1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 /* 99 * index[0] counts the specific partition that was asked for. index[1] 100 * counts the ones that are active on the whole device, so increment 101 * that if mi->part is indeed a partition, and not a whole device. 102 */ 103 if (rq->part == mi->part) 104 mi->inflight[0]++; 105 if (mi->part->partno) 106 mi->inflight[1]++; 107 } 108 109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 110 unsigned int inflight[2]) 111 { 112 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 113 114 inflight[0] = inflight[1] = 0; 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 } 117 118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 119 struct request *rq, void *priv, 120 bool reserved) 121 { 122 struct mq_inflight *mi = priv; 123 124 if (rq->part == mi->part) 125 mi->inflight[rq_data_dir(rq)]++; 126 } 127 128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 129 unsigned int inflight[2]) 130 { 131 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 132 133 inflight[0] = inflight[1] = 0; 134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 135 } 136 137 void blk_freeze_queue_start(struct request_queue *q) 138 { 139 int freeze_depth; 140 141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 142 if (freeze_depth == 1) { 143 percpu_ref_kill(&q->q_usage_counter); 144 if (q->mq_ops) 145 blk_mq_run_hw_queues(q, false); 146 } 147 } 148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 149 150 void blk_mq_freeze_queue_wait(struct request_queue *q) 151 { 152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 153 } 154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 155 156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 157 unsigned long timeout) 158 { 159 return wait_event_timeout(q->mq_freeze_wq, 160 percpu_ref_is_zero(&q->q_usage_counter), 161 timeout); 162 } 163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 164 165 /* 166 * Guarantee no request is in use, so we can change any data structure of 167 * the queue afterward. 168 */ 169 void blk_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * In the !blk_mq case we are only calling this to kill the 173 * q_usage_counter, otherwise this increases the freeze depth 174 * and waits for it to return to zero. For this reason there is 175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 176 * exported to drivers as the only user for unfreeze is blk_mq. 177 */ 178 blk_freeze_queue_start(q); 179 if (!q->mq_ops) 180 blk_drain_queue(q); 181 blk_mq_freeze_queue_wait(q); 182 } 183 184 void blk_mq_freeze_queue(struct request_queue *q) 185 { 186 /* 187 * ...just an alias to keep freeze and unfreeze actions balanced 188 * in the blk_mq_* namespace 189 */ 190 blk_freeze_queue(q); 191 } 192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 193 194 void blk_mq_unfreeze_queue(struct request_queue *q) 195 { 196 int freeze_depth; 197 198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 199 WARN_ON_ONCE(freeze_depth < 0); 200 if (!freeze_depth) { 201 percpu_ref_reinit(&q->q_usage_counter); 202 wake_up_all(&q->mq_freeze_wq); 203 } 204 } 205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 206 207 /* 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 209 * mpt3sas driver such that this function can be removed. 210 */ 211 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 212 { 213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 216 217 /** 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 219 * @q: request queue. 220 * 221 * Note: this function does not prevent that the struct request end_io() 222 * callback function is invoked. Once this function is returned, we make 223 * sure no dispatch can happen until the queue is unquiesced via 224 * blk_mq_unquiesce_queue(). 225 */ 226 void blk_mq_quiesce_queue(struct request_queue *q) 227 { 228 struct blk_mq_hw_ctx *hctx; 229 unsigned int i; 230 bool rcu = false; 231 232 blk_mq_quiesce_queue_nowait(q); 233 234 queue_for_each_hw_ctx(q, hctx, i) { 235 if (hctx->flags & BLK_MQ_F_BLOCKING) 236 synchronize_srcu(hctx->srcu); 237 else 238 rcu = true; 239 } 240 if (rcu) 241 synchronize_rcu(); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 244 245 /* 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 247 * @q: request queue. 248 * 249 * This function recovers queue into the state before quiescing 250 * which is done by blk_mq_quiesce_queue. 251 */ 252 void blk_mq_unquiesce_queue(struct request_queue *q) 253 { 254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 255 256 /* dispatch requests which are inserted during quiescing */ 257 blk_mq_run_hw_queues(q, true); 258 } 259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 260 261 void blk_mq_wake_waiters(struct request_queue *q) 262 { 263 struct blk_mq_hw_ctx *hctx; 264 unsigned int i; 265 266 queue_for_each_hw_ctx(q, hctx, i) 267 if (blk_mq_hw_queue_mapped(hctx)) 268 blk_mq_tag_wakeup_all(hctx->tags, true); 269 } 270 271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 272 { 273 return blk_mq_has_free_tags(hctx->tags); 274 } 275 EXPORT_SYMBOL(blk_mq_can_queue); 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, unsigned int op) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 req_flags_t rq_flags = 0; 283 284 if (data->flags & BLK_MQ_REQ_INTERNAL) { 285 rq->tag = -1; 286 rq->internal_tag = tag; 287 } else { 288 if (blk_mq_tag_busy(data->hctx)) { 289 rq_flags = RQF_MQ_INFLIGHT; 290 atomic_inc(&data->hctx->nr_active); 291 } 292 rq->tag = tag; 293 rq->internal_tag = -1; 294 data->hctx->tags->rqs[rq->tag] = rq; 295 } 296 297 /* csd/requeue_work/fifo_time is initialized before use */ 298 rq->q = data->q; 299 rq->mq_ctx = data->ctx; 300 rq->rq_flags = rq_flags; 301 rq->cpu = -1; 302 rq->cmd_flags = op; 303 if (data->flags & BLK_MQ_REQ_PREEMPT) 304 rq->rq_flags |= RQF_PREEMPT; 305 if (blk_queue_io_stat(data->q)) 306 rq->rq_flags |= RQF_IO_STAT; 307 INIT_LIST_HEAD(&rq->queuelist); 308 INIT_HLIST_NODE(&rq->hash); 309 RB_CLEAR_NODE(&rq->rb_node); 310 rq->rq_disk = NULL; 311 rq->part = NULL; 312 rq->start_time_ns = ktime_get_ns(); 313 rq->io_start_time_ns = 0; 314 rq->nr_phys_segments = 0; 315 #if defined(CONFIG_BLK_DEV_INTEGRITY) 316 rq->nr_integrity_segments = 0; 317 #endif 318 rq->special = NULL; 319 /* tag was already set */ 320 rq->extra_len = 0; 321 rq->__deadline = 0; 322 323 INIT_LIST_HEAD(&rq->timeout_list); 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 rq->next_rq = NULL; 329 330 #ifdef CONFIG_BLK_CGROUP 331 rq->rl = NULL; 332 #endif 333 334 data->ctx->rq_dispatched[op_is_sync(op)]++; 335 refcount_set(&rq->ref, 1); 336 return rq; 337 } 338 339 static struct request *blk_mq_get_request(struct request_queue *q, 340 struct bio *bio, unsigned int op, 341 struct blk_mq_alloc_data *data) 342 { 343 struct elevator_queue *e = q->elevator; 344 struct request *rq; 345 unsigned int tag; 346 bool put_ctx_on_error = false; 347 348 blk_queue_enter_live(q); 349 data->q = q; 350 if (likely(!data->ctx)) { 351 data->ctx = blk_mq_get_ctx(q); 352 put_ctx_on_error = true; 353 } 354 if (likely(!data->hctx)) 355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 356 if (op & REQ_NOWAIT) 357 data->flags |= BLK_MQ_REQ_NOWAIT; 358 359 if (e) { 360 data->flags |= BLK_MQ_REQ_INTERNAL; 361 362 /* 363 * Flush requests are special and go directly to the 364 * dispatch list. Don't include reserved tags in the 365 * limiting, as it isn't useful. 366 */ 367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth && 368 !(data->flags & BLK_MQ_REQ_RESERVED)) 369 e->type->ops.mq.limit_depth(op, data); 370 } 371 372 tag = blk_mq_get_tag(data); 373 if (tag == BLK_MQ_TAG_FAIL) { 374 if (put_ctx_on_error) { 375 blk_mq_put_ctx(data->ctx); 376 data->ctx = NULL; 377 } 378 blk_queue_exit(q); 379 return NULL; 380 } 381 382 rq = blk_mq_rq_ctx_init(data, tag, op); 383 if (!op_is_flush(op)) { 384 rq->elv.icq = NULL; 385 if (e && e->type->ops.mq.prepare_request) { 386 if (e->type->icq_cache && rq_ioc(bio)) 387 blk_mq_sched_assign_ioc(rq, bio); 388 389 e->type->ops.mq.prepare_request(rq, bio); 390 rq->rq_flags |= RQF_ELVPRIV; 391 } 392 } 393 data->hctx->queued++; 394 return rq; 395 } 396 397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 398 blk_mq_req_flags_t flags) 399 { 400 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 401 struct request *rq; 402 int ret; 403 404 ret = blk_queue_enter(q, flags); 405 if (ret) 406 return ERR_PTR(ret); 407 408 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 409 blk_queue_exit(q); 410 411 if (!rq) 412 return ERR_PTR(-EWOULDBLOCK); 413 414 blk_mq_put_ctx(alloc_data.ctx); 415 416 rq->__data_len = 0; 417 rq->__sector = (sector_t) -1; 418 rq->bio = rq->biotail = NULL; 419 return rq; 420 } 421 EXPORT_SYMBOL(blk_mq_alloc_request); 422 423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 424 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 425 { 426 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 427 struct request *rq; 428 unsigned int cpu; 429 int ret; 430 431 /* 432 * If the tag allocator sleeps we could get an allocation for a 433 * different hardware context. No need to complicate the low level 434 * allocator for this for the rare use case of a command tied to 435 * a specific queue. 436 */ 437 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 438 return ERR_PTR(-EINVAL); 439 440 if (hctx_idx >= q->nr_hw_queues) 441 return ERR_PTR(-EIO); 442 443 ret = blk_queue_enter(q, flags); 444 if (ret) 445 return ERR_PTR(ret); 446 447 /* 448 * Check if the hardware context is actually mapped to anything. 449 * If not tell the caller that it should skip this queue. 