xref: /linux/block/blk-mq.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24 
25 #include <trace/events/block.h>
26 
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31 
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34 
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 	unsigned int i;
43 
44 	for (i = 0; i < hctx->ctx_map.map_size; i++)
45 		if (hctx->ctx_map.map[i].word)
46 			return true;
47 
48 	return false;
49 }
50 
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 					      struct blk_mq_ctx *ctx)
53 {
54 	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56 
57 #define CTX_TO_BIT(hctx, ctx)	\
58 	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59 
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 				     struct blk_mq_ctx *ctx)
65 {
66 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67 
68 	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71 
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 				      struct blk_mq_ctx *ctx)
74 {
75 	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76 
77 	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79 
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 	while (true) {
83 		int ret;
84 
85 		if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 			return 0;
87 
88 		ret = wait_event_interruptible(q->mq_freeze_wq,
89 				!q->mq_freeze_depth || blk_queue_dying(q));
90 		if (blk_queue_dying(q))
91 			return -ENODEV;
92 		if (ret)
93 			return ret;
94 	}
95 }
96 
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 	percpu_ref_put(&q->mq_usage_counter);
100 }
101 
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 	struct request_queue *q =
105 		container_of(ref, struct request_queue, mq_usage_counter);
106 
107 	wake_up_all(&q->mq_freeze_wq);
108 }
109 
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 	bool freeze;
113 
114 	spin_lock_irq(q->queue_lock);
115 	freeze = !q->mq_freeze_depth++;
116 	spin_unlock_irq(q->queue_lock);
117 
118 	if (freeze) {
119 		percpu_ref_kill(&q->mq_usage_counter);
120 		blk_mq_run_queues(q, false);
121 	}
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124 
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129 
130 /*
131  * Guarantee no request is in use, so we can change any data structure of
132  * the queue afterward.
133  */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 	blk_mq_freeze_queue_start(q);
137 	blk_mq_freeze_queue_wait(q);
138 }
139 
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 	bool wake;
143 
144 	spin_lock_irq(q->queue_lock);
145 	wake = !--q->mq_freeze_depth;
146 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 	spin_unlock_irq(q->queue_lock);
148 	if (wake) {
149 		percpu_ref_reinit(&q->mq_usage_counter);
150 		wake_up_all(&q->mq_freeze_wq);
151 	}
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 	struct blk_mq_hw_ctx *hctx;
158 	unsigned int i;
159 
160 	queue_for_each_hw_ctx(q, hctx, i)
161 		if (blk_mq_hw_queue_mapped(hctx))
162 			blk_mq_tag_wakeup_all(hctx->tags, true);
163 
164 	/*
165 	 * If we are called because the queue has now been marked as
166 	 * dying, we need to ensure that processes currently waiting on
167 	 * the queue are notified as well.
168 	 */
169 	wake_up_all(&q->mq_freeze_wq);
170 }
171 
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 	return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177 
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 			       struct request *rq, unsigned int rw_flags)
180 {
181 	if (blk_queue_io_stat(q))
182 		rw_flags |= REQ_IO_STAT;
183 
184 	INIT_LIST_HEAD(&rq->queuelist);
185 	/* csd/requeue_work/fifo_time is initialized before use */
186 	rq->q = q;
187 	rq->mq_ctx = ctx;
188 	rq->cmd_flags |= rw_flags;
189 	/* do not touch atomic flags, it needs atomic ops against the timer */
190 	rq->cpu = -1;
191 	INIT_HLIST_NODE(&rq->hash);
192 	RB_CLEAR_NODE(&rq->rb_node);
193 	rq->rq_disk = NULL;
194 	rq->part = NULL;
195 	rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 	rq->rl = NULL;
198 	set_start_time_ns(rq);
199 	rq->io_start_time_ns = 0;
200 #endif
201 	rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 	rq->nr_integrity_segments = 0;
204 #endif
205 	rq->special = NULL;
206 	/* tag was already set */
207 	rq->errors = 0;
208 
209 	rq->cmd = rq->__cmd;
210 
211 	rq->extra_len = 0;
212 	rq->sense_len = 0;
213 	rq->resid_len = 0;
214 	rq->sense = NULL;
215 
216 	INIT_LIST_HEAD(&rq->timeout_list);
217 	rq->timeout = 0;
218 
219 	rq->end_io = NULL;
220 	rq->end_io_data = NULL;
221 	rq->next_rq = NULL;
222 
223 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225 
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 	struct request *rq;
230 	unsigned int tag;
231 
232 	tag = blk_mq_get_tag(data);
233 	if (tag != BLK_MQ_TAG_FAIL) {
234 		rq = data->hctx->tags->rqs[tag];
235 
236 		if (blk_mq_tag_busy(data->hctx)) {
237 			rq->cmd_flags = REQ_MQ_INFLIGHT;
238 			atomic_inc(&data->hctx->nr_active);
239 		}
240 
241 		rq->tag = tag;
242 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 		return rq;
244 	}
245 
246 	return NULL;
247 }
248 
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 		bool reserved)
251 {
252 	struct blk_mq_ctx *ctx;
253 	struct blk_mq_hw_ctx *hctx;
254 	struct request *rq;
255 	struct blk_mq_alloc_data alloc_data;
256 	int ret;
257 
258 	ret = blk_mq_queue_enter(q);
259 	if (ret)
260 		return ERR_PTR(ret);
261 
262 	ctx = blk_mq_get_ctx(q);
263 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 			reserved, ctx, hctx);
266 
267 	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 	if (!rq && (gfp & __GFP_WAIT)) {
269 		__blk_mq_run_hw_queue(hctx);
270 		blk_mq_put_ctx(ctx);
271 
272 		ctx = blk_mq_get_ctx(q);
273 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 				hctx);
276 		rq =  __blk_mq_alloc_request(&alloc_data, rw);
277 		ctx = alloc_data.ctx;
278 	}
279 	blk_mq_put_ctx(ctx);
280 	if (!rq) {
281 		blk_mq_queue_exit(q);
282 		return ERR_PTR(-EWOULDBLOCK);
283 	}
284 	return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287 
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 				  struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 	const int tag = rq->tag;
292 	struct request_queue *q = rq->q;
293 
294 	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 		atomic_dec(&hctx->nr_active);
296 	rq->cmd_flags = 0;
297 
298 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 	blk_mq_queue_exit(q);
301 }
302 
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 	struct blk_mq_ctx *ctx = rq->mq_ctx;
306 
307 	ctx->rq_completed[rq_is_sync(rq)]++;
308 	__blk_mq_free_request(hctx, ctx, rq);
309 
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312 
313 void blk_mq_free_request(struct request *rq)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	struct request_queue *q = rq->q;
317 
318 	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 	blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322 
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 	blk_account_io_done(rq);
326 
327 	if (rq->end_io) {
328 		rq->end_io(rq, error);
329 	} else {
330 		if (unlikely(blk_bidi_rq(rq)))
331 			blk_mq_free_request(rq->next_rq);
332 		blk_mq_free_request(rq);
333 	}
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336 
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 		BUG();
341 	__blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344 
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 	struct request *rq = data;
348 
349 	rq->q->softirq_done_fn(rq);
350 }
351 
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 	struct blk_mq_ctx *ctx = rq->mq_ctx;
355 	bool shared = false;
356 	int cpu;
357 
358 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 		rq->q->softirq_done_fn(rq);
360 		return;
361 	}
362 
363 	cpu = get_cpu();
364 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 		shared = cpus_share_cache(cpu, ctx->cpu);
366 
367 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 		rq->csd.func = __blk_mq_complete_request_remote;
369 		rq->csd.info = rq;
370 		rq->csd.flags = 0;
371 		smp_call_function_single_async(ctx->cpu, &rq->csd);
372 	} else {
373 		rq->q->softirq_done_fn(rq);
374 	}
375 	put_cpu();
376 }
377 
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 	struct request_queue *q = rq->q;
381 
382 	if (!q->softirq_done_fn)
383 		blk_mq_end_request(rq, rq->errors);
384 	else
385 		blk_mq_ipi_complete_request(rq);
386 }
387 
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:		the request being processed
391  *
392  * Description:
393  *	Ends all I/O on a request. It does not handle partial completions.
