1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.map_size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 ret = wait_event_interruptible(q->mq_freeze_wq, 89 !q->mq_freeze_depth || blk_queue_dying(q)); 90 if (blk_queue_dying(q)) 91 return -ENODEV; 92 if (ret) 93 return ret; 94 } 95 } 96 97 static void blk_mq_queue_exit(struct request_queue *q) 98 { 99 percpu_ref_put(&q->mq_usage_counter); 100 } 101 102 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 103 { 104 struct request_queue *q = 105 container_of(ref, struct request_queue, mq_usage_counter); 106 107 wake_up_all(&q->mq_freeze_wq); 108 } 109 110 void blk_mq_freeze_queue_start(struct request_queue *q) 111 { 112 bool freeze; 113 114 spin_lock_irq(q->queue_lock); 115 freeze = !q->mq_freeze_depth++; 116 spin_unlock_irq(q->queue_lock); 117 118 if (freeze) { 119 percpu_ref_kill(&q->mq_usage_counter); 120 blk_mq_run_queues(q, false); 121 } 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 124 125 static void blk_mq_freeze_queue_wait(struct request_queue *q) 126 { 127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 128 } 129 130 /* 131 * Guarantee no request is in use, so we can change any data structure of 132 * the queue afterward. 133 */ 134 void blk_mq_freeze_queue(struct request_queue *q) 135 { 136 blk_mq_freeze_queue_start(q); 137 blk_mq_freeze_queue_wait(q); 138 } 139 140 void blk_mq_unfreeze_queue(struct request_queue *q) 141 { 142 bool wake; 143 144 spin_lock_irq(q->queue_lock); 145 wake = !--q->mq_freeze_depth; 146 WARN_ON_ONCE(q->mq_freeze_depth < 0); 147 spin_unlock_irq(q->queue_lock); 148 if (wake) { 149 percpu_ref_reinit(&q->mq_usage_counter); 150 wake_up_all(&q->mq_freeze_wq); 151 } 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 154 155 void blk_mq_wake_waiters(struct request_queue *q) 156 { 157 struct blk_mq_hw_ctx *hctx; 158 unsigned int i; 159 160 queue_for_each_hw_ctx(q, hctx, i) 161 if (blk_mq_hw_queue_mapped(hctx)) 162 blk_mq_tag_wakeup_all(hctx->tags, true); 163 164 /* 165 * If we are called because the queue has now been marked as 166 * dying, we need to ensure that processes currently waiting on 167 * the queue are notified as well. 168 */ 169 wake_up_all(&q->mq_freeze_wq); 170 } 171 172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 173 { 174 return blk_mq_has_free_tags(hctx->tags); 175 } 176 EXPORT_SYMBOL(blk_mq_can_queue); 177 178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 179 struct request *rq, unsigned int rw_flags) 180 { 181 if (blk_queue_io_stat(q)) 182 rw_flags |= REQ_IO_STAT; 183 184 INIT_LIST_HEAD(&rq->queuelist); 185 /* csd/requeue_work/fifo_time is initialized before use */ 186 rq->q = q; 187 rq->mq_ctx = ctx; 188 rq->cmd_flags |= rw_flags; 189 /* do not touch atomic flags, it needs atomic ops against the timer */ 190 rq->cpu = -1; 191 INIT_HLIST_NODE(&rq->hash); 192 RB_CLEAR_NODE(&rq->rb_node); 193 rq->rq_disk = NULL; 194 rq->part = NULL; 195 rq->start_time = jiffies; 196 #ifdef CONFIG_BLK_CGROUP 197 rq->rl = NULL; 198 set_start_time_ns(rq); 199 rq->io_start_time_ns = 0; 200 #endif 201 rq->nr_phys_segments = 0; 202 #if defined(CONFIG_BLK_DEV_INTEGRITY) 203 rq->nr_integrity_segments = 0; 204 #endif 205 rq->special = NULL; 206 /* tag was already set */ 207 rq->errors = 0; 208 209 rq->cmd = rq->__cmd; 210 211 rq->extra_len = 0; 212 rq->sense_len = 0; 213 rq->resid_len = 0; 214 rq->sense = NULL; 215 216 INIT_LIST_HEAD(&rq->timeout_list); 217 rq->timeout = 0; 218 219 rq->end_io = NULL; 220 rq->end_io_data = NULL; 221 rq->next_rq = NULL; 222 223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 224 } 225 226 static struct request * 227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 228 { 229 struct request *rq; 230 unsigned int tag; 231 232 tag = blk_mq_get_tag(data); 233 if (tag != BLK_MQ_TAG_FAIL) { 234 rq = data->hctx->tags->rqs[tag]; 235 236 if (blk_mq_tag_busy(data->hctx)) { 237 rq->cmd_flags = REQ_MQ_INFLIGHT; 238 atomic_inc(&data->hctx->nr_active); 239 } 240 241 rq->tag = tag; 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 243 return rq; 244 } 245 246 return NULL; 247 } 248 249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 250 bool reserved) 251 { 252 struct blk_mq_ctx *ctx; 253 struct blk_mq_hw_ctx *hctx; 254 struct request *rq; 255 struct blk_mq_alloc_data alloc_data; 256 int ret; 257 258 ret = blk_mq_queue_enter(q); 259 if (ret) 260 return ERR_PTR(ret); 261 262 ctx = blk_mq_get_ctx(q); 263 hctx = q->mq_ops->map_queue(q, ctx->cpu); 264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 265 reserved, ctx, hctx); 266 267 rq = __blk_mq_alloc_request(&alloc_data, rw); 268 if (!rq && (gfp & __GFP_WAIT)) { 269 __blk_mq_run_hw_queue(hctx); 270 blk_mq_put_ctx(ctx); 271 272 ctx = blk_mq_get_ctx(q); 273 hctx = q->mq_ops->map_queue(q, ctx->cpu); 274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 275 hctx); 276 rq = __blk_mq_alloc_request(&alloc_data, rw); 277 ctx = alloc_data.ctx; 278 } 279 blk_mq_put_ctx(ctx); 280 if (!rq) { 281 blk_mq_queue_exit(q); 282 return ERR_PTR(-EWOULDBLOCK); 283 } 284 return rq; 285 } 286 EXPORT_SYMBOL(blk_mq_alloc_request); 287 288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 289 struct blk_mq_ctx *ctx, struct request *rq) 290 { 291 const int tag = rq->tag; 292 struct request_queue *q = rq->q; 293 294 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 295 atomic_dec(&hctx->nr_active); 296 rq->cmd_flags = 0; 297 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 300 blk_mq_queue_exit(q); 301 } 302 303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 304 { 305 struct blk_mq_ctx *ctx = rq->mq_ctx; 306 307 ctx->rq_completed[rq_is_sync(rq)]++; 308 __blk_mq_free_request(hctx, ctx, rq); 309 310 } 311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 312 313 void blk_mq_free_request(struct request *rq) 314 { 315 struct blk_mq_hw_ctx *hctx; 316 struct request_queue *q = rq->q; 317 318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 319 blk_mq_free_hctx_request(hctx, rq); 320 } 321 EXPORT_SYMBOL_GPL(blk_mq_free_request); 322 323 inline void __blk_mq_end_request(struct request *rq, int error) 324 { 325 blk_account_io_done(rq); 326 327 if (rq->end_io) { 328 rq->end_io(rq, error); 329 } else { 330 if (unlikely(blk_bidi_rq(rq))) 331 blk_mq_free_request(rq->next_rq); 332 blk_mq_free_request(rq); 333 } 334 } 335 EXPORT_SYMBOL(__blk_mq_end_request); 336 337 void blk_mq_end_request(struct request *rq, int error) 338 { 339 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 340 BUG(); 341 __blk_mq_end_request(rq, error); 342 } 343 EXPORT_SYMBOL(blk_mq_end_request); 344 345 static void __blk_mq_complete_request_remote(void *data) 346 { 347 struct request *rq = data; 348 349 rq->q->softirq_done_fn(rq); 350 } 351 352 static void blk_mq_ipi_complete_request(struct request *rq) 353 { 354 struct blk_mq_ctx *ctx = rq->mq_ctx; 355 bool shared = false; 356 int cpu; 357 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 359 rq->q->softirq_done_fn(rq); 360 return; 361 } 362 363 cpu = get_cpu(); 364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 365 shared = cpus_share_cache(cpu, ctx->cpu); 366 367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 368 rq->csd.func = __blk_mq_complete_request_remote; 369 rq->csd.info = rq; 370 rq->csd.flags = 0; 371 smp_call_function_single_async(ctx->cpu, &rq->csd); 372 } else { 373 rq->q->softirq_done_fn(rq); 374 } 375 put_cpu(); 376 } 377 378 void __blk_mq_complete_request(struct request *rq) 379 { 380 struct request_queue *q = rq->q; 381 382 if (!q->softirq_done_fn) 383 blk_mq_end_request(rq, rq->errors); 384 else 385 blk_mq_ipi_complete_request(rq); 386 } 387 388 /** 389 * blk_mq_complete_request - end I/O on a request 390 * @rq: the request being processed 391 * 392 * Description: 393 * Ends all I/O on a request. It does not handle partial completions. 