1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, unsigned int rw_flags) 163 { 164 if (blk_queue_io_stat(q)) 165 rw_flags |= REQ_IO_STAT; 166 167 INIT_LIST_HEAD(&rq->queuelist); 168 /* csd/requeue_work/fifo_time is initialized before use */ 169 rq->q = q; 170 rq->mq_ctx = ctx; 171 rq->cmd_flags |= rw_flags; 172 /* do not touch atomic flags, it needs atomic ops against the timer */ 173 rq->cpu = -1; 174 INIT_HLIST_NODE(&rq->hash); 175 RB_CLEAR_NODE(&rq->rb_node); 176 rq->rq_disk = NULL; 177 rq->part = NULL; 178 rq->start_time = jiffies; 179 #ifdef CONFIG_BLK_CGROUP 180 rq->rl = NULL; 181 set_start_time_ns(rq); 182 rq->io_start_time_ns = 0; 183 #endif 184 rq->nr_phys_segments = 0; 185 #if defined(CONFIG_BLK_DEV_INTEGRITY) 186 rq->nr_integrity_segments = 0; 187 #endif 188 rq->special = NULL; 189 /* tag was already set */ 190 rq->errors = 0; 191 192 rq->cmd = rq->__cmd; 193 194 rq->extra_len = 0; 195 rq->sense_len = 0; 196 rq->resid_len = 0; 197 rq->sense = NULL; 198 199 INIT_LIST_HEAD(&rq->timeout_list); 200 rq->timeout = 0; 201 202 rq->end_io = NULL; 203 rq->end_io_data = NULL; 204 rq->next_rq = NULL; 205 206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 207 } 208 209 static struct request * 210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 211 { 212 struct request *rq; 213 unsigned int tag; 214 215 tag = blk_mq_get_tag(data); 216 if (tag != BLK_MQ_TAG_FAIL) { 217 rq = data->hctx->tags->rqs[tag]; 218 219 if (blk_mq_tag_busy(data->hctx)) { 220 rq->cmd_flags = REQ_MQ_INFLIGHT; 221 atomic_inc(&data->hctx->nr_active); 222 } 223 224 rq->tag = tag; 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 226 return rq; 227 } 228 229 return NULL; 230 } 231 232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 233 unsigned int flags) 234 { 235 struct blk_mq_ctx *ctx; 236 struct blk_mq_hw_ctx *hctx; 237 struct request *rq; 238 struct blk_mq_alloc_data alloc_data; 239 int ret; 240 241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 242 if (ret) 243 return ERR_PTR(ret); 244 245 ctx = blk_mq_get_ctx(q); 246 hctx = q->mq_ops->map_queue(q, ctx->cpu); 247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 248 249 rq = __blk_mq_alloc_request(&alloc_data, rw); 250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) { 251 __blk_mq_run_hw_queue(hctx); 252 blk_mq_put_ctx(ctx); 253 254 ctx = blk_mq_get_ctx(q); 255 hctx = q->mq_ops->map_queue(q, ctx->cpu); 256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 ctx = alloc_data.ctx; 259 } 260 blk_mq_put_ctx(ctx); 261 if (!rq) { 262 blk_queue_exit(q); 263 return ERR_PTR(-EWOULDBLOCK); 264 } 265 return rq; 266 } 267 EXPORT_SYMBOL(blk_mq_alloc_request); 268 269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 270 struct blk_mq_ctx *ctx, struct request *rq) 271 { 272 const int tag = rq->tag; 273 struct request_queue *q = rq->q; 274 275 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 276 atomic_dec(&hctx->nr_active); 277 rq->cmd_flags = 0; 278 279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 280 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 281 blk_queue_exit(q); 282 } 283 284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 285 { 286 struct blk_mq_ctx *ctx = rq->mq_ctx; 287 288 ctx->rq_completed[rq_is_sync(rq)]++; 289 __blk_mq_free_request(hctx, ctx, rq); 290 291 } 292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 293 294 void blk_mq_free_request(struct request *rq) 295 { 296 struct blk_mq_hw_ctx *hctx; 297 struct request_queue *q = rq->q; 298 299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 300 blk_mq_free_hctx_request(hctx, rq); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_free_request); 303 304 inline void __blk_mq_end_request(struct request *rq, int error) 305 { 306 blk_account_io_done(rq); 307 308 if (rq->end_io) { 309 rq->end_io(rq, error); 310 } else { 311 if (unlikely(blk_bidi_rq(rq))) 312 blk_mq_free_request(rq->next_rq); 313 blk_mq_free_request(rq); 314 } 315 } 316 EXPORT_SYMBOL(__blk_mq_end_request); 317 318 void blk_mq_end_request(struct request *rq, int error) 319 { 320 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 321 BUG(); 322 __blk_mq_end_request(rq, error); 323 } 324 EXPORT_SYMBOL(blk_mq_end_request); 325 326 static void __blk_mq_complete_request_remote(void *data) 327 { 328 struct request *rq = data; 329 330 rq->q->softirq_done_fn(rq); 331 } 332 333 static void blk_mq_ipi_complete_request(struct request *rq) 334 { 335 struct blk_mq_ctx *ctx = rq->mq_ctx; 336 bool shared = false; 337 int cpu; 338 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 340 rq->q->softirq_done_fn(rq); 341 return; 342 } 343 344 cpu = get_cpu(); 345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 346 shared = cpus_share_cache(cpu, ctx->cpu); 347 348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 349 rq->csd.func = __blk_mq_complete_request_remote; 350 rq->csd.info = rq; 351 rq->csd.flags = 0; 352 smp_call_function_single_async(ctx->cpu, &rq->csd); 353 } else { 354 rq->q->softirq_done_fn(rq); 355 } 356 put_cpu(); 357 } 358 359 static void __blk_mq_complete_request(struct request *rq) 360 { 361 struct request_queue *q = rq->q; 362 363 if (!q->softirq_done_fn) 364 blk_mq_end_request(rq, rq->errors); 365 else 366 blk_mq_ipi_complete_request(rq); 367 } 368 369 /** 370 * blk_mq_complete_request - end I/O on a request 371 * @rq: the request being processed 372 * 373 * Description: 374 * Ends all I/O on a request. It does not handle partial completions. 375 * The actual completion happens out-of-order, through a IPI handler. 376 **/ 377 void blk_mq_complete_request(struct request *rq, int error) 378 { 379 struct request_queue *q = rq->q; 380 381 if (unlikely(blk_should_fake_timeout(q))) 382 return; 383 if (!blk_mark_rq_complete(rq)) { 384 rq->errors = error; 385 __blk_mq_complete_request(rq); 386 } 387 } 388 EXPORT_SYMBOL(blk_mq_complete_request); 389 390 int blk_mq_request_started(struct request *rq) 391 { 392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 393 } 394 EXPORT_SYMBOL_GPL(blk_mq_request_started); 395 396 void blk_mq_start_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 trace_block_rq_issue(q, rq); 401 402 rq->resid_len = blk_rq_bytes(rq); 403 if (unlikely(blk_bidi_rq(rq))) 404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 405 406 blk_add_timer(rq); 407 408 /* 409 * Ensure that ->deadline is visible before set the started 410 * flag and clear the completed flag. 411 */ 412 smp_mb__before_atomic(); 413 414 /* 415 * Mark us as started and clear complete. Complete might have been 416 * set if requeue raced with timeout, which then marked it as 417 * complete. So be sure to clear complete again when we start 418 * the request, otherwise we'll ignore the completion event. 419 */ 420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 424 425 if (q->dma_drain_size && blk_rq_bytes(rq)) { 426 /* 427 * Make sure space for the drain appears. We know we can do 428 * this because max_hw_segments has been adjusted to be one 429 * fewer than the device can handle. 