1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static void blk_mq_poll_stats_start(struct request_queue *q); 45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 46 47 static int blk_mq_poll_stats_bkt(const struct request *rq) 48 { 49 int ddir, sectors, bucket; 50 51 ddir = rq_data_dir(rq); 52 sectors = blk_rq_stats_sectors(rq); 53 54 bucket = ddir + 2 * ilog2(sectors); 55 56 if (bucket < 0) 57 return -1; 58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 60 61 return bucket; 62 } 63 64 /* 65 * Check if any of the ctx, dispatch list or elevator 66 * have pending work in this hardware queue. 67 */ 68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 69 { 70 return !list_empty_careful(&hctx->dispatch) || 71 sbitmap_any_bit_set(&hctx->ctx_map) || 72 blk_mq_sched_has_work(hctx); 73 } 74 75 /* 76 * Mark this ctx as having pending work in this hardware queue 77 */ 78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 84 sbitmap_set_bit(&hctx->ctx_map, bit); 85 } 86 87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 88 struct blk_mq_ctx *ctx) 89 { 90 const int bit = ctx->index_hw[hctx->type]; 91 92 sbitmap_clear_bit(&hctx->ctx_map, bit); 93 } 94 95 struct mq_inflight { 96 struct hd_struct *part; 97 unsigned int inflight[2]; 98 }; 99 100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 101 struct request *rq, void *priv, 102 bool reserved) 103 { 104 struct mq_inflight *mi = priv; 105 106 if (rq->part == mi->part) 107 mi->inflight[rq_data_dir(rq)]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 113 { 114 struct mq_inflight mi = { .part = part }; 115 116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 117 118 return mi.inflight[0] + mi.inflight[1]; 119 } 120 121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 122 unsigned int inflight[2]) 123 { 124 struct mq_inflight mi = { .part = part }; 125 126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 127 inflight[0] = mi.inflight[0]; 128 inflight[1] = mi.inflight[1]; 129 } 130 131 void blk_freeze_queue_start(struct request_queue *q) 132 { 133 mutex_lock(&q->mq_freeze_lock); 134 if (++q->mq_freeze_depth == 1) { 135 percpu_ref_kill(&q->q_usage_counter); 136 mutex_unlock(&q->mq_freeze_lock); 137 if (queue_is_mq(q)) 138 blk_mq_run_hw_queues(q, false); 139 } else { 140 mutex_unlock(&q->mq_freeze_lock); 141 } 142 } 143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 144 145 void blk_mq_freeze_queue_wait(struct request_queue *q) 146 { 147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 150 151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 152 unsigned long timeout) 153 { 154 return wait_event_timeout(q->mq_freeze_wq, 155 percpu_ref_is_zero(&q->q_usage_counter), 156 timeout); 157 } 158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 159 160 /* 161 * Guarantee no request is in use, so we can change any data structure of 162 * the queue afterward. 163 */ 164 void blk_freeze_queue(struct request_queue *q) 165 { 166 /* 167 * In the !blk_mq case we are only calling this to kill the 168 * q_usage_counter, otherwise this increases the freeze depth 169 * and waits for it to return to zero. For this reason there is 170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 171 * exported to drivers as the only user for unfreeze is blk_mq. 172 */ 173 blk_freeze_queue_start(q); 174 blk_mq_freeze_queue_wait(q); 175 } 176 177 void blk_mq_freeze_queue(struct request_queue *q) 178 { 179 /* 180 * ...just an alias to keep freeze and unfreeze actions balanced 181 * in the blk_mq_* namespace 182 */ 183 blk_freeze_queue(q); 184 } 185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 186 187 void blk_mq_unfreeze_queue(struct request_queue *q) 188 { 189 mutex_lock(&q->mq_freeze_lock); 190 q->mq_freeze_depth--; 191 WARN_ON_ONCE(q->mq_freeze_depth < 0); 192 if (!q->mq_freeze_depth) { 193 percpu_ref_resurrect(&q->q_usage_counter); 194 wake_up_all(&q->mq_freeze_wq); 195 } 196 mutex_unlock(&q->mq_freeze_lock); 197 } 198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 199 200 /* 201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 202 * mpt3sas driver such that this function can be removed. 203 */ 204 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 205 { 206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 209 210 /** 211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 212 * @q: request queue. 213 * 214 * Note: this function does not prevent that the struct request end_io() 215 * callback function is invoked. Once this function is returned, we make 216 * sure no dispatch can happen until the queue is unquiesced via 217 * blk_mq_unquiesce_queue(). 218 */ 219 void blk_mq_quiesce_queue(struct request_queue *q) 220 { 221 struct blk_mq_hw_ctx *hctx; 222 unsigned int i; 223 bool rcu = false; 224 225 blk_mq_quiesce_queue_nowait(q); 226 227 queue_for_each_hw_ctx(q, hctx, i) { 228 if (hctx->flags & BLK_MQ_F_BLOCKING) 229 synchronize_srcu(hctx->srcu); 230 else 231 rcu = true; 232 } 233 if (rcu) 234 synchronize_rcu(); 235 } 236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 237 238 /* 239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 240 * @q: request queue. 241 * 242 * This function recovers queue into the state before quiescing 243 * which is done by blk_mq_quiesce_queue. 244 */ 245 void blk_mq_unquiesce_queue(struct request_queue *q) 246 { 247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 248 249 /* dispatch requests which are inserted during quiescing */ 250 blk_mq_run_hw_queues(q, true); 251 } 252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 253 254 void blk_mq_wake_waiters(struct request_queue *q) 255 { 256 struct blk_mq_hw_ctx *hctx; 257 unsigned int i; 258 259 queue_for_each_hw_ctx(q, hctx, i) 260 if (blk_mq_hw_queue_mapped(hctx)) 261 blk_mq_tag_wakeup_all(hctx->tags, true); 262 } 263 264 /* 265 * Only need start/end time stamping if we have iostat or 266 * blk stats enabled, or using an IO scheduler. 267 */ 268 static inline bool blk_mq_need_time_stamp(struct request *rq) 269 { 270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 271 } 272 273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 274 unsigned int tag, unsigned int op, u64 alloc_time_ns) 275 { 276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 277 struct request *rq = tags->static_rqs[tag]; 278 req_flags_t rq_flags = 0; 279 280 if (data->flags & BLK_MQ_REQ_INTERNAL) { 281 rq->tag = -1; 282 rq->internal_tag = tag; 283 } else { 284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 285 rq_flags = RQF_MQ_INFLIGHT; 286 atomic_inc(&data->hctx->nr_active); 287 } 288 rq->tag = tag; 289 rq->internal_tag = -1; 290 data->hctx->tags->rqs[rq->tag] = rq; 291 } 292 293 /* csd/requeue_work/fifo_time is initialized before use */ 294 rq->q = data->q; 295 rq->mq_ctx = data->ctx; 296 rq->mq_hctx = data->hctx; 297 rq->rq_flags = rq_flags; 298 rq->cmd_flags = op; 299 if (data->flags & BLK_MQ_REQ_PREEMPT) 300 rq->rq_flags |= RQF_PREEMPT; 301 if (blk_queue_io_stat(data->q)) 302 rq->rq_flags |= RQF_IO_STAT; 303 INIT_LIST_HEAD(&rq->queuelist); 304 INIT_HLIST_NODE(&rq->hash); 305 RB_CLEAR_NODE(&rq->rb_node); 306 rq->rq_disk = NULL; 307 rq->part = NULL; 308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 309 rq->alloc_time_ns = alloc_time_ns; 310 #endif 311 if (blk_mq_need_time_stamp(rq)) 312 rq->start_time_ns = ktime_get_ns(); 313 else 314 rq->start_time_ns = 0; 315 rq->io_start_time_ns = 0; 316 rq->stats_sectors = 0; 317 rq->nr_phys_segments = 0; 318 #if defined(CONFIG_BLK_DEV_INTEGRITY) 319 rq->nr_integrity_segments = 0; 320 #endif 321 blk_crypto_rq_set_defaults(rq); 322 /* tag was already set */ 323 WRITE_ONCE(rq->deadline, 0); 324 325 rq->timeout = 0; 326 327 rq->end_io = NULL; 328 rq->end_io_data = NULL; 329 330 data->ctx->rq_dispatched[op_is_sync(op)]++; 331 refcount_set(&rq->ref, 1); 332 return rq; 333 } 334 335 static struct request *blk_mq_get_request(struct request_queue *q, 336 struct bio *bio, 337 struct blk_mq_alloc_data *data) 338 { 339 struct elevator_queue *e = q->elevator; 340 struct request *rq; 341 unsigned int tag; 342 bool clear_ctx_on_error = false; 343 u64 alloc_time_ns = 0; 344 345 blk_queue_enter_live(q); 346 347 /* alloc_time includes depth and tag waits */ 348 if (blk_queue_rq_alloc_time(q)) 349 alloc_time_ns = ktime_get_ns(); 350 351 data->q = q; 352 if (likely(!data->ctx)) { 353 data->ctx = blk_mq_get_ctx(q); 354 clear_ctx_on_error = true; 355 } 356 if (likely(!data->hctx)) 357 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 358 data->ctx); 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 data->flags |= BLK_MQ_REQ_INTERNAL; 364 365 /* 366 * Flush requests are special and go directly to the 367 * dispatch list. Don't include reserved tags in the 368 * limiting, as it isn't useful. 369 */ 370 if (!op_is_flush(data->cmd_flags) && 371 e->type->ops.limit_depth && 372 !(data->flags & BLK_MQ_REQ_RESERVED)) 373 e->type->ops.limit_depth(data->cmd_flags, data); 374 } else { 375 blk_mq_tag_busy(data->hctx); 376 } 377 378 tag = blk_mq_get_tag(data); 379 if (tag == BLK_MQ_TAG_FAIL) { 380 if (clear_ctx_on_error) 381 data->ctx = NULL; 382 blk_queue_exit(q); 383 return NULL; 384 } 385 386 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 387 if (!op_is_flush(data->cmd_flags)) { 388 rq->elv.icq = NULL; 389 if (e && e->type->ops.prepare_request) { 390 if (e->type->icq_cache) 391 blk_mq_sched_assign_ioc(rq); 392 393 e->type->ops.prepare_request(rq, bio); 394 rq->rq_flags |= RQF_ELVPRIV; 395 } 396 } 397 data->hctx->queued++; 398 return rq; 399 } 400 401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 402 blk_mq_req_flags_t flags) 403 { 404 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 405 struct request *rq; 406 int ret; 407 408 ret = blk_queue_enter(q, flags); 409 if (ret) 410 return ERR_PTR(ret); 411 412 rq = blk_mq_get_request(q, NULL, &alloc_data); 413 blk_queue_exit(q); 414 415 if (!rq) 416 return ERR_PTR(-EWOULDBLOCK); 417 418 rq->__data_len = 0; 419 rq->__sector = (sector_t) -1; 420 rq->bio = rq->biotail = NULL; 421 return rq; 422 } 423 EXPORT_SYMBOL(blk_mq_alloc_request); 424 425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 427 { 428 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 429 struct request *rq; 430 unsigned int cpu; 431 int ret; 432 433 /* 434 * If the tag allocator sleeps we could get an allocation for a 435 * different hardware context. No need to complicate the low level 436 * allocator for this for the rare use case of a command tied to 437 * a specific queue. 438 */ 439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 440 return ERR_PTR(-EINVAL); 441 442 if (hctx_idx >= q->nr_hw_queues) 443 return ERR_PTR(-EIO); 444 445 ret = blk_queue_enter(q, flags); 446 if (ret) 447 return ERR_PTR(ret); 448 449 /* 450 * Check if the hardware context is actually mapped to anything. 451 * If not tell the caller that it should skip this queue. 452 */ 453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 455 blk_queue_exit(q); 456 return ERR_PTR(-EXDEV); 457 } 458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 460 461 rq = blk_mq_get_request(q, NULL, &alloc_data); 462 blk_queue_exit(q); 463 464 if (!rq) 465 return ERR_PTR(-EWOULDBLOCK); 466 467 return rq; 468 } 469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 470 471 static void __blk_mq_free_request(struct request *rq) 472 { 473 struct request_queue *q = rq->q; 474 struct blk_mq_ctx *ctx = rq->mq_ctx; 475 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 476 const int sched_tag = rq->internal_tag; 477 478 blk_crypto_free_request(rq); 479 blk_pm_mark_last_busy(rq); 480 rq->mq_hctx = NULL; 481 if (rq->tag != -1) 482 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 483 if (sched_tag != -1) 484 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 485 blk_mq_sched_restart(hctx); 486 blk_queue_exit(q); 487 } 488 489 void blk_mq_free_request(struct request *rq) 490 { 491 struct request_queue *q = rq->q; 492 struct elevator_queue *e = q->elevator; 493 struct blk_mq_ctx *ctx = rq->mq_ctx; 494 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 495 496 if (rq->rq_flags & RQF_ELVPRIV) { 497 if (e && e->type->ops.finish_request) 498 e->type->ops.finish_request(rq); 499 if (rq->elv.icq) { 500 put_io_context(rq->elv.icq->ioc); 501 rq->elv.icq = NULL; 502 } 503 } 504 505 ctx->rq_completed[rq_is_sync(rq)]++; 506 if (rq->rq_flags & RQF_MQ_INFLIGHT) 507 atomic_dec(&hctx->nr_active); 508 509 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 510 laptop_io_completion(q->backing_dev_info); 511 512 rq_qos_done(q, rq); 513 514 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 515 if (refcount_dec_and_test(&rq->ref)) 516 __blk_mq_free_request(rq); 517 } 518 EXPORT_SYMBOL_GPL(blk_mq_free_request); 519 520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 521 { 522 u64 now = 0; 523 524 if (blk_mq_need_time_stamp(rq)) 525 now = ktime_get_ns(); 526 527 if (rq->rq_flags & RQF_STATS) { 528 blk_mq_poll_stats_start(rq->q); 529 blk_stat_add(rq, now); 530 } 531 532 if (rq->internal_tag != -1) 533 blk_mq_sched_completed_request(rq, now); 534 535 blk_account_io_done(rq, now); 536 537 if (rq->end_io) { 538 rq_qos_done(rq->q, rq); 539 rq->end_io(rq, error); 540 } else { 541 blk_mq_free_request(rq); 542 } 543 } 544 EXPORT_SYMBOL(__blk_mq_end_request); 545 546 void blk_mq_end_request(struct request *rq, blk_status_t error) 547 { 548 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 549 BUG(); 550 __blk_mq_end_request(rq, error); 551 } 552 EXPORT_SYMBOL(blk_mq_end_request); 553 554 static void __blk_mq_complete_request_remote(void *data) 555 { 556 struct request *rq = data; 557 struct request_queue *q = rq->q; 558 559 q->mq_ops->complete(rq); 560 } 561 562 static void __blk_mq_complete_request(struct request *rq) 563 { 564 struct blk_mq_ctx *ctx = rq->mq_ctx; 565 struct request_queue *q = rq->q; 566 bool shared = false; 567 int cpu; 568 569 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 570 /* 571 * Most of single queue controllers, there is only one irq vector 572 * for handling IO completion, and the only irq's affinity is set 573 * as all possible CPUs. On most of ARCHs, this affinity means the 574 * irq is handled on one specific CPU. 575 * 576 * So complete IO reqeust in softirq context in case of single queue 577 * for not degrading IO performance by irqsoff latency. 