394 * The actual completion happens out-of-order, through a IPI handler. 395 **/ 396 void blk_mq_complete_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 if (unlikely(blk_should_fake_timeout(q))) 401 return; 402 if (!blk_mark_rq_complete(rq)) 403 __blk_mq_complete_request(rq); 404 } 405 EXPORT_SYMBOL(blk_mq_complete_request); 406 407 int blk_mq_request_started(struct request *rq) 408 { 409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 410 } 411 EXPORT_SYMBOL_GPL(blk_mq_request_started); 412 413 void blk_mq_start_request(struct request *rq) 414 { 415 struct request_queue *q = rq->q; 416 417 trace_block_rq_issue(q, rq); 418 419 rq->resid_len = blk_rq_bytes(rq); 420 if (unlikely(blk_bidi_rq(rq))) 421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 422 423 blk_add_timer(rq); 424 425 /* 426 * Ensure that ->deadline is visible before set the started 427 * flag and clear the completed flag. 428 */ 429 smp_mb__before_atomic(); 430 431 /* 432 * Mark us as started and clear complete. Complete might have been 433 * set if requeue raced with timeout, which then marked it as 434 * complete. So be sure to clear complete again when we start 435 * the request, otherwise we'll ignore the completion event. 436 */ 437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 441 442 if (q->dma_drain_size && blk_rq_bytes(rq)) { 443 /* 444 * Make sure space for the drain appears. We know we can do 445 * this because max_hw_segments has been adjusted to be one 446 * fewer than the device can handle. 447 */ 448 rq->nr_phys_segments++; 449 } 450 } 451 EXPORT_SYMBOL(blk_mq_start_request); 452 453 static void __blk_mq_requeue_request(struct request *rq) 454 { 455 struct request_queue *q = rq->q; 456 457 trace_block_rq_requeue(q, rq); 458 459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 460 if (q->dma_drain_size && blk_rq_bytes(rq)) 461 rq->nr_phys_segments--; 462 } 463 } 464 465 void blk_mq_requeue_request(struct request *rq) 466 { 467 __blk_mq_requeue_request(rq); 468 469 BUG_ON(blk_queued_rq(rq)); 470 blk_mq_add_to_requeue_list(rq, true); 471 } 472 EXPORT_SYMBOL(blk_mq_requeue_request); 473 474 static void blk_mq_requeue_work(struct work_struct *work) 475 { 476 struct request_queue *q = 477 container_of(work, struct request_queue, requeue_work); 478 LIST_HEAD(rq_list); 479 struct request *rq, *next; 480 unsigned long flags; 481 482 spin_lock_irqsave(&q->requeue_lock, flags); 483 list_splice_init(&q->requeue_list, &rq_list); 484 spin_unlock_irqrestore(&q->requeue_lock, flags); 485 486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 487 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 488 continue; 489 490 rq->cmd_flags &= ~REQ_SOFTBARRIER; 491 list_del_init(&rq->queuelist); 492 blk_mq_insert_request(rq, true, false, false); 493 } 494 495 while (!list_empty(&rq_list)) { 496 rq = list_entry(rq_list.next, struct request, queuelist); 497 list_del_init(&rq->queuelist); 498 blk_mq_insert_request(rq, false, false, false); 499 } 500 501 /* 502 * Use the start variant of queue running here, so that running 503 * the requeue work will kick stopped queues. 504 */ 505 blk_mq_start_hw_queues(q); 506 } 507 508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 509 { 510 struct request_queue *q = rq->q; 511 unsigned long flags; 512 513 /* 514 * We abuse this flag that is otherwise used by the I/O scheduler to 515 * request head insertation from the workqueue. 516 */ 517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 518 519 spin_lock_irqsave(&q->requeue_lock, flags); 520 if (at_head) { 521 rq->cmd_flags |= REQ_SOFTBARRIER; 522 list_add(&rq->queuelist, &q->requeue_list); 523 } else { 524 list_add_tail(&rq->queuelist, &q->requeue_list); 525 } 526 spin_unlock_irqrestore(&q->requeue_lock, flags); 527 } 528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 529 530 void blk_mq_cancel_requeue_work(struct request_queue *q) 531 { 532 cancel_work_sync(&q->requeue_work); 533 } 534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 535 536 void blk_mq_kick_requeue_list(struct request_queue *q) 537 { 538 kblockd_schedule_work(&q->requeue_work); 539 } 540 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 541 542 void blk_mq_abort_requeue_list(struct request_queue *q) 543 { 544 unsigned long flags; 545 LIST_HEAD(rq_list); 546 547 spin_lock_irqsave(&q->requeue_lock, flags); 548 list_splice_init(&q->requeue_list, &rq_list); 549 spin_unlock_irqrestore(&q->requeue_lock, flags); 550 551 while (!list_empty(&rq_list)) { 552 struct request *rq; 553 554 rq = list_first_entry(&rq_list, struct request, queuelist); 555 list_del_init(&rq->queuelist); 556 rq->errors = -EIO; 557 blk_mq_end_request(rq, rq->errors); 558 } 559 } 560 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 561 562 static inline bool is_flush_request(struct request *rq, 563 struct blk_flush_queue *fq, unsigned int tag) 564 { 565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 566 fq->flush_rq->tag == tag); 567 } 568 569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 570 { 571 struct request *rq = tags->rqs[tag]; 572 /* mq_ctx of flush rq is always cloned from the corresponding req */ 573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 574 575 if (!is_flush_request(rq, fq, tag)) 576 return rq; 577 578 return fq->flush_rq; 579 } 580 EXPORT_SYMBOL(blk_mq_tag_to_rq); 581 582 struct blk_mq_timeout_data { 583 unsigned long next; 584 unsigned int next_set; 585 }; 586 587 void blk_mq_rq_timed_out(struct request *req, bool reserved) 588 { 589 struct blk_mq_ops *ops = req->q->mq_ops; 590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 591 592 /* 593 * We know that complete is set at this point. If STARTED isn't set 594 * anymore, then the request isn't active and the "timeout" should 595 * just be ignored. This can happen due to the bitflag ordering. 596 * Timeout first checks if STARTED is set, and if it is, assumes 597 * the request is active. But if we race with completion, then 598 * we both flags will get cleared. So check here again, and ignore 599 * a timeout event with a request that isn't active. 