430 */ 431 rq->nr_phys_segments++; 432 } 433 } 434 EXPORT_SYMBOL(blk_mq_start_request); 435 436 static void __blk_mq_requeue_request(struct request *rq) 437 { 438 struct request_queue *q = rq->q; 439 440 trace_block_rq_requeue(q, rq); 441 442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 443 if (q->dma_drain_size && blk_rq_bytes(rq)) 444 rq->nr_phys_segments--; 445 } 446 } 447 448 void blk_mq_requeue_request(struct request *rq) 449 { 450 __blk_mq_requeue_request(rq); 451 452 BUG_ON(blk_queued_rq(rq)); 453 blk_mq_add_to_requeue_list(rq, true); 454 } 455 EXPORT_SYMBOL(blk_mq_requeue_request); 456 457 static void blk_mq_requeue_work(struct work_struct *work) 458 { 459 struct request_queue *q = 460 container_of(work, struct request_queue, requeue_work); 461 LIST_HEAD(rq_list); 462 struct request *rq, *next; 463 unsigned long flags; 464 465 spin_lock_irqsave(&q->requeue_lock, flags); 466 list_splice_init(&q->requeue_list, &rq_list); 467 spin_unlock_irqrestore(&q->requeue_lock, flags); 468 469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 470 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 471 continue; 472 473 rq->cmd_flags &= ~REQ_SOFTBARRIER; 474 list_del_init(&rq->queuelist); 475 blk_mq_insert_request(rq, true, false, false); 476 } 477 478 while (!list_empty(&rq_list)) { 479 rq = list_entry(rq_list.next, struct request, queuelist); 480 list_del_init(&rq->queuelist); 481 blk_mq_insert_request(rq, false, false, false); 482 } 483 484 /* 485 * Use the start variant of queue running here, so that running 486 * the requeue work will kick stopped queues. 487 */ 488 blk_mq_start_hw_queues(q); 489 } 490 491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 492 { 493 struct request_queue *q = rq->q; 494 unsigned long flags; 495 496 /* 497 * We abuse this flag that is otherwise used by the I/O scheduler to 498 * request head insertation from the workqueue. 499 */ 500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 501 502 spin_lock_irqsave(&q->requeue_lock, flags); 503 if (at_head) { 504 rq->cmd_flags |= REQ_SOFTBARRIER; 505 list_add(&rq->queuelist, &q->requeue_list); 506 } else { 507 list_add_tail(&rq->queuelist, &q->requeue_list); 508 } 509 spin_unlock_irqrestore(&q->requeue_lock, flags); 510 } 511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 512 513 void blk_mq_cancel_requeue_work(struct request_queue *q) 514 { 515 cancel_work_sync(&q->requeue_work); 516 } 517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 518 519 void blk_mq_kick_requeue_list(struct request_queue *q) 520 { 521 kblockd_schedule_work(&q->requeue_work); 522 } 523 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 524 525 void blk_mq_abort_requeue_list(struct request_queue *q) 526 { 527 unsigned long flags; 528 LIST_HEAD(rq_list); 529 530 spin_lock_irqsave(&q->requeue_lock, flags); 531 list_splice_init(&q->requeue_list, &rq_list); 532 spin_unlock_irqrestore(&q->requeue_lock, flags); 533 534 while (!list_empty(&rq_list)) { 535 struct request *rq; 536 537 rq = list_first_entry(&rq_list, struct request, queuelist); 538 list_del_init(&rq->queuelist); 539 rq->errors = -EIO; 540 blk_mq_end_request(rq, rq->errors); 541 } 542 } 543 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 544 545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 546 { 547 return tags->rqs[tag]; 548 } 549 EXPORT_SYMBOL(blk_mq_tag_to_rq); 550 551 struct blk_mq_timeout_data { 552 unsigned long next; 553 unsigned int next_set; 554 }; 555 556 void blk_mq_rq_timed_out(struct request *req, bool reserved) 557 { 558 struct blk_mq_ops *ops = req->q->mq_ops; 559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 560 561 /* 562 * We know that complete is set at this point. If STARTED isn't set 563 * anymore, then the request isn't active and the "timeout" should 564 * just be ignored. This can happen due to the bitflag ordering. 565 * Timeout first checks if STARTED is set, and if it is, assumes 566 * the request is active. But if we race with completion, then 567 * we both flags will get cleared. So check here again, and ignore 568 * a timeout event with a request that isn't active. 569 */ 570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 571 return; 572 573 if (ops->timeout) 574 ret = ops->timeout(req, reserved); 575 576 switch (ret) { 577 case BLK_EH_HANDLED: 578 __blk_mq_complete_request(req); 579 break; 580 case BLK_EH_RESET_TIMER: 581 blk_add_timer(req); 582 blk_clear_rq_complete(req); 583 break; 584 case BLK_EH_NOT_HANDLED: 585 break; 586 default: 587 printk(KERN_ERR "block: bad eh return: %d\n", ret); 588 break; 589 } 590 } 591 592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 593 struct request *rq, void *priv, bool reserved) 594 { 595 struct blk_mq_timeout_data *data = priv; 596 597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 598 /* 599 * If a request wasn't started before the queue was 600 * marked dying, kill it here or it'll go unnoticed. 601 */ 602 if (unlikely(blk_queue_dying(rq->q))) 603 blk_mq_complete_request(rq, -EIO); 604 return; 605 } 606 607 if (time_after_eq(jiffies, rq->deadline)) { 608 if (!blk_mark_rq_complete(rq)) 609 blk_mq_rq_timed_out(rq, reserved); 610 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 611 data->next = rq->deadline; 612 data->next_set = 1; 613 } 614 } 615 616 static void blk_mq_timeout_work(struct work_struct *work) 617 { 618 struct request_queue *q = 619 container_of(work, struct request_queue, timeout_work); 620 struct blk_mq_timeout_data data = { 621 .next = 0, 622 .next_set = 0, 623 }; 624 int i; 625 626 if (blk_queue_enter(q, true)) 627 return; 628 629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 630 631 if (data.next_set) { 632 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 633 mod_timer(&q->timeout, data.next); 634 } else { 635 struct blk_mq_hw_ctx *hctx; 636 637 queue_for_each_hw_ctx(q, hctx, i) { 638 /* the hctx may be unmapped, so check it here */ 639 if (blk_mq_hw_queue_mapped(hctx)) 640 blk_mq_tag_idle(hctx); 641 } 642 } 643 blk_queue_exit(q); 644 } 645 646 /* 647 * Reverse check our software queue for entries that we could potentially 648 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 649 * too much time checking for merges. 650 */ 651 static bool blk_mq_attempt_merge(struct request_queue *q, 652 struct blk_mq_ctx *ctx, struct bio *bio) 653 { 654 struct request *rq; 655 int checked = 8; 656 657 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 658 int el_ret; 659 660 if (!checked--) 661 break; 662 663 if (!blk_rq_merge_ok(rq, bio)) 664 continue; 665 666 el_ret = blk_try_merge(rq, bio); 667 if (el_ret == ELEVATOR_BACK_MERGE) { 668 if (bio_attempt_back_merge(q, rq, bio)) { 669 ctx->rq_merged++; 670 return true; 671 } 672 break; 673 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 674 if (bio_attempt_front_merge(q, rq, bio)) { 675 ctx->rq_merged++; 676 return true; 677 } 678 break; 679 } 680 } 681 682 return false; 683 } 684 685 /* 686 * Process software queues that have been marked busy, splicing them 687 * to the for-dispatch 688 */ 689 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 690 { 691 struct blk_mq_ctx *ctx; 692 int i; 693 694 for (i = 0; i < hctx->ctx_map.size; i++) { 695 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 696 unsigned int off, bit; 697 698 if (!bm->word) 699 continue; 700 701 bit = 0; 702 off = i * hctx->ctx_map.bits_per_word; 703 do { 704 bit = find_next_bit(&bm->word, bm->depth, bit); 705 if (bit >= bm->depth) 706 break; 707 708 ctx = hctx->ctxs[bit + off]; 709 clear_bit(bit, &bm->word); 710 spin_lock(&ctx->lock); 711 list_splice_tail_init(&ctx->rq_list, list); 712 spin_unlock(&ctx->lock); 713 714 bit++; 715 } while (1); 716 } 717 } 718 719 /* 720 * Run this hardware queue, pulling any software queues mapped to it in. 721 * Note that this function currently has various problems around ordering 722 * of IO. In particular, we'd like FIFO behaviour on handling existing 723 * items on the hctx->dispatch list. Ignore that for now. 724 */ 725 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 726 { 727 struct request_queue *q = hctx->queue; 728 struct request *rq; 729 LIST_HEAD(rq_list); 730 LIST_HEAD(driver_list); 731 struct list_head *dptr; 732 int queued; 733 734 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 735 736 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 737 return; 738 739 hctx->run++; 740 741 /* 742 * Touch any software queue that has pending entries. 