578 */ 579 if (q->nr_hw_queues == 1) { 580 __blk_complete_request(rq); 581 return; 582 } 583 584 /* 585 * For a polled request, always complete locallly, it's pointless 586 * to redirect the completion. 587 */ 588 if ((rq->cmd_flags & REQ_HIPRI) || 589 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 590 q->mq_ops->complete(rq); 591 return; 592 } 593 594 cpu = get_cpu(); 595 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 596 shared = cpus_share_cache(cpu, ctx->cpu); 597 598 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 599 rq->csd.func = __blk_mq_complete_request_remote; 600 rq->csd.info = rq; 601 rq->csd.flags = 0; 602 smp_call_function_single_async(ctx->cpu, &rq->csd); 603 } else { 604 q->mq_ops->complete(rq); 605 } 606 put_cpu(); 607 } 608 609 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 610 __releases(hctx->srcu) 611 { 612 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 613 rcu_read_unlock(); 614 else 615 srcu_read_unlock(hctx->srcu, srcu_idx); 616 } 617 618 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 619 __acquires(hctx->srcu) 620 { 621 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 622 /* shut up gcc false positive */ 623 *srcu_idx = 0; 624 rcu_read_lock(); 625 } else 626 *srcu_idx = srcu_read_lock(hctx->srcu); 627 } 628 629 /** 630 * blk_mq_complete_request - end I/O on a request 631 * @rq: the request being processed 632 * 633 * Description: 634 * Ends all I/O on a request. It does not handle partial completions. 635 * The actual completion happens out-of-order, through a IPI handler. 636 **/ 637 bool blk_mq_complete_request(struct request *rq) 638 { 639 if (unlikely(blk_should_fake_timeout(rq->q))) 640 return false; 641 __blk_mq_complete_request(rq); 642 return true; 643 } 644 EXPORT_SYMBOL(blk_mq_complete_request); 645 646 /** 647 * blk_mq_start_request - Start processing a request 648 * @rq: Pointer to request to be started 649 * 650 * Function used by device drivers to notify the block layer that a request 651 * is going to be processed now, so blk layer can do proper initializations 652 * such as starting the timeout timer. 653 */ 654 void blk_mq_start_request(struct request *rq) 655 { 656 struct request_queue *q = rq->q; 657 658 trace_block_rq_issue(q, rq); 659 660 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 661 rq->io_start_time_ns = ktime_get_ns(); 662 rq->stats_sectors = blk_rq_sectors(rq); 663 rq->rq_flags |= RQF_STATS; 664 rq_qos_issue(q, rq); 665 } 666 667 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 668 669 blk_add_timer(rq); 670 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 671 672 #ifdef CONFIG_BLK_DEV_INTEGRITY 673 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 674 q->integrity.profile->prepare_fn(rq); 675 #endif 676 } 677 EXPORT_SYMBOL(blk_mq_start_request); 678 679 static void __blk_mq_requeue_request(struct request *rq) 680 { 681 struct request_queue *q = rq->q; 682 683 blk_mq_put_driver_tag(rq); 684 685 trace_block_rq_requeue(q, rq); 686 rq_qos_requeue(q, rq); 687 688 if (blk_mq_request_started(rq)) { 689 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 690 rq->rq_flags &= ~RQF_TIMED_OUT; 691 } 692 } 693 694 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 695 { 696 __blk_mq_requeue_request(rq); 697 698 /* this request will be re-inserted to io scheduler queue */ 699 blk_mq_sched_requeue_request(rq); 700 701 BUG_ON(!list_empty(&rq->queuelist)); 702 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 703 } 704 EXPORT_SYMBOL(blk_mq_requeue_request); 705 706 static void blk_mq_requeue_work(struct work_struct *work) 707 { 708 struct request_queue *q = 709 container_of(work, struct request_queue, requeue_work.work); 710 LIST_HEAD(rq_list); 711 struct request *rq, *next; 712 713 spin_lock_irq(&q->requeue_lock); 714 list_splice_init(&q->requeue_list, &rq_list); 715 spin_unlock_irq(&q->requeue_lock); 716 717 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 718 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 719 continue; 720 721 rq->rq_flags &= ~RQF_SOFTBARRIER; 722 list_del_init(&rq->queuelist); 723 /* 724 * If RQF_DONTPREP, rq has contained some driver specific 725 * data, so insert it to hctx dispatch list to avoid any 726 * merge. 727 */ 728 if (rq->rq_flags & RQF_DONTPREP) 729 blk_mq_request_bypass_insert(rq, false, false); 730 else 731 blk_mq_sched_insert_request(rq, true, false, false); 732 } 733 734 while (!list_empty(&rq_list)) { 735 rq = list_entry(rq_list.next, struct request, queuelist); 736 list_del_init(&rq->queuelist); 737 blk_mq_sched_insert_request(rq, false, false, false); 738 } 739 740 blk_mq_run_hw_queues(q, false); 741 } 742 743 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 744 bool kick_requeue_list) 745 { 746 struct request_queue *q = rq->q; 747 unsigned long flags; 748 749 /* 750 * We abuse this flag that is otherwise used by the I/O scheduler to 751 * request head insertion from the workqueue. 752 */ 753 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 754 755 spin_lock_irqsave(&q->requeue_lock, flags); 756 if (at_head) { 757 rq->rq_flags |= RQF_SOFTBARRIER; 758 list_add(&rq->queuelist, &q->requeue_list); 759 } else { 760 list_add_tail(&rq->queuelist, &q->requeue_list); 761 } 762 spin_unlock_irqrestore(&q->requeue_lock, flags); 763 764 if (kick_requeue_list) 765 blk_mq_kick_requeue_list(q); 766 } 767 768 void blk_mq_kick_requeue_list(struct request_queue *q) 769 { 770 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 771 } 772 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 773 774 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 775 unsigned long msecs) 776 { 777 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 778 msecs_to_jiffies(msecs)); 779 } 780 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 781 782 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 783 { 784 if (tag < tags->nr_tags) { 785 prefetch(tags->rqs[tag]); 786 return tags->rqs[tag]; 787 } 788 789 return NULL; 790 } 791 EXPORT_SYMBOL(blk_mq_tag_to_rq); 792 793 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 794 void *priv, bool reserved) 795 { 796 /* 797 * If we find a request that is inflight and the queue matches, 798 * we know the queue is busy. Return false to stop the iteration. 799 */ 800 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 801 bool *busy = priv; 802 803 *busy = true; 804 return false; 805 } 806 807 return true; 808 } 809 810 bool blk_mq_queue_inflight(struct request_queue *q) 811 { 812 bool busy = false; 813 814 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 815 return busy; 816 } 817 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 818 819 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 820 { 821 req->rq_flags |= RQF_TIMED_OUT; 822 if (req->q->mq_ops->timeout) { 823 enum blk_eh_timer_return ret; 824 825 ret = req->q->mq_ops->timeout(req, reserved); 826 if (ret == BLK_EH_DONE) 827 return; 828 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 829 } 830 831 blk_add_timer(req); 832 } 833 834 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 835 { 836 unsigned long deadline; 837 838 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 839 return false; 840 if (rq->rq_flags & RQF_TIMED_OUT) 841 return false; 842 843 deadline = READ_ONCE(rq->deadline); 844 if (time_after_eq(jiffies, deadline)) 845 return true; 846 847 if (*next == 0) 848 *next = deadline; 849 else if (time_after(*next, deadline)) 850 *next = deadline; 851 return false; 852 } 853 854 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 855 struct request *rq, void *priv, bool reserved) 856 { 857 unsigned long *next = priv; 858 859 /* 860 * Just do a quick check if it is expired before locking the request in 861 * so we're not unnecessarilly synchronizing across CPUs. 862 */ 863 if (!blk_mq_req_expired(rq, next)) 864 return true; 865 866 /* 867 * We have reason to believe the request may be expired. Take a 868 * reference on the request to lock this request lifetime into its 869 * currently allocated context to prevent it from being reallocated in 870 * the event the completion by-passes this timeout handler. 871 * 872 * If the reference was already released, then the driver beat the 873 * timeout handler to posting a natural completion. 874 */ 875 if (!refcount_inc_not_zero(&rq->ref)) 876 return true; 877 878 /* 879 * The request is now locked and cannot be reallocated underneath the 880 * timeout handler's processing. Re-verify this exact request is truly 881 * expired; if it is not expired, then the request was completed and 882 * reallocated as a new request. 883 */ 884 if (blk_mq_req_expired(rq, next)) 885 blk_mq_rq_timed_out(rq, reserved); 886 887 if (is_flush_rq(rq, hctx)) 888 rq->end_io(rq, 0); 889 else if (refcount_dec_and_test(&rq->ref)) 890 __blk_mq_free_request(rq); 891 892 return true; 893 } 894 895 static void blk_mq_timeout_work(struct work_struct *work) 896 { 897 struct request_queue *q = 898 container_of(work, struct request_queue, timeout_work); 899 unsigned long next = 0; 900 struct blk_mq_hw_ctx *hctx; 901 int i; 902 903 /* A deadlock might occur if a request is stuck requiring a 904 * timeout at the same time a queue freeze is waiting 905 * completion, since the timeout code would not be able to 906 * acquire the queue reference here. 907 * 908 * That's why we don't use blk_queue_enter here; instead, we use 909 * percpu_ref_tryget directly, because we need to be able to 910 * obtain a reference even in the short window between the queue 911 * starting to freeze, by dropping the first reference in 912 * blk_freeze_queue_start, and the moment the last request is 913 * consumed, marked by the instant q_usage_counter reaches 914 * zero. 915 */ 916 if (!percpu_ref_tryget(&q->q_usage_counter)) 917 return; 918 919 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 920 921 if (next != 0) { 922 mod_timer(&q->timeout, next); 923 } else { 924 /* 925 * Request timeouts are handled as a forward rolling timer. If 926 * we end up here it means that no requests are pending and 927 * also that no request has been pending for a while. Mark 928 * each hctx as idle. 929 */ 930 queue_for_each_hw_ctx(q, hctx, i) { 931 /* the hctx may be unmapped, so check it here */ 932 if (blk_mq_hw_queue_mapped(hctx)) 933 blk_mq_tag_idle(hctx); 934 } 935 } 936 blk_queue_exit(q); 937 } 938 939 struct flush_busy_ctx_data { 940 struct blk_mq_hw_ctx *hctx; 941 struct list_head *list; 942 }; 943 944 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 945 { 946 struct flush_busy_ctx_data *flush_data = data; 947 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 948 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 949 enum hctx_type type = hctx->type; 950 951 spin_lock(&ctx->lock); 952 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 953 sbitmap_clear_bit(sb, bitnr); 954 spin_unlock(&ctx->lock); 955 return true; 956 } 957 958 /* 959 * Process software queues that have been marked busy, splicing them 960 * to the for-dispatch 961 */ 962 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 963 { 964 struct flush_busy_ctx_data data = { 965 .hctx = hctx, 966 .list = list, 967 }; 968 969 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 970 } 971 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 972 973 struct dispatch_rq_data { 974 struct blk_mq_hw_ctx *hctx; 975 struct request *rq; 976 }; 977 978 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 979 void *data) 980 { 981 struct dispatch_rq_data *dispatch_data = data; 982 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 983 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 984 enum hctx_type type = hctx->type; 985 986 spin_lock(&ctx->lock); 987 if (!list_empty(&ctx->rq_lists[type])) { 988 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 989 list_del_init(&dispatch_data->rq->queuelist); 990 if (list_empty(&ctx->rq_lists[type])) 991 sbitmap_clear_bit(sb, bitnr); 992 } 993 spin_unlock(&ctx->lock); 994 995 return !dispatch_data->rq; 996 } 997 998 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 999 struct blk_mq_ctx *start) 1000 { 1001 unsigned off = start ? start->index_hw[hctx->type] : 0; 1002 struct dispatch_rq_data data = { 1003 .hctx = hctx, 1004 .rq = NULL, 1005 }; 1006 1007 __sbitmap_for_each_set(&hctx->ctx_map, off, 1008 dispatch_rq_from_ctx, &data); 1009 1010 return data.rq; 1011 } 1012 1013 static inline unsigned int queued_to_index(unsigned int queued) 1014 { 1015 if (!queued) 1016 return 0; 1017 1018 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1019 } 1020 1021 bool blk_mq_get_driver_tag(struct request *rq) 1022 { 1023 struct blk_mq_alloc_data data = { 1024 .q = rq->q, 1025 .hctx = rq->mq_hctx, 1026 .flags = BLK_MQ_REQ_NOWAIT, 1027 .cmd_flags = rq->cmd_flags, 1028 }; 1029 bool shared; 1030 1031 if (rq->tag != -1) 1032 return true; 1033 1034 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1035 data.flags |= BLK_MQ_REQ_RESERVED; 1036 1037 shared = blk_mq_tag_busy(data.hctx); 1038 rq->tag = blk_mq_get_tag(&data); 1039 if (rq->tag >= 0) { 1040 if (shared) { 1041 rq->rq_flags |= RQF_MQ_INFLIGHT; 1042 atomic_inc(&data.hctx->nr_active); 1043 } 1044 data.hctx->tags->rqs[rq->tag] = rq; 1045 } 1046 1047 return rq->tag != -1; 1048 } 1049 1050 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1051 int flags, void *key) 1052 { 1053 struct blk_mq_hw_ctx *hctx; 1054 1055 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1056 1057 spin_lock(&hctx->dispatch_wait_lock); 1058 if (!list_empty(&wait->entry)) { 1059 struct sbitmap_queue *sbq; 1060 1061 list_del_init(&wait->entry); 1062 sbq = &hctx->tags->bitmap_tags; 1063 atomic_dec(&sbq->ws_active); 1064 } 1065 spin_unlock(&hctx->dispatch_wait_lock); 1066 1067 blk_mq_run_hw_queue(hctx, true); 1068 return 1; 1069 } 1070 1071 /* 1072 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1073 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1074 * restart. For both cases, take care to check the condition again after 1075 * marking us as waiting. 1076 */ 1077 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1078 struct request *rq) 1079 { 1080 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1081 struct wait_queue_head *wq; 1082 wait_queue_entry_t *wait; 1083 bool ret; 1084 1085 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1086 blk_mq_sched_mark_restart_hctx(hctx); 1087 1088 /* 1089 * It's possible that a tag was freed in the window between the 1090 * allocation failure and adding the hardware queue to the wait 1091 * queue. 1092 * 1093 * Don't clear RESTART here, someone else could have set it. 1094 * At most this will cost an extra queue run. 1095 */ 1096 return blk_mq_get_driver_tag(rq); 1097 } 1098 1099 wait = &hctx->dispatch_wait; 1100 if (!list_empty_careful(&wait->entry)) 1101 return false; 1102 1103 wq = &bt_wait_ptr(sbq, hctx)->wait; 1104 1105 spin_lock_irq(&wq->lock); 1106 spin_lock(&hctx->dispatch_wait_lock); 1107 if (!list_empty(&wait->entry)) { 1108 spin_unlock(&hctx->dispatch_wait_lock); 1109 spin_unlock_irq(&wq->lock); 1110 return false; 1111 } 1112 1113 atomic_inc(&sbq->ws_active); 1114 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1115 __add_wait_queue(wq, wait); 1116 1117 /* 1118 * It's possible that a tag was freed in the window between the 1119 * allocation failure and adding the hardware queue to the wait 1120 * queue. 1121 */ 1122 ret = blk_mq_get_driver_tag(rq); 1123 if (!ret) { 1124 spin_unlock(&hctx->dispatch_wait_lock); 1125 spin_unlock_irq(&wq->lock); 1126 return false; 1127 } 1128 1129 /* 1130 * We got a tag, remove ourselves from the wait queue to ensure 1131 * someone else gets the wakeup. 1132 */ 1133 list_del_init(&wait->entry); 1134 atomic_dec(&sbq->ws_active); 1135 spin_unlock(&hctx->dispatch_wait_lock); 1136 spin_unlock_irq(&wq->lock); 1137 1138 return true; 1139 } 1140 1141 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1143 /* 1144 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1145 * - EWMA is one simple way to compute running average value 1146 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1147 * - take 4 as factor for avoiding to get too small(0) result, and this 1148 * factor doesn't matter because EWMA decreases exponentially 1149 */ 1150 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1151 { 1152 unsigned int ewma; 1153 1154 if (hctx->queue->elevator) 1155 return; 1156 1157 ewma = hctx->dispatch_busy; 1158 1159 if (!ewma && !busy) 1160 return; 1161 1162 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1163 if (busy) 1164 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1165 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1166 1167 hctx->dispatch_busy = ewma; 1168 } 1169 1170 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1171 1172 static void blk_mq_handle_dev_resource(struct request *rq, 1173 struct list_head *list) 1174 { 1175 struct request *next = 1176 list_first_entry_or_null(list, struct request, queuelist); 1177 1178 /* 1179 * If an I/O scheduler has been configured and we got a driver tag for 1180 * the next request already, free it. 1181 */ 1182 if (next) 1183 blk_mq_put_driver_tag(next); 1184 1185 list_add(&rq->queuelist, list); 1186 __blk_mq_requeue_request(rq); 1187 } 1188 1189 static void blk_mq_handle_zone_resource(struct request *rq, 1190 struct list_head *zone_list) 1191 { 1192 /* 1193 * If we end up here it is because we cannot dispatch a request to a 1194 * specific zone due to LLD level zone-write locking or other zone 1195 * related resource not being available. In this case, set the request 1196 * aside in zone_list for retrying it later. 1197 */ 1198 list_add(&rq->queuelist, zone_list); 1199 __blk_mq_requeue_request(rq); 1200 } 1201 1202 /* 1203 * Returns true if we did some work AND can potentially do more. 1204 */ 1205 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1206 bool got_budget) 1207 { 1208 struct blk_mq_hw_ctx *hctx; 1209 struct request *rq, *nxt; 1210 bool no_tag = false; 1211 int errors, queued; 1212 blk_status_t ret = BLK_STS_OK; 1213 bool no_budget_avail = false; 1214 LIST_HEAD(zone_list); 1215 1216 if (list_empty(list)) 1217 return false; 1218 1219 WARN_ON(!list_is_singular(list) && got_budget); 1220 1221 /* 1222 * Now process all the entries, sending them to the driver. 1223 */ 1224 errors = queued = 0; 1225 do { 1226 struct blk_mq_queue_data bd; 1227 1228 rq = list_first_entry(list, struct request, queuelist); 1229 1230 hctx = rq->mq_hctx; 1231 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1232 blk_mq_put_driver_tag(rq); 1233 no_budget_avail = true; 1234 break; 1235 } 1236 1237 if (!blk_mq_get_driver_tag(rq)) { 1238 /* 1239 * The initial allocation attempt failed, so we need to 1240 * rerun the hardware queue when a tag is freed. The 1241 * waitqueue takes care of that. If the queue is run 1242 * before we add this entry back on the dispatch list, 1243 * we'll re-run it below. 1244 */ 1245 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1246 blk_mq_put_dispatch_budget(hctx); 1247 /* 1248 * For non-shared tags, the RESTART check 1249 * will suffice. 1250 */ 1251 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1252 no_tag = true; 1253 break; 1254 } 1255 } 1256 1257 list_del_init(&rq->queuelist); 1258 1259 bd.rq = rq; 1260 1261 /* 1262 * Flag last if we have no more requests, or if we have more 1263 * but can't assign a driver tag to it. 1264 */ 1265 if (list_empty(list)) 1266 bd.last = true; 1267 else { 1268 nxt = list_first_entry(list, struct request, queuelist); 1269 bd.last = !blk_mq_get_driver_tag(nxt); 1270 } 1271 1272 ret = q->mq_ops->queue_rq(hctx, &bd); 1273 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1274 blk_mq_handle_dev_resource(rq, list); 1275 break; 1276 } else if (ret == BLK_STS_ZONE_RESOURCE) { 1277 /* 1278 * Move the request to zone_list and keep going through 1279 * the dispatch list to find more requests the drive can 1280 * accept. 1281 */ 1282 blk_mq_handle_zone_resource(rq, &zone_list); 1283 if (list_empty(list)) 1284 break; 1285 continue; 1286 } 1287 1288 if (unlikely(ret != BLK_STS_OK)) { 1289 errors++; 1290 blk_mq_end_request(rq, BLK_STS_IOERR); 1291 continue; 1292 } 1293 1294 queued++; 1295 } while (!list_empty(list)); 1296 1297 if (!list_empty(&zone_list)) 1298 list_splice_tail_init(&zone_list, list); 1299 1300 hctx->dispatched[queued_to_index(queued)]++; 1301 1302 /* 1303 * Any items that need requeuing? Stuff them into hctx->dispatch, 1304 * that is where we will continue on next queue run. 1305 */ 1306 if (!list_empty(list)) { 1307 bool needs_restart; 1308 1309 /* 1310 * If we didn't flush the entire list, we could have told 1311 * the driver there was more coming, but that turned out to 1312 * be a lie. 1313 */ 1314 if (q->mq_ops->commit_rqs && queued) 1315 q->mq_ops->commit_rqs(hctx); 1316 1317 spin_lock(&hctx->lock); 1318 list_splice_tail_init(list, &hctx->dispatch); 1319 spin_unlock(&hctx->lock); 1320 1321 /* 1322 * If SCHED_RESTART was set by the caller of this function and 1323 * it is no longer set that means that it was cleared by another 1324 * thread and hence that a queue rerun is needed. 1325 * 1326 * If 'no_tag' is set, that means that we failed getting 1327 * a driver tag with an I/O scheduler attached. If our dispatch 1328 * waitqueue is no longer active, ensure that we run the queue 1329 * AFTER adding our entries back to the list. 1330 * 1331 * If no I/O scheduler has been configured it is possible that 1332 * the hardware queue got stopped and restarted before requests 1333 * were pushed back onto the dispatch list. Rerun the queue to 1334 * avoid starvation. Notes: 1335 * - blk_mq_run_hw_queue() checks whether or not a queue has 1336 * been stopped before rerunning a queue. 1337 * - Some but not all block drivers stop a queue before 1338 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1339 * and dm-rq. 1340 * 1341 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1342 * bit is set, run queue after a delay to avoid IO stalls 1343 * that could otherwise occur if the queue is idle. We'll do 1344 * similar if we couldn't get budget and SCHED_RESTART is set. 1345 */ 1346 needs_restart = blk_mq_sched_needs_restart(hctx); 1347 if (!needs_restart || 1348 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1349 blk_mq_run_hw_queue(hctx, true); 1350 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1351 no_budget_avail)) 1352 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1353 1354 blk_mq_update_dispatch_busy(hctx, true); 1355 return false; 1356 } else 1357 blk_mq_update_dispatch_busy(hctx, false); 1358 1359 /* 1360 * If the host/device is unable to accept more work, inform the 1361 * caller of that. 1362 */ 1363 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1364 return false; 1365 1366 return (queued + errors) != 0; 1367 } 1368 1369 /** 1370 * __blk_mq_run_hw_queue - Run a hardware queue. 1371 * @hctx: Pointer to the hardware queue to run. 1372 * 1373 * Send pending requests to the hardware. 1374 */ 1375 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1376 { 1377 int srcu_idx; 1378 1379 /* 1380 * We should be running this queue from one of the CPUs that 1381 * are mapped to it. 1382 * 1383 * There are at least two related races now between setting 1384 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1385 * __blk_mq_run_hw_queue(): 1386 * 1387 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1388 * but later it becomes online, then this warning is harmless 1389 * at all 1390 * 1391 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1392 * but later it becomes offline, then the warning can't be 1393 * triggered, and we depend on blk-mq timeout handler to 1394 * handle dispatched requests to this hctx 1395 */ 1396 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1397 cpu_online(hctx->next_cpu)) { 1398 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1399 raw_smp_processor_id(), 1400 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1401 dump_stack(); 1402 } 1403 1404 /* 1405 * We can't run the queue inline with ints disabled. Ensure that 1406 * we catch bad users of this early. 