450 */ 451 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 452 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 453 blk_queue_exit(q); 454 return ERR_PTR(-EXDEV); 455 } 456 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 457 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 458 459 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 460 blk_queue_exit(q); 461 462 if (!rq) 463 return ERR_PTR(-EWOULDBLOCK); 464 465 return rq; 466 } 467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 468 469 static void __blk_mq_free_request(struct request *rq) 470 { 471 struct request_queue *q = rq->q; 472 struct blk_mq_ctx *ctx = rq->mq_ctx; 473 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 474 const int sched_tag = rq->internal_tag; 475 476 if (rq->tag != -1) 477 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 478 if (sched_tag != -1) 479 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 480 blk_mq_sched_restart(hctx); 481 blk_queue_exit(q); 482 } 483 484 void blk_mq_free_request(struct request *rq) 485 { 486 struct request_queue *q = rq->q; 487 struct elevator_queue *e = q->elevator; 488 struct blk_mq_ctx *ctx = rq->mq_ctx; 489 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 490 491 if (rq->rq_flags & RQF_ELVPRIV) { 492 if (e && e->type->ops.mq.finish_request) 493 e->type->ops.mq.finish_request(rq); 494 if (rq->elv.icq) { 495 put_io_context(rq->elv.icq->ioc); 496 rq->elv.icq = NULL; 497 } 498 } 499 500 ctx->rq_completed[rq_is_sync(rq)]++; 501 if (rq->rq_flags & RQF_MQ_INFLIGHT) 502 atomic_dec(&hctx->nr_active); 503 504 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 505 laptop_io_completion(q->backing_dev_info); 506 507 wbt_done(q->rq_wb, rq); 508 509 if (blk_rq_rl(rq)) 510 blk_put_rl(blk_rq_rl(rq)); 511 512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 513 if (refcount_dec_and_test(&rq->ref)) 514 __blk_mq_free_request(rq); 515 } 516 EXPORT_SYMBOL_GPL(blk_mq_free_request); 517 518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 519 { 520 u64 now = ktime_get_ns(); 521 522 if (rq->rq_flags & RQF_STATS) { 523 blk_mq_poll_stats_start(rq->q); 524 blk_stat_add(rq, now); 525 } 526 527 blk_account_io_done(rq, now); 528 529 if (rq->end_io) { 530 wbt_done(rq->q->rq_wb, rq); 531 rq->end_io(rq, error); 532 } else { 533 if (unlikely(blk_bidi_rq(rq))) 534 blk_mq_free_request(rq->next_rq); 535 blk_mq_free_request(rq); 536 } 537 } 538 EXPORT_SYMBOL(__blk_mq_end_request); 539 540 void blk_mq_end_request(struct request *rq, blk_status_t error) 541 { 542 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 543 BUG(); 544 __blk_mq_end_request(rq, error); 545 } 546 EXPORT_SYMBOL(blk_mq_end_request); 547 548 static void __blk_mq_complete_request_remote(void *data) 549 { 550 struct request *rq = data; 551 552 rq->q->softirq_done_fn(rq); 553 } 554 555 static void __blk_mq_complete_request(struct request *rq) 556 { 557 struct blk_mq_ctx *ctx = rq->mq_ctx; 558 bool shared = false; 559 int cpu; 560 561 if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) != 562 MQ_RQ_IN_FLIGHT) 563 return; 564 565 if (rq->internal_tag != -1) 566 blk_mq_sched_completed_request(rq); 567 568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 569 rq->q->softirq_done_fn(rq); 570 return; 571 } 572 573 cpu = get_cpu(); 574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 575 shared = cpus_share_cache(cpu, ctx->cpu); 576 577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 578 rq->csd.func = __blk_mq_complete_request_remote; 579 rq->csd.info = rq; 580 rq->csd.flags = 0; 581 smp_call_function_single_async(ctx->cpu, &rq->csd); 582 } else { 583 rq->q->softirq_done_fn(rq); 584 } 585 put_cpu(); 586 } 587 588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 589 __releases(hctx->srcu) 590 { 591 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 592 rcu_read_unlock(); 593 else 594 srcu_read_unlock(hctx->srcu, srcu_idx); 595 } 596 597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 598 __acquires(hctx->srcu) 599 { 600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 601 /* shut up gcc false positive */ 602 *srcu_idx = 0; 603 rcu_read_lock(); 604 } else 605 *srcu_idx = srcu_read_lock(hctx->srcu); 606 } 607 608 /** 609 * blk_mq_complete_request - end I/O on a request 610 * @rq: the request being processed 611 * 612 * Description: 613 * Ends all I/O on a request. It does not handle partial completions. 614 * The actual completion happens out-of-order, through a IPI handler. 615 **/ 616 void blk_mq_complete_request(struct request *rq) 617 { 618 if (unlikely(blk_should_fake_timeout(rq->q))) 619 return; 620 __blk_mq_complete_request(rq); 621 } 622 EXPORT_SYMBOL(blk_mq_complete_request); 623 624 int blk_mq_request_started(struct request *rq) 625 { 626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 627 } 628 EXPORT_SYMBOL_GPL(blk_mq_request_started); 629 630 void blk_mq_start_request(struct request *rq) 631 { 632 struct request_queue *q = rq->q; 633 634 blk_mq_sched_started_request(rq); 635 636 trace_block_rq_issue(q, rq); 637 638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 639 rq->io_start_time_ns = ktime_get_ns(); 640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 641 rq->throtl_size = blk_rq_sectors(rq); 642 #endif 643 rq->rq_flags |= RQF_STATS; 644 wbt_issue(q->rq_wb, rq); 645 } 646 647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 648 649 blk_add_timer(rq); 650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 651 652 if (q->dma_drain_size && blk_rq_bytes(rq)) { 653 /* 654 * Make sure space for the drain appears. We know we can do 655 * this because max_hw_segments has been adjusted to be one 656 * fewer than the device can handle. 657 */ 658 rq->nr_phys_segments++; 659 } 660 } 661 EXPORT_SYMBOL(blk_mq_start_request); 662 663 static void __blk_mq_requeue_request(struct request *rq) 664 { 665 struct request_queue *q = rq->q; 666 667 blk_mq_put_driver_tag(rq); 668 669 trace_block_rq_requeue(q, rq); 670 wbt_requeue(q->rq_wb, rq); 671 672 if (blk_mq_request_started(rq)) { 673 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 674 if (q->dma_drain_size && blk_rq_bytes(rq)) 675 rq->nr_phys_segments--; 676 } 677 } 678 679 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 680 { 681 __blk_mq_requeue_request(rq); 682 683 /* this request will be re-inserted to io scheduler queue */ 684 blk_mq_sched_requeue_request(rq); 685 686 BUG_ON(blk_queued_rq(rq)); 687 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 688 } 689 EXPORT_SYMBOL(blk_mq_requeue_request); 690 691 static void blk_mq_requeue_work(struct work_struct *work) 692 { 693 struct request_queue *q = 694 container_of(work, struct request_queue, requeue_work.work); 695 LIST_HEAD(rq_list); 696 struct request *rq, *next; 697 698 spin_lock_irq(&q->requeue_lock); 699 list_splice_init(&q->requeue_list, &rq_list); 700 spin_unlock_irq(&q->requeue_lock); 701 702 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 703 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 704 continue; 705 706 rq->rq_flags &= ~RQF_SOFTBARRIER; 707 list_del_init(&rq->queuelist); 708 blk_mq_sched_insert_request(rq, true, false, false); 709 } 710 711 while (!list_empty(&rq_list)) { 712 rq = list_entry(rq_list.next, struct request, queuelist); 713 list_del_init(&rq->queuelist); 714 blk_mq_sched_insert_request(rq, false, false, false); 715 } 716 717 blk_mq_run_hw_queues(q, false); 718 } 719 720 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 721 bool kick_requeue_list) 722 { 723 struct request_queue *q = rq->q; 724 unsigned long flags; 725 726 /* 727 * We abuse this flag that is otherwise used by the I/O scheduler to 728 * request head insertion from the workqueue. 729 */ 730 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 731 732 spin_lock_irqsave(&q->requeue_lock, flags); 733 if (at_head) { 734 rq->rq_flags |= RQF_SOFTBARRIER; 735 list_add(&rq->queuelist, &q->requeue_list); 736 } else { 737 list_add_tail(&rq->queuelist, &q->requeue_list); 738 } 739 spin_unlock_irqrestore(&q->requeue_lock, flags); 740 741 if (kick_requeue_list) 742 blk_mq_kick_requeue_list(q); 743 } 744 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 745 746 void blk_mq_kick_requeue_list(struct request_queue *q) 747 { 748 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 749 } 750 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 751 752 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 753 unsigned long msecs) 754 { 755 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 756 msecs_to_jiffies(msecs)); 757 } 758 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 759 760 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 761 { 762 if (tag < tags->nr_tags) { 763 prefetch(tags->rqs[tag]); 764 return tags->rqs[tag]; 765 } 766 767 return NULL; 768 } 769 EXPORT_SYMBOL(blk_mq_tag_to_rq); 770 771 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 772 { 773 if (req->q->mq_ops->timeout) { 774 enum blk_eh_timer_return ret; 775 776 ret = req->q->mq_ops->timeout(req, reserved); 777 if (ret == BLK_EH_DONE) 778 return; 779 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 780 } 781 782 blk_add_timer(req); 783 } 784 785 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 786 { 787 unsigned long deadline; 788 789 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 790 return false; 791 792 deadline = blk_rq_deadline(rq); 793 if (time_after_eq(jiffies, deadline)) 794 return true; 795 796 if (*next == 0) 797 *next = deadline; 798 else if (time_after(*next, deadline)) 799 *next = deadline; 800 return false; 801 } 802 803 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 804 struct request *rq, void *priv, bool reserved) 805 { 806 unsigned long *next = priv; 807 808 /* 809 * Just do a quick check if it is expired before locking the request in 810 * so we're not unnecessarilly synchronizing across CPUs. 811 */ 812 if (!blk_mq_req_expired(rq, next)) 813 return; 814 815 /* 816 * We have reason to believe the request may be expired. Take a 817 * reference on the request to lock this request lifetime into its 818 * currently allocated context to prevent it from being reallocated in 819 * the event the completion by-passes this timeout handler. 820 * 821 * If the reference was already released, then the driver beat the 822 * timeout handler to posting a natural completion. 823 */ 824 if (!refcount_inc_not_zero(&rq->ref)) 825 return; 826 827 /* 828 * The request is now locked and cannot be reallocated underneath the 829 * timeout handler's processing. Re-verify this exact request is truly 830 * expired; if it is not expired, then the request was completed and 831 * reallocated as a new request. 