600 */ 601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 602 return; 603 604 if (ops->timeout) 605 ret = ops->timeout(req, reserved); 606 607 switch (ret) { 608 case BLK_EH_HANDLED: 609 __blk_mq_complete_request(req); 610 break; 611 case BLK_EH_RESET_TIMER: 612 blk_add_timer(req); 613 blk_clear_rq_complete(req); 614 break; 615 case BLK_EH_NOT_HANDLED: 616 break; 617 default: 618 printk(KERN_ERR "block: bad eh return: %d\n", ret); 619 break; 620 } 621 } 622 623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 624 struct request *rq, void *priv, bool reserved) 625 { 626 struct blk_mq_timeout_data *data = priv; 627 628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 629 /* 630 * If a request wasn't started before the queue was 631 * marked dying, kill it here or it'll go unnoticed. 632 */ 633 if (unlikely(blk_queue_dying(rq->q))) { 634 rq->errors = -EIO; 635 blk_mq_complete_request(rq); 636 } 637 return; 638 } 639 if (rq->cmd_flags & REQ_NO_TIMEOUT) 640 return; 641 642 if (time_after_eq(jiffies, rq->deadline)) { 643 if (!blk_mark_rq_complete(rq)) 644 blk_mq_rq_timed_out(rq, reserved); 645 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 646 data->next = rq->deadline; 647 data->next_set = 1; 648 } 649 } 650 651 static void blk_mq_rq_timer(unsigned long priv) 652 { 653 struct request_queue *q = (struct request_queue *)priv; 654 struct blk_mq_timeout_data data = { 655 .next = 0, 656 .next_set = 0, 657 }; 658 struct blk_mq_hw_ctx *hctx; 659 int i; 660 661 queue_for_each_hw_ctx(q, hctx, i) { 662 /* 663 * If not software queues are currently mapped to this 664 * hardware queue, there's nothing to check 665 */ 666 if (!blk_mq_hw_queue_mapped(hctx)) 667 continue; 668 669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 670 } 671 672 if (data.next_set) { 673 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 674 mod_timer(&q->timeout, data.next); 675 } else { 676 queue_for_each_hw_ctx(q, hctx, i) 677 blk_mq_tag_idle(hctx); 678 } 679 } 680 681 /* 682 * Reverse check our software queue for entries that we could potentially 683 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 684 * too much time checking for merges. 685 */ 686 static bool blk_mq_attempt_merge(struct request_queue *q, 687 struct blk_mq_ctx *ctx, struct bio *bio) 688 { 689 struct request *rq; 690 int checked = 8; 691 692 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 693 int el_ret; 694 695 if (!checked--) 696 break; 697 698 if (!blk_rq_merge_ok(rq, bio)) 699 continue; 700 701 el_ret = blk_try_merge(rq, bio); 702 if (el_ret == ELEVATOR_BACK_MERGE) { 703 if (bio_attempt_back_merge(q, rq, bio)) { 704 ctx->rq_merged++; 705 return true; 706 } 707 break; 708 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 709 if (bio_attempt_front_merge(q, rq, bio)) { 710 ctx->rq_merged++; 711 return true; 712 } 713 break; 714 } 715 } 716 717 return false; 718 } 719 720 /* 721 * Process software queues that have been marked busy, splicing them 722 * to the for-dispatch 723 */ 724 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 725 { 726 struct blk_mq_ctx *ctx; 727 int i; 728 729 for (i = 0; i < hctx->ctx_map.map_size; i++) { 730 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 731 unsigned int off, bit; 732 733 if (!bm->word) 734 continue; 735 736 bit = 0; 737 off = i * hctx->ctx_map.bits_per_word; 738 do { 739 bit = find_next_bit(&bm->word, bm->depth, bit); 740 if (bit >= bm->depth) 741 break; 742 743 ctx = hctx->ctxs[bit + off]; 744 clear_bit(bit, &bm->word); 745 spin_lock(&ctx->lock); 746 list_splice_tail_init(&ctx->rq_list, list); 747 spin_unlock(&ctx->lock); 748 749 bit++; 750 } while (1); 751 } 752 } 753 754 /* 755 * Run this hardware queue, pulling any software queues mapped to it in. 756 * Note that this function currently has various problems around ordering 757 * of IO. In particular, we'd like FIFO behaviour on handling existing 758 * items on the hctx->dispatch list. Ignore that for now. 759 */ 760 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 761 { 762 struct request_queue *q = hctx->queue; 763 struct request *rq; 764 LIST_HEAD(rq_list); 765 LIST_HEAD(driver_list); 766 struct list_head *dptr; 767 int queued; 768 769 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 770 771 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 772 return; 773 774 hctx->run++; 775 776 /* 777 * Touch any software queue that has pending entries. 778 */ 779 flush_busy_ctxs(hctx, &rq_list); 780 781 /* 782 * If we have previous entries on our dispatch list, grab them 783 * and stuff them at the front for more fair dispatch. 784 */ 785 if (!list_empty_careful(&hctx->dispatch)) { 786 spin_lock(&hctx->lock); 787 if (!list_empty(&hctx->dispatch)) 788 list_splice_init(&hctx->dispatch, &rq_list); 789 spin_unlock(&hctx->lock); 790 } 791 792 /* 793 * Start off with dptr being NULL, so we start the first request 794 * immediately, even if we have more pending. 795 */ 796 dptr = NULL; 797 798 /* 799 * Now process all the entries, sending them to the driver. 800 */ 801 queued = 0; 802 while (!list_empty(&rq_list)) { 803 struct blk_mq_queue_data bd; 804 int ret; 805 806 rq = list_first_entry(&rq_list, struct request, queuelist); 807 list_del_init(&rq->queuelist); 808 809 bd.rq = rq; 810 bd.list = dptr; 811 bd.last = list_empty(&rq_list); 812 813 ret = q->mq_ops->queue_rq(hctx, &bd); 814 switch (ret) { 815 case BLK_MQ_RQ_QUEUE_OK: 816 queued++; 817 continue; 818 case BLK_MQ_RQ_QUEUE_BUSY: 819 list_add(&rq->queuelist, &rq_list); 820 __blk_mq_requeue_request(rq); 821 break; 822 default: 823 pr_err("blk-mq: bad return on queue: %d\n", ret); 824 case BLK_MQ_RQ_QUEUE_ERROR: 825 rq->errors = -EIO; 826 blk_mq_end_request(rq, rq->errors); 827 break; 828 } 829 830 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 831 break; 832 833 /* 834 * We've done the first request. If we have more than 1 835 * left in the list, set dptr to defer issue. 836 */ 837 if (!dptr && rq_list.next != rq_list.prev) 838 dptr = &driver_list; 839 } 840 841 if (!queued) 842 hctx->dispatched[0]++; 843 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 844 hctx->dispatched[ilog2(queued) + 1]++; 845 846 /* 847 * Any items that need requeuing? Stuff them into hctx->dispatch, 848 * that is where we will continue on next queue run. 849 */ 850 if (!list_empty(&rq_list)) { 851 spin_lock(&hctx->lock); 852 list_splice(&rq_list, &hctx->dispatch); 853 spin_unlock(&hctx->lock); 854 } 855 } 856 857 /* 858 * It'd be great if the workqueue API had a way to pass 859 * in a mask and had some smarts for more clever placement. 860 * For now we just round-robin here, switching for every 861 * BLK_MQ_CPU_WORK_BATCH queued items. 