1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 47 48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 49 static void blk_mq_request_bypass_insert(struct request *rq, 50 blk_insert_t flags); 51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 52 struct list_head *list); 53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 54 struct io_comp_batch *iob, unsigned int flags); 55 56 /* 57 * Check if any of the ctx, dispatch list or elevator 58 * have pending work in this hardware queue. 59 */ 60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 61 { 62 return !list_empty_careful(&hctx->dispatch) || 63 sbitmap_any_bit_set(&hctx->ctx_map) || 64 blk_mq_sched_has_work(hctx); 65 } 66 67 /* 68 * Mark this ctx as having pending work in this hardware queue 69 */ 70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 71 struct blk_mq_ctx *ctx) 72 { 73 const int bit = ctx->index_hw[hctx->type]; 74 75 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 76 sbitmap_set_bit(&hctx->ctx_map, bit); 77 } 78 79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 80 struct blk_mq_ctx *ctx) 81 { 82 const int bit = ctx->index_hw[hctx->type]; 83 84 sbitmap_clear_bit(&hctx->ctx_map, bit); 85 } 86 87 struct mq_inflight { 88 struct block_device *part; 89 unsigned int inflight[2]; 90 }; 91 92 static bool blk_mq_check_inflight(struct request *rq, void *priv) 93 { 94 struct mq_inflight *mi = priv; 95 96 if (rq->rq_flags & RQF_IO_STAT && 97 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 99 mi->inflight[rq_data_dir(rq)]++; 100 101 return true; 102 } 103 104 unsigned int blk_mq_in_flight(struct request_queue *q, 105 struct block_device *part) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 110 111 return mi.inflight[0] + mi.inflight[1]; 112 } 113 114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 115 unsigned int inflight[2]) 116 { 117 struct mq_inflight mi = { .part = part }; 118 119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 120 inflight[0] = mi.inflight[0]; 121 inflight[1] = mi.inflight[1]; 122 } 123 124 #ifdef CONFIG_LOCKDEP 125 static bool blk_freeze_set_owner(struct request_queue *q, 126 struct task_struct *owner) 127 { 128 if (!owner) 129 return false; 130 131 if (!q->mq_freeze_depth) { 132 q->mq_freeze_owner = owner; 133 q->mq_freeze_owner_depth = 1; 134 return true; 135 } 136 137 if (owner == q->mq_freeze_owner) 138 q->mq_freeze_owner_depth += 1; 139 return false; 140 } 141 142 /* verify the last unfreeze in owner context */ 143 static bool blk_unfreeze_check_owner(struct request_queue *q) 144 { 145 if (!q->mq_freeze_owner) 146 return false; 147 if (q->mq_freeze_owner != current) 148 return false; 149 if (--q->mq_freeze_owner_depth == 0) { 150 q->mq_freeze_owner = NULL; 151 return true; 152 } 153 return false; 154 } 155 156 #else 157 158 static bool blk_freeze_set_owner(struct request_queue *q, 159 struct task_struct *owner) 160 { 161 return false; 162 } 163 164 static bool blk_unfreeze_check_owner(struct request_queue *q) 165 { 166 return false; 167 } 168 #endif 169 170 bool __blk_freeze_queue_start(struct request_queue *q, 171 struct task_struct *owner) 172 { 173 bool freeze; 174 175 mutex_lock(&q->mq_freeze_lock); 176 freeze = blk_freeze_set_owner(q, owner); 177 if (++q->mq_freeze_depth == 1) { 178 percpu_ref_kill(&q->q_usage_counter); 179 mutex_unlock(&q->mq_freeze_lock); 180 if (queue_is_mq(q)) 181 blk_mq_run_hw_queues(q, false); 182 } else { 183 mutex_unlock(&q->mq_freeze_lock); 184 } 185 186 return freeze; 187 } 188 189 void blk_freeze_queue_start(struct request_queue *q) 190 { 191 if (__blk_freeze_queue_start(q, current)) 192 blk_freeze_acquire_lock(q, false, false); 193 } 194 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 195 196 void blk_mq_freeze_queue_wait(struct request_queue *q) 197 { 198 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 199 } 200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 201 202 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 203 unsigned long timeout) 204 { 205 return wait_event_timeout(q->mq_freeze_wq, 206 percpu_ref_is_zero(&q->q_usage_counter), 207 timeout); 208 } 209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 210 211 void blk_mq_freeze_queue(struct request_queue *q) 212 { 213 blk_freeze_queue_start(q); 214 blk_mq_freeze_queue_wait(q); 215 } 216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 217 218 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 219 { 220 bool unfreeze; 221 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 unfreeze = blk_unfreeze_check_owner(q); 232 mutex_unlock(&q->mq_freeze_lock); 233 234 return unfreeze; 235 } 236 237 void blk_mq_unfreeze_queue(struct request_queue *q) 238 { 239 if (__blk_mq_unfreeze_queue(q, false)) 240 blk_unfreeze_release_lock(q, false, false); 241 } 242 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 243 244 /* 245 * non_owner variant of blk_freeze_queue_start 246 * 247 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 248 * by the same task. This is fragile and should not be used if at all 249 * possible. 250 */ 251 void blk_freeze_queue_start_non_owner(struct request_queue *q) 252 { 253 __blk_freeze_queue_start(q, NULL); 254 } 255 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 256 257 /* non_owner variant of blk_mq_unfreeze_queue */ 258 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 259 { 260 __blk_mq_unfreeze_queue(q, false); 261 } 262 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 263 264 /* 265 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 266 * mpt3sas driver such that this function can be removed. 267 */ 268 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 269 { 270 unsigned long flags; 271 272 spin_lock_irqsave(&q->queue_lock, flags); 273 if (!q->quiesce_depth++) 274 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 275 spin_unlock_irqrestore(&q->queue_lock, flags); 276 } 277 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 278 279 /** 280 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 281 * @set: tag_set to wait on 282 * 283 * Note: it is driver's responsibility for making sure that quiesce has 284 * been started on or more of the request_queues of the tag_set. This 285 * function only waits for the quiesce on those request_queues that had 286 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 287 */ 288 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 289 { 290 if (set->flags & BLK_MQ_F_BLOCKING) 291 synchronize_srcu(set->srcu); 292 else 293 synchronize_rcu(); 294 } 295 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 296 297 /** 298 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 299 * @q: request queue. 300 * 301 * Note: this function does not prevent that the struct request end_io() 302 * callback function is invoked. Once this function is returned, we make 303 * sure no dispatch can happen until the queue is unquiesced via 304 * blk_mq_unquiesce_queue(). 305 */ 306 void blk_mq_quiesce_queue(struct request_queue *q) 307 { 308 blk_mq_quiesce_queue_nowait(q); 309 /* nothing to wait for non-mq queues */ 310 if (queue_is_mq(q)) 311 blk_mq_wait_quiesce_done(q->tag_set); 312 } 313 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 314 315 /* 316 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 317 * @q: request queue. 318 * 319 * This function recovers queue into the state before quiescing 320 * which is done by blk_mq_quiesce_queue. 321 */ 322 void blk_mq_unquiesce_queue(struct request_queue *q) 323 { 324 unsigned long flags; 325 bool run_queue = false; 326 327 spin_lock_irqsave(&q->queue_lock, flags); 328 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 329 ; 330 } else if (!--q->quiesce_depth) { 331 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 332 run_queue = true; 333 } 334 spin_unlock_irqrestore(&q->queue_lock, flags); 335 336 /* dispatch requests which are inserted during quiescing */ 337 if (run_queue) 338 blk_mq_run_hw_queues(q, true); 339 } 340 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 341 342 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 343 { 344 struct request_queue *q; 345 346 mutex_lock(&set->tag_list_lock); 347 list_for_each_entry(q, &set->tag_list, tag_set_list) { 348 if (!blk_queue_skip_tagset_quiesce(q)) 349 blk_mq_quiesce_queue_nowait(q); 350 } 351 mutex_unlock(&set->tag_list_lock); 352 353 blk_mq_wait_quiesce_done(set); 354 } 355 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 356 357 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 358 { 359 struct request_queue *q; 360 361 mutex_lock(&set->tag_list_lock); 362 list_for_each_entry(q, &set->tag_list, tag_set_list) { 363 if (!blk_queue_skip_tagset_quiesce(q)) 364 blk_mq_unquiesce_queue(q); 365 } 366 mutex_unlock(&set->tag_list_lock); 367 } 368 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 369 370 void blk_mq_wake_waiters(struct request_queue *q) 371 { 372 struct blk_mq_hw_ctx *hctx; 373 unsigned long i; 374 375 queue_for_each_hw_ctx(q, hctx, i) 376 if (blk_mq_hw_queue_mapped(hctx)) 377 blk_mq_tag_wakeup_all(hctx->tags, true); 378 } 379 380 void blk_rq_init(struct request_queue *q, struct request *rq) 381 { 382 memset(rq, 0, sizeof(*rq)); 383 384 INIT_LIST_HEAD(&rq->queuelist); 385 rq->q = q; 386 rq->__sector = (sector_t) -1; 387 INIT_HLIST_NODE(&rq->hash); 388 RB_CLEAR_NODE(&rq->rb_node); 389 rq->tag = BLK_MQ_NO_TAG; 390 rq->internal_tag = BLK_MQ_NO_TAG; 391 rq->start_time_ns = blk_time_get_ns(); 392 blk_crypto_rq_set_defaults(rq); 393 } 394 EXPORT_SYMBOL(blk_rq_init); 395 396 /* Set start and alloc time when the allocated request is actually used */ 397 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 398 { 399 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 400 if (blk_queue_rq_alloc_time(rq->q)) 401 rq->alloc_time_ns = alloc_time_ns; 402 else 403 rq->alloc_time_ns = 0; 404 #endif 405 } 406 407 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 408 struct blk_mq_tags *tags, unsigned int tag) 409 { 410 struct blk_mq_ctx *ctx = data->ctx; 411 struct blk_mq_hw_ctx *hctx = data->hctx; 412 struct request_queue *q = data->q; 413 struct request *rq = tags->static_rqs[tag]; 414 415 rq->q = q; 416 rq->mq_ctx = ctx; 417 rq->mq_hctx = hctx; 418 rq->cmd_flags = data->cmd_flags; 419 420 if (data->flags & BLK_MQ_REQ_PM) 421 data->rq_flags |= RQF_PM; 422 rq->rq_flags = data->rq_flags; 423 424 if (data->rq_flags & RQF_SCHED_TAGS) { 425 rq->tag = BLK_MQ_NO_TAG; 426 rq->internal_tag = tag; 427 } else { 428 rq->tag = tag; 429 rq->internal_tag = BLK_MQ_NO_TAG; 430 } 431 rq->timeout = 0; 432 433 rq->part = NULL; 434 rq->io_start_time_ns = 0; 435 rq->stats_sectors = 0; 436 rq->nr_phys_segments = 0; 437 rq->nr_integrity_segments = 0; 438 rq->end_io = NULL; 439 rq->end_io_data = NULL; 440 441 blk_crypto_rq_set_defaults(rq); 442 INIT_LIST_HEAD(&rq->queuelist); 443 /* tag was already set */ 444 WRITE_ONCE(rq->deadline, 0); 445 req_ref_set(rq, 1); 446 447 if (rq->rq_flags & RQF_USE_SCHED) { 448 struct elevator_queue *e = data->q->elevator; 449 450 INIT_HLIST_NODE(&rq->hash); 451 RB_CLEAR_NODE(&rq->rb_node); 452 453 if (e->type->ops.prepare_request) 454 e->type->ops.prepare_request(rq); 455 } 456 457 return rq; 458 } 459 460 static inline struct request * 461 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 462 { 463 unsigned int tag, tag_offset; 464 struct blk_mq_tags *tags; 465 struct request *rq; 466 unsigned long tag_mask; 467 int i, nr = 0; 468 469 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 470 if (unlikely(!tag_mask)) 471 return NULL; 472 473 tags = blk_mq_tags_from_data(data); 474 for (i = 0; tag_mask; i++) { 475 if (!