xref: /linux/block/blk-mq.c (revision a892c8d52c02284076fbbacae6692aa5c5807d11)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static void blk_mq_poll_stats_start(struct request_queue *q);
45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46 
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 	int ddir, sectors, bucket;
50 
51 	ddir = rq_data_dir(rq);
52 	sectors = blk_rq_stats_sectors(rq);
53 
54 	bucket = ddir + 2 * ilog2(sectors);
55 
56 	if (bucket < 0)
57 		return -1;
58 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60 
61 	return bucket;
62 }
63 
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 	return !list_empty_careful(&hctx->dispatch) ||
71 		sbitmap_any_bit_set(&hctx->ctx_map) ||
72 			blk_mq_sched_has_work(hctx);
73 }
74 
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 				     struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 		sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86 
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 				      struct blk_mq_ctx *ctx)
89 {
90 	const int bit = ctx->index_hw[hctx->type];
91 
92 	sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94 
95 struct mq_inflight {
96 	struct hd_struct *part;
97 	unsigned int inflight[2];
98 };
99 
100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 				  struct request *rq, void *priv,
102 				  bool reserved)
103 {
104 	struct mq_inflight *mi = priv;
105 
106 	if (rq->part == mi->part)
107 		mi->inflight[rq_data_dir(rq)]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 	struct mq_inflight mi = { .part = part };
115 
116 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 
118 	return mi.inflight[0] + mi.inflight[1];
119 }
120 
121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 			 unsigned int inflight[2])
123 {
124 	struct mq_inflight mi = { .part = part };
125 
126 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 	inflight[0] = mi.inflight[0];
128 	inflight[1] = mi.inflight[1];
129 }
130 
131 void blk_freeze_queue_start(struct request_queue *q)
132 {
133 	mutex_lock(&q->mq_freeze_lock);
134 	if (++q->mq_freeze_depth == 1) {
135 		percpu_ref_kill(&q->q_usage_counter);
136 		mutex_unlock(&q->mq_freeze_lock);
137 		if (queue_is_mq(q))
138 			blk_mq_run_hw_queues(q, false);
139 	} else {
140 		mutex_unlock(&q->mq_freeze_lock);
141 	}
142 }
143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144 
145 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 {
147 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150 
151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 				     unsigned long timeout)
153 {
154 	return wait_event_timeout(q->mq_freeze_wq,
155 					percpu_ref_is_zero(&q->q_usage_counter),
156 					timeout);
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159 
160 /*
161  * Guarantee no request is in use, so we can change any data structure of
162  * the queue afterward.
163  */
164 void blk_freeze_queue(struct request_queue *q)
165 {
166 	/*
167 	 * In the !blk_mq case we are only calling this to kill the
168 	 * q_usage_counter, otherwise this increases the freeze depth
169 	 * and waits for it to return to zero.  For this reason there is
170 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 	 * exported to drivers as the only user for unfreeze is blk_mq.
172 	 */
173 	blk_freeze_queue_start(q);
174 	blk_mq_freeze_queue_wait(q);
175 }
176 
177 void blk_mq_freeze_queue(struct request_queue *q)
178 {
179 	/*
180 	 * ...just an alias to keep freeze and unfreeze actions balanced
181 	 * in the blk_mq_* namespace
182 	 */
183 	blk_freeze_queue(q);
184 }
185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186 
187 void blk_mq_unfreeze_queue(struct request_queue *q)
188 {
189 	mutex_lock(&q->mq_freeze_lock);
190 	q->mq_freeze_depth--;
191 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 	if (!q->mq_freeze_depth) {
193 		percpu_ref_resurrect(&q->q_usage_counter);
194 		wake_up_all(&q->mq_freeze_wq);
195 	}
196 	mutex_unlock(&q->mq_freeze_lock);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209 
210 /**
211  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212  * @q: request queue.
213  *
214  * Note: this function does not prevent that the struct request end_io()
215  * callback function is invoked. Once this function is returned, we make
216  * sure no dispatch can happen until the queue is unquiesced via
217  * blk_mq_unquiesce_queue().
218  */
219 void blk_mq_quiesce_queue(struct request_queue *q)
220 {
221 	struct blk_mq_hw_ctx *hctx;
222 	unsigned int i;
223 	bool rcu = false;
224 
225 	blk_mq_quiesce_queue_nowait(q);
226 
227 	queue_for_each_hw_ctx(q, hctx, i) {
228 		if (hctx->flags & BLK_MQ_F_BLOCKING)
229 			synchronize_srcu(hctx->srcu);
230 		else
231 			rcu = true;
232 	}
233 	if (rcu)
234 		synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237 
238 /*
239  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240  * @q: request queue.
241  *
242  * This function recovers queue into the state before quiescing
243  * which is done by blk_mq_quiesce_queue.
244  */
245 void blk_mq_unquiesce_queue(struct request_queue *q)
246 {
247 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248 
249 	/* dispatch requests which are inserted during quiescing */
250 	blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253 
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 	struct blk_mq_hw_ctx *hctx;
257 	unsigned int i;
258 
259 	queue_for_each_hw_ctx(q, hctx, i)
260 		if (blk_mq_hw_queue_mapped(hctx))
261 			blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263 
264 /*
265  * Only need start/end time stamping if we have iostat or
266  * blk stats enabled, or using an IO scheduler.
267  */
268 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 {
270 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 }
272 
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 		unsigned int tag, unsigned int op, u64 alloc_time_ns)
275 {
276 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 	struct request *rq = tags->static_rqs[tag];
278 	req_flags_t rq_flags = 0;
279 
280 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 		rq->tag = -1;
282 		rq->internal_tag = tag;
283 	} else {
284 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285 			rq_flags = RQF_MQ_INFLIGHT;
286 			atomic_inc(&data->hctx->nr_active);
287 		}
288 		rq->tag = tag;
289 		rq->internal_tag = -1;
290 		data->hctx->tags->rqs[rq->tag] = rq;
291 	}
292 
293 	/* csd/requeue_work/fifo_time is initialized before use */
294 	rq->q = data->q;
295 	rq->mq_ctx = data->ctx;
296 	rq->mq_hctx = data->hctx;
297 	rq->rq_flags = rq_flags;
298 	rq->cmd_flags = op;
299 	if (data->flags & BLK_MQ_REQ_PREEMPT)
300 		rq->rq_flags |= RQF_PREEMPT;
301 	if (blk_queue_io_stat(data->q))
302 		rq->rq_flags |= RQF_IO_STAT;
303 	INIT_LIST_HEAD(&rq->queuelist);
304 	INIT_HLIST_NODE(&rq->hash);
305 	RB_CLEAR_NODE(&rq->rb_node);
306 	rq->rq_disk = NULL;
307 	rq->part = NULL;
308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 	rq->alloc_time_ns = alloc_time_ns;
310 #endif
311 	if (blk_mq_need_time_stamp(rq))
312 		rq->start_time_ns = ktime_get_ns();
313 	else
314 		rq->start_time_ns = 0;
315 	rq->io_start_time_ns = 0;
316 	rq->stats_sectors = 0;
317 	rq->nr_phys_segments = 0;
318 #if defined(CONFIG_BLK_DEV_INTEGRITY)
319 	rq->nr_integrity_segments = 0;
320 #endif
321 	blk_crypto_rq_set_defaults(rq);
322 	/* tag was already set */
323 	WRITE_ONCE(rq->deadline, 0);
324 
325 	rq->timeout = 0;
326 
327 	rq->end_io = NULL;
328 	rq->end_io_data = NULL;
329 
330 	data->ctx->rq_dispatched[op_is_sync(op)]++;
331 	refcount_set(&rq->ref, 1);
332 	return rq;
333 }
334 
335 static struct request *blk_mq_get_request(struct request_queue *q,
336 					  struct bio *bio,
337 					  struct blk_mq_alloc_data *data)
338 {
339 	struct elevator_queue *e = q->elevator;
340 	struct request *rq;
341 	unsigned int tag;
342 	bool clear_ctx_on_error = false;
343 	u64 alloc_time_ns = 0;
344 
345 	blk_queue_enter_live(q);
346 
347 	/* alloc_time includes depth and tag waits */
348 	if (blk_queue_rq_alloc_time(q))
349 		alloc_time_ns = ktime_get_ns();
350 
351 	data->q = q;
352 	if (likely(!data->ctx)) {
353 		data->ctx = blk_mq_get_ctx(q);
354 		clear_ctx_on_error = true;
355 	}
356 	if (likely(!data->hctx))
357 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
358 						data->ctx);
359 	if (data->cmd_flags & REQ_NOWAIT)
360 		data->flags |= BLK_MQ_REQ_NOWAIT;
361 
362 	if (e) {
363 		data->flags |= BLK_MQ_REQ_INTERNAL;
364 
365 		/*
366 		 * Flush requests are special and go directly to the
367 		 * dispatch list. Don't include reserved tags in the
368 		 * limiting, as it isn't useful.
369 		 */
370 		if (!op_is_flush(data->cmd_flags) &&
371 		    e->type->ops.limit_depth &&
372 		    !(data->flags & BLK_MQ_REQ_RESERVED))
373 			e->type->ops.limit_depth(data->cmd_flags, data);
374 	} else {
375 		blk_mq_tag_busy(data->hctx);
376 	}
377 
378 	tag = blk_mq_get_tag(data);
379 	if (tag == BLK_MQ_TAG_FAIL) {
380 		if (clear_ctx_on_error)
381 			data->ctx = NULL;
382 		blk_queue_exit(q);
383 		return NULL;
384 	}
385 
386 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
387 	if (!op_is_flush(data->cmd_flags)) {
388 		rq->elv.icq = NULL;
389 		if (e && e->type->ops.prepare_request) {
390 			if (e->type->icq_cache)
391 				blk_mq_sched_assign_ioc(rq);
392 
393 			e->type->ops.prepare_request(rq, bio);
394 			rq->rq_flags |= RQF_ELVPRIV;
395 		}
396 	}
397 	data->hctx->queued++;
398 	return rq;
399 }
400 
401 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
402 		blk_mq_req_flags_t flags)
403 {
404 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
405 	struct request *rq;
406 	int ret;
407 
408 	ret = blk_queue_enter(q, flags);
409 	if (ret)
410 		return ERR_PTR(ret);
411 
412 	rq = blk_mq_get_request(q, NULL, &alloc_data);
413 	blk_queue_exit(q);
414 
415 	if (!rq)
416 		return ERR_PTR(-EWOULDBLOCK);
417 
418 	rq->__data_len = 0;
419 	rq->__sector = (sector_t) -1;
420 	rq->bio = rq->biotail = NULL;
421 	return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424 
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
429 	struct request *rq;
430 	unsigned int cpu;
431 	int ret;
432 
433 	/*
434 	 * If the tag allocator sleeps we could get an allocation for a
435 	 * different hardware context.  No need to complicate the low level
436 	 * allocator for this for the rare use case of a command tied to
437 	 * a specific queue.
438 	 */
439 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 		return ERR_PTR(-EINVAL);
441 
442 	if (hctx_idx >= q->nr_hw_queues)
443 		return ERR_PTR(-EIO);
444 
445 	ret = blk_queue_enter(q, flags);
446 	if (ret)
447 		return ERR_PTR(ret);
448 
449 	/*
450 	 * Check if the hardware context is actually mapped to anything.
451 	 * If not tell the caller that it should skip this queue.
452 	 */
453 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 		blk_queue_exit(q);
456 		return ERR_PTR(-EXDEV);
457 	}
458 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 
461 	rq = blk_mq_get_request(q, NULL, &alloc_data);
462 	blk_queue_exit(q);
463 
464 	if (!rq)
465 		return ERR_PTR(-EWOULDBLOCK);
466 
467 	return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 
471 static void __blk_mq_free_request(struct request *rq)
472 {
473 	struct request_queue *q = rq->q;
474 	struct blk_mq_ctx *ctx = rq->mq_ctx;
475 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
476 	const int sched_tag = rq->internal_tag;
477 
478 	blk_crypto_free_request(rq);
479 	blk_pm_mark_last_busy(rq);
480 	rq->mq_hctx = NULL;
481 	if (rq->tag != -1)
482 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
483 	if (sched_tag != -1)
484 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
485 	blk_mq_sched_restart(hctx);
486 	blk_queue_exit(q);
487 }
488 
489 void blk_mq_free_request(struct request *rq)
490 {
491 	struct request_queue *q = rq->q;
492 	struct elevator_queue *e = q->elevator;
493 	struct blk_mq_ctx *ctx = rq->mq_ctx;
494 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
495 
496 	if (rq->rq_flags & RQF_ELVPRIV) {
497 		if (e && e->type->ops.finish_request)
498 			e->type->ops.finish_request(rq);
499 		if (rq->elv.icq) {
500 			put_io_context(rq->elv.icq->ioc);
501 			rq->elv.icq = NULL;
502 		}
503 	}
504 
505 	ctx->rq_completed[rq_is_sync(rq)]++;
506 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
507 		atomic_dec(&hctx->nr_active);
508 
509 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
510 		laptop_io_completion(q->backing_dev_info);
511 
512 	rq_qos_done(q, rq);
513 
514 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 	if (refcount_dec_and_test(&rq->ref))
516 		__blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519 
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 	u64 now = 0;
523 
524 	if (blk_mq_need_time_stamp(rq))
525 		now = ktime_get_ns();
526 
527 	if (rq->rq_flags & RQF_STATS) {
528 		blk_mq_poll_stats_start(rq->q);
529 		blk_stat_add(rq, now);
530 	}
531 
532 	if (rq->internal_tag != -1)
533 		blk_mq_sched_completed_request(rq, now);
534 
535 	blk_account_io_done(rq, now);
536 
537 	if (rq->end_io) {
538 		rq_qos_done(rq->q, rq);
539 		rq->end_io(rq, error);
540 	} else {
541 		blk_mq_free_request(rq);
542 	}
543 }
544 EXPORT_SYMBOL(__blk_mq_end_request);
545 
546 void blk_mq_end_request(struct request *rq, blk_status_t error)
547 {
548 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
549 		BUG();
550 	__blk_mq_end_request(rq, error);
551 }
552 EXPORT_SYMBOL(blk_mq_end_request);
553 
554 static void __blk_mq_complete_request_remote(void *data)
555 {
556 	struct request *rq = data;
557 	struct request_queue *q = rq->q;
558 
559 	q->mq_ops->complete(rq);
560 }
561 
562 static void __blk_mq_complete_request(struct request *rq)
563 {
564 	struct blk_mq_ctx *ctx = rq->mq_ctx;
565 	struct request_queue *q = rq->q;
566 	bool shared = false;
567 	int cpu;
568 
569 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
570 	/*
571 	 * Most of single queue controllers, there is only one irq vector
572 	 * for handling IO completion, and the only irq's affinity is set
573 	 * as all possible CPUs. On most of ARCHs, this affinity means the
574 	 * irq is handled on one specific CPU.