394  *	The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 
400 	if (unlikely(blk_should_fake_timeout(q)))
401 		return;
402 	if (!blk_mark_rq_complete(rq))
403 		__blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406 
407 int blk_mq_request_started(struct request *rq)
408 {
409 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412 
413 void blk_mq_start_request(struct request *rq)
414 {
415 	struct request_queue *q = rq->q;
416 
417 	trace_block_rq_issue(q, rq);
418 
419 	rq->resid_len = blk_rq_bytes(rq);
420 	if (unlikely(blk_bidi_rq(rq)))
421 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422 
423 	blk_add_timer(rq);
424 
425 	/*
426 	 * Ensure that ->deadline is visible before set the started
427 	 * flag and clear the completed flag.
428 	 */
429 	smp_mb__before_atomic();
430 
431 	/*
432 	 * Mark us as started and clear complete. Complete might have been
433 	 * set if requeue raced with timeout, which then marked it as
434 	 * complete. So be sure to clear complete again when we start
435 	 * the request, otherwise we'll ignore the completion event.
436 	 */
437 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441 
442 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 		/*
444 		 * Make sure space for the drain appears.  We know we can do
445 		 * this because max_hw_segments has been adjusted to be one
446 		 * fewer than the device can handle.
447 		 */
448 		rq->nr_phys_segments++;
449 	}
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452 
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455 	struct request_queue *q = rq->q;
456 
457 	trace_block_rq_requeue(q, rq);
458 
459 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 		if (q->dma_drain_size && blk_rq_bytes(rq))
461 			rq->nr_phys_segments--;
462 	}
463 }
464 
465 void blk_mq_requeue_request(struct request *rq)
466 {
467 	__blk_mq_requeue_request(rq);
468 
469 	BUG_ON(blk_queued_rq(rq));
470 	blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473 
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476 	struct request_queue *q =
477 		container_of(work, struct request_queue, requeue_work);
478 	LIST_HEAD(rq_list);
479 	struct request *rq, *next;
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&q->requeue_lock, flags);
483 	list_splice_init(&q->requeue_list, &rq_list);
484 	spin_unlock_irqrestore(&q->requeue_lock, flags);
485 
486 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 			continue;
489 
490 		rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 		list_del_init(&rq->queuelist);
492 		blk_mq_insert_request(rq, true, false, false);
493 	}
494 
495 	while (!list_empty(&rq_list)) {
496 		rq = list_entry(rq_list.next, struct request, queuelist);
497 		list_del_init(&rq->queuelist);
498 		blk_mq_insert_request(rq, false, false, false);
499 	}
500 
501 	/*
502 	 * Use the start variant of queue running here, so that running
503 	 * the requeue work will kick stopped queues.
504 	 */
505 	blk_mq_start_hw_queues(q);
506 }
507 
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510 	struct request_queue *q = rq->q;
511 	unsigned long flags;
512 
513 	/*
514 	 * We abuse this flag that is otherwise used by the I/O scheduler to
515 	 * request head insertation from the workqueue.
516 	 */
517 	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518 
519 	spin_lock_irqsave(&q->requeue_lock, flags);
520 	if (at_head) {
521 		rq->cmd_flags |= REQ_SOFTBARRIER;
522 		list_add(&rq->queuelist, &q->requeue_list);
523 	} else {
524 		list_add_tail(&rq->queuelist, &q->requeue_list);
525 	}
526 	spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529 
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532 	cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535 
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538 	kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541 
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544 	unsigned long flags;
545 	LIST_HEAD(rq_list);
546 
547 	spin_lock_irqsave(&q->requeue_lock, flags);
548 	list_splice_init(&q->requeue_list, &rq_list);
549 	spin_unlock_irqrestore(&q->requeue_lock, flags);
550 
551 	while (!list_empty(&rq_list)) {
552 		struct request *rq;
553 
554 		rq = list_first_entry(&rq_list, struct request, queuelist);
555 		list_del_init(&rq->queuelist);
556 		rq->errors = -EIO;
557 		blk_mq_end_request(rq, rq->errors);
558 	}
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561 
562 static inline bool is_flush_request(struct request *rq,
563 		struct blk_flush_queue *fq, unsigned int tag)
564 {
565 	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 			fq->flush_rq->tag == tag);
567 }
568 
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571 	struct request *rq = tags->rqs[tag];
572 	/* mq_ctx of flush rq is always cloned from the corresponding req */
573 	struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574 
575 	if (!is_flush_request(rq, fq, tag))
576 		return rq;
577 
578 	return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581 
582 struct blk_mq_timeout_data {
583 	unsigned long next;
584 	unsigned int next_set;
585 };
586 
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589 	struct blk_mq_ops *ops = req->q->mq_ops;
590 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591 
592 	/*
593 	 * We know that complete is set at this point. If STARTED isn't set
594 	 * anymore, then the request isn't active and the "timeout" should
595 	 * just be ignored. This can happen due to the bitflag ordering.
596 	 * Timeout first checks if STARTED is set, and if it is, assumes
597 	 * the request is active. But if we race with completion, then
598 	 * we both flags will get cleared. So check here again, and ignore
599 	 * a timeout event with a request that isn't active.
600 	 */
601 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 		return;
603 
604 	if (ops->timeout)
605 		ret = ops->timeout(req, reserved);
606 
607 	switch (ret) {
608 	case BLK_EH_HANDLED:
609 		__blk_mq_complete_request(req);
610 		break;
611 	case BLK_EH_RESET_TIMER:
612 		blk_add_timer(req);
613 		blk_clear_rq_complete(req);
614 		break;
615 	case BLK_EH_NOT_HANDLED:
616 		break;
617 	default:
618 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 		break;
620 	}
621 }
622 
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 		struct request *rq, void *priv, bool reserved)
625 {
626 	struct blk_mq_timeout_data *data = priv;
627 
628 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
629 		/*
630 		 * If a request wasn't started before the queue was
631 		 * marked dying, kill it here or it'll go unnoticed.
632 		 */
633 		if (unlikely(blk_queue_dying(rq->q))) {
634 			rq->errors = -EIO;
635 			blk_mq_complete_request(rq);
636 		}
637 		return;
638 	}
639 	if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 		return;
641 
642 	if (time_after_eq(jiffies, rq->deadline)) {
643 		if (!blk_mark_rq_complete(rq))
644 			blk_mq_rq_timed_out(rq, reserved);
645 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 		data->next = rq->deadline;
647 		data->next_set = 1;
648 	}
649 }
650 
651 static void blk_mq_rq_timer(unsigned long priv)
652 {
653 	struct request_queue *q = (struct request_queue *)priv;
654 	struct blk_mq_timeout_data data = {
655 		.next		= 0,
656 		.next_set	= 0,
657 	};
658 	struct blk_mq_hw_ctx *hctx;
659 	int i;
660 
661 	queue_for_each_hw_ctx(q, hctx, i) {
662 		/*
663 		 * If not software queues are currently mapped to this
664 		 * hardware queue, there's nothing to check
665 		 */
666 		if (!blk_mq_hw_queue_mapped(hctx))
667 			continue;
668 
669 		blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
670 	}
671 
672 	if (data.next_set) {
673 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 		mod_timer(&q->timeout, data.next);
675 	} else {
676 		queue_for_each_hw_ctx(q, hctx, i)
677 			blk_mq_tag_idle(hctx);
678 	}
679 }
680 
681 /*
682  * Reverse check our software queue for entries that we could potentially
683  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
684  * too much time checking for merges.