(tag_mask & (1UL << i))) 476 continue; 477 tag = tag_offset + i; 478 prefetch(tags->static_rqs[tag]); 479 tag_mask &= ~(1UL << i); 480 rq = blk_mq_rq_ctx_init(data, tags, tag); 481 rq_list_add_head(data->cached_rqs, rq); 482 nr++; 483 } 484 if (!(data->rq_flags & RQF_SCHED_TAGS)) 485 blk_mq_add_active_requests(data->hctx, nr); 486 /* caller already holds a reference, add for remainder */ 487 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 488 data->nr_tags -= nr; 489 490 return rq_list_pop(data->cached_rqs); 491 } 492 493 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 494 { 495 struct request_queue *q = data->q; 496 u64 alloc_time_ns = 0; 497 struct request *rq; 498 unsigned int tag; 499 500 /* alloc_time includes depth and tag waits */ 501 if (blk_queue_rq_alloc_time(q)) 502 alloc_time_ns = blk_time_get_ns(); 503 504 if (data->cmd_flags & REQ_NOWAIT) 505 data->flags |= BLK_MQ_REQ_NOWAIT; 506 507 retry: 508 data->ctx = blk_mq_get_ctx(q); 509 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 510 511 if (q->elevator) { 512 /* 513 * All requests use scheduler tags when an I/O scheduler is 514 * enabled for the queue. 515 */ 516 data->rq_flags |= RQF_SCHED_TAGS; 517 518 /* 519 * Flush/passthrough requests are special and go directly to the 520 * dispatch list. 521 */ 522 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 523 !blk_op_is_passthrough(data->cmd_flags)) { 524 struct elevator_mq_ops *ops = &q->elevator->type->ops; 525 526 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 527 528 data->rq_flags |= RQF_USE_SCHED; 529 if (ops->limit_depth) 530 ops->limit_depth(data->cmd_flags, data); 531 } 532 } else { 533 blk_mq_tag_busy(data->hctx); 534 } 535 536 if (data->flags & BLK_MQ_REQ_RESERVED) 537 data->rq_flags |= RQF_RESV; 538 539 /* 540 * Try batched alloc if we want more than 1 tag. 541 */ 542 if (data->nr_tags > 1) { 543 rq = __blk_mq_alloc_requests_batch(data); 544 if (rq) { 545 blk_mq_rq_time_init(rq, alloc_time_ns); 546 return rq; 547 } 548 data->nr_tags = 1; 549 } 550 551 /* 552 * Waiting allocations only fail because of an inactive hctx. In that 553 * case just retry the hctx assignment and tag allocation as CPU hotplug 554 * should have migrated us to an online CPU by now. 555 */ 556 tag = blk_mq_get_tag(data); 557 if (tag == BLK_MQ_NO_TAG) { 558 if (data->flags & BLK_MQ_REQ_NOWAIT) 559 return NULL; 560 /* 561 * Give up the CPU and sleep for a random short time to 562 * ensure that thread using a realtime scheduling class 563 * are migrated off the CPU, and thus off the hctx that 564 * is going away. 565 */ 566 msleep(3); 567 goto retry; 568 } 569 570 if (!(data->rq_flags & RQF_SCHED_TAGS)) 571 blk_mq_inc_active_requests(data->hctx); 572 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 573 blk_mq_rq_time_init(rq, alloc_time_ns); 574 return rq; 575 } 576 577 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 578 struct blk_plug *plug, 579 blk_opf_t opf, 580 blk_mq_req_flags_t flags) 581 { 582 struct blk_mq_alloc_data data = { 583 .q = q, 584 .flags = flags, 585 .cmd_flags = opf, 586 .nr_tags = plug->nr_ios, 587 .cached_rqs = &plug->cached_rqs, 588 }; 589 struct request *rq; 590 591 if (blk_queue_enter(q, flags)) 592 return NULL; 593 594 plug->nr_ios = 1; 595 596 rq = __blk_mq_alloc_requests(&data); 597 if (unlikely(!rq)) 598 blk_queue_exit(q); 599 return rq; 600 } 601 602 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 603 blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct blk_plug *plug = current->plug; 607 struct request *rq; 608 609 if (!plug) 610 return NULL; 611 612 if (rq_list_empty(&plug->cached_rqs)) { 613 if (plug->nr_ios == 1) 614 return NULL; 615 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 616 if (!rq) 617 return NULL; 618 } else { 619 rq = rq_list_peek(&plug->cached_rqs); 620 if (!rq || rq->q != q) 621 return NULL; 622 623 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 624 return NULL; 625 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 626 return NULL; 627 628 rq_list_pop(&plug->cached_rqs); 629 blk_mq_rq_time_init(rq, blk_time_get_ns()); 630 } 631 632 rq->cmd_flags = opf; 633 INIT_LIST_HEAD(&rq->queuelist); 634 return rq; 635 } 636 637 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 638 blk_mq_req_flags_t flags) 639 { 640 struct request *rq; 641 642 rq = blk_mq_alloc_cached_request(q, opf, flags); 643 if (!rq) { 644 struct blk_mq_alloc_data data = { 645 .q = q, 646 .flags = flags, 647 .cmd_flags = opf, 648 .nr_tags = 1, 649 }; 650 int ret; 651 652 ret = blk_queue_enter(q, flags); 653 if (ret) 654 return ERR_PTR(ret); 655 656 rq = __blk_mq_alloc_requests(&data); 657 if (!rq) 658 goto out_queue_exit; 659 } 660 rq->__data_len = 0; 661 rq->__sector = (sector_t) -1; 662 rq->bio = rq->biotail = NULL; 663 return rq; 664 out_queue_exit: 665 blk_queue_exit(q); 666 return ERR_PTR(-EWOULDBLOCK); 667 } 668 EXPORT_SYMBOL(blk_mq_alloc_request); 669 670 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 671 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 672 { 673 struct blk_mq_alloc_data data = { 674 .q = q, 675 .flags = flags, 676 .cmd_flags = opf, 677 .nr_tags = 1, 678 }; 679 u64 alloc_time_ns = 0; 680 struct request *rq; 681 unsigned int cpu; 682 unsigned int tag; 683 int ret; 684 685 /* alloc_time includes depth and tag waits */ 686 if (blk_queue_rq_alloc_time(q)) 687 alloc_time_ns = blk_time_get_ns(); 688 689 /* 690 * If the tag allocator sleeps we could get an allocation for a 691 * different hardware context. No need to complicate the low level 692 * allocator for this for the rare use case of a command tied to 693 * a specific queue. 694 */ 695 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 696 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 697 return ERR_PTR(-EINVAL); 698 699 if (hctx_idx >= q->nr_hw_queues) 700 return ERR_PTR(-EIO); 701 702 ret = blk_queue_enter(q, flags); 703 if (ret) 704 return ERR_PTR(ret); 705 706 /* 707 * Check if the hardware context is actually mapped to anything. 708 * If not tell the caller that it should skip this queue. 709 */ 710 ret = -EXDEV; 711 data.hctx = xa_load(&q->hctx_table, hctx_idx); 712 if (!blk_mq_hw_queue_mapped(data.hctx)) 713 goto out_queue_exit; 714 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 715 if (cpu >= nr_cpu_ids) 716 goto out_queue_exit; 717 data.ctx = __blk_mq_get_ctx(q, cpu); 718 719 if (q->elevator) 720 data.rq_flags |= RQF_SCHED_TAGS; 721 else 722 blk_mq_tag_busy(data.hctx); 723 724 if (flags & BLK_MQ_REQ_RESERVED) 725 data.rq_flags |= RQF_RESV; 726 727 ret = -EWOULDBLOCK; 728 tag = blk_mq_get_tag(&data); 729 if (tag == BLK_MQ_NO_TAG) 730 goto out_queue_exit; 731 if (!(data.rq_flags & RQF_SCHED_TAGS)) 732 blk_mq_inc_active_requests(data.hctx); 733 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 734 blk_mq_rq_time_init(rq, alloc_time_ns); 735 rq->__data_len = 0; 736 rq->__sector = (sector_t) -1; 737 rq->bio = rq->biotail = NULL; 738 return rq; 739 740 out_queue_exit: 741 blk_queue_exit(q); 742 return ERR_PTR(ret); 743 } 744 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 745 746 static void blk_mq_finish_request(struct request *rq) 747 { 748 struct request_queue *q = rq->q; 749 750 blk_zone_finish_request(rq); 751 752 if (rq->rq_flags & RQF_USE_SCHED) { 753 q->elevator->type->ops.finish_request(rq); 754 /* 755 * For postflush request that may need to be 756 * completed twice, we should clear this flag 757 * to avoid double finish_request() on the rq. 758 */ 759 rq->rq_flags &= ~RQF_USE_SCHED; 760 } 761 } 762 763 static void __blk_mq_free_request(struct request *rq) 764 { 765 struct request_queue *q = rq->q; 766 struct blk_mq_ctx *ctx = rq->mq_ctx; 767 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 768 const int sched_tag = rq->internal_tag; 769 770 blk_crypto_free_request(rq); 771 blk_pm_mark_last_busy(rq); 772 rq->mq_hctx = NULL; 773 774 if (rq->tag != BLK_MQ_NO_TAG) { 775 blk_mq_dec_active_requests(hctx); 776 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 777 } 778 if (sched_tag != BLK_MQ_NO_TAG) 779 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 780 blk_mq_sched_restart(hctx); 781 blk_queue_exit(q); 782 } 783 784 void blk_mq_free_request(struct request *rq) 785 { 786 struct request_queue *q = rq->q; 787 788 blk_mq_finish_request(rq); 789 790 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 791 laptop_io_completion(q->disk->bdi); 792 793 rq_qos_done(q, rq); 794 795 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 796 if (req_ref_put_and_test(rq)) 797 __blk_mq_free_request(rq); 798 } 799 EXPORT_SYMBOL_GPL(blk_mq_free_request); 800 801 void blk_mq_free_plug_rqs(struct blk_plug *plug) 802 { 803 struct request *rq; 804 805 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 806 blk_mq_free_request(rq); 807 } 808 809 void blk_dump_rq_flags(struct request *rq, char *msg) 810 { 811 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 812 rq->q->disk ? rq->q->disk->disk_name : "?", 813 (__force unsigned long long) rq->cmd_flags); 814 815 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 816 (unsigned long long)blk_rq_pos(rq), 817 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 818 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 819 rq->bio, rq->biotail, blk_rq_bytes(rq)); 820 } 821 EXPORT_SYMBOL(blk_dump_rq_flags); 822 823 static void blk_account_io_completion(struct request *req, unsigned int bytes) 824 { 825 if (req->rq_flags & RQF_IO_STAT) { 826 const int sgrp = op_stat_group(req_op(req)); 827 828 part_stat_lock(); 829 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 830 part_stat_unlock(); 831 } 832 } 833 834 static void blk_print_req_error(struct request *req, blk_status_t status) 835 { 836 printk_ratelimited(KERN_ERR 837 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 838 "phys_seg %u prio class %u\n", 839 blk_status_to_str(status), 840 req->q->disk ? req->q->disk->disk_name : "?", 841 blk_rq_pos(req), (__force u32)req_op(req), 842 blk_op_str(req_op(req)), 843 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 844 req->nr_phys_segments, 845 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 846 } 847 848 /* 849 * Fully end IO on a request. Does not support partial completions, or 850 * errors. 