575 	 *
576 	 * So complete IO reqeust in softirq context in case of single queue
577 	 * for not degrading IO performance by irqsoff latency.
578 	 */
579 	if (q->nr_hw_queues == 1) {
580 		__blk_complete_request(rq);
581 		return;
582 	}
583 
584 	/*
585 	 * For a polled request, always complete locallly, it's pointless
586 	 * to redirect the completion.
587 	 */
588 	if ((rq->cmd_flags & REQ_HIPRI) ||
589 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
590 		q->mq_ops->complete(rq);
591 		return;
592 	}
593 
594 	cpu = get_cpu();
595 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
596 		shared = cpus_share_cache(cpu, ctx->cpu);
597 
598 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
599 		rq->csd.func = __blk_mq_complete_request_remote;
600 		rq->csd.info = rq;
601 		rq->csd.flags = 0;
602 		smp_call_function_single_async(ctx->cpu, &rq->csd);
603 	} else {
604 		q->mq_ops->complete(rq);
605 	}
606 	put_cpu();
607 }
608 
609 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
610 	__releases(hctx->srcu)
611 {
612 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
613 		rcu_read_unlock();
614 	else
615 		srcu_read_unlock(hctx->srcu, srcu_idx);
616 }
617 
618 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
619 	__acquires(hctx->srcu)
620 {
621 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
622 		/* shut up gcc false positive */
623 		*srcu_idx = 0;
624 		rcu_read_lock();
625 	} else
626 		*srcu_idx = srcu_read_lock(hctx->srcu);
627 }
628 
629 /**
630  * blk_mq_complete_request - end I/O on a request
631  * @rq:		the request being processed
632  *
633  * Description:
634  *	Ends all I/O on a request. It does not handle partial completions.
635  *	The actual completion happens out-of-order, through a IPI handler.
636  **/
637 bool blk_mq_complete_request(struct request *rq)
638 {
639 	if (unlikely(blk_should_fake_timeout(rq->q)))
640 		return false;
641 	__blk_mq_complete_request(rq);
642 	return true;
643 }
644 EXPORT_SYMBOL(blk_mq_complete_request);
645 
646 /**
647  * blk_mq_start_request - Start processing a request
648  * @rq: Pointer to request to be started
649  *
650  * Function used by device drivers to notify the block layer that a request
651  * is going to be processed now, so blk layer can do proper initializations
652  * such as starting the timeout timer.
653  */
654 void blk_mq_start_request(struct request *rq)
655 {
656 	struct request_queue *q = rq->q;
657 
658 	trace_block_rq_issue(q, rq);
659 
660 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
661 		rq->io_start_time_ns = ktime_get_ns();
662 		rq->stats_sectors = blk_rq_sectors(rq);
663 		rq->rq_flags |= RQF_STATS;
664 		rq_qos_issue(q, rq);
665 	}
666 
667 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
668 
669 	blk_add_timer(rq);
670 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
671 
672 #ifdef CONFIG_BLK_DEV_INTEGRITY
673 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
674 		q->integrity.profile->prepare_fn(rq);
675 #endif
676 }
677 EXPORT_SYMBOL(blk_mq_start_request);
678 
679 static void __blk_mq_requeue_request(struct request *rq)
680 {
681 	struct request_queue *q = rq->q;
682 
683 	blk_mq_put_driver_tag(rq);
684 
685 	trace_block_rq_requeue(q, rq);
686 	rq_qos_requeue(q, rq);
687 
688 	if (blk_mq_request_started(rq)) {
689 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
690 		rq->rq_flags &= ~RQF_TIMED_OUT;
691 	}
692 }
693 
694 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
695 {
696 	__blk_mq_requeue_request(rq);
697 
698 	/* this request will be re-inserted to io scheduler queue */
699 	blk_mq_sched_requeue_request(rq);
700 
701 	BUG_ON(!list_empty(&rq->queuelist));
702 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
703 }
704 EXPORT_SYMBOL(blk_mq_requeue_request);
705 
706 static void blk_mq_requeue_work(struct work_struct *work)
707 {
708 	struct request_queue *q =
709 		container_of(work, struct request_queue, requeue_work.work);
710 	LIST_HEAD(rq_list);
711 	struct request *rq, *next;
712 
713 	spin_lock_irq(&q->requeue_lock);
714 	list_splice_init(&q->requeue_list, &rq_list);
715 	spin_unlock_irq(&q->requeue_lock);
716 
717 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
718 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
719 			continue;
720 
721 		rq->rq_flags &= ~RQF_SOFTBARRIER;
722 		list_del_init(&rq->queuelist);
723 		/*
724 		 * If RQF_DONTPREP, rq has contained some driver specific
725 		 * data, so insert it to hctx dispatch list to avoid any
726 		 * merge.
727 		 */
728 		if (rq->rq_flags & RQF_DONTPREP)
729 			blk_mq_request_bypass_insert(rq, false, false);
730 		else
731 			blk_mq_sched_insert_request(rq, true, false, false);
732 	}
733 
734 	while (!list_empty(&rq_list)) {
735 		rq = list_entry(rq_list.next, struct request, queuelist);
736 		list_del_init(&rq->queuelist);
737 		blk_mq_sched_insert_request(rq, false, false, false);
738 	}
739 
740 	blk_mq_run_hw_queues(q, false);
741 }
742 
743 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
744 				bool kick_requeue_list)
745 {
746 	struct request_queue *q = rq->q;
747 	unsigned long flags;
748 
749 	/*
750 	 * We abuse this flag that is otherwise used by the I/O scheduler to
751 	 * request head insertion from the workqueue.
752 	 */
753 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
754 
755 	spin_lock_irqsave(&q->requeue_lock, flags);
756 	if (at_head) {
757 		rq->rq_flags |= RQF_SOFTBARRIER;
758 		list_add(&rq->queuelist, &q->requeue_list);
759 	} else {
760 		list_add_tail(&rq->queuelist, &q->requeue_list);
761 	}
762 	spin_unlock_irqrestore(&q->requeue_lock, flags);
763 
764 	if (kick_requeue_list)
765 		blk_mq_kick_requeue_list(q);
766 }
767 
768 void blk_mq_kick_requeue_list(struct request_queue *q)
769 {
770 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
771 }
772 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
773 
774 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
775 				    unsigned long msecs)
776 {
777 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
778 				    msecs_to_jiffies(msecs));
779 }
780 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
781 
782 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
783 {
784 	if (tag < tags->nr_tags) {
785 		prefetch(tags->rqs[tag]);
786 		return tags->rqs[tag];
787 	}
788 
789 	return NULL;
790 }
791 EXPORT_SYMBOL(blk_mq_tag_to_rq);
792 
793 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
794 			       void *priv, bool reserved)
795 {
796 	/*
797 	 * If we find a request that is inflight and the queue matches,
798 	 * we know the queue is busy. Return false to stop the iteration.
799 	 */
800 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
801 		bool *busy = priv;
802 
803 		*busy = true;
804 		return false;
805 	}
806 
807 	return true;
808 }
809 
810 bool blk_mq_queue_inflight(struct request_queue *q)
811 {
812 	bool busy = false;
813 
814 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
815 	return busy;
816 }
817 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
818 
819 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
820 {
821 	req->rq_flags |= RQF_TIMED_OUT;
822 	if (req->q->mq_ops->timeout) {
823 		enum blk_eh_timer_return ret;
824 
825 		ret = req->q->mq_ops->timeout(req, reserved);
826 		if (ret == BLK_EH_DONE)
827 			return;
828 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
829 	}
830 
831 	blk_add_timer(req);
832 }
833 
834 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
835 {
836 	unsigned long deadline;
837 
838 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
839 		return false;
840 	if (rq->rq_flags & RQF_TIMED_OUT)
841 		return false;
842 
843 	deadline = READ_ONCE(rq->deadline);
844 	if (time_after_eq(jiffies, deadline))
845 		return true;
846 
847 	if (*next == 0)
848 		*next = deadline;
849 	else if (time_after(*next, deadline))
850 		*next = deadline;
851 	return false;
852 }
853 
854 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
855 		struct request *rq, void *priv, bool reserved)
856 {
857 	unsigned long *next = priv;
858 
859 	/*
860 	 * Just do a quick check if it is expired before locking the request in
861 	 * so we're not unnecessarilly synchronizing across CPUs.
862 	 */
863 	if (!blk_mq_req_expired(rq, next))
864 		return true;
865 
866 	/*
867 	 * We have reason to believe the request may be expired. Take a
868 	 * reference on the request to lock this request lifetime into its
869 	 * currently allocated context to prevent it from being reallocated in
870 	 * the event the completion by-passes this timeout handler.
871 	 *
872 	 * If the reference was already released, then the driver beat the
873 	 * timeout handler to posting a natural completion.
874 	 */
875 	if (!refcount_inc_not_zero(&rq->ref))
876 		return true;
877 
878 	/*
879 	 * The request is now locked and cannot be reallocated underneath the
880 	 * timeout handler's processing. Re-verify this exact request is truly
881 	 * expired; if it is not expired, then the request was completed and
882 	 * reallocated as a new request.
883 	 */
884 	if (blk_mq_req_expired(rq, next))
885 		blk_mq_rq_timed_out(rq, reserved);
886 
887 	if (is_flush_rq(rq, hctx))
888 		rq->end_io(rq, 0);
889 	else if (refcount_dec_and_test(&rq->ref))
890 		__blk_mq_free_request(rq);
891 
892 	return true;
893 }
894 
895 static void blk_mq_timeout_work(struct work_struct *work)
896 {
897 	struct request_queue *q =
898 		container_of(work, struct request_queue, timeout_work);
899 	unsigned long next = 0;
900 	struct blk_mq_hw_ctx *hctx;
901 	int i;
902 
903 	/* A deadlock might occur if a request is stuck requiring a
904 	 * timeout at the same time a queue freeze is waiting
905 	 * completion, since the timeout code would not be able to
906 	 * acquire the queue reference here.
907 	 *
908 	 * That's why we don't use blk_queue_enter here; instead, we use
909 	 * percpu_ref_tryget directly, because we need to be able to
910 	 * obtain a reference even in the short window between the queue
911 	 * starting to freeze, by dropping the first reference in
912 	 * blk_freeze_queue_start, and the moment the last request is
913 	 * consumed, marked by the instant q_usage_counter reaches
914 	 * zero.
915 	 */
916 	if (!percpu_ref_tryget(&q->q_usage_counter))
917 		return;
918 
919 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
920 
921 	if (next != 0) {
922 		mod_timer(&q->timeout, next);
923 	} else {
924 		/*
925 		 * Request timeouts are handled as a forward rolling timer. If
926 		 * we end up here it means that no requests are pending and
927 		 * also that no request has been pending for a while. Mark
928 		 * each hctx as idle.