743 */ 744 flush_busy_ctxs(hctx, &rq_list); 745 746 /* 747 * If we have previous entries on our dispatch list, grab them 748 * and stuff them at the front for more fair dispatch. 749 */ 750 if (!list_empty_careful(&hctx->dispatch)) { 751 spin_lock(&hctx->lock); 752 if (!list_empty(&hctx->dispatch)) 753 list_splice_init(&hctx->dispatch, &rq_list); 754 spin_unlock(&hctx->lock); 755 } 756 757 /* 758 * Start off with dptr being NULL, so we start the first request 759 * immediately, even if we have more pending. 760 */ 761 dptr = NULL; 762 763 /* 764 * Now process all the entries, sending them to the driver. 765 */ 766 queued = 0; 767 while (!list_empty(&rq_list)) { 768 struct blk_mq_queue_data bd; 769 int ret; 770 771 rq = list_first_entry(&rq_list, struct request, queuelist); 772 list_del_init(&rq->queuelist); 773 774 bd.rq = rq; 775 bd.list = dptr; 776 bd.last = list_empty(&rq_list); 777 778 ret = q->mq_ops->queue_rq(hctx, &bd); 779 switch (ret) { 780 case BLK_MQ_RQ_QUEUE_OK: 781 queued++; 782 continue; 783 case BLK_MQ_RQ_QUEUE_BUSY: 784 list_add(&rq->queuelist, &rq_list); 785 __blk_mq_requeue_request(rq); 786 break; 787 default: 788 pr_err("blk-mq: bad return on queue: %d\n", ret); 789 case BLK_MQ_RQ_QUEUE_ERROR: 790 rq->errors = -EIO; 791 blk_mq_end_request(rq, rq->errors); 792 break; 793 } 794 795 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 796 break; 797 798 /* 799 * We've done the first request. If we have more than 1 800 * left in the list, set dptr to defer issue. 801 */ 802 if (!dptr && rq_list.next != rq_list.prev) 803 dptr = &driver_list; 804 } 805 806 if (!queued) 807 hctx->dispatched[0]++; 808 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 809 hctx->dispatched[ilog2(queued) + 1]++; 810 811 /* 812 * Any items that need requeuing? Stuff them into hctx->dispatch, 813 * that is where we will continue on next queue run. 814 */ 815 if (!list_empty(&rq_list)) { 816 spin_lock(&hctx->lock); 817 list_splice(&rq_list, &hctx->dispatch); 818 spin_unlock(&hctx->lock); 819 /* 820 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 821 * it's possible the queue is stopped and restarted again 822 * before this. Queue restart will dispatch requests. And since 823 * requests in rq_list aren't added into hctx->dispatch yet, 824 * the requests in rq_list might get lost. 825 * 826 * blk_mq_run_hw_queue() already checks the STOPPED bit 827 **/ 828 blk_mq_run_hw_queue(hctx, true); 829 } 830 } 831 832 /* 833 * It'd be great if the workqueue API had a way to pass 834 * in a mask and had some smarts for more clever placement. 835 * For now we just round-robin here, switching for every 836 * BLK_MQ_CPU_WORK_BATCH queued items. 837 */ 838 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 839 { 840 if (hctx->queue->nr_hw_queues == 1) 841 return WORK_CPU_UNBOUND; 842 843 if (--hctx->next_cpu_batch <= 0) { 844 int cpu = hctx->next_cpu, next_cpu; 845 846 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 847 if (next_cpu >= nr_cpu_ids) 848 next_cpu = cpumask_first(hctx->cpumask); 849 850 hctx->next_cpu = next_cpu; 851 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 852 853 return cpu; 854 } 855 856 return hctx->next_cpu; 857 } 858 859 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 860 { 861 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 862 !blk_mq_hw_queue_mapped(hctx))) 863 return; 864 865 if (!async) { 866 int cpu = get_cpu(); 867 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 868 __blk_mq_run_hw_queue(hctx); 869 put_cpu(); 870 return; 871 } 872 873 put_cpu(); 874 } 875 876 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 877 &hctx->run_work, 0); 878 } 879 880 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 881 { 882 struct blk_mq_hw_ctx *hctx; 883 int i; 884 885 queue_for_each_hw_ctx(q, hctx, i) { 886 if ((!blk_mq_hctx_has_pending(hctx) && 887 list_empty_careful(&hctx->dispatch)) || 888 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 889 continue; 890 891 blk_mq_run_hw_queue(hctx, async); 892 } 893 } 894 EXPORT_SYMBOL(blk_mq_run_hw_queues); 895 896 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 897 { 898 cancel_delayed_work(&hctx->run_work); 899 cancel_delayed_work(&hctx->delay_work); 900 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 901 } 902 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 903 904 void blk_mq_stop_hw_queues(struct request_queue *q) 905 { 906 struct blk_mq_hw_ctx *hctx; 907 int i; 908 909 queue_for_each_hw_ctx(q, hctx, i) 910 blk_mq_stop_hw_queue(hctx); 911 } 912 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 913 914 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 915 { 916 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 917 918 blk_mq_run_hw_queue(hctx, false); 919 } 920 EXPORT_SYMBOL(blk_mq_start_hw_queue); 921 922 void blk_mq_start_hw_queues(struct request_queue *q) 923 { 924 struct blk_mq_hw_ctx *hctx; 925 int i; 926 927 queue_for_each_hw_ctx(q, hctx, i) 928 blk_mq_start_hw_queue(hctx); 929 } 930 EXPORT_SYMBOL(blk_mq_start_hw_queues); 931 932 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 933 { 934 struct blk_mq_hw_ctx *hctx; 935 int i; 936 937 queue_for_each_hw_ctx(q, hctx, i) { 938 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 939 continue; 940 941 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 942 blk_mq_run_hw_queue(hctx, async); 943 } 944 } 945 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 946 947 static void blk_mq_run_work_fn(struct work_struct *work) 948 { 949 struct blk_mq_hw_ctx *hctx; 950 951 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 952 953 __blk_mq_run_hw_queue(hctx); 954 } 955 956 static void blk_mq_delay_work_fn(struct work_struct *work) 957 { 958 struct blk_mq_hw_ctx *hctx; 959 960 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 961 962 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 963 __blk_mq_run_hw_queue(hctx); 964 } 965 966 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 967 { 968 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 969 return; 970 971 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 972 &hctx->delay_work, msecs_to_jiffies(msecs)); 973 } 974 EXPORT_SYMBOL(blk_mq_delay_queue); 975 976 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 977 struct blk_mq_ctx *ctx, 978 struct request *rq, 979 bool at_head) 980 { 981 trace_block_rq_insert(hctx->queue, rq); 982 983 if (at_head) 984 list_add(&rq->queuelist, &ctx->rq_list); 985 else 986 list_add_tail(&rq->queuelist, &ctx->rq_list); 987 } 988 989 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 990 struct request *rq, bool