685  */
686 static bool blk_mq_attempt_merge(struct request_queue *q,
687 				 struct blk_mq_ctx *ctx, struct bio *bio)
688 {
689 	struct request *rq;
690 	int checked = 8;
691 
692 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
693 		int el_ret;
694 
695 		if (!checked--)
696 			break;
697 
698 		if (!blk_rq_merge_ok(rq, bio))
699 			continue;
700 
701 		el_ret = blk_try_merge(rq, bio);
702 		if (el_ret == ELEVATOR_BACK_MERGE) {
703 			if (bio_attempt_back_merge(q, rq, bio)) {
704 				ctx->rq_merged++;
705 				return true;
706 			}
707 			break;
708 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
709 			if (bio_attempt_front_merge(q, rq, bio)) {
710 				ctx->rq_merged++;
711 				return true;
712 			}
713 			break;
714 		}
715 	}
716 
717 	return false;
718 }
719 
720 /*
721  * Process software queues that have been marked busy, splicing them
722  * to the for-dispatch
723  */
724 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
725 {
726 	struct blk_mq_ctx *ctx;
727 	int i;
728 
729 	for (i = 0; i < hctx->ctx_map.map_size; i++) {
730 		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
731 		unsigned int off, bit;
732 
733 		if (!bm->word)
734 			continue;
735 
736 		bit = 0;
737 		off = i * hctx->ctx_map.bits_per_word;
738 		do {
739 			bit = find_next_bit(&bm->word, bm->depth, bit);
740 			if (bit >= bm->depth)
741 				break;
742 
743 			ctx = hctx->ctxs[bit + off];
744 			clear_bit(bit, &bm->word);
745 			spin_lock(&ctx->lock);
746 			list_splice_tail_init(&ctx->rq_list, list);
747 			spin_unlock(&ctx->lock);
748 
749 			bit++;
750 		} while (1);
751 	}
752 }
753 
754 /*
755  * Run this hardware queue, pulling any software queues mapped to it in.
756  * Note that this function currently has various problems around ordering
757  * of IO. In particular, we'd like FIFO behaviour on handling existing
758  * items on the hctx->dispatch list. Ignore that for now.
759  */
760 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
761 {
762 	struct request_queue *q = hctx->queue;
763 	struct request *rq;
764 	LIST_HEAD(rq_list);
765 	LIST_HEAD(driver_list);
766 	struct list_head *dptr;
767 	int queued;
768 
769 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
770 
771 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
772 		return;
773 
774 	hctx->run++;
775 
776 	/*
777 	 * Touch any software queue that has pending entries.
778 	 */
779 	flush_busy_ctxs(hctx, &rq_list);
780 
781 	/*
782 	 * If we have previous entries on our dispatch list, grab them
783 	 * and stuff them at the front for more fair dispatch.
784 	 */
785 	if (!list_empty_careful(&hctx->dispatch)) {
786 		spin_lock(&hctx->lock);
787 		if (!list_empty(&hctx->dispatch))
788 			list_splice_init(&hctx->dispatch, &rq_list);
789 		spin_unlock(&hctx->lock);
790 	}
791 
792 	/*
793 	 * Start off with dptr being NULL, so we start the first request
794 	 * immediately, even if we have more pending.
795 	 */
796 	dptr = NULL;
797 
798 	/*
799 	 * Now process all the entries, sending them to the driver.
800 	 */
801 	queued = 0;
802 	while (!list_empty(&rq_list)) {
803 		struct blk_mq_queue_data bd;
804 		int ret;
805 
806 		rq = list_first_entry(&rq_list, struct request, queuelist);
807 		list_del_init(&rq->queuelist);
808 
809 		bd.rq = rq;
810 		bd.list = dptr;
811 		bd.last = list_empty(&rq_list);
812 
813 		ret = q->mq_ops->queue_rq(hctx, &bd);
814 		switch (ret) {
815 		case BLK_MQ_RQ_QUEUE_OK:
816 			queued++;
817 			continue;
818 		case BLK_MQ_RQ_QUEUE_BUSY:
819 			list_add(&rq->queuelist, &rq_list);
820 			__blk_mq_requeue_request(rq);
821 			break;
822 		default:
823 			pr_err("blk-mq: bad return on queue: %d\n", ret);
824 		case BLK_MQ_RQ_QUEUE_ERROR:
825 			rq->errors = -EIO;
826 			blk_mq_end_request(rq, rq->errors);
827 			break;
828 		}
829 
830 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
831 			break;
832 
833 		/*
834 		 * We've done the first request. If we have more than 1
835 		 * left in the list, set dptr to defer issue.
836 		 */
837 		if (!dptr && rq_list.next != rq_list.prev)
838 			dptr = &driver_list;
839 	}
840 
841 	if (!queued)
842 		hctx->dispatched[0]++;
843 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
844 		hctx->dispatched[ilog2(queued) + 1]++;
845 
846 	/*
847 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
848 	 * that is where we will continue on next queue run.
849 	 */
850 	if (!list_empty(&rq_list)) {
851 		spin_lock(&hctx->lock);
852 		list_splice(&rq_list, &hctx->dispatch);
853 		spin_unlock(&hctx->lock);
854 	}
855 }
856 
857 /*
858  * It'd be great if the workqueue API had a way to pass
859  * in a mask and had some smarts for more clever placement.
860  * For now we just round-robin here, switching for every
861  * BLK_MQ_CPU_WORK_BATCH queued items.
862  */
863 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
864 {
865 	if (hctx->queue->nr_hw_queues == 1)
866 		return WORK_CPU_UNBOUND;
867 
868 	if (--hctx->next_cpu_batch <= 0) {
869 		int cpu = hctx->next_cpu, next_cpu;
870 
871 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
872 		if (next_cpu >= nr_cpu_ids)
873 			next_cpu = cpumask_first(hctx->cpumask);
874 
875 		hctx->next_cpu = next_cpu;
876 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
877 
878 		return cpu;
879 	}
880 
881 	return hctx->next_cpu;
882 }
883 
884 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
885 {
886 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
887 	    !blk_mq_hw_queue_mapped(hctx)))
888 		return;
889 
890 	if (!async) {
891 		int cpu = get_cpu();
892 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
893 			__blk_mq_run_hw_queue(hctx);
894 			put_cpu();
895 			return;
896 		}
897 
898 		put_cpu();
899 	}
900 
901 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
902 			&hctx->run_work, 0);
903 }
904 
905 void blk_mq_run_queues(struct request_queue *q, bool async)
906 {
907 	struct blk_mq_hw_ctx *hctx;
908 	int i;
909 
910 	queue_for_each_hw_ctx(q, hctx, i) {
911 		if ((!blk_mq_hctx_has_pending(hctx) &&
912 		    list_empty_careful(&hctx->dispatch)) ||
913 		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
914 			continue;
915 
916 		blk_mq_run_hw_queue(hctx, async);
917 	}
918 }
919 EXPORT_SYMBOL(blk_mq_run_queues);
920 
921 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
922 {
923 	cancel_delayed_work(&hctx->run_work);
924 	cancel_delayed_work(&hctx->delay_work);
925 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
926 }
927 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
928 
929 void blk_mq_stop_hw_queues(struct request_queue *q)
930 {
931 	struct blk_mq_hw_ctx *hctx;
932 	int i;
933 
934 	queue_for_each_hw_ctx(q, hctx, i)
935 		blk_mq_stop_hw_queue(hctx);
936 }
937 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
938 
939 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
940 {
941 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
942 
943 	blk_mq_run_hw_queue(hctx, false);
944 }
945 EXPORT_SYMBOL(blk_mq_start_hw_queue);
946 
947 void blk_mq_start_hw_queues(struct request_queue *q)
948 {
949 	struct blk_mq_hw_ctx *hctx;
950 	int i;
951 
952 	queue_for_each_hw_ctx(q, hctx, i)
953 		blk_mq_start_hw_queue(hctx);
954 }
955 EXPORT_SYMBOL(blk_mq_start_hw_queues);
956 
957 
958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
959 {
960 	struct blk_mq_hw_ctx *hctx;
961 	int i;