929 		 */
930 		queue_for_each_hw_ctx(q, hctx, i) {
931 			/* the hctx may be unmapped, so check it here */
932 			if (blk_mq_hw_queue_mapped(hctx))
933 				blk_mq_tag_idle(hctx);
934 		}
935 	}
936 	blk_queue_exit(q);
937 }
938 
939 struct flush_busy_ctx_data {
940 	struct blk_mq_hw_ctx *hctx;
941 	struct list_head *list;
942 };
943 
944 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
945 {
946 	struct flush_busy_ctx_data *flush_data = data;
947 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
948 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
949 	enum hctx_type type = hctx->type;
950 
951 	spin_lock(&ctx->lock);
952 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
953 	sbitmap_clear_bit(sb, bitnr);
954 	spin_unlock(&ctx->lock);
955 	return true;
956 }
957 
958 /*
959  * Process software queues that have been marked busy, splicing them
960  * to the for-dispatch
961  */
962 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
963 {
964 	struct flush_busy_ctx_data data = {
965 		.hctx = hctx,
966 		.list = list,
967 	};
968 
969 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
970 }
971 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
972 
973 struct dispatch_rq_data {
974 	struct blk_mq_hw_ctx *hctx;
975 	struct request *rq;
976 };
977 
978 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
979 		void *data)
980 {
981 	struct dispatch_rq_data *dispatch_data = data;
982 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
983 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
984 	enum hctx_type type = hctx->type;
985 
986 	spin_lock(&ctx->lock);
987 	if (!list_empty(&ctx->rq_lists[type])) {
988 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
989 		list_del_init(&dispatch_data->rq->queuelist);
990 		if (list_empty(&ctx->rq_lists[type]))
991 			sbitmap_clear_bit(sb, bitnr);
992 	}
993 	spin_unlock(&ctx->lock);
994 
995 	return !dispatch_data->rq;
996 }
997 
998 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
999 					struct blk_mq_ctx *start)
1000 {
1001 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1002 	struct dispatch_rq_data data = {
1003 		.hctx = hctx,
1004 		.rq   = NULL,
1005 	};
1006 
1007 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1008 			       dispatch_rq_from_ctx, &data);
1009 
1010 	return data.rq;
1011 }
1012 
1013 static inline unsigned int queued_to_index(unsigned int queued)
1014 {
1015 	if (!queued)
1016 		return 0;
1017 
1018 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1019 }
1020 
1021 bool blk_mq_get_driver_tag(struct request *rq)
1022 {
1023 	struct blk_mq_alloc_data data = {
1024 		.q = rq->q,
1025 		.hctx = rq->mq_hctx,
1026 		.flags = BLK_MQ_REQ_NOWAIT,
1027 		.cmd_flags = rq->cmd_flags,
1028 	};
1029 	bool shared;
1030 
1031 	if (rq->tag != -1)
1032 		return true;
1033 
1034 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1035 		data.flags |= BLK_MQ_REQ_RESERVED;
1036 
1037 	shared = blk_mq_tag_busy(data.hctx);
1038 	rq->tag = blk_mq_get_tag(&data);
1039 	if (rq->tag >= 0) {
1040 		if (shared) {
1041 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1042 			atomic_inc(&data.hctx->nr_active);
1043 		}
1044 		data.hctx->tags->rqs[rq->tag] = rq;
1045 	}
1046 
1047 	return rq->tag != -1;
1048 }
1049 
1050 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1051 				int flags, void *key)
1052 {
1053 	struct blk_mq_hw_ctx *hctx;
1054 
1055 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1056 
1057 	spin_lock(&hctx->dispatch_wait_lock);
1058 	if (!list_empty(&wait->entry)) {
1059 		struct sbitmap_queue *sbq;
1060 
1061 		list_del_init(&wait->entry);
1062 		sbq = &hctx->tags->bitmap_tags;
1063 		atomic_dec(&sbq->ws_active);
1064 	}
1065 	spin_unlock(&hctx->dispatch_wait_lock);
1066 
1067 	blk_mq_run_hw_queue(hctx, true);
1068 	return 1;
1069 }
1070 
1071 /*
1072  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1073  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1074  * restart. For both cases, take care to check the condition again after
1075  * marking us as waiting.
1076  */
1077 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1078 				 struct request *rq)
1079 {
1080 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1081 	struct wait_queue_head *wq;
1082 	wait_queue_entry_t *wait;
1083 	bool ret;
1084 
1085 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1086 		blk_mq_sched_mark_restart_hctx(hctx);
1087 
1088 		/*
1089 		 * It's possible that a tag was freed in the window between the
1090 		 * allocation failure and adding the hardware queue to the wait
1091 		 * queue.
1092 		 *
1093 		 * Don't clear RESTART here, someone else could have set it.
1094 		 * At most this will cost an extra queue run.
1095 		 */
1096 		return blk_mq_get_driver_tag(rq);
1097 	}
1098 
1099 	wait = &hctx->dispatch_wait;
1100 	if (!list_empty_careful(&wait->entry))
1101 		return false;
1102 
1103 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1104 
1105 	spin_lock_irq(&wq->lock);
1106 	spin_lock(&hctx->dispatch_wait_lock);
1107 	if (!list_empty(&wait->entry)) {
1108 		spin_unlock(&hctx->dispatch_wait_lock);
1109 		spin_unlock_irq(&wq->lock);
1110 		return false;
1111 	}
1112 
1113 	atomic_inc(&sbq->ws_active);
1114 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1115 	__add_wait_queue(wq, wait);
1116 
1117 	/*
1118 	 * It's possible that a tag was freed in the window between the
1119 	 * allocation failure and adding the hardware queue to the wait
1120 	 * queue.
1121 	 */
1122 	ret = blk_mq_get_driver_tag(rq);
1123 	if (!ret) {
1124 		spin_unlock(&hctx->dispatch_wait_lock);
1125 		spin_unlock_irq(&wq->lock);
1126 		return false;
1127 	}
1128 
1129 	/*
1130 	 * We got a tag, remove ourselves from the wait queue to ensure
1131 	 * someone else gets the wakeup.
1132 	 */
1133 	list_del_init(&wait->entry);
1134 	atomic_dec(&sbq->ws_active);
1135 	spin_unlock(&hctx->dispatch_wait_lock);
1136 	spin_unlock_irq(&wq->lock);
1137 
1138 	return true;
1139 }
1140 
1141 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1143 /*
1144  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1145  * - EWMA is one simple way to compute running average value
1146  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1147  * - take 4 as factor for avoiding to get too small(0) result, and this
1148  *   factor doesn't matter because EWMA decreases exponentially
1149  */
1150 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1151 {
1152 	unsigned int ewma;
1153 
1154 	if (hctx->queue->elevator)
1155 		return;
1156 
1157 	ewma = hctx->dispatch_busy;
1158 
1159 	if (!ewma && !busy)
1160 		return;
1161 
1162 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1163 	if (busy)
1164 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1165 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1166 
1167 	hctx->dispatch_busy = ewma;
1168 }
1169 
1170 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1171 
1172 static void blk_mq_handle_dev_resource(struct request *rq,
1173 				       struct list_head *list)
1174 {
1175 	struct request *next =
1176 		list_first_entry_or_null(list, struct request, queuelist);
1177 
1178 	/*
1179 	 * If an I/O scheduler has been configured and we got a driver tag for
1180 	 * the next request already, free it.
1181 	 */
1182 	if (next)
1183 		blk_mq_put_driver_tag(next);
1184 
1185 	list_add(&rq->queuelist, list);
1186 	__blk_mq_requeue_request(rq);
1187 }
1188 
1189 static void blk_mq_handle_zone_resource(struct request *rq,
1190 					struct list_head *zone_list)
1191 {
1192 	/*
1193 	 * If we end up here it is because we cannot dispatch a request to a
1194 	 * specific zone due to LLD level zone-write locking or other zone
1195 	 * related resource not being available. In this case, set the request
1196 	 * aside in zone_list for retrying it later.
1197 	 */
1198 	list_add(&rq->queuelist, zone_list);
1199 	__blk_mq_requeue_request(rq);
1200 }
1201 
1202 /*
1203  * Returns true if we did some work AND can potentially do more.
1204  */
1205 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1206 			     bool got_budget)
1207 {
1208 	struct blk_mq_hw_ctx *hctx;
1209 	struct request *rq, *nxt;
1210 	bool no_tag = false;
1211 	int errors, queued;
1212 	blk_status_t ret = BLK_STS_OK;
1213 	bool no_budget_avail = false;
1214 	LIST_HEAD(zone_list);
1215 
1216 	if (list_empty(list))
1217 		return false;
1218 
1219 	WARN_ON(!list_is_singular(list) && got_budget);
1220 
1221 	/*
1222 	 * Now process all the entries, sending them to the driver.
1223 	 */
1224 	errors = queued = 0;
1225 	do {
1226 		struct blk_mq_queue_data bd;
1227 
1228 		rq = list_first_entry(list, struct request, queuelist);
1229 
1230 		hctx = rq->mq_hctx;
1231 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1232 			blk_mq_put_driver_tag(rq);
1233 			no_budget_avail = true;
1234 			break;
1235 		}
1236 
1237 		if (!blk_mq_get_driver_tag(rq)) {
1238 			/*
1239 			 * The initial allocation attempt failed, so we need to
1240 			 * rerun the hardware queue when a tag is freed. The
1241 			 * waitqueue takes care of that. If the queue is run
1242 			 * before we add this entry back on the dispatch list,
1243 			 * we'll re-run it below.
1244 			 */
1245 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1246 				blk_mq_put_dispatch_budget(hctx);
1247 				/*
1248 				 * For non-shared tags, the RESTART check
1249 				 * will suffice.
1250 				 */
1251 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1252 					no_tag = true;
1253 				break;
1254 			}
1255 		}
1256 
1257 		list_del_init(&rq->queuelist);
1258 
1259 		bd.rq = rq;
1260 
1261 		/*
1262 		 * Flag last if we have no more requests, or if we have more
1263 		 * but can't assign a driver tag to it.
1264 		 */
1265 		if (list_empty(list))
1266 			bd.last = true;
1267 		else {
1268 			nxt = list_first_entry(list, struct request, queuelist);
1269 			bd.last = !blk_mq_get_driver_tag(nxt);
1270 		}
1271 
1272 		ret = q->mq_ops->queue_rq(hctx, &bd);
1273 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1274 			blk_mq_handle_dev_resource(rq, list);
1275 			break;
1276 		} else if (ret == BLK_STS_ZONE_RESOURCE) {
1277 			/*
1278 			 * Move the request to zone_list and keep going through
1279 			 * the dispatch list to find more requests the drive can
1280 			 * accept.
1281 			 */
1282 			blk_mq_handle_zone_resource(rq, &zone_list);
1283 			if (list_empty(list))
1284 				break;
1285 			continue;
1286 		}
1287 
1288 		if (unlikely(ret != BLK_STS_OK)) {
1289 			errors++;
1290 			blk_mq_end_request(rq, BLK_STS_IOERR);
1291 			continue;
1292 		}
1293 
1294 		queued++;
1295 	} while (!list_empty(list));
1296 
1297 	if (!list_empty(&zone_list))
1298 		list_splice_tail_init(&zone_list, list);
1299 
1300 	hctx->dispatched[queued_to_index(queued)]++;
1301 
1302 	/*
1303 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1304 	 * that is where we will continue on next queue run.
1305 	 */
1306 	if (!list_empty(list)) {
1307 		bool needs_restart;
1308 
1309 		/*
1310 		 * If we didn't flush the entire list, we could have told
1311 		 * the driver there was more coming, but that turned out to
1312 		 * be a lie.
1313 		 */
1314 		if (q->mq_ops->commit_rqs && queued)
1315 			q->mq_ops->commit_rqs(hctx);
1316 
1317 		spin_lock(&hctx->lock);
1318 		list_splice_tail_init(list, &hctx->dispatch);
1319 		spin_unlock(&hctx->lock);
1320 
1321 		/*
1322 		 * If SCHED_RESTART was set by the caller of this function and
1323 		 * it is no longer set that means that it was cleared by another
1324 		 * thread and hence that a queue rerun is needed.
1325 		 *
1326 		 * If 'no_tag' is set, that means that we failed getting
1327 		 * a driver tag with an I/O scheduler attached. If our dispatch
1328 		 * waitqueue is no longer active, ensure that we run the queue
1329 		 * AFTER adding our entries back to the list.
1330 		 *
1331 		 * If no I/O scheduler has been configured it is possible that
1332 		 * the hardware queue got stopped and restarted before requests
1333 		 * were pushed back onto the dispatch list. Rerun the queue to
1334 		 * avoid starvation. Notes:
1335 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1336 		 *   been stopped before rerunning a queue.
1337 		 * - Some but not all block drivers stop a queue before
1338 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1339 		 *   and dm-rq.
1340 		 *
1341 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1342 		 * bit is set, run queue after a delay to avoid IO stalls
1343 		 * that could otherwise occur if the queue is idle.  We'll do
1344 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1345 		 */
1346 		needs_restart = blk_mq_sched_needs_restart(hctx);
1347 		if (!needs_restart ||
1348 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1349 			blk_mq_run_hw_queue(hctx, true);
1350 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1351 					   no_budget_avail))
1352 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1353 
1354 		blk_mq_update_dispatch_busy(hctx, true);
1355 		return false;
1356 	} else
1357 		blk_mq_update_dispatch_busy(hctx, false);
1358 
1359 	/*
1360 	 * If the host/device is unable to accept more work, inform the
1361 	 * caller of that.
1362 	 */
1363 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1364 		return false;
1365 
1366 	return (queued + errors) != 0;
1367 }
1368 
1369 /**
1370  * __blk_mq_run_hw_queue - Run a hardware queue.
1371  * @hctx: Pointer to the hardware queue to run.
1372  *
1373  * Send pending requests to the hardware.
1374  */
1375 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1376 {
1377 	int srcu_idx;
1378 
1379 	/*
1380 	 * We should be running this queue from one of the CPUs that
1381 	 * are mapped to it.
1382 	 *
1383 	 * There are at least two related races now between setting
1384 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1385 	 * __blk_mq_run_hw_queue():
1386 	 *
1387 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1388 	 *   but later it becomes online, then this warning is harmless
1389 	 *   at all
1390 	 *
1391 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1392 	 *   but later it becomes offline, then the warning can't be
1393 	 *   triggered, and we depend on blk-mq timeout handler to
1394 	 *   handle dispatched requests to this hctx
1395 	 */
1396 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1397 		cpu_online(hctx->next_cpu)) {
1398 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1399 			raw_smp_processor_id(),
1400 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1401 		dump_stack();
1402 	}
1403 
1404 	/*
1405 	 * We can't run the queue inline with ints disabled. Ensure that
1406 	 * we catch bad users of this early.