at_head) 991 { 992 struct blk_mq_ctx *ctx = rq->mq_ctx; 993 994 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 995 blk_mq_hctx_mark_pending(hctx, ctx); 996 } 997 998 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 999 bool async) 1000 { 1001 struct request_queue *q = rq->q; 1002 struct blk_mq_hw_ctx *hctx; 1003 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1004 1005 current_ctx = blk_mq_get_ctx(q); 1006 if (!cpu_online(ctx->cpu)) 1007 rq->mq_ctx = ctx = current_ctx; 1008 1009 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1010 1011 spin_lock(&ctx->lock); 1012 __blk_mq_insert_request(hctx, rq, at_head); 1013 spin_unlock(&ctx->lock); 1014 1015 if (run_queue) 1016 blk_mq_run_hw_queue(hctx, async); 1017 1018 blk_mq_put_ctx(current_ctx); 1019 } 1020 1021 static void blk_mq_insert_requests(struct request_queue *q, 1022 struct blk_mq_ctx *ctx, 1023 struct list_head *list, 1024 int depth, 1025 bool from_schedule) 1026 1027 { 1028 struct blk_mq_hw_ctx *hctx; 1029 struct blk_mq_ctx *current_ctx; 1030 1031 trace_block_unplug(q, depth, !from_schedule); 1032 1033 current_ctx = blk_mq_get_ctx(q); 1034 1035 if (!cpu_online(ctx->cpu)) 1036 ctx = current_ctx; 1037 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1038 1039 /* 1040 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1041 * offline now 1042 */ 1043 spin_lock(&ctx->lock); 1044 while (!list_empty(list)) { 1045 struct request *rq; 1046 1047 rq = list_first_entry(list, struct request, queuelist); 1048 list_del_init(&rq->queuelist); 1049 rq->mq_ctx = ctx; 1050 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1051 } 1052 blk_mq_hctx_mark_pending(hctx, ctx); 1053 spin_unlock(&ctx->lock); 1054 1055 blk_mq_run_hw_queue(hctx, from_schedule); 1056 blk_mq_put_ctx(current_ctx); 1057 } 1058 1059 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1060 { 1061 struct request *rqa = container_of(a, struct request, queuelist); 1062 struct request *rqb = container_of(b, struct request, queuelist); 1063 1064 return !(rqa->mq_ctx < rqb->mq_ctx || 1065 (rqa->mq_ctx == rqb->mq_ctx && 1066 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1067 } 1068 1069 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1070 { 1071 struct blk_mq_ctx *this_ctx; 1072 struct request_queue *this_q; 1073 struct request *rq; 1074 LIST_HEAD(list); 1075 LIST_HEAD(ctx_list); 1076 unsigned int depth; 1077 1078 list_splice_init(&plug->mq_list, &list); 1079 1080 list_sort(NULL, &list, plug_ctx_cmp); 1081 1082 this_q = NULL; 1083 this_ctx = NULL; 1084 depth = 0; 1085 1086 while (!list_empty(&list)) { 1087 rq = list_entry_rq(list.next); 1088 list_del_init(&rq->queuelist); 1089 BUG_ON(!rq->q); 1090 if (rq->mq_ctx != this_ctx) { 1091 if (this_ctx) { 1092 blk_mq_insert_requests(this_q, this_ctx, 1093 &ctx_list, depth, 1094 from_schedule); 1095 } 1096 1097 this_ctx = rq->mq_ctx; 1098 this_q = rq->q; 1099 depth = 0; 1100 } 1101 1102 depth++; 1103 list_add_tail(&rq->queuelist, &ctx_list); 1104 } 1105 1106 /* 1107 * If 'this_ctx' is set, we know we have entries to complete 1108 * on 'ctx_list'. Do those. 1109 */ 1110 if (this_ctx) { 1111 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1112 from_schedule); 1113 } 1114 } 1115 1116 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1117 { 1118 init_request_from_bio(rq, bio); 1119 1120 if (blk_do_io_stat(rq)) 1121 blk_account_io_start(rq, 1); 1122 } 1123 1124 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1125 { 1126 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1127 !blk_queue_nomerges(hctx->queue); 1128 } 1129 1130 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1131 struct blk_mq_ctx *ctx, 1132 struct request *rq, struct bio *bio) 1133 { 1134 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1135 blk_mq_bio_to_request(rq, bio); 1136 spin_lock(&ctx->lock); 1137 insert_rq: 1138 __blk_mq_insert_request(hctx, rq, false); 1139 spin_unlock(&ctx->lock); 1140 return false; 1141 } else { 1142 struct request_queue *q = hctx->queue; 1143 1144 spin_lock(&ctx->lock); 1145 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1146 blk_mq_bio_to_request(rq, bio); 1147 goto insert_rq; 1148 } 1149 1150 spin_unlock(&ctx->lock); 1151 __blk_mq_free_request(hctx, ctx, rq); 1152 return true; 1153 } 1154 } 1155 1156 struct blk_map_ctx { 1157 struct blk_mq_hw_ctx *hctx; 1158 struct blk_mq_ctx *ctx; 1159 }; 1160 1161 static struct request *blk_mq_map_request(struct request_queue *q, 1162 struct bio *bio, 1163 struct blk_map_ctx *data) 1164 { 1165 struct blk_mq_hw_ctx *hctx; 1166 struct blk_mq_ctx *ctx; 1167 struct request *rq; 1168 int rw = bio_data_dir(bio); 1169 struct blk_mq_alloc_data alloc_data; 1170 1171 blk_queue_enter_live(q); 1172 ctx = blk_mq_get_ctx(q); 1173 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1174 1175 if (rw_is_sync(bio->bi_rw)) 1176 rw |= REQ_SYNC; 1177 1178 trace_block_getrq(q, bio, rw); 1179 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx); 1180 rq = __blk_mq_alloc_request(&alloc_data, rw); 1181 if (unlikely(!rq)) { 1182 __blk_mq_run_hw_queue(hctx); 1183 blk_mq_put_ctx(ctx); 1184 trace_block_sleeprq(q, bio, rw); 1185 1186 ctx = blk_mq_get_ctx(q); 1187 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1188 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx); 1189 rq = __blk_mq_alloc_request(&alloc_data, rw); 1190 ctx = alloc_data.ctx; 1191 hctx = alloc_data.hctx; 1192 } 1193 1194 hctx->queued++; 1195 data->hctx = hctx; 1196 data->ctx = ctx; 1197 return rq; 1198 } 1199 1200 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1201 { 1202 int ret; 1203 struct request_queue *q = rq->q; 1204 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1205 rq->mq_ctx->cpu); 1206 struct blk_mq_queue_data bd = { 1207 .rq = rq, 1208 .list = NULL, 1209 .last = 1 1210 }; 1211 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1212 1213 /* 1214 * For OK queue, we are done. For error, kill it. Any other 1215 * error (busy), just add it to our list as we previously 1216 * would have done 1217 */ 1218 ret = q->mq_ops->queue_rq(hctx, &bd); 1219 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1220 *cookie = new_cookie; 1221 return 0; 1222 } 1223 1224 __blk_mq_requeue_request(rq); 1225 1226 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1227 *cookie = BLK_QC_T_NONE; 1228 rq->errors = -EIO; 1229 blk_mq_end_request(rq, rq->errors); 1230 return 0; 1231 } 1232 1233 return -1; 1234 } 1235 1236 /* 1237 * Multiple hardware queue variant. This will not use per-process plugs, 1238 * but will attempt to bypass the hctx queueing if we can go straight to 1239 * hardware for SYNC IO. 1240 */ 1241 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1242 { 1243 const int is_sync = rw_is_sync(bio->bi_rw); 1244 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1245 struct blk_map_ctx data; 1246 struct request *rq; 1247 unsigned int request_count = 0; 1248 struct blk_plug *plug; 1249 struct request *same_queue_rq = NULL; 1250 blk_qc_t cookie; 1251 1252 blk_queue_bounce(q, &bio); 1253 1254 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1255 bio_io_error(bio); 1256 return BLK_QC_T_NONE; 1257 } 1258 1259 blk_queue_split(q, &bio, q->bio_split); 1260 1261 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1262 if (blk_attempt_plug_merge(q, bio, &request_count, 1263 &same_queue_rq)) 1264 return BLK_QC_T_NONE; 1265 } else 1266 request_count = blk_plug_queued_count(q); 1267 1268 rq = blk_mq_map_request(q, bio, &data); 1269 if (unlikely(!rq)) 1270 return BLK_QC_T_NONE; 1271 1272 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1273 1274 if (unlikely(is_flush_fua)) { 1275 blk_mq_bio_to_request(rq, bio); 1276 blk_insert_flush(rq); 1277 goto run_queue; 1278 } 1279 1280 plug = current->plug; 1281 /* 1282 * If the driver supports defer issued based on 'last', then 1283 * queue it up like normal since we can potentially save some 1284 * CPU this way. 1285 */ 1286 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1287 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1288 struct request *old_rq = NULL; 1289 1290 blk_mq_bio_to_request(rq, bio); 1291 1292 /* 1293 * We do limited pluging. If the bio can be merged, do that. 1294 * Otherwise the existing request in the plug list will be 1295 * issued. So the plug list will have one request at most 1296 */ 1297 if (plug) { 1298 /* 1299 * The plug list might get flushed before this. If that 1300 * happens, same_queue_rq is invalid and plug list is 1301 * empty 1302 */ 1303 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1304 old_rq = same_queue_rq; 1305 list_del_init(&old_rq->queuelist); 1306 } 1307 list_add_tail(&rq->queuelist, &plug->mq_list); 1308 } else /* is_sync */ 1309 old_rq = rq; 1310 blk_mq_put_ctx(data.ctx); 1311 if (!old_rq) 1312 goto done; 1313 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1314 goto done; 1315 blk_mq_insert_request(old_rq, false, true, true); 1316 goto done; 1317 } 1318 1319 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1320 /* 1321 * For a SYNC request, send it to the hardware immediately. For 1322 * an ASYNC request, just ensure that we run it later on. The 1323 * latter allows for merging opportunities and more efficient 1324 * dispatching. 1325 */ 1326 run_queue: 1327 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1328 } 1329 blk_mq_put_ctx(data.ctx); 1330 done: 1331 return cookie; 1332 } 1333 1334 /* 1335 * Single hardware queue variant. This will attempt to use any per-process 1336 * plug for merging and IO deferral. 1337 */ 1338 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1339 { 1340 const int is_sync = rw_is_sync(bio->bi_rw); 1341 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1342 struct blk_plug *plug; 1343 unsigned int request_count = 0; 1344 struct blk_map_ctx data; 1345 struct request *rq; 1346 blk_qc_t cookie; 1347 1348 blk_queue_bounce(q, &bio); 1349 1350 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1351 bio_io_error(bio); 1352 return BLK_QC_T_NONE; 1353 } 1354 1355 blk_queue_split(q, &bio, q->bio_split); 1356 1357 if (!is_flush_fua && !blk_queue_nomerges(q) && 1358 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1359 return BLK_QC_T_NONE; 1360 1361 rq = blk_mq_map_request(q, bio, &data); 1362 if (unlikely(!rq)) 1363 return BLK_QC_T_NONE; 1364 1365 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1366 1367 if (unlikely(is_flush_fua)) { 1368 blk_mq_bio_to_request(rq, bio); 1369 blk_insert_flush(rq); 1370 goto run_queue; 1371 } 1372 1373 /* 1374 * A task plug currently exists. Since this is completely lockless, 1375 * utilize that to temporarily store requests until the task is 1376 * either done or scheduled away. 1377 */ 1378 plug = current->plug; 1379 if (plug) { 1380 blk_mq_bio_to_request(rq, bio); 1381 if (!request_count) 1382 trace_block_plug(q); 1383 1384 blk_mq_put_ctx(data.ctx); 1385 1386 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1387 blk_flush_plug_list(plug, false); 1388 trace_block_plug(q); 1389 } 1390 1391 list_add_tail(&rq->queuelist, &plug->mq_list); 1392 return cookie; 1393 } 1394 1395 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1396 /* 1397 * For a SYNC request, send it to the hardware immediately. For 1398 * an ASYNC request, just ensure that we run it later on. The 1399 * latter allows for merging opportunities and more efficient 1400 * dispatching. 1401 */ 1402 run_queue: 1403 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1404 } 1405 1406 blk_mq_put_ctx(data.ctx); 1407 return cookie; 1408 } 1409 1410 /* 1411 * Default mapping to a software queue, since we use one per CPU. 1412 */ 1413 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1414 { 1415 return q->queue_hw_ctx[q->mq_map[cpu]]; 1416 } 1417 EXPORT_SYMBOL(blk_mq_map_queue); 1418 1419 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1420 struct blk_mq_tags *tags, unsigned int hctx_idx) 1421 { 1422 struct page *page; 1423 1424 if (tags->rqs && set->ops->exit_request) { 1425 int i; 1426 1427 for (i = 0; i < tags->nr_tags; i++) { 1428 if (!tags->rqs[i]) 1429 continue; 1430 set->ops->exit_request(set->driver_data, tags->rqs[i], 1431 hctx_idx, i); 1432 tags->rqs[i] = NULL; 1433 } 1434 } 1435 1436 while (!list_empty(&tags->page_list)) { 1437 page = list_first_entry(&tags->page_list, struct page, lru); 1438 list_del_init(&page->lru); 1439 /* 1440 * Remove kmemleak object previously allocated in 1441 * blk_mq_init_rq_map(). 1442 */ 1443 kmemleak_free(page_address(page)); 1444 __free_pages(page, page->private); 1445 } 1446 1447 kfree(tags->rqs); 1448 1449 blk_mq_free_tags(tags); 1450 } 1451 1452 static size_t order_to_size(unsigned int order) 1453 { 1454 return (size_t)PAGE_SIZE << order; 1455 } 1456 1457 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1458 unsigned int hctx_idx) 1459 { 1460 struct blk_mq_tags *tags; 1461 unsigned int i, j, entries_per_page, max_order = 4; 1462 size_t rq_size, left; 1463 1464 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1465 set->numa_node, 1466 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1467 if (!tags) 1468 return NULL; 1469 1470 INIT_LIST_HEAD(&tags->page_list); 1471 1472 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1473 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1474 set->numa_node); 1475 if (!tags->rqs) { 1476 blk_mq_free_tags(tags); 1477 return NULL; 1478 } 1479 1480 /* 1481 * rq_size is the size of the request plus driver payload, rounded 1482 * to the cacheline size 1483 */ 1484 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1485 cache_line_size()); 1486 left = rq_size * set->queue_depth; 1487 1488 for (i = 0; i < set->queue_depth; ) { 1489 int this_order = max_order; 1490 struct page *page; 1491 int to_do; 1492 void *p; 1493 1494 while (left < order_to_size(this_order - 1) && this_order) 1495 this_order--; 1496 1497 do { 1498 page = alloc_pages_node(set->numa_node, 1499 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1500 this_order); 1501 if (page) 1502 break; 1503 if (!this_order--) 1504 break; 1505 if (order_to_size(this_order) < rq_size) 1506 break; 1507 } while (1); 1508 1509 if (!page) 1510 goto fail; 1511 1512 page->private = this_order; 1513 list_add_tail(&page->lru, &tags->page_list); 1514 1515 p = page_address(page); 1516 /* 1517 * Allow kmemleak to scan these pages as they contain pointers 1518 * to additional allocations like via ops->init_request(). 