962 
963 	queue_for_each_hw_ctx(q, hctx, i) {
964 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 			continue;
966 
967 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968 		blk_mq_run_hw_queue(hctx, async);
969 	}
970 }
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
972 
973 static void blk_mq_run_work_fn(struct work_struct *work)
974 {
975 	struct blk_mq_hw_ctx *hctx;
976 
977 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
978 
979 	__blk_mq_run_hw_queue(hctx);
980 }
981 
982 static void blk_mq_delay_work_fn(struct work_struct *work)
983 {
984 	struct blk_mq_hw_ctx *hctx;
985 
986 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
987 
988 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
989 		__blk_mq_run_hw_queue(hctx);
990 }
991 
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
993 {
994 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
995 		return;
996 
997 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
998 			&hctx->delay_work, msecs_to_jiffies(msecs));
999 }
1000 EXPORT_SYMBOL(blk_mq_delay_queue);
1001 
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1003 				    struct request *rq, bool at_head)
1004 {
1005 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1006 
1007 	trace_block_rq_insert(hctx->queue, rq);
1008 
1009 	if (at_head)
1010 		list_add(&rq->queuelist, &ctx->rq_list);
1011 	else
1012 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1013 
1014 	blk_mq_hctx_mark_pending(hctx, ctx);
1015 }
1016 
1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1018 		bool async)
1019 {
1020 	struct request_queue *q = rq->q;
1021 	struct blk_mq_hw_ctx *hctx;
1022 	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1023 
1024 	current_ctx = blk_mq_get_ctx(q);
1025 	if (!cpu_online(ctx->cpu))
1026 		rq->mq_ctx = ctx = current_ctx;
1027 
1028 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1029 
1030 	spin_lock(&ctx->lock);
1031 	__blk_mq_insert_request(hctx, rq, at_head);
1032 	spin_unlock(&ctx->lock);
1033 
1034 	if (run_queue)
1035 		blk_mq_run_hw_queue(hctx, async);
1036 
1037 	blk_mq_put_ctx(current_ctx);
1038 }
1039 
1040 static void blk_mq_insert_requests(struct request_queue *q,
1041 				     struct blk_mq_ctx *ctx,
1042 				     struct list_head *list,
1043 				     int depth,
1044 				     bool from_schedule)
1045 
1046 {
1047 	struct blk_mq_hw_ctx *hctx;
1048 	struct blk_mq_ctx *current_ctx;
1049 
1050 	trace_block_unplug(q, depth, !from_schedule);
1051 
1052 	current_ctx = blk_mq_get_ctx(q);
1053 
1054 	if (!cpu_online(ctx->cpu))
1055 		ctx = current_ctx;
1056 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1057 
1058 	/*
1059 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060 	 * offline now
1061 	 */
1062 	spin_lock(&ctx->lock);
1063 	while (!list_empty(list)) {
1064 		struct request *rq;
1065 
1066 		rq = list_first_entry(list, struct request, queuelist);
1067 		list_del_init(&rq->queuelist);
1068 		rq->mq_ctx = ctx;
1069 		__blk_mq_insert_request(hctx, rq, false);
1070 	}
1071 	spin_unlock(&ctx->lock);
1072 
1073 	blk_mq_run_hw_queue(hctx, from_schedule);
1074 	blk_mq_put_ctx(current_ctx);
1075 }
1076 
1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1078 {
1079 	struct request *rqa = container_of(a, struct request, queuelist);
1080 	struct request *rqb = container_of(b, struct request, queuelist);
1081 
1082 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1083 		 (rqa->mq_ctx == rqb->mq_ctx &&
1084 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1085 }
1086 
1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1088 {
1089 	struct blk_mq_ctx *this_ctx;
1090 	struct request_queue *this_q;
1091 	struct request *rq;
1092 	LIST_HEAD(list);
1093 	LIST_HEAD(ctx_list);
1094 	unsigned int depth;
1095 
1096 	list_splice_init(&plug->mq_list, &list);
1097 
1098 	list_sort(NULL, &list, plug_ctx_cmp);
1099 
1100 	this_q = NULL;
1101 	this_ctx = NULL;
1102 	depth = 0;
1103 
1104 	while (!list_empty(&list)) {
1105 		rq = list_entry_rq(list.next);
1106 		list_del_init(&rq->queuelist);
1107 		BUG_ON(!rq->q);
1108 		if (rq->mq_ctx != this_ctx) {
1109 			if (this_ctx) {
1110 				blk_mq_insert_requests(this_q, this_ctx,
1111 							&ctx_list, depth,
1112 							from_schedule);
1113 			}
1114 
1115 			this_ctx = rq->mq_ctx;
1116 			this_q = rq->q;
1117 			depth = 0;
1118 		}
1119 
1120 		depth++;
1121 		list_add_tail(&rq->queuelist, &ctx_list);
1122 	}
1123 
1124 	/*
1125 	 * If 'this_ctx' is set, we know we have entries to complete
1126 	 * on 'ctx_list'. Do those.
1127 	 */
1128 	if (this_ctx) {
1129 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1130 				       from_schedule);
1131 	}
1132 }
1133 
1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1135 {
1136 	init_request_from_bio(rq, bio);
1137 
1138 	if (blk_do_io_stat(rq))
1139 		blk_account_io_start(rq, 1);
1140 }
1141 
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1143 {
1144 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1145 		!blk_queue_nomerges(hctx->queue);
1146 }
1147 
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1149 					 struct blk_mq_ctx *ctx,
1150 					 struct request *rq, struct bio *bio)
1151 {
1152 	if (!hctx_allow_merges(hctx)) {
1153 		blk_mq_bio_to_request(rq, bio);
1154 		spin_lock(&ctx->lock);
1155 insert_rq:
1156 		__blk_mq_insert_request(hctx, rq, false);
1157 		spin_unlock(&ctx->lock);
1158 		return false;
1159 	} else {
1160 		struct request_queue *q = hctx->queue;
1161 
1162 		spin_lock(&ctx->lock);
1163 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1164 			blk_mq_bio_to_request(rq, bio);
1165 			goto insert_rq;
1166 		}
1167 
1168 		spin_unlock(&ctx->lock);
1169 		__blk_mq_free_request(hctx, ctx, rq);
1170 		return true;
1171 	}
1172 }
1173 
1174 struct blk_map_ctx {
1175 	struct blk_mq_hw_ctx *hctx;
1176 	struct blk_mq_ctx *ctx;
1177 };
1178 
1179 static struct request *blk_mq_map_request(struct request_queue *q,
1180 					  struct bio *bio,
1181 					  struct blk_map_ctx *data)
1182 {
1183 	struct blk_mq_hw_ctx *hctx;
1184 	struct blk_mq_ctx *ctx;
1185 	struct request *rq;
1186 	int rw = bio_data_dir(bio);
1187 	struct blk_mq_alloc_data alloc_data;
1188 
1189 	if (unlikely(blk_mq_queue_enter(q))) {
1190 		bio_endio(bio, -EIO);
1191 		return NULL;
1192 	}
1193 
1194 	ctx = blk_mq_get_ctx(q);
1195 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1196 
1197 	if (rw_is_sync(bio->bi_rw))
1198 		rw |= REQ_SYNC;
1199 
1200 	trace_block_getrq(q, bio, rw);
1201 	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1202 			hctx);
1203 	rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 	if (unlikely(!rq)) {
1205 		__blk_mq_run_hw_queue(hctx);
1206 		blk_mq_put_ctx(ctx);
1207 		trace_block_sleeprq(q, bio, rw);
1208 
1209 		ctx = blk_mq_get_ctx(q);
1210 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1211 		blk_mq_set_alloc_data(&alloc_data, q,
1212 				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1213 		rq = __blk_mq_alloc_request(&alloc_data, rw);
1214 		ctx = alloc_data.ctx;
1215 		hctx = alloc_data.hctx;
1216 	}
1217 
1218 	hctx->queued++;
1219 	data->hctx = hctx;
1220 	data->ctx = ctx;
1221 	return rq;
1222 }
1223 
1224 /*
1225  * Multiple hardware queue variant. This will not use per-process plugs,
1226  * but will attempt to bypass the hctx queueing if we can go straight to
1227  * hardware for SYNC IO.
