xref: /linux/block/blk-mq.c (revision a347c7ad8edf4c5685154f3fdc3c12fc1db800ba)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (blk_mq_tag_busy(data->hctx)) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	}
371 
372 	tag = blk_mq_get_tag(data);
373 	if (tag == BLK_MQ_TAG_FAIL) {
374 		if (put_ctx_on_error) {
375 			blk_mq_put_ctx(data->ctx);
376 			data->ctx = NULL;
377 		}
378 		blk_queue_exit(q);
379 		return NULL;
380 	}
381 
382 	rq = blk_mq_rq_ctx_init(data, tag, op);
383 	if (!op_is_flush(op)) {
384 		rq->elv.icq = NULL;
385 		if (e && e->type->ops.mq.prepare_request) {
386 			if (e->type->icq_cache && rq_ioc(bio))
387 				blk_mq_sched_assign_ioc(rq, bio);
388 
389 			e->type->ops.mq.prepare_request(rq, bio);
390 			rq->rq_flags |= RQF_ELVPRIV;
391 		}
392 	}
393 	data->hctx->queued++;
394 	return rq;
395 }
396 
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398 		blk_mq_req_flags_t flags)
399 {
400 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 	struct request *rq;
402 	int ret;
403 
404 	ret = blk_queue_enter(q, flags);
405 	if (ret)
406 		return ERR_PTR(ret);
407 
408 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 	blk_queue_exit(q);
410 
411 	if (!rq)
412 		return ERR_PTR(-EWOULDBLOCK);
413 
414 	blk_mq_put_ctx(alloc_data.ctx);
415 
416 	rq->__data_len = 0;
417 	rq->__sector = (sector_t) -1;
418 	rq->bio = rq->biotail = NULL;
419 	return rq;
420 }
421 EXPORT_SYMBOL(blk_mq_alloc_request);
422 
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
425 {
426 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
427 	struct request *rq;
428 	unsigned int cpu;
429 	int ret;
430 
431 	/*
432 	 * If the tag allocator sleeps we could get an allocation for a
433 	 * different hardware context.  No need to complicate the low level
434 	 * allocator for this for the rare use case of a command tied to
435 	 * a specific queue.
436 	 */
437 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438 		return ERR_PTR(-EINVAL);
439 
440 	if (hctx_idx >= q->nr_hw_queues)
441 		return ERR_PTR(-EIO);
442 
443 	ret = blk_queue_enter(q, flags);
444 	if (ret)
445 		return ERR_PTR(ret);
446 
447 	/*
448 	 * Check if the hardware context is actually mapped to anything.
449 	 * If not tell the caller that it should skip this queue.
450 	 */
451 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453 		blk_queue_exit(q);
454 		return ERR_PTR(-EXDEV);
455 	}
456 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
458 
459 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 	blk_queue_exit(q);
461 
462 	if (!rq)
463 		return ERR_PTR(-EWOULDBLOCK);
464 
465 	return rq;
466 }
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
468 
469 static void __blk_mq_free_request(struct request *rq)
470 {
471 	struct request_queue *q = rq->q;
472 	struct blk_mq_ctx *ctx = rq->mq_ctx;
473 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474 	const int sched_tag = rq->internal_tag;
475 
476 	if (rq->tag != -1)
477 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478 	if (sched_tag != -1)
479 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480 	blk_mq_sched_restart(hctx);
481 	blk_queue_exit(q);
482 }
483 
484 void blk_mq_free_request(struct request *rq)
485 {
486 	struct request_queue *q = rq->q;
487 	struct elevator_queue *e = q->elevator;
488 	struct blk_mq_ctx *ctx = rq->mq_ctx;
489 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
490 
491 	if (rq->rq_flags & RQF_ELVPRIV) {
492 		if (e && e->type->ops.mq.finish_request)
493 			e->type->ops.mq.finish_request(rq);
494 		if (rq->elv.icq) {
495 			put_io_context(rq->elv.icq->ioc);
496 			rq->elv.icq = NULL;
497 		}
498 	}
499 
500 	ctx->rq_completed[rq_is_sync(rq)]++;
501 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
502 		atomic_dec(&hctx->nr_active);
503 
504 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505 		laptop_io_completion(q->backing_dev_info);
506 
507 	wbt_done(q->rq_wb, rq);
508 
509 	if (blk_rq_rl(rq))
510 		blk_put_rl(blk_rq_rl(rq));
511 
512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 	if (refcount_dec_and_test(&rq->ref))
514 		__blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517 
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 	u64 now = ktime_get_ns();
521 
522 	if (rq->rq_flags & RQF_STATS) {
523 		blk_mq_poll_stats_start(rq->q);
524 		blk_stat_add(rq, now);
525 	}
526 
527 	blk_account_io_done(rq, now);
528 
529 	if (rq->end_io) {
530 		wbt_done(rq->q->rq_wb, rq);
531 		rq->end_io(rq, error);
532 	} else {
533 		if (unlikely(blk_bidi_rq(rq)))
534 			blk_mq_free_request(rq->next_rq);
535 		blk_mq_free_request(rq);
536 	}
537 }
538 EXPORT_SYMBOL(__blk_mq_end_request);
539 
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543 		BUG();
544 	__blk_mq_end_request(rq, error);
545 }
546 EXPORT_SYMBOL(blk_mq_end_request);
547 
548 static void __blk_mq_complete_request_remote(void *data)
549 {
550 	struct request *rq = data;
551 
552 	rq->q->softirq_done_fn(rq);
553 }
554 
555 static void __blk_mq_complete_request(struct request *rq)
556 {
557 	struct blk_mq_ctx *ctx = rq->mq_ctx;
558 	bool shared = false;
559 	int cpu;
560 
561 	if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
562 			MQ_RQ_IN_FLIGHT)
563 		return;
564 
565 	if (rq->internal_tag != -1)
566 		blk_mq_sched_completed_request(rq);
567 
568 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 		rq->q->softirq_done_fn(rq);
570 		return;
571 	}
572 
573 	cpu = get_cpu();
574 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 		shared = cpus_share_cache(cpu, ctx->cpu);
576 
577 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 		rq->csd.func = __blk_mq_complete_request_remote;
579 		rq->csd.info = rq;
580 		rq->csd.flags = 0;
581 		smp_call_function_single_async(ctx->cpu, &rq->csd);
582 	} else {
583 		rq->q->softirq_done_fn(rq);
584 	}
585 	put_cpu();
586 }
587 
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 	__releases(hctx->srcu)
590 {
591 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 		rcu_read_unlock();
593 	else
594 		srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596 
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 	__acquires(hctx->srcu)
599 {
600 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 		/* shut up gcc false positive */
602 		*srcu_idx = 0;
603 		rcu_read_lock();
604 	} else
605 		*srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607 
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:		the request being processed
611  *
612  * Description:
613  *	Ends all I/O on a request. It does not handle partial completions.
614  *	The actual completion happens out-of-order, through a IPI handler.
615  **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618 	if (unlikely(blk_should_fake_timeout(rq->q)))
619 		return;
620 	__blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623 
624 int blk_mq_request_started(struct request *rq)
625 {
626 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629 
630 void blk_mq_start_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 
634 	blk_mq_sched_started_request(rq);
635 
636 	trace_block_rq_issue(q, rq);
637 
638 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 		rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 		rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 		rq->rq_flags |= RQF_STATS;
644 		wbt_issue(q->rq_wb, rq);
645 	}
646 
647 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648 
649 	blk_add_timer(rq);
650 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 
652 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 		/*
654 		 * Make sure space for the drain appears.  We know we can do
655 		 * this because max_hw_segments has been adjusted to be one
656 		 * fewer than the device can handle.
657 		 */
658 		rq->nr_phys_segments++;
659 	}
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662 
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_put_driver_tag(rq);
668 
669 	trace_block_rq_requeue(q, rq);
670 	wbt_requeue(q->rq_wb, rq);
671 
672 	if (blk_mq_request_started(rq)) {
673 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 		if (q->dma_drain_size && blk_rq_bytes(rq))
675 			rq->nr_phys_segments--;
676 	}
677 }
678 
679 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
680 {
681 	__blk_mq_requeue_request(rq);
682 
683 	/* this request will be re-inserted to io scheduler queue */
684 	blk_mq_sched_requeue_request(rq);
685 
686 	BUG_ON(blk_queued_rq(rq));
687 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
688 }
689 EXPORT_SYMBOL(blk_mq_requeue_request);
690 
691 static void blk_mq_requeue_work(struct work_struct *work)
692 {
693 	struct request_queue *q =
694 		container_of(work, struct request_queue, requeue_work.work);
695 	LIST_HEAD(rq_list);
696 	struct request *rq, *next;
697 
698 	spin_lock_irq(&q->requeue_lock);
699 	list_splice_init(&q->requeue_list, &rq_list);
700 	spin_unlock_irq(&q->requeue_lock);
701 
702 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
703 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
704 			continue;
705 
706 		rq->rq_flags &= ~RQF_SOFTBARRIER;
707 		list_del_init(&rq->queuelist);
708 		blk_mq_sched_insert_request(rq, true, false, false);
709 	}
710 
711 	while (!list_empty(&rq_list)) {
712 		rq = list_entry(rq_list.next, struct request, queuelist);
713 		list_del_init(&rq->queuelist);
714 		blk_mq_sched_insert_request(rq, false, false, false);
715 	}
716 
717 	blk_mq_run_hw_queues(q, false);
718 }
719 
720 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
721 				bool kick_requeue_list)
722 {
723 	struct request_queue *q = rq->q;
724 	unsigned long flags;
725 
726 	/*
727 	 * We abuse this flag that is otherwise used by the I/O scheduler to
728 	 * request head insertion from the workqueue.
