1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) { 99 /* 100 * index[0] counts the specific partition that was asked 101 * for. index[1] counts the ones that are active on the 102 * whole device, so increment that if mi->part is indeed 103 * a partition, and not a whole device. 104 */ 105 if (rq->part == mi->part) 106 mi->inflight[0]++; 107 if (mi->part->partno) 108 mi->inflight[1]++; 109 } 110 } 111 112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 } 120 121 void blk_freeze_queue_start(struct request_queue *q) 122 { 123 int freeze_depth; 124 125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 126 if (freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 if (q->mq_ops) 129 blk_mq_run_hw_queues(q, false); 130 } 131 } 132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 133 134 void blk_mq_freeze_queue_wait(struct request_queue *q) 135 { 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 139 140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 141 unsigned long timeout) 142 { 143 return wait_event_timeout(q->mq_freeze_wq, 144 percpu_ref_is_zero(&q->q_usage_counter), 145 timeout); 146 } 147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 148 149 /* 150 * Guarantee no request is in use, so we can change any data structure of 151 * the queue afterward. 152 */ 153 void blk_freeze_queue(struct request_queue *q) 154 { 155 /* 156 * In the !blk_mq case we are only calling this to kill the 157 * q_usage_counter, otherwise this increases the freeze depth 158 * and waits for it to return to zero. For this reason there is 159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 160 * exported to drivers as the only user for unfreeze is blk_mq. 161 */ 162 blk_freeze_queue_start(q); 163 if (!q->mq_ops) 164 blk_drain_queue(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void blk_mq_unfreeze_queue(struct request_queue *q) 179 { 180 int freeze_depth; 181 182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 183 WARN_ON_ONCE(freeze_depth < 0); 184 if (!freeze_depth) { 185 percpu_ref_reinit(&q->q_usage_counter); 186 wake_up_all(&q->mq_freeze_wq); 187 } 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 190 191 /* 192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 193 * mpt3sas driver such that this function can be removed. 194 */ 195 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 196 { 197 unsigned long flags; 198 199 spin_lock_irqsave(q->queue_lock, flags); 200 queue_flag_set(QUEUE_FLAG_QUIESCED, q); 201 spin_unlock_irqrestore(q->queue_lock, flags); 202 } 203 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 204 205 /** 206 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 207 * @q: request queue. 208 * 209 * Note: this function does not prevent that the struct request end_io() 210 * callback function is invoked. Once this function is returned, we make 211 * sure no dispatch can happen until the queue is unquiesced via 212 * blk_mq_unquiesce_queue(). 213 */ 214 void blk_mq_quiesce_queue(struct request_queue *q) 215 { 216 struct blk_mq_hw_ctx *hctx; 217 unsigned int i; 218 bool rcu = false; 219 220 blk_mq_quiesce_queue_nowait(q); 221 222 queue_for_each_hw_ctx(q, hctx, i) { 223 if (hctx->flags & BLK_MQ_F_BLOCKING) 224 synchronize_srcu(hctx->srcu); 225 else 226 rcu = true; 227 } 228 if (rcu) 229 synchronize_rcu(); 230 } 231 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 232 233 /* 234 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 235 * @q: request queue. 236 * 237 * This function recovers queue into the state before quiescing 238 * which is done by blk_mq_quiesce_queue. 239 */ 240 void blk_mq_unquiesce_queue(struct request_queue *q) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(q->queue_lock, flags); 245 queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 246 spin_unlock_irqrestore(q->queue_lock, flags); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 264 { 265 return blk_mq_has_free_tags(hctx->tags); 266 } 267 EXPORT_SYMBOL(blk_mq_can_queue); 268 269 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 270 unsigned int tag, unsigned int op) 271 { 272 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 273 struct request *rq = tags->static_rqs[tag]; 274 req_flags_t rq_flags = 0; 275 276 if (data->flags & BLK_MQ_REQ_INTERNAL) { 277 rq->tag = -1; 278 rq->internal_tag = tag; 279 } else { 280 if (blk_mq_tag_busy(data->hctx)) { 281 rq_flags = RQF_MQ_INFLIGHT; 282 atomic_inc(&data->hctx->nr_active); 283 } 284 rq->tag = tag; 285 rq->internal_tag = -1; 286 data->hctx->tags->rqs[rq->tag] = rq; 287 } 288 289 /* csd/requeue_work/fifo_time is initialized before use */ 290 rq->q = data->q; 291 rq->mq_ctx = data->ctx; 292 rq->rq_flags = rq_flags; 293 rq->cpu = -1; 294 rq->cmd_flags = op; 295 if (data->flags & BLK_MQ_REQ_PREEMPT) 296 rq->rq_flags |= RQF_PREEMPT; 297 if (blk_queue_io_stat(data->q)) 298 rq->rq_flags |= RQF_IO_STAT; 299 INIT_LIST_HEAD(&rq->queuelist); 300 INIT_HLIST_NODE(&rq->hash); 301 RB_CLEAR_NODE(&rq->rb_node); 302 rq->rq_disk = NULL; 303 rq->part = NULL; 304 rq->start_time = jiffies; 305 rq->nr_phys_segments = 0; 306 #if defined(CONFIG_BLK_DEV_INTEGRITY) 307 rq->nr_integrity_segments = 0; 308 #endif 309 rq->special = NULL; 310 /* tag was already set */ 311 rq->extra_len = 0; 312 rq->__deadline = 0; 313 314 INIT_LIST_HEAD(&rq->timeout_list); 315 rq->timeout = 0; 316 317 rq->end_io = NULL; 318 rq->end_io_data = NULL; 319 rq->next_rq = NULL; 320 321 #ifdef CONFIG_BLK_CGROUP 322 rq->rl = NULL; 323 set_start_time_ns(rq); 324 rq->io_start_time_ns = 0; 325 #endif 326 327 data->ctx->rq_dispatched[op_is_sync(op)]++; 328 return rq; 329 } 330 331 static struct request *blk_mq_get_request(struct request_queue *q, 332 struct bio *bio, unsigned int op, 333 struct blk_mq_alloc_data *data) 334 { 335 struct elevator_queue *e = q->elevator; 336 struct request *rq; 337 unsigned int tag; 338 bool put_ctx_on_error = false; 339 340 blk_queue_enter_live(q); 341 data->q = q; 342 if (likely(!data->ctx)) { 343 data->ctx = blk_mq_get_ctx(q); 344 put_ctx_on_error = true; 345 } 346 if (likely(!data->hctx)) 347 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 348 if (op & REQ_NOWAIT) 349 data->flags |= BLK_MQ_REQ_NOWAIT; 350 351 if (e) { 352 data->flags |= BLK_MQ_REQ_INTERNAL; 353 354 /* 355 * Flush requests are special and go directly to the 356 * dispatch list. 357 */ 358 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 359 e->type->ops.mq.limit_depth(op, data); 360 } 361 362 tag = blk_mq_get_tag(data); 363 if (tag == BLK_MQ_TAG_FAIL) { 364 if (put_ctx_on_error) { 365 blk_mq_put_ctx(data->ctx); 366 data->ctx = NULL; 367 } 368 blk_queue_exit(q); 369 return NULL; 370 } 371 372 rq = blk_mq_rq_ctx_init(data, tag, op); 373 if (!op_is_flush(op)) { 374 rq->elv.icq = NULL; 375 if (e && e->type->ops.mq.prepare_request) { 376 if (e->type->icq_cache && rq_ioc(bio)) 377 blk_mq_sched_assign_ioc(rq, bio); 378 379 e->type->ops.mq.prepare_request(rq, bio); 380 rq->rq_flags |= RQF_ELVPRIV; 381 } 382 } 383 data->hctx->queued++; 384 return rq; 385 } 386 387 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 388 blk_mq_req_flags_t flags) 389 { 390 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 391 struct request *rq; 392 int ret; 393 394 ret = blk_queue_enter(q, flags); 395 if (ret) 396 return ERR_PTR(ret); 397 398 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 399 blk_queue_exit(q); 400 401 if (!rq) 402 return ERR_PTR(-EWOULDBLOCK); 403 404 blk_mq_put_ctx(alloc_data.ctx); 405 406 rq->__data_len = 0; 407 rq->__sector = (sector_t) -1; 408 rq->bio = rq->biotail = NULL; 409 return rq; 410 } 411 EXPORT_SYMBOL(blk_mq_alloc_request); 412 413 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 414 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 415 { 416 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 417 struct request *rq; 418 unsigned int cpu; 419 int ret; 420 421 /* 422 * If the tag allocator sleeps we could get an allocation for a 423 * different hardware context. No need to complicate the low level 424 * allocator for this for the rare use case of a command tied to 425 * a specific queue. 426 */ 427 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 428 return ERR_PTR(-EINVAL); 429 430 if (hctx_idx >= q->nr_hw_queues) 431 return ERR_PTR(-EIO); 432 433 ret = blk_queue_enter(q, flags); 434 if (ret) 435 return ERR_PTR(ret); 436 437 /* 438 * Check if the hardware context is actually mapped to anything. 439 * If not tell the caller that it should skip this queue. 440 */ 441 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 442 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 443 blk_queue_exit(q); 444 return ERR_PTR(-EXDEV); 445 } 446 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 447 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 448 449 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 450 blk_queue_exit(q); 451 452 if (!rq) 453 return ERR_PTR(-EWOULDBLOCK); 454 455 return rq; 456 } 457 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 458 459 void blk_mq_free_request(struct request *rq) 460 { 461 struct request_queue *q = rq->q; 462 struct elevator_queue *e = q->elevator; 463 struct blk_mq_ctx *ctx = rq->mq_ctx; 464 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 465 const int sched_tag = rq->internal_tag; 466 467 if (rq->rq_flags & RQF_ELVPRIV) { 468 if (e && e->type->ops.mq.finish_request) 469 e->type->ops.mq.finish_request(rq); 470 if (rq->elv.icq) { 471 put_io_context(rq->elv.icq->ioc); 472 rq->elv.icq = NULL; 473 } 474 } 475 476 ctx->rq_completed[rq_is_sync(rq)]++; 477 if (rq->rq_flags & RQF_MQ_INFLIGHT) 478 atomic_dec(&hctx->nr_active); 479 480 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 481 laptop_io_completion(q->backing_dev_info); 482 483 wbt_done(q->rq_wb, &rq->issue_stat); 484 485 if (blk_rq_rl(rq)) 486 blk_put_rl(blk_rq_rl(rq)); 487 488 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 489 if (rq->tag != -1) 490 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 491 if (sched_tag != -1) 492 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 493 blk_mq_sched_restart(hctx); 494 blk_queue_exit(q); 495 } 496 EXPORT_SYMBOL_GPL(blk_mq_free_request); 497 498 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 499 { 500 blk_account_io_done(rq); 501 502 if (rq->end_io) { 503 wbt_done(rq->q->rq_wb, &rq->issue_stat); 504 rq->end_io(rq, error); 505 } else { 506 if (unlikely(blk_bidi_rq(rq))) 507 blk_mq_free_request(rq->next_rq); 508 blk_mq_free_request(rq); 509 } 510 } 511 EXPORT_SYMBOL(__blk_mq_end_request); 512 513 void blk_mq_end_request(struct request *rq, blk_status_t error) 514 { 515 