862 */ 863 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 864 { 865 if (hctx->queue->nr_hw_queues == 1) 866 return WORK_CPU_UNBOUND; 867 868 if (--hctx->next_cpu_batch <= 0) { 869 int cpu = hctx->next_cpu, next_cpu; 870 871 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 872 if (next_cpu >= nr_cpu_ids) 873 next_cpu = cpumask_first(hctx->cpumask); 874 875 hctx->next_cpu = next_cpu; 876 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 877 878 return cpu; 879 } 880 881 return hctx->next_cpu; 882 } 883 884 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 885 { 886 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 887 !blk_mq_hw_queue_mapped(hctx))) 888 return; 889 890 if (!async) { 891 int cpu = get_cpu(); 892 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 893 __blk_mq_run_hw_queue(hctx); 894 put_cpu(); 895 return; 896 } 897 898 put_cpu(); 899 } 900 901 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 902 &hctx->run_work, 0); 903 } 904 905 void blk_mq_run_queues(struct request_queue *q, bool async) 906 { 907 struct blk_mq_hw_ctx *hctx; 908 int i; 909 910 queue_for_each_hw_ctx(q, hctx, i) { 911 if ((!blk_mq_hctx_has_pending(hctx) && 912 list_empty_careful(&hctx->dispatch)) || 913 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 914 continue; 915 916 blk_mq_run_hw_queue(hctx, async); 917 } 918 } 919 EXPORT_SYMBOL(blk_mq_run_queues); 920 921 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 922 { 923 cancel_delayed_work(&hctx->run_work); 924 cancel_delayed_work(&hctx->delay_work); 925 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 926 } 927 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 928 929 void blk_mq_stop_hw_queues(struct request_queue *q) 930 { 931 struct blk_mq_hw_ctx *hctx; 932 int i; 933 934 queue_for_each_hw_ctx(q, hctx, i) 935 blk_mq_stop_hw_queue(hctx); 936 } 937 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 938 939 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 940 { 941 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 942 943 blk_mq_run_hw_queue(hctx, false); 944 } 945 EXPORT_SYMBOL(blk_mq_start_hw_queue); 946 947 void blk_mq_start_hw_queues(struct request_queue *q) 948 { 949 struct blk_mq_hw_ctx *hctx; 950 int i; 951 952 queue_for_each_hw_ctx(q, hctx, i) 953 blk_mq_start_hw_queue(hctx); 954 } 955 EXPORT_SYMBOL(blk_mq_start_hw_queues); 956 957 958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 959 { 960 struct blk_mq_hw_ctx *hctx; 961 int i; 962 963 queue_for_each_hw_ctx(q, hctx, i) { 964 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 965 continue; 966 967 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 968 blk_mq_run_hw_queue(hctx, async); 969 } 970 } 971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 972 973 static void blk_mq_run_work_fn(struct work_struct *work) 974 { 975 struct blk_mq_hw_ctx *hctx; 976 977 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 978 979 __blk_mq_run_hw_queue(hctx); 980 } 981 982 static void blk_mq_delay_work_fn(struct work_struct *work) 983 { 984 struct blk_mq_hw_ctx *hctx; 985 986 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 987 988 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 989 __blk_mq_run_hw_queue(hctx); 990 } 991 992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 993 { 994 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 995 return; 996 997 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 998 &hctx->delay_work, msecs_to_jiffies(msecs)); 999 } 1000 EXPORT_SYMBOL(blk_mq_delay_queue); 1001 1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1003 struct request *rq, bool at_head) 1004 { 1005 struct blk_mq_ctx *ctx = rq->mq_ctx; 1006 1007 trace_block_rq_insert(hctx->queue, rq); 1008 1009 if (at_head) 1010 list_add(&rq->queuelist, &ctx->rq_list); 1011 else 1012 list_add_tail(&rq->queuelist, &ctx->rq_list); 1013 1014 blk_mq_hctx_mark_pending(hctx, ctx); 1015 } 1016 1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1018 bool async) 1019 { 1020 struct request_queue *q = rq->q; 1021 struct blk_mq_hw_ctx *hctx; 1022 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1023 1024 current_ctx = blk_mq_get_ctx(q); 1025 if (!cpu_online(ctx->cpu)) 1026 rq->mq_ctx = ctx = current_ctx; 1027 1028 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1029 1030 spin_lock(&ctx->lock); 1031 __blk_mq_insert_request(hctx, rq, at_head); 1032 spin_unlock(&ctx->lock); 1033 1034 if (run_queue) 1035 blk_mq_run_hw_queue(hctx, async); 1036 1037 blk_mq_put_ctx(current_ctx); 1038 } 1039 1040 static void blk_mq_insert_requests(struct request_queue *q, 1041 struct blk_mq_ctx *ctx, 1042 struct list_head *list, 1043 int depth, 1044 bool from_schedule) 1045 1046 { 1047 struct blk_mq_hw_ctx *hctx; 1048 struct blk_mq_ctx *current_ctx; 1049 1050 trace_block_unplug(q, depth, !from_schedule); 1051 1052 current_ctx = blk_mq_get_ctx(q); 1053 1054 if (!cpu_online(ctx->cpu)) 1055 ctx = current_ctx; 1056 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1057 1058 /* 1059 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1060 * offline now 1061 */ 1062 spin_lock(&ctx->lock); 1063 while (!list_empty(list)) { 1064 struct request *rq; 1065 1066 rq = list_first_entry(list, struct request, queuelist); 1067 list_del_init(&rq->queuelist); 1068 rq->mq_ctx = ctx; 1069 __blk_mq_insert_request(hctx, rq, false); 1070 } 1071 spin_unlock(&ctx->lock); 1072 1073 blk_mq_run_hw_queue(hctx, from_schedule); 1074 blk_mq_put_ctx(current_ctx); 1075 } 1076 1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1078 { 1079 struct request *rqa = container_of(a, struct request, queuelist); 1080 struct request *rqb = container_of(b, struct request, queuelist); 1081 1082 return !(rqa->mq_ctx < rqb->mq_ctx || 1083 (rqa->mq_ctx == rqb->mq_ctx && 1084 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1085 } 1086 1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1088 { 1089 struct blk_mq_ctx *this_ctx; 1090 struct request_queue *this_q; 1091 struct request *rq; 1092 LIST_HEAD(list); 1093 LIST_HEAD(ctx_list); 1094 unsigned int depth; 1095 1096 list_splice_init(&plug->mq_list, &list); 1097 1098 list_sort(NULL, &list, plug_ctx_cmp); 1099 1100 this_q = NULL; 1101 this_ctx = NULL; 1102 depth = 0; 1103 1104 while (!list_empty(&list)) { 1105 rq = list_entry_rq(list.next); 1106 list_del_init(&rq->queuelist); 1107 BUG_ON(!rq->q); 1108 if (rq->mq_ctx != this_ctx) { 1109 if (this_ctx) { 1110 blk_mq_insert_requests(this_q, this_ctx, 1111 &ctx_list, depth, 1112 from_schedule); 1113 } 1114 1115 this_ctx = rq->mq_ctx; 1116 this_q = rq->q; 1117 depth = 0; 1118 } 1119 1120 depth++; 1121 list_add_tail(&rq->queuelist, &ctx_list); 1122 } 1123 1124 /* 1125 * If 'this_ctx' is set, we know we have entries to complete 1126 * on 'ctx_list'. Do those. 