1407 	 */
1408 	WARN_ON_ONCE(in_interrupt());
1409 
1410 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1411 
1412 	hctx_lock(hctx, &srcu_idx);
1413 	blk_mq_sched_dispatch_requests(hctx);
1414 	hctx_unlock(hctx, srcu_idx);
1415 }
1416 
1417 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1418 {
1419 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1420 
1421 	if (cpu >= nr_cpu_ids)
1422 		cpu = cpumask_first(hctx->cpumask);
1423 	return cpu;
1424 }
1425 
1426 /*
1427  * It'd be great if the workqueue API had a way to pass
1428  * in a mask and had some smarts for more clever placement.
1429  * For now we just round-robin here, switching for every
1430  * BLK_MQ_CPU_WORK_BATCH queued items.
1431  */
1432 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1433 {
1434 	bool tried = false;
1435 	int next_cpu = hctx->next_cpu;
1436 
1437 	if (hctx->queue->nr_hw_queues == 1)
1438 		return WORK_CPU_UNBOUND;
1439 
1440 	if (--hctx->next_cpu_batch <= 0) {
1441 select_cpu:
1442 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1443 				cpu_online_mask);
1444 		if (next_cpu >= nr_cpu_ids)
1445 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1446 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1447 	}
1448 
1449 	/*
1450 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1451 	 * and it should only happen in the path of handling CPU DEAD.
1452 	 */
1453 	if (!cpu_online(next_cpu)) {
1454 		if (!tried) {
1455 			tried = true;
1456 			goto select_cpu;
1457 		}
1458 
1459 		/*
1460 		 * Make sure to re-select CPU next time once after CPUs
1461 		 * in hctx->cpumask become online again.
1462 		 */
1463 		hctx->next_cpu = next_cpu;
1464 		hctx->next_cpu_batch = 1;
1465 		return WORK_CPU_UNBOUND;
1466 	}
1467 
1468 	hctx->next_cpu = next_cpu;
1469 	return next_cpu;
1470 }
1471 
1472 /**
1473  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1474  * @hctx: Pointer to the hardware queue to run.
1475  * @async: If we want to run the queue asynchronously.
1476  * @msecs: Microseconds of delay to wait before running the queue.
1477  *
1478  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1479  * with a delay of @msecs.
1480  */
1481 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1482 					unsigned long msecs)
1483 {
1484 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1485 		return;
1486 
1487 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1488 		int cpu = get_cpu();
1489 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1490 			__blk_mq_run_hw_queue(hctx);
1491 			put_cpu();
1492 			return;
1493 		}
1494 
1495 		put_cpu();
1496 	}
1497 
1498 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1499 				    msecs_to_jiffies(msecs));
1500 }
1501 
1502 /**
1503  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1504  * @hctx: Pointer to the hardware queue to run.
1505  * @msecs: Microseconds of delay to wait before running the queue.
1506  *
1507  * Run a hardware queue asynchronously with a delay of @msecs.
1508  */
1509 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1510 {
1511 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1514 
1515 /**
1516  * blk_mq_run_hw_queue - Start to run a hardware queue.
1517  * @hctx: Pointer to the hardware queue to run.
1518  * @async: If we want to run the queue asynchronously.
1519  *
1520  * Check if the request queue is not in a quiesced state and if there are
1521  * pending requests to be sent. If this is true, run the queue to send requests
1522  * to hardware.
1523  */
1524 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1525 {
1526 	int srcu_idx;
1527 	bool need_run;
1528 
1529 	/*
1530 	 * When queue is quiesced, we may be switching io scheduler, or
1531 	 * updating nr_hw_queues, or other things, and we can't run queue
1532 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1533 	 *
1534 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1535 	 * quiesced.
1536 	 */
1537 	hctx_lock(hctx, &srcu_idx);
1538 	need_run = !blk_queue_quiesced(hctx->queue) &&
1539 		blk_mq_hctx_has_pending(hctx);
1540 	hctx_unlock(hctx, srcu_idx);
1541 
1542 	if (need_run)
1543 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1544 }
1545 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1546 
1547 /**
1548  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1549  * @q: Pointer to the request queue to run.
1550  * @async: If we want to run the queue asynchronously.
1551  */
1552 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1553 {
1554 	struct blk_mq_hw_ctx *hctx;
1555 	int i;
1556 
1557 	queue_for_each_hw_ctx(q, hctx, i) {
1558 		if (blk_mq_hctx_stopped(hctx))
1559 			continue;
1560 
1561 		blk_mq_run_hw_queue(hctx, async);
1562 	}
1563 }
1564 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1565 
1566 /**
1567  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1568  * @q: Pointer to the request queue to run.
1569  * @msecs: Microseconds of delay to wait before running the queues.
1570  */
1571 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1572 {
1573 	struct blk_mq_hw_ctx *hctx;
1574 	int i;
1575 
1576 	queue_for_each_hw_ctx(q, hctx, i) {
1577 		if (blk_mq_hctx_stopped(hctx))
1578 			continue;
1579 
1580 		blk_mq_delay_run_hw_queue(hctx, msecs);
1581 	}
1582 }
1583 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1584 
1585 /**
1586  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1587  * @q: request queue.
1588  *
1589  * The caller is responsible for serializing this function against
1590  * blk_mq_{start,stop}_hw_queue().
1591  */
1592 bool blk_mq_queue_stopped(struct request_queue *q)
1593 {
1594 	struct blk_mq_hw_ctx *hctx;
1595 	int i;
1596 
1597 	queue_for_each_hw_ctx(q, hctx, i)
1598 		if (blk_mq_hctx_stopped(hctx))
1599 			return true;
1600 
1601 	return false;
1602 }
1603 EXPORT_SYMBOL(blk_mq_queue_stopped);
1604 
1605 /*
1606  * This function is often used for pausing .queue_rq() by driver when
1607  * there isn't enough resource or some conditions aren't satisfied, and
1608  * BLK_STS_RESOURCE is usually returned.
1609  *
1610  * We do not guarantee that dispatch can be drained or blocked
1611  * after blk_mq_stop_hw_queue() returns. Please use
1612  * blk_mq_quiesce_queue() for that requirement.
1613  */
1614 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1615 {
1616 	cancel_delayed_work(&hctx->run_work);
1617 
1618 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1619 }
1620 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1621 
1622 /*
1623  * This function is often used for pausing .queue_rq() by driver when
1624  * there isn't enough resource or some conditions aren't satisfied, and
1625  * BLK_STS_RESOURCE is usually returned.
1626  *
1627  * We do not guarantee that dispatch can be drained or blocked
1628  * after blk_mq_stop_hw_queues() returns. Please use
1629  * blk_mq_quiesce_queue() for that requirement.
1630  */
1631 void blk_mq_stop_hw_queues(struct request_queue *q)
1632 {
1633 	struct blk_mq_hw_ctx *hctx;
1634 	int i;
1635 
1636 	queue_for_each_hw_ctx(q, hctx, i)
1637 		blk_mq_stop_hw_queue(hctx);
1638 }
1639 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1640 
1641 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1642 {
1643 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1644 
1645 	blk_mq_run_hw_queue(hctx, false);
1646 }
1647 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1648 
1649 void blk_mq_start_hw_queues(struct request_queue *q)
1650 {
1651 	struct blk_mq_hw_ctx *hctx;
1652 	int i;
1653 
1654 	queue_for_each_hw_ctx(q, hctx, i)
1655 		blk_mq_start_hw_queue(hctx);
1656 }
1657 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1658 
1659 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1660 {
1661 	if (!blk_mq_hctx_stopped(hctx))
1662 		return;
1663 
1664 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1665 	blk_mq_run_hw_queue(hctx, async);
1666 }
1667 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1668 
1669 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1670 {
1671 	struct blk_mq_hw_ctx *hctx;
1672 	int i;
1673 
1674 	queue_for_each_hw_ctx(q, hctx, i)
1675 		blk_mq_start_stopped_hw_queue(hctx, async);
1676 }
1677 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1678 
1679 static void blk_mq_run_work_fn(struct work_struct *work)
1680 {
1681 	struct blk_mq_hw_ctx *hctx;
1682 
1683 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1684 
1685 	/*
1686 	 * If we are stopped, don't run the queue.
1687 	 */
1688 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1689 		return;
1690 
1691 	__blk_mq_run_hw_queue(hctx);
1692 }
1693 
1694 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1695 					    struct request *rq,
1696 					    bool at_head)
1697 {
1698 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1699 	enum hctx_type type = hctx->type;
1700 
1701 	lockdep_assert_held(&ctx->lock);
1702 
1703 	trace_block_rq_insert(hctx->queue, rq);
1704 
1705 	if (at_head)
1706 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1707 	else
1708 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1709 }
1710 
1711 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1712 			     bool at_head)
1713 {
1714 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1715 
1716 	lockdep_assert_held(&ctx->lock);
1717 
1718 	__blk_mq_insert_req_list(hctx, rq, at_head);
1719 	blk_mq_hctx_mark_pending(hctx, ctx);
1720 }
1721 
1722 /**
1723  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1724  * @rq: Pointer to request to be inserted.
1725  * @run_queue: If we should run the hardware queue after inserting the request.
1726  *
1727  * Should only be used carefully, when the caller knows we want to
1728  * bypass a potential IO scheduler on the target device.
1729  */
1730 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1731 				  bool run_queue)
1732 {
1733 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1734 
1735 	spin_lock(&hctx->lock);
1736 	if (at_head)
1737 		list_add(&rq->queuelist, &hctx->dispatch);
1738 	else
1739 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1740 	spin_unlock(&hctx->lock);
1741 
1742 	if (run_queue)
1743 		blk_mq_run_hw_queue(hctx, false);
1744 }
1745 
1746 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1747 			    struct list_head *list)
1748 
1749 {
1750 	struct request *rq;
1751 	enum hctx_type type = hctx->type;
1752 
1753 	/*
1754 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1755 	 * offline now
1756 	 */
1757 	list_for_each_entry(rq, list, queuelist) {
1758 		BUG_ON(rq->mq_ctx != ctx);
1759 		trace_block_rq_insert(hctx->queue, rq);
1760 	}
1761 
1762 	spin_lock(&ctx->lock);
1763 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1764 	blk_mq_hctx_mark_pending(hctx, ctx);
1765 	spin_unlock(&ctx->lock);
1766 }
1767 
1768 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1769 {
1770 	struct request *rqa = container_of(a, struct request, queuelist);
1771 	struct request *rqb = container_of(b, struct request, queuelist);
1772 
1773 	if (rqa->mq_ctx != rqb->mq_ctx)
1774 		return rqa->mq_ctx > rqb->mq_ctx;
1775 	if (rqa->mq_hctx != rqb->mq_hctx)
1776 		return rqa->mq_hctx > rqb->mq_hctx;
1777 
1778 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1779 }
1780 
1781 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1782 {
1783 	LIST_HEAD(list);
1784 
1785 	if (list_empty(&plug->mq_list))
1786 		return;
1787 	list_splice_init(&plug->mq_list, &list);
1788 
1789 	if (plug->rq_count > 2 && plug->multiple_queues)
1790 		list_sort(NULL, &list, plug_rq_cmp);
1791 
1792 	plug->rq_count = 0;
1793 
1794 	do {
1795 		struct list_head rq_list;
1796 		struct request *rq, *head_rq = list_entry_rq(list.next);
1797 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1798 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1799 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1800 		unsigned int depth = 1;
1801 
1802 		list_for_each_continue(pos, &list) {
1803 			rq = list_entry_rq(pos);
1804 			BUG_ON(!rq->q);
1805 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1806 				break;
1807 			depth++;
1808 		}
1809 
1810 		list_cut_before(&rq_list, &list, pos);
1811 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1812 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1813 						from_schedule);
1814 	} while(!list_empty(&list));
1815 }
1816 
1817 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1818 		unsigned int nr_segs)
1819 {
1820 	if (bio->bi_opf & REQ_RAHEAD)
1821 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1822 
1823 	rq->__sector = bio->bi_iter.bi_sector;
1824 	rq->write_hint = bio->bi_write_hint;
1825 	blk_rq_bio_prep(rq, bio, nr_segs);
1826 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1827 
1828 	blk_account_io_start(rq, true);
1829 }
1830 
1831 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1832 					    struct request *rq,
1833 					    blk_qc_t *cookie, bool last)
1834 {
1835 	struct request_queue *q = rq->q;
1836 	struct blk_mq_queue_data bd = {
1837 		.rq = rq,
1838 		.last = last,
1839 	};
1840 	blk_qc_t new_cookie;
1841 	blk_status_t ret;
1842 
1843 	new_cookie = request_to_qc_t(hctx, rq);
1844 
1845 	/*
1846 	 * For OK queue, we are done. For error, caller may kill it.
1847 	 * Any other error (busy), just add it to our list as we
1848 	 * previously would have done.
1849 	 */
1850 	ret = q->mq_ops->queue_rq(hctx, &bd);
1851 	switch (ret) {
1852 	case BLK_STS_OK:
1853 		blk_mq_update_dispatch_busy(hctx, false);
1854 		*cookie = new_cookie;
1855 		break;
1856 	case BLK_STS_RESOURCE:
1857 	case BLK_STS_DEV_RESOURCE:
1858 		blk_mq_update_dispatch_busy(hctx, true);
1859 		__blk_mq_requeue_request(rq);
1860 		break;
1861 	default:
1862 		blk_mq_update_dispatch_busy(hctx, false);
1863 		*cookie = BLK_QC_T_NONE;
1864 		break;
1865 	}
1866 
1867 	return ret;
1868 }
1869 
1870 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871 						struct request *rq,
1872 						blk_qc_t *cookie,
1873 						bool bypass_insert, bool last)
1874 {
1875 	struct request_queue *q = rq->q;
1876 	bool run_queue = true;
1877 
1878 	/*
1879 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1880 	 *
1881 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1882 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1883 	 * and avoid driver to try to dispatch again.