1228  */
1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1230 {
1231 	const int is_sync = rw_is_sync(bio->bi_rw);
1232 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 	struct blk_map_ctx data;
1234 	struct request *rq;
1235 
1236 	blk_queue_bounce(q, &bio);
1237 
1238 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1239 		bio_endio(bio, -EIO);
1240 		return;
1241 	}
1242 
1243 	rq = blk_mq_map_request(q, bio, &data);
1244 	if (unlikely(!rq))
1245 		return;
1246 
1247 	if (unlikely(is_flush_fua)) {
1248 		blk_mq_bio_to_request(rq, bio);
1249 		blk_insert_flush(rq);
1250 		goto run_queue;
1251 	}
1252 
1253 	/*
1254 	 * If the driver supports defer issued based on 'last', then
1255 	 * queue it up like normal since we can potentially save some
1256 	 * CPU this way.
1257 	 */
1258 	if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1259 		struct blk_mq_queue_data bd = {
1260 			.rq = rq,
1261 			.list = NULL,
1262 			.last = 1
1263 		};
1264 		int ret;
1265 
1266 		blk_mq_bio_to_request(rq, bio);
1267 
1268 		/*
1269 		 * For OK queue, we are done. For error, kill it. Any other
1270 		 * error (busy), just add it to our list as we previously
1271 		 * would have done
1272 		 */
1273 		ret = q->mq_ops->queue_rq(data.hctx, &bd);
1274 		if (ret == BLK_MQ_RQ_QUEUE_OK)
1275 			goto done;
1276 		else {
1277 			__blk_mq_requeue_request(rq);
1278 
1279 			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1280 				rq->errors = -EIO;
1281 				blk_mq_end_request(rq, rq->errors);
1282 				goto done;
1283 			}
1284 		}
1285 	}
1286 
1287 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1288 		/*
1289 		 * For a SYNC request, send it to the hardware immediately. For
1290 		 * an ASYNC request, just ensure that we run it later on. The
1291 		 * latter allows for merging opportunities and more efficient
1292 		 * dispatching.
1293 		 */
1294 run_queue:
1295 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1296 	}
1297 done:
1298 	blk_mq_put_ctx(data.ctx);
1299 }
1300 
1301 /*
1302  * Single hardware queue variant. This will attempt to use any per-process
1303  * plug for merging and IO deferral.
1304  */
1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1306 {
1307 	const int is_sync = rw_is_sync(bio->bi_rw);
1308 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1309 	unsigned int use_plug, request_count = 0;
1310 	struct blk_map_ctx data;
1311 	struct request *rq;
1312 
1313 	/*
1314 	 * If we have multiple hardware queues, just go directly to
1315 	 * one of those for sync IO.
1316 	 */
1317 	use_plug = !is_flush_fua && !is_sync;
1318 
1319 	blk_queue_bounce(q, &bio);
1320 
1321 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322 		bio_endio(bio, -EIO);
1323 		return;
1324 	}
1325 
1326 	if (use_plug && !blk_queue_nomerges(q) &&
1327 	    blk_attempt_plug_merge(q, bio, &request_count))
1328 		return;
1329 
1330 	rq = blk_mq_map_request(q, bio, &data);
1331 	if (unlikely(!rq))
1332 		return;
1333 
1334 	if (unlikely(is_flush_fua)) {
1335 		blk_mq_bio_to_request(rq, bio);
1336 		blk_insert_flush(rq);
1337 		goto run_queue;
1338 	}
1339 
1340 	/*
1341 	 * A task plug currently exists. Since this is completely lockless,
1342 	 * utilize that to temporarily store requests until the task is
1343 	 * either done or scheduled away.
1344 	 */
1345 	if (use_plug) {
1346 		struct blk_plug *plug = current->plug;
1347 
1348 		if (plug) {
1349 			blk_mq_bio_to_request(rq, bio);
1350 			if (list_empty(&plug->mq_list))
1351 				trace_block_plug(q);
1352 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1353 				blk_flush_plug_list(plug, false);
1354 				trace_block_plug(q);
1355 			}
1356 			list_add_tail(&rq->queuelist, &plug->mq_list);
1357 			blk_mq_put_ctx(data.ctx);
1358 			return;
1359 		}
1360 	}
1361 
1362 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1363 		/*
1364 		 * For a SYNC request, send it to the hardware immediately. For
1365 		 * an ASYNC request, just ensure that we run it later on. The
1366 		 * latter allows for merging opportunities and more efficient
1367 		 * dispatching.
1368 		 */
1369 run_queue:
1370 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1371 	}
1372 
1373 	blk_mq_put_ctx(data.ctx);
1374 }
1375 
1376 /*
1377  * Default mapping to a software queue, since we use one per CPU.
1378  */
1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1380 {
1381 	return q->queue_hw_ctx[q->mq_map[cpu]];
1382 }
1383 EXPORT_SYMBOL(blk_mq_map_queue);
1384 
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1386 		struct blk_mq_tags *tags, unsigned int hctx_idx)
1387 {
1388 	struct page *page;
1389 
1390 	if (tags->rqs && set->ops->exit_request) {
1391 		int i;
1392 
1393 		for (i = 0; i < tags->nr_tags; i++) {
1394 			if (!tags->rqs[i])
1395 				continue;
1396 			set->ops->exit_request(set->driver_data, tags->rqs[i],
1397 						hctx_idx, i);
1398 			tags->rqs[i] = NULL;
1399 		}
1400 	}
1401 
1402 	while (!list_empty(&tags->page_list)) {
1403 		page = list_first_entry(&tags->page_list, struct page, lru);
1404 		list_del_init(&page->lru);
1405 		__free_pages(page, page->private);
1406 	}
1407 
1408 	kfree(tags->rqs);
1409 
1410 	blk_mq_free_tags(tags);
1411 }
1412 
1413 static size_t order_to_size(unsigned int order)
1414 {
1415 	return (size_t)PAGE_SIZE << order;
1416 }
1417 
1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1419 		unsigned int hctx_idx)
1420 {
1421 	struct blk_mq_tags *tags;
1422 	unsigned int i, j, entries_per_page, max_order = 4;
1423 	size_t rq_size, left;
1424 
1425 	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1426 				set->numa_node);
1427 	if (!tags)
1428 		return NULL;
1429 
1430 	INIT_LIST_HEAD(&tags->page_list);
1431 
1432 	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1433 				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1434 				 set->numa_node);
1435 	if (!tags->rqs) {
1436 		blk_mq_free_tags(tags);
1437 		return NULL;
1438 	}
1439 
1440 	/*
1441 	 * rq_size is the size of the request plus driver payload, rounded
1442 	 * to the cacheline size
1443 	 */
1444 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1445 				cache_line_size());
1446 	left = rq_size * set->queue_depth;
1447 
1448 	for (i = 0; i < set->queue_depth; ) {
1449 		int this_order = max_order;
1450 		struct page *page;
1451 		int to_do;
1452 		void *p;
1453 
1454 		while (left < order_to_size(this_order - 1) && this_order)
1455 			this_order--;
1456 
1457 		do {
1458 			page = alloc_pages_node(set->numa_node,
1459 				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1460 				this_order);
1461 			if (page)
1462 				break;
1463 			if (!this_order--)
1464 				break;
1465 			if (order_to_size(this_order) < rq_size)
1466 				break;
1467 		} while (1);
1468 
1469 		if (!page)
1470 			goto fail;
1471 
1472 		page->private = this_order;
1473 		list_add_tail(&page->lru, &tags->page_list);
1474 
1475 		p = page_address(page);
1476 		entries_per_page = order_to_size(this_order) / rq_size;
1477 		to_do = min(entries_per_page, set->queue_depth - i);
1478 		left -= to_do * rq_size;
1479 		for (j = 0; j < to_do; j++) {
1480 			tags->rqs[i] = p;
1481 			tags->rqs[i]->atomic_flags = 0;
1482 			tags->rqs[i]->cmd_flags = 0;
1483 			if (set->ops->init_request) {
1484 				if (set->ops->init_request(set->driver_data,
1485 						tags->rqs[i], hctx_idx, i,
1486 						set->numa_node)) {
1487 					tags->rqs[i] = NULL;
1488 					goto fail;
1489 				}
1490 			}
1491 
1492 			p += rq_size;
1493 			i++;
1494 		}
1495 	}
1496 
1497 	return tags;
1498 
1499 fail:
1500 	blk_mq_free_rq_map(set, tags, hctx_idx);
1501 	return NULL;
1502 }
1503 
1504 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1505 {
1506 	kfree(bitmap->map);
1507 }
1508 
1509 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1510 {
1511 	unsigned int bpw = 8, total, num_maps, i;
1512 
1513 	bitmap->bits_per_word = bpw;
1514 
1515 	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1516 	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1517 					GFP_KERNEL, node);
1518 	if (!bitmap->map)
1519 		return -ENOMEM;
1520 
1521 	bitmap->map_size = num_maps;
1522 
1523 	total = nr_cpu_ids;
1524 	for (i = 0; i < num_maps; i++) {
1525 		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1526 		total -= bitmap->map[i].depth;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1533 {
1534 	struct request_queue *q = hctx->queue;
1535 	struct blk_mq_ctx *ctx;
1536 	LIST_HEAD(tmp);
1537 
1538 	/*
1539 	 * Move ctx entries to new CPU, if this one is going away.