1127 */ 1128 if (this_ctx) { 1129 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1130 from_schedule); 1131 } 1132 } 1133 1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1135 { 1136 init_request_from_bio(rq, bio); 1137 1138 if (blk_do_io_stat(rq)) 1139 blk_account_io_start(rq, 1); 1140 } 1141 1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1143 { 1144 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1145 !blk_queue_nomerges(hctx->queue); 1146 } 1147 1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1149 struct blk_mq_ctx *ctx, 1150 struct request *rq, struct bio *bio) 1151 { 1152 if (!hctx_allow_merges(hctx)) { 1153 blk_mq_bio_to_request(rq, bio); 1154 spin_lock(&ctx->lock); 1155 insert_rq: 1156 __blk_mq_insert_request(hctx, rq, false); 1157 spin_unlock(&ctx->lock); 1158 return false; 1159 } else { 1160 struct request_queue *q = hctx->queue; 1161 1162 spin_lock(&ctx->lock); 1163 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1164 blk_mq_bio_to_request(rq, bio); 1165 goto insert_rq; 1166 } 1167 1168 spin_unlock(&ctx->lock); 1169 __blk_mq_free_request(hctx, ctx, rq); 1170 return true; 1171 } 1172 } 1173 1174 struct blk_map_ctx { 1175 struct blk_mq_hw_ctx *hctx; 1176 struct blk_mq_ctx *ctx; 1177 }; 1178 1179 static struct request *blk_mq_map_request(struct request_queue *q, 1180 struct bio *bio, 1181 struct blk_map_ctx *data) 1182 { 1183 struct blk_mq_hw_ctx *hctx; 1184 struct blk_mq_ctx *ctx; 1185 struct request *rq; 1186 int rw = bio_data_dir(bio); 1187 struct blk_mq_alloc_data alloc_data; 1188 1189 if (unlikely(blk_mq_queue_enter(q))) { 1190 bio_endio(bio, -EIO); 1191 return NULL; 1192 } 1193 1194 ctx = blk_mq_get_ctx(q); 1195 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1196 1197 if (rw_is_sync(bio->bi_rw)) 1198 rw |= REQ_SYNC; 1199 1200 trace_block_getrq(q, bio, rw); 1201 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1202 hctx); 1203 rq = __blk_mq_alloc_request(&alloc_data, rw); 1204 if (unlikely(!rq)) { 1205 __blk_mq_run_hw_queue(hctx); 1206 blk_mq_put_ctx(ctx); 1207 trace_block_sleeprq(q, bio, rw); 1208 1209 ctx = blk_mq_get_ctx(q); 1210 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1211 blk_mq_set_alloc_data(&alloc_data, q, 1212 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1213 rq = __blk_mq_alloc_request(&alloc_data, rw); 1214 ctx = alloc_data.ctx; 1215 hctx = alloc_data.hctx; 1216 } 1217 1218 hctx->queued++; 1219 data->hctx = hctx; 1220 data->ctx = ctx; 1221 return rq; 1222 } 1223 1224 /* 1225 * Multiple hardware queue variant. This will not use per-process plugs, 1226 * but will attempt to bypass the hctx queueing if we can go straight to 1227 * hardware for SYNC IO. 1228 */ 1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1230 { 1231 const int is_sync = rw_is_sync(bio->bi_rw); 1232 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1233 struct blk_map_ctx data; 1234 struct request *rq; 1235 1236 blk_queue_bounce(q, &bio); 1237 1238 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1239 bio_endio(bio, -EIO); 1240 return; 1241 } 1242 1243 rq = blk_mq_map_request(q, bio, &data); 1244 if (unlikely(!rq)) 1245 return; 1246 1247 if (unlikely(is_flush_fua)) { 1248 blk_mq_bio_to_request(rq, bio); 1249 blk_insert_flush(rq); 1250 goto run_queue; 1251 } 1252 1253 /* 1254 * If the driver supports defer issued based on 'last', then 1255 * queue it up like normal since we can potentially save some 1256 * CPU this way. 1257 */ 1258 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1259 struct blk_mq_queue_data bd = { 1260 .rq = rq, 1261 .list = NULL, 1262 .last = 1 1263 }; 1264 int ret; 1265 1266 blk_mq_bio_to_request(rq, bio); 1267 1268 /* 1269 * For OK queue, we are done. For error, kill it. Any other 1270 * error (busy), just add it to our list as we previously 1271 * would have done 1272 */ 1273 ret = q->mq_ops->queue_rq(data.hctx, &bd); 1274 if (ret == BLK_MQ_RQ_QUEUE_OK) 1275 goto done; 1276 else { 1277 __blk_mq_requeue_request(rq); 1278 1279 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1280 rq->errors = -EIO; 1281 blk_mq_end_request(rq, rq->errors); 1282 goto done; 1283 } 1284 } 1285 } 1286 1287 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1288 /* 1289 * For a SYNC request, send it to the hardware immediately. For 1290 * an ASYNC request, just ensure that we run it later on. The 1291 * latter allows for merging opportunities and more efficient 1292 * dispatching. 1293 */ 1294 run_queue: 1295 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1296 } 1297 done: 1298 blk_mq_put_ctx(data.ctx); 1299 } 1300 1301 /* 1302 * Single hardware queue variant. This will attempt to use any per-process 1303 * plug for merging and IO deferral. 1304 */ 1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1306 { 1307 const int is_sync = rw_is_sync(bio->bi_rw); 1308 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1309 unsigned int use_plug, request_count = 0; 1310 struct blk_map_ctx data; 1311 struct request *rq; 1312 1313 /* 1314 * If we have multiple hardware queues, just go directly to 1315 * one of those for sync IO. 1316 */ 1317 use_plug = !is_flush_fua && !is_sync; 1318 1319 blk_queue_bounce(q, &bio); 1320 1321 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1322 bio_endio(bio, -EIO); 1323 return; 1324 } 1325 1326 if (use_plug && !blk_queue_nomerges(q) && 1327 blk_attempt_plug_merge(q, bio, &request_count)) 1328 return; 1329 1330 rq = blk_mq_map_request(q, bio, &data); 1331 if (unlikely(!rq)) 1332 return; 1333 1334 if (unlikely(is_flush_fua)) { 1335 blk_mq_bio_to_request(rq, bio); 1336 blk_insert_flush(rq); 1337 goto run_queue; 1338 } 1339 1340 /* 1341 * A task plug currently exists. Since this is completely lockless, 1342 * utilize that to temporarily store requests until the task is 1343 * either done or scheduled away. 1344 */ 1345 if (use_plug) { 1346 struct blk_plug *plug = current->plug; 1347 1348 if (plug) { 1349 blk_mq_bio_to_request(rq, bio); 1350 if (list_empty(&plug->mq_list)) 1351 trace_block_plug(q); 1352 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1353 blk_flush_plug_list(plug, false); 1354 trace_block_plug(q); 1355 } 1356 list_add_tail(&rq->queuelist, &plug->mq_list); 1357 blk_mq_put_ctx(data.ctx); 1358 return; 1359 } 1360 } 1361 1362 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1363 /* 1364 * For a SYNC request, send it to the hardware immediately. For 1365 * an ASYNC request, just ensure that we run it later on. The 1366 * latter allows for merging opportunities and more efficient 1367 * dispatching. 1368 */ 1369 run_queue: 1370 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1371 } 1372 1373 blk_mq_put_ctx(data.ctx); 1374 } 1375 1376 /* 1377 * Default mapping to a software queue, since we use one per CPU. 1378 */ 1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1380 { 1381 return q->queue_hw_ctx[q->mq_map[cpu]]; 1382 } 1383 EXPORT_SYMBOL(blk_mq_map_queue); 1384 1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1386 struct blk_mq_tags *tags, unsigned int hctx_idx) 1387 { 1388 struct page *page; 1389 1390 if (tags->rqs && set->ops->exit_request) { 1391 int i; 1392 1393 for (i = 0; i < tags->nr_tags; i++) { 1394 if (!tags->rqs[i]) 1395 continue; 1396 set->ops->exit_request(set->driver_data, tags->rqs[i], 1397 hctx_idx, i); 1398 tags->rqs[i] = NULL; 1399 } 1400 } 1401 1402 while (!list_empty(&tags->page_list)) { 1403 page = list_first_entry(&tags->page_list, struct page, lru); 1404 list_del_init(&page->lru); 1405 __free_pages(page, page->private); 1406 } 1407 1408 kfree(tags->rqs); 1409 1410 blk_mq_free_tags(tags); 1411 } 1412 1413 static size_t order_to_size(unsigned int order) 1414 { 1415 return (size_t)PAGE_SIZE << order; 1416 } 1417 1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1419 unsigned int hctx_idx) 1420 { 1421 struct blk_mq_tags *tags; 1422 unsigned int