1884 	 */
1885 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1886 		run_queue = false;
1887 		bypass_insert = false;
1888 		goto insert;
1889 	}
1890 
1891 	if (q->elevator && !bypass_insert)
1892 		goto insert;
1893 
1894 	if (!blk_mq_get_dispatch_budget(hctx))
1895 		goto insert;
1896 
1897 	if (!blk_mq_get_driver_tag(rq)) {
1898 		blk_mq_put_dispatch_budget(hctx);
1899 		goto insert;
1900 	}
1901 
1902 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1903 insert:
1904 	if (bypass_insert)
1905 		return BLK_STS_RESOURCE;
1906 
1907 	blk_mq_request_bypass_insert(rq, false, run_queue);
1908 	return BLK_STS_OK;
1909 }
1910 
1911 /**
1912  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1913  * @hctx: Pointer of the associated hardware queue.
1914  * @rq: Pointer to request to be sent.
1915  * @cookie: Request queue cookie.
1916  *
1917  * If the device has enough resources to accept a new request now, send the
1918  * request directly to device driver. Else, insert at hctx->dispatch queue, so
1919  * we can try send it another time in the future. Requests inserted at this
1920  * queue have higher priority.
1921  */
1922 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1923 		struct request *rq, blk_qc_t *cookie)
1924 {
1925 	blk_status_t ret;
1926 	int srcu_idx;
1927 
1928 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1929 
1930 	hctx_lock(hctx, &srcu_idx);
1931 
1932 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1933 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1934 		blk_mq_request_bypass_insert(rq, false, true);
1935 	else if (ret != BLK_STS_OK)
1936 		blk_mq_end_request(rq, ret);
1937 
1938 	hctx_unlock(hctx, srcu_idx);
1939 }
1940 
1941 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1942 {
1943 	blk_status_t ret;
1944 	int srcu_idx;
1945 	blk_qc_t unused_cookie;
1946 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1947 
1948 	hctx_lock(hctx, &srcu_idx);
1949 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1950 	hctx_unlock(hctx, srcu_idx);
1951 
1952 	return ret;
1953 }
1954 
1955 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1956 		struct list_head *list)
1957 {
1958 	int queued = 0;
1959 
1960 	while (!list_empty(list)) {
1961 		blk_status_t ret;
1962 		struct request *rq = list_first_entry(list, struct request,
1963 				queuelist);
1964 
1965 		list_del_init(&rq->queuelist);
1966 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1967 		if (ret != BLK_STS_OK) {
1968 			if (ret == BLK_STS_RESOURCE ||
1969 					ret == BLK_STS_DEV_RESOURCE) {
1970 				blk_mq_request_bypass_insert(rq, false,
1971 							list_empty(list));
1972 				break;
1973 			}
1974 			blk_mq_end_request(rq, ret);
1975 		} else
1976 			queued++;
1977 	}
1978 
1979 	/*
1980 	 * If we didn't flush the entire list, we could have told
1981 	 * the driver there was more coming, but that turned out to
1982 	 * be a lie.
1983 	 */
1984 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1985 		hctx->queue->mq_ops->commit_rqs(hctx);
1986 }
1987 
1988 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1989 {
1990 	list_add_tail(&rq->queuelist, &plug->mq_list);
1991 	plug->rq_count++;
1992 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1993 		struct request *tmp;
1994 
1995 		tmp = list_first_entry(&plug->mq_list, struct request,
1996 						queuelist);
1997 		if (tmp->q != rq->q)
1998 			plug->multiple_queues = true;
1999 	}
2000 }
2001 
2002 /**
2003  * blk_mq_make_request - Create and send a request to block device.
2004  * @q: Request queue pointer.
2005  * @bio: Bio pointer.
2006  *
2007  * Builds up a request structure from @q and @bio and send to the device. The
2008  * request may not be queued directly to hardware if:
2009  * * This request can be merged with another one
2010  * * We want to place request at plug queue for possible future merging
2011  * * There is an IO scheduler active at this queue
2012  *
2013  * It will not queue the request if there is an error with the bio, or at the
2014  * request creation.
2015  *
2016  * Returns: Request queue cookie.
2017  */
2018 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2019 {
2020 	const int is_sync = op_is_sync(bio->bi_opf);
2021 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2022 	struct blk_mq_alloc_data data = { .flags = 0};
2023 	struct request *rq;
2024 	struct blk_plug *plug;
2025 	struct request *same_queue_rq = NULL;
2026 	unsigned int nr_segs;
2027 	blk_qc_t cookie;
2028 	blk_status_t ret;
2029 
2030 	blk_queue_bounce(q, &bio);
2031 	__blk_queue_split(q, &bio, &nr_segs);
2032 
2033 	if (!bio_integrity_prep(bio))
2034 		return BLK_QC_T_NONE;
2035 
2036 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2037 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2038 		return BLK_QC_T_NONE;
2039 
2040 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2041 		return BLK_QC_T_NONE;
2042 
2043 	rq_qos_throttle(q, bio);
2044 
2045 	data.cmd_flags = bio->bi_opf;
2046 	rq = blk_mq_get_request(q, bio, &data);
2047 	if (unlikely(!rq)) {
2048 		rq_qos_cleanup(q, bio);
2049 		if (bio->bi_opf & REQ_NOWAIT)
2050 			bio_wouldblock_error(bio);
2051 		return BLK_QC_T_NONE;
2052 	}
2053 
2054 	trace_block_getrq(q, bio, bio->bi_opf);
2055 
2056 	rq_qos_track(q, rq, bio);
2057 
2058 	cookie = request_to_qc_t(data.hctx, rq);
2059 
2060 	blk_mq_bio_to_request(rq, bio, nr_segs);
2061 
2062 	ret = blk_crypto_init_request(rq);
2063 	if (ret != BLK_STS_OK) {
2064 		bio->bi_status = ret;
2065 		bio_endio(bio);
2066 		blk_mq_free_request(rq);
2067 		return BLK_QC_T_NONE;
2068 	}
2069 
2070 	plug = blk_mq_plug(q, bio);
2071 	if (unlikely(is_flush_fua)) {
2072 		/* Bypass scheduler for flush requests */
2073 		blk_insert_flush(rq);
2074 		blk_mq_run_hw_queue(data.hctx, true);
2075 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2076 				!blk_queue_nonrot(q))) {
2077 		/*
2078 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2079 		 * we know the driver uses bd->last in a smart fashion.
2080 		 *
2081 		 * Use normal plugging if this disk is slow HDD, as sequential
2082 		 * IO may benefit a lot from plug merging.
2083 		 */
2084 		unsigned int request_count = plug->rq_count;
2085 		struct request *last = NULL;
2086 
2087 		if (!request_count)
2088 			trace_block_plug(q);
2089 		else
2090 			last = list_entry_rq(plug->mq_list.prev);
2091 
2092 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2093 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2094 			blk_flush_plug_list(plug, false);
2095 			trace_block_plug(q);
2096 		}
2097 
2098 		blk_add_rq_to_plug(plug, rq);
2099 	} else if (q->elevator) {
2100 		/* Insert the request at the IO scheduler queue */
2101 		blk_mq_sched_insert_request(rq, false, true, true);
2102 	} else if (plug && !blk_queue_nomerges(q)) {
2103 		/*
2104 		 * We do limited plugging. If the bio can be merged, do that.
2105 		 * Otherwise the existing request in the plug list will be
2106 		 * issued. So the plug list will have one request at most
2107 		 * The plug list might get flushed before this. If that happens,
2108 		 * the plug list is empty, and same_queue_rq is invalid.
2109 		 */
2110 		if (list_empty(&plug->mq_list))
2111 			same_queue_rq = NULL;
2112 		if (same_queue_rq) {
2113 			list_del_init(&same_queue_rq->queuelist);
2114 			plug->rq_count--;
2115 		}
2116 		blk_add_rq_to_plug(plug, rq);
2117 		trace_block_plug(q);
2118 
2119 		if (same_queue_rq) {
2120 			data.hctx = same_queue_rq->mq_hctx;
2121 			trace_block_unplug(q, 1, true);
2122 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2123 					&cookie);
2124 		}
2125 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2126 			!data.hctx->dispatch_busy) {
2127 		/*
2128 		 * There is no scheduler and we can try to send directly
2129 		 * to the hardware.
2130 		 */
2131 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2132 	} else {
2133 		/* Default case. */
2134 		blk_mq_sched_insert_request(rq, false, true, true);
2135 	}
2136 
2137 	return cookie;
2138 }
2139 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2140 
2141 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2142 		     unsigned int hctx_idx)
2143 {
2144 	struct page *page;
2145 
2146 	if (tags->rqs && set->ops->exit_request) {
2147 		int i;
2148 
2149 		for (i = 0; i < tags->nr_tags; i++) {
2150 			struct request *rq = tags->static_rqs[i];
2151 
2152 			if (!rq)
2153 				continue;
2154 			set->ops->exit_request(set, rq, hctx_idx);
2155 			tags->static_rqs[i] = NULL;
2156 		}
2157 	}
2158 
2159 	while (!list_empty(&tags->page_list)) {
2160 		page = list_first_entry(&tags->page_list, struct page, lru);
2161 		list_del_init(&page->lru);
2162 		/*
2163 		 * Remove kmemleak object previously allocated in
2164 		 * blk_mq_alloc_rqs().
2165 		 */
2166 		kmemleak_free(page_address(page));
2167 		__free_pages(page, page->private);
2168 	}
2169 }
2170 
2171 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2172 {
2173 	kfree(tags->rqs);
2174 	tags->rqs = NULL;
2175 	kfree(tags->static_rqs);
2176 	tags->static_rqs = NULL;
2177 
2178 	blk_mq_free_tags(tags);
2179 }
2180 
2181 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2182 					unsigned int hctx_idx,
2183 					unsigned int nr_tags,
2184 					unsigned int reserved_tags)
2185 {
2186 	struct blk_mq_tags *tags;
2187 	int node;
2188 
2189 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2190 	if (node == NUMA_NO_NODE)
2191 		node = set->numa_node;
2192 
2193 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2194 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2195 	if (!tags)
2196 		return NULL;
2197 
2198 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2199 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2200 				 node);
2201 	if (!tags->rqs) {
2202 		blk_mq_free_tags(tags);
2203 		return NULL;
2204 	}
2205 
2206 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2207 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2208 					node);
2209 	if (!tags->static_rqs) {
2210 		kfree(tags->rqs);
2211 		blk_mq_free_tags(tags);
2212 		return NULL;
2213 	}
2214 
2215 	return tags;
2216 }
2217 
2218 static size_t order_to_size(unsigned int order)
2219 {
2220 	return (size_t)PAGE_SIZE << order;
2221 }
2222 
2223 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2224 			       unsigned int hctx_idx, int node)
2225 {
2226 	int ret;
2227 
2228 	if (set->ops->init_request) {
2229 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2230 		if (ret)
2231 			return ret;
2232 	}
2233 
2234 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2235 	return 0;
2236 }
2237 
2238 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2239 		     unsigned int hctx_idx, unsigned int depth)
2240 {
2241 	unsigned int i, j, entries_per_page, max_order = 4;
2242 	size_t rq_size, left;
2243 	int node;
2244 
2245 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2246 	if (node == NUMA_NO_NODE)
2247 		node = set->numa_node;
2248 
2249 	INIT_LIST_HEAD(&tags->page_list);
2250 
2251 	/*
2252 	 * rq_size is the size of the request plus driver payload, rounded
2253 	 * to the cacheline size
2254 	 */
2255 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2256 				cache_line_size());
2257 	left = rq_size * depth;
2258 
2259 	for (i = 0; i < depth; ) {
2260 		int this_order = max_order;
2261 		struct page *page;
2262 		int to_do;
2263 		void *p;
2264 
2265 		while (this_order && left < order_to_size(this_order - 1))
2266 			this_order--;
2267 
2268 		do {
2269 			page = alloc_pages_node(node,
2270 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2271 				this_order);
2272 			if (page)
2273 				break;
2274 			if (!this_order--)
2275 				break;
2276 			if (order_to_size(this_order) < rq_size)
2277 				break;
2278 		} while (1);
2279 
2280 		if (!page)
2281 			goto fail;
2282 
2283 		page->private = this_order;
2284 		list_add_tail(&page->lru, &tags->page_list);
2285 
2286 		p = page_address(page);
2287 		/*
2288 		 * Allow kmemleak to scan these pages as they contain pointers
2289 		 * to additional allocations like via ops->init_request().
2290 		 */
2291 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2292 		entries_per_page = order_to_size(this_order) / rq_size;
2293 		to_do = min(entries_per_page, depth - i);
2294 		left -= to_do * rq_size;
2295 		for (j = 0; j < to_do; j++) {
2296 			struct request *rq = p;
2297 
2298 			tags->static_rqs[i] = rq;
2299 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2300 				tags->static_rqs[i] = NULL;
2301 				goto fail;
2302 			}
2303 
2304 			p += rq_size;
2305 			i++;
2306 		}
2307 	}
2308 	return 0;
2309 
2310 fail:
2311 	blk_mq_free_rqs(set, tags, hctx_idx);
2312 	return -ENOMEM;
2313 }
2314 
2315 /*
2316  * 'cpu' is going away. splice any existing rq_list entries from this
2317  * software queue to the hw queue dispatch list, and ensure that it
2318  * gets run.