832 */ 833 if (blk_mq_req_expired(rq, next)) 834 blk_mq_rq_timed_out(rq, reserved); 835 if (refcount_dec_and_test(&rq->ref)) 836 __blk_mq_free_request(rq); 837 } 838 839 static void blk_mq_timeout_work(struct work_struct *work) 840 { 841 struct request_queue *q = 842 container_of(work, struct request_queue, timeout_work); 843 unsigned long next = 0; 844 struct blk_mq_hw_ctx *hctx; 845 int i; 846 847 /* A deadlock might occur if a request is stuck requiring a 848 * timeout at the same time a queue freeze is waiting 849 * completion, since the timeout code would not be able to 850 * acquire the queue reference here. 851 * 852 * That's why we don't use blk_queue_enter here; instead, we use 853 * percpu_ref_tryget directly, because we need to be able to 854 * obtain a reference even in the short window between the queue 855 * starting to freeze, by dropping the first reference in 856 * blk_freeze_queue_start, and the moment the last request is 857 * consumed, marked by the instant q_usage_counter reaches 858 * zero. 859 */ 860 if (!percpu_ref_tryget(&q->q_usage_counter)) 861 return; 862 863 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 864 865 if (next != 0) { 866 mod_timer(&q->timeout, next); 867 } else { 868 /* 869 * Request timeouts are handled as a forward rolling timer. If 870 * we end up here it means that no requests are pending and 871 * also that no request has been pending for a while. Mark 872 * each hctx as idle. 873 */ 874 queue_for_each_hw_ctx(q, hctx, i) { 875 /* the hctx may be unmapped, so check it here */ 876 if (blk_mq_hw_queue_mapped(hctx)) 877 blk_mq_tag_idle(hctx); 878 } 879 } 880 blk_queue_exit(q); 881 } 882 883 struct flush_busy_ctx_data { 884 struct blk_mq_hw_ctx *hctx; 885 struct list_head *list; 886 }; 887 888 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 889 { 890 struct flush_busy_ctx_data *flush_data = data; 891 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 892 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 893 894 spin_lock(&ctx->lock); 895 list_splice_tail_init(&ctx->rq_list, flush_data->list); 896 sbitmap_clear_bit(sb, bitnr); 897 spin_unlock(&ctx->lock); 898 return true; 899 } 900 901 /* 902 * Process software queues that have been marked busy, splicing them 903 * to the for-dispatch 904 */ 905 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 906 { 907 struct flush_busy_ctx_data data = { 908 .hctx = hctx, 909 .list = list, 910 }; 911 912 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 913 } 914 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 915 916 struct dispatch_rq_data { 917 struct blk_mq_hw_ctx *hctx; 918 struct request *rq; 919 }; 920 921 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 922 void *data) 923 { 924 struct dispatch_rq_data *dispatch_data = data; 925 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 926 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 927 928 spin_lock(&ctx->lock); 929 if (!list_empty(&ctx->rq_list)) { 930 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 931 list_del_init(&dispatch_data->rq->queuelist); 932 if (list_empty(&ctx->rq_list)) 933 sbitmap_clear_bit(sb, bitnr); 934 } 935 spin_unlock(&ctx->lock); 936 937 return !dispatch_data->rq; 938 } 939 940 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 941 struct blk_mq_ctx *start) 942 { 943 unsigned off = start ? start->index_hw : 0; 944 struct dispatch_rq_data data = { 945 .hctx = hctx, 946 .rq = NULL, 947 }; 948 949 __sbitmap_for_each_set(&hctx->ctx_map, off, 950 dispatch_rq_from_ctx, &data); 951 952 return data.rq; 953 } 954 955 static inline unsigned int queued_to_index(unsigned int queued) 956 { 957 if (!queued) 958 return 0; 959 960 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 961 } 962 963 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 964 bool wait) 965 { 966 struct blk_mq_alloc_data data = { 967 .q = rq->q, 968 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 969 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 970 }; 971 972 might_sleep_if(wait); 973 974 if (rq->tag != -1) 975 goto done; 976 977 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 978 data.flags |= BLK_MQ_REQ_RESERVED; 979 980 rq->tag = blk_mq_get_tag(&data); 981 if (rq->tag >= 0) { 982 if (blk_mq_tag_busy(data.hctx)) { 983 rq->rq_flags |= RQF_MQ_INFLIGHT; 984 atomic_inc(&data.hctx->nr_active); 985 } 986 data.hctx->tags->rqs[rq->tag] = rq; 987 } 988 989 done: 990 if (hctx) 991 *hctx = data.hctx; 992 return rq->tag != -1; 993 } 994 995 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 996 int flags, void *key) 997 { 998 struct blk_mq_hw_ctx *hctx; 999 1000 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1001 1002 list_del_init(&wait->entry); 1003 blk_mq_run_hw_queue(hctx, true); 1004 return 1; 1005 } 1006 1007 /* 1008 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1009 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1010 * restart. For both cases, take care to check the condition again after 1011 * marking us as waiting. 1012 */ 1013 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1014 struct request *rq) 1015 { 1016 struct blk_mq_hw_ctx *this_hctx = *hctx; 1017 struct sbq_wait_state *ws; 1018 wait_queue_entry_t *wait; 1019 bool ret; 1020 1021 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1022 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1023 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1024 1025 /* 1026 * It's possible that a tag was freed in the window between the 1027 * allocation failure and adding the hardware queue to the wait 1028 * queue. 1029 * 1030 * Don't clear RESTART here, someone else could have set it. 1031 * At most this will cost an extra queue run. 1032 */ 1033 return blk_mq_get_driver_tag(rq, hctx, false); 1034 } 1035 1036 wait = &this_hctx->dispatch_wait; 1037 if (!list_empty_careful(&wait->entry)) 1038 return false; 1039 1040 spin_lock(&this_hctx->lock); 1041 if (!list_empty(&wait->entry)) { 1042 spin_unlock(&this_hctx->lock); 1043 return false; 1044 } 1045 1046 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1047 add_wait_queue(&ws->wait, wait); 1048 1049 /* 1050 * It's possible that a tag was freed in the window between the 1051 * allocation failure and adding the hardware queue to the wait 1052 * queue. 1053 */ 1054 ret = blk_mq_get_driver_tag(rq, hctx, false); 1055 if (!ret) { 1056 spin_unlock(&this_hctx->lock); 1057 return false; 1058 } 1059 1060 /* 1061 * We got a tag, remove ourselves from the wait queue to ensure 1062 * someone else gets the wakeup. 1063 */ 1064 spin_lock_irq(&ws->wait.lock); 1065 list_del_init(&wait->entry); 1066 spin_unlock_irq(&ws->wait.lock); 1067 spin_unlock(&this_hctx->lock); 1068 1069 return true; 1070 } 1071 1072 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1073 1074 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1075 bool got_budget) 1076 { 1077 struct blk_mq_hw_ctx *hctx; 1078 struct request *rq, *nxt; 1079 bool no_tag = false; 1080 int errors, queued; 1081 blk_status_t ret = BLK_STS_OK; 1082 1083 if (list_empty(list)) 1084 return false; 1085 1086 WARN_ON(!list_is_singular(list) && got_budget); 1087 1088 /* 1089 * Now process all the entries, sending them to the driver. 1090 */ 1091 errors = queued = 0; 1092 do { 1093 struct blk_mq_queue_data bd; 1094 1095 rq = list_first_entry(list, struct request, queuelist); 1096 1097 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); 1098 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1099 break; 1100 1101 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1102 /* 1103 * The initial allocation attempt failed, so we need to 1104 * rerun the hardware queue when a tag is freed. The 1105 * waitqueue takes care of that. If the queue is run 1106 * before we add this entry back on the dispatch list, 1107 * we'll re-run it below. 1108 */ 1109 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1110 blk_mq_put_dispatch_budget(hctx); 1111 /* 1112 * For non-shared tags, the RESTART check 1113 * will suffice. 1114 */ 1115 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1116 no_tag = true; 1117 break; 1118 } 1119 } 1120 1121 list_del_init(&rq->queuelist); 1122 1123 bd.rq = rq; 1124 1125 /* 1126 * Flag last if we have no more requests, or if we have more 1127 * but can't assign a driver tag to it. 1128 */ 1129 if (list_empty(list)) 1130 bd.last = true; 1131 else { 1132 nxt = list_first_entry(list, struct request, queuelist); 1133 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1134 } 1135 1136 ret = q->mq_ops->queue_rq(hctx, &bd); 1137 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1138 /* 1139 * If an I/O scheduler has been configured and we got a 1140 * driver tag for the next request already, free it 1141 * again. 1142 */ 1143 if (!list_empty(list)) { 1144 nxt = list_first_entry(list, struct request, queuelist); 1145 blk_mq_put_driver_tag(nxt); 1146 } 1147 list_add(&rq->queuelist, list); 1148 __blk_mq_requeue_request(rq); 1149 break; 1150 } 1151 1152 if (unlikely(ret != BLK_STS_OK)) { 1153 errors++; 1154 blk_mq_end_request(rq, BLK_STS_IOERR); 1155 continue; 1156 } 1157 1158 queued++; 1159 } while (!list_empty(list)); 1160 1161 hctx->dispatched[queued_to_index(queued)]++; 1162 1163 /* 1164 * Any items that need requeuing? Stuff them into hctx->dispatch, 1165 * that is where we will continue on next queue run. 1166 */ 1167 if (!list_empty(list)) { 1168 bool needs_restart; 1169 1170 spin_lock(&hctx->lock); 1171 list_splice_init(list, &hctx->dispatch); 1172 spin_unlock(&hctx->lock); 1173 1174 /* 1175 * If SCHED_RESTART was set by the caller of this function and 1176 * it is no longer set that means that it was cleared by another 1177 * thread and hence that a queue rerun is needed. 1178 * 1179 * If 'no_tag' is set, that means that we failed getting 1180 * a driver tag with an I/O scheduler attached. If our dispatch 1181 * waitqueue is no longer active, ensure that we run the queue 1182 * AFTER adding our entries back to the list. 1183 * 1184 * If no I/O scheduler has been configured it is possible that 1185 * the hardware queue got stopped and restarted before requests 1186 * were pushed back onto the dispatch list. Rerun the queue to 1187 * avoid starvation. Notes: 1188 * - blk_mq_run_hw_queue() checks whether or not a queue has 1189 * been stopped before rerunning a queue. 