729 	 */
730 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
731 
732 	spin_lock_irqsave(&q->requeue_lock, flags);
733 	if (at_head) {
734 		rq->rq_flags |= RQF_SOFTBARRIER;
735 		list_add(&rq->queuelist, &q->requeue_list);
736 	} else {
737 		list_add_tail(&rq->queuelist, &q->requeue_list);
738 	}
739 	spin_unlock_irqrestore(&q->requeue_lock, flags);
740 
741 	if (kick_requeue_list)
742 		blk_mq_kick_requeue_list(q);
743 }
744 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
745 
746 void blk_mq_kick_requeue_list(struct request_queue *q)
747 {
748 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
749 }
750 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
751 
752 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
753 				    unsigned long msecs)
754 {
755 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
756 				    msecs_to_jiffies(msecs));
757 }
758 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
759 
760 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
761 {
762 	if (tag < tags->nr_tags) {
763 		prefetch(tags->rqs[tag]);
764 		return tags->rqs[tag];
765 	}
766 
767 	return NULL;
768 }
769 EXPORT_SYMBOL(blk_mq_tag_to_rq);
770 
771 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
772 {
773 	if (req->q->mq_ops->timeout) {
774 		enum blk_eh_timer_return ret;
775 
776 		ret = req->q->mq_ops->timeout(req, reserved);
777 		if (ret == BLK_EH_DONE)
778 			return;
779 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
780 	}
781 
782 	blk_add_timer(req);
783 }
784 
785 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
786 {
787 	unsigned long deadline;
788 
789 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
790 		return false;
791 
792 	deadline = blk_rq_deadline(rq);
793 	if (time_after_eq(jiffies, deadline))
794 		return true;
795 
796 	if (*next == 0)
797 		*next = deadline;
798 	else if (time_after(*next, deadline))
799 		*next = deadline;
800 	return false;
801 }
802 
803 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
804 		struct request *rq, void *priv, bool reserved)
805 {
806 	unsigned long *next = priv;
807 
808 	/*
809 	 * Just do a quick check if it is expired before locking the request in
810 	 * so we're not unnecessarilly synchronizing across CPUs.
811 	 */
812 	if (!blk_mq_req_expired(rq, next))
813 		return;
814 
815 	/*
816 	 * We have reason to believe the request may be expired. Take a
817 	 * reference on the request to lock this request lifetime into its
818 	 * currently allocated context to prevent it from being reallocated in
819 	 * the event the completion by-passes this timeout handler.
820 	 *
821 	 * If the reference was already released, then the driver beat the
822 	 * timeout handler to posting a natural completion.
823 	 */
824 	if (!refcount_inc_not_zero(&rq->ref))
825 		return;
826 
827 	/*
828 	 * The request is now locked and cannot be reallocated underneath the
829 	 * timeout handler's processing. Re-verify this exact request is truly
830 	 * expired; if it is not expired, then the request was completed and
831 	 * reallocated as a new request.
832 	 */
833 	if (blk_mq_req_expired(rq, next))
834 		blk_mq_rq_timed_out(rq, reserved);
835 	if (refcount_dec_and_test(&rq->ref))
836 		__blk_mq_free_request(rq);
837 }
838 
839 static void blk_mq_timeout_work(struct work_struct *work)
840 {
841 	struct request_queue *q =
842 		container_of(work, struct request_queue, timeout_work);
843 	unsigned long next = 0;
844 	struct blk_mq_hw_ctx *hctx;
845 	int i;
846 
847 	/* A deadlock might occur if a request is stuck requiring a
848 	 * timeout at the same time a queue freeze is waiting
849 	 * completion, since the timeout code would not be able to
850 	 * acquire the queue reference here.
851 	 *
852 	 * That's why we don't use blk_queue_enter here; instead, we use
853 	 * percpu_ref_tryget directly, because we need to be able to
854 	 * obtain a reference even in the short window between the queue
855 	 * starting to freeze, by dropping the first reference in
856 	 * blk_freeze_queue_start, and the moment the last request is
857 	 * consumed, marked by the instant q_usage_counter reaches
858 	 * zero.
859 	 */
860 	if (!percpu_ref_tryget(&q->q_usage_counter))
861 		return;
862 
863 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
864 
865 	if (next != 0) {
866 		mod_timer(&q->timeout, next);
867 	} else {
868 		/*
869 		 * Request timeouts are handled as a forward rolling timer. If
870 		 * we end up here it means that no requests are pending and
871 		 * also that no request has been pending for a while. Mark
872 		 * each hctx as idle.
873 		 */
874 		queue_for_each_hw_ctx(q, hctx, i) {
875 			/* the hctx may be unmapped, so check it here */
876 			if (blk_mq_hw_queue_mapped(hctx))
877 				blk_mq_tag_idle(hctx);
878 		}
879 	}
880 	blk_queue_exit(q);
881 }
882 
883 struct flush_busy_ctx_data {
884 	struct blk_mq_hw_ctx *hctx;
885 	struct list_head *list;
886 };
887 
888 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
889 {
890 	struct flush_busy_ctx_data *flush_data = data;
891 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
892 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
893 
894 	spin_lock(&ctx->lock);
895 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
896 	sbitmap_clear_bit(sb, bitnr);
897 	spin_unlock(&ctx->lock);
898 	return true;
899 }
900 
901 /*
902  * Process software queues that have been marked busy, splicing them
903  * to the for-dispatch
904  */
905 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
906 {
907 	struct flush_busy_ctx_data data = {
908 		.hctx = hctx,
909 		.list = list,
910 	};
911 
912 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
913 }
914 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
915 
916 struct dispatch_rq_data {
917 	struct blk_mq_hw_ctx *hctx;
918 	struct request *rq;
919 };
920 
921 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
922 		void *data)
923 {
924 	struct dispatch_rq_data *dispatch_data = data;
925 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
926 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
927 
928 	spin_lock(&ctx->lock);
929 	if (!list_empty(&ctx->rq_list)) {
930 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
931 		list_del_init(&dispatch_data->rq->queuelist);
932 		if (list_empty(&ctx->rq_list))
933 			sbitmap_clear_bit(sb, bitnr);
934 	}
935 	spin_unlock(&ctx->lock);
936 
937 	return !dispatch_data->rq;
938 }
939 
940 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
941 					struct blk_mq_ctx *start)
942 {
943 	unsigned off = start ? start->index_hw : 0;
944 	struct dispatch_rq_data data = {
945 		.hctx = hctx,
946 		.rq   = NULL,
947 	};
948 
949 	__sbitmap_for_each_set(&hctx->ctx_map, off,
950 			       dispatch_rq_from_ctx, &data);
951 
952 	return data.rq;
953 }
954 
955 static inline unsigned int queued_to_index(unsigned int queued)
956 {
957 	if (!queued)
958 		return 0;
959 
960 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
961 }
962 
963 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
964 			   bool wait)
965 {
966 	struct blk_mq_alloc_data data = {
967 		.q = rq->q,
968 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
969 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
970 	};
971 
972 	might_sleep_if(wait);
973 
974 	if (rq->tag != -1)
975 		goto done;
976 
977 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
978 		data.flags |= BLK_MQ_REQ_RESERVED;
979 
980 	rq->tag = blk_mq_get_tag(&data);
981 	if (rq->tag >= 0) {
982 		if (blk_mq_tag_busy(data.hctx)) {
983 			rq->rq_flags |= RQF_MQ_INFLIGHT;
984 			atomic_inc(&data.hctx->nr_active);
985 		}
986 		data.hctx->tags->rqs[rq->tag] = rq;
987 	}
988 
989 done:
990 	if (hctx)
991 		*hctx = data.hctx;
992 	return rq->tag != -1;
993 }
994 
995 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
996 				int flags, void *key)
997 {
998 	struct blk_mq_hw_ctx *hctx;
999 
1000 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1001 
1002 	list_del_init(&wait->entry);
1003 	blk_mq_run_hw_queue(hctx, true);
1004 	return 1;
1005 }
1006 
1007 /*
1008  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1009  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1010  * restart. For both cases, take care to check the condition again after
1011  * marking us as waiting.
1012  */
1013 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1014 				 struct request *rq)
1015 {
1016 	struct blk_mq_hw_ctx *this_hctx = *hctx;
1017 	struct sbq_wait_state *ws;
1018 	wait_queue_entry_t *wait;
1019 	bool ret;
1020 
1021 	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1022 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1023 			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1024 
1025 		/*
1026 		 * It's possible that a tag was freed in the window between the
1027 		 * allocation failure and adding the hardware queue to the wait
1028 		 * queue.
1029 		 *
1030 		 * Don't clear RESTART here, someone else could have set it.
1031 		 * At most this will cost an extra queue run.
1032 		 */
1033 		return blk_mq_get_driver_tag(rq, hctx, false);
1034 	}
1035 
1036 	wait = &this_hctx->dispatch_wait;
1037 	if (!list_empty_careful(&wait->entry))
1038 		return false;
1039 
1040 	spin_lock(&this_hctx->lock);
1041 	if (!list_empty(&wait->entry)) {
1042 		spin_unlock(&this_hctx->lock);
1043 		return false;
1044 	}
1045 
1046 	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1047 	add_wait_queue(&ws->wait, wait);
1048 
1049 	/*
1050 	 * It's possible that a tag was freed in the window between the
1051 	 * allocation failure and adding the hardware queue to the wait
1052 	 * queue.
1053 	 */
1054 	ret = blk_mq_get_driver_tag(rq, hctx, false);
1055 	if (!ret) {
1056 		spin_unlock(&this_hctx->lock);
1057 		return false;
1058 	}
1059 
1060 	/*
1061 	 * We got a tag, remove ourselves from the wait queue to ensure
1062 	 * someone else gets the wakeup.
1063 	 */
1064 	spin_lock_irq(&ws->wait.lock);
1065 	list_del_init(&wait->entry);
1066 	spin_unlock_irq(&ws->wait.lock);
1067 	spin_unlock(&this_hctx->lock);
1068 
1069 	return true;
1070 }
1071 
1072 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1073 
1074 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1075 			     bool got_budget)
1076 {
1077 	struct blk_mq_hw_ctx *hctx;
1078 	struct request *rq, *nxt;
1079 	bool no_tag = false;
1080 	int errors, queued;
1081 	blk_status_t ret = BLK_STS_OK;
1082 
1083 	if (list_empty(list))
1084 		return false;
1085 
1086 	WARN_ON(!list_is_singular(list) && got_budget);
1087 
1088 	/*
1089 	 * Now process all the entries, sending them to the driver.