851 */ 852 static void blk_complete_request(struct request *req) 853 { 854 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 855 int total_bytes = blk_rq_bytes(req); 856 struct bio *bio = req->bio; 857 858 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 859 860 if (!bio) 861 return; 862 863 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 864 blk_integrity_complete(req, total_bytes); 865 866 /* 867 * Upper layers may call blk_crypto_evict_key() anytime after the last 868 * bio_endio(). Therefore, the keyslot must be released before that. 869 */ 870 blk_crypto_rq_put_keyslot(req); 871 872 blk_account_io_completion(req, total_bytes); 873 874 do { 875 struct bio *next = bio->bi_next; 876 877 /* Completion has already been traced */ 878 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 879 880 blk_zone_update_request_bio(req, bio); 881 882 if (!is_flush) 883 bio_endio(bio); 884 bio = next; 885 } while (bio); 886 887 /* 888 * Reset counters so that the request stacking driver 889 * can find how many bytes remain in the request 890 * later. 891 */ 892 if (!req->end_io) { 893 req->bio = NULL; 894 req->__data_len = 0; 895 } 896 } 897 898 /** 899 * blk_update_request - Complete multiple bytes without completing the request 900 * @req: the request being processed 901 * @error: block status code 902 * @nr_bytes: number of bytes to complete for @req 903 * 904 * Description: 905 * Ends I/O on a number of bytes attached to @req, but doesn't complete 906 * the request structure even if @req doesn't have leftover. 907 * If @req has leftover, sets it up for the next range of segments. 908 * 909 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 910 * %false return from this function. 911 * 912 * Note: 913 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 914 * except in the consistency check at the end of this function. 915 * 916 * Return: 917 * %false - this request doesn't have any more data 918 * %true - this request has more data 919 **/ 920 bool blk_update_request(struct request *req, blk_status_t error, 921 unsigned int nr_bytes) 922 { 923 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 924 bool quiet = req->rq_flags & RQF_QUIET; 925 int total_bytes; 926 927 trace_block_rq_complete(req, error, nr_bytes); 928 929 if (!req->bio) 930 return false; 931 932 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 933 error == BLK_STS_OK) 934 blk_integrity_complete(req, nr_bytes); 935 936 /* 937 * Upper layers may call blk_crypto_evict_key() anytime after the last 938 * bio_endio(). Therefore, the keyslot must be released before that. 939 */ 940 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 941 __blk_crypto_rq_put_keyslot(req); 942 943 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 944 !test_bit(GD_DEAD, &req->q->disk->state)) { 945 blk_print_req_error(req, error); 946 trace_block_rq_error(req, error, nr_bytes); 947 } 948 949 blk_account_io_completion(req, nr_bytes); 950 951 total_bytes = 0; 952 while (req->bio) { 953 struct bio *bio = req->bio; 954 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 955 956 if (unlikely(error)) 957 bio->bi_status = error; 958 959 if (bio_bytes == bio->bi_iter.bi_size) { 960 req->bio = bio->bi_next; 961 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 962 /* 963 * Partial zone append completions cannot be supported 964 * as the BIO fragments may end up not being written 965 * sequentially. 966 */ 967 bio->bi_status = BLK_STS_IOERR; 968 } 969 970 /* Completion has already been traced */ 971 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 972 if (unlikely(quiet)) 973 bio_set_flag(bio, BIO_QUIET); 974 975 bio_advance(bio, bio_bytes); 976 977 /* Don't actually finish bio if it's part of flush sequence */ 978 if (!bio->bi_iter.bi_size) { 979 blk_zone_update_request_bio(req, bio); 980 if (!is_flush) 981 bio_endio(bio); 982 } 983 984 total_bytes += bio_bytes; 985 nr_bytes -= bio_bytes; 986 987 if (!nr_bytes) 988 break; 989 } 990 991 /* 992 * completely done 993 */ 994 if (!req->bio) { 995 /* 996 * Reset counters so that the request stacking driver 997 * can find how many bytes remain in the request 998 * later. 999 */ 1000 req->__data_len = 0; 1001 return false; 1002 } 1003 1004 req->__data_len -= total_bytes; 1005 1006 /* update sector only for requests with clear definition of sector */ 1007 if (!blk_rq_is_passthrough(req)) 1008 req->__sector += total_bytes >> 9; 1009 1010 /* mixed attributes always follow the first bio */ 1011 if (req->rq_flags & RQF_MIXED_MERGE) { 1012 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1013 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1014 } 1015 1016 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1017 /* 1018 * If total number of sectors is less than the first segment 1019 * size, something has gone terribly wrong. 1020 */ 1021 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1022 blk_dump_rq_flags(req, "request botched"); 1023 req->__data_len = blk_rq_cur_bytes(req); 1024 } 1025 1026 /* recalculate the number of segments */ 1027 req->nr_phys_segments = blk_recalc_rq_segments(req); 1028 } 1029 1030 return true; 1031 } 1032 EXPORT_SYMBOL_GPL(blk_update_request); 1033 1034 static inline void blk_account_io_done(struct request *req, u64 now) 1035 { 1036 trace_block_io_done(req); 1037 1038 /* 1039 * Account IO completion. flush_rq isn't accounted as a 1040 * normal IO on queueing nor completion. Accounting the 1041 * containing request is enough. 1042 */ 1043 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1044 const int sgrp = op_stat_group(req_op(req)); 1045 1046 part_stat_lock(); 1047 update_io_ticks(req->part, jiffies, true); 1048 part_stat_inc(req->part, ios[sgrp]); 1049 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1050 part_stat_local_dec(req->part, 1051 in_flight[op_is_write(req_op(req))]); 1052 part_stat_unlock(); 1053 } 1054 } 1055 1056 static inline bool blk_rq_passthrough_stats(struct request *req) 1057 { 1058 struct bio *bio = req->bio; 1059 1060 if (!blk_queue_passthrough_stat(req->q)) 1061 return false; 1062 1063 /* Requests without a bio do not transfer data. */ 1064 if (!bio) 1065 return false; 1066 1067 /* 1068 * Stats are accumulated in the bdev, so must have one attached to a 1069 * bio to track stats. Most drivers do not set the bdev for passthrough 1070 * requests, but nvme is one that will set it. 1071 */ 1072 if (!bio->bi_bdev) 1073 return false; 1074 1075 /* 1076 * We don't know what a passthrough command does, but we know the 1077 * payload size and data direction. Ensuring the size is aligned to the 1078 * block size filters out most commands with payloads that don't 1079 * represent sector access. 1080 */ 1081 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1082 return false; 1083 return true; 1084 } 1085 1086 static inline void blk_account_io_start(struct request *req) 1087 { 1088 trace_block_io_start(req); 1089 1090 if (!blk_queue_io_stat(req->q)) 1091 return; 1092 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1093 return; 1094 1095 req->rq_flags |= RQF_IO_STAT; 1096 req->start_time_ns = blk_time_get_ns(); 1097 1098 /* 1099 * All non-passthrough requests are created from a bio with one 1100 * exception: when a flush command that is part of a flush sequence 1101 * generated by the state machine in blk-flush.c is cloned onto the 1102 * lower device by dm-multipath we can get here without a bio. 1103 */ 1104 if (req->bio) 1105 req->part = req->bio->bi_bdev; 1106 else 1107 req->part = req->q->disk->part0; 1108 1109 part_stat_lock(); 1110 update_io_ticks(req->part, jiffies, false); 1111 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1112 part_stat_unlock(); 1113 } 1114 1115 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1116 { 1117 if (rq->rq_flags & RQF_STATS) 1118 blk_stat_add(rq, now); 1119 1120 blk_mq_sched_completed_request(rq, now); 1121 blk_account_io_done(rq, now); 1122 } 1123 1124 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1125 { 1126 if (blk_mq_need_time_stamp(rq)) 1127 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1128 1129 blk_mq_finish_request(rq); 1130 1131 if (rq->end_io) { 1132 rq_qos_done(rq->q, rq); 1133 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1134 blk_mq_free_request(rq); 1135 } else { 1136 blk_mq_free_request(rq); 1137 } 1138 } 1139 EXPORT_SYMBOL(__blk_mq_end_request); 1140 1141 void blk_mq_end_request(struct request *rq, blk_status_t error) 1142 { 1143 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1144 BUG(); 1145 __blk_mq_end_request(rq, error); 1146 } 1147 EXPORT_SYMBOL(blk_mq_end_request); 1148 1149 #define TAG_COMP_BATCH 32 1150 1151 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1152 int *tag_array, int nr_tags) 1153 { 1154 struct request_queue *q = hctx->queue; 1155 1156 blk_mq_sub_active_requests(hctx, nr_tags); 1157 1158 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1159 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1160 } 1161 1162 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1163 { 1164 int tags[TAG_COMP_BATCH], nr_tags = 0; 1165 struct blk_mq_hw_ctx *cur_hctx = NULL; 1166 struct request *rq; 1167 u64 now = 0; 1168 1169 if (iob->need_ts) 1170 now = blk_time_get_ns(); 1171 1172 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1173 prefetch(rq->bio); 1174 prefetch(rq->rq_next); 1175 1176 blk_complete_request(rq); 1177 if (iob->need_ts) 1178 __blk_mq_end_request_acct(rq, now); 1179 1180 blk_mq_finish_request(rq); 1181 1182 rq_qos_done(rq->q, rq); 1183 1184 /* 1185 * If end_io handler returns NONE, then it still has 1186 * ownership of the request. 