	struct blk_mq_ctx *ctx;
1167 	struct request *rq;
1168 	int rw = bio_data_dir(bio);
1169 	struct blk_mq_alloc_data alloc_data;
1170 
1171 	blk_queue_enter_live(q);
1172 	ctx = blk_mq_get_ctx(q);
1173 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1174 
1175 	if (rw_is_sync(bio->bi_rw))
1176 		rw |= REQ_SYNC;
1177 
1178 	trace_block_getrq(q, bio, rw);
1179 	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1180 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1181 	if (unlikely(!rq)) {
1182 		__blk_mq_run_hw_queue(hctx);
1183 		blk_mq_put_ctx(ctx);
1184 		trace_block_sleeprq(q, bio, rw);
1185 
1186 		ctx = blk_mq_get_ctx(q);
1187 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1189 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1190 		ctx = alloc_data.ctx;
1191 		hctx = alloc_data.hctx;
1192 	}
1193 
1194 	hctx->queued++;
1195 	data->hctx = hctx;
1196 	data->ctx = ctx;
1197 	return rq;
1198 }
1199 
1200 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1201 {
1202 	int ret;
1203 	struct request_queue *q = rq->q;
1204 	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1205 			rq->mq_ctx->cpu);
1206 	struct blk_mq_queue_data bd = {
1207 		.rq = rq,
1208 		.list = NULL,
1209 		.last = 1
1210 	};
1211 	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1212 
1213 	/*
1214 	 * For OK queue, we are done. For error, kill it. Any other
1215 	 * error (busy), just add it to our list as we previously
1216 	 * would have done
1217 	 */
1218 	ret = q->mq_ops->queue_rq(hctx, &bd);
1219 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1220 		*cookie = new_cookie;
1221 		return 0;
1222 	}
1223 
1224 	__blk_mq_requeue_request(rq);
1225 
1226 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1227 		*cookie = BLK_QC_T_NONE;
1228 		rq->errors = -EIO;
1229 		blk_mq_end_request(rq, rq->errors);
1230 		return 0;
1231 	}
1232 
1233 	return -1;
1234 }
1235 
1236 /*
1237  * Multiple hardware queue variant. This will not use per-process plugs,
1238  * but will attempt to bypass the hctx queueing if we can go straight to
1239  * hardware for SYNC IO.
1240  */
1241 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1242 {
1243 	const int is_sync = rw_is_sync(bio->bi_rw);
1244 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1245 	struct blk_map_ctx data;
1246 	struct request *rq;
1247 	unsigned int request_count = 0;
1248 	struct blk_plug *plug;
1249 	struct request *same_queue_rq = NULL;
1250 	blk_qc_t cookie;
1251 
1252 	blk_queue_bounce(q, &bio);
1253 
1254 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1255 		bio_io_error(bio);
1256 		return BLK_QC_T_NONE;
1257 	}
1258 
1259 	blk_queue_split(q, &bio, q->bio_split);
1260 
1261 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1262 		if (blk_attempt_plug_merge(q, bio, &request_count,
1263 					   &same_queue_rq))
1264 			return BLK_QC_T_NONE;
1265 	} else
1266 		request_count = blk_plug_queued_count(q);
1267 
1268 	rq = blk_mq_map_request(q, bio, &data);
1269 	if (unlikely(!rq))
1270 		return BLK_QC_T_NONE;
1271 
1272 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1273 
1274 	if (unlikely(is_flush_fua)) {
1275 		blk_mq_bio_to_request(rq, bio);
1276 		blk_insert_flush(rq);
1277 		goto run_queue;
1278 	}
1279 
1280 	plug = current->plug;
1281 	/*
1282 	 * If the driver supports defer issued based on 'last', then
1283 	 * queue it up like normal since we can potentially save some
1284 	 * CPU this way.
1285 	 */
1286 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1287 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1288 		struct request *old_rq = NULL;
1289 
1290 		blk_mq_bio_to_request(rq, bio);
1291 
1292 		/*
1293 		 * We do limited pluging. If the bio can be merged, do that.
1294 		 * Otherwise the existing request in the plug list will be
1295 		 * issued. So the plug list will have one request at most
1296 		 */
1297 		if (plug) {
1298 			/*
1299 			 * The plug list might get flushed before this. If that
1300 			 * happens, same_queue_rq is invalid and plug list is
1301 			 * empty
1302 			 */
1303 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1304 				old_rq = same_queue_rq;
1305 				list_del_init(&old_rq->queuelist);
1306 			}
1307 			list_add_tail(&rq->queuelist, &plug->mq_list);
1308 		} else /* is_sync */
1309 			old_rq = rq;
1310 		blk_mq_put_ctx(data.ctx);
1311 		if (!old_rq)
1312 			goto done;
1313 		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1314 			goto done;
1315 		blk_mq_insert_request(old_rq, false, true, true);
1316 		goto done;
1317 	}
1318 
1319 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1320 		/*
1321 		 * For a SYNC request, send it to the hardware immediately. For
1322 		 * an ASYNC request, just ensure that we run it later on. The
1323 		 * latter allows for merging opportunities and more efficient
1324 		 * dispatching.