i, j, entries_per_page, max_order = 4; 1423 size_t rq_size, left; 1424 1425 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1426 set->numa_node); 1427 if (!tags) 1428 return NULL; 1429 1430 INIT_LIST_HEAD(&tags->page_list); 1431 1432 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1433 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1434 set->numa_node); 1435 if (!tags->rqs) { 1436 blk_mq_free_tags(tags); 1437 return NULL; 1438 } 1439 1440 /* 1441 * rq_size is the size of the request plus driver payload, rounded 1442 * to the cacheline size 1443 */ 1444 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1445 cache_line_size()); 1446 left = rq_size * set->queue_depth; 1447 1448 for (i = 0; i < set->queue_depth; ) { 1449 int this_order = max_order; 1450 struct page *page; 1451 int to_do; 1452 void *p; 1453 1454 while (left < order_to_size(this_order - 1) && this_order) 1455 this_order--; 1456 1457 do { 1458 page = alloc_pages_node(set->numa_node, 1459 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1460 this_order); 1461 if (page) 1462 break; 1463 if (!this_order--) 1464 break; 1465 if (order_to_size(this_order) < rq_size) 1466 break; 1467 } while (1); 1468 1469 if (!page) 1470 goto fail; 1471 1472 page->private = this_order; 1473 list_add_tail(&page->lru, &tags->page_list); 1474 1475 p = page_address(page); 1476 entries_per_page = order_to_size(this_order) / rq_size; 1477 to_do = min(entries_per_page, set->queue_depth - i); 1478 left -= to_do * rq_size; 1479 for (j = 0; j < to_do; j++) { 1480 tags->rqs[i] = p; 1481 tags->rqs[i]->atomic_flags = 0; 1482 tags->rqs[i]->cmd_flags = 0; 1483 if (set->ops->init_request) { 1484 if (set->ops->init_request(set->driver_data, 1485 tags->rqs[i], hctx_idx, i, 1486 set->numa_node)) { 1487 tags->rqs[i] = NULL; 1488 goto fail; 1489 } 1490 } 1491 1492 p += rq_size; 1493 i++; 1494 } 1495 } 1496 1497 return tags; 1498 1499 fail: 1500 blk_mq_free_rq_map(set, tags, hctx_idx); 1501 return NULL; 1502 } 1503 1504 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1505 { 1506 kfree(bitmap->map); 1507 } 1508 1509 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1510 { 1511 unsigned int bpw = 8, total, num_maps, i; 1512 1513 bitmap->bits_per_word = bpw; 1514 1515 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1516 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1517 GFP_KERNEL, node); 1518 if (!bitmap->map) 1519 return -ENOMEM; 1520 1521 bitmap->map_size = num_maps; 1522 1523 total = nr_cpu_ids; 1524 for (i = 0; i < num_maps; i++) { 1525 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1526 total -= bitmap->map[i].depth; 1527 } 1528 1529 return 0; 1530 } 1531 1532 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1533 { 1534 struct request_queue *q = hctx->queue; 1535 struct blk_mq_ctx *ctx; 1536 LIST_HEAD(tmp); 1537 1538 /* 1539 * Move ctx entries to new CPU, if this one is going away. 1540 */ 1541 ctx = __blk_mq_get_ctx(q, cpu); 1542 1543 spin_lock(&ctx->lock); 1544 if (!list_empty(&ctx->rq_list)) { 1545 list_splice_init(&ctx->rq_list, &tmp); 1546 blk_mq_hctx_clear_pending(hctx, ctx); 1547 } 1548 spin_unlock(&ctx->lock); 1549 1550 if (list_empty(&tmp)) 1551 return NOTIFY_OK; 1552 1553 ctx = blk_mq_get_ctx(q); 1554 spin_lock(&ctx->lock); 1555 1556 while (!list_empty(&tmp)) { 1557 struct request *rq; 1558 1559 rq = list_first_entry(&tmp, struct request, queuelist); 1560 rq->mq_ctx = ctx; 1561 list_move_tail(&rq->queuelist, &ctx->rq_list); 1562 } 1563 1564 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1565 blk_mq_hctx_mark_pending(hctx, ctx); 1566 1567 spin_unlock(&ctx->lock); 1568 1569 blk_mq_run_hw_queue(hctx, true); 1570 blk_mq_put_ctx(ctx); 1571 return NOTIFY_OK; 1572 } 1573 1574 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) 1575 { 1576 struct request_queue *q = hctx->queue; 1577 struct blk_mq_tag_set *set = q->tag_set; 1578 1579 if (set->tags[hctx->queue_num]) 1580 return NOTIFY_OK; 1581 1582 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); 1583 if (!set->tags[hctx->queue_num]) 1584 return NOTIFY_STOP; 1585 1586 hctx->tags = set->tags[hctx->queue_num]; 1587 return NOTIFY_OK; 1588 } 1589 1590 static int blk_mq_hctx_notify(void *data, unsigned long action, 1591 unsigned int cpu) 1592 { 1593 struct blk_mq_hw_ctx *hctx = data; 1594 1595 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1596 return blk_mq_hctx_cpu_offline(hctx, cpu); 1597 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) 1598 return blk_mq_hctx_cpu_online(hctx, cpu); 1599 1600 return NOTIFY_OK; 1601 } 1602 1603 static void blk_mq_exit_hctx(struct request_queue *q, 1604 struct blk_mq_tag_set *set, 1605 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1606 { 1607 unsigned flush_start_tag = set->queue_depth; 1608 1609 blk_mq_tag_idle(hctx); 1610 1611 if (set->ops->exit_request) 1612 set->ops->exit_request(set->driver_data, 1613 hctx->fq->flush_rq, hctx_idx, 1614 flush_start_tag + hctx_idx); 1615 1616 if (set->ops->exit_hctx) 1617 set->ops->exit_hctx(hctx, hctx_idx); 1618 1619 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1620 blk_free_flush_queue(hctx->fq); 1621 kfree(hctx->ctxs); 1622 blk_mq_free_bitmap(&hctx->ctx_map); 1623 } 1624 1625 static void blk_mq_exit_hw_queues(struct request_queue *q, 1626 struct blk_mq_tag_set *set, int nr_queue) 1627 { 1628 struct blk_mq_hw_ctx *hctx; 1629 unsigned int i; 1630 1631 queue_for_each_hw_ctx(q, hctx, i) { 1632 if (i == nr_queue) 1633 break; 1634 blk_mq_exit_hctx(q, set, hctx, i); 1635 } 1636 } 1637 1638 static void blk_mq_free_hw_queues(struct request_queue *q, 1639 struct blk_mq_tag_set *set) 1640 { 1641 struct blk_mq_hw_ctx *hctx; 1642 unsigned int i; 1643 1644 queue_for_each_hw_ctx(q, hctx, i) { 1645 free_cpumask_var(hctx->cpumask); 1646 kfree(hctx); 1647 } 1648 } 1649 1650 static int blk_mq_init_hctx(struct request_queue *q, 1651 struct blk_mq_tag_set *set, 1652 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1653 { 1654 int node; 1655 unsigned flush_start_tag = set->queue_depth; 1656 1657 node = hctx->numa_node; 1658 if (node == NUMA_NO_NODE) 1659 node = hctx->numa_node = set->numa_node; 1660 1661 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1662 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1663 spin_lock_init(&hctx->lock); 1664 INIT_LIST_HEAD(&hctx->dispatch); 1665 hctx->queue = q; 1666 hctx->queue_num = hctx_idx; 1667 hctx->flags = set->flags; 1668 1669 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1670 blk_mq_hctx_notify, hctx); 1671 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1672 1673 hctx->tags = set->tags[hctx_idx]; 1674 1675 /* 1676 * Allocate space for all possible cpus to avoid allocation at 1677 * runtime 1678 */ 1679 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1680 GFP_KERNEL, node); 1681 if (!hctx->ctxs) 1682 goto unregister_cpu_notifier; 1683 1684 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1685 goto free_ctxs; 1686 1687 hctx->nr_ctx = 0; 1688 1689 if (set->ops->init_hctx && 1690 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1691 goto