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 516 BUG(); 517 __blk_mq_end_request(rq, error); 518 } 519 EXPORT_SYMBOL(blk_mq_end_request); 520 521 static void __blk_mq_complete_request_remote(void *data) 522 { 523 struct request *rq = data; 524 525 rq->q->softirq_done_fn(rq); 526 } 527 528 static void __blk_mq_complete_request(struct request *rq) 529 { 530 struct blk_mq_ctx *ctx = rq->mq_ctx; 531 bool shared = false; 532 int cpu; 533 534 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT); 535 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE); 536 537 if (rq->internal_tag != -1) 538 blk_mq_sched_completed_request(rq); 539 if (rq->rq_flags & RQF_STATS) { 540 blk_mq_poll_stats_start(rq->q); 541 blk_stat_add(rq); 542 } 543 544 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 545 rq->q->softirq_done_fn(rq); 546 return; 547 } 548 549 cpu = get_cpu(); 550 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 551 shared = cpus_share_cache(cpu, ctx->cpu); 552 553 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 554 rq->csd.func = __blk_mq_complete_request_remote; 555 rq->csd.info = rq; 556 rq->csd.flags = 0; 557 smp_call_function_single_async(ctx->cpu, &rq->csd); 558 } else { 559 rq->q->softirq_done_fn(rq); 560 } 561 put_cpu(); 562 } 563 564 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 565 __releases(hctx->srcu) 566 { 567 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 568 rcu_read_unlock(); 569 else 570 srcu_read_unlock(hctx->srcu, srcu_idx); 571 } 572 573 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 574 __acquires(hctx->srcu) 575 { 576 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 577 /* shut up gcc false positive */ 578 *srcu_idx = 0; 579 rcu_read_lock(); 580 } else 581 *srcu_idx = srcu_read_lock(hctx->srcu); 582 } 583 584 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate) 585 { 586 unsigned long flags; 587 588 /* 589 * blk_mq_rq_aborted_gstate() is used from the completion path and 590 * can thus be called from irq context. u64_stats_fetch in the 591 * middle of update on the same CPU leads to lockup. Disable irq 592 * while updating. 593 */ 594 local_irq_save(flags); 595 u64_stats_update_begin(&rq->aborted_gstate_sync); 596 rq->aborted_gstate = gstate; 597 u64_stats_update_end(&rq->aborted_gstate_sync); 598 local_irq_restore(flags); 599 } 600 601 static u64 blk_mq_rq_aborted_gstate(struct request *rq) 602 { 603 unsigned int start; 604 u64 aborted_gstate; 605 606 do { 607 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync); 608 aborted_gstate = rq->aborted_gstate; 609 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start)); 610 611 return aborted_gstate; 612 } 613 614 /** 615 * blk_mq_complete_request - end I/O on a request 616 * @rq: the request being processed 617 * 618 * Description: 619 * Ends all I/O on a request. It does not handle partial completions. 620 * The actual completion happens out-of-order, through a IPI handler. 621 **/ 622 void blk_mq_complete_request(struct request *rq) 623 { 624 struct request_queue *q = rq->q; 625 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 626 int srcu_idx; 627 628 if (unlikely(blk_should_fake_timeout(q))) 629 return; 630 631 /* 632 * If @rq->aborted_gstate equals the current instance, timeout is 633 * claiming @rq and we lost. This is synchronized through 634 * hctx_lock(). See blk_mq_timeout_work() for details. 635 * 636 * Completion path never blocks and we can directly use RCU here 637 * instead of hctx_lock() which can be either RCU or SRCU. 638 * However, that would complicate paths which want to synchronize 639 * against us. Let stay in sync with the issue path so that 640 * hctx_lock() covers both issue and completion paths. 641 */ 642 hctx_lock(hctx, &srcu_idx); 643 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate) 644 __blk_mq_complete_request(rq); 645 hctx_unlock(hctx, srcu_idx); 646 } 647 EXPORT_SYMBOL(blk_mq_complete_request); 648 649 int blk_mq_request_started(struct request *rq) 650 { 651 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 652 } 653 EXPORT_SYMBOL_GPL(blk_mq_request_started); 654 655 void blk_mq_start_request(struct request *rq) 656 { 657 struct request_queue *q = rq->q; 658 659 blk_mq_sched_started_request(rq); 660 661 trace_block_rq_issue(q, rq); 662 663 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 664 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 665 rq->rq_flags |= RQF_STATS; 666 wbt_issue(q->rq_wb, &rq->issue_stat); 667 } 668 669 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 670 671 /* 672 * Mark @rq in-flight which also advances the generation number, 673 * and register for timeout. Protect with a seqcount to allow the 674 * timeout path to read both @rq->gstate and @rq->deadline 675 * coherently. 676 * 677 * This is the only place where a request is marked in-flight. If 678 * the timeout path reads an in-flight @rq->gstate, the 679 * @rq->deadline it reads together under @rq->gstate_seq is 680 * guaranteed to be the matching one. 681 */ 682 preempt_disable(); 683 write_seqcount_begin(&rq->gstate_seq); 684 685 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT); 686 blk_add_timer(rq); 687 688 write_seqcount_end(&rq->gstate_seq); 689 preempt_enable(); 690 691 if (q->dma_drain_size && blk_rq_bytes(rq)) { 692 /* 693 * Make sure space for the drain appears. We know we can do 694 * this because max_hw_segments has been adjusted to be one 695 * fewer than the device can handle. 696 */ 697 rq->nr_phys_segments++; 698 } 699 } 700 EXPORT_SYMBOL(blk_mq_start_request); 701 702 /* 703 * When we reach here because queue is busy, it's safe to change the state 704 * to IDLE without checking @rq->aborted_gstate because we should still be 705 * holding the RCU read lock and thus protected against timeout. 706 */ 707 static void __blk_mq_requeue_request(struct request *rq) 708 { 709 struct request_queue *q = rq->q; 710 711 blk_mq_put_driver_tag(rq); 712 713 trace_block_rq_requeue(q, rq); 714 wbt_requeue(q->rq_wb, &rq->issue_stat); 715 blk_mq_sched_requeue_request(rq); 716 717 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) { 718 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 719 if (q->dma_drain_size && blk_rq_bytes(rq)) 720 rq->nr_phys_segments--; 721 } 722 } 723 724 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 725 { 726 __blk_mq_requeue_request(rq); 727 728 BUG_ON(blk_queued_rq(rq)); 729 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 730 } 731 EXPORT_SYMBOL(blk_mq_requeue_request); 732 733 static void blk_mq_requeue_work(struct work_struct *work) 734 { 735 struct request_queue *q = 736 container_of(work, struct request_queue, requeue_work.work); 737 LIST_HEAD(rq_list); 738 struct request *rq, *next; 739 740 spin_lock_irq(&q->requeue_lock); 741 list_splice_init(&q->requeue_list, &rq_list); 742 spin_unlock_irq(&q->requeue_lock); 743 744 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 745 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 746 continue; 747 748 rq->rq_flags &= ~RQF_SOFTBARRIER; 749 list_del_init(&rq->queuelist); 750 blk_mq_sched_insert_request(rq, true, false, false); 751 } 752 753 while (!list_empty(&rq_list)) { 754 rq = list_entry(rq_list.next, struct request, queuelist); 755 list_del_init(&rq->queuelist); 756 blk_mq_sched_insert_request(rq, false, false, false); 757 } 758 759 blk_mq_run_hw_queues(q, false); 760 } 761 762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 763 bool kick_requeue_list) 764 { 765 struct request_queue *q = rq->q; 766 unsigned long flags; 767 768 /* 769 * We abuse this flag that is otherwise used by the I/O scheduler to 770 * request head insertion from the workqueue. 771 */ 772 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 773 774 spin_lock_irqsave(&q->requeue_lock, flags); 775 if (at_head) { 776 rq->rq_flags |= RQF_SOFTBARRIER; 777 list_add(&rq->queuelist, &q->requeue_list); 778 } else { 779 list_add_tail(&rq->queuelist, &q->requeue_list); 780 } 781 spin_unlock_irqrestore(&q->requeue_lock, flags); 782 783 if (kick_requeue_list) 784 blk_mq_kick_requeue_list(q); 785 } 786 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 787 788 void blk_mq_kick_requeue_list(struct request_queue *q) 789 { 790 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 791 } 792 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 793 794 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 795 unsigned long msecs) 796 { 797 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 798 msecs_to_jiffies(msecs)); 799 } 800 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 801 802 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 803 { 804 if (tag < tags->nr_tags) { 805 prefetch(tags->rqs[tag]); 806 return tags->rqs[tag]; 807 } 808 809 return NULL; 810 } 811 EXPORT_SYMBOL(blk_mq_tag_to_rq); 812 813 struct blk_mq_timeout_data { 814 unsigned long next; 815 unsigned int next_set; 816 unsigned int nr_expired; 817 }; 818 819 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 820 { 821 const struct blk_mq_ops *ops = req->q->mq_ops; 822 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 823 824 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED; 825 826 if (ops->timeout) 827 ret = ops->timeout(req, reserved); 828 829 switch (ret) { 830 case BLK_EH_HANDLED: 831 __blk_mq_complete_request(req); 832 break; 833 case BLK_EH_RESET_TIMER: 834 /* 835 * As nothing prevents from completion happening while 836 * ->aborted_gstate is set, this may lead to ignored 837 * completions and further spurious timeouts. 