2319  */
2320 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2321 {
2322 	struct blk_mq_hw_ctx *hctx;
2323 	struct blk_mq_ctx *ctx;
2324 	LIST_HEAD(tmp);
2325 	enum hctx_type type;
2326 
2327 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2328 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2329 	type = hctx->type;
2330 
2331 	spin_lock(&ctx->lock);
2332 	if (!list_empty(&ctx->rq_lists[type])) {
2333 		list_splice_init(&ctx->rq_lists[type], &tmp);
2334 		blk_mq_hctx_clear_pending(hctx, ctx);
2335 	}
2336 	spin_unlock(&ctx->lock);
2337 
2338 	if (list_empty(&tmp))
2339 		return 0;
2340 
2341 	spin_lock(&hctx->lock);
2342 	list_splice_tail_init(&tmp, &hctx->dispatch);
2343 	spin_unlock(&hctx->lock);
2344 
2345 	blk_mq_run_hw_queue(hctx, true);
2346 	return 0;
2347 }
2348 
2349 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2350 {
2351 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2352 					    &hctx->cpuhp_dead);
2353 }
2354 
2355 /* hctx->ctxs will be freed in queue's release handler */
2356 static void blk_mq_exit_hctx(struct request_queue *q,
2357 		struct blk_mq_tag_set *set,
2358 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2359 {
2360 	if (blk_mq_hw_queue_mapped(hctx))
2361 		blk_mq_tag_idle(hctx);
2362 
2363 	if (set->ops->exit_request)
2364 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2365 
2366 	if (set->ops->exit_hctx)
2367 		set->ops->exit_hctx(hctx, hctx_idx);
2368 
2369 	blk_mq_remove_cpuhp(hctx);
2370 
2371 	spin_lock(&q->unused_hctx_lock);
2372 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2373 	spin_unlock(&q->unused_hctx_lock);
2374 }
2375 
2376 static void blk_mq_exit_hw_queues(struct request_queue *q,
2377 		struct blk_mq_tag_set *set, int nr_queue)
2378 {
2379 	struct blk_mq_hw_ctx *hctx;
2380 	unsigned int i;
2381 
2382 	queue_for_each_hw_ctx(q, hctx, i) {
2383 		if (i == nr_queue)
2384 			break;
2385 		blk_mq_debugfs_unregister_hctx(hctx);
2386 		blk_mq_exit_hctx(q, set, hctx, i);
2387 	}
2388 }
2389 
2390 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2391 {
2392 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2393 
2394 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2395 			   __alignof__(struct blk_mq_hw_ctx)) !=
2396 		     sizeof(struct blk_mq_hw_ctx));
2397 
2398 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2399 		hw_ctx_size += sizeof(struct srcu_struct);
2400 
2401 	return hw_ctx_size;
2402 }
2403 
2404 static int blk_mq_init_hctx(struct request_queue *q,
2405 		struct blk_mq_tag_set *set,
2406 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2407 {
2408 	hctx->queue_num = hctx_idx;
2409 
2410 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2411 
2412 	hctx->tags = set->tags[hctx_idx];
2413 
2414 	if (set->ops->init_hctx &&
2415 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2416 		goto unregister_cpu_notifier;
2417 
2418 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2419 				hctx->numa_node))
2420 		goto exit_hctx;
2421 	return 0;
2422 
2423  exit_hctx:
2424 	if (set->ops->exit_hctx)
2425 		set->ops->exit_hctx(hctx, hctx_idx);
2426  unregister_cpu_notifier:
2427 	blk_mq_remove_cpuhp(hctx);
2428 	return -1;
2429 }
2430 
2431 static struct blk_mq_hw_ctx *
2432 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2433 		int node)
2434 {
2435 	struct blk_mq_hw_ctx *hctx;
2436 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2437 
2438 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2439 	if (!hctx)
2440 		goto fail_alloc_hctx;
2441 
2442 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2443 		goto free_hctx;
2444 
2445 	atomic_set(&hctx->nr_active, 0);
2446 	if (node == NUMA_NO_NODE)
2447 		node = set->numa_node;
2448 	hctx->numa_node = node;
2449 
2450 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2451 	spin_lock_init(&hctx->lock);
2452 	INIT_LIST_HEAD(&hctx->dispatch);
2453 	hctx->queue = q;
2454 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2455 
2456 	INIT_LIST_HEAD(&hctx->hctx_list);
2457 
2458 	/*
2459 	 * Allocate space for all possible cpus to avoid allocation at
2460 	 * runtime
2461 	 */
2462 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2463 			gfp, node);
2464 	if (!hctx->ctxs)
2465 		goto free_cpumask;
2466 
2467 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2468 				gfp, node))
2469 		goto free_ctxs;
2470 	hctx->nr_ctx = 0;
2471 
2472 	spin_lock_init(&hctx->dispatch_wait_lock);
2473 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2474 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2475 
2476 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2477 	if (!hctx->fq)
2478 		goto free_bitmap;
2479 
2480 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2481 		init_srcu_struct(hctx->srcu);
2482 	blk_mq_hctx_kobj_init(hctx);
2483 
2484 	return hctx;
2485 
2486  free_bitmap:
2487 	sbitmap_free(&hctx->ctx_map);
2488  free_ctxs:
2489 	kfree(hctx->ctxs);
2490  free_cpumask:
2491 	free_cpumask_var(hctx->cpumask);
2492  free_hctx:
2493 	kfree(hctx);
2494  fail_alloc_hctx:
2495 	return NULL;
2496 }
2497 
2498 static void blk_mq_init_cpu_queues(struct request_queue *q,
2499 				   unsigned int nr_hw_queues)
2500 {
2501 	struct blk_mq_tag_set *set = q->tag_set;
2502 	unsigned int i, j;
2503 
2504 	for_each_possible_cpu(i) {
2505 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2506 		struct blk_mq_hw_ctx *hctx;
2507 		int k;
2508 
2509 		__ctx->cpu = i;
2510 		spin_lock_init(&__ctx->lock);
2511 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2512 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2513 
2514 		__ctx->queue = q;
2515 
2516 		/*
2517 		 * Set local node, IFF we have more than one hw queue. If
2518 		 * not, we remain on the home node of the device
2519 		 */
2520 		for (j = 0; j < set->nr_maps; j++) {
2521 			hctx = blk_mq_map_queue_type(q, j, i);
2522 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2523 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2524 		}
2525 	}
2526 }
2527 
2528 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2529 					int hctx_idx)
2530 {
2531 	int ret = 0;
2532 
2533 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2534 					set->queue_depth, set->reserved_tags);
2535 	if (!set->tags[hctx_idx])
2536 		return false;
2537 
2538 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2539 				set->queue_depth);
2540 	if (!ret)
2541 		return true;
2542 
2543 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2544 	set->tags[hctx_idx] = NULL;
2545 	return false;
2546 }
2547 
2548 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2549 					 unsigned int hctx_idx)
2550 {
2551 	if (set->tags && set->tags[hctx_idx]) {
2552 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2553 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2554 		set->tags[hctx_idx] = NULL;
2555 	}
2556 }
2557 
2558 static void blk_mq_map_swqueue(struct request_queue *q)
2559 {
2560 	unsigned int i, j, hctx_idx;
2561 	struct blk_mq_hw_ctx *hctx;
2562 	struct blk_mq_ctx *ctx;
2563 	struct blk_mq_tag_set *set = q->tag_set;
2564 
2565 	queue_for_each_hw_ctx(q, hctx, i) {
2566 		cpumask_clear(hctx->cpumask);
2567 		hctx->nr_ctx = 0;
2568 		hctx->dispatch_from = NULL;
2569 	}
2570 
2571 	/*
2572 	 * Map software to hardware queues.
2573 	 *
2574 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2575 	 */
2576 	for_each_possible_cpu(i) {
2577 
2578 		ctx = per_cpu_ptr(q->queue_ctx, i);
2579 		for (j = 0; j < set->nr_maps; j++) {
2580 			if (!set->map[j].nr_queues) {
2581 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2582 						HCTX_TYPE_DEFAULT, i);
2583 				continue;
2584 			}
2585 			hctx_idx = set->map[j].mq_map[i];
2586 			/* unmapped hw queue can be remapped after CPU topo changed */
2587 			if (!set->tags[hctx_idx] &&
2588 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2589 				/*
2590 				 * If tags initialization fail for some hctx,
2591 				 * that hctx won't be brought online.  In this
2592 				 * case, remap the current ctx to hctx[0] which
2593 				 * is guaranteed to always have tags allocated
2594 				 */
2595 				set->map[j].mq_map[i] = 0;
2596 			}
2597 
2598 			hctx = blk_mq_map_queue_type(q, j, i);
2599 			ctx->hctxs[j] = hctx;
2600 			/*
2601 			 * If the CPU is already set in the mask, then we've
2602 			 * mapped this one already. This can happen if
2603 			 * devices share queues across queue maps.
2604 			 */
2605 			if (cpumask_test_cpu(i, hctx->cpumask))
2606 				continue;
2607 
2608 			cpumask_set_cpu(i, hctx->cpumask);
2609 			hctx->type = j;
2610 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2611 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2612 
2613 			/*
2614 			 * If the nr_ctx type overflows, we have exceeded the
2615 			 * amount of sw queues we can support.
2616 			 */
2617 			BUG_ON(!hctx->nr_ctx);
2618 		}
2619 
2620 		for (; j < HCTX_MAX_TYPES; j++)
2621 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2622 					HCTX_TYPE_DEFAULT, i);
2623 	}
2624 
2625 	queue_for_each_hw_ctx(q, hctx, i) {
2626 		/*
2627 		 * If no software queues are mapped to this hardware queue,
2628 		 * disable it and free the request entries.
2629 		 */
2630 		if (!hctx->nr_ctx) {
2631 			/* Never unmap queue 0.  We need it as a
2632 			 * fallback in case of a new remap fails
2633 			 * allocation
2634 			 */
2635 			if (i && set->tags[i])
2636 				blk_mq_free_map_and_requests(set, i);
2637 
2638 			hctx->tags = NULL;
2639 			continue;
2640 		}
2641 
2642 		hctx->tags = set->tags[i];
2643 		WARN_ON(!hctx->tags);
2644 
2645 		/*
2646 		 * Set the map size to the number of mapped software queues.
2647 		 * This is more accurate and more efficient than looping
2648 		 * over all possibly mapped software queues.
2649 		 */
2650 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2651 
2652 		/*
2653 		 * Initialize batch roundrobin counts
2654 		 */
2655 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2656 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2657 	}
2658 }
2659 
2660 /*
2661  * Caller needs to ensure that we're either frozen/quiesced, or that
2662  * the queue isn't live yet.
2663  */
2664 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2665 {
2666 	struct blk_mq_hw_ctx *hctx;
2667 	int i;
2668 
2669 	queue_for_each_hw_ctx(q, hctx, i) {
2670 		if (shared)
2671 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2672 		else
2673 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2674 	}
2675 }
2676 
2677 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2678 					bool shared)
2679 {
2680 	struct request_queue *q;
2681 
2682 	lockdep_assert_held(&set->tag_list_lock);
2683 
2684 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2685 		blk_mq_freeze_queue(q);
2686 		queue_set_hctx_shared(q, shared);
2687 		blk_mq_unfreeze_queue(q);
2688 	}
2689 }
2690 
2691 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2692 {
2693 	struct blk_mq_tag_set *set = q->tag_set;
2694 
2695 	mutex_lock(&set->tag_list_lock);
2696 	list_del_rcu(&q->tag_set_list);
2697 	if (list_is_singular(&set->tag_list)) {
2698 		/* just transitioned to unshared */
2699 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2700 		/* update existing queue */
2701 		blk_mq_update_tag_set_depth(set, false);
2702 	}
2703 	mutex_unlock(&set->tag_list_lock);
2704 	INIT_LIST_HEAD(&q->tag_set_list);
2705 }
2706 
2707 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2708 				     struct request_queue *q)
2709 {
2710 	mutex_lock(&set->tag_list_lock);
2711 
2712 	/*
2713 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2714 	 */
2715 	if (!list_empty(&set->tag_list) &&
2716 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2717 		set->flags |= BLK_MQ_F_TAG_SHARED;
2718 		/* update existing queue */
2719 		blk_mq_update_tag_set_depth(set, true);
2720 	}
2721 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2722 		queue_set_hctx_shared(q, true);
2723 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2724 
2725 	mutex_unlock(&set->tag_list_lock);
2726 }
2727 
2728 /* All allocations will be freed in release handler of q->mq_kobj */
2729 static int blk_mq_alloc_ctxs(struct request_queue *q)
2730 {
2731 	struct blk_mq_ctxs *ctxs;
2732 	int cpu;
2733 
2734 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2735 	if (!ctxs)
2736 		return -ENOMEM;
2737 
2738 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2739 	if (!ctxs->queue_ctx)
2740 		goto fail;
2741 
2742 	for_each_possible_cpu(cpu) {
2743 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2744 		ctx->ctxs = ctxs;
2745 	}
2746 
2747 	q->mq_kobj = &ctxs->kobj;
2748 	q->queue_ctx = ctxs->queue_ctx;
2749 
2750 	return 0;
2751  fail:
2752 	kfree(ctxs);
2753 	return -ENOMEM;
2754 }
2755 
2756 /*
2757  * It is the actual release handler for mq, but we do it from
2758  * request queue's release handler for avoiding use-after-free
2759  * and headache because q->mq_kobj shouldn't have been introduced,
2760  * but we can't group ctx/kctx kobj without it.