1090 	 */
1091 	errors = queued = 0;
1092 	do {
1093 		struct blk_mq_queue_data bd;
1094 
1095 		rq = list_first_entry(list, struct request, queuelist);
1096 
1097 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1098 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1099 			break;
1100 
1101 		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1102 			/*
1103 			 * The initial allocation attempt failed, so we need to
1104 			 * rerun the hardware queue when a tag is freed. The
1105 			 * waitqueue takes care of that. If the queue is run
1106 			 * before we add this entry back on the dispatch list,
1107 			 * we'll re-run it below.
1108 			 */
1109 			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1110 				blk_mq_put_dispatch_budget(hctx);
1111 				/*
1112 				 * For non-shared tags, the RESTART check
1113 				 * will suffice.
1114 				 */
1115 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1116 					no_tag = true;
1117 				break;
1118 			}
1119 		}
1120 
1121 		list_del_init(&rq->queuelist);
1122 
1123 		bd.rq = rq;
1124 
1125 		/*
1126 		 * Flag last if we have no more requests, or if we have more
1127 		 * but can't assign a driver tag to it.
1128 		 */
1129 		if (list_empty(list))
1130 			bd.last = true;
1131 		else {
1132 			nxt = list_first_entry(list, struct request, queuelist);
1133 			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1134 		}
1135 
1136 		ret = q->mq_ops->queue_rq(hctx, &bd);
1137 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1138 			/*
1139 			 * If an I/O scheduler has been configured and we got a
1140 			 * driver tag for the next request already, free it
1141 			 * again.
1142 			 */
1143 			if (!list_empty(list)) {
1144 				nxt = list_first_entry(list, struct request, queuelist);
1145 				blk_mq_put_driver_tag(nxt);
1146 			}
1147 			list_add(&rq->queuelist, list);
1148 			__blk_mq_requeue_request(rq);
1149 			break;
1150 		}
1151 
1152 		if (unlikely(ret != BLK_STS_OK)) {
1153 			errors++;
1154 			blk_mq_end_request(rq, BLK_STS_IOERR);
1155 			continue;
1156 		}
1157 
1158 		queued++;
1159 	} while (!list_empty(list));
1160 
1161 	hctx->dispatched[queued_to_index(queued)]++;
1162 
1163 	/*
1164 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1165 	 * that is where we will continue on next queue run.
1166 	 */
1167 	if (!list_empty(list)) {
1168 		bool needs_restart;
1169 
1170 		spin_lock(&hctx->lock);
1171 		list_splice_init(list, &hctx->dispatch);
1172 		spin_unlock(&hctx->lock);
1173 
1174 		/*
1175 		 * If SCHED_RESTART was set by the caller of this function and
1176 		 * it is no longer set that means that it was cleared by another
1177 		 * thread and hence that a queue rerun is needed.
1178 		 *
1179 		 * If 'no_tag' is set, that means that we failed getting
1180 		 * a driver tag with an I/O scheduler attached. If our dispatch
1181 		 * waitqueue is no longer active, ensure that we run the queue
1182 		 * AFTER adding our entries back to the list.
1183 		 *
1184 		 * If no I/O scheduler has been configured it is possible that
1185 		 * the hardware queue got stopped and restarted before requests
1186 		 * were pushed back onto the dispatch list. Rerun the queue to
1187 		 * avoid starvation. Notes:
1188 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1189 		 *   been stopped before rerunning a queue.
1190 		 * - Some but not all block drivers stop a queue before
1191 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1192 		 *   and dm-rq.
1193 		 *
1194 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1195 		 * bit is set, run queue after a delay to avoid IO stalls
1196 		 * that could otherwise occur if the queue is idle.
1197 		 */
1198 		needs_restart = blk_mq_sched_needs_restart(hctx);
1199 		if (!needs_restart ||
1200 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1201 			blk_mq_run_hw_queue(hctx, true);
1202 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1203 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1204 	}
1205 
1206 	return (queued + errors) != 0;
1207 }
1208 
1209 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1210 {
1211 	int srcu_idx;
1212 
1213 	/*
1214 	 * We should be running this queue from one of the CPUs that
1215 	 * are mapped to it.
1216 	 *
1217 	 * There are at least two related races now between setting
1218 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1219 	 * __blk_mq_run_hw_queue():
1220 	 *
1221 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1222 	 *   but later it becomes online, then this warning is harmless
1223 	 *   at all
1224 	 *
1225 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1226 	 *   but later it becomes offline, then the warning can't be
1227 	 *   triggered, and we depend on blk-mq timeout handler to
1228 	 *   handle dispatched requests to this hctx
1229 	 */
1230 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1231 		cpu_online(hctx->next_cpu)) {
1232 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1233 			raw_smp_processor_id(),
1234 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1235 		dump_stack();
1236 	}
1237 
1238 	/*
1239 	 * We can't run the queue inline with ints disabled. Ensure that
1240 	 * we catch bad users of this early.
1241 	 */
1242 	WARN_ON_ONCE(in_interrupt());
1243 
1244 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1245 
1246 	hctx_lock(hctx, &srcu_idx);
1247 	blk_mq_sched_dispatch_requests(hctx);
1248 	hctx_unlock(hctx, srcu_idx);
1249 }
1250 
1251 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1252 {
1253 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1254 
1255 	if (cpu >= nr_cpu_ids)
1256 		cpu = cpumask_first(hctx->cpumask);
1257 	return cpu;
1258 }
1259 
1260 /*
1261  * It'd be great if the workqueue API had a way to pass
1262  * in a mask and had some smarts for more clever placement.
1263  * For now we just round-robin here, switching for every
1264  * BLK_MQ_CPU_WORK_BATCH queued items.
1265  */
1266 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1267 {
1268 	bool tried = false;
1269 	int next_cpu = hctx->next_cpu;
1270 
1271 	if (hctx->queue->nr_hw_queues == 1)
1272 		return WORK_CPU_UNBOUND;
1273 
1274 	if (--hctx->next_cpu_batch <= 0) {
1275 select_cpu:
1276 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1277 				cpu_online_mask);
1278 		if (next_cpu >= nr_cpu_ids)
1279 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1280 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1281 	}
1282 
1283 	/*
1284 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1285 	 * and it should only happen in the path of handling CPU DEAD.
1286 	 */
1287 	if (!cpu_online(next_cpu)) {
1288 		if (!tried) {
1289 			tried = true;
1290 			goto select_cpu;
1291 		}
1292 
1293 		/*
1294 		 * Make sure to re-select CPU next time once after CPUs
1295 		 * in hctx->cpumask become online again.
1296 		 */
1297 		hctx->next_cpu = next_cpu;
1298 		hctx->next_cpu_batch = 1;
1299 		return WORK_CPU_UNBOUND;
1300 	}
1301 
1302 	hctx->next_cpu = next_cpu;
1303 	return next_cpu;
1304 }
1305 
1306 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1307 					unsigned long msecs)
1308 {
1309 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1310 		return;
1311 
1312 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1313 		int cpu = get_cpu();
1314 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1315 			__blk_mq_run_hw_queue(hctx);
1316 			put_cpu();
1317 			return;
1318 		}
1319 
1320 		put_cpu();
1321 	}
1322 
1323 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1324 				    msecs_to_jiffies(msecs));
1325 }
1326 
1327 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1328 {
1329 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1330 }
1331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1332 
1333 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1334 {
1335 	int srcu_idx;
1336 	bool need_run;
1337 
1338 	/*
1339 	 * When queue is quiesced, we may be switching io scheduler, or
1340 	 * updating nr_hw_queues, or other things, and we can't run queue
1341 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1342 	 *
1343 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1344 	 * quiesced.
1345 	 */
1346 	hctx_lock(hctx, &srcu_idx);
1347 	need_run = !blk_queue_quiesced(hctx->queue) &&
1348 		blk_mq_hctx_has_pending(hctx);
1349 	hctx_unlock(hctx, srcu_idx);
1350 
1351 	if (need_run) {
1352 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1353 		return true;
1354 	}
1355 
1356 	return false;
1357 }
1358 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1359 
1360 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1361 {
1362 	struct blk_mq_hw_ctx *hctx;
1363 	int i;
1364 
1365 	queue_for_each_hw_ctx(q, hctx, i) {
1366 		if (blk_mq_hctx_stopped(hctx))
1367 			continue;
1368 
1369 		blk_mq_run_hw_queue(hctx, async);
1370 	}
1371 }
1372 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1373 
1374 /**
1375  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1376  * @q: request queue.
1377  *
1378  * The caller is responsible for serializing this function against
1379  * blk_mq_{start,stop}_hw_queue().
1380  */
1381 bool blk_mq_queue_stopped(struct request_queue *q)
1382 {
1383 	struct blk_mq_hw_ctx *hctx;
1384 	int i;
1385 
1386 	queue_for_each_hw_ctx(q, hctx, i)
1387 		if (blk_mq_hctx_stopped(hctx))
1388 			return true;
1389 
1390 	return false;
1391 }
1392 EXPORT_SYMBOL(blk_mq_queue_stopped);
1393 
1394 /*
1395  * This function is often used for pausing .queue_rq() by driver when
1396  * there isn't enough resource or some conditions aren't satisfied, and
1397  * BLK_STS_RESOURCE is usually returned.
1398  *
1399  * We do not guarantee that dispatch can be drained or blocked
1400  * after blk_mq_stop_hw_queue() returns. Please use
1401  * blk_mq_quiesce_queue() for that requirement.