1187 */ 1188 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1189 continue; 1190 1191 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1192 if (!req_ref_put_and_test(rq)) 1193 continue; 1194 1195 blk_crypto_free_request(rq); 1196 blk_pm_mark_last_busy(rq); 1197 1198 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1199 if (cur_hctx) 1200 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1201 nr_tags = 0; 1202 cur_hctx = rq->mq_hctx; 1203 } 1204 tags[nr_tags++] = rq->tag; 1205 } 1206 1207 if (nr_tags) 1208 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1209 } 1210 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1211 1212 static void blk_complete_reqs(struct llist_head *list) 1213 { 1214 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1215 struct request *rq, *next; 1216 1217 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1218 rq->q->mq_ops->complete(rq); 1219 } 1220 1221 static __latent_entropy void blk_done_softirq(void) 1222 { 1223 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1224 } 1225 1226 static int blk_softirq_cpu_dead(unsigned int cpu) 1227 { 1228 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1229 return 0; 1230 } 1231 1232 static void __blk_mq_complete_request_remote(void *data) 1233 { 1234 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1235 } 1236 1237 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1238 { 1239 int cpu = raw_smp_processor_id(); 1240 1241 if (!IS_ENABLED(CONFIG_SMP) || 1242 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1243 return false; 1244 /* 1245 * With force threaded interrupts enabled, raising softirq from an SMP 1246 * function call will always result in waking the ksoftirqd thread. 1247 * This is probably worse than completing the request on a different 1248 * cache domain. 1249 */ 1250 if (force_irqthreads()) 1251 return false; 1252 1253 /* same CPU or cache domain and capacity? Complete locally */ 1254 if (cpu == rq->mq_ctx->cpu || 1255 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1256 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1257 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1258 return false; 1259 1260 /* don't try to IPI to an offline CPU */ 1261 return cpu_online(rq->mq_ctx->cpu); 1262 } 1263 1264 static void blk_mq_complete_send_ipi(struct request *rq) 1265 { 1266 unsigned int cpu; 1267 1268 cpu = rq->mq_ctx->cpu; 1269 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1270 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1271 } 1272 1273 static void blk_mq_raise_softirq(struct request *rq) 1274 { 1275 struct llist_head *list; 1276 1277 preempt_disable(); 1278 list = this_cpu_ptr(&blk_cpu_done); 1279 if (llist_add(&rq->ipi_list, list)) 1280 raise_softirq(BLOCK_SOFTIRQ); 1281 preempt_enable(); 1282 } 1283 1284 bool blk_mq_complete_request_remote(struct request *rq) 1285 { 1286 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1287 1288 /* 1289 * For request which hctx has only one ctx mapping, 1290 * or a polled request, always complete locally, 1291 * it's pointless to redirect the completion. 1292 */ 1293 if ((rq->mq_hctx->nr_ctx == 1 && 1294 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1295 rq->cmd_flags & REQ_POLLED) 1296 return false; 1297 1298 if (blk_mq_complete_need_ipi(rq)) { 1299 blk_mq_complete_send_ipi(rq); 1300 return true; 1301 } 1302 1303 if (rq->q->nr_hw_queues == 1) { 1304 blk_mq_raise_softirq(rq); 1305 return true; 1306 } 1307 return false; 1308 } 1309 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1310 1311 /** 1312 * blk_mq_complete_request - end I/O on a request 1313 * @rq: the request being processed 1314 * 1315 * Description: 1316 * Complete a request by scheduling the ->complete_rq operation. 1317 **/ 1318 void blk_mq_complete_request(struct request *rq) 1319 { 1320 if (!blk_mq_complete_request_remote(rq)) 1321 rq->q->mq_ops->complete(rq); 1322 } 1323 EXPORT_SYMBOL(blk_mq_complete_request); 1324 1325 /** 1326 * blk_mq_start_request - Start processing a request 1327 * @rq: Pointer to request to be started 1328 * 1329 * Function used by device drivers to notify the block layer that a request 1330 * is going to be processed now, so blk layer can do proper initializations 1331 * such as starting the timeout timer. 1332 */ 1333 void blk_mq_start_request(struct request *rq) 1334 { 1335 struct request_queue *q = rq->q; 1336 1337 trace_block_rq_issue(rq); 1338 1339 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1340 !blk_rq_is_passthrough(rq)) { 1341 rq->io_start_time_ns = blk_time_get_ns(); 1342 rq->stats_sectors = blk_rq_sectors(rq); 1343 rq->rq_flags |= RQF_STATS; 1344 rq_qos_issue(q, rq); 1345 } 1346 1347 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1348 1349 blk_add_timer(rq); 1350 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1351 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1352 1353 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1354 blk_integrity_prepare(rq); 1355 1356 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1357 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1358 } 1359 EXPORT_SYMBOL(blk_mq_start_request); 1360 1361 /* 1362 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1363 * queues. This is important for md arrays to benefit from merging 1364 * requests. 1365 */ 1366 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1367 { 1368 if (plug->multiple_queues) 1369 return BLK_MAX_REQUEST_COUNT * 2; 1370 return BLK_MAX_REQUEST_COUNT; 1371 } 1372 1373 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1374 { 1375 struct request *last = rq_list_peek(&plug->mq_list); 1376 1377 if (!plug->rq_count) { 1378 trace_block_plug(rq->q); 1379 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1380 (!blk_queue_nomerges(rq->q) && 1381 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1382 blk_mq_flush_plug_list(plug, false); 1383 last = NULL; 1384 trace_block_plug(rq->q); 1385 } 1386 1387 if (!plug->multiple_queues && last && last->q != rq->q) 1388 plug->multiple_queues = true; 1389 /* 1390 * Any request allocated from sched tags can't be issued to 1391 * ->queue_rqs() directly 1392 */ 1393 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1394 plug->has_elevator = true; 1395 rq_list_add_tail(&plug->mq_list, rq); 1396 plug->rq_count++; 1397 } 1398 1399 /** 1400 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1401 * @rq: request to insert 1402 * @at_head: insert request at head or tail of queue 1403 * 1404 * Description: 1405 * Insert a fully prepared request at the back of the I/O scheduler queue 1406 * for execution. Don't wait for completion. 1407 * 1408 * Note: 1409 * This function will invoke @done directly if the queue is dead. 1410 */ 1411 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1412 { 1413 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1414 1415 WARN_ON(irqs_disabled()); 1416 WARN_ON(!blk_rq_is_passthrough(rq)); 1417 1418 blk_account_io_start(rq); 1419 1420 if (current->plug && !at_head) { 1421 blk_add_rq_to_plug(current->plug, rq); 1422 return; 1423 } 1424 1425 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1426 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1427 } 1428 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1429 1430 struct blk_rq_wait { 1431 struct completion done; 1432 blk_status_t ret; 1433 }; 1434 1435 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1436 { 1437 struct blk_rq_wait *wait = rq->end_io_data; 1438 1439 wait->ret = ret; 1440 complete(&wait->done); 1441 return RQ_END_IO_NONE; 1442 } 1443 1444 bool blk_rq_is_poll(struct request *rq) 1445 { 1446 if (!rq->mq_hctx) 1447 return false; 1448 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1449 return false; 1450 return true; 1451 } 1452 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1453 1454 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1455 { 1456 do { 1457 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1458 cond_resched(); 1459 } while (!completion_done(wait)); 1460 } 1461 1462 /** 1463 * blk_execute_rq - insert a request into queue for execution 1464 * @rq: request to insert 1465 * @at_head: insert request at head or tail of queue 1466 * 1467 * Description: 1468 * Insert a fully prepared request at the back of the I/O scheduler queue 1469 * for execution and wait for completion. 1470 * Return: The blk_status_t result provided to blk_mq_end_request(). 