1190 * - Some but not all block drivers stop a queue before 1191 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1192 * and dm-rq. 1193 * 1194 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1195 * bit is set, run queue after a delay to avoid IO stalls 1196 * that could otherwise occur if the queue is idle. 1197 */ 1198 needs_restart = blk_mq_sched_needs_restart(hctx); 1199 if (!needs_restart || 1200 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1201 blk_mq_run_hw_queue(hctx, true); 1202 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1203 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1204 } 1205 1206 return (queued + errors) != 0; 1207 } 1208 1209 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1210 { 1211 int srcu_idx; 1212 1213 /* 1214 * We should be running this queue from one of the CPUs that 1215 * are mapped to it. 1216 * 1217 * There are at least two related races now between setting 1218 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1219 * __blk_mq_run_hw_queue(): 1220 * 1221 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1222 * but later it becomes online, then this warning is harmless 1223 * at all 1224 * 1225 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1226 * but later it becomes offline, then the warning can't be 1227 * triggered, and we depend on blk-mq timeout handler to 1228 * handle dispatched requests to this hctx 1229 */ 1230 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1231 cpu_online(hctx->next_cpu)) { 1232 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1233 raw_smp_processor_id(), 1234 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1235 dump_stack(); 1236 } 1237 1238 /* 1239 * We can't run the queue inline with ints disabled. Ensure that 1240 * we catch bad users of this early. 1241 */ 1242 WARN_ON_ONCE(in_interrupt()); 1243 1244 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1245 1246 hctx_lock(hctx, &srcu_idx); 1247 blk_mq_sched_dispatch_requests(hctx); 1248 hctx_unlock(hctx, srcu_idx); 1249 } 1250 1251 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1252 { 1253 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1254 1255 if (cpu >= nr_cpu_ids) 1256 cpu = cpumask_first(hctx->cpumask); 1257 return cpu; 1258 } 1259 1260 /* 1261 * It'd be great if the workqueue API had a way to pass 1262 * in a mask and had some smarts for more clever placement. 1263 * For now we just round-robin here, switching for every 1264 * BLK_MQ_CPU_WORK_BATCH queued items. 1265 */ 1266 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1267 { 1268 bool tried = false; 1269 int next_cpu = hctx->next_cpu; 1270 1271 if (hctx->queue->nr_hw_queues == 1) 1272 return WORK_CPU_UNBOUND; 1273 1274 if (--hctx->next_cpu_batch <= 0) { 1275 select_cpu: 1276 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1277 cpu_online_mask); 1278 if (next_cpu >= nr_cpu_ids) 1279 next_cpu = blk_mq_first_mapped_cpu(hctx); 1280 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1281 } 1282 1283 /* 1284 * Do unbound schedule if we can't find a online CPU for this hctx, 1285 * and it should only happen in the path of handling CPU DEAD. 1286 */ 1287 if (!cpu_online(next_cpu)) { 1288 if (!tried) { 1289 tried = true; 1290 goto select_cpu; 1291 } 1292 1293 /* 1294 * Make sure to re-select CPU next time once after CPUs 1295 * in hctx->cpumask become online again. 1296 */ 1297 hctx->next_cpu = next_cpu; 1298 hctx->next_cpu_batch = 1; 1299 return WORK_CPU_UNBOUND; 1300 } 1301 1302 hctx->next_cpu = next_cpu; 1303 return next_cpu; 1304 } 1305 1306 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1307 unsigned long msecs) 1308 { 1309 if (unlikely(blk_mq_hctx_stopped(hctx))) 1310 return; 1311 1312 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1313 int cpu = get_cpu(); 1314 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1315 __blk_mq_run_hw_queue(hctx); 1316 put_cpu(); 1317 return; 1318 } 1319 1320 put_cpu(); 1321 } 1322 1323 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1324 msecs_to_jiffies(msecs)); 1325 } 1326 1327 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1328 { 1329 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1330 } 1331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1332 1333 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1334 { 1335 int srcu_idx; 1336 bool need_run; 1337 1338 /* 1339 * When queue is quiesced, we may be switching io scheduler, or 1340 * updating nr_hw_queues, or other things, and we can't run queue 1341 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1342 * 1343 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1344 * quiesced. 1345 */ 1346 hctx_lock(hctx, &srcu_idx); 1347 need_run = !blk_queue_quiesced(hctx->queue) && 1348 blk_mq_hctx_has_pending(hctx); 1349 hctx_unlock(hctx, srcu_idx); 1350 1351 if (need_run) { 1352 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1353 return true; 1354 } 1355 1356 return false; 1357 } 1358 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1359 1360 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1361 { 1362 struct blk_mq_hw_ctx *hctx; 1363 int i; 1364 1365 queue_for_each_hw_ctx(q, hctx, i) { 1366 if (blk_mq_hctx_stopped(hctx)) 1367 continue; 1368 1369 blk_mq_run_hw_queue(hctx, async); 1370 } 1371 } 1372 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1373 1374 /** 1375 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1376 * @q: request queue. 1377 * 1378 * The caller is responsible for serializing this function against 1379 * blk_mq_{start,stop}_hw_queue(). 1380 */ 1381 bool blk_mq_queue_stopped(struct request_queue *q) 1382 { 1383 struct blk_mq_hw_ctx *hctx; 1384 int i; 1385 1386 queue_for_each_hw_ctx(q, hctx, i) 1387 if (blk_mq_hctx_stopped(hctx)) 1388 return true; 1389 1390 return false; 1391 } 1392 EXPORT_SYMBOL(blk_mq_queue_stopped); 1393 1394 /* 1395 * This function is often used for pausing .queue_rq() by driver when 1396 * there isn't enough resource or some conditions aren't satisfied, and 1397 * BLK_STS_RESOURCE is usually returned. 1398 * 1399 * We do not guarantee that dispatch can be drained or blocked 1400 * after blk_mq_stop_hw_queue() returns. Please use 1401 * blk_mq_quiesce_queue() for that requirement. 1402 */ 1403 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1404 { 1405 cancel_delayed_work(&hctx->run_work); 1406 1407 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1408 } 1409 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1410 1411 /* 1412 * This function is often used for pausing .queue_rq() by driver when 1413 * there isn't enough resource or some conditions aren't satisfied, and 1414 * BLK_STS_RESOURCE is usually returned. 1415 * 1416 * We do not guarantee that dispatch can be drained or blocked 1417 * after blk_mq_stop_hw_queues() returns. Please use 1418 * blk_mq_quiesce_queue() for that requirement. 1419 */ 1420 void blk_mq_stop_hw_queues(struct request_queue *q) 1421 { 1422 struct blk_mq_hw_ctx *hctx; 1423 int i; 1424 1425 queue_for_each_hw_ctx(q, hctx, i) 1426 blk_mq_stop_hw_queue(hctx); 1427 } 1428 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1429 1430 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1431 { 1432 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1433 1434 blk_mq_run_hw_queue(hctx, false); 1435 } 1436 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1437 1438 void blk_mq_start_hw_queues(struct request_queue *q) 1439 { 1440 struct blk_mq_hw_ctx *hctx; 1441 int i; 1442 1443 queue_for_each_hw_ctx(q, hctx, i) 1444 blk_mq_start_hw_queue(hctx); 1445 } 1446 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1447 1448 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1449 { 1450 if (!blk_mq_hctx_stopped(hctx)) 1451 return; 1452 1453 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1454 blk_mq_run_hw_queue(hctx, async); 1455 } 1456 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1457 1458 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1459 { 1460 struct blk_mq_hw_ctx *hctx; 1461 int i; 1462 1463 queue_for_each_hw_ctx(q, hctx, i) 1464 blk_mq_start_stopped_hw_queue(hctx, async); 1465 } 1466 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1467 1468 static void blk_mq_run_work_fn(struct work_struct *work) 1469 { 1470 struct blk_mq_hw_ctx *hctx; 1471 1472 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1473 1474 /* 1475 * If we are stopped, don't run the queue. 1476 */ 1477 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1478 return; 1479 1480 __blk_mq_run_hw_queue(hctx); 1481 } 1482 1483 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1484 struct request *rq, 1485 bool at_head) 1486 { 1487 struct blk_mq_ctx *ctx = rq->mq_ctx; 1488 1489 lockdep_assert_held(&ctx->lock); 1490 1491 trace_block_rq_insert(hctx->queue, rq); 1492 1493 if (at_head) 1494 list_add(&rq->queuelist, &ctx->rq_list); 1495 else 1496 list_add_tail(&rq->queuelist, &ctx->rq_list); 1497 } 1498 1499 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1500 bool at_head) 1501 { 1502 struct blk_mq_ctx *ctx = rq->mq_ctx; 1503 1504 lockdep_assert_held(&ctx->lock); 1505 1506 __blk_mq_insert_req_list(hctx, rq, at_head); 1507 blk_mq_hctx_mark_pending(hctx, ctx); 1508 } 1509 1510 /* 1511 * Should only be used carefully, when the caller knows we want to 1512 * bypass a potential IO scheduler on the target device. 1513 */ 1514 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1515 { 1516 struct blk_mq_ctx *ctx = rq->mq_ctx; 1517 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1518 1519 spin_lock(&hctx->lock); 1520 list_add_tail(&rq->queuelist, &hctx->dispatch); 1521 spin_unlock(&hctx->lock); 1522 1523 if (run_queue) 1524 blk_mq_run_hw_queue(hctx, false); 1525 } 1526 1527 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1528 struct list_head *list) 1529 1530 { 1531 /* 1532 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1533 * offline now 1534 */ 1535 spin_lock(&ctx->lock); 1536 while (!list_empty(list)) { 1537 struct request *rq; 1538 1539 rq = list_first_entry(list, struct request, queuelist); 1540 BUG_ON(rq->mq_ctx != ctx); 1541 list_del_init(&rq->queuelist); 1542 __blk_mq_insert_req_list(hctx, rq, false); 1543 } 1544 blk_mq_hctx_mark_pending(hctx, ctx); 1545 spin_unlock(&ctx->lock); 1546 } 1547 1548 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1549 { 1550 struct request *rqa = container_of(a, struct request, queuelist); 1551 struct request *rqb = container_of(b, struct request, queuelist); 1552 1553 return !