1402  */
1403 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1404 {
1405 	cancel_delayed_work(&hctx->run_work);
1406 
1407 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1408 }
1409 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1410 
1411 /*
1412  * This function is often used for pausing .queue_rq() by driver when
1413  * there isn't enough resource or some conditions aren't satisfied, and
1414  * BLK_STS_RESOURCE is usually returned.
1415  *
1416  * We do not guarantee that dispatch can be drained or blocked
1417  * after blk_mq_stop_hw_queues() returns. Please use
1418  * blk_mq_quiesce_queue() for that requirement.
1419  */
1420 void blk_mq_stop_hw_queues(struct request_queue *q)
1421 {
1422 	struct blk_mq_hw_ctx *hctx;
1423 	int i;
1424 
1425 	queue_for_each_hw_ctx(q, hctx, i)
1426 		blk_mq_stop_hw_queue(hctx);
1427 }
1428 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1429 
1430 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1431 {
1432 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1433 
1434 	blk_mq_run_hw_queue(hctx, false);
1435 }
1436 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1437 
1438 void blk_mq_start_hw_queues(struct request_queue *q)
1439 {
1440 	struct blk_mq_hw_ctx *hctx;
1441 	int i;
1442 
1443 	queue_for_each_hw_ctx(q, hctx, i)
1444 		blk_mq_start_hw_queue(hctx);
1445 }
1446 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1447 
1448 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1449 {
1450 	if (!blk_mq_hctx_stopped(hctx))
1451 		return;
1452 
1453 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1454 	blk_mq_run_hw_queue(hctx, async);
1455 }
1456 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1457 
1458 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1459 {
1460 	struct blk_mq_hw_ctx *hctx;
1461 	int i;
1462 
1463 	queue_for_each_hw_ctx(q, hctx, i)
1464 		blk_mq_start_stopped_hw_queue(hctx, async);
1465 }
1466 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1467 
1468 static void blk_mq_run_work_fn(struct work_struct *work)
1469 {
1470 	struct blk_mq_hw_ctx *hctx;
1471 
1472 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1473 
1474 	/*
1475 	 * If we are stopped, don't run the queue.
1476 	 */
1477 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1478 		return;
1479 
1480 	__blk_mq_run_hw_queue(hctx);
1481 }
1482 
1483 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1484 					    struct request *rq,
1485 					    bool at_head)
1486 {
1487 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1488 
1489 	lockdep_assert_held(&ctx->lock);
1490 
1491 	trace_block_rq_insert(hctx->queue, rq);
1492 
1493 	if (at_head)
1494 		list_add(&rq->queuelist, &ctx->rq_list);
1495 	else
1496 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1497 }
1498 
1499 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1500 			     bool at_head)
1501 {
1502 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1503 
1504 	lockdep_assert_held(&ctx->lock);
1505 
1506 	__blk_mq_insert_req_list(hctx, rq, at_head);
1507 	blk_mq_hctx_mark_pending(hctx, ctx);
1508 }
1509 
1510 /*
1511  * Should only be used carefully, when the caller knows we want to
1512  * bypass a potential IO scheduler on the target device.
1513  */
1514 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1515 {
1516 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1517 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1518 
1519 	spin_lock(&hctx->lock);
1520 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1521 	spin_unlock(&hctx->lock);
1522 
1523 	if (run_queue)
1524 		blk_mq_run_hw_queue(hctx, false);
1525 }
1526 
1527 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1528 			    struct list_head *list)
1529 
1530 {
1531 	/*
1532 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1533 	 * offline now
1534 	 */
1535 	spin_lock(&ctx->lock);
1536 	while (!list_empty(list)) {
1537 		struct request *rq;
1538 
1539 		rq = list_first_entry(list, struct request, queuelist);
1540 		BUG_ON(rq->mq_ctx != ctx);
1541 		list_del_init(&rq->queuelist);
1542 		__blk_mq_insert_req_list(hctx, rq, false);
1543 	}
1544 	blk_mq_hctx_mark_pending(hctx, ctx);
1545 	spin_unlock(&ctx->lock);
1546 }
1547 
1548 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1549 {
1550 	struct request *rqa = container_of(a, struct request, queuelist);
1551 	struct request *rqb = container_of(b, struct request, queuelist);
1552 
1553 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1554 		 (rqa->mq_ctx == rqb->mq_ctx &&
1555 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1556 }
1557 
1558 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1559 {
1560 	struct blk_mq_ctx *this_ctx;
1561 	struct request_queue *this_q;
1562 	struct request *rq;
1563 	LIST_HEAD(list);
1564 	LIST_HEAD(ctx_list);
1565 	unsigned int depth;
1566 
1567 	list_splice_init(&plug->mq_list, &list);
1568 
1569 	list_sort(NULL, &list, plug_ctx_cmp);
1570 
1571 	this_q = NULL;
1572 	this_ctx = NULL;
1573 	depth = 0;
1574 
1575 	while (!list_empty(&list)) {
1576 		rq = list_entry_rq(list.next);
1577 		list_del_init(&rq->queuelist);
1578 		BUG_ON(!rq->q);
1579 		if (rq->mq_ctx != this_ctx) {
1580 			if (this_ctx) {
1581 				trace_block_unplug(this_q, depth, from_schedule);
1582 				blk_mq_sched_insert_requests(this_q, this_ctx,
1583 								&ctx_list,
1584 								from_schedule);
1585 			}
1586 
1587 			this_ctx = rq->mq_ctx;
1588 			this_q = rq->q;
1589 			depth = 0;
1590 		}
1591 
1592 		depth++;
1593 		list_add_tail(&rq->queuelist, &ctx_list);
1594 	}
1595 
1596 	/*
1597 	 * If 'this_ctx' is set, we know we have entries to complete
1598 	 * on 'ctx_list'. Do those.
1599 	 */
1600 	if (this_ctx) {
1601 		trace_block_unplug(this_q, depth, from_schedule);
1602 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1603 						from_schedule);
1604 	}
1605 }
1606 
1607 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1608 {
1609 	blk_init_request_from_bio(rq, bio);
1610 
1611 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1612 
1613 	blk_account_io_start(rq, true);
1614 }
1615 
1616 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1617 {
1618 	if (rq->tag != -1)
1619 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1620 
1621 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1622 }
1623 
1624 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1625 					    struct request *rq,
1626 					    blk_qc_t *cookie)
1627 {
1628 	struct request_queue *q = rq->q;
1629 	struct blk_mq_queue_data bd = {
1630 		.rq = rq,
1631 		.last = true,
1632 	};
1633 	blk_qc_t new_cookie;
1634 	blk_status_t ret;
1635 
1636 	new_cookie = request_to_qc_t(hctx, rq);
1637 
1638 	/*
1639 	 * For OK queue, we are done. For error, caller may kill it.
1640 	 * Any other error (busy), just add it to our list as we
1641 	 * previously would have done.
1642 	 */
1643 	ret = q->mq_ops->queue_rq(hctx, &bd);
1644 	switch (ret) {
1645 	case BLK_STS_OK:
1646 		*cookie = new_cookie;
1647 		break;
1648 	case BLK_STS_RESOURCE:
1649 	case BLK_STS_DEV_RESOURCE:
1650 		__blk_mq_requeue_request(rq);
1651 		break;
1652 	default:
1653 		*cookie = BLK_QC_T_NONE;
1654 		break;
1655 	}
1656 
1657 	return ret;
1658 }
1659 
1660 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1661 						struct request *rq,
1662 						blk_qc_t *cookie,
1663 						bool bypass_insert)
1664 {
1665 	struct request_queue *q = rq->q;
1666 	bool run_queue = true;
1667 
1668 	/*
1669 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1670 	 *
1671 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1672 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1673 	 * and avoid driver to try to dispatch again.
1674 	 */
1675 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1676 		run_queue = false;
1677 		bypass_insert = false;
1678 		goto insert;
1679 	}
1680 
1681 	if (q->elevator && !bypass_insert)
1682 		goto insert;
1683 
1684 	if (!blk_mq_get_dispatch_budget(hctx))
1685 		goto insert;
1686 
1687 	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1688 		blk_mq_put_dispatch_budget(hctx);
1689 		goto insert;
1690 	}
1691 
1692 	return __blk_mq_issue_directly(hctx, rq, cookie);
1693 insert:
1694 	if (bypass_insert)
1695 		return BLK_STS_RESOURCE;
1696 
1697 	blk_mq_sched_insert_request(rq, false, run_queue, false);
1698 	return BLK_STS_OK;
1699 }
1700 
1701 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1702 		struct request *rq, blk_qc_t *cookie)
1703 {
1704 	blk_status_t ret;
1705 	int srcu_idx;
1706 
1707 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1708 
1709 	hctx_lock(hctx, &srcu_idx);
1710 
1711 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1712 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1713 		blk_mq_sched_insert_request(rq, false, true, false);
1714 	else if (ret != BLK_STS_OK)
1715 		blk_mq_end_request(rq, ret);
1716 
1717 	hctx_unlock(hctx, srcu_idx);
1718 }
1719 
1720 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1721 {
1722 	blk_status_t ret;
1723 	int srcu_idx;
1724 	blk_qc_t unused_cookie;
1725 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1726 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1727 
1728 	hctx_lock(hctx, &srcu_idx);
1729 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1730 	hctx_unlock(hctx, srcu_idx);
1731 
1732 	return ret;
1733 }
1734 
1735 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1736 {
1737 	const int is_sync = op_is_sync(bio->bi_opf);
1738 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1739 	struct blk_mq_alloc_data data = { .flags = 0 };
1740 	struct request *rq;
1741 	unsigned int request_count = 0;
1742 	struct blk_plug *plug;
1743 	struct request *same_queue_rq = NULL;
1744 	blk_qc_t cookie;
1745 	unsigned int wb_acct;
1746 
1747 	blk_queue_bounce(q, &bio);
1748 
1749 	blk_queue_split(q, &bio);
1750 
1751 	if (!bio_integrity_prep(bio))
1752 		return BLK_QC_T_NONE;
1753 
1754 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1755 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1756 		return BLK_QC_T_NONE;
1757 
1758 	if (blk_mq_sched_bio_merge(q, bio))
1759 		return BLK_QC_T_NONE;
1760 
1761 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1762 
1763 	trace_block_getrq(q, bio, bio->bi_opf);
1764 
1765 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1766 	if (unlikely(!rq)) {
1767 		__wbt_done(q->rq_wb, wb_acct);
1768 		if (bio->bi_opf & REQ_NOWAIT)
1769 			bio_wouldblock_error(bio);
1770 		return BLK_QC_T_NONE;
1771 	}
1772 
1773 	wbt_track(rq, wb_acct);
1774 
1775 	cookie = request_to_qc_t(data.hctx, rq);
1776 
1777 	plug = current->plug;
1778 	if (unlikely(is_flush_fua)) {
1779 		blk_mq_put_ctx(data.ctx);
1780 		blk_mq_bio_to_request(rq, bio);
1781 
1782 		/* bypass scheduler for flush rq */
1783 		blk_insert_flush(rq);
1784 		blk_mq_run_hw_queue(data.hctx, true);
1785 	} else if (plug && q->nr_hw_queues == 1) {
1786 		struct request *last = NULL;
1787 
1788 		blk_mq_put_ctx(data.ctx);
1789 		blk_mq_bio_to_request(rq, bio);
1790 
1791 		/*
1792 		 * @request_count may become stale because of schedule
1793 		 * out, so check the list again.