1407 */ 1408 WARN_ON_ONCE(in_interrupt()); 1409 1410 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1411 1412 hctx_lock(hctx, &srcu_idx); 1413 blk_mq_sched_dispatch_requests(hctx); 1414 hctx_unlock(hctx, srcu_idx); 1415 } 1416 1417 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1418 { 1419 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1420 1421 if (cpu >= nr_cpu_ids) 1422 cpu = cpumask_first(hctx->cpumask); 1423 return cpu; 1424 } 1425 1426 /* 1427 * It'd be great if the workqueue API had a way to pass 1428 * in a mask and had some smarts for more clever placement. 1429 * For now we just round-robin here, switching for every 1430 * BLK_MQ_CPU_WORK_BATCH queued items. 1431 */ 1432 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1433 { 1434 bool tried = false; 1435 int next_cpu = hctx->next_cpu; 1436 1437 if (hctx->queue->nr_hw_queues == 1) 1438 return WORK_CPU_UNBOUND; 1439 1440 if (--hctx->next_cpu_batch <= 0) { 1441 select_cpu: 1442 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1443 cpu_online_mask); 1444 if (next_cpu >= nr_cpu_ids) 1445 next_cpu = blk_mq_first_mapped_cpu(hctx); 1446 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1447 } 1448 1449 /* 1450 * Do unbound schedule if we can't find a online CPU for this hctx, 1451 * and it should only happen in the path of handling CPU DEAD. 1452 */ 1453 if (!cpu_online(next_cpu)) { 1454 if (!tried) { 1455 tried = true; 1456 goto select_cpu; 1457 } 1458 1459 /* 1460 * Make sure to re-select CPU next time once after CPUs 1461 * in hctx->cpumask become online again. 1462 */ 1463 hctx->next_cpu = next_cpu; 1464 hctx->next_cpu_batch = 1; 1465 return WORK_CPU_UNBOUND; 1466 } 1467 1468 hctx->next_cpu = next_cpu; 1469 return next_cpu; 1470 } 1471 1472 /** 1473 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1474 * @hctx: Pointer to the hardware queue to run. 1475 * @async: If we want to run the queue asynchronously. 1476 * @msecs: Microseconds of delay to wait before running the queue. 1477 * 1478 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1479 * with a delay of @msecs. 1480 */ 1481 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1482 unsigned long msecs) 1483 { 1484 if (unlikely(blk_mq_hctx_stopped(hctx))) 1485 return; 1486 1487 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1488 int cpu = get_cpu(); 1489 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1490 __blk_mq_run_hw_queue(hctx); 1491 put_cpu(); 1492 return; 1493 } 1494 1495 put_cpu(); 1496 } 1497 1498 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1499 msecs_to_jiffies(msecs)); 1500 } 1501 1502 /** 1503 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1504 * @hctx: Pointer to the hardware queue to run. 1505 * @msecs: Microseconds of delay to wait before running the queue. 1506 * 1507 * Run a hardware queue asynchronously with a delay of @msecs. 1508 */ 1509 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1510 { 1511 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1512 } 1513 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1514 1515 /** 1516 * blk_mq_run_hw_queue - Start to run a hardware queue. 1517 * @hctx: Pointer to the hardware queue to run. 1518 * @async: If we want to run the queue asynchronously. 1519 * 1520 * Check if the request queue is not in a quiesced state and if there are 1521 * pending requests to be sent. If this is true, run the queue to send requests 1522 * to hardware. 1523 */ 1524 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1525 { 1526 int srcu_idx; 1527 bool need_run; 1528 1529 /* 1530 * When queue is quiesced, we may be switching io scheduler, or 1531 * updating nr_hw_queues, or other things, and we can't run queue 1532 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1533 * 1534 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1535 * quiesced. 1536 */ 1537 hctx_lock(hctx, &srcu_idx); 1538 need_run = !blk_queue_quiesced(hctx->queue) && 1539 blk_mq_hctx_has_pending(hctx); 1540 hctx_unlock(hctx, srcu_idx); 1541 1542 if (need_run) 1543 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1544 } 1545 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1546 1547 /** 1548 * blk_mq_run_hw_queue - Run all hardware queues in a request queue. 1549 * @q: Pointer to the request queue to run. 1550 * @async: If we want to run the queue asynchronously. 1551 */ 1552 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1553 { 1554 struct blk_mq_hw_ctx *hctx; 1555 int i; 1556 1557 queue_for_each_hw_ctx(q, hctx, i) { 1558 if (blk_mq_hctx_stopped(hctx)) 1559 continue; 1560 1561 blk_mq_run_hw_queue(hctx, async); 1562 } 1563 } 1564 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1565 1566 /** 1567 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1568 * @q: Pointer to the request queue to run. 1569 * @msecs: Microseconds of delay to wait before running the queues. 1570 */ 1571 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1572 { 1573 struct blk_mq_hw_ctx *hctx; 1574 int i; 1575 1576 queue_for_each_hw_ctx(q, hctx, i) { 1577 if (blk_mq_hctx_stopped(hctx)) 1578 continue; 1579 1580 blk_mq_delay_run_hw_queue(hctx, msecs); 1581 } 1582 } 1583 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1584 1585 /** 1586 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1587 * @q: request queue. 1588 * 1589 * The caller is responsible for serializing this function against 1590 * blk_mq_{start,stop}_hw_queue(). 1591 */ 1592 bool blk_mq_queue_stopped(struct request_queue *q) 1593 { 1594 struct blk_mq_hw_ctx *hctx; 1595 int i; 1596 1597 queue_for_each_hw_ctx(q, hctx, i) 1598 if (blk_mq_hctx_stopped(hctx)) 1599 return true; 1600 1601 return false; 1602 } 1603 EXPORT_SYMBOL(blk_mq_queue_stopped); 1604 1605 /* 1606 * This function is often used for pausing .queue_rq() by driver when 1607 * there isn't enough resource or some conditions aren't satisfied, and 1608 * BLK_STS_RESOURCE is usually returned. 1609 * 1610 * We do not guarantee that dispatch can be drained or blocked 1611 * after blk_mq_stop_hw_queue() returns. Please use 1612 * blk_mq_quiesce_queue() for that requirement. 1613 */ 1614 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1615 { 1616 cancel_delayed_work(&hctx->run_work); 1617 1618 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1619 } 1620 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1621 1622 /* 1623 * This function is often used for pausing .queue_rq() by driver when 1624 * there isn't enough resource or some conditions aren't satisfied, and 1625 * BLK_STS_RESOURCE is usually returned. 1626 * 1627 * We do not guarantee that dispatch can be drained or blocked 1628 * after blk_mq_stop_hw_queues() returns. Please use 1629 * blk_mq_quiesce_queue() for that requirement. 1630 */ 1631 void blk_mq_stop_hw_queues(struct request_queue *q) 1632 { 1633 struct blk_mq_hw_ctx *hctx; 1634 int i; 1635 1636 queue_for_each_hw_ctx(q, hctx, i) 1637 blk_mq_stop_hw_queue(hctx); 1638 } 1639 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1640 1641 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1642 { 1643 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1644 1645 blk_mq_run_hw_queue(hctx, false); 1646 } 1647 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1648 1649 void blk_mq_start_hw_queues(struct request_queue *q) 1650 { 1651 struct blk_mq_hw_ctx *hctx; 1652 int i; 1653 1654 queue_for_each_hw_ctx(q, hctx, i) 1655 blk_mq_start_hw_queue(hctx); 1656 } 1657 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1658 1659 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1660 { 1661 if (!blk_mq_hctx_stopped(hctx)) 1662 return; 1663 1664 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1665 blk_mq_run_hw_queue(hctx, async); 1666 } 1667 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1668 1669 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1670 { 1671 struct blk_mq_hw_ctx *hctx; 1672 int i; 1673 1674 queue_for_each_hw_ctx(q, hctx, i) 1675 blk_mq_start_stopped_hw_queue(hctx, async); 1676 } 1677 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1678 1679 static void blk_mq_run_work_fn(struct work_struct *work) 1680 { 1681 struct blk_mq_hw_ctx *hctx; 1682 1683 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1684 1685 /* 1686 * If we are stopped, don't run the queue. 1687 */ 1688 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1689 return; 1690 1691 __blk_mq_run_hw_queue(hctx); 1692 } 1693 1694 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1695 struct request *rq, 1696 bool at_head) 1697 { 1698 struct blk_mq_ctx *ctx = rq->mq_ctx; 1699 enum hctx_type type = hctx->type; 1700 1701 lockdep_assert_held(&ctx->lock); 1702 1703 trace_block_rq_insert(hctx->queue, rq); 1704 1705 if (at_head) 1706 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1707 else 1708 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1709 } 1710 1711 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1712 bool at_head) 1713 { 1714 struct blk_mq_ctx *ctx = rq->mq_ctx; 1715 1716 lockdep_assert_held(&ctx->lock); 1717 1718 __blk_mq_insert_req_list(hctx, rq, at_head); 1719 blk_mq_hctx_mark_pending(hctx, ctx); 1720 } 1721 1722 /** 1723 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1724 * @rq: Pointer to request to be inserted. 1725 * @run_queue: If we should run the hardware queue after inserting the request. 1726 * 1727 * Should only be used carefully, when the caller knows we want to 1728 * bypass a potential IO scheduler on the target device. 1729 */ 1730 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1731 bool run_queue) 1732 { 1733 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1734 1735 spin_lock(&hctx->lock); 1736 if (at_head) 1737 list_add(&rq->queuelist, &hctx->dispatch); 1738 else 1739 list_add_tail(&rq->queuelist, &hctx->dispatch); 1740 spin_unlock(&hctx->lock); 1741 1742 if (run_queue) 1743 blk_mq_run_hw_queue(hctx, false); 1744 } 1745 1746 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1747 struct list_head *list) 1748 1749 { 1750 struct request *rq; 1751 enum hctx_type type = hctx->type; 1752 1753 /* 1754 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1755 * offline now 1756 */ 1757 list_for_each_entry(rq, list, queuelist) { 1758 BUG_ON(rq->mq_ctx != ctx); 1759 trace_block_rq_insert(hctx->queue, rq); 1760 } 1761 1762 spin_lock(&ctx->lock); 1763 list_splice_tail_init(list, &ctx->rq_lists[type]); 1764 blk_mq_hctx_mark_pending(hctx, ctx); 1765 spin_unlock(&ctx->lock); 1766 } 1767 1768 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1769 { 1770 struct request *rqa = container_of(a, struct request, queuelist); 1771 struct request *rqb = container_of(b, struct request, queuelist); 1772 1773 if (rqa->mq_ctx != rqb->mq_ctx) 1774 return rqa->mq_ctx > rqb->mq_ctx; 1775 if (rqa->mq_hctx != rqb->mq_hctx) 1776 return rqa->mq_hctx > rqb->mq_hctx; 1777 1778 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1779 } 1780 1781 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1782 { 1783 LIST_HEAD(list); 1784 1785 if (list_empty(&plug->mq_list)) 1786 return; 1787 list_splice_init(&plug->mq_list, &list); 1788 1789 if (plug->rq_count > 2 && plug->multiple_queues) 1790 list_sort(NULL, &list, plug_rq_cmp); 1791 1792 plug->rq_count = 0; 1793 1794 do { 1795 struct list_head rq_list; 1796 struct request *rq, *head_rq = list_entry_rq(list.next); 1797 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1798 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1799 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1800 unsigned int depth = 1; 1801 1802 list_for_each_continue(pos, &list) { 1803 rq = list_entry_rq(pos); 1804 BUG_ON(!rq->q); 1805 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1806 break; 1807 depth++; 1808 } 1809 1810 list_cut_before(&rq_list, &list, pos); 1811 trace_block_unplug(head_rq->q, depth, !from_schedule); 1812 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1813 from_schedule); 1814 } while(!list_empty(&list)); 1815 } 1816 1817 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1818 unsigned int nr_segs) 1819 { 1820 if (bio->bi_opf & REQ_RAHEAD) 1821 rq->cmd_flags |= REQ_FAILFAST_MASK; 1822 1823 rq->__sector = bio->bi_iter.bi_sector; 1824 rq->write_hint = bio->bi_write_hint; 1825 blk_rq_bio_prep(rq, bio, nr_segs); 1826 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1827 1828 blk_account_io_start(rq, true); 1829 } 1830 1831 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1832 struct request *rq, 1833 blk_qc_t *cookie, bool last) 1834 { 1835 struct request_queue *q = rq->q; 1836 struct blk_mq_queue_data bd = { 1837 .rq = rq, 1838 .last = last, 1839 }; 1840 blk_qc_t new_cookie; 1841 blk_status_t ret; 1842 1843 new_cookie = request_to_qc_t(hctx, rq); 1844 1845 /* 1846 * For OK queue, we are done. For error, caller may kill it. 1847 * Any other error (busy), just add it to our list as we 1848 * previously would have done. 1849 */ 1850 ret = q->mq_ops->queue_rq(hctx, &bd); 1851 switch (ret) { 1852 case BLK_STS_OK: 1853 blk_mq_update_dispatch_busy(hctx, false); 1854 *cookie = new_cookie; 1855 break; 1856 case BLK_STS_RESOURCE: 1857 case BLK_STS_DEV_RESOURCE: 1858 blk_mq_update_dispatch_busy(hctx, true); 1859 __blk_mq_requeue_request(rq); 1860 break; 1861 default: 1862 blk_mq_update_dispatch_busy(hctx, false); 1863 *cookie = BLK_QC_T_NONE; 1864 break; 1865 } 1866 1867 return ret; 1868 } 1869 1870 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1871 struct request *rq, 1872 blk_qc_t *cookie, 1873 bool bypass_insert, bool last) 1874 { 1875 struct request_queue *q = rq->q; 1876 bool run_queue = true; 1877 1878 /* 1879 * RCU or SRCU read lock is needed before checking quiesced flag. 1880 * 1881 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1882 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1883 * and avoid driver to try to dispatch again. 