1325 		 */
1326 run_queue:
1327 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1328 	}
1329 	blk_mq_put_ctx(data.ctx);
1330 done:
1331 	return cookie;
1332 }
1333 
1334 /*
1335  * Single hardware queue variant. This will attempt to use any per-process
1336  * plug for merging and IO deferral.
1337  */
1338 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1339 {
1340 	const int is_sync = rw_is_sync(bio->bi_rw);
1341 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1342 	struct blk_plug *plug;
1343 	unsigned int request_count = 0;
1344 	struct blk_map_ctx data;
1345 	struct request *rq;
1346 	blk_qc_t cookie;
1347 
1348 	blk_queue_bounce(q, &bio);
1349 
1350 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351 		bio_io_error(bio);
1352 		return BLK_QC_T_NONE;
1353 	}
1354 
1355 	blk_queue_split(q, &bio, q->bio_split);
1356 
1357 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358 	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359 		return BLK_QC_T_NONE;
1360 
1361 	rq = blk_mq_map_request(q, bio, &data);
1362 	if (unlikely(!rq))
1363 		return BLK_QC_T_NONE;
1364 
1365 	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1366 
1367 	if (unlikely(is_flush_fua)) {
1368 		blk_mq_bio_to_request(rq, bio);
1369 		blk_insert_flush(rq);
1370 		goto run_queue;
1371 	}
1372 
1373 	/*
1374 	 * A task plug currently exists. Since this is completely lockless,
1375 	 * utilize that to temporarily store requests until the task is
1376 	 * either done or scheduled away.
1377 	 */
1378 	plug = current->plug;
1379 	if (plug) {
1380 		blk_mq_bio_to_request(rq, bio);
1381 		if (!request_count)
1382 			trace_block_plug(q);
1383 
1384 		blk_mq_put_ctx(data.ctx);
1385 
1386 		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1387 			blk_flush_plug_list(plug, false);
1388 			trace_block_plug(q);
1389 		}
1390 
1391 		list_add_tail(&rq->queuelist, &plug->mq_list);
1392 		return cookie;
1393 	}
1394 
1395 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1396 		/*
1397 		 * For a SYNC request, send it to the hardware immediately. For
1398 		 * an ASYNC request, just ensure that we run it later on. The
1399 		 * latter allows for merging opportunities and more efficient
1400 		 * dispatching.
1401 		 */
1402 run_queue:
1403 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1404 	}
1405 
1406 	blk_mq_put_ctx(data.ctx);
1407 	return cookie;
1408 }
1409 
1410 /*
1411  * Default mapping to a software queue, since we use one per CPU.
1412  */
1413 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1414 {
1415 	return q->queue_hw_ctx[q->mq_map[cpu]];
1416 }
1417 EXPORT_SYMBOL(blk_mq_map_queue);
1418 
1419 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1420 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1421 {
1422 	struct page *page;
1423 
1424 	if (tags->rqs && set->ops->exit_request) {
1425 		int i;
1426 
1427 		for (i = 0; i < tags->nr_tags; i++) {
1428 			if (!tags->rqs[i])
1429 				continue;
1430 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1431 						hctx_idx, i);
1432 			tags->rqs[i] = NULL;
1433 		}
1434 	}
1435 
1436 	while (!list_empty(&tags->page_list)) {
1437 		page = list_first_entry(&tags->page_list, struct page, lru);
1438 		list_del_init(&page->lru);
1439 		/*
1440 		 * Remove kmemleak object previously allocated in
1441 		 * blk_mq_init_rq_map().