1794 		 */
1795 		if (list_empty(&plug->mq_list))
1796 			request_count = 0;
1797 		else if (blk_queue_nomerges(q))
1798 			request_count = blk_plug_queued_count(q);
1799 
1800 		if (!request_count)
1801 			trace_block_plug(q);
1802 		else
1803 			last = list_entry_rq(plug->mq_list.prev);
1804 
1805 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1806 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1807 			blk_flush_plug_list(plug, false);
1808 			trace_block_plug(q);
1809 		}
1810 
1811 		list_add_tail(&rq->queuelist, &plug->mq_list);
1812 	} else if (plug && !blk_queue_nomerges(q)) {
1813 		blk_mq_bio_to_request(rq, bio);
1814 
1815 		/*
1816 		 * We do limited plugging. If the bio can be merged, do that.
1817 		 * Otherwise the existing request in the plug list will be
1818 		 * issued. So the plug list will have one request at most
1819 		 * The plug list might get flushed before this. If that happens,
1820 		 * the plug list is empty, and same_queue_rq is invalid.
1821 		 */
1822 		if (list_empty(&plug->mq_list))
1823 			same_queue_rq = NULL;
1824 		if (same_queue_rq)
1825 			list_del_init(&same_queue_rq->queuelist);
1826 		list_add_tail(&rq->queuelist, &plug->mq_list);
1827 
1828 		blk_mq_put_ctx(data.ctx);
1829 
1830 		if (same_queue_rq) {
1831 			data.hctx = blk_mq_map_queue(q,
1832 					same_queue_rq->mq_ctx->cpu);
1833 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1834 					&cookie);
1835 		}
1836 	} else if (q->nr_hw_queues > 1 && is_sync) {
1837 		blk_mq_put_ctx(data.ctx);
1838 		blk_mq_bio_to_request(rq, bio);
1839 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1840 	} else {
1841 		blk_mq_put_ctx(data.ctx);
1842 		blk_mq_bio_to_request(rq, bio);
1843 		blk_mq_sched_insert_request(rq, false, true, true);
1844 	}
1845 
1846 	return cookie;
1847 }
1848 
1849 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1850 		     unsigned int hctx_idx)
1851 {
1852 	struct page *page;
1853 
1854 	if (tags->rqs && set->ops->exit_request) {
1855 		int i;
1856 
1857 		for (i = 0; i < tags->nr_tags; i++) {
1858 			struct request *rq = tags->static_rqs[i];
1859 
1860 			if (!rq)
1861 				continue;
1862 			set->ops->exit_request(set, rq, hctx_idx);
1863 			tags->static_rqs[i] = NULL;
1864 		}
1865 	}
1866 
1867 	while (!list_empty(&tags->page_list)) {
1868 		page = list_first_entry(&tags->page_list, struct page, lru);
1869 		list_del_init(&page->lru);
1870 		/*
1871 		 * Remove kmemleak object previously allocated in
1872 		 * blk_mq_init_rq_map().
1873 		 */
1874 		kmemleak_free(page_address(page));
1875 		__free_pages(page, page->private);
1876 	}
1877 }
1878 
1879 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1880 {
1881 	kfree(tags->rqs);
1882 	tags->rqs = NULL;
1883 	kfree(tags->static_rqs);
1884 	tags->static_rqs = NULL;
1885 
1886 	blk_mq_free_tags(tags);
1887 }
1888 
1889 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1890 					unsigned int hctx_idx,
1891 					unsigned int nr_tags,
1892 					unsigned int reserved_tags)
1893 {
1894 	struct blk_mq_tags *tags;
1895 	int node;
1896 
1897 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1898 	if (node == NUMA_NO_NODE)
1899 		node = set->numa_node;
1900 
1901 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1902 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1903 	if (!tags)
1904 		return NULL;
1905 
1906 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1907 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1908 				 node);
1909 	if (!tags->rqs) {
1910 		blk_mq_free_tags(tags);
1911 		return NULL;
1912 	}
1913 
1914 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1915 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1916 				 node);
1917 	if (!tags->static_rqs) {
1918 		kfree(tags->rqs);
1919 		blk_mq_free_tags(tags);
1920 		return NULL;
1921 	}
1922 
1923 	return tags;
1924 }
1925 
1926 static size_t order_to_size(unsigned int order)
1927 {
1928 	return (size_t)PAGE_SIZE << order;
1929 }
1930 
1931 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1932 			       unsigned int hctx_idx, int node)
1933 {
1934 	int ret;
1935 
1936 	if (set->ops->init_request) {
1937 		ret = set->ops->init_request(set, rq, hctx_idx, node);
1938 		if (ret)
1939 			return ret;
1940 	}
1941 
1942 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1943 	return 0;
1944 }
1945 
1946 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1947 		     unsigned int hctx_idx, unsigned int depth)
1948 {
1949 	unsigned int i, j, entries_per_page, max_order = 4;
1950 	size_t rq_size, left;
1951 	int node;
1952 
1953 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1954 	if (node == NUMA_NO_NODE)
1955 		node = set->numa_node;
1956 
1957 	INIT_LIST_HEAD(&tags->page_list);
1958 
1959 	/*
1960 	 * rq_size is the size of the request plus driver payload, rounded
1961 	 * to the cacheline size
1962 	 */
1963 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1964 				cache_line_size());
1965 	left = rq_size * depth;
1966 
1967 	for (i = 0; i < depth; ) {
1968 		int this_order = max_order;
1969 		struct page *page;
1970 		int to_do;
1971 		void *p;
1972 
1973 		while (this_order && left < order_to_size(this_order - 1))
1974 			this_order--;
1975 
1976 		do {
1977 			page = alloc_pages_node(node,
1978 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1979 				this_order);
1980 			if (page)
1981 				break;
1982 			if (!this_order--)
1983 				break;
1984 			if (order_to_size(this_order) < rq_size)
1985 				break;
1986 		} while (1);
1987 
1988 		if (!page)
1989 			goto fail;
1990 
1991 		page->private = this_order;
1992 		list_add_tail(&page->lru, &tags->page_list);
1993 
1994 		p = page_address(page);
1995 		/*
1996 		 * Allow kmemleak to scan these pages as they contain pointers
1997 		 * to additional allocations like via ops->init_request().
1998 		 */
1999 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2000 		entries_per_page = order_to_size(this_order) / rq_size;
2001 		to_do = min(entries_per_page, depth - i);
2002 		left -= to_do * rq_size;
2003 		for (j = 0; j < to_do; j++) {
2004 			struct request *rq = p;
2005 
2006 			tags->static_rqs[i] = rq;
2007 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2008 				tags->static_rqs[i] = NULL;
2009 				goto fail;
2010 			}
2011 
2012 			p += rq_size;
2013 			i++;
2014 		}
2015 	}
2016 	return 0;
2017 
2018 fail:
2019 	blk_mq_free_rqs(set, tags, hctx_idx);
2020 	return -ENOMEM;
2021 }
2022 
2023 /*
2024  * 'cpu' is going away. splice any existing rq_list entries from this
2025  * software queue to the hw queue dispatch list, and ensure that it
2026  * gets run.