1540 	 */
1541 	ctx = __blk_mq_get_ctx(q, cpu);
1542 
1543 	spin_lock(&ctx->lock);
1544 	if (!list_empty(&ctx->rq_list)) {
1545 		list_splice_init(&ctx->rq_list, &tmp);
1546 		blk_mq_hctx_clear_pending(hctx, ctx);
1547 	}
1548 	spin_unlock(&ctx->lock);
1549 
1550 	if (list_empty(&tmp))
1551 		return NOTIFY_OK;
1552 
1553 	ctx = blk_mq_get_ctx(q);
1554 	spin_lock(&ctx->lock);
1555 
1556 	while (!list_empty(&tmp)) {
1557 		struct request *rq;
1558 
1559 		rq = list_first_entry(&tmp, struct request, queuelist);
1560 		rq->mq_ctx = ctx;
1561 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1562 	}
1563 
1564 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1565 	blk_mq_hctx_mark_pending(hctx, ctx);
1566 
1567 	spin_unlock(&ctx->lock);
1568 
1569 	blk_mq_run_hw_queue(hctx, true);
1570 	blk_mq_put_ctx(ctx);
1571 	return NOTIFY_OK;
1572 }
1573 
1574 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1575 {
1576 	struct request_queue *q = hctx->queue;
1577 	struct blk_mq_tag_set *set = q->tag_set;
1578 
1579 	if (set->tags[hctx->queue_num])
1580 		return NOTIFY_OK;
1581 
1582 	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1583 	if (!set->tags[hctx->queue_num])
1584 		return NOTIFY_STOP;
1585 
1586 	hctx->tags = set->tags[hctx->queue_num];
1587 	return NOTIFY_OK;
1588 }
1589 
1590 static int blk_mq_hctx_notify(void *data, unsigned long action,
1591 			      unsigned int cpu)
1592 {
1593 	struct blk_mq_hw_ctx *hctx = data;
1594 
1595 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1596 		return blk_mq_hctx_cpu_offline(hctx, cpu);
1597 	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1598 		return blk_mq_hctx_cpu_online(hctx, cpu);
1599 
1600 	return NOTIFY_OK;
1601 }
1602 
1603 static void blk_mq_exit_hctx(struct request_queue *q,
1604 		struct blk_mq_tag_set *set,
1605 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1606 {
1607 	unsigned flush_start_tag = set->queue_depth;
1608 
1609 	blk_mq_tag_idle(hctx);
1610 
1611 	if (set->ops->exit_request)
1612 		set->ops->exit_request(set->driver_data,
1613 				       hctx->fq->flush_rq, hctx_idx,
1614 				       flush_start_tag + hctx_idx);
1615 
1616 	if (set->ops->exit_hctx)
1617 		set->ops->exit_hctx(hctx, hctx_idx);
1618 
1619 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1620 	blk_free_flush_queue(hctx->fq);
1621 	kfree(hctx->ctxs);
1622 	blk_mq_free_bitmap(&hctx->ctx_map);
1623 }
1624 
1625 static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 		struct blk_mq_tag_set *set, int nr_queue)
1627 {
1628 	struct blk_mq_hw_ctx *hctx;
1629 	unsigned int i;
1630 
1631 	queue_for_each_hw_ctx(q, hctx, i) {
1632 		if (i == nr_queue)
1633 			break;
1634 		blk_mq_exit_hctx(q, set, hctx, i);
1635 	}
1636 }
1637 
1638 static void blk_mq_free_hw_queues(struct request_queue *q,
1639 		struct blk_mq_tag_set *set)
1640 {
1641 	struct blk_mq_hw_ctx *hctx;
1642 	unsigned int i;
1643 
1644 	queue_for_each_hw_ctx(q, hctx, i) {
1645 		free_cpumask_var(hctx->cpumask);
1646 		kfree(hctx);
1647 	}
1648 }
1649 
1650 static int blk_mq_init_hctx(struct request_queue *q,
1651 		struct blk_mq_tag_set *set,
1652 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1653 {
1654 	int node;
1655 	unsigned flush_start_tag = set->queue_depth;
1656 
1657 	node = hctx->numa_node;
1658 	if (node == NUMA_NO_NODE)
1659 		node = hctx->numa_node = set->numa_node;
1660 
1661 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1662 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1663 	spin_lock_init(&hctx->lock);
1664 	INIT_LIST_HEAD(&hctx->dispatch);
1665 	hctx->queue = q;
1666 	hctx->queue_num = hctx_idx;
1667 	hctx->flags = set->flags;
1668 
1669 	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1670 					blk_mq_hctx_notify, hctx);
1671 	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1672 
1673 	hctx->tags = set->tags[hctx_idx];
1674 
1675 	/*
1676 	 * Allocate space for all possible cpus to avoid allocation at
1677 	 * runtime
1678 	 */
1679 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1680 					GFP_KERNEL, node);
1681 	if (!hctx->ctxs)
1682 		goto unregister_cpu_notifier;
1683 
1684 	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1685 		goto free_ctxs;
1686 
1687 	hctx->nr_ctx = 0;
1688 
1689 	if (set->ops->init_hctx &&
1690 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1691 		goto free_bitmap;
1692 
1693 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1694 	if (!hctx->fq)
1695 		goto exit_hctx;
1696 
1697 	if (set->ops->init_request &&
1698 	    set->ops->init_request(set->driver_data,
1699 				   hctx->fq->flush_rq, hctx_idx,
1700 				   flush_start_tag + hctx_idx, node))
1701 		goto free_fq;
1702 
1703 	return 0;
1704 
1705  free_fq:
1706 	kfree(hctx->fq);
1707  exit_hctx:
1708 	if (set->ops->exit_hctx)
1709 		set->ops->exit_hctx(hctx, hctx_idx);
1710  free_bitmap:
1711 	blk_mq_free_bitmap(&hctx->ctx_map);
1712  free_ctxs:
1713 	kfree(hctx->ctxs);
1714  unregister_cpu_notifier:
1715 	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1716 
1717 	return -1;
1718 }
1719 
1720 static int blk_mq_init_hw_queues(struct request_queue *q,
1721 		struct blk_mq_tag_set *set)
1722 {
1723 	struct blk_mq_hw_ctx *hctx;
1724 	unsigned int i;
1725 
1726 	/*
1727 	 * Initialize hardware queues
1728 	 */
1729 	queue_for_each_hw_ctx(q, hctx, i) {
1730 		if (blk_mq_init_hctx(q, set, hctx, i))
1731 			break;
1732 	}
1733 
1734 	if (i == q->nr_hw_queues)
1735 		return 0;
1736 
1737 	/*
1738 	 * Init failed
1739 	 */
1740 	blk_mq_exit_hw_queues(q, set, i);
1741 
1742 	return 1;
1743 }
1744 
1745 static void blk_mq_init_cpu_queues(struct request_queue *q,
1746 				   unsigned int nr_hw_queues)
1747 {
1748 	unsigned int i;
1749 