(rqa->mq_ctx < rqb->mq_ctx || 1554 (rqa->mq_ctx == rqb->mq_ctx && 1555 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1556 } 1557 1558 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1559 { 1560 struct blk_mq_ctx *this_ctx; 1561 struct request_queue *this_q; 1562 struct request *rq; 1563 LIST_HEAD(list); 1564 LIST_HEAD(ctx_list); 1565 unsigned int depth; 1566 1567 list_splice_init(&plug->mq_list, &list); 1568 1569 list_sort(NULL, &list, plug_ctx_cmp); 1570 1571 this_q = NULL; 1572 this_ctx = NULL; 1573 depth = 0; 1574 1575 while (!list_empty(&list)) { 1576 rq = list_entry_rq(list.next); 1577 list_del_init(&rq->queuelist); 1578 BUG_ON(!rq->q); 1579 if (rq->mq_ctx != this_ctx) { 1580 if (this_ctx) { 1581 trace_block_unplug(this_q, depth, from_schedule); 1582 blk_mq_sched_insert_requests(this_q, this_ctx, 1583 &ctx_list, 1584 from_schedule); 1585 } 1586 1587 this_ctx = rq->mq_ctx; 1588 this_q = rq->q; 1589 depth = 0; 1590 } 1591 1592 depth++; 1593 list_add_tail(&rq->queuelist, &ctx_list); 1594 } 1595 1596 /* 1597 * If 'this_ctx' is set, we know we have entries to complete 1598 * on 'ctx_list'. Do those. 1599 */ 1600 if (this_ctx) { 1601 trace_block_unplug(this_q, depth, from_schedule); 1602 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1603 from_schedule); 1604 } 1605 } 1606 1607 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1608 { 1609 blk_init_request_from_bio(rq, bio); 1610 1611 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1612 1613 blk_account_io_start(rq, true); 1614 } 1615 1616 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1617 { 1618 if (rq->tag != -1) 1619 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1620 1621 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1622 } 1623 1624 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1625 struct request *rq, 1626 blk_qc_t *cookie) 1627 { 1628 struct request_queue *q = rq->q; 1629 struct blk_mq_queue_data bd = { 1630 .rq = rq, 1631 .last = true, 1632 }; 1633 blk_qc_t new_cookie; 1634 blk_status_t ret; 1635 1636 new_cookie = request_to_qc_t(hctx, rq); 1637 1638 /* 1639 * For OK queue, we are done. For error, caller may kill it. 1640 * Any other error (busy), just add it to our list as we 1641 * previously would have done. 1642 */ 1643 ret = q->mq_ops->queue_rq(hctx, &bd); 1644 switch (ret) { 1645 case BLK_STS_OK: 1646 *cookie = new_cookie; 1647 break; 1648 case BLK_STS_RESOURCE: 1649 case BLK_STS_DEV_RESOURCE: 1650 __blk_mq_requeue_request(rq); 1651 break; 1652 default: 1653 *cookie = BLK_QC_T_NONE; 1654 break; 1655 } 1656 1657 return ret; 1658 } 1659 1660 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1661 struct request *rq, 1662 blk_qc_t *cookie, 1663 bool bypass_insert) 1664 { 1665 struct request_queue *q = rq->q; 1666 bool run_queue = true; 1667 1668 /* 1669 * RCU or SRCU read lock is needed before checking quiesced flag. 1670 * 1671 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1672 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1673 * and avoid driver to try to dispatch again. 1674 */ 1675 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1676 run_queue = false; 1677 bypass_insert = false; 1678 goto insert; 1679 } 1680 1681 if (q->elevator && !bypass_insert) 1682 goto insert; 1683 1684 if (!blk_mq_get_dispatch_budget(hctx)) 1685 goto insert; 1686 1687 if (!blk_mq_get_driver_tag(rq, NULL, false)) { 1688 blk_mq_put_dispatch_budget(hctx); 1689 goto insert; 1690 } 1691 1692 return __blk_mq_issue_directly(hctx, rq, cookie); 1693 insert: 1694 if (bypass_insert) 1695 return BLK_STS_RESOURCE; 1696 1697 blk_mq_sched_insert_request(rq, false, run_queue, false); 1698 return BLK_STS_OK; 1699 } 1700 1701 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1702 struct request *rq, blk_qc_t *cookie) 1703 { 1704 blk_status_t ret; 1705 int srcu_idx; 1706 1707 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1708 1709 hctx_lock(hctx, &srcu_idx); 1710 1711 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1712 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1713 blk_mq_sched_insert_request(rq, false, true, false); 1714 else if (ret != BLK_STS_OK) 1715 blk_mq_end_request(rq, ret); 1716 1717 hctx_unlock(hctx, srcu_idx); 1718 } 1719 1720 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1721 { 1722 blk_status_t ret; 1723 int srcu_idx; 1724 blk_qc_t unused_cookie; 1725 struct blk_mq_ctx *ctx = rq->mq_ctx; 1726 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1727 1728 hctx_lock(hctx, &srcu_idx); 1729 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1730 hctx_unlock(hctx, srcu_idx); 1731 1732 return ret; 1733 } 1734 1735 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1736 { 1737 const int is_sync = op_is_sync(bio->bi_opf); 1738 const int is_flush_fua = op_is_flush(bio->bi_opf); 1739 struct blk_mq_alloc_data data = { .flags = 0 }; 1740 struct request *rq; 1741 unsigned int request_count = 0; 1742 struct blk_plug *plug; 1743 struct request *same_queue_rq = NULL; 1744 blk_qc_t cookie; 1745 unsigned int wb_acct; 1746 1747 blk_queue_bounce(q, &bio); 1748 1749 blk_queue_split(q, &bio); 1750 1751 if (!bio_integrity_prep(bio)) 1752 return BLK_QC_T_NONE; 1753 1754 if (!is_flush_fua && !blk_queue_nomerges(q) && 1755 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1756 return BLK_QC_T_NONE; 1757 1758 if (blk_mq_sched_bio_merge(q, bio)) 1759 return BLK_QC_T_NONE; 1760 1761 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1762 1763 trace_block_getrq(q, bio, bio->bi_opf); 1764 1765 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1766 if (unlikely(!rq)) { 1767 __wbt_done(q->rq_wb, wb_acct); 1768 if (bio->bi_opf & REQ_NOWAIT) 1769 bio_wouldblock_error(bio); 1770 return BLK_QC_T_NONE; 1771 } 1772 1773 wbt_track(rq, wb_acct); 1774 1775 cookie = request_to_qc_t(data.hctx, rq); 1776 1777 plug = current->plug; 1778 if (unlikely(is_flush_fua)) { 1779 blk_mq_put_ctx(data.ctx); 1780 blk_mq_bio_to_request(rq, bio); 1781 1782 /* bypass scheduler for flush rq */ 1783 blk_insert_flush(rq); 1784 blk_mq_run_hw_queue(data.hctx, true); 1785 } else if (plug && q->nr_hw_queues == 1) { 1786 struct request *last = NULL; 1787 1788 blk_mq_put_ctx(data.ctx); 1789 blk_mq_bio_to_request(rq, bio); 1790 1791 /* 1792 * @request_count may become stale because of schedule 1793 * out, so check the list again. 1794 */ 1795 if (list_empty(&plug->mq_list)) 1796 request_count = 0; 1797 else if (blk_queue_nomerges(q)) 1798 request_count = blk_plug_queued_count(q); 1799 1800 if (!request_count) 1801 trace_block_plug(q); 1802 else 1803 last = list_entry_rq(plug->mq_list.prev); 1804 1805 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1806 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1807 blk_flush_plug_list(plug, false); 1808 trace_block_plug(q); 1809 } 1810 1811 list_add_tail(&rq->queuelist, &plug->mq_list); 1812 } else if (plug && !blk_queue_nomerges(q)) { 1813 blk_mq_bio_to_request(rq, bio); 1814 1815 /* 1816 * We do limited plugging. If the bio can be merged, do that. 1817 * Otherwise the existing request in the plug list will be 1818 * issued. So the plug list will have one request at most 1819 * The plug list might get flushed before this. If that happens, 1820 * the plug list is empty, and same_queue_rq is invalid. 1821 */ 1822 if (list_empty(&plug->mq_list)) 1823 same_queue_rq = NULL; 1824 if (same_queue_rq) 1825 list_del_init(&same_queue_rq->queuelist); 1826 list_add_tail(&rq->queuelist, &plug->mq_list); 1827 1828 blk_mq_put_ctx(data.ctx); 1829 1830 if (same_queue_rq) { 1831 data.hctx = blk_mq_map_queue(q, 1832 same_queue_rq->mq_ctx->cpu); 1833 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1834 &cookie); 1835 } 1836 } else if (q->nr_hw_queues > 1 && is_sync) { 1837 blk_mq_put_ctx(data.ctx); 1838 blk_mq_bio_to_request(rq, bio); 1839 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1840 } else { 1841 blk_mq_put_ctx(data.ctx); 1842 blk_mq_bio_to_request(rq, bio); 1843 blk_mq_sched_insert_request(rq, false, true, true); 1844 } 1845 1846 return cookie; 1847 } 1848 1849 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1850 unsigned int hctx_idx) 1851 { 1852 struct page *page; 1853 1854 if (tags->rqs && set->ops->exit_request) { 1855 int i; 1856 1857 for (i = 0; i < tags->nr_tags; i++) { 1858 struct request *rq = tags->static_rqs[i]; 1859 1860 if (!rq) 1861 continue; 1862 set->ops->exit_request(set, rq, hctx_idx); 1863 tags->static_rqs[i] = NULL; 1864 } 1865 } 1866 1867 while (!list_empty(&tags->page_list)) { 1868 page = list_first_entry(&tags->page_list, struct page, lru); 1869 list_del_init(&page->lru); 1870 /* 1871 * Remove kmemleak object previously allocated in 1872 * blk_mq_init_rq_map(). 