838 */ 839 blk_mq_rq_update_aborted_gstate(req, 0); 840 blk_add_timer(req); 841 break; 842 case BLK_EH_NOT_HANDLED: 843 break; 844 default: 845 printk(KERN_ERR "block: bad eh return: %d\n", ret); 846 break; 847 } 848 } 849 850 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 851 struct request *rq, void *priv, bool reserved) 852 { 853 struct blk_mq_timeout_data *data = priv; 854 unsigned long gstate, deadline; 855 int start; 856 857 might_sleep(); 858 859 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) 860 return; 861 862 /* read coherent snapshots of @rq->state_gen and @rq->deadline */ 863 while (true) { 864 start = read_seqcount_begin(&rq->gstate_seq); 865 gstate = READ_ONCE(rq->gstate); 866 deadline = blk_rq_deadline(rq); 867 if (!read_seqcount_retry(&rq->gstate_seq, start)) 868 break; 869 cond_resched(); 870 } 871 872 /* if in-flight && overdue, mark for abortion */ 873 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT && 874 time_after_eq(jiffies, deadline)) { 875 blk_mq_rq_update_aborted_gstate(rq, gstate); 876 data->nr_expired++; 877 hctx->nr_expired++; 878 } else if (!data->next_set || time_after(data->next, deadline)) { 879 data->next = deadline; 880 data->next_set = 1; 881 } 882 } 883 884 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx, 885 struct request *rq, void *priv, bool reserved) 886 { 887 /* 888 * We marked @rq->aborted_gstate and waited for RCU. If there were 889 * completions that we lost to, they would have finished and 890 * updated @rq->gstate by now; otherwise, the completion path is 891 * now guaranteed to see @rq->aborted_gstate and yield. If 892 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours. 893 */ 894 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) && 895 READ_ONCE(rq->gstate) == rq->aborted_gstate) 896 blk_mq_rq_timed_out(rq, reserved); 897 } 898 899 static void blk_mq_timeout_work(struct work_struct *work) 900 { 901 struct request_queue *q = 902 container_of(work, struct request_queue, timeout_work); 903 struct blk_mq_timeout_data data = { 904 .next = 0, 905 .next_set = 0, 906 .nr_expired = 0, 907 }; 908 struct blk_mq_hw_ctx *hctx; 909 int i; 910 911 /* A deadlock might occur if a request is stuck requiring a 912 * timeout at the same time a queue freeze is waiting 913 * completion, since the timeout code would not be able to 914 * acquire the queue reference here. 915 * 916 * That's why we don't use blk_queue_enter here; instead, we use 917 * percpu_ref_tryget directly, because we need to be able to 918 * obtain a reference even in the short window between the queue 919 * starting to freeze, by dropping the first reference in 920 * blk_freeze_queue_start, and the moment the last request is 921 * consumed, marked by the instant q_usage_counter reaches 922 * zero. 923 */ 924 if (!percpu_ref_tryget(&q->q_usage_counter)) 925 return; 926 927 /* scan for the expired ones and set their ->aborted_gstate */ 928 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 929 930 if (data.nr_expired) { 931 bool has_rcu = false; 932 933 /* 934 * Wait till everyone sees ->aborted_gstate. The 935 * sequential waits for SRCUs aren't ideal. If this ever 936 * becomes a problem, we can add per-hw_ctx rcu_head and 937 * wait in parallel. 938 */ 939 queue_for_each_hw_ctx(q, hctx, i) { 940 if (!hctx->nr_expired) 941 continue; 942 943 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 944 has_rcu = true; 945 else 946 synchronize_srcu(hctx->srcu); 947 948 hctx->nr_expired = 0; 949 } 950 if (has_rcu) 951 synchronize_rcu(); 952 953 /* terminate the ones we won */ 954 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL); 955 } 956 957 if (data.next_set) { 958 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 959 mod_timer(&q->timeout, data.next); 960 } else { 961 /* 962 * Request timeouts are handled as a forward rolling timer. If 963 * we end up here it means that no requests are pending and 964 * also that no request has been pending for a while. Mark 965 * each hctx as idle. 966 */ 967 queue_for_each_hw_ctx(q, hctx, i) { 968 /* the hctx may be unmapped, so check it here */ 969 if (blk_mq_hw_queue_mapped(hctx)) 970 blk_mq_tag_idle(hctx); 971 } 972 } 973 blk_queue_exit(q); 974 } 975 976 struct flush_busy_ctx_data { 977 struct blk_mq_hw_ctx *hctx; 978 struct list_head *list; 979 }; 980 981 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 982 { 983 struct flush_busy_ctx_data *flush_data = data; 984 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 985 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 986 987 sbitmap_clear_bit(sb, bitnr); 988 spin_lock(&ctx->lock); 989 list_splice_tail_init(&ctx->rq_list, flush_data->list); 990 spin_unlock(&ctx->lock); 991 return true; 992 } 993 994 /* 995 * Process software queues that have been marked busy, splicing them 996 * to the for-dispatch 997 */ 998 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 999 { 1000 struct flush_busy_ctx_data data = { 1001 .hctx = hctx, 1002 .list = list, 1003 }; 1004 1005 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1006 } 1007 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1008 1009 struct dispatch_rq_data { 1010 struct blk_mq_hw_ctx *hctx; 1011 struct request *rq; 1012 }; 1013 1014 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1015 void *data) 1016 { 1017 struct dispatch_rq_data *dispatch_data = data; 1018 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1019 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1020 1021 spin_lock(&ctx->lock); 1022 if (unlikely(!list_empty(&ctx->rq_list))) { 1023 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 1024 list_del_init(&dispatch_data->rq->queuelist); 1025 if (list_empty(&ctx->rq_list)) 1026 sbitmap_clear_bit(sb, bitnr); 1027 } 1028 spin_unlock(&ctx->lock); 1029 1030 return !dispatch_data->rq; 1031 } 1032 1033 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1034 struct blk_mq_ctx *start) 1035 { 1036 unsigned off = start ? start->index_hw : 0; 1037 struct dispatch_rq_data data = { 1038 .hctx = hctx, 1039 .rq = NULL, 1040 }; 1041 1042 __sbitmap_for_each_set(&hctx->ctx_map, off, 1043 dispatch_rq_from_ctx, &data); 1044 1045 return data.rq; 1046 } 1047 1048 static inline unsigned int queued_to_index(unsigned int queued) 1049 { 1050 if (!queued) 1051 return 0; 1052 1053 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1054 } 1055 1056 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 1057 bool wait) 1058 { 1059 struct blk_mq_alloc_data data = { 1060 .q = rq->q, 1061 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 1062 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 1063 }; 1064 1065 might_sleep_if(wait); 1066 1067 if (rq->tag != -1) 1068 goto done; 1069 1070 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1071 data.flags |= BLK_MQ_REQ_RESERVED; 1072 1073 rq->tag = blk_mq_get_tag(&data); 1074 if (rq->tag >= 0) { 1075 if (blk_mq_tag_busy(data.hctx)) { 1076 rq->rq_flags |= RQF_MQ_INFLIGHT; 1077 atomic_inc(&data.hctx->nr_active); 1078 } 1079 data.hctx->tags->rqs[rq->tag] = rq; 1080 } 1081 1082 done: 1083 if (hctx) 1084 *hctx = data.hctx; 1085 return rq->tag != -1; 1086 } 1087 1088 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1089 int flags, void *key) 1090 { 1091 struct blk_mq_hw_ctx *hctx; 1092 1093 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1094 1095 list_del_init(&wait->entry); 1096 blk_mq_run_hw_queue(hctx, true); 1097 return 1; 1098 } 1099 1100 /* 1101 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1102 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1103 * restart. For both cases, take care to check the condition again after 1104 * marking us as waiting. 1105 */ 1106 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1107 struct request *rq) 1108 { 1109 struct blk_mq_hw_ctx *this_hctx = *hctx; 1110 struct sbq_wait_state *ws; 1111 wait_queue_entry_t *wait; 1112 bool ret; 1113 1114 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1115 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1116 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1117 1118 /* 1119 * It's possible that a tag was freed in the window between the 1120 * allocation failure and adding the hardware queue to the wait 1121 * queue. 1122 * 1123 * Don't clear RESTART here, someone else could have set it. 1124 * At most this will cost an extra queue run. 1125 */ 1126 return blk_mq_get_driver_tag(rq, hctx, false); 1127 } 1128 1129 wait = &this_hctx->dispatch_wait; 1130 if (!list_empty_careful(&wait->entry)) 1131 return false; 1132 1133 spin_lock(&this_hctx->lock); 1134 if (!list_empty(&wait->entry)) { 1135 spin_unlock(&this_hctx->lock); 1136 return false; 1137 } 1138 1139 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1140 add_wait_queue(&ws->wait, wait); 1141 1142 /* 1143 * It's possible that a tag was freed in the window between the 1144 * allocation failure and adding the hardware queue to the wait 1145 * queue. 1146 */ 1147 ret = blk_mq_get_driver_tag(rq, hctx, false); 1148 if (!ret) { 1149 spin_unlock(&this_hctx->lock); 1150 return false; 1151 } 1152 1153 /* 1154 * We got a tag, remove ourselves from the wait queue to ensure 1155 * someone else gets the wakeup. 1156 */ 1157 spin_lock_irq(&ws->wait.lock); 1158 list_del_init(&wait->entry); 1159 spin_unlock_irq(&ws->wait.lock); 1160 spin_unlock(&this_hctx->lock); 1161 1162 return true; 1163 } 1164 1165 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1166 bool got_budget) 1167 { 1168 struct blk_mq_hw_ctx *hctx; 1169 struct request *rq, *nxt; 1170 bool no_tag = false; 1171 int errors, queued; 1172 1173 if (list_empty(list)) 1174 return false; 1175 1176 WARN_ON(!list_is_singular(list) && got_budget); 1177 1178 /* 1179 * Now process all the entries, sending them to the driver. 1180 */ 1181 errors = queued = 0; 1182 do { 1183 struct blk_mq_queue_data bd; 1184 blk_status_t ret; 1185 1186 rq = list_first_entry(list, struct request, queuelist); 1187 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1188 /* 1189 * The initial allocation attempt failed, so we need to 1190 * rerun the hardware queue when a tag is freed. The 1191 * waitqueue takes care of that. If the queue is run 1192 * before we add this entry back on the dispatch list, 1193 * we'll re-run it below. 1194 */ 1195 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1196 if (got_budget) 1197 blk_mq_put_dispatch_budget(hctx); 1198 /* 1199 * For non-shared tags, the RESTART check 1200 * will suffice. 1201 */ 1202 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1203 no_tag = true; 1204 break; 1205 } 1206 } 1207 1208 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1209 blk_mq_put_driver_tag(rq); 1210 break; 1211 } 1212 1213 list_del_init(&rq->queuelist); 1214 1215 bd.rq = rq; 1216 1217 /* 1218 * Flag last if we have no more requests, or if we have more 1219 * but can't assign a driver tag to it. 1220 */ 1221 if (list_empty(list)) 1222 bd.last = true; 1223 else { 1224 nxt = list_first_entry(list, struct request, queuelist); 1225 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1226 } 1227 1228 ret = q->mq_ops->queue_rq(hctx, &bd); 1229 if (ret == BLK_STS_RESOURCE) { 1230 /* 1231 * If an I/O scheduler has been configured and we got a 1232 * driver tag for the next request already, free it 1233 * again. 