2761  */
2762 void blk_mq_release(struct request_queue *q)
2763 {
2764 	struct blk_mq_hw_ctx *hctx, *next;
2765 	int i;
2766 
2767 	queue_for_each_hw_ctx(q, hctx, i)
2768 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2769 
2770 	/* all hctx are in .unused_hctx_list now */
2771 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2772 		list_del_init(&hctx->hctx_list);
2773 		kobject_put(&hctx->kobj);
2774 	}
2775 
2776 	kfree(q->queue_hw_ctx);
2777 
2778 	/*
2779 	 * release .mq_kobj and sw queue's kobject now because
2780 	 * both share lifetime with request queue.
2781 	 */
2782 	blk_mq_sysfs_deinit(q);
2783 }
2784 
2785 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2786 		void *queuedata)
2787 {
2788 	struct request_queue *uninit_q, *q;
2789 
2790 	uninit_q = __blk_alloc_queue(set->numa_node);
2791 	if (!uninit_q)
2792 		return ERR_PTR(-ENOMEM);
2793 	uninit_q->queuedata = queuedata;
2794 
2795 	/*
2796 	 * Initialize the queue without an elevator. device_add_disk() will do
2797 	 * the initialization.
2798 	 */
2799 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2800 	if (IS_ERR(q))
2801 		blk_cleanup_queue(uninit_q);
2802 
2803 	return q;
2804 }
2805 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2806 
2807 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2808 {
2809 	return blk_mq_init_queue_data(set, NULL);
2810 }
2811 EXPORT_SYMBOL(blk_mq_init_queue);
2812 
2813 /*
2814  * Helper for setting up a queue with mq ops, given queue depth, and
2815  * the passed in mq ops flags.
2816  */
2817 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2818 					   const struct blk_mq_ops *ops,
2819 					   unsigned int queue_depth,
2820 					   unsigned int set_flags)
2821 {
2822 	struct request_queue *q;
2823 	int ret;
2824 
2825 	memset(set, 0, sizeof(*set));
2826 	set->ops = ops;
2827 	set->nr_hw_queues = 1;
2828 	set->nr_maps = 1;
2829 	set->queue_depth = queue_depth;
2830 	set->numa_node = NUMA_NO_NODE;
2831 	set->flags = set_flags;
2832 
2833 	ret = blk_mq_alloc_tag_set(set);
2834 	if (ret)
2835 		return ERR_PTR(ret);
2836 
2837 	q = blk_mq_init_queue(set);
2838 	if (IS_ERR(q)) {
2839 		blk_mq_free_tag_set(set);
2840 		return q;
2841 	}
2842 
2843 	return q;
2844 }
2845 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2846 
2847 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2848 		struct blk_mq_tag_set *set, struct request_queue *q,
2849 		int hctx_idx, int node)
2850 {
2851 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2852 
2853 	/* reuse dead hctx first */
2854 	spin_lock(&q->unused_hctx_lock);
2855 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2856 		if (tmp->numa_node == node) {
2857 			hctx = tmp;
2858 			break;
2859 		}
2860 	}
2861 	if (hctx)
2862 		list_del_init(&hctx->hctx_list);
2863 	spin_unlock(&q->unused_hctx_lock);
2864 
2865 	if (!hctx)
2866 		hctx = blk_mq_alloc_hctx(q, set, node);
2867 	if (!hctx)
2868 		goto fail;
2869 
2870 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2871 		goto free_hctx;
2872 
2873 	return hctx;
2874 
2875  free_hctx:
2876 	kobject_put(&hctx->kobj);
2877  fail:
2878 	return NULL;
2879 }
2880 
2881 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2882 						struct request_queue *q)
2883 {
2884 	int i, j, end;
2885 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2886 
2887 	if (q->nr_hw_queues < set->nr_hw_queues) {
2888 		struct blk_mq_hw_ctx **new_hctxs;
2889 
2890 		new_hctxs = kcalloc_node(set->nr_hw_queues,
2891 				       sizeof(*new_hctxs), GFP_KERNEL,
2892 				       set->numa_node);
2893 		if (!new_hctxs)
2894 			return;
2895 		if (hctxs)
2896 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2897 			       sizeof(*hctxs));
2898 		q->queue_hw_ctx = new_hctxs;
2899 		kfree(hctxs);
2900 		hctxs = new_hctxs;
2901 	}
2902 
2903 	/* protect against switching io scheduler  */
2904 	mutex_lock(&q->sysfs_lock);
2905 	for (i = 0; i < set->nr_hw_queues; i++) {
2906 		int node;
2907 		struct blk_mq_hw_ctx *hctx;
2908 
2909 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2910 		/*
2911 		 * If the hw queue has been mapped to another numa node,
2912 		 * we need to realloc the hctx. If allocation fails, fallback
2913 		 * to use the previous one.
2914 		 */
2915 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2916 			continue;
2917 
2918 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2919 		if (hctx) {
2920 			if (hctxs[i])
2921 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2922 			hctxs[i] = hctx;
2923 		} else {
2924 			if (hctxs[i])
2925 				pr_warn("Allocate new hctx on node %d fails,\
2926 						fallback to previous one on node %d\n",
2927 						node, hctxs[i]->numa_node);
2928 			else
2929 				break;
2930 		}
2931 	}
2932 	/*
2933 	 * Increasing nr_hw_queues fails. Free the newly allocated
2934 	 * hctxs and keep the previous q->nr_hw_queues.
2935 	 */
2936 	if (i != set->nr_hw_queues) {
2937 		j = q->nr_hw_queues;
2938 		end = i;
2939 	} else {
2940 		j = i;
2941 		end = q->nr_hw_queues;
2942 		q->nr_hw_queues = set->nr_hw_queues;
2943 	}
2944 
2945 	for (; j < end; j++) {
2946 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2947 
2948 		if (hctx) {
2949 			if (hctx->tags)
2950 				blk_mq_free_map_and_requests(set, j);
2951 			blk_mq_exit_hctx(q, set, hctx, j);
2952 			hctxs[j] = NULL;
2953 		}
2954 	}
2955 	mutex_unlock(&q->sysfs_lock);
2956 }
2957 
2958 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2959 						  struct request_queue *q,
2960 						  bool elevator_init)
2961 {
2962 	/* mark the queue as mq asap */
2963 	q->mq_ops = set->ops;
2964 
2965 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2966 					     blk_mq_poll_stats_bkt,
2967 					     BLK_MQ_POLL_STATS_BKTS, q);
2968 	if (!q->poll_cb)
2969 		goto err_exit;
2970 
2971 	if (blk_mq_alloc_ctxs(q))
2972 		goto err_poll;
2973 
2974 	/* init q->mq_kobj and sw queues' kobjects */
2975 	blk_mq_sysfs_init(q);
2976 
2977 	INIT_LIST_HEAD(&q->unused_hctx_list);
2978 	spin_lock_init(&q->unused_hctx_lock);
2979 
2980 	blk_mq_realloc_hw_ctxs(set, q);
2981 	if (!q->nr_hw_queues)
2982 		goto err_hctxs;
2983 
2984 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2985 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2986 
2987 	q->tag_set = set;
2988 
2989 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2990 	if (set->nr_maps > HCTX_TYPE_POLL &&
2991 	    set->map[HCTX_TYPE_POLL].nr_queues)
2992 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2993 
2994 	q->sg_reserved_size = INT_MAX;
2995 
2996 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2997 	INIT_LIST_HEAD(&q->requeue_list);
2998 	spin_lock_init(&q->requeue_lock);
2999 
3000 	q->nr_requests = set->queue_depth;
3001 
3002 	/*
3003 	 * Default to classic polling
3004 	 */
3005 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3006 
3007 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3008 	blk_mq_add_queue_tag_set(set, q);
3009 	blk_mq_map_swqueue(q);
3010 
3011 	if (elevator_init)
3012 		elevator_init_mq(q);
3013 
3014 	return q;
3015 
3016 err_hctxs:
3017 	kfree(q->queue_hw_ctx);
3018 	q->nr_hw_queues = 0;
3019 	blk_mq_sysfs_deinit(q);
3020 err_poll:
3021 	blk_stat_free_callback(q->poll_cb);
3022 	q->poll_cb = NULL;
3023 err_exit:
3024 	q->mq_ops = NULL;
3025 	return ERR_PTR(-ENOMEM);
3026 }
3027 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3028 
3029 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3030 void blk_mq_exit_queue(struct request_queue *q)
3031 {
3032 	struct blk_mq_tag_set	*set = q->tag_set;
3033 
3034 	blk_mq_del_queue_tag_set(q);
3035 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3036 }
3037 
3038 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3039 {
3040 	int i;
3041 
3042 	for (i = 0; i < set->nr_hw_queues; i++)
3043 		if (!__blk_mq_alloc_map_and_request(set, i))
3044 			goto out_unwind;
3045 
3046 	return 0;
3047 
3048 out_unwind:
3049 	while (--i >= 0)
3050 		blk_mq_free_map_and_requests(set, i);
3051 
3052 	return -ENOMEM;
3053 }
3054 
3055 /*
3056  * Allocate the request maps associated with this tag_set. Note that this
3057  * may reduce the depth asked for, if memory is tight. set->queue_depth
3058  * will be updated to reflect the allocated depth.
3059  */
3060 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3061 {
3062 	unsigned int depth;
3063 	int err;
3064 
3065 	depth = set->queue_depth;
3066 	do {
3067 		err = __blk_mq_alloc_rq_maps(set);
3068 		if (!err)
3069 			break;
3070 
3071 		set->queue_depth >>= 1;
3072 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3073 			err = -ENOMEM;
3074 			break;
3075 		}
3076 	} while (set->queue_depth);
3077 
3078 	if (!set->queue_depth || err) {
3079 		pr_err("blk-mq: failed to allocate request map\n");
3080 		return -ENOMEM;
3081 	}
3082 
3083 	if (depth != set->queue_depth)
3084 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3085 						depth, set->queue_depth);
3086 
3087 	return 0;
3088 }
3089 
3090 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3091 {
3092 	/*
3093 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3094 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3095 	 * number of hardware queues.
3096 	 */
3097 	if (set->nr_maps == 1)
3098 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3099 
3100 	if (set->ops->map_queues && !is_kdump_kernel()) {
3101 		int i;
3102 
3103 		/*
3104 		 * transport .map_queues is usually done in the following
3105 		 * way:
3106 		 *
3107 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3108 		 * 	mask = get_cpu_mask(queue)
3109 		 * 	for_each_cpu(cpu, mask)
3110 		 * 		set->map[x].mq_map[cpu] = queue;
3111 		 * }
3112 		 *
3113 		 * When we need to remap, the table has to be cleared for
3114 		 * killing stale mapping since one CPU may not be mapped
3115 		 * to any hw queue.
3116 		 */
3117 		for (i = 0; i < set->nr_maps; i++)
3118 			blk_mq_clear_mq_map(&set->map[i]);
3119 
3120 		return set->ops->map_queues(set);
3121 	} else {
3122 		BUG_ON(set->nr_maps > 1);
3123 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3124 	}
3125 }
3126 
3127 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3128 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3129 {
3130 	struct blk_mq_tags **new_tags;
3131 
3132 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3133 		return 0;
3134 
3135 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3136 				GFP_KERNEL, set->numa_node);
3137 	if (!new_tags)
3138 		return -ENOMEM;
3139 
3140 	if (set->tags)
3141 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3142 		       sizeof(*set->tags));
3143 	kfree(set->tags);
3144 	set->tags = new_tags;
3145 	set->nr_hw_queues = new_nr_hw_queues;
3146 
3147 	return 0;
3148 }
3149 
3150 /*
3151  * Alloc a tag set to be associated with one or more request queues.
3152  * May fail with EINVAL for various error conditions. May adjust the
3153  * requested depth down, if it's too large. In that case, the set
3154  * value will be stored in set->queue_depth.
3155  */
3156 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3157 {
3158 	int i, ret;
3159 
3160 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3161 
3162 	if (!set->nr_hw_queues)
3163 		return -EINVAL;
3164 	if (!set->queue_depth)
3165 		return -EINVAL;
3166 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3167 		return -EINVAL;
3168 
3169 	if (!set->ops->queue_rq)
3170 		return -EINVAL;
3171 
3172 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3173 		return -EINVAL;
3174 
3175 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3176 		pr_info("blk-mq: reduced tag depth to %u\n",
3177 			BLK_MQ_MAX_DEPTH);
3178 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3179 	}
3180 
3181 	if (!set->nr_maps)
3182 		set->nr_maps = 1;
3183 	else if (set->nr_maps > HCTX_MAX_TYPES)
3184 		return -EINVAL;
3185 
3186 	/*
3187 	 * If a crashdump is active, then we are potentially in a very
3188 	 * memory constrained environment. Limit us to 1 queue and
3189 	 * 64 tags to prevent using too much memory.