free_bitmap; 1692 1693 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1694 if (!hctx->fq) 1695 goto exit_hctx; 1696 1697 if (set->ops->init_request && 1698 set->ops->init_request(set->driver_data, 1699 hctx->fq->flush_rq, hctx_idx, 1700 flush_start_tag + hctx_idx, node)) 1701 goto free_fq; 1702 1703 return 0; 1704 1705 free_fq: 1706 kfree(hctx->fq); 1707 exit_hctx: 1708 if (set->ops->exit_hctx) 1709 set->ops->exit_hctx(hctx, hctx_idx); 1710 free_bitmap: 1711 blk_mq_free_bitmap(&hctx->ctx_map); 1712 free_ctxs: 1713 kfree(hctx->ctxs); 1714 unregister_cpu_notifier: 1715 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1716 1717 return -1; 1718 } 1719 1720 static int blk_mq_init_hw_queues(struct request_queue *q, 1721 struct blk_mq_tag_set *set) 1722 { 1723 struct blk_mq_hw_ctx *hctx; 1724 unsigned int i; 1725 1726 /* 1727 * Initialize hardware queues 1728 */ 1729 queue_for_each_hw_ctx(q, hctx, i) { 1730 if (blk_mq_init_hctx(q, set, hctx, i)) 1731 break; 1732 } 1733 1734 if (i == q->nr_hw_queues) 1735 return 0; 1736 1737 /* 1738 * Init failed 1739 */ 1740 blk_mq_exit_hw_queues(q, set, i); 1741 1742 return 1; 1743 } 1744 1745 static void blk_mq_init_cpu_queues(struct request_queue *q, 1746 unsigned int nr_hw_queues) 1747 { 1748 unsigned int i; 1749 1750 for_each_possible_cpu(i) { 1751 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1752 struct blk_mq_hw_ctx *hctx; 1753 1754 memset(__ctx, 0, sizeof(*__ctx)); 1755 __ctx->cpu = i; 1756 spin_lock_init(&__ctx->lock); 1757 INIT_LIST_HEAD(&__ctx->rq_list); 1758 __ctx->queue = q; 1759 1760 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1761 if (!cpu_online(i)) 1762 continue; 1763 1764 hctx = q->mq_ops->map_queue(q, i); 1765 cpumask_set_cpu(i, hctx->cpumask); 1766 hctx->nr_ctx++; 1767 1768 /* 1769 * Set local node, IFF we have more than one hw queue. If 1770 * not, we remain on the home node of the device 1771 */ 1772 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1773 hctx->numa_node = cpu_to_node(i); 1774 } 1775 } 1776 1777 static void blk_mq_map_swqueue(struct request_queue *q) 1778 { 1779 unsigned int i; 1780 struct blk_mq_hw_ctx *hctx; 1781 struct blk_mq_ctx *ctx; 1782 1783 queue_for_each_hw_ctx(q, hctx, i) { 1784 cpumask_clear(hctx->cpumask); 1785 hctx->nr_ctx = 0; 1786 } 1787 1788 /* 1789 * Map software to hardware queues 1790 */ 1791 queue_for_each_ctx(q, ctx, i) { 1792 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1793 if (!cpu_online(i)) 1794 continue; 1795 1796 hctx = q->mq_ops->map_queue(q, i); 1797 cpumask_set_cpu(i, hctx->cpumask); 1798 ctx->index_hw = hctx->nr_ctx; 1799 hctx->ctxs[hctx->nr_ctx++] = ctx; 1800 } 1801 1802 queue_for_each_hw_ctx(q, hctx, i) { 1803 /* 1804 * If no software queues are mapped to this hardware queue, 1805 * disable it and free the request entries. 1806 */ 1807 if (!hctx->nr_ctx) { 1808 struct blk_mq_tag_set *set = q->tag_set; 1809 1810 if (set->tags[i]) { 1811 blk_mq_free_rq_map(set, set->tags[i], i); 1812 set->tags[i] = NULL; 1813 hctx->tags = NULL; 1814 } 1815 continue; 1816 } 1817 1818 /* 1819 * Initialize batch roundrobin counts 1820 */ 1821 hctx->next_cpu = cpumask_first(hctx->cpumask); 1822 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1823 } 1824 } 1825 1826 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1827 { 1828 struct blk_mq_hw_ctx *hctx; 1829 struct request_queue *q; 1830 bool shared; 1831 int i; 1832 1833 if (set->tag_list.next == set->tag_list.prev) 1834 shared = false; 1835 else 1836 shared = true; 1837 1838 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1839 blk_mq_freeze_queue(q); 1840 1841 queue_for_each_hw_ctx(q, hctx, i) { 1842 if (shared) 1843 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1844 else 1845 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1846 } 1847 blk_mq_unfreeze_queue(q); 1848 } 1849 } 1850 1851 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1852 { 1853 struct blk_mq_tag_set *set = q->tag_set; 1854 1855 mutex_lock(&set->tag_list_lock); 1856 list_del_init(&q->tag_set_list); 1857 blk_mq_update_tag_set_depth(set); 1858 mutex_unlock(&set->tag_list_lock); 1859 } 1860 1861 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1862 struct request_queue *q) 1863 { 1864 q->tag_set = set; 1865 1866 mutex_lock(&set->tag_list_lock); 1867 list_add_tail(&q->tag_set_list, &set->tag_list); 1868 blk_mq_update_tag_set_depth(set); 1869 mutex_unlock(&set->tag_list_lock); 1870 } 1871 1872 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1873 { 1874 struct blk_mq_hw_ctx **hctxs; 1875 struct blk_mq_ctx __percpu *ctx; 1876 struct request_queue *q; 1877 unsigned int *map; 1878 int i; 1879 1880 ctx = alloc_percpu(struct blk_mq_ctx); 1881 if (!ctx) 1882 return ERR_PTR(-ENOMEM); 1883 1884 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1885 set->numa_node); 1886 1887 if (!hctxs) 1888 goto err_percpu; 1889 1890 map = blk_mq_make_queue_map(set); 1891 if (!map) 1892 goto err_map; 1893 1894 for (i = 0; i < set->nr_hw_queues; i++) { 1895 int node = blk_mq_hw_queue_to_node(map, i); 1896 1897 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1898 GFP_KERNEL, node); 1899 if (!hctxs[i]) 1900 goto err_hctxs; 1901 1902 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1903 node)) 1904 goto err_hctxs; 1905 1906 atomic_set(&hctxs[i]->nr_active, 0); 1907 hctxs[i]->numa_node = node; 1908 hctxs[i]->queue_num = i; 1909 } 1910 1911 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1912 if (!q) 1913 goto err_hctxs; 1914 1915 /* 1916 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1917 * See blk_register_queue() for details. 1918 */ 1919 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1920 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1921 goto err_map; 1922 1923 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1924 blk_queue_rq_timeout(q, 30000); 1925 1926 q->nr_queues = nr_cpu_ids; 1927 q->nr_hw_queues = set->nr_hw_queues; 1928 q->mq_map = map; 1929 1930 q->queue_ctx = ctx; 1931 q->queue_hw_ctx = hctxs; 1932 1933 q->mq_ops = set->ops; 1934 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1935 1936 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1937 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1938 1939 q->sg_reserved_size = INT_MAX; 1940 1941 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1942 INIT_LIST_HEAD(&q->requeue_list); 1943 spin_lock_init(&q->requeue_lock); 1944 1945 if (q->nr_hw_queues > 1) 1946 blk_queue_make_request(q, blk_mq_make_request); 1947 else 1948 blk_queue_make_request(q, blk_sq_make_request); 1949 1950 if (set->timeout) 1951 blk_queue_rq_timeout(q, set->timeout); 1952 1953 /* 1954 * Do this after blk_queue_make_request() overrides it... 1955 */ 1956 q->nr_requests = set->queue_depth; 1957 1958 if (set->ops->complete) 1959 blk_queue_softirq_done(q, set->ops->complete); 1960 1961 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 1962 1963 if (blk_mq_init_hw_queues(q, set)) 1964 goto err_hw; 1965 1966 mutex_lock(&all_q_mutex); 1967 list_add_tail(&q->all_q_node, &all_q_list); 1968 mutex_unlock(&all_q_mutex); 