1471 */ 1472 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1473 { 1474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1475 struct blk_rq_wait wait = { 1476 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1477 }; 1478 1479 WARN_ON(irqs_disabled()); 1480 WARN_ON(!blk_rq_is_passthrough(rq)); 1481 1482 rq->end_io_data = &wait; 1483 rq->end_io = blk_end_sync_rq; 1484 1485 blk_account_io_start(rq); 1486 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1487 blk_mq_run_hw_queue(hctx, false); 1488 1489 if (blk_rq_is_poll(rq)) 1490 blk_rq_poll_completion(rq, &wait.done); 1491 else 1492 blk_wait_io(&wait.done); 1493 1494 return wait.ret; 1495 } 1496 EXPORT_SYMBOL(blk_execute_rq); 1497 1498 static void __blk_mq_requeue_request(struct request *rq) 1499 { 1500 struct request_queue *q = rq->q; 1501 1502 blk_mq_put_driver_tag(rq); 1503 1504 trace_block_rq_requeue(rq); 1505 rq_qos_requeue(q, rq); 1506 1507 if (blk_mq_request_started(rq)) { 1508 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1509 rq->rq_flags &= ~RQF_TIMED_OUT; 1510 } 1511 } 1512 1513 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1514 { 1515 struct request_queue *q = rq->q; 1516 unsigned long flags; 1517 1518 __blk_mq_requeue_request(rq); 1519 1520 /* this request will be re-inserted to io scheduler queue */ 1521 blk_mq_sched_requeue_request(rq); 1522 1523 spin_lock_irqsave(&q->requeue_lock, flags); 1524 list_add_tail(&rq->queuelist, &q->requeue_list); 1525 spin_unlock_irqrestore(&q->requeue_lock, flags); 1526 1527 if (kick_requeue_list) 1528 blk_mq_kick_requeue_list(q); 1529 } 1530 EXPORT_SYMBOL(blk_mq_requeue_request); 1531 1532 static void blk_mq_requeue_work(struct work_struct *work) 1533 { 1534 struct request_queue *q = 1535 container_of(work, struct request_queue, requeue_work.work); 1536 LIST_HEAD(rq_list); 1537 LIST_HEAD(flush_list); 1538 struct request *rq; 1539 1540 spin_lock_irq(&q->requeue_lock); 1541 list_splice_init(&q->requeue_list, &rq_list); 1542 list_splice_init(&q->flush_list, &flush_list); 1543 spin_unlock_irq(&q->requeue_lock); 1544 1545 while (!list_empty(&rq_list)) { 1546 rq = list_entry(rq_list.next, struct request, queuelist); 1547 list_del_init(&rq->queuelist); 1548 /* 1549 * If RQF_DONTPREP is set, the request has been started by the 1550 * driver already and might have driver-specific data allocated 1551 * already. Insert it into the hctx dispatch list to avoid 1552 * block layer merges for the request. 1553 */ 1554 if (rq->rq_flags & RQF_DONTPREP) 1555 blk_mq_request_bypass_insert(rq, 0); 1556 else 1557 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1558 } 1559 1560 while (!list_empty(&flush_list)) { 1561 rq = list_entry(flush_list.next, struct request, queuelist); 1562 list_del_init(&rq->queuelist); 1563 blk_mq_insert_request(rq, 0); 1564 } 1565 1566 blk_mq_run_hw_queues(q, false); 1567 } 1568 1569 void blk_mq_kick_requeue_list(struct request_queue *q) 1570 { 1571 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1572 } 1573 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1574 1575 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1576 unsigned long msecs) 1577 { 1578 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1579 msecs_to_jiffies(msecs)); 1580 } 1581 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1582 1583 static bool blk_is_flush_data_rq(struct request *rq) 1584 { 1585 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1586 } 1587 1588 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1589 { 1590 /* 1591 * If we find a request that isn't idle we know the queue is busy 1592 * as it's checked in the iter. 1593 * Return false to stop the iteration. 1594 * 1595 * In case of queue quiesce, if one flush data request is completed, 1596 * don't count it as inflight given the flush sequence is suspended, 1597 * and the original flush data request is invisible to driver, just 1598 * like other pending requests because of quiesce 1599 */ 1600 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1601 blk_is_flush_data_rq(rq) && 1602 blk_mq_request_completed(rq))) { 1603 bool *busy = priv; 1604 1605 *busy = true; 1606 return false; 1607 } 1608 1609 return true; 1610 } 1611 1612 bool blk_mq_queue_inflight(struct request_queue *q) 1613 { 1614 bool busy = false; 1615 1616 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1617 return busy; 1618 } 1619 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1620 1621 static void blk_mq_rq_timed_out(struct request *req) 1622 { 1623 req->rq_flags |= RQF_TIMED_OUT; 1624 if (req->q->mq_ops->timeout) { 1625 enum blk_eh_timer_return ret; 1626 1627 ret = req->q->mq_ops->timeout(req); 1628 if (ret == BLK_EH_DONE) 1629 return; 1630 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1631 } 1632 1633 blk_add_timer(req); 1634 } 1635 1636 struct blk_expired_data { 1637 bool has_timedout_rq; 1638 unsigned long next; 1639 unsigned long timeout_start; 1640 }; 1641 1642 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1643 { 1644 unsigned long deadline; 1645 1646 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1647 return false; 1648 if (rq->rq_flags & RQF_TIMED_OUT) 1649 return false; 1650 1651 deadline = READ_ONCE(rq->deadline); 1652 if (time_after_eq(expired->timeout_start, deadline)) 1653 return true; 1654 1655 if (expired->next == 0) 1656 expired->next = deadline; 1657 else if (time_after(expired->next, deadline)) 1658 expired->next = deadline; 1659 return false; 1660 } 1661 1662 void blk_mq_put_rq_ref(struct request *rq) 1663 { 1664 if (is_flush_rq(rq)) { 1665 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1666 blk_mq_free_request(rq); 1667 } else if (req_ref_put_and_test(rq)) { 1668 __blk_mq_free_request(rq); 1669 } 1670 } 1671 1672 static bool blk_mq_check_expired(struct request *rq, void *priv) 1673 { 1674 struct blk_expired_data *expired = priv; 1675 1676 /* 1677 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1678 * be reallocated underneath the timeout handler's processing, then 1679 * the expire check is reliable. If the request is not expired, then 1680 * it was completed and reallocated as a new request after returning 1681 * from blk_mq_check_expired(). 1682 */ 1683 if (blk_mq_req_expired(rq, expired)) { 1684 expired->has_timedout_rq = true; 1685 return false; 1686 } 1687 return true; 1688 } 1689 1690 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1691 { 1692 struct blk_expired_data *expired = priv; 1693 1694 if (blk_mq_req_expired(rq, expired)) 1695 blk_mq_rq_timed_out(rq); 1696 return true; 1697 } 1698 1699 static void blk_mq_timeout_work(struct work_struct *work) 1700 { 1701 struct request_queue *q = 1702 container_of(work, struct request_queue, timeout_work); 1703 struct blk_expired_data expired = { 1704 .timeout_start = jiffies, 1705 }; 1706 struct blk_mq_hw_ctx *hctx; 1707 unsigned long i; 1708 1709 /* A deadlock might occur if a request is stuck requiring a 1710 * timeout at the same time a queue freeze is waiting 1711 * completion, since the timeout code would not be able to 1712 * acquire the queue reference here. 1713 * 1714 * That's why we don't use blk_queue_enter here; instead, we use 1715 * percpu_ref_tryget directly, because we need to be able to 1716 * obtain a reference even in the short window between the queue 1717 * starting to freeze, by dropping the first reference in 1718 * blk_freeze_queue_start, and the moment the last request is 1719 * consumed, marked by the instant q_usage_counter reaches 1720 * zero. 1721 */ 1722 if (!percpu_ref_tryget(&q->q_usage_counter)) 1723 return; 1724 1725 /* check if there is any timed-out request */ 1726 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1727 if (expired.has_timedout_rq) { 1728 /* 1729 * Before walking tags, we must ensure any submit started 1730 * before the current time has finished. Since the submit 1731 * uses srcu or rcu, wait for a synchronization point to 1732 * ensure all running submits have finished 1733 */ 1734 blk_mq_wait_quiesce_done(q->tag_set); 1735 1736 expired.next = 0; 1737 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1738 } 1739 1740 if (expired.next != 0) { 1741 mod_timer(&q->timeout, expired.next); 1742 } else { 1743 /* 1744 * Request timeouts are handled as a forward rolling timer. If 1745 * we end up here it means that no requests are pending and 1746 * also that no request has been pending for a while. Mark 1747 * each hctx as idle. 1748 */ 1749 queue_for_each_hw_ctx(q, hctx, i) { 1750 /* the hctx may be unmapped, so check it here */ 1751 if (blk_mq_hw_queue_mapped(hctx)) 1752 blk_mq_tag_idle(hctx); 1753 } 1754 } 1755 blk_queue_exit(q); 1756 } 1757 1758 struct flush_busy_ctx_data { 1759 struct blk_mq_hw_ctx *hctx; 1760 struct list_head *list; 1761 }; 1762 1763 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1764 { 1765 struct flush_busy_ctx_data *flush_data = data; 1766 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1767 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1768 enum hctx_type type = hctx->type; 1769 1770 spin_lock(&ctx->lock); 1771 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1772 sbitmap_clear_bit(sb, bitnr); 1773 spin_unlock(&ctx->lock); 1774 return true; 1775 } 1776 1777 /* 1778 * Process software queues that have been marked busy, splicing them 1779 * to the for-dispatch 1780 */ 1781 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1782 { 1783 struct flush_busy_ctx_data data = { 1784 .hctx = hctx, 1785 .list = list, 1786 }; 1787 1788 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1789 } 1790 1791 struct dispatch_rq_data { 1792 struct blk_mq_hw_ctx *hctx; 1793 struct request *rq; 1794 }; 1795 1796 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1797 void *data) 1798 { 1799 struct dispatch_rq_data *dispatch_data = data; 1800 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1801 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1802 enum hctx_type type = hctx->type; 1803 1804 spin_lock(&ctx->lock); 1805 if (!list_empty(&ctx->rq_lists[type])) { 1806 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1807 list_del_init(&dispatch_data->rq->queuelist); 1808 if (list_empty(&ctx->rq_lists[type])) 1809 sbitmap_clear_bit(sb, bitnr); 1810 } 1811 spin_unlock(&ctx->lock); 1812 1813 return !dispatch_data->rq; 1814 } 1815 1816 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1817 struct blk_mq_ctx *start) 1818 { 1819 unsigned off = start ? start->index_hw[hctx->type] : 0; 1820 struct dispatch_rq_data data = { 1821 .hctx = hctx, 1822 .rq = NULL, 1823 }; 1824 1825 __sbitmap_for_each_set(&hctx->ctx_map, off, 1826 dispatch_rq_from_ctx, &data); 1827 1828 return data.rq; 1829 } 1830 1831 bool __blk_mq_alloc_driver_tag(struct request *rq) 1832 { 1833 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1834 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1835 int tag; 1836 1837 blk_mq_tag_busy(rq->mq_hctx); 1838 1839 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1840 bt = &rq->mq_hctx->tags->breserved_tags; 1841 tag_offset = 0; 1842 } else { 1843 if (!hctx_may_queue(rq->mq_hctx, bt)) 1844 return false; 1845 } 1846 1847 tag = __sbitmap_queue_get(bt); 1848 if (tag == BLK_MQ_NO_TAG) 1849 return false; 1850 1851 rq->tag = tag + tag_offset; 1852 blk_mq_inc_active_requests(rq->mq_hctx); 1853 return true; 1854 } 1855 1856 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1857 int flags, void *key) 1858 { 1859 struct blk_mq_hw_ctx *hctx; 1860 1861 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1862 1863 spin_lock(&hctx->dispatch_wait_lock); 1864 if (!list_empty(&wait->entry)) { 1865 struct sbitmap_queue *sbq; 1866 1867 list_del_init(&wait->entry); 1868 sbq = &hctx->tags->bitmap_tags; 1869 atomic_dec(&sbq->ws_active); 1870 } 1871 spin_unlock(&hctx->dispatch_wait_lock); 1872 1873 blk_mq_run_hw_queue(hctx, true); 1874 return 1; 1875 } 1876 1877 /* 1878 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1879 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1880 * restart. For both cases, take care to check the condition again after 1881 * marking us as waiting. 