1519 */ 1520 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1521 entries_per_page = order_to_size(this_order) / rq_size; 1522 to_do = min(entries_per_page, set->queue_depth - i); 1523 left -= to_do * rq_size; 1524 for (j = 0; j < to_do; j++) { 1525 tags->rqs[i] = p; 1526 if (set->ops->init_request) { 1527 if (set->ops->init_request(set->driver_data, 1528 tags->rqs[i], hctx_idx, i, 1529 set->numa_node)) { 1530 tags->rqs[i] = NULL; 1531 goto fail; 1532 } 1533 } 1534 1535 p += rq_size; 1536 i++; 1537 } 1538 } 1539 return tags; 1540 1541 fail: 1542 blk_mq_free_rq_map(set, tags, hctx_idx); 1543 return NULL; 1544 } 1545 1546 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1547 { 1548 kfree(bitmap->map); 1549 } 1550 1551 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1552 { 1553 unsigned int bpw = 8, total, num_maps, i; 1554 1555 bitmap->bits_per_word = bpw; 1556 1557 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1558 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1559 GFP_KERNEL, node); 1560 if (!bitmap->map) 1561 return -ENOMEM; 1562 1563 total = nr_cpu_ids; 1564 for (i = 0; i < num_maps; i++) { 1565 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1566 total -= bitmap->map[i].depth; 1567 } 1568 1569 return 0; 1570 } 1571 1572 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1573 { 1574 struct request_queue *q = hctx->queue; 1575 struct blk_mq_ctx *ctx; 1576 LIST_HEAD(tmp); 1577 1578 /* 1579 * Move ctx entries to new CPU, if this one is going away. 1580 */ 1581 ctx = __blk_mq_get_ctx(q, cpu); 1582 1583 spin_lock(&ctx->lock); 1584 if (!list_empty(&ctx->rq_list)) { 1585 list_splice_init(&ctx->rq_list, &tmp); 1586 blk_mq_hctx_clear_pending(hctx, ctx); 1587 } 1588 spin_unlock(&ctx->lock); 1589 1590 if (list_empty(&tmp)) 1591 return NOTIFY_OK; 1592 1593 ctx = blk_mq_get_ctx(q); 1594 spin_lock(&ctx->lock); 1595 1596 while (!list_empty(&tmp)) { 1597 struct request *rq; 1598 1599 rq = list_first_entry(&tmp, struct request, queuelist); 1600 rq->mq_ctx = ctx; 1601 list_move_tail(&rq->queuelist, &ctx->rq_list); 1602 } 1603 1604 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1605 blk_mq_hctx_mark_pending(hctx, ctx); 1606 1607 spin_unlock(&ctx->lock); 1608 1609 blk_mq_run_hw_queue(hctx, true); 1610 blk_mq_put_ctx(ctx); 1611 return NOTIFY_OK; 1612 } 1613 1614 static int blk_mq_hctx_notify(void *data, unsigned long action, 1615 unsigned int cpu) 1616 { 1617 struct blk_mq_hw_ctx *hctx = data; 1618 1619 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1620 return blk_mq_hctx_cpu_offline(hctx, cpu); 1621 1622 /* 1623 * In case of CPU online, tags may be reallocated 1624 * in blk_mq_map_swqueue() after mapping is updated. 1625 */ 1626 1627 return NOTIFY_OK; 1628 } 1629 1630 /* hctx->ctxs will be freed in queue's release handler */ 1631 static void blk_mq_exit_hctx(struct request_queue *q, 1632 struct blk_mq_tag_set *set, 1633 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1634 { 1635 unsigned flush_start_tag = set->queue_depth; 1636 1637 blk_mq_tag_idle(hctx); 1638 1639 if (set->ops->exit_request) 1640 set->ops->exit_request(set->driver_data, 1641 hctx->fq->flush_rq, hctx_idx, 1642 flush_start_tag + hctx_idx); 1643 1644 if (set->ops->exit_hctx) 1645 set->ops->exit_hctx(hctx, hctx_idx); 1646 1647 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1648 blk_free_flush_queue(hctx->fq); 1649 blk_mq_free_bitmap(&hctx->ctx_map); 1650 } 1651 1652 static void blk_mq_exit_hw_queues(struct request_queue *q, 1653 struct blk_mq_tag_set *set, int nr_queue) 1654 { 1655 struct blk_mq_hw_ctx *hctx; 1656 unsigned int i; 1657 1658 queue_for_each_hw_ctx(q, hctx, i) { 1659 if (i == nr_queue) 1660 break; 1661 blk_mq_exit_hctx(q, set, hctx, i); 1662 } 1663 } 1664 1665 static void blk_mq_free_hw_queues(struct request_queue *q, 1666 struct blk_mq_tag_set *set) 1667 { 1668 struct blk_mq_hw_ctx *hctx; 1669 unsigned int i; 1670 1671 queue_for_each_hw_ctx(q, hctx, i) 1672 free_cpumask_var(hctx->cpumask); 1673 } 1674 1675 static int blk_mq_init_hctx(struct request_queue *q, 1676 struct blk_mq_tag_set *set, 1677 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1678 { 1679 int node; 1680 unsigned flush_start_tag = set->queue_depth; 1681 1682 node = hctx->numa_node; 1683 if (node == NUMA_NO_NODE) 1684 node = hctx->numa_node = set->numa_node; 1685 1686 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1687 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1688 spin_lock_init(&hctx->lock); 1689 INIT_LIST_HEAD(&hctx->dispatch); 1690 hctx->queue = q; 1691 hctx->queue_num = hctx_idx; 1692 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1693 1694 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1695 blk_mq_hctx_notify, hctx); 1696 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1697 1698 hctx->tags = set->tags[hctx_idx]; 1699 1700 /* 1701 * Allocate space for all possible cpus to avoid allocation at 1702 * runtime 1703 */ 1704 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1705 GFP_KERNEL, node); 1706 if (!hctx->ctxs) 1707 goto unregister_cpu_notifier; 1708 1709 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1710 goto free_ctxs; 1711 1712 hctx->nr_ctx = 0; 1713 1714 if (set->ops->init_hctx && 1715 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1716 goto free_bitmap; 1717 1718 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1719 if (!hctx->fq) 1720 goto exit_hctx; 1721 1722 if (set->ops->init_request && 1723 set->ops->init_request(set->driver_data, 1724 hctx->fq->flush_rq, hctx_idx, 1725 flush_start_tag + hctx_idx, node)) 1726 goto free_fq; 1727 1728 return 0; 1729 1730 free_fq: 1731 kfree(hctx->fq); 1732 exit_hctx: 1733 if (set->ops->exit_hctx) 1734 set->ops->exit_hctx(hctx, hctx_idx); 1735 free_bitmap: 1736 blk_mq_free_bitmap(&hctx->ctx_map); 1737 free_ctxs: 1738 kfree(hctx->ctxs); 1739 unregister_cpu_notifier: 1740 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1741 1742 return -1; 1743 } 1744 1745 static int blk_mq_init_hw_queues(struct request_queue *q, 1746 struct blk_mq_tag_set *set) 1747 { 1748 struct blk_mq_hw_ctx *hctx; 1749 unsigned int i; 1750 1751 /* 1752 * Initialize hardware queues 1753 */ 1754 queue_for_each_hw_ctx(q, hctx, i) { 1755 if (blk_mq_init_hctx(q, set, hctx, i)) 1756 break; 1757 } 1758 1759 if (i == q->nr_hw_queues) 1760 return 0; 1761 1762 /* 1763 * Init failed 1764 */ 1765 blk_mq_exit_hw_queues(q, set, i); 1766 1767 return 1; 1768 } 1769 1770 static void blk_mq_init_cpu_queues(struct request_queue *q, 1771 unsigned int nr_hw_queues) 1772 { 1773 unsigned int i; 1774 1775 for_each_possible_cpu(i) { 1776 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1777 struct blk_mq_hw_ctx *hctx; 1778 1779 memset(__ctx, 0, sizeof(*__ctx)); 1780 __ctx->cpu = i; 1781 spin_lock_init(&__ctx->lock); 1782 INIT_LIST_HEAD(&__ctx->rq_list); 1783 __ctx->queue = q; 1784 1785 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1786 if (!cpu_online(i)) 1787 continue; 1788 1789 hctx = q->mq_ops->map_queue(q, i); 1790 1791 /* 1792 * Set local node, IFF we have more than one hw queue. If 1793 * not, we remain on the home node of the device 1794 */ 1795 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1796 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1797 } 1798 } 1799 1800 static void blk_mq_map_swqueue(struct request_queue *q, 1801 const struct cpumask *online_mask) 1802 { 1803 unsigned int i; 1804 struct blk_mq_hw_ctx *hctx; 1805 struct blk_mq_ctx *ctx; 1806 struct blk_mq_tag_set *set = q->tag_set; 1807 1808 /* 1809 * Avoid others reading imcomplete hctx->cpumask through sysfs 1810 */ 1811 mutex_lock(&q->sysfs_lock); 1812 1813 queue_for_each_hw_ctx(q, hctx, i) { 1814 cpumask_clear(hctx->cpumask); 1815 hctx->nr_ctx = 0; 1816 } 1817 1818 /* 1819 * Map software to hardware queues 1820 */ 1821 queue_for_each_ctx(q, ctx, i) { 1822 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1823 if (!cpumask_test_cpu(i, online_mask)) 1824 continue; 1825 1826 hctx = q->mq_ops->map_queue(q, i); 1827 cpumask_set_cpu(i, hctx->cpumask); 1828 ctx->index_hw = hctx->nr_ctx; 1829 hctx->ctxs[hctx->nr_ctx++] = ctx; 1830 } 1831 1832 mutex_unlock(&q->sysfs_lock); 1833 1834 queue_for_each_hw_ctx(q, hctx, i) { 1835 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1836 1837 /* 1838 * If no software queues are mapped to this hardware queue, 1839 * disable it and free the request entries. 