1442 		 */
1443 		kmemleak_free(page_address(page));
1444 		__free_pages(page, page->private);
1445 	}
1446 
1447 	kfree(tags->rqs);
1448 
1449 	blk_mq_free_tags(tags);
1450 }
1451 
1452 static size_t order_to_size(unsigned int order)
1453 {
1454 	return (size_t)PAGE_SIZE << order;
1455 }
1456 
1457 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1458 		unsigned int hctx_idx)
1459 {
1460 	struct blk_mq_tags *tags;
1461 	unsigned int i, j, entries_per_page, max_order = 4;
1462 	size_t rq_size, left;
1463 
1464 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1465 				set->numa_node,
1466 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1467 	if (!tags)
1468 		return NULL;
1469 
1470 	INIT_LIST_HEAD(&tags->page_list);
1471 
1472 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1473 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1474 				 set->numa_node);
1475 	if (!tags->rqs) {
1476 		blk_mq_free_tags(tags);
1477 		return NULL;
1478 	}
1479 
1480 	/*
1481 	 * rq_size is the size of the request plus driver payload, rounded
1482 	 * to the cacheline size
1483 	 */
1484 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1485 				cache_line_size());
1486 	left = rq_size * set->queue_depth;
1487 
1488 	for (i = 0; i < set->queue_depth; ) {
1489 		int this_order = max_order;
1490 		struct page *page;
1491 		int to_do;
1492 		void *p;
1493 
1494 		while (left < order_to_size(this_order - 1) && this_order)
1495 			this_order--;
1496 
1497 		do {
1498 			page = alloc_pages_node(set->numa_node,
1499 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1500 				this_order);
1501 			if (page)
1502 				break;
1503 			if (!this_order--)
1504 				break;
1505 			if (order_to_size(this_order) < rq_size)
1506 				break;
1507 		} while (1);
1508 
1509 		if (!page)
1510 			goto fail;
1511 
1512 		page->private = this_order;
1513 		list_add_tail(&page->lru, &tags->page_list);
1514 
1515 		p = page_address(page);
1516 		/*
1517 		 * Allow kmemleak to scan these pages as they contain pointers
1518 		 * to additional allocations like via ops->init_request().
1519 		 */
1520 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1521 		entries_per_page = order_to_size(this_order) / rq_size;
1522 		to_do = min(entries_per_page, set->queue_depth - i);
1523 		left -= to_do * rq_size;
1524 		for (j = 0; j < to_do; j++) {
1525 			tags->rqs[i] = p;
1526 			if (set->ops->init_request) {
1527 				if (set->ops->init_request(set->driver_data,
1528 						tags->rqs[i], hctx_idx, i,
1529 						set->numa_node)) {
1530 					tags->rqs[i] = NULL;
1531 					goto fail;
1532 				}
1533 			}
1534 
1535 			p += rq_size;
1536 			i++;
1537 		}
1538 	}
1539 	return tags;
1540 
1541 fail:
1542 	blk_mq_free_rq_map(set, tags, hctx_idx);
1543 	return NULL;
1544 }
1545 
1546 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1547 {
1548 	kfree(bitmap->map);
1549 }
1550 
1551 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1552 {
1553 	unsigned int bpw = 8, total, num_maps, i;
1554 
1555 	bitmap->bits_per_word = bpw;
1556 
1557 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1558 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1559 					GFP_KERNEL, node);
1560 	if (!bitmap->map)
1561 		return -ENOMEM;
1562 
1563 	total = nr_cpu_ids;
1564 	for (i = 0; i < num_maps; i++) {
1565 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1566 		total -= bitmap->map[i].depth;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1573 {
1574 	struct request_queue *q = hctx->queue;
1575 	struct blk_mq_ctx *ctx;
1576 	LIST_HEAD(tmp);
1577 
1578 	/*
1579 	 * Move ctx entries to new CPU, if this one is going away.
1580 	 */
1581 	ctx = __blk_mq_get_ctx(q, cpu);
1582 
1583 	spin_lock(&ctx->lock);
1584 	if (!list_empty(&ctx->rq_list)) {
1585 		list_splice_init(&ctx->rq_list, &tmp);
1586 		blk_mq_hctx_clear_pending(hctx, ctx);
1587 	}
1588 	spin_unlock(&ctx->lock);
1589 
1590 	if (list_empty(&tmp))
1591 		return NOTIFY_OK;
1592 
1593 	ctx = blk_mq_get_ctx(q);
1594 	spin_lock(&ctx->lock);
1595 
1596 	while (!list_empty(&tmp)) {
1597 		struct request *rq;
1598 
1599 		rq = list_first_entry(&tmp, struct request, queuelist);
1600 		rq->mq_ctx = ctx;
1601 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1602 	}
1603 
1604 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1605 	blk_mq_hctx_mark_pending(hctx, ctx);
1606 
1607 	spin_unlock(&ctx->lock);
1608 
1609 	blk_mq_run_hw_queue(hctx, true);
1610 	blk_mq_put_ctx(ctx);
1611 	return NOTIFY_OK;
1612 }
1613 
1614 static int blk_mq_hctx_notify(void *data, unsigned long action,
1615 			      unsigned int cpu)
1616 {
1617 	struct blk_mq_hw_ctx *hctx = data;
1618 
1619 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1620 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1621 
1622 	/*
1623 	 * In case of CPU online, tags may be reallocated
1624 	 * in blk_mq_map_swqueue() after mapping is updated.