3190 	 */
3191 	if (is_kdump_kernel()) {
3192 		set->nr_hw_queues = 1;
3193 		set->nr_maps = 1;
3194 		set->queue_depth = min(64U, set->queue_depth);
3195 	}
3196 	/*
3197 	 * There is no use for more h/w queues than cpus if we just have
3198 	 * a single map
3199 	 */
3200 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3201 		set->nr_hw_queues = nr_cpu_ids;
3202 
3203 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3204 		return -ENOMEM;
3205 
3206 	ret = -ENOMEM;
3207 	for (i = 0; i < set->nr_maps; i++) {
3208 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3209 						  sizeof(set->map[i].mq_map[0]),
3210 						  GFP_KERNEL, set->numa_node);
3211 		if (!set->map[i].mq_map)
3212 			goto out_free_mq_map;
3213 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3214 	}
3215 
3216 	ret = blk_mq_update_queue_map(set);
3217 	if (ret)
3218 		goto out_free_mq_map;
3219 
3220 	ret = blk_mq_alloc_map_and_requests(set);
3221 	if (ret)
3222 		goto out_free_mq_map;
3223 
3224 	mutex_init(&set->tag_list_lock);
3225 	INIT_LIST_HEAD(&set->tag_list);
3226 
3227 	return 0;
3228 
3229 out_free_mq_map:
3230 	for (i = 0; i < set->nr_maps; i++) {
3231 		kfree(set->map[i].mq_map);
3232 		set->map[i].mq_map = NULL;
3233 	}
3234 	kfree(set->tags);
3235 	set->tags = NULL;
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3239 
3240 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3241 {
3242 	int i, j;
3243 
3244 	for (i = 0; i < set->nr_hw_queues; i++)
3245 		blk_mq_free_map_and_requests(set, i);
3246 
3247 	for (j = 0; j < set->nr_maps; j++) {
3248 		kfree(set->map[j].mq_map);
3249 		set->map[j].mq_map = NULL;
3250 	}
3251 
3252 	kfree(set->tags);
3253 	set->tags = NULL;
3254 }
3255 EXPORT_SYMBOL(blk_mq_free_tag_set);
3256 
3257 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3258 {
3259 	struct blk_mq_tag_set *set = q->tag_set;
3260 	struct blk_mq_hw_ctx *hctx;
3261 	int i, ret;
3262 
3263 	if (!set)
3264 		return -EINVAL;
3265 
3266 	if (q->nr_requests == nr)
3267 		return 0;
3268 
3269 	blk_mq_freeze_queue(q);
3270 	blk_mq_quiesce_queue(q);
3271 
3272 	ret = 0;
3273 	queue_for_each_hw_ctx(q, hctx, i) {
3274 		if (!hctx->tags)
3275 			continue;
3276 		/*
3277 		 * If we're using an MQ scheduler, just update the scheduler
3278 		 * queue depth. This is similar to what the old code would do.
3279 		 */
3280 		if (!hctx->sched_tags) {
3281 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3282 							false);
3283 		} else {
3284 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3285 							nr, true);
3286 		}
3287 		if (ret)
3288 			break;
3289 		if (q->elevator && q->elevator->type->ops.depth_updated)
3290 			q->elevator->type->ops.depth_updated(hctx);
3291 	}
3292 
3293 	if (!ret)
3294 		q->nr_requests = nr;
3295 
3296 	blk_mq_unquiesce_queue(q);
3297 	blk_mq_unfreeze_queue(q);
3298 
3299 	return ret;
3300 }
3301 
3302 /*
3303  * request_queue and elevator_type pair.
3304  * It is just used by __blk_mq_update_nr_hw_queues to cache
3305  * the elevator_type associated with a request_queue.
3306  */
3307 struct blk_mq_qe_pair {
3308 	struct list_head node;
3309 	struct request_queue *q;
3310 	struct elevator_type *type;
3311 };
3312 
3313 /*
3314  * Cache the elevator_type in qe pair list and switch the
3315  * io scheduler to 'none'
3316  */
3317 static bool blk_mq_elv_switch_none(struct list_head *head,
3318 		struct request_queue *q)
3319 {
3320 	struct blk_mq_qe_pair *qe;
3321 
3322 	if (!q->elevator)
3323 		return true;
3324 
3325 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3326 	if (!qe)
3327 		return false;
3328 
3329 	INIT_LIST_HEAD(&qe->node);
3330 	qe->q = q;
3331 	qe->type = q->elevator->type;
3332 	list_add(&qe->node, head);
3333 
3334 	mutex_lock(&q->sysfs_lock);
3335 	/*
3336 	 * After elevator_switch_mq, the previous elevator_queue will be
3337 	 * released by elevator_release. The reference of the io scheduler
3338 	 * module get by elevator_get will also be put. So we need to get
3339 	 * a reference of the io scheduler module here to prevent it to be
3340 	 * removed.
3341 	 */
3342 	__module_get(qe->type->elevator_owner);
3343 	elevator_switch_mq(q, NULL);
3344 	mutex_unlock(&q->sysfs_lock);
3345 
3346 	return true;
3347 }
3348 
3349 static void blk_mq_elv_switch_back(struct list_head *head,
3350 		struct request_queue *q)
3351 {
3352 	struct blk_mq_qe_pair *qe;
3353 	struct elevator_type *t = NULL;
3354 
3355 	list_for_each_entry(qe, head, node)
3356 		if (qe->q == q) {
3357 			t = qe->type;
3358 			break;
3359 		}
3360 
3361 	if (!t)
3362 		return;
3363 
3364 	list_del(&qe->node);
3365 	kfree(qe);
3366 
3367 	mutex_lock(&q->sysfs_lock);
3368 	elevator_switch_mq(q, t);
3369 	mutex_unlock(&q->sysfs_lock);
3370 }
3371 
3372 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3373 							int nr_hw_queues)
3374 {
3375 	struct request_queue *q;
3376 	LIST_HEAD(head);
3377 	int prev_nr_hw_queues;
3378 
3379 	lockdep_assert_held(&set->tag_list_lock);
3380 
3381 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3382 		nr_hw_queues = nr_cpu_ids;
3383 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3384 		return;
3385 
3386 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3387 		blk_mq_freeze_queue(q);
3388 	/*
3389 	 * Switch IO scheduler to 'none', cleaning up the data associated
3390 	 * with the previous scheduler. We will switch back once we are done
3391 	 * updating the new sw to hw queue mappings.
3392 	 */
3393 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3394 		if (!blk_mq_elv_switch_none(&head, q))
3395 			goto switch_back;
3396 
3397 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3398 		blk_mq_debugfs_unregister_hctxs(q);
3399 		blk_mq_sysfs_unregister(q);
3400 	}
3401 
3402 	prev_nr_hw_queues = set->nr_hw_queues;
3403 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3404 	    0)
3405 		goto reregister;
3406 
3407 	set->nr_hw_queues = nr_hw_queues;
3408 fallback:
3409 	blk_mq_update_queue_map(set);
3410 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3411 		blk_mq_realloc_hw_ctxs(set, q);
3412 		if (q->nr_hw_queues != set->nr_hw_queues) {
3413 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3414 					nr_hw_queues, prev_nr_hw_queues);
3415 			set->nr_hw_queues = prev_nr_hw_queues;
3416 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3417 			goto fallback;
3418 		}
3419 		blk_mq_map_swqueue(q);
3420 	}
3421 
3422 reregister:
3423 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3424 		blk_mq_sysfs_register(q);
3425 		blk_mq_debugfs_register_hctxs(q);
3426 	}
3427 
3428 switch_back:
3429 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3430 		blk_mq_elv_switch_back(&head, q);
3431 
3432 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3433 		blk_mq_unfreeze_queue(q);
3434 }
3435 
3436 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3437 {
3438 	mutex_lock(&set->tag_list_lock);
3439 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3440 	mutex_unlock(&set->tag_list_lock);
3441 }
3442 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3443 
3444 /* Enable polling stats and return whether they were already enabled. */
3445 static bool blk_poll_stats_enable(struct request_queue *q)
3446 {
3447 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3448 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3449 		return true;
3450 	blk_stat_add_callback(q, q->poll_cb);
3451 	return false;
3452 }
3453 
3454 static void blk_mq_poll_stats_start(struct request_queue *q)
3455 {
3456 	/*
3457 	 * We don't arm the callback if polling stats are not enabled or the
3458 	 * callback is already active.
3459 	 */
3460 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3461 	    blk_stat_is_active(q->poll_cb))
3462 		return;
3463 
3464 	blk_stat_activate_msecs(q->poll_cb, 100);
3465 }
3466 
3467 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3468 {
3469 	struct request_queue *q = cb->data;
3470 	int bucket;
3471 
3472 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3473 		if (cb->stat[bucket].nr_samples)
3474 			q->poll_stat[bucket] = cb->stat[bucket];
3475 	}
3476 }
3477 
3478 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3479 				       struct request *rq)
3480 {
3481 	unsigned long ret = 0;
3482 	int bucket;
3483 
3484 	/*
3485 	 * If stats collection isn't on, don't sleep but turn it on for
3486 	 * future users
3487 	 */
3488 	if (!blk_poll_stats_enable(q))
3489 		return 0;
3490 
3491 	/*
3492 	 * As an optimistic guess, use half of the mean service time
3493 	 * for this type of request. We can (and should) make this smarter.
3494 	 * For instance, if the completion latencies are tight, we can
3495 	 * get closer than just half the mean. This is especially
3496 	 * important on devices where the completion latencies are longer
3497 	 * than ~10 usec. We do use the stats for the relevant IO size
3498 	 * if available which does lead to better estimates.
3499 	 */
3500 	bucket = blk_mq_poll_stats_bkt(rq);
3501 	if (bucket < 0)
3502 		return ret;
3503 
3504 	if (q->poll_stat[bucket].nr_samples)
3505 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3506 
3507 	return ret;
3508 }
3509 
3510 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3511 				     struct request *rq)
3512 {
3513 	struct hrtimer_sleeper hs;
3514 	enum hrtimer_mode mode;
3515 	unsigned int nsecs;
3516 	ktime_t kt;
3517 
3518 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3519 		return false;
3520 
3521 	/*
3522 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3523 	 *
3524 	 *  0:	use half of prev avg
3525 	 * >0:	use this specific value
3526 	 */
3527 	if (q->poll_nsec > 0)
3528 		nsecs = q->poll_nsec;
3529 	else
3530 		nsecs = blk_mq_poll_nsecs(q, rq);
3531 
3532 	if (!nsecs)
3533 		return false;
3534 
3535 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3536 
3537 	/*
3538 	 * This will be replaced with the stats tracking code, using
3539 	 * 'avg_completion_time / 2' as the pre-sleep target.
3540 	 */
3541 	kt = nsecs;
3542 
3543 	mode = HRTIMER_MODE_REL;
3544 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3545 	hrtimer_set_expires(&hs.timer, kt);
3546 
3547 	do {
3548 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3549 			break;
3550 		set_current_state(TASK_UNINTERRUPTIBLE);
3551 		hrtimer_sleeper_start_expires(&hs, mode);
3552 		if (hs.task)
3553 			io_schedule();
3554 		hrtimer_cancel(&hs.timer);
3555 		mode = HRTIMER_MODE_ABS;
3556 	} while (hs.task && !signal_pending(current));
3557 
3558 	__set_current_state(TASK_RUNNING);
3559 	destroy_hrtimer_on_stack(&hs.timer);
3560 	return true;
3561 }
3562 
3563 static bool blk_mq_poll_hybrid(struct request_queue *q,
3564 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3565 {
3566 	struct request *rq;
3567 
3568 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3569 		return false;
3570 
3571 	if (!blk_qc_t_is_internal(cookie))
3572 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3573 	else {
3574 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3575 		/*
3576 		 * With scheduling, if the request has completed, we'll
3577 		 * get a NULL return here, as we clear the sched tag when
3578 		 * that happens. The request still remains valid, like always,
3579 		 * so we should be safe with just the NULL check.
3580 		 */
3581 		if (!rq)
3582 			return false;
3583 	}
3584 
3585 	return blk_mq_poll_hybrid_sleep(q, rq);
3586 }
3587 
3588 /**
3589  * blk_poll - poll for IO completions
3590  * @q:  the queue
3591  * @cookie: cookie passed back at IO submission time
3592  * @spin: whether to spin for completions
3593  *
3594  * Description:
3595  *    Poll for completions on the passed in queue. Returns number of
3596  *    completed entries found. If @spin is true, then blk_poll will continue
3597  *    looping until at least one completion is found, unless the task is
3598  *    otherwise marked running (or we need to reschedule).
3599  */
3600 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3601 {
3602 	struct blk_mq_hw_ctx *hctx;
3603 	long state;
3604 
3605 	if (!blk_qc_t_valid(cookie) ||
3606 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3607 		return 0;
3608 
3609 	if (current->plug)
3610 		blk_flush_plug_list(current->plug, false);
3611 
3612 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3613 
3614 	/*
3615 	 * If we sleep, have the caller restart the poll loop to reset
3616 	 * the state. Like for the other success return cases, the
3617 	 * caller is responsible for checking if the IO completed. If
3618 	 * the IO isn't complete, we'll get called again and will go
3619 	 * straight to the busy poll loop.
3620 	 */
3621 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3622 		return 1;
3623 
3624 	hctx->poll_considered++;
3625 
3626 	state = current->state;
3627 	do {
3628 		int ret;
3629 
3630 		hctx->poll_invoked++;
3631 
3632 		ret = q->mq_ops->poll(hctx);
3633 		if (ret > 0) {
3634 			hctx->poll_success++;
3635 			__set_current_state(TASK_RUNNING);
3636 			return ret;
3637 		}
3638 
3639 		if (signal_pending_state(state, current))
3640 			__set_current_state(TASK_RUNNING);
3641 
3642 		if (current->state == TASK_RUNNING)
3643 			return 1;
3644 		if (ret < 0 || !spin)
3645 			break;
3646 		cpu_relax();
3647 	} while (!need_resched());
3648 
3649 	__set_current_state(TASK_RUNNING);
3650 	return 0;
3651 }
3652 EXPORT_SYMBOL_GPL(blk_poll);
3653 
3654 unsigned int blk_mq_rq_cpu(struct request *rq)
3655 {
3656 	return rq->mq_ctx->cpu;
3657 }
3658 EXPORT_SYMBOL(blk_mq_rq_cpu);
3659 
3660 static int __init blk_mq_init(void)
3661 {
3662 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3663 				blk_mq_hctx_notify_dead);
3664 	return 0;
3665 }
3666 subsys_initcall(blk_mq_init);
3667