1882 */ 1883 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1884 struct request *rq) 1885 { 1886 struct sbitmap_queue *sbq; 1887 struct wait_queue_head *wq; 1888 wait_queue_entry_t *wait; 1889 bool ret; 1890 1891 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1892 !(blk_mq_is_shared_tags(hctx->flags))) { 1893 blk_mq_sched_mark_restart_hctx(hctx); 1894 1895 /* 1896 * It's possible that a tag was freed in the window between the 1897 * allocation failure and adding the hardware queue to the wait 1898 * queue. 1899 * 1900 * Don't clear RESTART here, someone else could have set it. 1901 * At most this will cost an extra queue run. 1902 */ 1903 return blk_mq_get_driver_tag(rq); 1904 } 1905 1906 wait = &hctx->dispatch_wait; 1907 if (!list_empty_careful(&wait->entry)) 1908 return false; 1909 1910 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1911 sbq = &hctx->tags->breserved_tags; 1912 else 1913 sbq = &hctx->tags->bitmap_tags; 1914 wq = &bt_wait_ptr(sbq, hctx)->wait; 1915 1916 spin_lock_irq(&wq->lock); 1917 spin_lock(&hctx->dispatch_wait_lock); 1918 if (!list_empty(&wait->entry)) { 1919 spin_unlock(&hctx->dispatch_wait_lock); 1920 spin_unlock_irq(&wq->lock); 1921 return false; 1922 } 1923 1924 atomic_inc(&sbq->ws_active); 1925 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1926 __add_wait_queue(wq, wait); 1927 1928 /* 1929 * Add one explicit barrier since blk_mq_get_driver_tag() may 1930 * not imply barrier in case of failure. 1931 * 1932 * Order adding us to wait queue and allocating driver tag. 1933 * 1934 * The pair is the one implied in sbitmap_queue_wake_up() which 1935 * orders clearing sbitmap tag bits and waitqueue_active() in 1936 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1937 * 1938 * Otherwise, re-order of adding wait queue and getting driver tag 1939 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1940 * the waitqueue_active() may not observe us in wait queue. 1941 */ 1942 smp_mb(); 1943 1944 /* 1945 * It's possible that a tag was freed in the window between the 1946 * allocation failure and adding the hardware queue to the wait 1947 * queue. 1948 */ 1949 ret = blk_mq_get_driver_tag(rq); 1950 if (!ret) { 1951 spin_unlock(&hctx->dispatch_wait_lock); 1952 spin_unlock_irq(&wq->lock); 1953 return false; 1954 } 1955 1956 /* 1957 * We got a tag, remove ourselves from the wait queue to ensure 1958 * someone else gets the wakeup. 1959 */ 1960 list_del_init(&wait->entry); 1961 atomic_dec(&sbq->ws_active); 1962 spin_unlock(&hctx->dispatch_wait_lock); 1963 spin_unlock_irq(&wq->lock); 1964 1965 return true; 1966 } 1967 1968 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1969 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1970 /* 1971 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1972 * - EWMA is one simple way to compute running average value 1973 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1974 * - take 4 as factor for avoiding to get too small(0) result, and this 1975 * factor doesn't matter because EWMA decreases exponentially 1976 */ 1977 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1978 { 1979 unsigned int ewma; 1980 1981 ewma = hctx->dispatch_busy; 1982 1983 if (!ewma && !busy) 1984 return; 1985 1986 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1987 if (busy) 1988 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1989 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1990 1991 hctx->dispatch_busy = ewma; 1992 } 1993 1994 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1995 1996 static void blk_mq_handle_dev_resource(struct request *rq, 1997 struct list_head *list) 1998 { 1999 list_add(&rq->queuelist, list); 2000 __blk_mq_requeue_request(rq); 2001 } 2002 2003 enum prep_dispatch { 2004 PREP_DISPATCH_OK, 2005 PREP_DISPATCH_NO_TAG, 2006 PREP_DISPATCH_NO_BUDGET, 2007 }; 2008 2009 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2010 bool need_budget) 2011 { 2012 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2013 int budget_token = -1; 2014 2015 if (need_budget) { 2016 budget_token = blk_mq_get_dispatch_budget(rq->q); 2017 if (budget_token < 0) { 2018 blk_mq_put_driver_tag(rq); 2019 return PREP_DISPATCH_NO_BUDGET; 2020 } 2021 blk_mq_set_rq_budget_token(rq, budget_token); 2022 } 2023 2024 if (!blk_mq_get_driver_tag(rq)) { 2025 /* 2026 * The initial allocation attempt failed, so we need to 2027 * rerun the hardware queue when a tag is freed. The 2028 * waitqueue takes care of that. If the queue is run 2029 * before we add this entry back on the dispatch list, 2030 * we'll re-run it below. 2031 */ 2032 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2033 /* 2034 * All budgets not got from this function will be put 2035 * together during handling partial dispatch 2036 */ 2037 if (need_budget) 2038 blk_mq_put_dispatch_budget(rq->q, budget_token); 2039 return PREP_DISPATCH_NO_TAG; 2040 } 2041 } 2042 2043 return PREP_DISPATCH_OK; 2044 } 2045 2046 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2047 static void blk_mq_release_budgets(struct request_queue *q, 2048 struct list_head *list) 2049 { 2050 struct request *rq; 2051 2052 list_for_each_entry(rq, list, queuelist) { 2053 int budget_token = blk_mq_get_rq_budget_token(rq); 2054 2055 if (budget_token >= 0) 2056 blk_mq_put_dispatch_budget(q, budget_token); 2057 } 2058 } 2059 2060 /* 2061 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2062 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2063 * details) 2064 * Attention, we should explicitly call this in unusual cases: 2065 * 1) did not queue everything initially scheduled to queue 2066 * 2) the last attempt to queue a request failed 2067 */ 2068 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2069 bool from_schedule) 2070 { 2071 if (hctx->queue->mq_ops->commit_rqs && queued) { 2072 trace_block_unplug(hctx->queue, queued, !from_schedule); 2073 hctx->queue->mq_ops->commit_rqs(hctx); 2074 } 2075 } 2076 2077 /* 2078 * Returns true if we did some work AND can potentially do more. 2079 */ 2080 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2081 unsigned int nr_budgets) 2082 { 2083 enum prep_dispatch prep; 2084 struct request_queue *q = hctx->queue; 2085 struct request *rq; 2086 int queued; 2087 blk_status_t ret = BLK_STS_OK; 2088 bool needs_resource = false; 2089 2090 if (list_empty(list)) 2091 return false; 2092 2093 /* 2094 * Now process all the entries, sending them to the driver. 2095 */ 2096 queued = 0; 2097 do { 2098 struct blk_mq_queue_data bd; 2099 2100 rq = list_first_entry(list, struct request, queuelist); 2101 2102 WARN_ON_ONCE(hctx != rq->mq_hctx); 2103 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2104 if (prep != PREP_DISPATCH_OK) 2105 break; 2106 2107 list_del_init(&rq->queuelist); 2108 2109 bd.rq = rq; 2110 bd.last = list_empty(list); 2111 2112 /* 2113 * once the request is queued to lld, no need to cover the 2114 * budget any more 2115 */ 2116 if (nr_budgets) 2117 nr_budgets--; 2118 ret = q->mq_ops->queue_rq(hctx, &bd); 2119 switch (ret) { 2120 case BLK_STS_OK: 2121 queued++; 2122 break; 2123 case BLK_STS_RESOURCE: 2124 needs_resource = true; 2125 fallthrough; 2126 case BLK_STS_DEV_RESOURCE: 2127 blk_mq_handle_dev_resource(rq, list); 2128 goto out; 2129 default: 2130 blk_mq_end_request(rq, ret); 2131 } 2132 } while (!list_empty(list)); 2133 out: 2134 /* If we didn't flush the entire list, we could have told the driver 2135 * there was more coming, but that turned out to be a lie. 2136 */ 2137 if (!list_empty(list) || ret != BLK_STS_OK) 2138 blk_mq_commit_rqs(hctx, queued, false); 2139 2140 /* 2141 * Any items that need requeuing? Stuff them into hctx->dispatch, 2142 * that is where we will continue on next queue run. 2143 */ 2144 if (!list_empty(list)) { 2145 bool needs_restart; 2146 /* For non-shared tags, the RESTART check will suffice */ 2147 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2148 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2149 blk_mq_is_shared_tags(hctx->flags)); 2150 2151 if (nr_budgets) 2152 blk_mq_release_budgets(q, list); 2153 2154 spin_lock(&hctx->lock); 2155 list_splice_tail_init(list, &hctx->dispatch); 2156 spin_unlock(&hctx->lock); 2157 2158 /* 2159 * Order adding requests to hctx->dispatch and checking 2160 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2161 * in blk_mq_sched_restart(). Avoid restart code path to 2162 * miss the new added requests to hctx->dispatch, meantime 2163 * SCHED_RESTART is observed here. 2164 */ 2165 smp_mb(); 2166 2167 /* 2168 * If SCHED_RESTART was set by the caller of this function and 2169 * it is no longer set that means that it was cleared by another 2170 * thread and hence that a queue rerun is needed. 2171 * 2172 * If 'no_tag' is set, that means that we failed getting 2173 * a driver tag with an I/O scheduler attached. If our dispatch 2174 * waitqueue is no longer active, ensure that we run the queue 2175 * AFTER adding our entries back to the list. 2176 * 2177 * If no I/O scheduler has been configured it is possible that 2178 * the hardware queue got stopped and restarted before requests 2179 * were pushed back onto the dispatch list. Rerun the queue to 2180 * avoid starvation. Notes: 2181 * - blk_mq_run_hw_queue() checks whether or not a queue has 2182 * been stopped before rerunning a queue. 