1625 	 */
1626 
1627 	return NOTIFY_OK;
1628 }
1629 
1630 /* hctx->ctxs will be freed in queue's release handler */
1631 static void blk_mq_exit_hctx(struct request_queue *q,
1632 		struct blk_mq_tag_set *set,
1633 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1634 {
1635 	unsigned flush_start_tag = set->queue_depth;
1636 
1637 	blk_mq_tag_idle(hctx);
1638 
1639 	if (set->ops->exit_request)
1640 		set->ops->exit_request(set->driver_data,
1641 				       hctx->fq->flush_rq, hctx_idx,
1642 				       flush_start_tag + hctx_idx);
1643 
1644 	if (set->ops->exit_hctx)
1645 		set->ops->exit_hctx(hctx, hctx_idx);
1646 
1647 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1648 	blk_free_flush_queue(hctx->fq);
1649 	blk_mq_free_bitmap(&hctx->ctx_map);
1650 }
1651 
1652 static void blk_mq_exit_hw_queues(struct request_queue *q,
1653 		struct blk_mq_tag_set *set, int nr_queue)
1654 {
1655 	struct blk_mq_hw_ctx *hctx;
1656 	unsigned int i;
1657 
1658 	queue_for_each_hw_ctx(q, hctx, i) {
1659 		if (i == nr_queue)
1660 			break;
1661 		blk_mq_exit_hctx(q, set, hctx, i);
1662 	}
1663 }
1664 
1665 static void blk_mq_free_hw_queues(struct request_queue *q,
1666 		struct blk_mq_tag_set *set)
1667 {
1668 	struct blk_mq_hw_ctx *hctx;
1669 	unsigned int i;
1670 
1671 	queue_for_each_hw_ctx(q, hctx, i)
1672 		free_cpumask_var(hctx->cpumask);
1673 }
1674 
1675 static int blk_mq_init_hctx(struct request_queue *q,
1676 		struct blk_mq_tag_set *set,
1677 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1678 {
1679 	int node;
1680 	unsigned flush_start_tag = set->queue_depth;
1681 
1682 	node = hctx->numa_node;
1683 	if (node == NUMA_NO_NODE)
1684 		node = hctx->numa_node = set->numa_node;
1685 
1686 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1687 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1688 	spin_lock_init(&hctx->lock);
1689 	INIT_LIST_HEAD(&hctx->dispatch);
1690 	hctx->queue = q;
1691 	hctx->queue_num = hctx_idx;
1692 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1693 
1694 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1695 					blk_mq_hctx_notify, hctx);
1696 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1697 
1698 	hctx->tags = set->tags[hctx_idx];
1699 
1700 	/*
1701 	 * Allocate space for all possible cpus to avoid allocation at
1702 	 * runtime
1703 	 */
1704 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1705 					GFP_KERNEL, node);
1706 	if (!hctx->ctxs)
1707 		goto unregister_cpu_notifier;
1708 
1709 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1710 		goto free_ctxs;
1711 
1712 	hctx->nr_ctx = 0;
1713 
1714 	if (set->ops->init_hctx &&
1715 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1716 		goto free_bitmap;
1717 
1718 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1719 	if (!hctx->fq)
1720 		goto exit_hctx;
1721 
1722 	if (set->ops->init_request &&
1723 	    set->ops->init_request(set->driver_data,
1724 				   hctx->fq->flush_rq, hctx_idx,
1725 				   flush_start_tag + hctx_idx, node))
1726 		goto free_fq;
1727 
1728 	return 0;
1729 
1730  free_fq:
1731 	kfree(hctx->fq);
1732  exit_hctx:
1733 	if (set->ops->exit_hctx)
1734 		set->ops->exit_hctx(hctx, hctx_idx);
1735  free_bitmap:
1736 	blk_mq_free_bitmap(&hctx->ctx_map);
1737  free_ctxs:
1738 	kfree(hctx->ctxs);
1739  unregister_cpu_notifier:
1740 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1741 
1742 	return -1;
1743 }
1744 
1745 static int blk_mq_init_hw_queues(struct request_queue *q,
1746 		struct blk_mq_tag_set *set)
1747 {
1748 	struct blk_mq_hw_ctx *hctx;
1749 	unsigned int i;
1750 
1751 	/*
1752 	 * Initialize hardware queues
1753 	 */
1754 	queue_for_each_hw_ctx(q, hctx, i) {
1755 		if (blk_mq_init_hctx(q, set, hctx, i))
1756 			break;
1757 	}
1758 
1759 	if (i == q->nr_hw_queues)
1760 		return 0;
1761 
1762 	/*
1763 	 * Init failed
1764 	 */
1765 	blk_mq_exit_hw_queues(q, set, i);
1766 
1767 	return 1;
1768 }
1769 
1770 static void blk_mq_init_cpu_queues(struct request_queue *q,
1771 				   unsigned int nr_hw_queues)
1772 {
1773 	unsigned int i;
1774 
1775 	for_each_possible_cpu(i) {
1776 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1777 		struct blk_mq_hw_ctx *hctx;
1778 
1779 		memset(__ctx, 0, sizeof(*__ctx));
1780 		__ctx->cpu = i;
1781 		spin_lock_init(&__ctx->lock);
1782 		INIT_LIST_HEAD(&__ctx->rq_list);
1783 		__ctx->queue = q;
1784 
1785 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1786 		if (!cpu_online(i))
1787 			continue;
1788 