1234 */ 1235 if (!list_empty(list)) { 1236 nxt = list_first_entry(list, struct request, queuelist); 1237 blk_mq_put_driver_tag(nxt); 1238 } 1239 list_add(&rq->queuelist, list); 1240 __blk_mq_requeue_request(rq); 1241 break; 1242 } 1243 1244 if (unlikely(ret != BLK_STS_OK)) { 1245 errors++; 1246 blk_mq_end_request(rq, BLK_STS_IOERR); 1247 continue; 1248 } 1249 1250 queued++; 1251 } while (!list_empty(list)); 1252 1253 hctx->dispatched[queued_to_index(queued)]++; 1254 1255 /* 1256 * Any items that need requeuing? Stuff them into hctx->dispatch, 1257 * that is where we will continue on next queue run. 1258 */ 1259 if (!list_empty(list)) { 1260 spin_lock(&hctx->lock); 1261 list_splice_init(list, &hctx->dispatch); 1262 spin_unlock(&hctx->lock); 1263 1264 /* 1265 * If SCHED_RESTART was set by the caller of this function and 1266 * it is no longer set that means that it was cleared by another 1267 * thread and hence that a queue rerun is needed. 1268 * 1269 * If 'no_tag' is set, that means that we failed getting 1270 * a driver tag with an I/O scheduler attached. If our dispatch 1271 * waitqueue is no longer active, ensure that we run the queue 1272 * AFTER adding our entries back to the list. 1273 * 1274 * If no I/O scheduler has been configured it is possible that 1275 * the hardware queue got stopped and restarted before requests 1276 * were pushed back onto the dispatch list. Rerun the queue to 1277 * avoid starvation. Notes: 1278 * - blk_mq_run_hw_queue() checks whether or not a queue has 1279 * been stopped before rerunning a queue. 1280 * - Some but not all block drivers stop a queue before 1281 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1282 * and dm-rq. 1283 */ 1284 if (!blk_mq_sched_needs_restart(hctx) || 1285 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1286 blk_mq_run_hw_queue(hctx, true); 1287 } 1288 1289 return (queued + errors) != 0; 1290 } 1291 1292 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1293 { 1294 int srcu_idx; 1295 1296 /* 1297 * We should be running this queue from one of the CPUs that 1298 * are mapped to it. 1299 * 1300 * There are at least two related races now between setting 1301 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1302 * __blk_mq_run_hw_queue(): 1303 * 1304 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1305 * but later it becomes online, then this warning is harmless 1306 * at all 1307 * 1308 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1309 * but later it becomes offline, then the warning can't be 1310 * triggered, and we depend on blk-mq timeout handler to 1311 * handle dispatched requests to this hctx 1312 */ 1313 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1314 cpu_online(hctx->next_cpu)) { 1315 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1316 raw_smp_processor_id(), 1317 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1318 dump_stack(); 1319 } 1320 1321 /* 1322 * We can't run the queue inline with ints disabled. Ensure that 1323 * we catch bad users of this early. 1324 */ 1325 WARN_ON_ONCE(in_interrupt()); 1326 1327 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1328 1329 hctx_lock(hctx, &srcu_idx); 1330 blk_mq_sched_dispatch_requests(hctx); 1331 hctx_unlock(hctx, srcu_idx); 1332 } 1333 1334 /* 1335 * It'd be great if the workqueue API had a way to pass 1336 * in a mask and had some smarts for more clever placement. 1337 * For now we just round-robin here, switching for every 1338 * BLK_MQ_CPU_WORK_BATCH queued items. 1339 */ 1340 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1341 { 1342 bool tried = false; 1343 1344 if (hctx->queue->nr_hw_queues == 1) 1345 return WORK_CPU_UNBOUND; 1346 1347 if (--hctx->next_cpu_batch <= 0) { 1348 int next_cpu; 1349 select_cpu: 1350 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask, 1351 cpu_online_mask); 1352 if (next_cpu >= nr_cpu_ids) 1353 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask); 1354 1355 /* 1356 * No online CPU is found, so have to make sure hctx->next_cpu 1357 * is set correctly for not breaking workqueue. 1358 */ 1359 if (next_cpu >= nr_cpu_ids) 1360 hctx->next_cpu = cpumask_first(hctx->cpumask); 1361 else 1362 hctx->next_cpu = next_cpu; 1363 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1364 } 1365 1366 /* 1367 * Do unbound schedule if we can't find a online CPU for this hctx, 1368 * and it should only happen in the path of handling CPU DEAD. 1369 */ 1370 if (!cpu_online(hctx->next_cpu)) { 1371 if (!tried) { 1372 tried = true; 1373 goto select_cpu; 1374 } 1375 1376 /* 1377 * Make sure to re-select CPU next time once after CPUs 1378 * in hctx->cpumask become online again. 1379 */ 1380 hctx->next_cpu_batch = 1; 1381 return WORK_CPU_UNBOUND; 1382 } 1383 return hctx->next_cpu; 1384 } 1385 1386 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1387 unsigned long msecs) 1388 { 1389 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1390 return; 1391 1392 if (unlikely(blk_mq_hctx_stopped(hctx))) 1393 return; 1394 1395 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1396 int cpu = get_cpu(); 1397 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1398 __blk_mq_run_hw_queue(hctx); 1399 put_cpu(); 1400 return; 1401 } 1402 1403 put_cpu(); 1404 } 1405 1406 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1407 msecs_to_jiffies(msecs)); 1408 } 1409 1410 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1411 { 1412 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1413 } 1414 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1415 1416 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1417 { 1418 int srcu_idx; 1419 bool need_run; 1420 1421 /* 1422 * When queue is quiesced, we may be switching io scheduler, or 1423 * updating nr_hw_queues, or other things, and we can't run queue 1424 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1425 * 1426 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1427 * quiesced. 1428 */ 1429 hctx_lock(hctx, &srcu_idx); 1430 need_run = !blk_queue_quiesced(hctx->queue) && 1431 blk_mq_hctx_has_pending(hctx); 1432 hctx_unlock(hctx, srcu_idx); 1433 1434 if (need_run) { 1435 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1436 return true; 1437 } 1438 1439 return false; 1440 } 1441 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1442 1443 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1444 { 1445 struct blk_mq_hw_ctx *hctx; 1446 int i; 1447 1448 queue_for_each_hw_ctx(q, hctx, i) { 1449 if (blk_mq_hctx_stopped(hctx)) 1450 continue; 1451 1452 blk_mq_run_hw_queue(hctx, async); 1453 } 1454 } 1455 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1456 1457 /** 1458 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1459 * @q: request queue. 1460 * 1461 * The caller is responsible for serializing this function against 1462 * blk_mq_{start,stop}_hw_queue(). 1463 */ 1464 bool blk_mq_queue_stopped(struct request_queue *q) 1465 { 1466 struct blk_mq_hw_ctx *hctx; 1467 int i; 1468 1469 queue_for_each_hw_ctx(q, hctx, i) 1470 if (blk_mq_hctx_stopped(hctx)) 1471 return true; 1472 1473 return false; 1474 } 1475 EXPORT_SYMBOL(blk_mq_queue_stopped); 1476 1477 /* 1478 * This function is often used for pausing .queue_rq() by driver when 1479 * there isn't enough resource or some conditions aren't satisfied, and 1480 * BLK_STS_RESOURCE is usually returned. 1481 * 1482 * We do not guarantee that dispatch can be drained or blocked 1483 * after blk_mq_stop_hw_queue() returns. Please use 1484 * blk_mq_quiesce_queue() for that requirement. 1485 */ 1486 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1487 { 1488 cancel_delayed_work(&hctx->run_work); 1489 1490 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1491 } 1492 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1493 1494 /* 1495 * This function is often used for pausing .queue_rq() by driver when 1496 * there isn't enough resource or some conditions aren't satisfied, and 1497 * BLK_STS_RESOURCE is usually returned. 1498 * 1499 * We do not guarantee that dispatch can be drained or blocked 1500 * after blk_mq_stop_hw_queues() returns. Please use 1501 * blk_mq_quiesce_queue() for that requirement. 1502 */ 1503 void blk_mq_stop_hw_queues(struct request_queue *q) 1504 { 1505 struct blk_mq_hw_ctx *hctx; 1506 int i; 1507 1508 queue_for_each_hw_ctx(q, hctx, i) 1509 blk_mq_stop_hw_queue(hctx); 1510 } 1511 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1512 1513 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1514 { 1515 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1516 1517 blk_mq_run_hw_queue(hctx, false); 1518 } 1519 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1520 1521 void blk_mq_start_hw_queues(struct request_queue *q) 1522 { 1523 struct blk_mq_hw_ctx *hctx; 1524 int i; 1525 1526 queue_for_each_hw_ctx(q, hctx, i) 1527 blk_mq_start_hw_queue(hctx); 1528 } 1529 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1530 1531 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1532 { 1533 if (!blk_mq_hctx_stopped(hctx)) 1534 return; 1535 1536 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1537 blk_mq_run_hw_queue(hctx, async); 1538 } 1539 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1540 1541 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1542 { 1543 struct blk_mq_hw_ctx *hctx; 1544 int i; 1545 1546 queue_for_each_hw_ctx(q, hctx, i) 1547 blk_mq_start_stopped_hw_queue(hctx, async); 1548 } 1549 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1550 1551 static void blk_mq_run_work_fn(struct work_struct *work) 1552 { 1553 struct blk_mq_hw_ctx *hctx; 1554 1555 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1556 1557 /* 1558 * If we are stopped, don't run the queue. The exception is if 1559 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1560 * the STOPPED bit and run it. 1561 */ 1562 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1563 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1564 return; 1565 1566 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1567 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1568 } 1569 1570 __blk_mq_run_hw_queue(hctx); 1571 } 1572 1573 1574 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1575 { 1576 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1577 return; 1578 1579 /* 1580 * Stop the hw queue, then modify currently delayed work. 1581 * This should prevent us from running the queue prematurely. 1582 * Mark the queue as auto-clearing STOPPED when it runs. 1583 */ 1584 blk_mq_stop_hw_queue(hctx); 1585 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1586 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1587 &hctx->run_work, 1588 msecs_to_jiffies(msecs)); 1589 } 1590 EXPORT_SYMBOL(blk_mq_delay_queue); 1591 1592 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1593 struct request *rq, 1594 bool at_head) 1595 { 1596 struct blk_mq_ctx *ctx = rq->mq_ctx; 1597 1598 lockdep_assert_held(&ctx->lock); 1599 1600 trace_block_rq_insert(hctx->queue, rq); 1601 1602 if (at_head) 1603 list_add(&rq->queuelist, &ctx->rq_list); 1604 else 1605 list_add_tail(&rq->queuelist, &ctx->rq_list); 1606 } 1607 1608 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1609 bool at_head) 1610 { 1611 struct blk_mq_ctx *ctx = rq->mq_ctx; 1612 1613 lockdep_assert_held(&ctx->lock); 1614 1615 __blk_mq_insert_req_list(hctx, rq, at_head); 1616 blk_mq_hctx_mark_pending(hctx, ctx); 1617 } 1618 1619 /* 1620 * Should only be used carefully, when the caller knows we want to 1621 * bypass a potential IO scheduler on the target device. 