2183 * - Some but not all block drivers stop a queue before 2184 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2185 * and dm-rq. 2186 * 2187 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2188 * bit is set, run queue after a delay to avoid IO stalls 2189 * that could otherwise occur if the queue is idle. We'll do 2190 * similar if we couldn't get budget or couldn't lock a zone 2191 * and SCHED_RESTART is set. 2192 */ 2193 needs_restart = blk_mq_sched_needs_restart(hctx); 2194 if (prep == PREP_DISPATCH_NO_BUDGET) 2195 needs_resource = true; 2196 if (!needs_restart || 2197 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2198 blk_mq_run_hw_queue(hctx, true); 2199 else if (needs_resource) 2200 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2201 2202 blk_mq_update_dispatch_busy(hctx, true); 2203 return false; 2204 } 2205 2206 blk_mq_update_dispatch_busy(hctx, false); 2207 return true; 2208 } 2209 2210 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2211 { 2212 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2213 2214 if (cpu >= nr_cpu_ids) 2215 cpu = cpumask_first(hctx->cpumask); 2216 return cpu; 2217 } 2218 2219 /* 2220 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2221 * it for speeding up the check 2222 */ 2223 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2224 { 2225 return hctx->next_cpu >= nr_cpu_ids; 2226 } 2227 2228 /* 2229 * It'd be great if the workqueue API had a way to pass 2230 * in a mask and had some smarts for more clever placement. 2231 * For now we just round-robin here, switching for every 2232 * BLK_MQ_CPU_WORK_BATCH queued items. 2233 */ 2234 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2235 { 2236 bool tried = false; 2237 int next_cpu = hctx->next_cpu; 2238 2239 /* Switch to unbound if no allowable CPUs in this hctx */ 2240 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2241 return WORK_CPU_UNBOUND; 2242 2243 if (--hctx->next_cpu_batch <= 0) { 2244 select_cpu: 2245 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2246 cpu_online_mask); 2247 if (next_cpu >= nr_cpu_ids) 2248 next_cpu = blk_mq_first_mapped_cpu(hctx); 2249 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2250 } 2251 2252 /* 2253 * Do unbound schedule if we can't find a online CPU for this hctx, 2254 * and it should only happen in the path of handling CPU DEAD. 2255 */ 2256 if (!cpu_online(next_cpu)) { 2257 if (!tried) { 2258 tried = true; 2259 goto select_cpu; 2260 } 2261 2262 /* 2263 * Make sure to re-select CPU next time once after CPUs 2264 * in hctx->cpumask become online again. 2265 */ 2266 hctx->next_cpu = next_cpu; 2267 hctx->next_cpu_batch = 1; 2268 return WORK_CPU_UNBOUND; 2269 } 2270 2271 hctx->next_cpu = next_cpu; 2272 return next_cpu; 2273 } 2274 2275 /** 2276 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2277 * @hctx: Pointer to the hardware queue to run. 2278 * @msecs: Milliseconds of delay to wait before running the queue. 2279 * 2280 * Run a hardware queue asynchronously with a delay of @msecs. 2281 */ 2282 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2283 { 2284 if (unlikely(blk_mq_hctx_stopped(hctx))) 2285 return; 2286 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2287 msecs_to_jiffies(msecs)); 2288 } 2289 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2290 2291 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2292 { 2293 bool need_run; 2294 2295 /* 2296 * When queue is quiesced, we may be switching io scheduler, or 2297 * updating nr_hw_queues, or other things, and we can't run queue 2298 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2299 * 2300 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2301 * quiesced. 2302 */ 2303 __blk_mq_run_dispatch_ops(hctx->queue, false, 2304 need_run = !blk_queue_quiesced(hctx->queue) && 2305 blk_mq_hctx_has_pending(hctx)); 2306 return need_run; 2307 } 2308 2309 /** 2310 * blk_mq_run_hw_queue - Start to run a hardware queue. 2311 * @hctx: Pointer to the hardware queue to run. 2312 * @async: If we want to run the queue asynchronously. 2313 * 2314 * Check if the request queue is not in a quiesced state and if there are 2315 * pending requests to be sent. If this is true, run the queue to send requests 2316 * to hardware. 2317 */ 2318 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2319 { 2320 bool need_run; 2321 2322 /* 2323 * We can't run the queue inline with interrupts disabled. 2324 */ 2325 WARN_ON_ONCE(!async && in_interrupt()); 2326 2327 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2328 2329 need_run = blk_mq_hw_queue_need_run(hctx); 2330 if (!need_run) { 2331 unsigned long flags; 2332 2333 /* 2334 * Synchronize with blk_mq_unquiesce_queue(), because we check 2335 * if hw queue is quiesced locklessly above, we need the use 2336 * ->queue_lock to make sure we see the up-to-date status to 2337 * not miss rerunning the hw queue. 2338 */ 2339 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2340 need_run = blk_mq_hw_queue_need_run(hctx); 2341 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2342 2343 if (!need_run) 2344 return; 2345 } 2346 2347 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2348 blk_mq_delay_run_hw_queue(hctx, 0); 2349 return; 2350 } 2351 2352 blk_mq_run_dispatch_ops(hctx->queue, 2353 blk_mq_sched_dispatch_requests(hctx)); 2354 } 2355 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2356 2357 /* 2358 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2359 * scheduler. 2360 */ 2361 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2362 { 2363 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2364 /* 2365 * If the IO scheduler does not respect hardware queues when 2366 * dispatching, we just don't bother with multiple HW queues and 2367 * dispatch from hctx for the current CPU since running multiple queues 2368 * just causes lock contention inside the scheduler and pointless cache 2369 * bouncing. 2370 */ 2371 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2372 2373 if (!blk_mq_hctx_stopped(hctx)) 2374 return hctx; 2375 return NULL; 2376 } 2377 2378 /** 2379 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2380 * @q: Pointer to the request queue to run. 2381 * @async: If we want to run the queue asynchronously. 2382 */ 2383 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2384 { 2385 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2386 unsigned long i; 2387 2388 sq_hctx = NULL; 2389 if (blk_queue_sq_sched(q)) 2390 sq_hctx = blk_mq_get_sq_hctx(q); 2391 queue_for_each_hw_ctx(q, hctx, i) { 2392 if (blk_mq_hctx_stopped(hctx)) 2393 continue; 2394 /* 2395 * Dispatch from this hctx either if there's no hctx preferred 2396 * by IO scheduler or if it has requests that bypass the 2397 * scheduler. 2398 */ 2399 if (!sq_hctx || sq_hctx == hctx || 2400 !list_empty_careful(&hctx->dispatch)) 2401 blk_mq_run_hw_queue(hctx, async); 2402 } 2403 } 2404 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2405 2406 /** 2407 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2408 * @q: Pointer to the request queue to run. 2409 * @msecs: Milliseconds of delay to wait before running the queues. 2410 */ 2411 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2412 { 2413 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2414 unsigned long i; 2415 2416 sq_hctx = NULL; 2417 if (blk_queue_sq_sched(q)) 2418 sq_hctx = blk_mq_get_sq_hctx(q); 2419 queue_for_each_hw_ctx(q, hctx, i) { 2420 if (blk_mq_hctx_stopped(hctx)) 2421 continue; 2422 /* 2423 * If there is already a run_work pending, leave the 2424 * pending delay untouched. Otherwise, a hctx can stall 2425 * if another hctx is re-delaying the other's work 2426 * before the work executes. 2427 */ 2428 if (delayed_work_pending(&hctx->run_work)) 2429 continue; 2430 /* 2431 * Dispatch from this hctx either if there's no hctx preferred 2432 * by IO scheduler or if it has requests that bypass the 2433 * scheduler. 2434 */ 2435 if (!sq_hctx || sq_hctx == hctx || 2436 !list_empty_careful(&hctx->dispatch)) 2437 blk_mq_delay_run_hw_queue(hctx, msecs); 2438 } 2439 } 2440 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2441 2442 /* 2443 * This function is often used for pausing .queue_rq() by driver when 2444 * there isn't enough resource or some conditions aren't satisfied, and 2445 * BLK_STS_RESOURCE is usually returned. 2446 * 2447 * We do not guarantee that dispatch can be drained or blocked 2448 * after blk_mq_stop_hw_queue() returns. Please use 2449 * blk_mq_quiesce_queue() for that requirement. 2450 */ 2451 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2452 { 2453 cancel_delayed_work(&hctx->run_work); 2454 2455 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2456 } 2457 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2458 2459 /* 2460 * This function is often used for pausing .queue_rq() by driver when 2461 * there isn't enough resource or some conditions aren't satisfied, and 2462 * BLK_STS_RESOURCE is usually returned. 2463 * 2464 * We do not guarantee that dispatch can be drained or blocked 2465 * after blk_mq_stop_hw_queues() returns. Please use 2466 * blk_mq_quiesce_queue() for that requirement. 2467 */ 2468 void blk_mq_stop_hw_queues(struct request_queue *q) 2469 { 2470 struct blk_mq_hw_ctx *hctx; 2471 unsigned long i; 2472 2473 queue_for_each_hw_ctx(q, hctx, i) 2474 blk_mq_stop_hw_queue(hctx); 2475 } 2476 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2477 2478 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2479 { 2480 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2481 2482 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2483 } 2484 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2485 2486 void blk_mq_start_hw_queues(struct request_queue *q) 2487 { 2488 struct blk_mq_hw_ctx *hctx; 2489 unsigned long i; 2490 2491 queue_for_each_hw_ctx(q, hctx, i) 2492 blk_mq_start_hw_queue(hctx); 2493 } 2494 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2495 2496 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2497 { 2498 if (!blk_mq_hctx_stopped(hctx)) 2499 return; 2500 2501 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2502 /* 2503 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2504 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2505 * list in the subsequent routine. 