1789 		hctx = q->mq_ops->map_queue(q, i);
1790 
1791 		/*
1792 		 * Set local node, IFF we have more than one hw queue. If
1793 		 * not, we remain on the home node of the device
1794 		 */
1795 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1796 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1797 	}
1798 }
1799 
1800 static void blk_mq_map_swqueue(struct request_queue *q,
1801 			       const struct cpumask *online_mask)
1802 {
1803 	unsigned int i;
1804 	struct blk_mq_hw_ctx *hctx;
1805 	struct blk_mq_ctx *ctx;
1806 	struct blk_mq_tag_set *set = q->tag_set;
1807 
1808 	/*
1809 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1810 	 */
1811 	mutex_lock(&q->sysfs_lock);
1812 
1813 	queue_for_each_hw_ctx(q, hctx, i) {
1814 		cpumask_clear(hctx->cpumask);
1815 		hctx->nr_ctx = 0;
1816 	}
1817 
1818 	/*
1819 	 * Map software to hardware queues
1820 	 */
1821 	queue_for_each_ctx(q, ctx, i) {
1822 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1823 		if (!cpumask_test_cpu(i, online_mask))
1824 			continue;
1825 
1826 		hctx = q->mq_ops->map_queue(q, i);
1827 		cpumask_set_cpu(i, hctx->cpumask);
1828 		ctx->index_hw = hctx->nr_ctx;
1829 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1830 	}
1831 
1832 	mutex_unlock(&q->sysfs_lock);
1833 
1834 	queue_for_each_hw_ctx(q, hctx, i) {
1835 		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1836 
1837 		/*
1838 		 * If no software queues are mapped to this hardware queue,
1839 		 * disable it and free the request entries.
1840 		 */
1841 		if (!hctx->nr_ctx) {
1842 			if (set->tags[i]) {
1843 				blk_mq_free_rq_map(set, set->tags[i], i);
1844 				set->tags[i] = NULL;
1845 			}
1846 			hctx->tags = NULL;
1847 			continue;
1848 		}
1849 
1850 		/* unmapped hw queue can be remapped after CPU topo changed */
1851 		if (!set->tags[i])
1852 			set->tags[i] = blk_mq_init_rq_map(set, i);
1853 		hctx->tags = set->tags[i];
1854 		WARN_ON(!hctx->tags);
1855 
1856 		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1857 		/*
1858 		 * Set the map size to the number of mapped software queues.
1859 		 * This is more accurate and more efficient than looping
1860 		 * over all possibly mapped software queues.
1861 		 */
1862 		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1863 
1864 		/*
1865 		 * Initialize batch roundrobin counts
1866 		 */
1867 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1868 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1869 	}
1870 }
1871 
1872 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1873 {
1874 	struct blk_mq_hw_ctx *hctx;
1875 	int i;
1876 
1877 	queue_for_each_hw_ctx(q, hctx, i) {
1878 		if (shared)
1879 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1880 		else
1881 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1882 	}
1883 }
1884 
1885 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1886 {
1887 	struct request_queue *q;
1888 
1889 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1890 		blk_mq_freeze_queue(q);
1891 		queue_set_hctx_shared(q, shared);
1892 		blk_mq_unfreeze_queue(q);
1893 	}
1894 }
1895 
1896 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1897 {
1898 	struct blk_mq_tag_set *set = q->tag_set;
1899 
1900 	mutex_lock(&set->tag_list_lock);
1901 	list_del_init(&q->tag_set_list);
1902 	if (list_is_singular(&set->tag_list)) {
1903 		/* just transitioned to unshared */
1904 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1905 		/* update existing queue */
1906 		blk_mq_update_tag_set_depth(set, false);
1907 	}
1908 	mutex_unlock(&set->tag_list_lock);
1909 }
1910 
1911 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1912 				     struct request_queue *q)
1913 {
1914 	q->tag_set = set;
1915 
1916 	mutex_lock(&set->tag_list_lock);
1917 
1918 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1919 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1920 		set->flags |= BLK_MQ_F_TAG_SHARED;
1921 		/* update existing queue */
1922 		blk_mq_update_tag_set_depth(set, true);
1923 	}
1924 	if (set->flags & BLK_MQ_F_TAG_SHARED)
1925 		queue_set_hctx_shared(q, true);
1926 	list_add_tail(&q->tag_set_list, &set->tag_list);
1927 
1928 	mutex_unlock(&set->tag_list_lock);
1929 }
1930 
1931 /*
1932  * It is the actual release handler for mq, but we do it from
1933  * request queue's release handler for avoiding use-after-free
1934  * and headache because q->mq_kobj shouldn't have been introduced,
1935  * but we can't group ctx/kctx kobj without it.