2027  */
2028 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2029 {
2030 	struct blk_mq_hw_ctx *hctx;
2031 	struct blk_mq_ctx *ctx;
2032 	LIST_HEAD(tmp);
2033 
2034 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2035 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2036 
2037 	spin_lock(&ctx->lock);
2038 	if (!list_empty(&ctx->rq_list)) {
2039 		list_splice_init(&ctx->rq_list, &tmp);
2040 		blk_mq_hctx_clear_pending(hctx, ctx);
2041 	}
2042 	spin_unlock(&ctx->lock);
2043 
2044 	if (list_empty(&tmp))
2045 		return 0;
2046 
2047 	spin_lock(&hctx->lock);
2048 	list_splice_tail_init(&tmp, &hctx->dispatch);
2049 	spin_unlock(&hctx->lock);
2050 
2051 	blk_mq_run_hw_queue(hctx, true);
2052 	return 0;
2053 }
2054 
2055 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2056 {
2057 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2058 					    &hctx->cpuhp_dead);
2059 }
2060 
2061 /* hctx->ctxs will be freed in queue's release handler */
2062 static void blk_mq_exit_hctx(struct request_queue *q,
2063 		struct blk_mq_tag_set *set,
2064 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2065 {
2066 	blk_mq_debugfs_unregister_hctx(hctx);
2067 
2068 	if (blk_mq_hw_queue_mapped(hctx))
2069 		blk_mq_tag_idle(hctx);
2070 
2071 	if (set->ops->exit_request)
2072 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2073 
2074 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2075 
2076 	if (set->ops->exit_hctx)
2077 		set->ops->exit_hctx(hctx, hctx_idx);
2078 
2079 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2080 		cleanup_srcu_struct(hctx->srcu);
2081 
2082 	blk_mq_remove_cpuhp(hctx);
2083 	blk_free_flush_queue(hctx->fq);
2084 	sbitmap_free(&hctx->ctx_map);
2085 }
2086 
2087 static void blk_mq_exit_hw_queues(struct request_queue *q,
2088 		struct blk_mq_tag_set *set, int nr_queue)
2089 {
2090 	struct blk_mq_hw_ctx *hctx;
2091 	unsigned int i;
2092 
2093 	queue_for_each_hw_ctx(q, hctx, i) {
2094 		if (i == nr_queue)
2095 			break;
2096 		blk_mq_exit_hctx(q, set, hctx, i);
2097 	}
2098 }
2099 
2100 static int blk_mq_init_hctx(struct request_queue *q,
2101 		struct blk_mq_tag_set *set,
2102 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2103 {
2104 	int node;
2105 
2106 	node = hctx->numa_node;
2107 	if (node == NUMA_NO_NODE)
2108 		node = hctx->numa_node = set->numa_node;
2109 
2110 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2111 	spin_lock_init(&hctx->lock);
2112 	INIT_LIST_HEAD(&hctx->dispatch);
2113 	hctx->queue = q;
2114 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2115 
2116 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2117 
2118 	hctx->tags = set->tags[hctx_idx];
2119 
2120 	/*
2121 	 * Allocate space for all possible cpus to avoid allocation at
2122 	 * runtime
2123 	 */
2124 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2125 					GFP_KERNEL, node);
2126 	if (!hctx->ctxs)
2127 		goto unregister_cpu_notifier;
2128 
2129 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2130 			      node))
2131 		goto free_ctxs;
2132 
2133 	hctx->nr_ctx = 0;
2134 
2135 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2136 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2137 
2138 	if (set->ops->init_hctx &&
2139 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2140 		goto free_bitmap;
2141 
2142 	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2143 		goto exit_hctx;
2144 
2145 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2146 	if (!hctx->fq)
2147 		goto sched_exit_hctx;
2148 
2149 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2150 		goto free_fq;
2151 
2152 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2153 		init_srcu_struct(hctx->srcu);
2154 
2155 	blk_mq_debugfs_register_hctx(q, hctx);
2156 
2157 	return 0;
2158 
2159  free_fq:
2160 	kfree(hctx->fq);
2161  sched_exit_hctx:
2162 	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2163  exit_hctx:
2164 	if (set->ops->exit_hctx)
2165 		set->ops->exit_hctx(hctx, hctx_idx);
2166  free_bitmap:
2167 	sbitmap_free(&hctx->ctx_map);
2168  free_ctxs:
2169 	kfree(hctx->ctxs);
2170  unregister_cpu_notifier:
2171 	blk_mq_remove_cpuhp(hctx);
2172 	return -1;
2173 }
2174 
2175 static void blk_mq_init_cpu_queues(struct request_queue *q,
2176 				   unsigned int nr_hw_queues)
2177 {
2178 	unsigned int i;
2179 
2180 	for_each_possible_cpu(i) {
2181 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2182 		struct blk_mq_hw_ctx *hctx;
2183 
2184 		__ctx->cpu = i;
2185 		spin_lock_init(&__ctx->lock);
2186 		INIT_LIST_HEAD(&__ctx->rq_list);
2187 		__ctx->queue = q;
2188 
2189 		/*
2190 		 * Set local node, IFF we have more than one hw queue. If
2191 		 * not, we remain on the home node of the device
2192 		 */
2193 		hctx = blk_mq_map_queue(q, i);
2194 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2195 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2196 	}
2197 }
2198 
2199 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2200 {
2201 	int ret = 0;
2202 
2203 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2204 					set->queue_depth, set->reserved_tags);
2205 	if (!set->tags[hctx_idx])
2206 		return false;
2207 
2208 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2209 				set->queue_depth);
2210 	if (!ret)
2211 		return true;
2212 
2213 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2214 	set->tags[hctx_idx] = NULL;
2215 	return false;
2216 }
2217 
2218 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2219 					 unsigned int hctx_idx)
2220 {
2221 	if (set->tags[hctx_idx]) {
2222 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2223 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2224 		set->tags[hctx_idx] = NULL;
2225 	}
2226 }
2227 
2228 static void blk_mq_map_swqueue(struct request_queue *q)
2229 {
2230 	unsigned int i, hctx_idx;
2231 	struct blk_mq_hw_ctx *hctx;
2232 	struct blk_mq_ctx *ctx;
2233 	struct blk_mq_tag_set *set = q->tag_set;
2234 
2235 	/*
2236 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2237 	 */
2238 	mutex_lock(&q->sysfs_lock);
2239 
2240 	queue_for_each_hw_ctx(q, hctx, i) {
2241 		cpumask_clear(hctx->cpumask);
2242 		hctx->nr_ctx = 0;
2243 		hctx->dispatch_from = NULL;
2244 	}
2245 
2246 	/*
2247 	 * Map software to hardware queues.
2248 	 *
2249 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2250 	 */
2251 	for_each_possible_cpu(i) {
2252 		hctx_idx = q->mq_map[i];
2253 		/* unmapped hw queue can be remapped after CPU topo changed */
2254 		if (!set->tags[hctx_idx] &&
2255 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2256 			/*
2257 			 * If tags initialization fail for some hctx,
2258 			 * that hctx won't be brought online.  In this
2259 			 * case, remap the current ctx to hctx[0] which
2260 			 * is guaranteed to always have tags allocated
2261 			 */
2262 			q->mq_map[i] = 0;
2263 		}
2264 
2265 		ctx = per_cpu_ptr(q->queue_ctx, i);
2266 		hctx = blk_mq_map_queue(q, i);
2267 
2268 		cpumask_set_cpu(i, hctx->cpumask);
2269 		ctx->index_hw = hctx->nr_ctx;
2270 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2271 	}
2272 
2273 	mutex_unlock(&q->sysfs_lock);
2274 
2275 	queue_for_each_hw_ctx(q, hctx, i) {
2276 		/*
2277 		 * If no software queues are mapped to this hardware queue,
2278 		 * disable it and free the request entries.
2279 		 */
2280 		if (!hctx->nr_ctx) {
2281 			/* Never unmap queue 0.  We need it as a
2282 			 * fallback in case of a new remap fails
2283 			 * allocation
2284 			 */
2285 			if (i && set->tags[i])
2286 				blk_mq_free_map_and_requests(set, i);
2287 
2288 			hctx->tags = NULL;
2289 			continue;
2290 		}
2291 
2292 		hctx->tags = set->tags[i];
2293 		WARN_ON(!hctx->tags);
2294 
2295 		/*
2296 		 * Set the map size to the number of mapped software queues.
2297 		 * This is more accurate and more efficient than looping
2298 		 * over all possibly mapped software queues.
2299 		 */
2300 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2301 
2302 		/*
2303 		 * Initialize batch roundrobin counts
2304 		 */
2305 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2306 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2307 	}
2308 }
2309 
2310 /*
2311  * Caller needs to ensure that we're either frozen/quiesced, or that
2312  * the queue isn't live yet.
2313  */
2314 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2315 {
2316 	struct blk_mq_hw_ctx *hctx;
2317 	int i;
2318 
2319 	queue_for_each_hw_ctx(q, hctx, i) {
2320 		if (shared) {
2321 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2322 				atomic_inc(&q->shared_hctx_restart);
2323 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2324 		} else {
2325 			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2326 				atomic_dec(&q->shared_hctx_restart);
2327 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2328 		}
2329 	}
2330 }
2331 
2332 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2333 					bool shared)
2334 {
2335 	struct request_queue *q;
2336 
2337 	lockdep_assert_held(&set->tag_list_lock);
2338 
2339 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2340 		blk_mq_freeze_queue(q);
2341 		queue_set_hctx_shared(q, shared);
2342 		blk_mq_unfreeze_queue(q);
2343 	}
2344 }
2345 
2346 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2347 {
2348 	struct blk_mq_tag_set *set = q->tag_set;
2349 
2350 	mutex_lock(&set->tag_list_lock);
2351 	list_del_rcu(&q->tag_set_list);
2352 	if (list_is_singular(&set->tag_list)) {
2353 		/* just transitioned to unshared */
2354 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2355 		/* update existing queue */
2356 		blk_mq_update_tag_set_depth(set, false);
2357 	}
2358 	mutex_unlock(&set->tag_list_lock);
2359 	synchronize_rcu();
2360 	INIT_LIST_HEAD(&q->tag_set_list);
2361 }
2362 
2363 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2364 				     struct request_queue *q)
2365 {
2366 	q->tag_set = set;
2367 
2368 	mutex_lock(&set->tag_list_lock);
2369 
2370 	/*
2371 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2372 	 */
2373 	if (!list_empty(&set->tag_list) &&
2374 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2375 		set->flags |= BLK_MQ_F_TAG_SHARED;
2376 		/* update existing queue */
2377 		blk_mq_update_tag_set_depth(set, true);
2378 	}
2379 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2380 		queue_set_hctx_shared(q, true);
2381 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2382 
2383 	mutex_unlock(&set->tag_list_lock);
2384 }
2385 
2386 /*
2387  * It is the actual release handler for mq, but we do it from
2388  * request queue's release handler for avoiding use-after-free
2389  * and headache because q->mq_kobj shouldn't have been introduced,
2390  * but we can't group ctx/kctx kobj without it.