1750 	for_each_possible_cpu(i) {
1751 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1752 		struct blk_mq_hw_ctx *hctx;
1753 
1754 		memset(__ctx, 0, sizeof(*__ctx));
1755 		__ctx->cpu = i;
1756 		spin_lock_init(&__ctx->lock);
1757 		INIT_LIST_HEAD(&__ctx->rq_list);
1758 		__ctx->queue = q;
1759 
1760 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1761 		if (!cpu_online(i))
1762 			continue;
1763 
1764 		hctx = q->mq_ops->map_queue(q, i);
1765 		cpumask_set_cpu(i, hctx->cpumask);
1766 		hctx->nr_ctx++;
1767 
1768 		/*
1769 		 * Set local node, IFF we have more than one hw queue. If
1770 		 * not, we remain on the home node of the device
1771 		 */
1772 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1773 			hctx->numa_node = cpu_to_node(i);
1774 	}
1775 }
1776 
1777 static void blk_mq_map_swqueue(struct request_queue *q)
1778 {
1779 	unsigned int i;
1780 	struct blk_mq_hw_ctx *hctx;
1781 	struct blk_mq_ctx *ctx;
1782 
1783 	queue_for_each_hw_ctx(q, hctx, i) {
1784 		cpumask_clear(hctx->cpumask);
1785 		hctx->nr_ctx = 0;
1786 	}
1787 
1788 	/*
1789 	 * Map software to hardware queues
1790 	 */
1791 	queue_for_each_ctx(q, ctx, i) {
1792 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1793 		if (!cpu_online(i))
1794 			continue;
1795 
1796 		hctx = q->mq_ops->map_queue(q, i);
1797 		cpumask_set_cpu(i, hctx->cpumask);
1798 		ctx->index_hw = hctx->nr_ctx;
1799 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1800 	}
1801 
1802 	queue_for_each_hw_ctx(q, hctx, i) {
1803 		/*
1804 		 * If no software queues are mapped to this hardware queue,
1805 		 * disable it and free the request entries.
1806 		 */
1807 		if (!hctx->nr_ctx) {
1808 			struct blk_mq_tag_set *set = q->tag_set;
1809 
1810 			if (set->tags[i]) {
1811 				blk_mq_free_rq_map(set, set->tags[i], i);
1812 				set->tags[i] = NULL;
1813 				hctx->tags = NULL;
1814 			}
1815 			continue;
1816 		}
1817 
1818 		/*
1819 		 * Initialize batch roundrobin counts
1820 		 */
1821 		hctx->next_cpu = cpumask_first(hctx->cpumask);
1822 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1823 	}
1824 }
1825 
1826 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1827 {
1828 	struct blk_mq_hw_ctx *hctx;
1829 	struct request_queue *q;
1830 	bool shared;
1831 	int i;
1832 
1833 	if (set->tag_list.next == set->tag_list.prev)
1834 		shared = false;
1835 	else
1836 		shared = true;
1837 
1838 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1839 		blk_mq_freeze_queue(q);
1840 
1841 		queue_for_each_hw_ctx(q, hctx, i) {
1842 			if (shared)
1843 				hctx->flags |= BLK_MQ_F_TAG_SHARED;
1844 			else
1845 				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1846 		}
1847 		blk_mq_unfreeze_queue(q);
1848 	}
1849 }
1850 
1851 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1852 {
1853 	struct blk_mq_tag_set *set = q->tag_set;
1854 
1855 	mutex_lock(&set->tag_list_lock);
1856 	list_del_init(&q->tag_set_list);
1857 	blk_mq_update_tag_set_depth(set);
1858 	mutex_unlock(&set->tag_list_lock);
1859 }
1860 
1861 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1862 				     struct request_queue *q)
1863 {
1864 	q->tag_set = set;
1865 
1866 	mutex_lock(&set->tag_list_lock);
1867 	list_add_tail(&q->tag_set_list, &set->tag_list);
1868 	blk_mq_update_tag_set_depth(set);
1869 	mutex_unlock(&set->tag_list_lock);
1870 }
1871 
1872 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1873 {
1874 	struct blk_mq_hw_ctx **hctxs;
1875 	struct blk_mq_ctx __percpu *ctx;
1876 	struct request_queue *q;
1877 	unsigned int *map;
1878 	int i;
1879 
1880 	ctx = alloc_percpu(struct blk_mq_ctx);
1881 	if (!ctx)
1882 		return ERR_PTR(-ENOMEM);
1883 
1884 	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1885 			set->numa_node);
1886 
1887 	if (!hctxs)
1888 		goto err_percpu;
1889 
1890 	map = blk_mq_make_queue_map(set);
1891 	if (!map)
1892 		goto err_map;
1893 
1894 	for (i = 0; i < set->nr_hw_queues; i++) {
1895 		int node = blk_mq_hw_queue_to_node(map, i);
1896 
1897 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1898 					GFP_KERNEL, node);
1899 		if (!hctxs[i])
1900 			goto err_hctxs;
1901 
1902 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1903 						node))
1904 			goto err_hctxs;
1905 
1906 		atomic_set(&hctxs[i]->nr_active, 0);
1907 		hctxs[i]->numa_node = node;
1908 		hctxs[i]->queue_num = i;
1909 	}
1910 
1911 	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1912 	if (!q)
1913 		goto err_hctxs;
1914 
1915 	/*
1916 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1917 	 * See blk_register_queue() for details.
1918 	 */
1919 	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1920 			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1921 		goto err_map;
1922 
1923 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1924 	blk_queue_rq_timeout(q, 30000);
1925 
1926 	q->nr_queues = nr_cpu_ids;
1927 	q->nr_hw_queues = set->nr_hw_queues;
1928 	q->mq_map = map;
1929 
1930 	q->queue_ctx = ctx;
1931 	q->queue_hw_ctx = hctxs;
1932 
1933 	q->mq_ops = set->ops;
1934 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1935 
1936 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
1937 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1938 
1939 	q->sg_reserved_size = INT_MAX;
1940 
1941 	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1942 	INIT_LIST_HEAD(&q->requeue_list);
1943 	spin_lock_init(&q->requeue_lock);
1944 
1945 	if (q->nr_hw_queues > 1)
1946 		blk_queue_make_request(q, blk_mq_make_request);
1947 	else
1948 		blk_queue_make_request(q, blk_sq_make_request);
1949 
1950 	if (set->timeout)
1951 		blk_queue_rq_timeout(q, set->timeout);
1952 
1953 	/*
1954 	 * Do this after blk_queue_make_request() overrides it...