1936  */
1937 void blk_mq_release(struct request_queue *q)
1938 {
1939 	struct blk_mq_hw_ctx *hctx;
1940 	unsigned int i;
1941 
1942 	/* hctx kobj stays in hctx */
1943 	queue_for_each_hw_ctx(q, hctx, i) {
1944 		if (!hctx)
1945 			continue;
1946 		kfree(hctx->ctxs);
1947 		kfree(hctx);
1948 	}
1949 
1950 	kfree(q->mq_map);
1951 	q->mq_map = NULL;
1952 
1953 	kfree(q->queue_hw_ctx);
1954 
1955 	/* ctx kobj stays in queue_ctx */
1956 	free_percpu(q->queue_ctx);
1957 }
1958 
1959 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1960 {
1961 	struct request_queue *uninit_q, *q;
1962 
1963 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1964 	if (!uninit_q)
1965 		return ERR_PTR(-ENOMEM);
1966 
1967 	q = blk_mq_init_allocated_queue(set, uninit_q);
1968 	if (IS_ERR(q))
1969 		blk_cleanup_queue(uninit_q);
1970 
1971 	return q;
1972 }
1973 EXPORT_SYMBOL(blk_mq_init_queue);
1974 
1975 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1976 						  struct request_queue *q)
1977 {
1978 	struct blk_mq_hw_ctx **hctxs;
1979 	struct blk_mq_ctx __percpu *ctx;
1980 	unsigned int *map;
1981 	int i;
1982 
1983 	ctx = alloc_percpu(struct blk_mq_ctx);
1984 	if (!ctx)
1985 		return ERR_PTR(-ENOMEM);
1986 
1987 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1988 			set->numa_node);
1989 
1990 	if (!hctxs)
1991 		goto err_percpu;
1992 
1993 	map = blk_mq_make_queue_map(set);
1994 	if (!map)
1995 		goto err_map;
1996 
1997 	for (i = 0; i < set->nr_hw_queues; i++) {
1998 		int node = blk_mq_hw_queue_to_node(map, i);
1999 
2000 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2001 					GFP_KERNEL, node);
2002 		if (!hctxs[i])
2003 			goto err_hctxs;
2004 
2005 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2006 						node))
2007 			goto err_hctxs;
2008 
2009 		atomic_set(&hctxs[i]->nr_active, 0);
2010 		hctxs[i]->numa_node = node;
2011 		hctxs[i]->queue_num = i;
2012 	}
2013 
2014 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2015 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2016 
2017 	q->nr_queues = nr_cpu_ids;
2018 	q->nr_hw_queues = set->nr_hw_queues;
2019 	q->mq_map = map;
2020 
2021 	q->queue_ctx = ctx;
2022 	q->queue_hw_ctx = hctxs;
2023 
2024 	q->mq_ops = set->ops;
2025 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2026 
2027 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2028 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2029 
2030 	q->sg_reserved_size = INT_MAX;
2031 
2032 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2033 	INIT_LIST_HEAD(&q->requeue_list);
2034 	spin_lock_init(&q->requeue_lock);
2035 
2036 	if (q->nr_hw_queues > 1)
2037 		blk_queue_make_request(q, blk_mq_make_request);
2038 	else
2039 		blk_queue_make_request(q, blk_sq_make_request);
2040 
2041 	/*
2042 	 * Do this after blk_queue_make_request() overrides it...