2391  */
2392 void blk_mq_release(struct request_queue *q)
2393 {
2394 	struct blk_mq_hw_ctx *hctx;
2395 	unsigned int i;
2396 
2397 	/* hctx kobj stays in hctx */
2398 	queue_for_each_hw_ctx(q, hctx, i) {
2399 		if (!hctx)
2400 			continue;
2401 		kobject_put(&hctx->kobj);
2402 	}
2403 
2404 	q->mq_map = NULL;
2405 
2406 	kfree(q->queue_hw_ctx);
2407 
2408 	/*
2409 	 * release .mq_kobj and sw queue's kobject now because
2410 	 * both share lifetime with request queue.
2411 	 */
2412 	blk_mq_sysfs_deinit(q);
2413 
2414 	free_percpu(q->queue_ctx);
2415 }
2416 
2417 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2418 {
2419 	struct request_queue *uninit_q, *q;
2420 
2421 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2422 	if (!uninit_q)
2423 		return ERR_PTR(-ENOMEM);
2424 
2425 	q = blk_mq_init_allocated_queue(set, uninit_q);
2426 	if (IS_ERR(q))
2427 		blk_cleanup_queue(uninit_q);
2428 
2429 	return q;
2430 }
2431 EXPORT_SYMBOL(blk_mq_init_queue);
2432 
2433 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2434 {
2435 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2436 
2437 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2438 			   __alignof__(struct blk_mq_hw_ctx)) !=
2439 		     sizeof(struct blk_mq_hw_ctx));
2440 
2441 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2442 		hw_ctx_size += sizeof(struct srcu_struct);
2443 
2444 	return hw_ctx_size;
2445 }
2446 
2447 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2448 						struct request_queue *q)
2449 {
2450 	int i, j;
2451 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2452 
2453 	blk_mq_sysfs_unregister(q);
2454 
2455 	/* protect against switching io scheduler  */
2456 	mutex_lock(&q->sysfs_lock);
2457 	for (i = 0; i < set->nr_hw_queues; i++) {
2458 		int node;
2459 
2460 		if (hctxs[i])
2461 			continue;
2462 
2463 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2464 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2465 					GFP_KERNEL, node);
2466 		if (!hctxs[i])
2467 			break;
2468 
2469 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2470 						node)) {
2471 			kfree(hctxs[i]);
2472 			hctxs[i] = NULL;
2473 			break;
2474 		}
2475 
2476 		atomic_set(&hctxs[i]->nr_active, 0);
2477 		hctxs[i]->numa_node = node;
2478 		hctxs[i]->queue_num = i;
2479 
2480 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2481 			free_cpumask_var(hctxs[i]->cpumask);
2482 			kfree(hctxs[i]);
2483 			hctxs[i] = NULL;
2484 			break;
2485 		}
2486 		blk_mq_hctx_kobj_init(hctxs[i]);
2487 	}
2488 	for (j = i; j < q->nr_hw_queues; j++) {
2489 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2490 
2491 		if (hctx) {
2492 			if (hctx->tags)
2493 				blk_mq_free_map_and_requests(set, j);
2494 			blk_mq_exit_hctx(q, set, hctx, j);
2495 			kobject_put(&hctx->kobj);
2496 			hctxs[j] = NULL;
2497 
2498 		}
2499 	}
2500 	q->nr_hw_queues = i;
2501 	mutex_unlock(&q->sysfs_lock);
2502 	blk_mq_sysfs_register(q);
2503 }
2504 
2505 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2506 						  struct request_queue *q)
2507 {
2508 	/* mark the queue as mq asap */
2509 	q->mq_ops = set->ops;
2510 
2511 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2512 					     blk_mq_poll_stats_bkt,
2513 					     BLK_MQ_POLL_STATS_BKTS, q);
2514 	if (!q->poll_cb)
2515 		goto err_exit;
2516 
2517 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2518 	if (!q->queue_ctx)
2519 		goto err_exit;
2520 
2521 	/* init q->mq_kobj and sw queues' kobjects */
2522 	blk_mq_sysfs_init(q);
2523 
2524 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2525 						GFP_KERNEL, set->numa_node);
2526 	if (!q->queue_hw_ctx)
2527 		goto err_percpu;
2528 
2529 	q->mq_map = set->mq_map;
2530 
2531 	blk_mq_realloc_hw_ctxs(set, q);
2532 	if (!q->nr_hw_queues)
2533 		goto err_hctxs;
2534 
2535 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2536 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2537 
2538 	q->nr_queues = nr_cpu_ids;
2539 
2540 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2541 
2542 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2543 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2544 
2545 	q->sg_reserved_size = INT_MAX;
2546 
2547 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2548 	INIT_LIST_HEAD(&q->requeue_list);
2549 	spin_lock_init(&q->requeue_lock);
2550 
2551 	blk_queue_make_request(q, blk_mq_make_request);
2552 	if (q->mq_ops->poll)
2553 		q->poll_fn = blk_mq_poll;
2554 
2555 	/*
2556 	 * Do this after blk_queue_make_request() overrides it...
2557 	 */
2558 	q->nr_requests = set->queue_depth;
2559 
2560 	/*
2561 	 * Default to classic polling
2562 	 */
2563 	q->poll_nsec = -1;
2564 
2565 	if (set->ops->complete)
2566 		blk_queue_softirq_done(q, set->ops->complete);
2567 
2568 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2569 	blk_mq_add_queue_tag_set(set, q);
2570 	blk_mq_map_swqueue(q);
2571 
2572 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2573 		int ret;
2574 
2575 		ret = elevator_init_mq(q);
2576 		if (ret)
2577 			return ERR_PTR(ret);
2578 	}
2579 
2580 	return q;
2581 
2582 err_hctxs:
2583 	kfree(q->queue_hw_ctx);
2584 err_percpu:
2585 	free_percpu(q->queue_ctx);
2586 err_exit:
2587 	q->mq_ops = NULL;
2588 	return ERR_PTR(-ENOMEM);
2589 }
2590 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2591 
2592 void blk_mq_free_queue(struct request_queue *q)
2593 {
2594 	struct blk_mq_tag_set	*set = q->tag_set;
2595 
2596 	blk_mq_del_queue_tag_set(q);
2597 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2598 }
2599 
2600 /* Basically redo blk_mq_init_queue with queue frozen */
2601 static void blk_mq_queue_reinit(struct request_queue *q)
2602 {
2603 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2604 
2605 	blk_mq_debugfs_unregister_hctxs(q);
2606 	blk_mq_sysfs_unregister(q);
2607 
2608 	/*
2609 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2610 	 * we should change hctx numa_node according to the new topology (this
2611 	 * involves freeing and re-allocating memory, worth doing?)
2612 	 */
2613 	blk_mq_map_swqueue(q);
2614 
2615 	blk_mq_sysfs_register(q);
2616 	blk_mq_debugfs_register_hctxs(q);
2617 }
2618 
2619 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2620 {
2621 	int i;
2622 
2623 	for (i = 0; i < set->nr_hw_queues; i++)
2624 		if (!__blk_mq_alloc_rq_map(set, i))
2625 			goto out_unwind;
2626 
2627 	return 0;
2628 
2629 out_unwind:
2630 	while (--i >= 0)
2631 		blk_mq_free_rq_map(set->tags[i]);
2632 
2633 	return -ENOMEM;
2634 }
2635 
2636 /*
2637  * Allocate the request maps associated with this tag_set. Note that this
2638  * may reduce the depth asked for, if memory is tight. set->queue_depth
2639  * will be updated to reflect the allocated depth.
2640  */
2641 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2642 {
2643 	unsigned int depth;
2644 	int err;
2645 
2646 	depth = set->queue_depth;
2647 	do {
2648 		err = __blk_mq_alloc_rq_maps(set);
2649 		if (!err)
2650 			break;
2651 
2652 		set->queue_depth >>= 1;
2653 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2654 			err = -ENOMEM;
2655 			break;
2656 		}
2657 	} while (set->queue_depth);
2658 
2659 	if (!set->queue_depth || err) {
2660 		pr_err("blk-mq: failed to allocate request map\n");
2661 		return -ENOMEM;
2662 	}
2663 
2664 	if (depth != set->queue_depth)
2665 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2666 						depth, set->queue_depth);
2667 
2668 	return 0;
2669 }
2670 
2671 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2672 {
2673 	if (set->ops->map_queues) {
2674 		int cpu;
2675 		/*
2676 		 * transport .map_queues is usually done in the following
2677 		 * way:
2678 		 *
2679 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2680 		 * 	mask = get_cpu_mask(queue)
2681 		 * 	for_each_cpu(cpu, mask)
2682 		 * 		set->mq_map[cpu] = queue;
2683 		 * }
2684 		 *
2685 		 * When we need to remap, the table has to be cleared for
2686 		 * killing stale mapping since one CPU may not be mapped
2687 		 * to any hw queue.
2688 		 */
2689 		for_each_possible_cpu(cpu)
2690 			set->mq_map[cpu] = 0;
2691 
2692 		return set->ops->map_queues(set);
2693 	} else
2694 		return blk_mq_map_queues(set);
2695 }
2696 
2697 /*
2698  * Alloc a tag set to be associated with one or more request queues.
2699  * May fail with EINVAL for various error conditions. May adjust the
2700  * requested depth down, if if it too large. In that case, the set
2701  * value will be stored in set->queue_depth.
2702  */
2703 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2704 {
2705 	int ret;
2706 
2707 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2708 
2709 	if (!set->nr_hw_queues)
2710 		return -EINVAL;
2711 	if (!set->queue_depth)
2712 		return -EINVAL;
2713 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2714 		return -EINVAL;
2715 
2716 	if (!set->ops->queue_rq)
2717 		return -EINVAL;
2718 
2719 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2720 		return -EINVAL;
2721 
2722 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2723 		pr_info("blk-mq: reduced tag depth to %u\n",
2724 			BLK_MQ_MAX_DEPTH);
2725 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2726 	}
2727 
2728 	/*
2729 	 * If a crashdump is active, then we are potentially in a very
2730 	 * memory constrained environment. Limit us to 1 queue and
2731 	 * 64 tags to prevent using too much memory.