1873 */ 1874 kmemleak_free(page_address(page)); 1875 __free_pages(page, page->private); 1876 } 1877 } 1878 1879 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1880 { 1881 kfree(tags->rqs); 1882 tags->rqs = NULL; 1883 kfree(tags->static_rqs); 1884 tags->static_rqs = NULL; 1885 1886 blk_mq_free_tags(tags); 1887 } 1888 1889 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1890 unsigned int hctx_idx, 1891 unsigned int nr_tags, 1892 unsigned int reserved_tags) 1893 { 1894 struct blk_mq_tags *tags; 1895 int node; 1896 1897 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1898 if (node == NUMA_NO_NODE) 1899 node = set->numa_node; 1900 1901 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 1902 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1903 if (!tags) 1904 return NULL; 1905 1906 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1907 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1908 node); 1909 if (!tags->rqs) { 1910 blk_mq_free_tags(tags); 1911 return NULL; 1912 } 1913 1914 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1915 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1916 node); 1917 if (!tags->static_rqs) { 1918 kfree(tags->rqs); 1919 blk_mq_free_tags(tags); 1920 return NULL; 1921 } 1922 1923 return tags; 1924 } 1925 1926 static size_t order_to_size(unsigned int order) 1927 { 1928 return (size_t)PAGE_SIZE << order; 1929 } 1930 1931 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 1932 unsigned int hctx_idx, int node) 1933 { 1934 int ret; 1935 1936 if (set->ops->init_request) { 1937 ret = set->ops->init_request(set, rq, hctx_idx, node); 1938 if (ret) 1939 return ret; 1940 } 1941 1942 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1943 return 0; 1944 } 1945 1946 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1947 unsigned int hctx_idx, unsigned int depth) 1948 { 1949 unsigned int i, j, entries_per_page, max_order = 4; 1950 size_t rq_size, left; 1951 int node; 1952 1953 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 1954 if (node == NUMA_NO_NODE) 1955 node = set->numa_node; 1956 1957 INIT_LIST_HEAD(&tags->page_list); 1958 1959 /* 1960 * rq_size is the size of the request plus driver payload, rounded 1961 * to the cacheline size 1962 */ 1963 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1964 cache_line_size()); 1965 left = rq_size * depth; 1966 1967 for (i = 0; i < depth; ) { 1968 int this_order = max_order; 1969 struct page *page; 1970 int to_do; 1971 void *p; 1972 1973 while (this_order && left < order_to_size(this_order - 1)) 1974 this_order--; 1975 1976 do { 1977 page = alloc_pages_node(node, 1978 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1979 this_order); 1980 if (page) 1981 break; 1982 if (!this_order--) 1983 break; 1984 if (order_to_size(this_order) < rq_size) 1985 break; 1986 } while (1); 1987 1988 if (!page) 1989 goto fail; 1990 1991 page->private = this_order; 1992 list_add_tail(&page->lru, &tags->page_list); 1993 1994 p = page_address(page); 1995 /* 1996 * Allow kmemleak to scan these pages as they contain pointers 1997 * to additional allocations like via ops->init_request(). 1998 */ 1999 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2000 entries_per_page = order_to_size(this_order) / rq_size; 2001 to_do = min(entries_per_page, depth - i); 2002 left -= to_do * rq_size; 2003 for (j = 0; j < to_do; j++) { 2004 struct request *rq = p; 2005 2006 tags->static_rqs[i] = rq; 2007 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2008 tags->static_rqs[i] = NULL; 2009 goto fail; 2010 } 2011 2012 p += rq_size; 2013 i++; 2014 } 2015 } 2016 return 0; 2017 2018 fail: 2019 blk_mq_free_rqs(set, tags, hctx_idx); 2020 return -ENOMEM; 2021 } 2022 2023 /* 2024 * 'cpu' is going away. splice any existing rq_list entries from this 2025 * software queue to the hw queue dispatch list, and ensure that it 2026 * gets run. 2027 */ 2028 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2029 { 2030 struct blk_mq_hw_ctx *hctx; 2031 struct blk_mq_ctx *ctx; 2032 LIST_HEAD(tmp); 2033 2034 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2035 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2036 2037 spin_lock(&ctx->lock); 2038 if (!list_empty(&ctx->rq_list)) { 2039 list_splice_init(&ctx->rq_list, &tmp); 2040 blk_mq_hctx_clear_pending(hctx, ctx); 2041 } 2042 spin_unlock(&ctx->lock); 2043 2044 if (list_empty(&tmp)) 2045 return 0; 2046 2047 spin_lock(&hctx->lock); 2048 list_splice_tail_init(&tmp, &hctx->dispatch); 2049 spin_unlock(&hctx->lock); 2050 2051 blk_mq_run_hw_queue(hctx, true); 2052 return 0; 2053 } 2054 2055 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2056 { 2057 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2058 &hctx->cpuhp_dead); 2059 } 2060 2061 /* hctx->ctxs will be freed in queue's release handler */ 2062 static void blk_mq_exit_hctx(struct request_queue *q, 2063 struct blk_mq_tag_set *set, 2064 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2065 { 2066 blk_mq_debugfs_unregister_hctx(hctx); 2067 2068 if (blk_mq_hw_queue_mapped(hctx)) 2069 blk_mq_tag_idle(hctx); 2070 2071 if (set->ops->exit_request) 2072 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2073 2074 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2075 2076 if (set->ops->exit_hctx) 2077 set->ops->exit_hctx(hctx, hctx_idx); 2078 2079 if (hctx->flags & BLK_MQ_F_BLOCKING) 2080 cleanup_srcu_struct(hctx->srcu); 2081 2082 blk_mq_remove_cpuhp(hctx); 2083 blk_free_flush_queue(hctx->fq); 2084 sbitmap_free(&hctx->ctx_map); 2085 } 2086 2087 static void blk_mq_exit_hw_queues(struct request_queue *q, 2088 struct blk_mq_tag_set *set, int nr_queue) 2089 { 2090 struct blk_mq_hw_ctx *hctx; 2091 unsigned int i; 2092 2093 queue_for_each_hw_ctx(q, hctx, i) { 2094 if (i == nr_queue) 2095 break; 2096 blk_mq_exit_hctx(q, set, hctx, i); 2097 } 2098 } 2099 2100 static int blk_mq_init_hctx(struct request_queue *q, 2101 struct blk_mq_tag_set *set, 2102 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2103 { 2104 int node; 2105 2106 node = hctx->numa_node; 2107 if (node == NUMA_NO_NODE) 2108 node = hctx->numa_node = set->numa_node; 2109 2110 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2111 spin_lock_init(&hctx->lock); 2112 INIT_LIST_HEAD(&hctx->dispatch); 2113 hctx->queue = q; 2114 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2115 2116 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2117 2118 hctx->tags = set->tags[hctx_idx]; 2119 2120 /* 2121 * Allocate space for all possible cpus to avoid allocation at 2122 * runtime 2123 */ 2124 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2125 GFP_KERNEL, node); 2126 if (!hctx->ctxs) 2127 goto unregister_cpu_notifier; 2128 2129 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2130 node)) 2131 goto free_ctxs; 2132 2133 hctx->nr_ctx = 0; 2134 2135 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2136 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2137 2138 if (set->ops->init_hctx && 2139 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2140 goto free_bitmap; 2141 2142 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2143 goto exit_hctx; 2144 2145 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2146 if (!hctx->fq) 2147 goto sched_exit_hctx; 2148 2149 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2150 goto free_fq; 2151 2152 if (hctx->flags & BLK_MQ_F_BLOCKING) 2153 init_srcu_struct(hctx->srcu); 2154 2155 blk_mq_debugfs_register_hctx(q, hctx); 2156 2157 return 0; 2158 2159 free_fq: 2160 kfree(hctx->fq); 2161 sched_exit_hctx: 2162 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2163 exit_hctx: 2164 if (set->ops->exit_hctx) 2165 set->ops->exit_hctx(hctx, hctx_idx); 2166 free_bitmap: 2167 sbitmap_free(&hctx->ctx_map); 2168 free_ctxs: 2169 kfree(hctx->ctxs); 2170 unregister_cpu_notifier: 2171 blk_mq_remove_cpuhp(hctx); 2172 return -1; 2173 } 2174 2175 static void blk_mq_init_cpu_queues(struct request_queue *q, 2176 unsigned int nr_hw_queues) 2177 { 2178 unsigned int i; 2179 2180 for_each_possible_cpu(i) { 2181 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2182 struct blk_mq_hw_ctx *hctx; 2183 2184 __ctx->cpu = i; 2185 spin_lock_init(&__ctx->lock); 2186 INIT_LIST_HEAD(&__ctx->rq_list); 2187 __ctx->queue = q; 2188 2189 /* 2190 * Set local node, IFF we have more than one hw queue. If 2191 * not, we remain on the home node of the device 2192 */ 2193 hctx = blk_mq_map_queue(q, i); 2194 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2195 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2196 } 2197 } 2198 2199 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2200 { 2201 int ret = 0; 2202 2203 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2204 set->queue_depth, set->reserved_tags); 2205 if (!set->tags[hctx_idx]) 2206 return false; 2207 2208 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2209 set->queue_depth); 2210 if (!ret) 2211 return true; 2212 2213 blk_mq_free_rq_map(set->tags[hctx_idx]); 2214 set->tags[hctx_idx] = NULL; 2215 return false; 2216 } 2217 2218 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2219 unsigned int hctx_idx) 2220 { 2221 if (set->tags[hctx_idx]) { 2222 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2223 blk_mq_free_rq_map(set->tags[hctx_idx]); 2224 set->tags[hctx_idx] = NULL; 2225 } 2226 } 2227 2228 static void blk_mq_map_swqueue(struct request_queue *q) 2229 { 2230 unsigned int i, hctx_idx; 2231 struct blk_mq_hw_ctx *hctx; 2232 struct blk_mq_ctx *ctx; 2233 struct blk_mq_tag_set *set = q->tag_set; 2234 2235 /* 2236 * Avoid others reading imcomplete hctx->cpumask through sysfs 2237 */ 2238 mutex_lock(&q->sysfs_lock); 2239 2240 queue_for_each_hw_ctx(q, hctx, i) { 2241 cpumask_clear(hctx->cpumask); 2242 hctx->nr_ctx = 0; 2243 hctx->dispatch_from = NULL; 2244 } 2245 2246 /* 2247 * Map software to hardware queues. 2248 * 2249 * If the cpu isn't present, the cpu is mapped to first hctx. 2250 */ 2251 for_each_possible_cpu(i) { 2252 hctx_idx = q->mq_map[i]; 2253 /* unmapped hw queue can be remapped after CPU topo changed */ 2254 if (!set->tags[hctx_idx] && 2255 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2256 /* 2257 * If tags initialization fail for some hctx, 2258 * that hctx won't be brought online. In this 2259 * case, remap the current ctx to hctx[0] which 2260 * is guaranteed to always have tags allocated 2261 */ 2262 q->mq_map[i] = 0; 2263 } 2264 2265 ctx = per_cpu_ptr(q->queue_ctx, i); 2266 hctx = blk_mq_map_queue(q, i); 2267 2268 cpumask_set_cpu(i, hctx->cpumask); 2269 ctx->index_hw = hctx->nr_ctx; 2270 hctx->ctxs[hctx->nr_ctx++] = ctx; 2271 } 2272 2273 mutex_unlock(&q->sysfs_lock); 2274 2275 queue_for_each_hw_ctx(q, hctx, i) { 2276 /* 2277 * If no software queues are mapped to this hardware queue, 2278 * disable it and free the request entries. 2279 */ 2280 if (!hctx->nr_ctx) { 2281 /* Never unmap queue 0. We need it as a 2282 * fallback in case of a new remap fails 2283 * allocation 2284 */ 2285 if (i && set->tags[i]) 2286 blk_mq_free_map_and_requests(set, i); 2287 2288 hctx->tags = NULL; 2289 continue; 2290 } 2291 2292 hctx->tags = set->tags[i]; 2293 WARN_ON(!hctx->tags); 2294 2295 /* 2296 * Set the map size to the number of mapped software queues. 2297 * This is more accurate and more efficient than looping 2298 * over all possibly mapped software queues. 