1884 */ 1885 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1886 run_queue = false; 1887 bypass_insert = false; 1888 goto insert; 1889 } 1890 1891 if (q->elevator && !bypass_insert) 1892 goto insert; 1893 1894 if (!blk_mq_get_dispatch_budget(hctx)) 1895 goto insert; 1896 1897 if (!blk_mq_get_driver_tag(rq)) { 1898 blk_mq_put_dispatch_budget(hctx); 1899 goto insert; 1900 } 1901 1902 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1903 insert: 1904 if (bypass_insert) 1905 return BLK_STS_RESOURCE; 1906 1907 blk_mq_request_bypass_insert(rq, false, run_queue); 1908 return BLK_STS_OK; 1909 } 1910 1911 /** 1912 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 1913 * @hctx: Pointer of the associated hardware queue. 1914 * @rq: Pointer to request to be sent. 1915 * @cookie: Request queue cookie. 1916 * 1917 * If the device has enough resources to accept a new request now, send the 1918 * request directly to device driver. Else, insert at hctx->dispatch queue, so 1919 * we can try send it another time in the future. Requests inserted at this 1920 * queue have higher priority. 1921 */ 1922 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1923 struct request *rq, blk_qc_t *cookie) 1924 { 1925 blk_status_t ret; 1926 int srcu_idx; 1927 1928 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1929 1930 hctx_lock(hctx, &srcu_idx); 1931 1932 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1933 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1934 blk_mq_request_bypass_insert(rq, false, true); 1935 else if (ret != BLK_STS_OK) 1936 blk_mq_end_request(rq, ret); 1937 1938 hctx_unlock(hctx, srcu_idx); 1939 } 1940 1941 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1942 { 1943 blk_status_t ret; 1944 int srcu_idx; 1945 blk_qc_t unused_cookie; 1946 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1947 1948 hctx_lock(hctx, &srcu_idx); 1949 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1950 hctx_unlock(hctx, srcu_idx); 1951 1952 return ret; 1953 } 1954 1955 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1956 struct list_head *list) 1957 { 1958 int queued = 0; 1959 1960 while (!list_empty(list)) { 1961 blk_status_t ret; 1962 struct request *rq = list_first_entry(list, struct request, 1963 queuelist); 1964 1965 list_del_init(&rq->queuelist); 1966 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1967 if (ret != BLK_STS_OK) { 1968 if (ret == BLK_STS_RESOURCE || 1969 ret == BLK_STS_DEV_RESOURCE) { 1970 blk_mq_request_bypass_insert(rq, false, 1971 list_empty(list)); 1972 break; 1973 } 1974 blk_mq_end_request(rq, ret); 1975 } else 1976 queued++; 1977 } 1978 1979 /* 1980 * If we didn't flush the entire list, we could have told 1981 * the driver there was more coming, but that turned out to 1982 * be a lie. 1983 */ 1984 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued) 1985 hctx->queue->mq_ops->commit_rqs(hctx); 1986 } 1987 1988 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1989 { 1990 list_add_tail(&rq->queuelist, &plug->mq_list); 1991 plug->rq_count++; 1992 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1993 struct request *tmp; 1994 1995 tmp = list_first_entry(&plug->mq_list, struct request, 1996 queuelist); 1997 if (tmp->q != rq->q) 1998 plug->multiple_queues = true; 1999 } 2000 } 2001 2002 /** 2003 * blk_mq_make_request - Create and send a request to block device. 2004 * @q: Request queue pointer. 2005 * @bio: Bio pointer. 2006 * 2007 * Builds up a request structure from @q and @bio and send to the device. The 2008 * request may not be queued directly to hardware if: 2009 * * This request can be merged with another one 2010 * * We want to place request at plug queue for possible future merging 2011 * * There is an IO scheduler active at this queue 2012 * 2013 * It will not queue the request if there is an error with the bio, or at the 2014 * request creation. 2015 * 2016 * Returns: Request queue cookie. 2017 */ 2018 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 2019 { 2020 const int is_sync = op_is_sync(bio->bi_opf); 2021 const int is_flush_fua = op_is_flush(bio->bi_opf); 2022 struct blk_mq_alloc_data data = { .flags = 0}; 2023 struct request *rq; 2024 struct blk_plug *plug; 2025 struct request *same_queue_rq = NULL; 2026 unsigned int nr_segs; 2027 blk_qc_t cookie; 2028 blk_status_t ret; 2029 2030 blk_queue_bounce(q, &bio); 2031 __blk_queue_split(q, &bio, &nr_segs); 2032 2033 if (!bio_integrity_prep(bio)) 2034 return BLK_QC_T_NONE; 2035 2036 if (!is_flush_fua && !blk_queue_nomerges(q) && 2037 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2038 return BLK_QC_T_NONE; 2039 2040 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2041 return BLK_QC_T_NONE; 2042 2043 rq_qos_throttle(q, bio); 2044 2045 data.cmd_flags = bio->bi_opf; 2046 rq = blk_mq_get_request(q, bio, &data); 2047 if (unlikely(!rq)) { 2048 rq_qos_cleanup(q, bio); 2049 if (bio->bi_opf & REQ_NOWAIT) 2050 bio_wouldblock_error(bio); 2051 return BLK_QC_T_NONE; 2052 } 2053 2054 trace_block_getrq(q, bio, bio->bi_opf); 2055 2056 rq_qos_track(q, rq, bio); 2057 2058 cookie = request_to_qc_t(data.hctx, rq); 2059 2060 blk_mq_bio_to_request(rq, bio, nr_segs); 2061 2062 ret = blk_crypto_init_request(rq); 2063 if (ret != BLK_STS_OK) { 2064 bio->bi_status = ret; 2065 bio_endio(bio); 2066 blk_mq_free_request(rq); 2067 return BLK_QC_T_NONE; 2068 } 2069 2070 plug = blk_mq_plug(q, bio); 2071 if (unlikely(is_flush_fua)) { 2072 /* Bypass scheduler for flush requests */ 2073 blk_insert_flush(rq); 2074 blk_mq_run_hw_queue(data.hctx, true); 2075 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 2076 !blk_queue_nonrot(q))) { 2077 /* 2078 * Use plugging if we have a ->commit_rqs() hook as well, as 2079 * we know the driver uses bd->last in a smart fashion. 2080 * 2081 * Use normal plugging if this disk is slow HDD, as sequential 2082 * IO may benefit a lot from plug merging. 2083 */ 2084 unsigned int request_count = plug->rq_count; 2085 struct request *last = NULL; 2086 2087 if (!request_count) 2088 trace_block_plug(q); 2089 else 2090 last = list_entry_rq(plug->mq_list.prev); 2091 2092 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2094 blk_flush_plug_list(plug, false); 2095 trace_block_plug(q); 2096 } 2097 2098 blk_add_rq_to_plug(plug, rq); 2099 } else if (q->elevator) { 2100 /* Insert the request at the IO scheduler queue */ 2101 blk_mq_sched_insert_request(rq, false, true, true); 2102 } else if (plug && !blk_queue_nomerges(q)) { 2103 /* 2104 * We do limited plugging. If the bio can be merged, do that. 2105 * Otherwise the existing request in the plug list will be 2106 * issued. So the plug list will have one request at most 2107 * The plug list might get flushed before this. If that happens, 2108 * the plug list is empty, and same_queue_rq is invalid. 2109 */ 2110 if (list_empty(&plug->mq_list)) 2111 same_queue_rq = NULL; 2112 if (same_queue_rq) { 2113 list_del_init(&same_queue_rq->queuelist); 2114 plug->rq_count--; 2115 } 2116 blk_add_rq_to_plug(plug, rq); 2117 trace_block_plug(q); 2118 2119 if (same_queue_rq) { 2120 data.hctx = same_queue_rq->mq_hctx; 2121 trace_block_unplug(q, 1, true); 2122 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2123 &cookie); 2124 } 2125 } else if ((q->nr_hw_queues > 1 && is_sync) || 2126 !data.hctx->dispatch_busy) { 2127 /* 2128 * There is no scheduler and we can try to send directly 2129 * to the hardware. 2130 */ 2131 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2132 } else { 2133 /* Default case. */ 2134 blk_mq_sched_insert_request(rq, false, true, true); 2135 } 2136 2137 return cookie; 2138 } 2139 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */ 2140 2141 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2142 unsigned int hctx_idx) 2143 { 2144 struct page *page; 2145 2146 if (tags->rqs && set->ops->exit_request) { 2147 int i; 2148 2149 for (i = 0; i < tags->nr_tags; i++) { 2150 struct request *rq = tags->static_rqs[i]; 2151 2152 if (!rq) 2153 continue; 2154 set->ops->exit_request(set, rq, hctx_idx); 2155 tags->static_rqs[i] = NULL; 2156 } 2157 } 2158 2159 while (!list_empty(&tags->page_list)) { 2160 page = list_first_entry(&tags->page_list, struct page, lru); 2161 list_del_init(&page->lru); 2162 /* 2163 * Remove kmemleak object previously allocated in 2164 * blk_mq_alloc_rqs(). 2165 */ 2166 kmemleak_free(page_address(page)); 2167 __free_pages(page, page->private); 2168 } 2169 } 2170 2171 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2172 { 2173 kfree(tags->rqs); 2174 tags->rqs = NULL; 2175 kfree(tags->static_rqs); 2176 tags->static_rqs = NULL; 2177 2178 blk_mq_free_tags(tags); 2179 } 2180 2181 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2182 unsigned int hctx_idx, 2183 unsigned int nr_tags, 2184 unsigned int reserved_tags) 2185 { 2186 struct blk_mq_tags *tags; 2187 int node; 2188 2189 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2190 if (node == NUMA_NO_NODE) 2191 node = set->numa_node; 2192 2193 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2194 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2195 if (!tags) 2196 return NULL; 2197 2198 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2199 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2200 node); 2201 if (!tags->rqs) { 2202 blk_mq_free_tags(tags); 2203 return NULL; 2204 } 2205 2206 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2207 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2208 node); 2209 if (!tags->static_rqs) { 2210 kfree(tags->rqs); 2211 blk_mq_free_tags(tags); 2212 return NULL; 2213 } 2214 2215 return tags; 2216 } 2217 2218 static size_t order_to_size(unsigned int order) 2219 { 2220 return (size_t)PAGE_SIZE << order; 2221 } 2222 2223 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2224 unsigned int hctx_idx, int node) 2225 { 2226 int ret; 2227 2228 if (set->ops->init_request) { 2229 ret = set->ops->init_request(set, rq, hctx_idx, node); 2230 if (ret) 2231 return ret; 2232 } 2233 2234 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2235 return 0; 2236 } 2237 2238 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2239 unsigned int hctx_idx, unsigned int depth) 2240 { 2241 unsigned int i, j, entries_per_page, max_order = 4; 2242 size_t rq_size, left; 2243 int node; 2244 2245 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2246 if (node == NUMA_NO_NODE) 2247 node = set->numa_node; 2248 2249 INIT_LIST_HEAD(&tags->page_list); 2250 2251 /* 2252 * rq_size is the size of the request plus driver payload, rounded 2253 * to the cacheline size 2254 */ 2255 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2256 cache_line_size()); 2257 left = rq_size * depth; 2258 2259 for (i = 0; i < depth; ) { 2260 int this_order = max_order; 2261 struct page *page; 2262 int to_do; 2263 void *p; 2264 2265 while (this_order && left < order_to_size(this_order - 1)) 2266 this_order--; 2267 2268 do { 2269 page = alloc_pages_node(node, 2270 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2271 this_order); 2272 if (page) 2273 break; 2274 if (!this_order--) 2275 break; 2276 if (order_to_size(this_order) < rq_size) 2277 break; 2278 } while (1); 2279 2280 if (!page) 2281 goto fail; 2282 2283 page->private = this_order; 2284 list_add_tail(&page->lru, &tags->page_list); 2285 2286 p = page_address(page); 2287 /* 2288 * Allow kmemleak to scan these pages as they contain pointers 2289 * to additional allocations like via ops->init_request(). 