1622 */ 1623 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1624 { 1625 struct blk_mq_ctx *ctx = rq->mq_ctx; 1626 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1627 1628 spin_lock(&hctx->lock); 1629 list_add_tail(&rq->queuelist, &hctx->dispatch); 1630 spin_unlock(&hctx->lock); 1631 1632 if (run_queue) 1633 blk_mq_run_hw_queue(hctx, false); 1634 } 1635 1636 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1637 struct list_head *list) 1638 1639 { 1640 /* 1641 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1642 * offline now 1643 */ 1644 spin_lock(&ctx->lock); 1645 while (!list_empty(list)) { 1646 struct request *rq; 1647 1648 rq = list_first_entry(list, struct request, queuelist); 1649 BUG_ON(rq->mq_ctx != ctx); 1650 list_del_init(&rq->queuelist); 1651 __blk_mq_insert_req_list(hctx, rq, false); 1652 } 1653 blk_mq_hctx_mark_pending(hctx, ctx); 1654 spin_unlock(&ctx->lock); 1655 } 1656 1657 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1658 { 1659 struct request *rqa = container_of(a, struct request, queuelist); 1660 struct request *rqb = container_of(b, struct request, queuelist); 1661 1662 return !(rqa->mq_ctx < rqb->mq_ctx || 1663 (rqa->mq_ctx == rqb->mq_ctx && 1664 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1665 } 1666 1667 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1668 { 1669 struct blk_mq_ctx *this_ctx; 1670 struct request_queue *this_q; 1671 struct request *rq; 1672 LIST_HEAD(list); 1673 LIST_HEAD(ctx_list); 1674 unsigned int depth; 1675 1676 list_splice_init(&plug->mq_list, &list); 1677 1678 list_sort(NULL, &list, plug_ctx_cmp); 1679 1680 this_q = NULL; 1681 this_ctx = NULL; 1682 depth = 0; 1683 1684 while (!list_empty(&list)) { 1685 rq = list_entry_rq(list.next); 1686 list_del_init(&rq->queuelist); 1687 BUG_ON(!rq->q); 1688 if (rq->mq_ctx != this_ctx) { 1689 if (this_ctx) { 1690 trace_block_unplug(this_q, depth, from_schedule); 1691 blk_mq_sched_insert_requests(this_q, this_ctx, 1692 &ctx_list, 1693 from_schedule); 1694 } 1695 1696 this_ctx = rq->mq_ctx; 1697 this_q = rq->q; 1698 depth = 0; 1699 } 1700 1701 depth++; 1702 list_add_tail(&rq->queuelist, &ctx_list); 1703 } 1704 1705 /* 1706 * If 'this_ctx' is set, we know we have entries to complete 1707 * on 'ctx_list'. Do those. 1708 */ 1709 if (this_ctx) { 1710 trace_block_unplug(this_q, depth, from_schedule); 1711 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1712 from_schedule); 1713 } 1714 } 1715 1716 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1717 { 1718 blk_init_request_from_bio(rq, bio); 1719 1720 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1721 1722 blk_account_io_start(rq, true); 1723 } 1724 1725 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1726 struct blk_mq_ctx *ctx, 1727 struct request *rq) 1728 { 1729 spin_lock(&ctx->lock); 1730 __blk_mq_insert_request(hctx, rq, false); 1731 spin_unlock(&ctx->lock); 1732 } 1733 1734 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1735 { 1736 if (rq->tag != -1) 1737 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1738 1739 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1740 } 1741 1742 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1743 struct request *rq, 1744 blk_qc_t *cookie) 1745 { 1746 struct request_queue *q = rq->q; 1747 struct blk_mq_queue_data bd = { 1748 .rq = rq, 1749 .last = true, 1750 }; 1751 blk_qc_t new_cookie; 1752 blk_status_t ret; 1753 1754 new_cookie = request_to_qc_t(hctx, rq); 1755 1756 /* 1757 * For OK queue, we are done. For error, caller may kill it. 1758 * Any other error (busy), just add it to our list as we 1759 * previously would have done. 1760 */ 1761 ret = q->mq_ops->queue_rq(hctx, &bd); 1762 switch (ret) { 1763 case BLK_STS_OK: 1764 *cookie = new_cookie; 1765 break; 1766 case BLK_STS_RESOURCE: 1767 __blk_mq_requeue_request(rq); 1768 break; 1769 default: 1770 *cookie = BLK_QC_T_NONE; 1771 break; 1772 } 1773 1774 return ret; 1775 } 1776 1777 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1778 struct request *rq, 1779 blk_qc_t *cookie, 1780 bool bypass_insert) 1781 { 1782 struct request_queue *q = rq->q; 1783 bool run_queue = true; 1784 1785 /* 1786 * RCU or SRCU read lock is needed before checking quiesced flag. 1787 * 1788 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1789 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1790 * and avoid driver to try to dispatch again. 1791 */ 1792 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1793 run_queue = false; 1794 bypass_insert = false; 1795 goto insert; 1796 } 1797 1798 if (q->elevator && !bypass_insert) 1799 goto insert; 1800 1801 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1802 goto insert; 1803 1804 if (!blk_mq_get_dispatch_budget(hctx)) { 1805 blk_mq_put_driver_tag(rq); 1806 goto insert; 1807 } 1808 1809 return __blk_mq_issue_directly(hctx, rq, cookie); 1810 insert: 1811 if (bypass_insert) 1812 return BLK_STS_RESOURCE; 1813 1814 blk_mq_sched_insert_request(rq, false, run_queue, false); 1815 return BLK_STS_OK; 1816 } 1817 1818 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1819 struct request *rq, blk_qc_t *cookie) 1820 { 1821 blk_status_t ret; 1822 int srcu_idx; 1823 1824 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1825 1826 hctx_lock(hctx, &srcu_idx); 1827 1828 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1829 if (ret == BLK_STS_RESOURCE) 1830 blk_mq_sched_insert_request(rq, false, true, false); 1831 else if (ret != BLK_STS_OK) 1832 blk_mq_end_request(rq, ret); 1833 1834 hctx_unlock(hctx, srcu_idx); 1835 } 1836 1837 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1838 { 1839 blk_status_t ret; 1840 int srcu_idx; 1841 blk_qc_t unused_cookie; 1842 struct blk_mq_ctx *ctx = rq->mq_ctx; 1843 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1844 1845 hctx_lock(hctx, &srcu_idx); 1846 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1847 hctx_unlock(hctx, srcu_idx); 1848 1849 return ret; 1850 } 1851 1852 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1853 { 1854 const int is_sync = op_is_sync(bio->bi_opf); 1855 const int is_flush_fua = op_is_flush(bio->bi_opf); 1856 struct blk_mq_alloc_data data = { .flags = 0 }; 1857 struct request *rq; 1858 unsigned int request_count = 0; 1859 struct blk_plug *plug; 1860 struct request *same_queue_rq = NULL; 1861 blk_qc_t cookie; 1862 unsigned int wb_acct; 1863 1864 blk_queue_bounce(q, &bio); 1865 1866 blk_queue_split(q, &bio); 1867 1868 if (!bio_integrity_prep(bio)) 1869 return BLK_QC_T_NONE; 1870 1871 if (!is_flush_fua && !blk_queue_nomerges(q) && 1872 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1873 return BLK_QC_T_NONE; 1874 1875 if (blk_mq_sched_bio_merge(q, bio)) 1876 return BLK_QC_T_NONE; 1877 1878 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1879 1880 trace_block_getrq(q, bio, bio->bi_opf); 1881 1882 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1883 if (unlikely(!rq)) { 1884 __wbt_done(q->rq_wb, wb_acct); 1885 if (bio->bi_opf & REQ_NOWAIT) 1886 bio_wouldblock_error(bio); 1887 return BLK_QC_T_NONE; 1888 } 1889 1890 wbt_track(&rq->issue_stat, wb_acct); 1891 1892 cookie = request_to_qc_t(data.hctx, rq); 1893 1894 plug = current->plug; 1895 if (unlikely(is_flush_fua)) { 1896 blk_mq_put_ctx(data.ctx); 1897 blk_mq_bio_to_request(rq, bio); 1898 1899 /* bypass scheduler for flush rq */ 1900 blk_insert_flush(rq); 1901 blk_mq_run_hw_queue(data.hctx, true); 1902 } else if (plug && q->nr_hw_queues == 1) { 1903 struct request *last = NULL; 1904 1905 blk_mq_put_ctx(data.ctx); 1906 blk_mq_bio_to_request(rq, bio); 1907 1908 /* 1909 * @request_count may become stale because of schedule 1910 * out, so check the list again. 1911 */ 1912 if (list_empty(&plug->mq_list)) 1913 request_count = 0; 1914 else if (blk_queue_nomerges(q)) 1915 request_count = blk_plug_queued_count(q); 1916 1917 if (!request_count) 1918 trace_block_plug(q); 1919 else 1920 last = list_entry_rq(plug->mq_list.prev); 1921 1922 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1923 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1924 blk_flush_plug_list(plug, false); 1925 trace_block_plug(q); 1926 } 1927 1928 list_add_tail(&rq->queuelist, &plug->mq_list); 1929 } else if (plug && !blk_queue_nomerges(q)) { 1930 blk_mq_bio_to_request(rq, bio); 1931 1932 /* 1933 * We do limited plugging. If the bio can be merged, do that. 1934 * Otherwise the existing request in the plug list will be 1935 * issued. So the plug list will have one request at most 1936 * The plug list might get flushed before this. If that happens, 1937 * the plug list is empty, and same_queue_rq is invalid. 1938 */ 1939 if (list_empty(&plug->mq_list)) 1940 same_queue_rq = NULL; 1941 if (same_queue_rq) 1942 list_del_init(&same_queue_rq->queuelist); 1943 list_add_tail(&rq->queuelist, &plug->mq_list); 1944 1945 blk_mq_put_ctx(data.ctx); 1946 1947 if (same_queue_rq) { 1948 data.hctx = blk_mq_map_queue(q, 1949 same_queue_rq->mq_ctx->cpu); 1950 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1951 &cookie); 1952 } 1953 } else if (q->nr_hw_queues > 1 && is_sync) { 1954 blk_mq_put_ctx(data.ctx); 1955 blk_mq_bio_to_request(rq, bio); 1956 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1957 } else if (q->elevator) { 1958 blk_mq_put_ctx(data.ctx); 1959 blk_mq_bio_to_request(rq, bio); 1960 blk_mq_sched_insert_request(rq, false, true, true); 1961 } else { 1962 blk_mq_put_ctx(data.ctx); 1963 blk_mq_bio_to_request(rq, bio); 1964 blk_mq_queue_io(data.hctx, data.ctx, rq); 1965 blk_mq_run_hw_queue(data.hctx, true); 1966 } 1967 1968 return cookie; 1969 } 1970 1971 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1972 unsigned int hctx_idx) 1973 { 1974 struct page *page; 1975 1976 if (tags->rqs && set->ops->exit_request) { 1977 int i; 1978 1979 for (i = 0; i < tags->nr_tags; i++) { 1980 struct request *rq = tags->static_rqs[i]; 1981 1982 if (!rq) 1983 continue; 1984 set->ops->exit_request(set, rq, hctx_idx); 1985 tags->static_rqs[i] = NULL; 1986 } 1987 } 1988 1989 while (!list_empty(&tags->page_list)) { 1990 page = list_first_entry(&tags->page_list, struct page, lru); 1991 list_del_init(&page->lru); 1992 /* 1993 * Remove kmemleak object previously allocated in 1994 * blk_mq_init_rq_map(). 