2299 */ 2300 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2301 2302 /* 2303 * Initialize batch roundrobin counts 2304 */ 2305 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2306 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2307 } 2308 } 2309 2310 /* 2311 * Caller needs to ensure that we're either frozen/quiesced, or that 2312 * the queue isn't live yet. 2313 */ 2314 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2315 { 2316 struct blk_mq_hw_ctx *hctx; 2317 int i; 2318 2319 queue_for_each_hw_ctx(q, hctx, i) { 2320 if (shared) { 2321 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2322 atomic_inc(&q->shared_hctx_restart); 2323 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2324 } else { 2325 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2326 atomic_dec(&q->shared_hctx_restart); 2327 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2328 } 2329 } 2330 } 2331 2332 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2333 bool shared) 2334 { 2335 struct request_queue *q; 2336 2337 lockdep_assert_held(&set->tag_list_lock); 2338 2339 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2340 blk_mq_freeze_queue(q); 2341 queue_set_hctx_shared(q, shared); 2342 blk_mq_unfreeze_queue(q); 2343 } 2344 } 2345 2346 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2347 { 2348 struct blk_mq_tag_set *set = q->tag_set; 2349 2350 mutex_lock(&set->tag_list_lock); 2351 list_del_rcu(&q->tag_set_list); 2352 if (list_is_singular(&set->tag_list)) { 2353 /* just transitioned to unshared */ 2354 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2355 /* update existing queue */ 2356 blk_mq_update_tag_set_depth(set, false); 2357 } 2358 mutex_unlock(&set->tag_list_lock); 2359 synchronize_rcu(); 2360 INIT_LIST_HEAD(&q->tag_set_list); 2361 } 2362 2363 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2364 struct request_queue *q) 2365 { 2366 q->tag_set = set; 2367 2368 mutex_lock(&set->tag_list_lock); 2369 2370 /* 2371 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2372 */ 2373 if (!list_empty(&set->tag_list) && 2374 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2375 set->flags |= BLK_MQ_F_TAG_SHARED; 2376 /* update existing queue */ 2377 blk_mq_update_tag_set_depth(set, true); 2378 } 2379 if (set->flags & BLK_MQ_F_TAG_SHARED) 2380 queue_set_hctx_shared(q, true); 2381 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2382 2383 mutex_unlock(&set->tag_list_lock); 2384 } 2385 2386 /* 2387 * It is the actual release handler for mq, but we do it from 2388 * request queue's release handler for avoiding use-after-free 2389 * and headache because q->mq_kobj shouldn't have been introduced, 2390 * but we can't group ctx/kctx kobj without it. 2391 */ 2392 void blk_mq_release(struct request_queue *q) 2393 { 2394 struct blk_mq_hw_ctx *hctx; 2395 unsigned int i; 2396 2397 /* hctx kobj stays in hctx */ 2398 queue_for_each_hw_ctx(q, hctx, i) { 2399 if (!hctx) 2400 continue; 2401 kobject_put(&hctx->kobj); 2402 } 2403 2404 q->mq_map = NULL; 2405 2406 kfree(q->queue_hw_ctx); 2407 2408 /* 2409 * release .mq_kobj and sw queue's kobject now because 2410 * both share lifetime with request queue. 2411 */ 2412 blk_mq_sysfs_deinit(q); 2413 2414 free_percpu(q->queue_ctx); 2415 } 2416 2417 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2418 { 2419 struct request_queue *uninit_q, *q; 2420 2421 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2422 if (!uninit_q) 2423 return ERR_PTR(-ENOMEM); 2424 2425 q = blk_mq_init_allocated_queue(set, uninit_q); 2426 if (IS_ERR(q)) 2427 blk_cleanup_queue(uninit_q); 2428 2429 return q; 2430 } 2431 EXPORT_SYMBOL(blk_mq_init_queue); 2432 2433 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2434 { 2435 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2436 2437 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2438 __alignof__(struct blk_mq_hw_ctx)) != 2439 sizeof(struct blk_mq_hw_ctx)); 2440 2441 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2442 hw_ctx_size += sizeof(struct srcu_struct); 2443 2444 return hw_ctx_size; 2445 } 2446 2447 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2448 struct request_queue *q) 2449 { 2450 int i, j; 2451 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2452 2453 blk_mq_sysfs_unregister(q); 2454 2455 /* protect against switching io scheduler */ 2456 mutex_lock(&q->sysfs_lock); 2457 for (i = 0; i < set->nr_hw_queues; i++) { 2458 int node; 2459 2460 if (hctxs[i]) 2461 continue; 2462 2463 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2464 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2465 GFP_KERNEL, node); 2466 if (!hctxs[i]) 2467 break; 2468 2469 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2470 node)) { 2471 kfree(hctxs[i]); 2472 hctxs[i] = NULL; 2473 break; 2474 } 2475 2476 atomic_set(&hctxs[i]->nr_active, 0); 2477 hctxs[i]->numa_node = node; 2478 hctxs[i]->queue_num = i; 2479 2480 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2481 free_cpumask_var(hctxs[i]->cpumask); 2482 kfree(hctxs[i]); 2483 hctxs[i] = NULL; 2484 break; 2485 } 2486 blk_mq_hctx_kobj_init(hctxs[i]); 2487 } 2488 for (j = i; j < q->nr_hw_queues; j++) { 2489 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2490 2491 if (hctx) { 2492 if (hctx->tags) 2493 blk_mq_free_map_and_requests(set, j); 2494 blk_mq_exit_hctx(q, set, hctx, j); 2495 kobject_put(&hctx->kobj); 2496 hctxs[j] = NULL; 2497 2498 } 2499 } 2500 q->nr_hw_queues = i; 2501 mutex_unlock(&q->sysfs_lock); 2502 blk_mq_sysfs_register(q); 2503 } 2504 2505 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2506 struct request_queue *q) 2507 { 2508 /* mark the queue as mq asap */ 2509 q->mq_ops = set->ops; 2510 2511 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2512 blk_mq_poll_stats_bkt, 2513 BLK_MQ_POLL_STATS_BKTS, q); 2514 if (!q->poll_cb) 2515 goto err_exit; 2516 2517 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2518 if (!q->queue_ctx) 2519 goto err_exit; 2520 2521 /* init q->mq_kobj and sw queues' kobjects */ 2522 blk_mq_sysfs_init(q); 2523 2524 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2525 GFP_KERNEL, set->numa_node); 2526 if (!q->queue_hw_ctx) 2527 goto err_percpu; 2528 2529 q->mq_map = set->mq_map; 2530 2531 blk_mq_realloc_hw_ctxs(set, q); 2532 if (!q->nr_hw_queues) 2533 goto err_hctxs; 2534 2535 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2536 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2537 2538 q->nr_queues = nr_cpu_ids; 2539 2540 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2541 2542 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2543 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2544 2545 q->sg_reserved_size = INT_MAX; 2546 2547 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2548 INIT_LIST_HEAD(&q->requeue_list); 2549 spin_lock_init(&q->requeue_lock); 2550 2551 blk_queue_make_request(q, blk_mq_make_request); 2552 if (q->mq_ops->poll) 2553 q->poll_fn = blk_mq_poll; 2554 2555 /* 2556 * Do this after blk_queue_make_request() overrides it... 2557 */ 2558 q->nr_requests = set->queue_depth; 2559 2560 /* 2561 * Default to classic polling 2562 */ 2563 q->poll_nsec = -1; 2564 2565 if (set->ops->complete) 2566 blk_queue_softirq_done(q, set->ops->complete); 2567 2568 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2569 blk_mq_add_queue_tag_set(set, q); 2570 blk_mq_map_swqueue(q); 2571 2572 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2573 int ret; 2574 2575 ret = elevator_init_mq(q); 2576 if (ret) 2577 return ERR_PTR(ret); 2578 } 2579 2580 return q; 2581 2582 err_hctxs: 2583 kfree(q->queue_hw_ctx); 2584 err_percpu: 2585 free_percpu(q->queue_ctx); 2586 err_exit: 2587 q->mq_ops = NULL; 2588 return ERR_PTR(-ENOMEM); 2589 } 2590 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2591 2592 void blk_mq_free_queue(struct request_queue *q) 2593 { 2594 struct blk_mq_tag_set *set = q->tag_set; 2595 2596 blk_mq_del_queue_tag_set(q); 2597 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2598 } 2599 2600 /* Basically redo blk_mq_init_queue with queue frozen */ 2601 static void blk_mq_queue_reinit(struct request_queue *q) 2602 { 2603 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2604 2605 blk_mq_debugfs_unregister_hctxs(q); 2606 blk_mq_sysfs_unregister(q); 2607 2608 /* 2609 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2610 * we should change hctx numa_node according to the new topology (this 2611 * involves freeing and re-allocating memory, worth doing?) 2612 */ 2613 blk_mq_map_swqueue(q); 2614 2615 blk_mq_sysfs_register(q); 2616 blk_mq_debugfs_register_hctxs(q); 2617 } 2618 2619 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2620 { 2621 int i; 2622 2623 for (i = 0; i < set->nr_hw_queues; i++) 2624 if (!__blk_mq_alloc_rq_map(set, i)) 2625 goto out_unwind; 2626 2627 return 0; 2628 2629 out_unwind: 2630 while (--i >= 0) 2631 blk_mq_free_rq_map(set->tags[i]); 2632 2633 return -ENOMEM; 2634 } 2635 2636 /* 2637 * Allocate the request maps associated with this tag_set. Note that this 2638 * may reduce the depth asked for, if memory is tight. set->queue_depth 2639 * will be updated to reflect the allocated depth. 2640 */ 2641 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2642 { 2643 unsigned int depth; 2644 int err; 2645 2646 depth = set->queue_depth; 2647 do { 2648 err = __blk_mq_alloc_rq_maps(set); 2649 if (!err) 2650 break; 2651 2652 set->queue_depth >>= 1; 2653 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2654 err = -ENOMEM; 2655 break; 2656 } 2657 } while (set->queue_depth); 2658 2659 if (!set->queue_depth || err) { 2660 pr_err("blk-mq: failed to allocate request map\n"); 2661 return -ENOMEM; 2662 } 2663 2664 if (depth != set->queue_depth) 2665 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2666 depth, set->queue_depth); 2667 2668 return 0; 2669 } 2670 2671 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2672 { 2673 if (set->ops->map_queues) { 2674 int cpu; 2675 /* 2676 * transport .map_queues is usually done in the following 2677 * way: 2678 * 2679 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2680 * mask = get_cpu_mask(queue) 2681 * for_each_cpu(cpu, mask) 2682 * set->mq_map[cpu] = queue; 2683 * } 2684 * 2685 * When we need to remap, the table has to be cleared for 2686 * killing stale mapping since one CPU may not be mapped 2687 * to any hw queue. 