2043 	 */
2044 	q->nr_requests = set->queue_depth;
2045 
2046 	if (set->ops->complete)
2047 		blk_queue_softirq_done(q, set->ops->complete);
2048 
2049 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2050 
2051 	if (blk_mq_init_hw_queues(q, set))
2052 		goto err_hctxs;
2053 
2054 	get_online_cpus();
2055 	mutex_lock(&all_q_mutex);
2056 
2057 	list_add_tail(&q->all_q_node, &all_q_list);
2058 	blk_mq_add_queue_tag_set(set, q);
2059 	blk_mq_map_swqueue(q, cpu_online_mask);
2060 
2061 	mutex_unlock(&all_q_mutex);
2062 	put_online_cpus();
2063 
2064 	return q;
2065 
2066 err_hctxs:
2067 	kfree(map);
2068 	for (i = 0; i < set->nr_hw_queues; i++) {
2069 		if (!hctxs[i])
2070 			break;
2071 		free_cpumask_var(hctxs[i]->cpumask);
2072 		kfree(hctxs[i]);
2073 	}
2074 err_map:
2075 	kfree(hctxs);
2076 err_percpu:
2077 	free_percpu(ctx);
2078 	return ERR_PTR(-ENOMEM);
2079 }
2080 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2081 
2082 void blk_mq_free_queue(struct request_queue *q)
2083 {
2084 	struct blk_mq_tag_set	*set = q->tag_set;
2085 
2086 	mutex_lock(&all_q_mutex);
2087 	list_del_init(&q->all_q_node);
2088 	mutex_unlock(&all_q_mutex);
2089 
2090 	blk_mq_del_queue_tag_set(q);
2091 
2092 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2093 	blk_mq_free_hw_queues(q, set);
2094 }
2095 
2096 /* Basically redo blk_mq_init_queue with queue frozen */
2097 static void blk_mq_queue_reinit(struct request_queue *q,
2098 				const struct cpumask *online_mask)
2099 {
2100 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2101 
2102 	blk_mq_sysfs_unregister(q);
2103 
2104 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2105 
2106 	/*
2107 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2108 	 * we should change hctx numa_node according to new topology (this
2109 	 * involves free and re-allocate memory, worthy doing?)
2110 	 */
2111 
2112 	blk_mq_map_swqueue(q, online_mask);
2113 
2114 	blk_mq_sysfs_register(q);
2115 }
2116 
2117 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2118 				      unsigned long action, void *hcpu)
2119 {
2120 	struct request_queue *q;
2121 	int cpu = (unsigned long)hcpu;
2122 	/*
2123 	 * New online cpumask which is going to be set in this hotplug event.
2124 	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2125 	 * one-by-one and dynamically allocating this could result in a failure.
2126 	 */
2127 	static struct cpumask online_new;
2128 
2129 	/*
2130 	 * Before hotadded cpu starts handling requests, new mappings must
2131 	 * be established.  Otherwise, these requests in hw queue might
2132 	 * never be dispatched.
2133 	 *
2134 	 * For example, there is a single hw queue (hctx) and two CPU queues
2135 	 * (ctx0 for CPU0, and ctx1 for CPU1).
2136 	 *
2137 	 * Now CPU1 is just onlined and a request is inserted into
2138 	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2139 	 * still zero.
2140 	 *
2141 	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2142 	 * set in pending bitmap and tries to retrieve requests in
2143 	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2144 	 * so the request in ctx1->rq_list is ignored.
2145 	 */
2146 	switch (action & ~CPU_TASKS_FROZEN) {
2147 	case CPU_DEAD:
2148 	case CPU_UP_CANCELED:
2149 		cpumask_copy(&online_new, cpu_online_mask);
2150 		break;
2151 	case CPU_UP_PREPARE:
2152 		cpumask_copy(&online_new, cpu_online_mask);
2153 		cpumask_set_cpu(cpu, &online_new);
2154 		break;
2155 	default:
2156 		return NOTIFY_OK;
2157 	}
2158 
2159 	mutex_lock(&all_q_mutex);
2160 
2161 	/*
2162 	 * We need to freeze and reinit all existing queues.  Freezing
2163 	 * involves synchronous wait for an RCU grace period and doing it
2164 	 * one by one may take a long time.  Start freezing all queues in
2165 	 * one swoop and then wait for the completions so that freezing can
2166 	 * take place in parallel.
2167 	 */
2168 	list_for_each_entry(q, &all_q_list, all_q_node)
2169 		blk_mq_freeze_queue_start(q);
2170 	list_for_each_entry(q, &all_q_list, all_q_node) {
2171 		blk_mq_freeze_queue_wait(q);
2172 
2173 		/*
2174 		 * timeout handler can't touch hw queue during the
2175 		 * reinitialization
2176 		 */
2177 		del_timer_sync(&q->timeout);
2178 	}
2179 
2180 	list_for_each_entry(q, &all_q_list, all_q_node)
2181 		blk_mq_queue_reinit(q, &online_new);
2182 
2183 	list_for_each_entry(q, &all_q_list, all_q_node)
2184 		blk_mq_unfreeze_queue(q);
2185 
2186 	mutex_unlock(&all_q_mutex);
2187 	return NOTIFY_OK;
2188 }
2189 
2190 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2191 {
2192 	int i;
2193 
2194 	for (i = 0; i < set->nr_hw_queues; i++) {
2195 		set->tags[i] = blk_mq_init_rq_map(set, i);
2196 		if (!set->tags[i])
2197 			goto out_unwind;
2198 	}
2199 
2200 	return 0;
2201 
2202 out_unwind:
2203 	while (--i >= 0)
2204 		blk_mq_free_rq_map(set, set->tags[i], i);
2205 
2206 	return -ENOMEM;
2207 }
2208 
2209 /*
2210  * Allocate the request maps associated with this tag_set. Note that this
2211  * may reduce the depth asked for, if memory is tight. set->queue_depth
2212  * will be updated to reflect the allocated depth.