1995 */ 1996 kmemleak_free(page_address(page)); 1997 __free_pages(page, page->private); 1998 } 1999 } 2000 2001 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2002 { 2003 kfree(tags->rqs); 2004 tags->rqs = NULL; 2005 kfree(tags->static_rqs); 2006 tags->static_rqs = NULL; 2007 2008 blk_mq_free_tags(tags); 2009 } 2010 2011 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2012 unsigned int hctx_idx, 2013 unsigned int nr_tags, 2014 unsigned int reserved_tags) 2015 { 2016 struct blk_mq_tags *tags; 2017 int node; 2018 2019 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2020 if (node == NUMA_NO_NODE) 2021 node = set->numa_node; 2022 2023 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2024 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2025 if (!tags) 2026 return NULL; 2027 2028 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2029 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2030 node); 2031 if (!tags->rqs) { 2032 blk_mq_free_tags(tags); 2033 return NULL; 2034 } 2035 2036 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2037 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2038 node); 2039 if (!tags->static_rqs) { 2040 kfree(tags->rqs); 2041 blk_mq_free_tags(tags); 2042 return NULL; 2043 } 2044 2045 return tags; 2046 } 2047 2048 static size_t order_to_size(unsigned int order) 2049 { 2050 return (size_t)PAGE_SIZE << order; 2051 } 2052 2053 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2054 unsigned int hctx_idx, int node) 2055 { 2056 int ret; 2057 2058 if (set->ops->init_request) { 2059 ret = set->ops->init_request(set, rq, hctx_idx, node); 2060 if (ret) 2061 return ret; 2062 } 2063 2064 seqcount_init(&rq->gstate_seq); 2065 u64_stats_init(&rq->aborted_gstate_sync); 2066 return 0; 2067 } 2068 2069 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2070 unsigned int hctx_idx, unsigned int depth) 2071 { 2072 unsigned int i, j, entries_per_page, max_order = 4; 2073 size_t rq_size, left; 2074 int node; 2075 2076 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2077 if (node == NUMA_NO_NODE) 2078 node = set->numa_node; 2079 2080 INIT_LIST_HEAD(&tags->page_list); 2081 2082 /* 2083 * rq_size is the size of the request plus driver payload, rounded 2084 * to the cacheline size 2085 */ 2086 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2087 cache_line_size()); 2088 left = rq_size * depth; 2089 2090 for (i = 0; i < depth; ) { 2091 int this_order = max_order; 2092 struct page *page; 2093 int to_do; 2094 void *p; 2095 2096 while (this_order && left < order_to_size(this_order - 1)) 2097 this_order--; 2098 2099 do { 2100 page = alloc_pages_node(node, 2101 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2102 this_order); 2103 if (page) 2104 break; 2105 if (!this_order--) 2106 break; 2107 if (order_to_size(this_order) < rq_size) 2108 break; 2109 } while (1); 2110 2111 if (!page) 2112 goto fail; 2113 2114 page->private = this_order; 2115 list_add_tail(&page->lru, &tags->page_list); 2116 2117 p = page_address(page); 2118 /* 2119 * Allow kmemleak to scan these pages as they contain pointers 2120 * to additional allocations like via ops->init_request(). 2121 */ 2122 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2123 entries_per_page = order_to_size(this_order) / rq_size; 2124 to_do = min(entries_per_page, depth - i); 2125 left -= to_do * rq_size; 2126 for (j = 0; j < to_do; j++) { 2127 struct request *rq = p; 2128 2129 tags->static_rqs[i] = rq; 2130 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2131 tags->static_rqs[i] = NULL; 2132 goto fail; 2133 } 2134 2135 p += rq_size; 2136 i++; 2137 } 2138 } 2139 return 0; 2140 2141 fail: 2142 blk_mq_free_rqs(set, tags, hctx_idx); 2143 return -ENOMEM; 2144 } 2145 2146 /* 2147 * 'cpu' is going away. splice any existing rq_list entries from this 2148 * software queue to the hw queue dispatch list, and ensure that it 2149 * gets run. 2150 */ 2151 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2152 { 2153 struct blk_mq_hw_ctx *hctx; 2154 struct blk_mq_ctx *ctx; 2155 LIST_HEAD(tmp); 2156 2157 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2158 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2159 2160 spin_lock(&ctx->lock); 2161 if (!list_empty(&ctx->rq_list)) { 2162 list_splice_init(&ctx->rq_list, &tmp); 2163 blk_mq_hctx_clear_pending(hctx, ctx); 2164 } 2165 spin_unlock(&ctx->lock); 2166 2167 if (list_empty(&tmp)) 2168 return 0; 2169 2170 spin_lock(&hctx->lock); 2171 list_splice_tail_init(&tmp, &hctx->dispatch); 2172 spin_unlock(&hctx->lock); 2173 2174 blk_mq_run_hw_queue(hctx, true); 2175 return 0; 2176 } 2177 2178 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2179 { 2180 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2181 &hctx->cpuhp_dead); 2182 } 2183 2184 /* hctx->ctxs will be freed in queue's release handler */ 2185 static void blk_mq_exit_hctx(struct request_queue *q, 2186 struct blk_mq_tag_set *set, 2187 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2188 { 2189 blk_mq_debugfs_unregister_hctx(hctx); 2190 2191 if (blk_mq_hw_queue_mapped(hctx)) 2192 blk_mq_tag_idle(hctx); 2193 2194 if (set->ops->exit_request) 2195 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2196 2197 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2198 2199 if (set->ops->exit_hctx) 2200 set->ops->exit_hctx(hctx, hctx_idx); 2201 2202 if (hctx->flags & BLK_MQ_F_BLOCKING) 2203 cleanup_srcu_struct(hctx->srcu); 2204 2205 blk_mq_remove_cpuhp(hctx); 2206 blk_free_flush_queue(hctx->fq); 2207 sbitmap_free(&hctx->ctx_map); 2208 } 2209 2210 static void blk_mq_exit_hw_queues(struct request_queue *q, 2211 struct blk_mq_tag_set *set, int nr_queue) 2212 { 2213 struct blk_mq_hw_ctx *hctx; 2214 unsigned int i; 2215 2216 queue_for_each_hw_ctx(q, hctx, i) { 2217 if (i == nr_queue) 2218 break; 2219 blk_mq_exit_hctx(q, set, hctx, i); 2220 } 2221 } 2222 2223 static int blk_mq_init_hctx(struct request_queue *q, 2224 struct blk_mq_tag_set *set, 2225 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2226 { 2227 int node; 2228 2229 node = hctx->numa_node; 2230 if (node == NUMA_NO_NODE) 2231 node = hctx->numa_node = set->numa_node; 2232 2233 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2234 spin_lock_init(&hctx->lock); 2235 INIT_LIST_HEAD(&hctx->dispatch); 2236 hctx->queue = q; 2237 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2238 2239 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2240 2241 hctx->tags = set->tags[hctx_idx]; 2242 2243 /* 2244 * Allocate space for all possible cpus to avoid allocation at 2245 * runtime 2246 */ 2247 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2248 GFP_KERNEL, node); 2249 if (!hctx->ctxs) 2250 goto unregister_cpu_notifier; 2251 2252 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2253 node)) 2254 goto free_ctxs; 2255 2256 hctx->nr_ctx = 0; 2257 2258 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2259 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2260 2261 if (set->ops->init_hctx && 2262 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2263 goto free_bitmap; 2264 2265 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2266 goto exit_hctx; 2267 2268 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2269 if (!hctx->fq) 2270 goto sched_exit_hctx; 2271 2272 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2273 goto free_fq; 2274 2275 if (hctx->flags & BLK_MQ_F_BLOCKING) 2276 init_srcu_struct(hctx->srcu); 2277 2278 blk_mq_debugfs_register_hctx(q, hctx); 2279 2280 return 0; 2281 2282 free_fq: 2283 kfree(hctx->fq); 2284 sched_exit_hctx: 2285 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2286 exit_hctx: 2287 if (set->ops->exit_hctx) 2288 set->ops->exit_hctx(hctx, hctx_idx); 2289 free_bitmap: 2290 sbitmap_free(&hctx->ctx_map); 2291 free_ctxs: 2292 kfree(hctx->ctxs); 2293 unregister_cpu_notifier: 2294 blk_mq_remove_cpuhp(hctx); 2295 return -1; 2296 } 2297 2298 static void blk_mq_init_cpu_queues(struct request_queue *q, 2299 unsigned int nr_hw_queues) 2300 { 2301 unsigned int i; 2302 2303 for_each_possible_cpu(i) { 2304 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2305 struct blk_mq_hw_ctx *hctx; 2306 2307 __ctx->cpu = i; 2308 spin_lock_init(&__ctx->lock); 2309 INIT_LIST_HEAD(&__ctx->rq_list); 2310 __ctx->queue = q; 2311 2312 /* 2313 * Set local node, IFF we have more than one hw queue. If 2314 * not, we remain on the home node of the device 2315 */ 2316 hctx = blk_mq_map_queue(q, i); 2317 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2318 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2319 } 2320 } 2321 2322 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2323 { 2324 int ret = 0; 2325 2326 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2327 set->queue_depth, set->reserved_tags); 2328 if (!set->tags[hctx_idx]) 2329 return false; 2330 2331 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2332 set->queue_depth); 2333 if (!ret) 2334 return true; 2335 2336 blk_mq_free_rq_map(set->tags[hctx_idx]); 2337 set->tags[hctx_idx] = NULL; 2338 return false; 2339 } 2340 2341 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2342 unsigned int hctx_idx) 2343 { 2344 if (set->tags[hctx_idx]) { 2345 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2346 blk_mq_free_rq_map(set->tags[hctx_idx]); 2347 set->tags[hctx_idx] = NULL; 2348 } 2349 } 2350 2351 static void blk_mq_map_swqueue(struct request_queue *q) 2352 { 2353 unsigned int i, hctx_idx; 2354 struct blk_mq_hw_ctx *hctx; 2355 struct blk_mq_ctx *ctx; 2356 struct blk_mq_tag_set *set = q->tag_set; 2357 2358 /* 2359 * Avoid others reading imcomplete hctx->cpumask through sysfs 2360 */ 2361 mutex_lock(&q->sysfs_lock); 2362 2363 queue_for_each_hw_ctx(q, hctx, i) { 2364 cpumask_clear(hctx->cpumask); 2365 hctx->nr_ctx = 0; 2366 } 2367 2368 /* 2369 * Map software to hardware queues. 2370 * 2371 * If the cpu isn't present, the cpu is mapped to first hctx. 2372 */ 2373 for_each_possible_cpu(i) { 2374 hctx_idx = q->mq_map[i]; 2375 /* unmapped hw queue can be remapped after CPU topo changed */ 2376 if (!set->tags[hctx_idx] && 2377 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2378 /* 2379 * If tags initialization fail for some hctx, 2380 * that hctx won't be brought online. In this 2381 * case, remap the current ctx to hctx[0] which 2382 * is guaranteed to always have tags allocated 2383 */ 2384 q->mq_map[i] = 0; 2385 } 2386 2387 ctx = per_cpu_ptr(q->queue_ctx, i); 2388 hctx = blk_mq_map_queue(q, i); 2389 2390 cpumask_set_cpu(i, hctx->cpumask); 2391 ctx->index_hw = hctx->nr_ctx; 2392 hctx->ctxs[hctx->nr_ctx++] = ctx; 2393 } 2394 2395 mutex_unlock(&q->sysfs_lock); 2396 2397 queue_for_each_hw_ctx(q, hctx, i) { 2398 /* 2399 * If no software queues are mapped to this hardware queue, 2400 * disable it and free the request entries. 