1840 */ 1841 if (!hctx->nr_ctx) { 1842 if (set->tags[i]) { 1843 blk_mq_free_rq_map(set, set->tags[i], i); 1844 set->tags[i] = NULL; 1845 } 1846 hctx->tags = NULL; 1847 continue; 1848 } 1849 1850 /* unmapped hw queue can be remapped after CPU topo changed */ 1851 if (!set->tags[i]) 1852 set->tags[i] = blk_mq_init_rq_map(set, i); 1853 hctx->tags = set->tags[i]; 1854 WARN_ON(!hctx->tags); 1855 1856 cpumask_copy(hctx->tags->cpumask, hctx->cpumask); 1857 /* 1858 * Set the map size to the number of mapped software queues. 1859 * This is more accurate and more efficient than looping 1860 * over all possibly mapped software queues. 1861 */ 1862 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1863 1864 /* 1865 * Initialize batch roundrobin counts 1866 */ 1867 hctx->next_cpu = cpumask_first(hctx->cpumask); 1868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1869 } 1870 } 1871 1872 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1873 { 1874 struct blk_mq_hw_ctx *hctx; 1875 int i; 1876 1877 queue_for_each_hw_ctx(q, hctx, i) { 1878 if (shared) 1879 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1880 else 1881 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1882 } 1883 } 1884 1885 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1886 { 1887 struct request_queue *q; 1888 1889 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1890 blk_mq_freeze_queue(q); 1891 queue_set_hctx_shared(q, shared); 1892 blk_mq_unfreeze_queue(q); 1893 } 1894 } 1895 1896 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1897 { 1898 struct blk_mq_tag_set *set = q->tag_set; 1899 1900 mutex_lock(&set->tag_list_lock); 1901 list_del_init(&q->tag_set_list); 1902 if (list_is_singular(&set->tag_list)) { 1903 /* just transitioned to unshared */ 1904 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1905 /* update existing queue */ 1906 blk_mq_update_tag_set_depth(set, false); 1907 } 1908 mutex_unlock(&set->tag_list_lock); 1909 } 1910 1911 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1912 struct request_queue *q) 1913 { 1914 q->tag_set = set; 1915 1916 mutex_lock(&set->tag_list_lock); 1917 1918 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1919 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1920 set->flags |= BLK_MQ_F_TAG_SHARED; 1921 /* update existing queue */ 1922 blk_mq_update_tag_set_depth(set, true); 1923 } 1924 if (set->flags & BLK_MQ_F_TAG_SHARED) 1925 queue_set_hctx_shared(q, true); 1926 list_add_tail(&q->tag_set_list, &set->tag_list); 1927 1928 mutex_unlock(&set->tag_list_lock); 1929 } 1930 1931 /* 1932 * It is the actual release handler for mq, but we do it from 1933 * request queue's release handler for avoiding use-after-free 1934 * and headache because q->mq_kobj shouldn't have been introduced, 1935 * but we can't group ctx/kctx kobj without it. 1936 */ 1937 void blk_mq_release(struct request_queue *q) 1938 { 1939 struct blk_mq_hw_ctx *hctx; 1940 unsigned int i; 1941 1942 /* hctx kobj stays in hctx */ 1943 queue_for_each_hw_ctx(q, hctx, i) { 1944 if (!hctx) 1945 continue; 1946 kfree(hctx->ctxs); 1947 kfree(hctx); 1948 } 1949 1950 kfree(q->mq_map); 1951 q->mq_map = NULL; 1952 1953 kfree(q->queue_hw_ctx); 1954 1955 /* ctx kobj stays in queue_ctx */ 1956 free_percpu(q->queue_ctx); 1957 } 1958 1959 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1960 { 1961 struct request_queue *uninit_q, *q; 1962 1963 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1964 if (!uninit_q) 1965 return ERR_PTR(-ENOMEM); 1966 1967 q = blk_mq_init_allocated_queue(set, uninit_q); 1968 if (IS_ERR(q)) 1969 blk_cleanup_queue(uninit_q); 1970 1971 return q; 1972 } 1973 EXPORT_SYMBOL(blk_mq_init_queue); 1974 1975 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1976 struct request_queue *q) 1977 { 1978 struct blk_mq_hw_ctx **hctxs; 1979 struct blk_mq_ctx __percpu *ctx; 1980 unsigned int *map; 1981 int i; 1982 1983 ctx = alloc_percpu(struct blk_mq_ctx); 1984 if (!ctx) 1985 return ERR_PTR(-ENOMEM); 1986 1987 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1988 set->numa_node); 1989 1990 if (!hctxs) 1991 goto err_percpu; 1992 1993 map = blk_mq_make_queue_map(set); 1994 if (!map) 1995 goto err_map; 1996 1997 for (i = 0; i < set->nr_hw_queues; i++) { 1998 int node = blk_mq_hw_queue_to_node(map, i); 1999 2000 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2001 GFP_KERNEL, node); 2002 if (!hctxs[i]) 2003 goto err_hctxs; 2004 2005 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2006 node)) 2007 goto err_hctxs; 2008 2009 atomic_set(&hctxs[i]->nr_active, 0); 2010 hctxs[i]->numa_node = node; 2011 hctxs[i]->queue_num = i; 2012 } 2013 2014 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2015 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2016 2017 q->nr_queues = nr_cpu_ids; 2018 q->nr_hw_queues = set->nr_hw_queues; 2019 q->mq_map = map; 2020 2021 q->queue_ctx = ctx; 2022 q->queue_hw_ctx = hctxs; 2023 2024 q->mq_ops = set->ops; 2025 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2026 2027 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2028 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2029 2030 q->sg_reserved_size = INT_MAX; 2031 2032 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2033 INIT_LIST_HEAD(&q->requeue_list); 2034 spin_lock_init(&q->requeue_lock); 2035 2036 if (q->nr_hw_queues > 1) 2037 blk_queue_make_request(q, blk_mq_make_request); 2038 else 2039 blk_queue_make_request(q, blk_sq_make_request); 2040 2041 /* 2042 * Do this after blk_queue_make_request() overrides it... 2043 */ 2044 q->nr_requests = set->queue_depth; 2045 2046 if (set->ops->complete) 2047 blk_queue_softirq_done(q, set->ops->complete); 2048 2049 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2050 2051 if (blk_mq_init_hw_queues(q, set)) 2052 goto err_hctxs; 2053 2054 get_online_cpus(); 2055 mutex_lock(&all_q_mutex); 2056 2057 list_add_tail(&q->all_q_node, &all_q_list); 2058 blk_mq_add_queue_tag_set(set, q); 2059 blk_mq_map_swqueue(q, cpu_online_mask); 2060 2061 mutex_unlock(&all_q_mutex); 2062 put_online_cpus(); 2063 2064 return q; 2065 2066 err_hctxs: 2067 kfree(map); 2068 for (i = 0; i < set->nr_hw_queues; i++) { 2069 if (!hctxs[i]) 2070 break; 2071 free_cpumask_var(hctxs[i]->cpumask); 2072 kfree(hctxs[i]); 2073 } 2074 err_map: 2075 kfree(hctxs); 2076 err_percpu: 2077 free_percpu(ctx); 2078 return ERR_PTR(-ENOMEM); 2079 } 2080 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2081 2082 void blk_mq_free_queue(struct request_queue *q) 2083 { 2084 struct blk_mq_tag_set *set = q->tag_set; 2085 2086 mutex_lock(&all_q_mutex); 2087 list_del_init(&q->all_q_node); 2088 mutex_unlock(&all_q_mutex); 2089 2090 blk_mq_del_queue_tag_set(q); 2091 2092 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2093 blk_mq_free_hw_queues(q, set); 2094 } 2095 2096 /* Basically redo blk_mq_init_queue with queue frozen */ 2097 static void blk_mq_queue_reinit(struct request_queue *q, 2098 const struct cpumask *online_mask) 2099 { 2100 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2101 2102 blk_mq_sysfs_unregister(q); 2103 2104 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2105 2106 /* 2107 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2108 * we should change hctx numa_node according to new topology (this 2109 * involves free and re-allocate memory, worthy doing?) 