2290 */ 2291 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2292 entries_per_page = order_to_size(this_order) / rq_size; 2293 to_do = min(entries_per_page, depth - i); 2294 left -= to_do * rq_size; 2295 for (j = 0; j < to_do; j++) { 2296 struct request *rq = p; 2297 2298 tags->static_rqs[i] = rq; 2299 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2300 tags->static_rqs[i] = NULL; 2301 goto fail; 2302 } 2303 2304 p += rq_size; 2305 i++; 2306 } 2307 } 2308 return 0; 2309 2310 fail: 2311 blk_mq_free_rqs(set, tags, hctx_idx); 2312 return -ENOMEM; 2313 } 2314 2315 /* 2316 * 'cpu' is going away. splice any existing rq_list entries from this 2317 * software queue to the hw queue dispatch list, and ensure that it 2318 * gets run. 2319 */ 2320 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2321 { 2322 struct blk_mq_hw_ctx *hctx; 2323 struct blk_mq_ctx *ctx; 2324 LIST_HEAD(tmp); 2325 enum hctx_type type; 2326 2327 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2328 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2329 type = hctx->type; 2330 2331 spin_lock(&ctx->lock); 2332 if (!list_empty(&ctx->rq_lists[type])) { 2333 list_splice_init(&ctx->rq_lists[type], &tmp); 2334 blk_mq_hctx_clear_pending(hctx, ctx); 2335 } 2336 spin_unlock(&ctx->lock); 2337 2338 if (list_empty(&tmp)) 2339 return 0; 2340 2341 spin_lock(&hctx->lock); 2342 list_splice_tail_init(&tmp, &hctx->dispatch); 2343 spin_unlock(&hctx->lock); 2344 2345 blk_mq_run_hw_queue(hctx, true); 2346 return 0; 2347 } 2348 2349 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2350 { 2351 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2352 &hctx->cpuhp_dead); 2353 } 2354 2355 /* hctx->ctxs will be freed in queue's release handler */ 2356 static void blk_mq_exit_hctx(struct request_queue *q, 2357 struct blk_mq_tag_set *set, 2358 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2359 { 2360 if (blk_mq_hw_queue_mapped(hctx)) 2361 blk_mq_tag_idle(hctx); 2362 2363 if (set->ops->exit_request) 2364 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2365 2366 if (set->ops->exit_hctx) 2367 set->ops->exit_hctx(hctx, hctx_idx); 2368 2369 blk_mq_remove_cpuhp(hctx); 2370 2371 spin_lock(&q->unused_hctx_lock); 2372 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2373 spin_unlock(&q->unused_hctx_lock); 2374 } 2375 2376 static void blk_mq_exit_hw_queues(struct request_queue *q, 2377 struct blk_mq_tag_set *set, int nr_queue) 2378 { 2379 struct blk_mq_hw_ctx *hctx; 2380 unsigned int i; 2381 2382 queue_for_each_hw_ctx(q, hctx, i) { 2383 if (i == nr_queue) 2384 break; 2385 blk_mq_debugfs_unregister_hctx(hctx); 2386 blk_mq_exit_hctx(q, set, hctx, i); 2387 } 2388 } 2389 2390 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2391 { 2392 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2393 2394 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2395 __alignof__(struct blk_mq_hw_ctx)) != 2396 sizeof(struct blk_mq_hw_ctx)); 2397 2398 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2399 hw_ctx_size += sizeof(struct srcu_struct); 2400 2401 return hw_ctx_size; 2402 } 2403 2404 static int blk_mq_init_hctx(struct request_queue *q, 2405 struct blk_mq_tag_set *set, 2406 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2407 { 2408 hctx->queue_num = hctx_idx; 2409 2410 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2411 2412 hctx->tags = set->tags[hctx_idx]; 2413 2414 if (set->ops->init_hctx && 2415 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2416 goto unregister_cpu_notifier; 2417 2418 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2419 hctx->numa_node)) 2420 goto exit_hctx; 2421 return 0; 2422 2423 exit_hctx: 2424 if (set->ops->exit_hctx) 2425 set->ops->exit_hctx(hctx, hctx_idx); 2426 unregister_cpu_notifier: 2427 blk_mq_remove_cpuhp(hctx); 2428 return -1; 2429 } 2430 2431 static struct blk_mq_hw_ctx * 2432 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2433 int node) 2434 { 2435 struct blk_mq_hw_ctx *hctx; 2436 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2437 2438 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2439 if (!hctx) 2440 goto fail_alloc_hctx; 2441 2442 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2443 goto free_hctx; 2444 2445 atomic_set(&hctx->nr_active, 0); 2446 if (node == NUMA_NO_NODE) 2447 node = set->numa_node; 2448 hctx->numa_node = node; 2449 2450 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2451 spin_lock_init(&hctx->lock); 2452 INIT_LIST_HEAD(&hctx->dispatch); 2453 hctx->queue = q; 2454 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2455 2456 INIT_LIST_HEAD(&hctx->hctx_list); 2457 2458 /* 2459 * Allocate space for all possible cpus to avoid allocation at 2460 * runtime 2461 */ 2462 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2463 gfp, node); 2464 if (!hctx->ctxs) 2465 goto free_cpumask; 2466 2467 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2468 gfp, node)) 2469 goto free_ctxs; 2470 hctx->nr_ctx = 0; 2471 2472 spin_lock_init(&hctx->dispatch_wait_lock); 2473 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2474 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2475 2476 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2477 if (!hctx->fq) 2478 goto free_bitmap; 2479 2480 if (hctx->flags & BLK_MQ_F_BLOCKING) 2481 init_srcu_struct(hctx->srcu); 2482 blk_mq_hctx_kobj_init(hctx); 2483 2484 return hctx; 2485 2486 free_bitmap: 2487 sbitmap_free(&hctx->ctx_map); 2488 free_ctxs: 2489 kfree(hctx->ctxs); 2490 free_cpumask: 2491 free_cpumask_var(hctx->cpumask); 2492 free_hctx: 2493 kfree(hctx); 2494 fail_alloc_hctx: 2495 return NULL; 2496 } 2497 2498 static void blk_mq_init_cpu_queues(struct request_queue *q, 2499 unsigned int nr_hw_queues) 2500 { 2501 struct blk_mq_tag_set *set = q->tag_set; 2502 unsigned int i, j; 2503 2504 for_each_possible_cpu(i) { 2505 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2506 struct blk_mq_hw_ctx *hctx; 2507 int k; 2508 2509 __ctx->cpu = i; 2510 spin_lock_init(&__ctx->lock); 2511 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2512 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2513 2514 __ctx->queue = q; 2515 2516 /* 2517 * Set local node, IFF we have more than one hw queue. If 2518 * not, we remain on the home node of the device 2519 */ 2520 for (j = 0; j < set->nr_maps; j++) { 2521 hctx = blk_mq_map_queue_type(q, j, i); 2522 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2523 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2524 } 2525 } 2526 } 2527 2528 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2529 int hctx_idx) 2530 { 2531 int ret = 0; 2532 2533 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2534 set->queue_depth, set->reserved_tags); 2535 if (!set->tags[hctx_idx]) 2536 return false; 2537 2538 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2539 set->queue_depth); 2540 if (!ret) 2541 return true; 2542 2543 blk_mq_free_rq_map(set->tags[hctx_idx]); 2544 set->tags[hctx_idx] = NULL; 2545 return false; 2546 } 2547 2548 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2549 unsigned int hctx_idx) 2550 { 2551 if (set->tags && set->tags[hctx_idx]) { 2552 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2553 blk_mq_free_rq_map(set->tags[hctx_idx]); 2554 set->tags[hctx_idx] = NULL; 2555 } 2556 } 2557 2558 static void blk_mq_map_swqueue(struct request_queue *q) 2559 { 2560 unsigned int i, j, hctx_idx; 2561 struct blk_mq_hw_ctx *hctx; 2562 struct blk_mq_ctx *ctx; 2563 struct blk_mq_tag_set *set = q->tag_set; 2564 2565 queue_for_each_hw_ctx(q, hctx, i) { 2566 cpumask_clear(hctx->cpumask); 2567 hctx->nr_ctx = 0; 2568 hctx->dispatch_from = NULL; 2569 } 2570 2571 /* 2572 * Map software to hardware queues. 2573 * 2574 * If the cpu isn't present, the cpu is mapped to first hctx. 2575 */ 2576 for_each_possible_cpu(i) { 2577 2578 ctx = per_cpu_ptr(q->queue_ctx, i); 2579 for (j = 0; j < set->nr_maps; j++) { 2580 if (!set->map[j].nr_queues) { 2581 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2582 HCTX_TYPE_DEFAULT, i); 2583 continue; 2584 } 2585 hctx_idx = set->map[j].mq_map[i]; 2586 /* unmapped hw queue can be remapped after CPU topo changed */ 2587 if (!set->tags[hctx_idx] && 2588 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2589 /* 2590 * If tags initialization fail for some hctx, 2591 * that hctx won't be brought online. In this 2592 * case, remap the current ctx to hctx[0] which 2593 * is guaranteed to always have tags allocated 2594 */ 2595 set->map[j].mq_map[i] = 0; 2596 } 2597 2598 hctx = blk_mq_map_queue_type(q, j, i); 2599 ctx->hctxs[j] = hctx; 2600 /* 2601 * If the CPU is already set in the mask, then we've 2602 * mapped this one already. This can happen if 2603 * devices share queues across queue maps. 2604 */ 2605 if (cpumask_test_cpu(i, hctx->cpumask)) 2606 continue; 2607 2608 cpumask_set_cpu(i, hctx->cpumask); 2609 hctx->type = j; 2610 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2611 hctx->ctxs[hctx->nr_ctx++] = ctx; 2612 2613 /* 2614 * If the nr_ctx type overflows, we have exceeded the 2615 * amount of sw queues we can support. 2616 */ 2617 BUG_ON(!hctx->nr_ctx); 2618 } 2619 2620 for (; j < HCTX_MAX_TYPES; j++) 2621 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2622 HCTX_TYPE_DEFAULT, i); 2623 } 2624 2625 queue_for_each_hw_ctx(q, hctx, i) { 2626 /* 2627 * If no software queues are mapped to this hardware queue, 2628 * disable it and free the request entries. 2629 */ 2630 if (!hctx->nr_ctx) { 2631 /* Never unmap queue 0. We need it as a 2632 * fallback in case of a new remap fails 2633 * allocation 2634 */ 2635 if (i && set->tags[i]) 2636 blk_mq_free_map_and_requests(set, i); 2637 2638 hctx->tags = NULL; 2639 continue; 2640 } 2641 2642 hctx->tags = set->tags[i]; 2643 WARN_ON(!hctx->tags); 2644 2645 /* 2646 * Set the map size to the number of mapped software queues. 2647 * This is more accurate and more efficient than looping 2648 * over all possibly mapped software queues. 2649 */ 2650 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2651 2652 /* 2653 * Initialize batch roundrobin counts 2654 */ 2655 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2656 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2657 } 2658 } 2659 2660 /* 2661 * Caller needs to ensure that we're either frozen/quiesced, or that 2662 * the queue isn't live yet. 2663 */ 2664 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2665 { 2666 struct blk_mq_hw_ctx *hctx; 2667 int i; 2668 2669 queue_for_each_hw_ctx(q, hctx, i) { 2670 if (shared) 2671 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2672 else 2673 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2674 } 2675 } 2676 2677 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2678 bool shared) 2679 { 2680 struct request_queue *q; 2681 2682 lockdep_assert_held(&set->tag_list_lock); 2683 2684 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2685 blk_mq_freeze_queue(q); 2686 queue_set_hctx_shared(q, shared); 2687 blk_mq_unfreeze_queue(q); 2688 } 2689 } 2690 2691 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2692 { 2693 struct blk_mq_tag_set *set = q->tag_set; 2694 2695 mutex_lock(&set->tag_list_lock); 2696 list_del_rcu(&q->tag_set_list); 2697 if (list_is_singular(&set->tag_list)) { 2698 /* just transitioned to unshared */ 2699 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2700 /* update existing queue */ 2701 blk_mq_update_tag_set_depth(set, false); 2702 } 2703 mutex_unlock(&set->tag_list_lock); 2704 INIT_LIST_HEAD(&q->tag_set_list); 2705 } 2706 2707 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2708 struct request_queue *q) 2709 { 2710 mutex_lock(&set->tag_list_lock); 2711 2712 /* 2713 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2714 */ 2715 if (!list_empty(&set->tag_list) && 2716 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2717 set->flags |= BLK_MQ_F_TAG_SHARED; 2718 /* update existing queue */ 2719 blk_mq_update_tag_set_depth(set, true); 2720 } 2721 if (set->flags & BLK_MQ_F_TAG_SHARED) 2722 queue_set_hctx_shared(q, true); 2723 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2724 2725 mutex_unlock(&set->tag_list_lock); 2726 } 2727 2728 /* All allocations will be freed in release handler of q->mq_kobj */ 2729 static int blk_mq_alloc_ctxs(struct request_queue *q) 2730 { 2731 struct blk_mq_ctxs *ctxs; 2732 int cpu; 2733 2734 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2735 if (!ctxs) 2736 return -ENOMEM; 2737 2738 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2739 if (!ctxs->queue_ctx) 2740 goto fail; 2741 2742 for_each_possible_cpu(cpu) { 2743 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2744 ctx->ctxs = ctxs; 2745 } 2746 2747 q->mq_kobj = &ctxs->kobj; 2748 q->queue_ctx = ctxs->queue_ctx; 2749 2750 return 0; 2751 fail: 2752 kfree(ctxs); 2753 return -ENOMEM; 2754 } 2755 2756 /* 2757 * It is the actual release handler for mq, but we do it from 2758 * request queue's release handler for avoiding use-after-free 2759 * and headache because q->mq_kobj shouldn't have been introduced, 2760 * but we can't group ctx/kctx kobj without it. 2761 */ 2762 void blk_mq_release(struct request_queue *q) 2763 { 2764 struct blk_mq_hw_ctx *hctx, *next; 2765 int i; 2766 2767 queue_for_each_hw_ctx(q, hctx, i) 2768 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2769 2770 /* all hctx are in .unused_hctx_list now */ 2771 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2772 list_del_init(&hctx->hctx_list); 2773 kobject_put(&hctx->kobj); 2774 } 2775 2776 kfree(q->queue_hw_ctx); 2777 2778 /* 2779 * release .mq_kobj and sw queue's kobject now because 2780 * both share lifetime with request queue. 