2213  */
2214 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2215 {
2216 	unsigned int depth;
2217 	int err;
2218 
2219 	depth = set->queue_depth;
2220 	do {
2221 		err = __blk_mq_alloc_rq_maps(set);
2222 		if (!err)
2223 			break;
2224 
2225 		set->queue_depth >>= 1;
2226 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2227 			err = -ENOMEM;
2228 			break;
2229 		}
2230 	} while (set->queue_depth);
2231 
2232 	if (!set->queue_depth || err) {
2233 		pr_err("blk-mq: failed to allocate request map\n");
2234 		return -ENOMEM;
2235 	}
2236 
2237 	if (depth != set->queue_depth)
2238 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2239 						depth, set->queue_depth);
2240 
2241 	return 0;
2242 }
2243 
2244 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2245 {
2246 	return tags->cpumask;
2247 }
2248 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2249 
2250 /*
2251  * Alloc a tag set to be associated with one or more request queues.
2252  * May fail with EINVAL for various error conditions. May adjust the
2253  * requested depth down, if if it too large. In that case, the set
2254  * value will be stored in set->queue_depth.
2255  */
2256 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2257 {
2258 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2259 
2260 	if (!set->nr_hw_queues)
2261 		return -EINVAL;
2262 	if (!set->queue_depth)
2263 		return -EINVAL;
2264 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2265 		return -EINVAL;
2266 
2267 	if (!set->ops->queue_rq || !set->ops->map_queue)
2268 		return -EINVAL;
2269 
2270 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2271 		pr_info("blk-mq: reduced tag depth to %u\n",
2272 			BLK_MQ_MAX_DEPTH);
2273 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2274 	}
2275 
2276 	/*
2277 	 * If a crashdump is active, then we are potentially in a very
2278 	 * memory constrained environment. Limit us to 1 queue and
2279 	 * 64 tags to prevent using too much memory.
2280 	 */
2281 	if (is_kdump_kernel()) {
2282 		set->nr_hw_queues = 1;
2283 		set->queue_depth = min(64U, set->queue_depth);
2284 	}
2285 
2286 	set->tags = kmalloc_node(set->nr_hw_queues *
2287 				 sizeof(struct blk_mq_tags *),
2288 				 GFP_KERNEL, set->numa_node);
2289 	if (!set->tags)
2290 		return -ENOMEM;
2291 
2292 	if (blk_mq_alloc_rq_maps(set))
2293 		goto enomem;
2294 
2295 	mutex_init(&set->tag_list_lock);
2296 	INIT_LIST_HEAD(&set->tag_list);
2297 
2298 	return 0;
2299 enomem:
2300 	kfree(set->tags);
2301 	set->tags = NULL;
2302 	return -ENOMEM;
2303 }
2304 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2305 
2306 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2307 {
2308 	int i;
2309 
2310 	for (i = 0; i < set->nr_hw_queues; i++) {
2311 		if (set->tags[i])
2312 			blk_mq_free_rq_map(set, set->tags[i], i);
2313 	}
2314 
2315 	kfree(set->tags);
2316 	set->tags = NULL;
2317 }
2318 EXPORT_SYMBOL(blk_mq_free_tag_set);
2319 
2320 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2321 {
2322 	struct blk_mq_tag_set *set = q->tag_set;
2323 	struct blk_mq_hw_ctx *hctx;
2324 	int i, ret;
2325 
2326 	if (!set || nr > set->queue_depth)
2327 		return -EINVAL;
2328 
2329 	ret = 0;
2330 	queue_for_each_hw_ctx(q, hctx, i) {
2331 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2332 		if (ret)
2333 			break;
2334 	}
2335 
2336 	if (!ret)
2337 		q->nr_requests = nr;
2338 
2339 	return ret;
2340 }
2341 
2342 void blk_mq_disable_hotplug(void)
2343 {
2344 	mutex_lock(&all_q_mutex);
2345 }
2346 
2347 void blk_mq_enable_hotplug(void)
2348 {
2349 	mutex_unlock(&all_q_mutex);
2350 }
2351 
2352 static int __init blk_mq_init(void)
2353 {
2354 	blk_mq_cpu_init();
2355 
2356 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2357 
2358 	return 0;
2359 }
2360 subsys_initcall(blk_mq_init);
2361