2401 */ 2402 if (!hctx->nr_ctx) { 2403 /* Never unmap queue 0. We need it as a 2404 * fallback in case of a new remap fails 2405 * allocation 2406 */ 2407 if (i && set->tags[i]) 2408 blk_mq_free_map_and_requests(set, i); 2409 2410 hctx->tags = NULL; 2411 continue; 2412 } 2413 2414 hctx->tags = set->tags[i]; 2415 WARN_ON(!hctx->tags); 2416 2417 /* 2418 * Set the map size to the number of mapped software queues. 2419 * This is more accurate and more efficient than looping 2420 * over all possibly mapped software queues. 2421 */ 2422 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2423 2424 /* 2425 * Initialize batch roundrobin counts 2426 */ 2427 hctx->next_cpu = cpumask_first_and(hctx->cpumask, 2428 cpu_online_mask); 2429 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2430 } 2431 } 2432 2433 /* 2434 * Caller needs to ensure that we're either frozen/quiesced, or that 2435 * the queue isn't live yet. 2436 */ 2437 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2438 { 2439 struct blk_mq_hw_ctx *hctx; 2440 int i; 2441 2442 queue_for_each_hw_ctx(q, hctx, i) { 2443 if (shared) { 2444 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2445 atomic_inc(&q->shared_hctx_restart); 2446 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2447 } else { 2448 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2449 atomic_dec(&q->shared_hctx_restart); 2450 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2451 } 2452 } 2453 } 2454 2455 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2456 bool shared) 2457 { 2458 struct request_queue *q; 2459 2460 lockdep_assert_held(&set->tag_list_lock); 2461 2462 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2463 blk_mq_freeze_queue(q); 2464 queue_set_hctx_shared(q, shared); 2465 blk_mq_unfreeze_queue(q); 2466 } 2467 } 2468 2469 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2470 { 2471 struct blk_mq_tag_set *set = q->tag_set; 2472 2473 mutex_lock(&set->tag_list_lock); 2474 list_del_rcu(&q->tag_set_list); 2475 INIT_LIST_HEAD(&q->tag_set_list); 2476 if (list_is_singular(&set->tag_list)) { 2477 /* just transitioned to unshared */ 2478 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2479 /* update existing queue */ 2480 blk_mq_update_tag_set_depth(set, false); 2481 } 2482 mutex_unlock(&set->tag_list_lock); 2483 2484 synchronize_rcu(); 2485 } 2486 2487 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2488 struct request_queue *q) 2489 { 2490 q->tag_set = set; 2491 2492 mutex_lock(&set->tag_list_lock); 2493 2494 /* 2495 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2496 */ 2497 if (!list_empty(&set->tag_list) && 2498 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2499 set->flags |= BLK_MQ_F_TAG_SHARED; 2500 /* update existing queue */ 2501 blk_mq_update_tag_set_depth(set, true); 2502 } 2503 if (set->flags & BLK_MQ_F_TAG_SHARED) 2504 queue_set_hctx_shared(q, true); 2505 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2506 2507 mutex_unlock(&set->tag_list_lock); 2508 } 2509 2510 /* 2511 * It is the actual release handler for mq, but we do it from 2512 * request queue's release handler for avoiding use-after-free 2513 * and headache because q->mq_kobj shouldn't have been introduced, 2514 * but we can't group ctx/kctx kobj without it. 2515 */ 2516 void blk_mq_release(struct request_queue *q) 2517 { 2518 struct blk_mq_hw_ctx *hctx; 2519 unsigned int i; 2520 2521 /* hctx kobj stays in hctx */ 2522 queue_for_each_hw_ctx(q, hctx, i) { 2523 if (!hctx) 2524 continue; 2525 kobject_put(&hctx->kobj); 2526 } 2527 2528 q->mq_map = NULL; 2529 2530 kfree(q->queue_hw_ctx); 2531 2532 /* 2533 * release .mq_kobj and sw queue's kobject now because 2534 * both share lifetime with request queue. 2535 */ 2536 blk_mq_sysfs_deinit(q); 2537 2538 free_percpu(q->queue_ctx); 2539 } 2540 2541 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2542 { 2543 struct request_queue *uninit_q, *q; 2544 2545 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2546 if (!uninit_q) 2547 return ERR_PTR(-ENOMEM); 2548 2549 q = blk_mq_init_allocated_queue(set, uninit_q); 2550 if (IS_ERR(q)) 2551 blk_cleanup_queue(uninit_q); 2552 2553 return q; 2554 } 2555 EXPORT_SYMBOL(blk_mq_init_queue); 2556 2557 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2558 { 2559 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2560 2561 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2562 __alignof__(struct blk_mq_hw_ctx)) != 2563 sizeof(struct blk_mq_hw_ctx)); 2564 2565 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2566 hw_ctx_size += sizeof(struct srcu_struct); 2567 2568 return hw_ctx_size; 2569 } 2570 2571 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2572 struct request_queue *q) 2573 { 2574 int i, j; 2575 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2576 2577 blk_mq_sysfs_unregister(q); 2578 2579 /* protect against switching io scheduler */ 2580 mutex_lock(&q->sysfs_lock); 2581 for (i = 0; i < set->nr_hw_queues; i++) { 2582 int node; 2583 2584 if (hctxs[i]) 2585 continue; 2586 2587 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2588 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2589 GFP_KERNEL, node); 2590 if (!hctxs[i]) 2591 break; 2592 2593 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2594 node)) { 2595 kfree(hctxs[i]); 2596 hctxs[i] = NULL; 2597 break; 2598 } 2599 2600 atomic_set(&hctxs[i]->nr_active, 0); 2601 hctxs[i]->numa_node = node; 2602 hctxs[i]->queue_num = i; 2603 2604 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2605 free_cpumask_var(hctxs[i]->cpumask); 2606 kfree(hctxs[i]); 2607 hctxs[i] = NULL; 2608 break; 2609 } 2610 blk_mq_hctx_kobj_init(hctxs[i]); 2611 } 2612 for (j = i; j < q->nr_hw_queues; j++) { 2613 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2614 2615 if (hctx) { 2616 if (hctx->tags) 2617 blk_mq_free_map_and_requests(set, j); 2618 blk_mq_exit_hctx(q, set, hctx, j); 2619 kobject_put(&hctx->kobj); 2620 hctxs[j] = NULL; 2621 2622 } 2623 } 2624 q->nr_hw_queues = i; 2625 mutex_unlock(&q->sysfs_lock); 2626 blk_mq_sysfs_register(q); 2627 } 2628 2629 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2630 struct request_queue *q) 2631 { 2632 /* mark the queue as mq asap */ 2633 q->mq_ops = set->ops; 2634 2635 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2636 blk_mq_poll_stats_bkt, 2637 BLK_MQ_POLL_STATS_BKTS, q); 2638 if (!q->poll_cb) 2639 goto err_exit; 2640 2641 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2642 if (!q->queue_ctx) 2643 goto err_exit; 2644 2645 /* init q->mq_kobj and sw queues' kobjects */ 2646 blk_mq_sysfs_init(q); 2647 2648 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2649 GFP_KERNEL, set->numa_node); 2650 if (!q->queue_hw_ctx) 2651 goto err_percpu; 2652 2653 q->mq_map = set->mq_map; 2654 2655 blk_mq_realloc_hw_ctxs(set, q); 2656 if (!q->nr_hw_queues) 2657 goto err_hctxs; 2658 2659 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2660 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2661 2662 q->nr_queues = nr_cpu_ids; 2663 2664 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2665 2666 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2667 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2668 2669 q->sg_reserved_size = INT_MAX; 2670 2671 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2672 INIT_LIST_HEAD(&q->requeue_list); 2673 spin_lock_init(&q->requeue_lock); 2674 2675 blk_queue_make_request(q, blk_mq_make_request); 2676 if (q->mq_ops->poll) 2677 q->poll_fn = blk_mq_poll; 2678 2679 /* 2680 * Do this after blk_queue_make_request() overrides it... 2681 */ 2682 q->nr_requests = set->queue_depth; 2683 2684 /* 2685 * Default to classic polling 2686 */ 2687 q->poll_nsec = -1; 2688 2689 if (set->ops->complete) 2690 blk_queue_softirq_done(q, set->ops->complete); 2691 2692 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2693 blk_mq_add_queue_tag_set(set, q); 2694 blk_mq_map_swqueue(q); 2695 2696 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2697 int ret; 2698 2699 ret = blk_mq_sched_init(q); 2700 if (ret) 2701 return ERR_PTR(ret); 2702 } 2703 2704 return q; 2705 2706 err_hctxs: 2707 kfree(q->queue_hw_ctx); 2708 err_percpu: 2709 free_percpu(q->queue_ctx); 2710 err_exit: 2711 q->mq_ops = NULL; 2712 return ERR_PTR(-ENOMEM); 2713 } 2714 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2715 2716 void blk_mq_free_queue(struct request_queue *q) 2717 { 2718 struct blk_mq_tag_set *set = q->tag_set; 2719 2720 blk_mq_del_queue_tag_set(q); 2721 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2722 } 2723 2724 /* Basically redo blk_mq_init_queue with queue frozen */ 2725 static void blk_mq_queue_reinit(struct request_queue *q) 2726 { 2727 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2728 2729 blk_mq_debugfs_unregister_hctxs(q); 2730 blk_mq_sysfs_unregister(q); 2731 2732 /* 2733 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2734 * we should change hctx numa_node according to the new topology (this 2735 * involves freeing and re-allocating memory, worth doing?) 2736 */ 2737 blk_mq_map_swqueue(q); 2738 2739 blk_mq_sysfs_register(q); 2740 blk_mq_debugfs_register_hctxs(q); 2741 } 2742 2743 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2744 { 2745 int i; 2746 2747 for (i = 0; i < set->nr_hw_queues; i++) 2748 if (!__blk_mq_alloc_rq_map(set, i)) 2749 goto out_unwind; 2750 2751 return 0; 2752 2753 out_unwind: 2754 while (--i >= 0) 2755 blk_mq_free_rq_map(set->tags[i]); 2756 2757 return -ENOMEM; 2758 } 2759 2760 /* 2761 * Allocate the request maps associated with this tag_set. Note that this 2762 * may reduce the depth asked for, if memory is tight. set->queue_depth 2763 * will be updated to reflect the allocated depth. 2764 */ 2765 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2766 { 2767 unsigned int depth; 2768 int err; 2769 2770 depth = set->queue_depth; 2771 do { 2772 err = __blk_mq_alloc_rq_maps(set); 2773 if (!err) 2774 break; 2775 2776 set->queue_depth >>= 1; 2777 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2778 err = -ENOMEM; 2779 break; 2780 } 2781 } while (set->queue_depth); 2782 2783 if (!set->queue_depth || err) { 2784 pr_err("blk-mq: failed to allocate request map\n"); 2785 return -ENOMEM; 2786 } 2787 2788 if (depth != set->queue_depth) 2789 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2790 depth, set->queue_depth); 2791 2792 return 0; 2793 } 2794 2795 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2796 { 2797 if (set->ops->map_queues) { 2798 int cpu; 2799 /* 2800 * transport .map_queues is usually done in the following 2801 * way: 2802 * 2803 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2804 * mask = get_cpu_mask(queue) 2805 * for_each_cpu(cpu, mask) 2806 * set->mq_map[cpu] = queue; 2807 * } 2808 * 2809 * When we need to remap, the table has to be cleared for 2810 * killing stale mapping since one CPU may not be mapped 2811 * to any hw queue. 