2781 */ 2782 blk_mq_sysfs_deinit(q); 2783 } 2784 2785 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 2786 void *queuedata) 2787 { 2788 struct request_queue *uninit_q, *q; 2789 2790 uninit_q = __blk_alloc_queue(set->numa_node); 2791 if (!uninit_q) 2792 return ERR_PTR(-ENOMEM); 2793 uninit_q->queuedata = queuedata; 2794 2795 /* 2796 * Initialize the queue without an elevator. device_add_disk() will do 2797 * the initialization. 2798 */ 2799 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2800 if (IS_ERR(q)) 2801 blk_cleanup_queue(uninit_q); 2802 2803 return q; 2804 } 2805 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data); 2806 2807 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2808 { 2809 return blk_mq_init_queue_data(set, NULL); 2810 } 2811 EXPORT_SYMBOL(blk_mq_init_queue); 2812 2813 /* 2814 * Helper for setting up a queue with mq ops, given queue depth, and 2815 * the passed in mq ops flags. 2816 */ 2817 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2818 const struct blk_mq_ops *ops, 2819 unsigned int queue_depth, 2820 unsigned int set_flags) 2821 { 2822 struct request_queue *q; 2823 int ret; 2824 2825 memset(set, 0, sizeof(*set)); 2826 set->ops = ops; 2827 set->nr_hw_queues = 1; 2828 set->nr_maps = 1; 2829 set->queue_depth = queue_depth; 2830 set->numa_node = NUMA_NO_NODE; 2831 set->flags = set_flags; 2832 2833 ret = blk_mq_alloc_tag_set(set); 2834 if (ret) 2835 return ERR_PTR(ret); 2836 2837 q = blk_mq_init_queue(set); 2838 if (IS_ERR(q)) { 2839 blk_mq_free_tag_set(set); 2840 return q; 2841 } 2842 2843 return q; 2844 } 2845 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2846 2847 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2848 struct blk_mq_tag_set *set, struct request_queue *q, 2849 int hctx_idx, int node) 2850 { 2851 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2852 2853 /* reuse dead hctx first */ 2854 spin_lock(&q->unused_hctx_lock); 2855 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2856 if (tmp->numa_node == node) { 2857 hctx = tmp; 2858 break; 2859 } 2860 } 2861 if (hctx) 2862 list_del_init(&hctx->hctx_list); 2863 spin_unlock(&q->unused_hctx_lock); 2864 2865 if (!hctx) 2866 hctx = blk_mq_alloc_hctx(q, set, node); 2867 if (!hctx) 2868 goto fail; 2869 2870 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2871 goto free_hctx; 2872 2873 return hctx; 2874 2875 free_hctx: 2876 kobject_put(&hctx->kobj); 2877 fail: 2878 return NULL; 2879 } 2880 2881 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2882 struct request_queue *q) 2883 { 2884 int i, j, end; 2885 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2886 2887 if (q->nr_hw_queues < set->nr_hw_queues) { 2888 struct blk_mq_hw_ctx **new_hctxs; 2889 2890 new_hctxs = kcalloc_node(set->nr_hw_queues, 2891 sizeof(*new_hctxs), GFP_KERNEL, 2892 set->numa_node); 2893 if (!new_hctxs) 2894 return; 2895 if (hctxs) 2896 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 2897 sizeof(*hctxs)); 2898 q->queue_hw_ctx = new_hctxs; 2899 kfree(hctxs); 2900 hctxs = new_hctxs; 2901 } 2902 2903 /* protect against switching io scheduler */ 2904 mutex_lock(&q->sysfs_lock); 2905 for (i = 0; i < set->nr_hw_queues; i++) { 2906 int node; 2907 struct blk_mq_hw_ctx *hctx; 2908 2909 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2910 /* 2911 * If the hw queue has been mapped to another numa node, 2912 * we need to realloc the hctx. If allocation fails, fallback 2913 * to use the previous one. 2914 */ 2915 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2916 continue; 2917 2918 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2919 if (hctx) { 2920 if (hctxs[i]) 2921 blk_mq_exit_hctx(q, set, hctxs[i], i); 2922 hctxs[i] = hctx; 2923 } else { 2924 if (hctxs[i]) 2925 pr_warn("Allocate new hctx on node %d fails,\ 2926 fallback to previous one on node %d\n", 2927 node, hctxs[i]->numa_node); 2928 else 2929 break; 2930 } 2931 } 2932 /* 2933 * Increasing nr_hw_queues fails. Free the newly allocated 2934 * hctxs and keep the previous q->nr_hw_queues. 2935 */ 2936 if (i != set->nr_hw_queues) { 2937 j = q->nr_hw_queues; 2938 end = i; 2939 } else { 2940 j = i; 2941 end = q->nr_hw_queues; 2942 q->nr_hw_queues = set->nr_hw_queues; 2943 } 2944 2945 for (; j < end; j++) { 2946 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2947 2948 if (hctx) { 2949 if (hctx->tags) 2950 blk_mq_free_map_and_requests(set, j); 2951 blk_mq_exit_hctx(q, set, hctx, j); 2952 hctxs[j] = NULL; 2953 } 2954 } 2955 mutex_unlock(&q->sysfs_lock); 2956 } 2957 2958 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2959 struct request_queue *q, 2960 bool elevator_init) 2961 { 2962 /* mark the queue as mq asap */ 2963 q->mq_ops = set->ops; 2964 2965 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2966 blk_mq_poll_stats_bkt, 2967 BLK_MQ_POLL_STATS_BKTS, q); 2968 if (!q->poll_cb) 2969 goto err_exit; 2970 2971 if (blk_mq_alloc_ctxs(q)) 2972 goto err_poll; 2973 2974 /* init q->mq_kobj and sw queues' kobjects */ 2975 blk_mq_sysfs_init(q); 2976 2977 INIT_LIST_HEAD(&q->unused_hctx_list); 2978 spin_lock_init(&q->unused_hctx_lock); 2979 2980 blk_mq_realloc_hw_ctxs(set, q); 2981 if (!q->nr_hw_queues) 2982 goto err_hctxs; 2983 2984 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2985 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2986 2987 q->tag_set = set; 2988 2989 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2990 if (set->nr_maps > HCTX_TYPE_POLL && 2991 set->map[HCTX_TYPE_POLL].nr_queues) 2992 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2993 2994 q->sg_reserved_size = INT_MAX; 2995 2996 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2997 INIT_LIST_HEAD(&q->requeue_list); 2998 spin_lock_init(&q->requeue_lock); 2999 3000 q->nr_requests = set->queue_depth; 3001 3002 /* 3003 * Default to classic polling 3004 */ 3005 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3006 3007 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3008 blk_mq_add_queue_tag_set(set, q); 3009 blk_mq_map_swqueue(q); 3010 3011 if (elevator_init) 3012 elevator_init_mq(q); 3013 3014 return q; 3015 3016 err_hctxs: 3017 kfree(q->queue_hw_ctx); 3018 q->nr_hw_queues = 0; 3019 blk_mq_sysfs_deinit(q); 3020 err_poll: 3021 blk_stat_free_callback(q->poll_cb); 3022 q->poll_cb = NULL; 3023 err_exit: 3024 q->mq_ops = NULL; 3025 return ERR_PTR(-ENOMEM); 3026 } 3027 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3028 3029 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3030 void blk_mq_exit_queue(struct request_queue *q) 3031 { 3032 struct blk_mq_tag_set *set = q->tag_set; 3033 3034 blk_mq_del_queue_tag_set(q); 3035 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3036 } 3037 3038 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3039 { 3040 int i; 3041 3042 for (i = 0; i < set->nr_hw_queues; i++) 3043 if (!__blk_mq_alloc_map_and_request(set, i)) 3044 goto out_unwind; 3045 3046 return 0; 3047 3048 out_unwind: 3049 while (--i >= 0) 3050 blk_mq_free_map_and_requests(set, i); 3051 3052 return -ENOMEM; 3053 } 3054 3055 /* 3056 * Allocate the request maps associated with this tag_set. Note that this 3057 * may reduce the depth asked for, if memory is tight. set->queue_depth 3058 * will be updated to reflect the allocated depth. 3059 */ 3060 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3061 { 3062 unsigned int depth; 3063 int err; 3064 3065 depth = set->queue_depth; 3066 do { 3067 err = __blk_mq_alloc_rq_maps(set); 3068 if (!err) 3069 break; 3070 3071 set->queue_depth >>= 1; 3072 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3073 err = -ENOMEM; 3074 break; 3075 } 3076 } while (set->queue_depth); 3077 3078 if (!set->queue_depth || err) { 3079 pr_err("blk-mq: failed to allocate request map\n"); 3080 return -ENOMEM; 3081 } 3082 3083 if (depth != set->queue_depth) 3084 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3085 depth, set->queue_depth); 3086 3087 return 0; 3088 } 3089 3090 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3091 { 3092 /* 3093 * blk_mq_map_queues() and multiple .map_queues() implementations 3094 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3095 * number of hardware queues. 3096 */ 3097 if (set->nr_maps == 1) 3098 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3099 3100 if (set->ops->map_queues && !is_kdump_kernel()) { 3101 int i; 3102 3103 /* 3104 * transport .map_queues is usually done in the following 3105 * way: 3106 * 3107 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3108 * mask = get_cpu_mask(queue) 3109 * for_each_cpu(cpu, mask) 3110 * set->map[x].mq_map[cpu] = queue; 3111 * } 3112 * 3113 * When we need to remap, the table has to be cleared for 3114 * killing stale mapping since one CPU may not be mapped 3115 * to any hw queue. 3116 */ 3117 for (i = 0; i < set->nr_maps; i++) 3118 blk_mq_clear_mq_map(&set->map[i]); 3119 3120 return set->ops->map_queues(set); 3121 } else { 3122 BUG_ON(set->nr_maps > 1); 3123 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3124 } 3125 } 3126 3127 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3128 int cur_nr_hw_queues, int new_nr_hw_queues) 3129 { 3130 struct blk_mq_tags **new_tags; 3131 3132 if (cur_nr_hw_queues >= new_nr_hw_queues) 3133 return 0; 3134 3135 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3136 GFP_KERNEL, set->numa_node); 3137 if (!new_tags) 3138 return -ENOMEM; 3139 3140 if (set->tags) 3141 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3142 sizeof(*set->tags)); 3143 kfree(set->tags); 3144 set->tags = new_tags; 3145 set->nr_hw_queues = new_nr_hw_queues; 3146 3147 return 0; 3148 } 3149 3150 /* 3151 * Alloc a tag set to be associated with one or more request queues. 3152 * May fail with EINVAL for various error conditions. May adjust the 3153 * requested depth down, if it's too large. In that case, the set 3154 * value will be stored in set->queue_depth. 3155 */ 3156 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3157 { 3158 int i, ret; 3159 3160 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3161 3162 if (!set->nr_hw_queues) 3163 return -EINVAL; 3164 if (!set->queue_depth) 3165 return -EINVAL; 3166 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3167 return -EINVAL; 3168 3169 if (!set->ops->queue_rq) 3170 return -EINVAL; 3171 3172 if (!set->ops->get_budget ^ !set->ops->put_budget) 3173 return -EINVAL; 3174 3175 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3176 pr_info("blk-mq: reduced tag depth to %u\n", 3177 BLK_MQ_MAX_DEPTH); 3178 set->queue_depth = BLK_MQ_MAX_DEPTH; 3179 } 3180 3181 if (!set->nr_maps) 3182 set->nr_maps = 1; 3183 else if (set->nr_maps > HCTX_MAX_TYPES) 3184 return -EINVAL; 3185 3186 /* 3187 * If a crashdump is active, then we are potentially in a very 3188 * memory constrained environment. Limit us to 1 queue and 3189 * 64 tags to prevent using too much memory. 