2732 	 */
2733 	if (is_kdump_kernel()) {
2734 		set->nr_hw_queues = 1;
2735 		set->queue_depth = min(64U, set->queue_depth);
2736 	}
2737 	/*
2738 	 * There is no use for more h/w queues than cpus.
2739 	 */
2740 	if (set->nr_hw_queues > nr_cpu_ids)
2741 		set->nr_hw_queues = nr_cpu_ids;
2742 
2743 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2744 				 GFP_KERNEL, set->numa_node);
2745 	if (!set->tags)
2746 		return -ENOMEM;
2747 
2748 	ret = -ENOMEM;
2749 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2750 			GFP_KERNEL, set->numa_node);
2751 	if (!set->mq_map)
2752 		goto out_free_tags;
2753 
2754 	ret = blk_mq_update_queue_map(set);
2755 	if (ret)
2756 		goto out_free_mq_map;
2757 
2758 	ret = blk_mq_alloc_rq_maps(set);
2759 	if (ret)
2760 		goto out_free_mq_map;
2761 
2762 	mutex_init(&set->tag_list_lock);
2763 	INIT_LIST_HEAD(&set->tag_list);
2764 
2765 	return 0;
2766 
2767 out_free_mq_map:
2768 	kfree(set->mq_map);
2769 	set->mq_map = NULL;
2770 out_free_tags:
2771 	kfree(set->tags);
2772 	set->tags = NULL;
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2776 
2777 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2778 {
2779 	int i;
2780 
2781 	for (i = 0; i < nr_cpu_ids; i++)
2782 		blk_mq_free_map_and_requests(set, i);
2783 
2784 	kfree(set->mq_map);
2785 	set->mq_map = NULL;
2786 
2787 	kfree(set->tags);
2788 	set->tags = NULL;
2789 }
2790 EXPORT_SYMBOL(blk_mq_free_tag_set);
2791 
2792 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2793 {
2794 	struct blk_mq_tag_set *set = q->tag_set;
2795 	struct blk_mq_hw_ctx *hctx;
2796 	int i, ret;
2797 
2798 	if (!set)
2799 		return -EINVAL;
2800 
2801 	blk_mq_freeze_queue(q);
2802 	blk_mq_quiesce_queue(q);
2803 
2804 	ret = 0;
2805 	queue_for_each_hw_ctx(q, hctx, i) {
2806 		if (!hctx->tags)
2807 			continue;
2808 		/*
2809 		 * If we're using an MQ scheduler, just update the scheduler
2810 		 * queue depth. This is similar to what the old code would do.
2811 		 */
2812 		if (!hctx->sched_tags) {
2813 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2814 							false);
2815 		} else {
2816 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2817 							nr, true);
2818 		}
2819 		if (ret)
2820 			break;
2821 	}
2822 
2823 	if (!ret)
2824 		q->nr_requests = nr;
2825 
2826 	blk_mq_unquiesce_queue(q);
2827 	blk_mq_unfreeze_queue(q);
2828 
2829 	return ret;
2830 }
2831 
2832 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2833 							int nr_hw_queues)
2834 {
2835 	struct request_queue *q;
2836 
2837 	lockdep_assert_held(&set->tag_list_lock);
2838 
2839 	if (nr_hw_queues > nr_cpu_ids)
2840 		nr_hw_queues = nr_cpu_ids;
2841 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2842 		return;
2843 
2844 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2845 		blk_mq_freeze_queue(q);
2846 
2847 	set->nr_hw_queues = nr_hw_queues;
2848 	blk_mq_update_queue_map(set);
2849 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2850 		blk_mq_realloc_hw_ctxs(set, q);
2851 		blk_mq_queue_reinit(q);
2852 	}
2853 
2854 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2855 		blk_mq_unfreeze_queue(q);
2856 }
2857 
2858 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2859 {
2860 	mutex_lock(&set->tag_list_lock);
2861 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2862 	mutex_unlock(&set->tag_list_lock);
2863 }
2864 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2865 
2866 /* Enable polling stats and return whether they were already enabled. */
2867 static bool blk_poll_stats_enable(struct request_queue *q)
2868 {
2869 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2870 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2871 		return true;
2872 	blk_stat_add_callback(q, q->poll_cb);
2873 	return false;
2874 }
2875 
2876 static void blk_mq_poll_stats_start(struct request_queue *q)
2877 {
2878 	/*
2879 	 * We don't arm the callback if polling stats are not enabled or the
2880 	 * callback is already active.
2881 	 */
2882 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2883 	    blk_stat_is_active(q->poll_cb))
2884 		return;
2885 
2886 	blk_stat_activate_msecs(q->poll_cb, 100);
2887 }
2888 
2889 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2890 {
2891 	struct request_queue *q = cb->data;
2892 	int bucket;
2893 
2894 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2895 		if (cb->stat[bucket].nr_samples)
2896 			q->poll_stat[bucket] = cb->stat[bucket];
2897 	}
2898 }
2899 
2900 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2901 				       struct blk_mq_hw_ctx *hctx,
2902 				       struct request *rq)
2903 {
2904 	unsigned long ret = 0;
2905 	int bucket;
2906 
2907 	/*
2908 	 * If stats collection isn't on, don't sleep but turn it on for
2909 	 * future users
2910 	 */
2911 	if (!blk_poll_stats_enable(q))
2912 		return 0;
2913 
2914 	/*
2915 	 * As an optimistic guess, use half of the mean service time
2916 	 * for this type of request. We can (and should) make this smarter.
2917 	 * For instance, if the completion latencies are tight, we can
2918 	 * get closer than just half the mean. This is especially
2919 	 * important on devices where the completion latencies are longer
2920 	 * than ~10 usec. We do use the stats for the relevant IO size
2921 	 * if available which does lead to better estimates.
2922 	 */
2923 	bucket = blk_mq_poll_stats_bkt(rq);
2924 	if (bucket < 0)
2925 		return ret;
2926 
2927 	if (q->poll_stat[bucket].nr_samples)
2928 		ret = (q->poll_stat[bucket].mean + 1) / 2;
2929 
2930 	return ret;
2931 }
2932 
2933 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2934 				     struct blk_mq_hw_ctx *hctx,
2935 				     struct request *rq)
2936 {
2937 	struct hrtimer_sleeper hs;
2938 	enum hrtimer_mode mode;
2939 	unsigned int nsecs;
2940 	ktime_t kt;
2941 
2942 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2943 		return false;
2944 
2945 	/*
2946 	 * poll_nsec can be:
2947 	 *
2948 	 * -1:	don't ever hybrid sleep
2949 	 *  0:	use half of prev avg
2950 	 * >0:	use this specific value
2951 	 */
2952 	if (q->poll_nsec == -1)
2953 		return false;
2954 	else if (q->poll_nsec > 0)
2955 		nsecs = q->poll_nsec;
2956 	else
2957 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2958 
2959 	if (!nsecs)
2960 		return false;
2961 
2962 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2963 
2964 	/*
2965 	 * This will be replaced with the stats tracking code, using
2966 	 * 'avg_completion_time / 2' as the pre-sleep target.
2967 	 */
2968 	kt = nsecs;
2969 
2970 	mode = HRTIMER_MODE_REL;
2971 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2972 	hrtimer_set_expires(&hs.timer, kt);
2973 
2974 	hrtimer_init_sleeper(&hs, current);
2975 	do {
2976 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2977 			break;
2978 		set_current_state(TASK_UNINTERRUPTIBLE);
2979 		hrtimer_start_expires(&hs.timer, mode);
2980 		if (hs.task)
2981 			io_schedule();
2982 		hrtimer_cancel(&hs.timer);
2983 		mode = HRTIMER_MODE_ABS;
2984 	} while (hs.task && !signal_pending(current));
2985 
2986 	__set_current_state(TASK_RUNNING);
2987 	destroy_hrtimer_on_stack(&hs.timer);
2988 	return true;
2989 }
2990 
2991 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2992 {
2993 	struct request_queue *q = hctx->queue;
2994 	long state;
2995 
2996 	/*
2997 	 * If we sleep, have the caller restart the poll loop to reset
2998 	 * the state. Like for the other success return cases, the
2999 	 * caller is responsible for checking if the IO completed. If
3000 	 * the IO isn't complete, we'll get called again and will go
3001 	 * straight to the busy poll loop.
3002 	 */
3003 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3004 		return true;
3005 
3006 	hctx->poll_considered++;
3007 
3008 	state = current->state;
3009 	while (!need_resched()) {
3010 		int ret;
3011 
3012 		hctx->poll_invoked++;
3013 
3014 		ret = q->mq_ops->poll(hctx, rq->tag);
3015 		if (ret > 0) {
3016 			hctx->poll_success++;
3017 			set_current_state(TASK_RUNNING);
3018 			return true;
3019 		}
3020 
3021 		if (signal_pending_state(state, current))
3022 			set_current_state(TASK_RUNNING);
3023 
3024 		if (current->state == TASK_RUNNING)
3025 			return true;
3026 		if (ret < 0)
3027 			break;
3028 		cpu_relax();
3029 	}
3030 
3031 	__set_current_state(TASK_RUNNING);
3032 	return false;
3033 }
3034 
3035 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3036 {
3037 	struct blk_mq_hw_ctx *hctx;
3038 	struct request *rq;
3039 
3040 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3041 		return false;
3042 
3043 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3044 	if (!blk_qc_t_is_internal(cookie))
3045 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3046 	else {
3047 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3048 		/*
3049 		 * With scheduling, if the request has completed, we'll
3050 		 * get a NULL return here, as we clear the sched tag when
3051 		 * that happens. The request still remains valid, like always,
3052 		 * so we should be safe with just the NULL check.
3053 		 */
3054 		if (!rq)
3055 			return false;
3056 	}
3057 
3058 	return __blk_mq_poll(hctx, rq);
3059 }
3060 
3061 static int __init blk_mq_init(void)
3062 {
3063 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3064 				blk_mq_hctx_notify_dead);
3065 	return 0;
3066 }
3067 subsys_initcall(blk_mq_init);
3068