1955 	 */
1956 	q->nr_requests = set->queue_depth;
1957 
1958 	if (set->ops->complete)
1959 		blk_queue_softirq_done(q, set->ops->complete);
1960 
1961 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1962 
1963 	if (blk_mq_init_hw_queues(q, set))
1964 		goto err_hw;
1965 
1966 	mutex_lock(&all_q_mutex);
1967 	list_add_tail(&q->all_q_node, &all_q_list);
1968 	mutex_unlock(&all_q_mutex);
1969 
1970 	blk_mq_add_queue_tag_set(set, q);
1971 
1972 	blk_mq_map_swqueue(q);
1973 
1974 	return q;
1975 
1976 err_hw:
1977 	blk_cleanup_queue(q);
1978 err_hctxs:
1979 	kfree(map);
1980 	for (i = 0; i < set->nr_hw_queues; i++) {
1981 		if (!hctxs[i])
1982 			break;
1983 		free_cpumask_var(hctxs[i]->cpumask);
1984 		kfree(hctxs[i]);
1985 	}
1986 err_map:
1987 	kfree(hctxs);
1988 err_percpu:
1989 	free_percpu(ctx);
1990 	return ERR_PTR(-ENOMEM);
1991 }
1992 EXPORT_SYMBOL(blk_mq_init_queue);
1993 
1994 void blk_mq_free_queue(struct request_queue *q)
1995 {
1996 	struct blk_mq_tag_set	*set = q->tag_set;
1997 
1998 	blk_mq_del_queue_tag_set(q);
1999 
2000 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2001 	blk_mq_free_hw_queues(q, set);
2002 
2003 	percpu_ref_exit(&q->mq_usage_counter);
2004 
2005 	free_percpu(q->queue_ctx);
2006 	kfree(q->queue_hw_ctx);
2007 	kfree(q->mq_map);
2008 
2009 	q->queue_ctx = NULL;
2010 	q->queue_hw_ctx = NULL;
2011 	q->mq_map = NULL;
2012 
2013 	mutex_lock(&all_q_mutex);
2014 	list_del_init(&q->all_q_node);
2015 	mutex_unlock(&all_q_mutex);
2016 }
2017 
2018 /* Basically redo blk_mq_init_queue with queue frozen */
2019 static void blk_mq_queue_reinit(struct request_queue *q)
2020 {
2021 	WARN_ON_ONCE(!q->mq_freeze_depth);
2022 
2023 	blk_mq_sysfs_unregister(q);
2024 
2025 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2026 
2027 	/*
2028 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2029 	 * we should change hctx numa_node according to new topology (this
2030 	 * involves free and re-allocate memory, worthy doing?)
2031 	 */
2032 
2033 	blk_mq_map_swqueue(q);
2034 
2035 	blk_mq_sysfs_register(q);
2036 }
2037 
2038 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2039 				      unsigned long action, void *hcpu)
2040 {
2041 	struct request_queue *q;
2042 
2043 	/*
2044 	 * Before new mappings are established, hotadded cpu might already
2045 	 * start handling requests. This doesn't break anything as we map
2046 	 * offline CPUs to first hardware queue. We will re-init the queue
2047 	 * below to get optimal settings.
2048 	 */
2049 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2050 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2051 		return NOTIFY_OK;
2052 
2053 	mutex_lock(&all_q_mutex);
2054 
2055 	/*
2056 	 * We need to freeze and reinit all existing queues.  Freezing
2057 	 * involves synchronous wait for an RCU grace period and doing it
2058 	 * one by one may take a long time.  Start freezing all queues in
2059 	 * one swoop and then wait for the completions so that freezing can
2060 	 * take place in parallel.
2061 	 */
2062 	list_for_each_entry(q, &all_q_list, all_q_node)
2063 		blk_mq_freeze_queue_start(q);
2064 	list_for_each_entry(q, &all_q_list, all_q_node)
2065 		blk_mq_freeze_queue_wait(q);
2066 
2067 	list_for_each_entry(q, &all_q_list, all_q_node)
2068 		blk_mq_queue_reinit(q);
2069 
2070 	list_for_each_entry(q, &all_q_list, all_q_node)
2071 		blk_mq_unfreeze_queue(q);
2072 
2073 	mutex_unlock(&all_q_mutex);
2074 	return NOTIFY_OK;
2075 }
2076 
2077 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2078 {
2079 	int i;
2080 
2081 	for (i = 0; i < set->nr_hw_queues; i++) {
2082 		set->tags[i] = blk_mq_init_rq_map(set, i);
2083 		if (!set->tags[i])
2084 			goto out_unwind;
2085 	}
2086 
2087 	return 0;
2088 
2089 out_unwind:
2090 	while (--i >= 0)
2091 		blk_mq_free_rq_map(set, set->tags[i], i);
2092 
2093 	return -ENOMEM;
2094 }
2095 
2096 /*
2097  * Allocate the request maps associated with this tag_set. Note that this
2098  * may reduce the depth asked for, if memory is tight. set->queue_depth
2099  * will be updated to reflect the allocated depth.
2100  */
2101 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2102 {
2103 	unsigned int depth;
2104 	int err;
2105 
2106 	depth = set->queue_depth;
2107 	do {
2108 		err = __blk_mq_alloc_rq_maps(set);
2109 		if (!err)
2110 			break;
2111 
2112 		set->queue_depth >>= 1;
2113 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2114 			err = -ENOMEM;
2115 			break;
2116 		}
2117 	} while (set->queue_depth);
2118 
2119 	if (!set->queue_depth || err) {
2120 		pr_err("blk-mq: failed to allocate request map\n");
2121 		return -ENOMEM;
2122 	}
2123 
2124 	if (depth != set->queue_depth)
2125 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2126 						depth, set->queue_depth);
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * Alloc a tag set to be associated with one or more request queues.
2133  * May fail with EINVAL for various error conditions. May adjust the
2134  * requested depth down, if if it too large. In that case, the set
2135  * value will be stored in set->queue_depth.
2136  */
2137 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2138 {
2139 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2140 
2141 	if (!set->nr_hw_queues)
2142 		return -EINVAL;
2143 	if (!set->queue_depth)
2144 		return -EINVAL;
2145 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2146 		return -EINVAL;
2147 
2148 	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2149 		return -EINVAL;
2150 
2151 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2152 		pr_info("blk-mq: reduced tag depth to %u\n",
2153 			BLK_MQ_MAX_DEPTH);
2154 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2155 	}
2156 
2157 	/*
2158 	 * If a crashdump is active, then we are potentially in a very
2159 	 * memory constrained environment. Limit us to 1 queue and
2160 	 * 64 tags to prevent using too much memory.
2161 	 */
2162 	if (is_kdump_kernel()) {
2163 		set->nr_hw_queues = 1;
2164 		set->queue_depth = min(64U, set->queue_depth);
2165 	}
2166 
2167 	set->tags = kmalloc_node(set->nr_hw_queues *
2168 				 sizeof(struct blk_mq_tags *),
2169 				 GFP_KERNEL, set->numa_node);
2170 	if (!set->tags)
2171 		return -ENOMEM;
2172 
2173 	if (blk_mq_alloc_rq_maps(set))
2174 		goto enomem;
2175 
2176 	mutex_init(&set->tag_list_lock);
2177 	INIT_LIST_HEAD(&set->tag_list);
2178 
2179 	return 0;
2180 enomem:
2181 	kfree(set->tags);
2182 	set->tags = NULL;
2183 	return -ENOMEM;
2184 }
2185 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2186 
2187 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2188 {
2189 	int i;
2190 
2191 	for (i = 0; i < set->nr_hw_queues; i++) {
2192 		if (set->tags[i])
2193 			blk_mq_free_rq_map(set, set->tags[i], i);
2194 	}
2195 
2196 	kfree(set->tags);
2197 	set->tags = NULL;
2198 }
2199 EXPORT_SYMBOL(blk_mq_free_tag_set);
2200 
2201 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2202 {
2203 	struct blk_mq_tag_set *set = q->tag_set;
2204 	struct blk_mq_hw_ctx *hctx;
2205 	int i, ret;
2206 
2207 	if (!set || nr > set->queue_depth)
2208 		return -EINVAL;
2209 
2210 	ret = 0;
2211 	queue_for_each_hw_ctx(q, hctx, i) {
2212 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2213 		if (ret)
2214 			break;
2215 	}
2216 
2217 	if (!ret)
2218 		q->nr_requests = nr;
2219 
2220 	return ret;
2221 }
2222 
2223 void blk_mq_disable_hotplug(void)
2224 {
2225 	mutex_lock(&all_q_mutex);
2226 }
2227 
2228 void blk_mq_enable_hotplug(void)
2229 {
2230 	mutex_unlock(&all_q_mutex);
2231 }
2232 
2233 static int __init blk_mq_init(void)
2234 {
2235 	blk_mq_cpu_init();
2236 
2237 	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2238 
2239 	return 0;
2240 }
2241 subsys_initcall(blk_mq_init);
2242