2110 */ 2111 2112 blk_mq_map_swqueue(q, online_mask); 2113 2114 blk_mq_sysfs_register(q); 2115 } 2116 2117 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2118 unsigned long action, void *hcpu) 2119 { 2120 struct request_queue *q; 2121 int cpu = (unsigned long)hcpu; 2122 /* 2123 * New online cpumask which is going to be set in this hotplug event. 2124 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2125 * one-by-one and dynamically allocating this could result in a failure. 2126 */ 2127 static struct cpumask online_new; 2128 2129 /* 2130 * Before hotadded cpu starts handling requests, new mappings must 2131 * be established. Otherwise, these requests in hw queue might 2132 * never be dispatched. 2133 * 2134 * For example, there is a single hw queue (hctx) and two CPU queues 2135 * (ctx0 for CPU0, and ctx1 for CPU1). 2136 * 2137 * Now CPU1 is just onlined and a request is inserted into 2138 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2139 * still zero. 2140 * 2141 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2142 * set in pending bitmap and tries to retrieve requests in 2143 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2144 * so the request in ctx1->rq_list is ignored. 2145 */ 2146 switch (action & ~CPU_TASKS_FROZEN) { 2147 case CPU_DEAD: 2148 case CPU_UP_CANCELED: 2149 cpumask_copy(&online_new, cpu_online_mask); 2150 break; 2151 case CPU_UP_PREPARE: 2152 cpumask_copy(&online_new, cpu_online_mask); 2153 cpumask_set_cpu(cpu, &online_new); 2154 break; 2155 default: 2156 return NOTIFY_OK; 2157 } 2158 2159 mutex_lock(&all_q_mutex); 2160 2161 /* 2162 * We need to freeze and reinit all existing queues. Freezing 2163 * involves synchronous wait for an RCU grace period and doing it 2164 * one by one may take a long time. Start freezing all queues in 2165 * one swoop and then wait for the completions so that freezing can 2166 * take place in parallel. 2167 */ 2168 list_for_each_entry(q, &all_q_list, all_q_node) 2169 blk_mq_freeze_queue_start(q); 2170 list_for_each_entry(q, &all_q_list, all_q_node) { 2171 blk_mq_freeze_queue_wait(q); 2172 2173 /* 2174 * timeout handler can't touch hw queue during the 2175 * reinitialization 2176 */ 2177 del_timer_sync(&q->timeout); 2178 } 2179 2180 list_for_each_entry(q, &all_q_list, all_q_node) 2181 blk_mq_queue_reinit(q, &online_new); 2182 2183 list_for_each_entry(q, &all_q_list, all_q_node) 2184 blk_mq_unfreeze_queue(q); 2185 2186 mutex_unlock(&all_q_mutex); 2187 return NOTIFY_OK; 2188 } 2189 2190 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2191 { 2192 int i; 2193 2194 for (i = 0; i < set->nr_hw_queues; i++) { 2195 set->tags[i] = blk_mq_init_rq_map(set, i); 2196 if (!set->tags[i]) 2197 goto out_unwind; 2198 } 2199 2200 return 0; 2201 2202 out_unwind: 2203 while (--i >= 0) 2204 blk_mq_free_rq_map(set, set->tags[i], i); 2205 2206 return -ENOMEM; 2207 } 2208 2209 /* 2210 * Allocate the request maps associated with this tag_set. Note that this 2211 * may reduce the depth asked for, if memory is tight. set->queue_depth 2212 * will be updated to reflect the allocated depth. 2213 */ 2214 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2215 { 2216 unsigned int depth; 2217 int err; 2218 2219 depth = set->queue_depth; 2220 do { 2221 err = __blk_mq_alloc_rq_maps(set); 2222 if (!err) 2223 break; 2224 2225 set->queue_depth >>= 1; 2226 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2227 err = -ENOMEM; 2228 break; 2229 } 2230 } while (set->queue_depth); 2231 2232 if (!set->queue_depth || err) { 2233 pr_err("blk-mq: failed to allocate request map\n"); 2234 return -ENOMEM; 2235 } 2236 2237 if (depth != set->queue_depth) 2238 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2239 depth, set->queue_depth); 2240 2241 return 0; 2242 } 2243 2244 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2245 { 2246 return tags->cpumask; 2247 } 2248 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2249 2250 /* 2251 * Alloc a tag set to be associated with one or more request queues. 2252 * May fail with EINVAL for various error conditions. May adjust the 2253 * requested depth down, if if it too large. In that case, the set 2254 * value will be stored in set->queue_depth. 2255 */ 2256 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2257 { 2258 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2259 2260 if (!set->nr_hw_queues) 2261 return -EINVAL; 2262 if (!set->queue_depth) 2263 return -EINVAL; 2264 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2265 return -EINVAL; 2266 2267 if (!set->ops->queue_rq || !set->ops->map_queue) 2268 return -EINVAL; 2269 2270 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2271 pr_info("blk-mq: reduced tag depth to %u\n", 2272 BLK_MQ_MAX_DEPTH); 2273 set->queue_depth = BLK_MQ_MAX_DEPTH; 2274 } 2275 2276 /* 2277 * If a crashdump is active, then we are potentially in a very 2278 * memory constrained environment. Limit us to 1 queue and 2279 * 64 tags to prevent using too much memory. 2280 */ 2281 if (is_kdump_kernel()) { 2282 set->nr_hw_queues = 1; 2283 set->queue_depth = min(64U, set->queue_depth); 2284 } 2285 2286 set->tags = kmalloc_node(set->nr_hw_queues * 2287 sizeof(struct blk_mq_tags *), 2288 GFP_KERNEL, set->numa_node); 2289 if (!set->tags) 2290 return -ENOMEM; 2291 2292 if (blk_mq_alloc_rq_maps(set)) 2293 goto enomem; 2294 2295 mutex_init(&set->tag_list_lock); 2296 INIT_LIST_HEAD(&set->tag_list); 2297 2298 return 0; 2299 enomem: 2300 kfree(set->tags); 2301 set->tags = NULL; 2302 return -ENOMEM; 2303 } 2304 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2305 2306 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2307 { 2308 int i; 2309 2310 for (i = 0; i < set->nr_hw_queues; i++) { 2311 if (set->tags[i]) 2312 blk_mq_free_rq_map(set, set->tags[i], i); 2313 } 2314 2315 kfree(set->tags); 2316 set->tags = NULL; 2317 } 2318 EXPORT_SYMBOL(blk_mq_free_tag_set); 2319 2320 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2321 { 2322 struct blk_mq_tag_set *set = q->tag_set; 2323 struct blk_mq_hw_ctx *hctx; 2324 int i, ret; 2325 2326 if (!set || nr > set->queue_depth) 2327 return -EINVAL; 2328 2329 ret = 0; 2330 queue_for_each_hw_ctx(q, hctx, i) { 2331 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2332 if (ret) 2333 break; 2334 } 2335 2336 if (!ret) 2337 q->nr_requests = nr; 2338 2339 return ret; 2340 } 2341 2342 void blk_mq_disable_hotplug(void) 2343 { 2344 mutex_lock(&all_q_mutex); 2345 } 2346 2347 void blk_mq_enable_hotplug(void) 2348 { 2349 mutex_unlock(&all_q_mutex); 2350 } 2351 2352 static int __init blk_mq_init(void) 2353 { 2354 blk_mq_cpu_init(); 2355 2356 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2357 2358 return 0; 2359 } 2360 subsys_initcall(blk_mq_init); 2361