1969 1970 blk_mq_add_queue_tag_set(set, q); 1971 1972 blk_mq_map_swqueue(q); 1973 1974 return q; 1975 1976 err_hw: 1977 blk_cleanup_queue(q); 1978 err_hctxs: 1979 kfree(map); 1980 for (i = 0; i < set->nr_hw_queues; i++) { 1981 if (!hctxs[i]) 1982 break; 1983 free_cpumask_var(hctxs[i]->cpumask); 1984 kfree(hctxs[i]); 1985 } 1986 err_map: 1987 kfree(hctxs); 1988 err_percpu: 1989 free_percpu(ctx); 1990 return ERR_PTR(-ENOMEM); 1991 } 1992 EXPORT_SYMBOL(blk_mq_init_queue); 1993 1994 void blk_mq_free_queue(struct request_queue *q) 1995 { 1996 struct blk_mq_tag_set *set = q->tag_set; 1997 1998 blk_mq_del_queue_tag_set(q); 1999 2000 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2001 blk_mq_free_hw_queues(q, set); 2002 2003 percpu_ref_exit(&q->mq_usage_counter); 2004 2005 free_percpu(q->queue_ctx); 2006 kfree(q->queue_hw_ctx); 2007 kfree(q->mq_map); 2008 2009 q->queue_ctx = NULL; 2010 q->queue_hw_ctx = NULL; 2011 q->mq_map = NULL; 2012 2013 mutex_lock(&all_q_mutex); 2014 list_del_init(&q->all_q_node); 2015 mutex_unlock(&all_q_mutex); 2016 } 2017 2018 /* Basically redo blk_mq_init_queue with queue frozen */ 2019 static void blk_mq_queue_reinit(struct request_queue *q) 2020 { 2021 WARN_ON_ONCE(!q->mq_freeze_depth); 2022 2023 blk_mq_sysfs_unregister(q); 2024 2025 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 2026 2027 /* 2028 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2029 * we should change hctx numa_node according to new topology (this 2030 * involves free and re-allocate memory, worthy doing?) 2031 */ 2032 2033 blk_mq_map_swqueue(q); 2034 2035 blk_mq_sysfs_register(q); 2036 } 2037 2038 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2039 unsigned long action, void *hcpu) 2040 { 2041 struct request_queue *q; 2042 2043 /* 2044 * Before new mappings are established, hotadded cpu might already 2045 * start handling requests. This doesn't break anything as we map 2046 * offline CPUs to first hardware queue. We will re-init the queue 2047 * below to get optimal settings. 2048 */ 2049 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 2050 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 2051 return NOTIFY_OK; 2052 2053 mutex_lock(&all_q_mutex); 2054 2055 /* 2056 * We need to freeze and reinit all existing queues. Freezing 2057 * involves synchronous wait for an RCU grace period and doing it 2058 * one by one may take a long time. Start freezing all queues in 2059 * one swoop and then wait for the completions so that freezing can 2060 * take place in parallel. 2061 */ 2062 list_for_each_entry(q, &all_q_list, all_q_node) 2063 blk_mq_freeze_queue_start(q); 2064 list_for_each_entry(q, &all_q_list, all_q_node) 2065 blk_mq_freeze_queue_wait(q); 2066 2067 list_for_each_entry(q, &all_q_list, all_q_node) 2068 blk_mq_queue_reinit(q); 2069 2070 list_for_each_entry(q, &all_q_list, all_q_node) 2071 blk_mq_unfreeze_queue(q); 2072 2073 mutex_unlock(&all_q_mutex); 2074 return NOTIFY_OK; 2075 } 2076 2077 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2078 { 2079 int i; 2080 2081 for (i = 0; i < set->nr_hw_queues; i++) { 2082 set->tags[i] = blk_mq_init_rq_map(set, i); 2083 if (!set->tags[i]) 2084 goto out_unwind; 2085 } 2086 2087 return 0; 2088 2089 out_unwind: 2090 while (--i >= 0) 2091 blk_mq_free_rq_map(set, set->tags[i], i); 2092 2093 return -ENOMEM; 2094 } 2095 2096 /* 2097 * Allocate the request maps associated with this tag_set. Note that this 2098 * may reduce the depth asked for, if memory is tight. set->queue_depth 2099 * will be updated to reflect the allocated depth. 2100 */ 2101 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2102 { 2103 unsigned int depth; 2104 int err; 2105 2106 depth = set->queue_depth; 2107 do { 2108 err = __blk_mq_alloc_rq_maps(set); 2109 if (!err) 2110 break; 2111 2112 set->queue_depth >>= 1; 2113 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2114 err = -ENOMEM; 2115 break; 2116 } 2117 } while (set->queue_depth); 2118 2119 if (!set->queue_depth || err) { 2120 pr_err("blk-mq: failed to allocate request map\n"); 2121 return -ENOMEM; 2122 } 2123 2124 if (depth != set->queue_depth) 2125 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2126 depth, set->queue_depth); 2127 2128 return 0; 2129 } 2130 2131 /* 2132 * Alloc a tag set to be associated with one or more request queues. 2133 * May fail with EINVAL for various error conditions. May adjust the 2134 * requested depth down, if if it too large. In that case, the set 2135 * value will be stored in set->queue_depth. 2136 */ 2137 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2138 { 2139 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2140 2141 if (!set->nr_hw_queues) 2142 return -EINVAL; 2143 if (!set->queue_depth) 2144 return -EINVAL; 2145 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2146 return -EINVAL; 2147 2148 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue) 2149 return -EINVAL; 2150 2151 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2152 pr_info("blk-mq: reduced tag depth to %u\n", 2153 BLK_MQ_MAX_DEPTH); 2154 set->queue_depth = BLK_MQ_MAX_DEPTH; 2155 } 2156 2157 /* 2158 * If a crashdump is active, then we are potentially in a very 2159 * memory constrained environment. Limit us to 1 queue and 2160 * 64 tags to prevent using too much memory. 2161 */ 2162 if (is_kdump_kernel()) { 2163 set->nr_hw_queues = 1; 2164 set->queue_depth = min(64U, set->queue_depth); 2165 } 2166 2167 set->tags = kmalloc_node(set->nr_hw_queues * 2168 sizeof(struct blk_mq_tags *), 2169 GFP_KERNEL, set->numa_node); 2170 if (!set->tags) 2171 return -ENOMEM; 2172 2173 if (blk_mq_alloc_rq_maps(set)) 2174 goto enomem; 2175 2176 mutex_init(&set->tag_list_lock); 2177 INIT_LIST_HEAD(&set->tag_list); 2178 2179 return 0; 2180 enomem: 2181 kfree(set->tags); 2182 set->tags = NULL; 2183 return -ENOMEM; 2184 } 2185 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2186 2187 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2188 { 2189 int i; 2190 2191 for (i = 0; i < set->nr_hw_queues; i++) { 2192 if (set->tags[i]) 2193 blk_mq_free_rq_map(set, set->tags[i], i); 2194 } 2195 2196 kfree(set->tags); 2197 set->tags = NULL; 2198 } 2199 EXPORT_SYMBOL(blk_mq_free_tag_set); 2200 2201 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2202 { 2203 struct blk_mq_tag_set *set = q->tag_set; 2204 struct blk_mq_hw_ctx *hctx; 2205 int i, ret; 2206 2207 if (!set || nr > set->queue_depth) 2208 return -EINVAL; 2209 2210 ret = 0; 2211 queue_for_each_hw_ctx(q, hctx, i) { 2212 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2213 if (ret) 2214 break; 2215 } 2216 2217 if (!ret) 2218 q->nr_requests = nr; 2219 2220 return ret; 2221 } 2222 2223 void blk_mq_disable_hotplug(void) 2224 { 2225 mutex_lock(&all_q_mutex); 2226 } 2227 2228 void blk_mq_enable_hotplug(void) 2229 { 2230 mutex_unlock(&all_q_mutex); 2231 } 2232 2233 static int __init blk_mq_init(void) 2234 { 2235 blk_mq_cpu_init(); 2236 2237 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2238 2239 return 0; 2240 } 2241 subsys_initcall(blk_mq_init); 2242