2812 */ 2813 for_each_possible_cpu(cpu) 2814 set->mq_map[cpu] = 0; 2815 2816 return set->ops->map_queues(set); 2817 } else 2818 return blk_mq_map_queues(set); 2819 } 2820 2821 /* 2822 * Alloc a tag set to be associated with one or more request queues. 2823 * May fail with EINVAL for various error conditions. May adjust the 2824 * requested depth down, if if it too large. In that case, the set 2825 * value will be stored in set->queue_depth. 2826 */ 2827 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2828 { 2829 int ret; 2830 2831 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2832 2833 if (!set->nr_hw_queues) 2834 return -EINVAL; 2835 if (!set->queue_depth) 2836 return -EINVAL; 2837 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2838 return -EINVAL; 2839 2840 if (!set->ops->queue_rq) 2841 return -EINVAL; 2842 2843 if (!set->ops->get_budget ^ !set->ops->put_budget) 2844 return -EINVAL; 2845 2846 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2847 pr_info("blk-mq: reduced tag depth to %u\n", 2848 BLK_MQ_MAX_DEPTH); 2849 set->queue_depth = BLK_MQ_MAX_DEPTH; 2850 } 2851 2852 /* 2853 * If a crashdump is active, then we are potentially in a very 2854 * memory constrained environment. Limit us to 1 queue and 2855 * 64 tags to prevent using too much memory. 2856 */ 2857 if (is_kdump_kernel()) { 2858 set->nr_hw_queues = 1; 2859 set->queue_depth = min(64U, set->queue_depth); 2860 } 2861 /* 2862 * There is no use for more h/w queues than cpus. 2863 */ 2864 if (set->nr_hw_queues > nr_cpu_ids) 2865 set->nr_hw_queues = nr_cpu_ids; 2866 2867 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2868 GFP_KERNEL, set->numa_node); 2869 if (!set->tags) 2870 return -ENOMEM; 2871 2872 ret = -ENOMEM; 2873 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2874 GFP_KERNEL, set->numa_node); 2875 if (!set->mq_map) 2876 goto out_free_tags; 2877 2878 ret = blk_mq_update_queue_map(set); 2879 if (ret) 2880 goto out_free_mq_map; 2881 2882 ret = blk_mq_alloc_rq_maps(set); 2883 if (ret) 2884 goto out_free_mq_map; 2885 2886 mutex_init(&set->tag_list_lock); 2887 INIT_LIST_HEAD(&set->tag_list); 2888 2889 return 0; 2890 2891 out_free_mq_map: 2892 kfree(set->mq_map); 2893 set->mq_map = NULL; 2894 out_free_tags: 2895 kfree(set->tags); 2896 set->tags = NULL; 2897 return ret; 2898 } 2899 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2900 2901 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2902 { 2903 int i; 2904 2905 for (i = 0; i < nr_cpu_ids; i++) 2906 blk_mq_free_map_and_requests(set, i); 2907 2908 kfree(set->mq_map); 2909 set->mq_map = NULL; 2910 2911 kfree(set->tags); 2912 set->tags = NULL; 2913 } 2914 EXPORT_SYMBOL(blk_mq_free_tag_set); 2915 2916 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2917 { 2918 struct blk_mq_tag_set *set = q->tag_set; 2919 struct blk_mq_hw_ctx *hctx; 2920 int i, ret; 2921 2922 if (!set) 2923 return -EINVAL; 2924 2925 blk_mq_freeze_queue(q); 2926 blk_mq_quiesce_queue(q); 2927 2928 ret = 0; 2929 queue_for_each_hw_ctx(q, hctx, i) { 2930 if (!hctx->tags) 2931 continue; 2932 /* 2933 * If we're using an MQ scheduler, just update the scheduler 2934 * queue depth. This is similar to what the old code would do. 2935 */ 2936 if (!hctx->sched_tags) { 2937 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2938 false); 2939 } else { 2940 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2941 nr, true); 2942 } 2943 if (ret) 2944 break; 2945 } 2946 2947 if (!ret) 2948 q->nr_requests = nr; 2949 2950 blk_mq_unquiesce_queue(q); 2951 blk_mq_unfreeze_queue(q); 2952 2953 return ret; 2954 } 2955 2956 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2957 int nr_hw_queues) 2958 { 2959 struct request_queue *q; 2960 2961 lockdep_assert_held(&set->tag_list_lock); 2962 2963 if (nr_hw_queues > nr_cpu_ids) 2964 nr_hw_queues = nr_cpu_ids; 2965 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2966 return; 2967 2968 list_for_each_entry(q, &set->tag_list, tag_set_list) 2969 blk_mq_freeze_queue(q); 2970 2971 set->nr_hw_queues = nr_hw_queues; 2972 blk_mq_update_queue_map(set); 2973 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2974 blk_mq_realloc_hw_ctxs(set, q); 2975 blk_mq_queue_reinit(q); 2976 } 2977 2978 list_for_each_entry(q, &set->tag_list, tag_set_list) 2979 blk_mq_unfreeze_queue(q); 2980 } 2981 2982 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2983 { 2984 mutex_lock(&set->tag_list_lock); 2985 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2986 mutex_unlock(&set->tag_list_lock); 2987 } 2988 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2989 2990 /* Enable polling stats and return whether they were already enabled. */ 2991 static bool blk_poll_stats_enable(struct request_queue *q) 2992 { 2993 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 2994 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags)) 2995 return true; 2996 blk_stat_add_callback(q, q->poll_cb); 2997 return false; 2998 } 2999 3000 static void blk_mq_poll_stats_start(struct request_queue *q) 3001 { 3002 /* 3003 * We don't arm the callback if polling stats are not enabled or the 3004 * callback is already active. 3005 */ 3006 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3007 blk_stat_is_active(q->poll_cb)) 3008 return; 3009 3010 blk_stat_activate_msecs(q->poll_cb, 100); 3011 } 3012 3013 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3014 { 3015 struct request_queue *q = cb->data; 3016 int bucket; 3017 3018 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3019 if (cb->stat[bucket].nr_samples) 3020 q->poll_stat[bucket] = cb->stat[bucket]; 3021 } 3022 } 3023 3024 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3025 struct blk_mq_hw_ctx *hctx, 3026 struct request *rq) 3027 { 3028 unsigned long ret = 0; 3029 int bucket; 3030 3031 /* 3032 * If stats collection isn't on, don't sleep but turn it on for 3033 * future users 3034 */ 3035 if (!blk_poll_stats_enable(q)) 3036 return 0; 3037 3038 /* 3039 * As an optimistic guess, use half of the mean service time 3040 * for this type of request. We can (and should) make this smarter. 3041 * For instance, if the completion latencies are tight, we can 3042 * get closer than just half the mean. This is especially 3043 * important on devices where the completion latencies are longer 3044 * than ~10 usec. We do use the stats for the relevant IO size 3045 * if available which does lead to better estimates. 3046 */ 3047 bucket = blk_mq_poll_stats_bkt(rq); 3048 if (bucket < 0) 3049 return ret; 3050 3051 if (q->poll_stat[bucket].nr_samples) 3052 ret = (q->poll_stat[bucket].mean + 1) / 2; 3053 3054 return ret; 3055 } 3056 3057 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3058 struct blk_mq_hw_ctx *hctx, 3059 struct request *rq) 3060 { 3061 struct hrtimer_sleeper hs; 3062 enum hrtimer_mode mode; 3063 unsigned int nsecs; 3064 ktime_t kt; 3065 3066 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3067 return false; 3068 3069 /* 3070 * poll_nsec can be: 3071 * 3072 * -1: don't ever hybrid sleep 3073 * 0: use half of prev avg 3074 * >0: use this specific value 3075 */ 3076 if (q->poll_nsec == -1) 3077 return false; 3078 else if (q->poll_nsec > 0) 3079 nsecs = q->poll_nsec; 3080 else 3081 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3082 3083 if (!nsecs) 3084 return false; 3085 3086 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3087 3088 /* 3089 * This will be replaced with the stats tracking code, using 3090 * 'avg_completion_time / 2' as the pre-sleep target. 3091 */ 3092 kt = nsecs; 3093 3094 mode = HRTIMER_MODE_REL; 3095 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3096 hrtimer_set_expires(&hs.timer, kt); 3097 3098 hrtimer_init_sleeper(&hs, current); 3099 do { 3100 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3101 break; 3102 set_current_state(TASK_UNINTERRUPTIBLE); 3103 hrtimer_start_expires(&hs.timer, mode); 3104 if (hs.task) 3105 io_schedule(); 3106 hrtimer_cancel(&hs.timer); 3107 mode = HRTIMER_MODE_ABS; 3108 } while (hs.task && !signal_pending(current)); 3109 3110 __set_current_state(TASK_RUNNING); 3111 destroy_hrtimer_on_stack(&hs.timer); 3112 return true; 3113 } 3114 3115 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3116 { 3117 struct request_queue *q = hctx->queue; 3118 long state; 3119 3120 /* 3121 * If we sleep, have the caller restart the poll loop to reset 3122 * the state. Like for the other success return cases, the 3123 * caller is responsible for checking if the IO completed. If 3124 * the IO isn't complete, we'll get called again and will go 3125 * straight to the busy poll loop. 3126 */ 3127 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3128 return true; 3129 3130 hctx->poll_considered++; 3131 3132 state = current->state; 3133 while (!need_resched()) { 3134 int ret; 3135 3136 hctx->poll_invoked++; 3137 3138 ret = q->mq_ops->poll(hctx, rq->tag); 3139 if (ret > 0) { 3140 hctx->poll_success++; 3141 set_current_state(TASK_RUNNING); 3142 return true; 3143 } 3144 3145 if (signal_pending_state(state, current)) 3146 set_current_state(TASK_RUNNING); 3147 3148 if (current->state == TASK_RUNNING) 3149 return true; 3150 if (ret < 0) 3151 break; 3152 cpu_relax(); 3153 } 3154 3155 return false; 3156 } 3157 3158 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3159 { 3160 struct blk_mq_hw_ctx *hctx; 3161 struct request *rq; 3162 3163 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3164 return false; 3165 3166 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3167 if (!blk_qc_t_is_internal(cookie)) 3168 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3169 else { 3170 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3171 /* 3172 * With scheduling, if the request has completed, we'll 3173 * get a NULL return here, as we clear the sched tag when 3174 * that happens. The request still remains valid, like always, 3175 * so we should be safe with just the NULL check. 3176 */ 3177 if (!rq) 3178 return false; 3179 } 3180 3181 return __blk_mq_poll(hctx, rq); 3182 } 3183 3184 static int __init blk_mq_init(void) 3185 { 3186 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3187 blk_mq_hctx_notify_dead); 3188 return 0; 3189 } 3190 subsys_initcall(blk_mq_init); 3191