3190 */ 3191 if (is_kdump_kernel()) { 3192 set->nr_hw_queues = 1; 3193 set->nr_maps = 1; 3194 set->queue_depth = min(64U, set->queue_depth); 3195 } 3196 /* 3197 * There is no use for more h/w queues than cpus if we just have 3198 * a single map 3199 */ 3200 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3201 set->nr_hw_queues = nr_cpu_ids; 3202 3203 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3204 return -ENOMEM; 3205 3206 ret = -ENOMEM; 3207 for (i = 0; i < set->nr_maps; i++) { 3208 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3209 sizeof(set->map[i].mq_map[0]), 3210 GFP_KERNEL, set->numa_node); 3211 if (!set->map[i].mq_map) 3212 goto out_free_mq_map; 3213 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3214 } 3215 3216 ret = blk_mq_update_queue_map(set); 3217 if (ret) 3218 goto out_free_mq_map; 3219 3220 ret = blk_mq_alloc_map_and_requests(set); 3221 if (ret) 3222 goto out_free_mq_map; 3223 3224 mutex_init(&set->tag_list_lock); 3225 INIT_LIST_HEAD(&set->tag_list); 3226 3227 return 0; 3228 3229 out_free_mq_map: 3230 for (i = 0; i < set->nr_maps; i++) { 3231 kfree(set->map[i].mq_map); 3232 set->map[i].mq_map = NULL; 3233 } 3234 kfree(set->tags); 3235 set->tags = NULL; 3236 return ret; 3237 } 3238 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3239 3240 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3241 { 3242 int i, j; 3243 3244 for (i = 0; i < set->nr_hw_queues; i++) 3245 blk_mq_free_map_and_requests(set, i); 3246 3247 for (j = 0; j < set->nr_maps; j++) { 3248 kfree(set->map[j].mq_map); 3249 set->map[j].mq_map = NULL; 3250 } 3251 3252 kfree(set->tags); 3253 set->tags = NULL; 3254 } 3255 EXPORT_SYMBOL(blk_mq_free_tag_set); 3256 3257 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3258 { 3259 struct blk_mq_tag_set *set = q->tag_set; 3260 struct blk_mq_hw_ctx *hctx; 3261 int i, ret; 3262 3263 if (!set) 3264 return -EINVAL; 3265 3266 if (q->nr_requests == nr) 3267 return 0; 3268 3269 blk_mq_freeze_queue(q); 3270 blk_mq_quiesce_queue(q); 3271 3272 ret = 0; 3273 queue_for_each_hw_ctx(q, hctx, i) { 3274 if (!hctx->tags) 3275 continue; 3276 /* 3277 * If we're using an MQ scheduler, just update the scheduler 3278 * queue depth. This is similar to what the old code would do. 3279 */ 3280 if (!hctx->sched_tags) { 3281 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3282 false); 3283 } else { 3284 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3285 nr, true); 3286 } 3287 if (ret) 3288 break; 3289 if (q->elevator && q->elevator->type->ops.depth_updated) 3290 q->elevator->type->ops.depth_updated(hctx); 3291 } 3292 3293 if (!ret) 3294 q->nr_requests = nr; 3295 3296 blk_mq_unquiesce_queue(q); 3297 blk_mq_unfreeze_queue(q); 3298 3299 return ret; 3300 } 3301 3302 /* 3303 * request_queue and elevator_type pair. 3304 * It is just used by __blk_mq_update_nr_hw_queues to cache 3305 * the elevator_type associated with a request_queue. 3306 */ 3307 struct blk_mq_qe_pair { 3308 struct list_head node; 3309 struct request_queue *q; 3310 struct elevator_type *type; 3311 }; 3312 3313 /* 3314 * Cache the elevator_type in qe pair list and switch the 3315 * io scheduler to 'none' 3316 */ 3317 static bool blk_mq_elv_switch_none(struct list_head *head, 3318 struct request_queue *q) 3319 { 3320 struct blk_mq_qe_pair *qe; 3321 3322 if (!q->elevator) 3323 return true; 3324 3325 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3326 if (!qe) 3327 return false; 3328 3329 INIT_LIST_HEAD(&qe->node); 3330 qe->q = q; 3331 qe->type = q->elevator->type; 3332 list_add(&qe->node, head); 3333 3334 mutex_lock(&q->sysfs_lock); 3335 /* 3336 * After elevator_switch_mq, the previous elevator_queue will be 3337 * released by elevator_release. The reference of the io scheduler 3338 * module get by elevator_get will also be put. So we need to get 3339 * a reference of the io scheduler module here to prevent it to be 3340 * removed. 3341 */ 3342 __module_get(qe->type->elevator_owner); 3343 elevator_switch_mq(q, NULL); 3344 mutex_unlock(&q->sysfs_lock); 3345 3346 return true; 3347 } 3348 3349 static void blk_mq_elv_switch_back(struct list_head *head, 3350 struct request_queue *q) 3351 { 3352 struct blk_mq_qe_pair *qe; 3353 struct elevator_type *t = NULL; 3354 3355 list_for_each_entry(qe, head, node) 3356 if (qe->q == q) { 3357 t = qe->type; 3358 break; 3359 } 3360 3361 if (!t) 3362 return; 3363 3364 list_del(&qe->node); 3365 kfree(qe); 3366 3367 mutex_lock(&q->sysfs_lock); 3368 elevator_switch_mq(q, t); 3369 mutex_unlock(&q->sysfs_lock); 3370 } 3371 3372 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3373 int nr_hw_queues) 3374 { 3375 struct request_queue *q; 3376 LIST_HEAD(head); 3377 int prev_nr_hw_queues; 3378 3379 lockdep_assert_held(&set->tag_list_lock); 3380 3381 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3382 nr_hw_queues = nr_cpu_ids; 3383 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3384 return; 3385 3386 list_for_each_entry(q, &set->tag_list, tag_set_list) 3387 blk_mq_freeze_queue(q); 3388 /* 3389 * Switch IO scheduler to 'none', cleaning up the data associated 3390 * with the previous scheduler. We will switch back once we are done 3391 * updating the new sw to hw queue mappings. 3392 */ 3393 list_for_each_entry(q, &set->tag_list, tag_set_list) 3394 if (!blk_mq_elv_switch_none(&head, q)) 3395 goto switch_back; 3396 3397 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3398 blk_mq_debugfs_unregister_hctxs(q); 3399 blk_mq_sysfs_unregister(q); 3400 } 3401 3402 prev_nr_hw_queues = set->nr_hw_queues; 3403 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3404 0) 3405 goto reregister; 3406 3407 set->nr_hw_queues = nr_hw_queues; 3408 fallback: 3409 blk_mq_update_queue_map(set); 3410 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3411 blk_mq_realloc_hw_ctxs(set, q); 3412 if (q->nr_hw_queues != set->nr_hw_queues) { 3413 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3414 nr_hw_queues, prev_nr_hw_queues); 3415 set->nr_hw_queues = prev_nr_hw_queues; 3416 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3417 goto fallback; 3418 } 3419 blk_mq_map_swqueue(q); 3420 } 3421 3422 reregister: 3423 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3424 blk_mq_sysfs_register(q); 3425 blk_mq_debugfs_register_hctxs(q); 3426 } 3427 3428 switch_back: 3429 list_for_each_entry(q, &set->tag_list, tag_set_list) 3430 blk_mq_elv_switch_back(&head, q); 3431 3432 list_for_each_entry(q, &set->tag_list, tag_set_list) 3433 blk_mq_unfreeze_queue(q); 3434 } 3435 3436 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3437 { 3438 mutex_lock(&set->tag_list_lock); 3439 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3440 mutex_unlock(&set->tag_list_lock); 3441 } 3442 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3443 3444 /* Enable polling stats and return whether they were already enabled. */ 3445 static bool blk_poll_stats_enable(struct request_queue *q) 3446 { 3447 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3448 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3449 return true; 3450 blk_stat_add_callback(q, q->poll_cb); 3451 return false; 3452 } 3453 3454 static void blk_mq_poll_stats_start(struct request_queue *q) 3455 { 3456 /* 3457 * We don't arm the callback if polling stats are not enabled or the 3458 * callback is already active. 3459 */ 3460 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3461 blk_stat_is_active(q->poll_cb)) 3462 return; 3463 3464 blk_stat_activate_msecs(q->poll_cb, 100); 3465 } 3466 3467 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3468 { 3469 struct request_queue *q = cb->data; 3470 int bucket; 3471 3472 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3473 if (cb->stat[bucket].nr_samples) 3474 q->poll_stat[bucket] = cb->stat[bucket]; 3475 } 3476 } 3477 3478 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3479 struct request *rq) 3480 { 3481 unsigned long ret = 0; 3482 int bucket; 3483 3484 /* 3485 * If stats collection isn't on, don't sleep but turn it on for 3486 * future users 3487 */ 3488 if (!blk_poll_stats_enable(q)) 3489 return 0; 3490 3491 /* 3492 * As an optimistic guess, use half of the mean service time 3493 * for this type of request. We can (and should) make this smarter. 3494 * For instance, if the completion latencies are tight, we can 3495 * get closer than just half the mean. This is especially 3496 * important on devices where the completion latencies are longer 3497 * than ~10 usec. We do use the stats for the relevant IO size 3498 * if available which does lead to better estimates. 3499 */ 3500 bucket = blk_mq_poll_stats_bkt(rq); 3501 if (bucket < 0) 3502 return ret; 3503 3504 if (q->poll_stat[bucket].nr_samples) 3505 ret = (q->poll_stat[bucket].mean + 1) / 2; 3506 3507 return ret; 3508 } 3509 3510 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3511 struct request *rq) 3512 { 3513 struct hrtimer_sleeper hs; 3514 enum hrtimer_mode mode; 3515 unsigned int nsecs; 3516 ktime_t kt; 3517 3518 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3519 return false; 3520 3521 /* 3522 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3523 * 3524 * 0: use half of prev avg 3525 * >0: use this specific value 3526 */ 3527 if (q->poll_nsec > 0) 3528 nsecs = q->poll_nsec; 3529 else 3530 nsecs = blk_mq_poll_nsecs(q, rq); 3531 3532 if (!nsecs) 3533 return false; 3534 3535 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3536 3537 /* 3538 * This will be replaced with the stats tracking code, using 3539 * 'avg_completion_time / 2' as the pre-sleep target. 3540 */ 3541 kt = nsecs; 3542 3543 mode = HRTIMER_MODE_REL; 3544 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3545 hrtimer_set_expires(&hs.timer, kt); 3546 3547 do { 3548 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3549 break; 3550 set_current_state(TASK_UNINTERRUPTIBLE); 3551 hrtimer_sleeper_start_expires(&hs, mode); 3552 if (hs.task) 3553 io_schedule(); 3554 hrtimer_cancel(&hs.timer); 3555 mode = HRTIMER_MODE_ABS; 3556 } while (hs.task && !signal_pending(current)); 3557 3558 __set_current_state(TASK_RUNNING); 3559 destroy_hrtimer_on_stack(&hs.timer); 3560 return true; 3561 } 3562 3563 static bool blk_mq_poll_hybrid(struct request_queue *q, 3564 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3565 { 3566 struct request *rq; 3567 3568 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3569 return false; 3570 3571 if (!blk_qc_t_is_internal(cookie)) 3572 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3573 else { 3574 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3575 /* 3576 * With scheduling, if the request has completed, we'll 3577 * get a NULL return here, as we clear the sched tag when 3578 * that happens. The request still remains valid, like always, 3579 * so we should be safe with just the NULL check. 3580 */ 3581 if (!rq) 3582 return false; 3583 } 3584 3585 return blk_mq_poll_hybrid_sleep(q, rq); 3586 } 3587 3588 /** 3589 * blk_poll - poll for IO completions 3590 * @q: the queue 3591 * @cookie: cookie passed back at IO submission time 3592 * @spin: whether to spin for completions 3593 * 3594 * Description: 3595 * Poll for completions on the passed in queue. Returns number of 3596 * completed entries found. If @spin is true, then blk_poll will continue 3597 * looping until at least one completion is found, unless the task is 3598 * otherwise marked running (or we need to reschedule). 3599 */ 3600 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3601 { 3602 struct blk_mq_hw_ctx *hctx; 3603 long state; 3604 3605 if (!blk_qc_t_valid(cookie) || 3606 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3607 return 0; 3608 3609 if (current->plug) 3610 blk_flush_plug_list(current->plug, false); 3611 3612 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3613 3614 /* 3615 * If we sleep, have the caller restart the poll loop to reset 3616 * the state. Like for the other success return cases, the 3617 * caller is responsible for checking if the IO completed. If 3618 * the IO isn't complete, we'll get called again and will go 3619 * straight to the busy poll loop. 3620 */ 3621 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3622 return 1; 3623 3624 hctx->poll_considered++; 3625 3626 state = current->state; 3627 do { 3628 int ret; 3629 3630 hctx->poll_invoked++; 3631 3632 ret = q->mq_ops->poll(hctx); 3633 if (ret > 0) { 3634 hctx->poll_success++; 3635 __set_current_state(TASK_RUNNING); 3636 return ret; 3637 } 3638 3639 if (signal_pending_state(state, current)) 3640 __set_current_state(TASK_RUNNING); 3641 3642 if (current->state == TASK_RUNNING) 3643 return 1; 3644 if (ret < 0 || !spin) 3645 break; 3646 cpu_relax(); 3647 } while (!need_resched()); 3648 3649 __set_current_state(TASK_RUNNING); 3650 return 0; 3651 } 3652 EXPORT_SYMBOL_GPL(blk_poll); 3653 3654 unsigned int blk_mq_rq_cpu(struct request *rq) 3655 { 3656 return rq->mq_ctx->cpu; 3657 } 3658 EXPORT_SYMBOL(blk_mq_rq_cpu); 3659 3660 static int __init blk_mq_init(void) 3661 { 3662 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3663 blk_mq_hctx_notify_dead); 3664 return 0; 3665 } 3666 subsys_initcall(blk_mq_init); 3667