2688 */ 2689 for_each_possible_cpu(cpu) 2690 set->mq_map[cpu] = 0; 2691 2692 return set->ops->map_queues(set); 2693 } else 2694 return blk_mq_map_queues(set); 2695 } 2696 2697 /* 2698 * Alloc a tag set to be associated with one or more request queues. 2699 * May fail with EINVAL for various error conditions. May adjust the 2700 * requested depth down, if if it too large. In that case, the set 2701 * value will be stored in set->queue_depth. 2702 */ 2703 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2704 { 2705 int ret; 2706 2707 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2708 2709 if (!set->nr_hw_queues) 2710 return -EINVAL; 2711 if (!set->queue_depth) 2712 return -EINVAL; 2713 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2714 return -EINVAL; 2715 2716 if (!set->ops->queue_rq) 2717 return -EINVAL; 2718 2719 if (!set->ops->get_budget ^ !set->ops->put_budget) 2720 return -EINVAL; 2721 2722 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2723 pr_info("blk-mq: reduced tag depth to %u\n", 2724 BLK_MQ_MAX_DEPTH); 2725 set->queue_depth = BLK_MQ_MAX_DEPTH; 2726 } 2727 2728 /* 2729 * If a crashdump is active, then we are potentially in a very 2730 * memory constrained environment. Limit us to 1 queue and 2731 * 64 tags to prevent using too much memory. 2732 */ 2733 if (is_kdump_kernel()) { 2734 set->nr_hw_queues = 1; 2735 set->queue_depth = min(64U, set->queue_depth); 2736 } 2737 /* 2738 * There is no use for more h/w queues than cpus. 2739 */ 2740 if (set->nr_hw_queues > nr_cpu_ids) 2741 set->nr_hw_queues = nr_cpu_ids; 2742 2743 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2744 GFP_KERNEL, set->numa_node); 2745 if (!set->tags) 2746 return -ENOMEM; 2747 2748 ret = -ENOMEM; 2749 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2750 GFP_KERNEL, set->numa_node); 2751 if (!set->mq_map) 2752 goto out_free_tags; 2753 2754 ret = blk_mq_update_queue_map(set); 2755 if (ret) 2756 goto out_free_mq_map; 2757 2758 ret = blk_mq_alloc_rq_maps(set); 2759 if (ret) 2760 goto out_free_mq_map; 2761 2762 mutex_init(&set->tag_list_lock); 2763 INIT_LIST_HEAD(&set->tag_list); 2764 2765 return 0; 2766 2767 out_free_mq_map: 2768 kfree(set->mq_map); 2769 set->mq_map = NULL; 2770 out_free_tags: 2771 kfree(set->tags); 2772 set->tags = NULL; 2773 return ret; 2774 } 2775 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2776 2777 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2778 { 2779 int i; 2780 2781 for (i = 0; i < nr_cpu_ids; i++) 2782 blk_mq_free_map_and_requests(set, i); 2783 2784 kfree(set->mq_map); 2785 set->mq_map = NULL; 2786 2787 kfree(set->tags); 2788 set->tags = NULL; 2789 } 2790 EXPORT_SYMBOL(blk_mq_free_tag_set); 2791 2792 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2793 { 2794 struct blk_mq_tag_set *set = q->tag_set; 2795 struct blk_mq_hw_ctx *hctx; 2796 int i, ret; 2797 2798 if (!set) 2799 return -EINVAL; 2800 2801 blk_mq_freeze_queue(q); 2802 blk_mq_quiesce_queue(q); 2803 2804 ret = 0; 2805 queue_for_each_hw_ctx(q, hctx, i) { 2806 if (!hctx->tags) 2807 continue; 2808 /* 2809 * If we're using an MQ scheduler, just update the scheduler 2810 * queue depth. This is similar to what the old code would do. 2811 */ 2812 if (!hctx->sched_tags) { 2813 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2814 false); 2815 } else { 2816 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2817 nr, true); 2818 } 2819 if (ret) 2820 break; 2821 } 2822 2823 if (!ret) 2824 q->nr_requests = nr; 2825 2826 blk_mq_unquiesce_queue(q); 2827 blk_mq_unfreeze_queue(q); 2828 2829 return ret; 2830 } 2831 2832 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2833 int nr_hw_queues) 2834 { 2835 struct request_queue *q; 2836 2837 lockdep_assert_held(&set->tag_list_lock); 2838 2839 if (nr_hw_queues > nr_cpu_ids) 2840 nr_hw_queues = nr_cpu_ids; 2841 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2842 return; 2843 2844 list_for_each_entry(q, &set->tag_list, tag_set_list) 2845 blk_mq_freeze_queue(q); 2846 2847 set->nr_hw_queues = nr_hw_queues; 2848 blk_mq_update_queue_map(set); 2849 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2850 blk_mq_realloc_hw_ctxs(set, q); 2851 blk_mq_queue_reinit(q); 2852 } 2853 2854 list_for_each_entry(q, &set->tag_list, tag_set_list) 2855 blk_mq_unfreeze_queue(q); 2856 } 2857 2858 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2859 { 2860 mutex_lock(&set->tag_list_lock); 2861 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2862 mutex_unlock(&set->tag_list_lock); 2863 } 2864 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2865 2866 /* Enable polling stats and return whether they were already enabled. */ 2867 static bool blk_poll_stats_enable(struct request_queue *q) 2868 { 2869 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2870 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 2871 return true; 2872 blk_stat_add_callback(q, q->poll_cb); 2873 return false; 2874 } 2875 2876 static void blk_mq_poll_stats_start(struct request_queue *q) 2877 { 2878 /* 2879 * We don't arm the callback if polling stats are not enabled or the 2880 * callback is already active. 2881 */ 2882 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2883 blk_stat_is_active(q->poll_cb)) 2884 return; 2885 2886 blk_stat_activate_msecs(q->poll_cb, 100); 2887 } 2888 2889 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 2890 { 2891 struct request_queue *q = cb->data; 2892 int bucket; 2893 2894 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 2895 if (cb->stat[bucket].nr_samples) 2896 q->poll_stat[bucket] = cb->stat[bucket]; 2897 } 2898 } 2899 2900 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2901 struct blk_mq_hw_ctx *hctx, 2902 struct request *rq) 2903 { 2904 unsigned long ret = 0; 2905 int bucket; 2906 2907 /* 2908 * If stats collection isn't on, don't sleep but turn it on for 2909 * future users 2910 */ 2911 if (!blk_poll_stats_enable(q)) 2912 return 0; 2913 2914 /* 2915 * As an optimistic guess, use half of the mean service time 2916 * for this type of request. We can (and should) make this smarter. 2917 * For instance, if the completion latencies are tight, we can 2918 * get closer than just half the mean. This is especially 2919 * important on devices where the completion latencies are longer 2920 * than ~10 usec. We do use the stats for the relevant IO size 2921 * if available which does lead to better estimates. 2922 */ 2923 bucket = blk_mq_poll_stats_bkt(rq); 2924 if (bucket < 0) 2925 return ret; 2926 2927 if (q->poll_stat[bucket].nr_samples) 2928 ret = (q->poll_stat[bucket].mean + 1) / 2; 2929 2930 return ret; 2931 } 2932 2933 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2934 struct blk_mq_hw_ctx *hctx, 2935 struct request *rq) 2936 { 2937 struct hrtimer_sleeper hs; 2938 enum hrtimer_mode mode; 2939 unsigned int nsecs; 2940 ktime_t kt; 2941 2942 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 2943 return false; 2944 2945 /* 2946 * poll_nsec can be: 2947 * 2948 * -1: don't ever hybrid sleep 2949 * 0: use half of prev avg 2950 * >0: use this specific value 2951 */ 2952 if (q->poll_nsec == -1) 2953 return false; 2954 else if (q->poll_nsec > 0) 2955 nsecs = q->poll_nsec; 2956 else 2957 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2958 2959 if (!nsecs) 2960 return false; 2961 2962 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 2963 2964 /* 2965 * This will be replaced with the stats tracking code, using 2966 * 'avg_completion_time / 2' as the pre-sleep target. 2967 */ 2968 kt = nsecs; 2969 2970 mode = HRTIMER_MODE_REL; 2971 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2972 hrtimer_set_expires(&hs.timer, kt); 2973 2974 hrtimer_init_sleeper(&hs, current); 2975 do { 2976 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 2977 break; 2978 set_current_state(TASK_UNINTERRUPTIBLE); 2979 hrtimer_start_expires(&hs.timer, mode); 2980 if (hs.task) 2981 io_schedule(); 2982 hrtimer_cancel(&hs.timer); 2983 mode = HRTIMER_MODE_ABS; 2984 } while (hs.task && !signal_pending(current)); 2985 2986 __set_current_state(TASK_RUNNING); 2987 destroy_hrtimer_on_stack(&hs.timer); 2988 return true; 2989 } 2990 2991 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2992 { 2993 struct request_queue *q = hctx->queue; 2994 long state; 2995 2996 /* 2997 * If we sleep, have the caller restart the poll loop to reset 2998 * the state. Like for the other success return cases, the 2999 * caller is responsible for checking if the IO completed. If 3000 * the IO isn't complete, we'll get called again and will go 3001 * straight to the busy poll loop. 3002 */ 3003 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3004 return true; 3005 3006 hctx->poll_considered++; 3007 3008 state = current->state; 3009 while (!need_resched()) { 3010 int ret; 3011 3012 hctx->poll_invoked++; 3013 3014 ret = q->mq_ops->poll(hctx, rq->tag); 3015 if (ret > 0) { 3016 hctx->poll_success++; 3017 set_current_state(TASK_RUNNING); 3018 return true; 3019 } 3020 3021 if (signal_pending_state(state, current)) 3022 set_current_state(TASK_RUNNING); 3023 3024 if (current->state == TASK_RUNNING) 3025 return true; 3026 if (ret < 0) 3027 break; 3028 cpu_relax(); 3029 } 3030 3031 __set_current_state(TASK_RUNNING); 3032 return false; 3033 } 3034 3035 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3036 { 3037 struct blk_mq_hw_ctx *hctx; 3038 struct request *rq; 3039 3040 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3041 return false; 3042 3043 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3044 if (!blk_qc_t_is_internal(cookie)) 3045 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3046 else { 3047 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3048 /* 3049 * With scheduling, if the request has completed, we'll 3050 * get a NULL return here, as we clear the sched tag when 3051 * that happens. The request still remains valid, like always, 3052 * so we should be safe with just the NULL check. 3053 */ 3054 if (!rq) 3055 return false; 3056 } 3057 3058 return __blk_mq_poll(hctx, rq); 3059 } 3060 3061 static int __init blk_mq_init(void) 3062 { 3063 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3064 blk_mq_hctx_notify_dead); 3065 return 0; 3066 } 3067 subsys_initcall(blk_mq_init); 3068