2506 */ 2507 smp_mb__after_atomic(); 2508 blk_mq_run_hw_queue(hctx, async); 2509 } 2510 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2511 2512 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2513 { 2514 struct blk_mq_hw_ctx *hctx; 2515 unsigned long i; 2516 2517 queue_for_each_hw_ctx(q, hctx, i) 2518 blk_mq_start_stopped_hw_queue(hctx, async || 2519 (hctx->flags & BLK_MQ_F_BLOCKING)); 2520 } 2521 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2522 2523 static void blk_mq_run_work_fn(struct work_struct *work) 2524 { 2525 struct blk_mq_hw_ctx *hctx = 2526 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2527 2528 blk_mq_run_dispatch_ops(hctx->queue, 2529 blk_mq_sched_dispatch_requests(hctx)); 2530 } 2531 2532 /** 2533 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2534 * @rq: Pointer to request to be inserted. 2535 * @flags: BLK_MQ_INSERT_* 2536 * 2537 * Should only be used carefully, when the caller knows we want to 2538 * bypass a potential IO scheduler on the target device. 2539 */ 2540 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2541 { 2542 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2543 2544 spin_lock(&hctx->lock); 2545 if (flags & BLK_MQ_INSERT_AT_HEAD) 2546 list_add(&rq->queuelist, &hctx->dispatch); 2547 else 2548 list_add_tail(&rq->queuelist, &hctx->dispatch); 2549 spin_unlock(&hctx->lock); 2550 } 2551 2552 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2553 struct blk_mq_ctx *ctx, struct list_head *list, 2554 bool run_queue_async) 2555 { 2556 struct request *rq; 2557 enum hctx_type type = hctx->type; 2558 2559 /* 2560 * Try to issue requests directly if the hw queue isn't busy to save an 2561 * extra enqueue & dequeue to the sw queue. 2562 */ 2563 if (!hctx->dispatch_busy && !run_queue_async) { 2564 blk_mq_run_dispatch_ops(hctx->queue, 2565 blk_mq_try_issue_list_directly(hctx, list)); 2566 if (list_empty(list)) 2567 goto out; 2568 } 2569 2570 /* 2571 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2572 * offline now 2573 */ 2574 list_for_each_entry(rq, list, queuelist) { 2575 BUG_ON(rq->mq_ctx != ctx); 2576 trace_block_rq_insert(rq); 2577 if (rq->cmd_flags & REQ_NOWAIT) 2578 run_queue_async = true; 2579 } 2580 2581 spin_lock(&ctx->lock); 2582 list_splice_tail_init(list, &ctx->rq_lists[type]); 2583 blk_mq_hctx_mark_pending(hctx, ctx); 2584 spin_unlock(&ctx->lock); 2585 out: 2586 blk_mq_run_hw_queue(hctx, run_queue_async); 2587 } 2588 2589 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2590 { 2591 struct request_queue *q = rq->q; 2592 struct blk_mq_ctx *ctx = rq->mq_ctx; 2593 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2594 2595 if (blk_rq_is_passthrough(rq)) { 2596 /* 2597 * Passthrough request have to be added to hctx->dispatch 2598 * directly. The device may be in a situation where it can't 2599 * handle FS request, and always returns BLK_STS_RESOURCE for 2600 * them, which gets them added to hctx->dispatch. 2601 * 2602 * If a passthrough request is required to unblock the queues, 2603 * and it is added to the scheduler queue, there is no chance to 2604 * dispatch it given we prioritize requests in hctx->dispatch. 2605 */ 2606 blk_mq_request_bypass_insert(rq, flags); 2607 } else if (req_op(rq) == REQ_OP_FLUSH) { 2608 /* 2609 * Firstly normal IO request is inserted to scheduler queue or 2610 * sw queue, meantime we add flush request to dispatch queue( 2611 * hctx->dispatch) directly and there is at most one in-flight 2612 * flush request for each hw queue, so it doesn't matter to add 2613 * flush request to tail or front of the dispatch queue. 2614 * 2615 * Secondly in case of NCQ, flush request belongs to non-NCQ 2616 * command, and queueing it will fail when there is any 2617 * in-flight normal IO request(NCQ command). When adding flush 2618 * rq to the front of hctx->dispatch, it is easier to introduce 2619 * extra time to flush rq's latency because of S_SCHED_RESTART 2620 * compared with adding to the tail of dispatch queue, then 2621 * chance of flush merge is increased, and less flush requests 2622 * will be issued to controller. It is observed that ~10% time 2623 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2624 * drive when adding flush rq to the front of hctx->dispatch. 2625 * 2626 * Simply queue flush rq to the front of hctx->dispatch so that 2627 * intensive flush workloads can benefit in case of NCQ HW. 2628 */ 2629 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2630 } else if (q->elevator) { 2631 LIST_HEAD(list); 2632 2633 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2634 2635 list_add(&rq->queuelist, &list); 2636 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2637 } else { 2638 trace_block_rq_insert(rq); 2639 2640 spin_lock(&ctx->lock); 2641 if (flags & BLK_MQ_INSERT_AT_HEAD) 2642 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2643 else 2644 list_add_tail(&rq->queuelist, 2645 &ctx->rq_lists[hctx->type]); 2646 blk_mq_hctx_mark_pending(hctx, ctx); 2647 spin_unlock(&ctx->lock); 2648 } 2649 } 2650 2651 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2652 unsigned int nr_segs) 2653 { 2654 int err; 2655 2656 if (bio->bi_opf & REQ_RAHEAD) 2657 rq->cmd_flags |= REQ_FAILFAST_MASK; 2658 2659 rq->__sector = bio->bi_iter.bi_sector; 2660 blk_rq_bio_prep(rq, bio, nr_segs); 2661 if (bio_integrity(bio)) 2662 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2663 bio); 2664 2665 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2666 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2667 WARN_ON_ONCE(err); 2668 2669 blk_account_io_start(rq); 2670 } 2671 2672 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2673 struct request *rq, bool last) 2674 { 2675 struct request_queue *q = rq->q; 2676 struct blk_mq_queue_data bd = { 2677 .rq = rq, 2678 .last = last, 2679 }; 2680 blk_status_t ret; 2681 2682 /* 2683 * For OK queue, we are done. For error, caller may kill it. 2684 * Any other error (busy), just add it to our list as we 2685 * previously would have done. 2686 */ 2687 ret = q->mq_ops->queue_rq(hctx, &bd); 2688 switch (ret) { 2689 case BLK_STS_OK: 2690 blk_mq_update_dispatch_busy(hctx, false); 2691 break; 2692 case BLK_STS_RESOURCE: 2693 case BLK_STS_DEV_RESOURCE: 2694 blk_mq_update_dispatch_busy(hctx, true); 2695 __blk_mq_requeue_request(rq); 2696 break; 2697 default: 2698 blk_mq_update_dispatch_busy(hctx, false); 2699 break; 2700 } 2701 2702 return ret; 2703 } 2704 2705 static bool blk_mq_get_budget_and_tag(struct request *rq) 2706 { 2707 int budget_token; 2708 2709 budget_token = blk_mq_get_dispatch_budget(rq->q); 2710 if (budget_token < 0) 2711 return false; 2712 blk_mq_set_rq_budget_token(rq, budget_token); 2713 if (!blk_mq_get_driver_tag(rq)) { 2714 blk_mq_put_dispatch_budget(rq->q, budget_token); 2715 return false; 2716 } 2717 return true; 2718 } 2719 2720 /** 2721 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2722 * @hctx: Pointer of the associated hardware queue. 2723 * @rq: Pointer to request to be sent. 2724 * 2725 * If the device has enough resources to accept a new request now, send the 2726 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2727 * we can try send it another time in the future. Requests inserted at this 2728 * queue have higher priority. 2729 */ 2730 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2731 struct request *rq) 2732 { 2733 blk_status_t ret; 2734 2735 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2736 blk_mq_insert_request(rq, 0); 2737 blk_mq_run_hw_queue(hctx, false); 2738 return; 2739 } 2740 2741 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2742 blk_mq_insert_request(rq, 0); 2743 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2744 return; 2745 } 2746 2747 ret = __blk_mq_issue_directly(hctx, rq, true); 2748 switch (ret) { 2749 case BLK_STS_OK: 2750 break; 2751 case BLK_STS_RESOURCE: 2752 case BLK_STS_DEV_RESOURCE: 2753 blk_mq_request_bypass_insert(rq, 0); 2754 blk_mq_run_hw_queue(hctx, false); 2755 break; 2756 default: 2757 blk_mq_end_request(rq, ret); 2758 break; 2759 } 2760 } 2761 2762 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2763 { 2764 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2765 2766 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2767 blk_mq_insert_request(rq, 0); 2768 blk_mq_run_hw_queue(hctx, false); 2769 return BLK_STS_OK; 2770 } 2771 2772 if (!blk_mq_get_budget_and_tag(rq)) 2773 return BLK_STS_RESOURCE; 2774 return __blk_mq_issue_directly(hctx, rq, last); 2775 } 2776 2777 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2778 { 2779 struct blk_mq_hw_ctx *hctx = NULL; 2780 struct request *rq; 2781 int queued = 0; 2782 blk_status_t ret = BLK_STS_OK; 2783 2784 while ((rq = rq_list_pop(&plug->mq_list))) { 2785 bool last = rq_list_empty(&plug->mq_list); 2786 2787 if (hctx != rq->mq_hctx) { 2788 if (hctx) { 2789 blk_mq_commit_rqs(hctx, queued, false); 2790 queued = 0; 2791 } 2792 hctx = rq->mq_hctx; 2793 } 2794 2795 ret = blk_mq_request_issue_directly(rq, last); 2796 switch (ret) { 2797 case BLK_STS_OK: 2798 queued++; 2799 break; 2800 case BLK_STS_RESOURCE: 2801 case BLK_STS_DEV_RESOURCE: 2802 blk_mq_request_bypass_insert(rq, 0); 2803 blk_mq_run_hw_queue(hctx, false); 2804 goto out; 2805 default: 2806 blk_mq_end_request(rq, ret); 2807 break; 2808 } 2809 } 2810 2811 out: 2812 if (ret != BLK_STS_OK) 2813 blk_mq_commit_rqs(hctx, queued, false); 2814 } 2815 2816 static void __blk_mq_flush_plug_list(struct request_queue *q, 2817 struct blk_plug *plug) 2818 { 2819 if (blk_queue_quiesced(q)) 2820 return; 2821 q->mq_ops->queue_rqs(&plug->mq_list); 2822 } 2823 2824 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2825 { 2826 struct blk_mq_hw_ctx *this_hctx = NULL; 2827 struct blk_mq_ctx *this_ctx = NULL; 2828 struct rq_list requeue_list = {}; 2829 unsigned int depth = 0; 2830 bool is_passthrough = false; 2831 LIST_HEAD(list); 2832 2833 do { 2834 struct request *rq = rq_list_pop(&plug->mq_list); 2835 2836 if (!this_hctx) { 2837 this_hctx = rq->mq_hctx; 2838 this_ctx = rq->mq_ctx; 2839 is_passthrough = blk_rq_is_passthrough(rq); 2840 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2841 is_passthrough != blk_rq_is_passthrough(rq)) { 2842 rq_list_add_tail(&requeue_list, rq); 2843 continue; 2844 } 2845 list_add_tail(&rq->queuelist, &list); 2846 depth++; 2847 } while (!rq_list_empty(&plug->mq_list)); 2848 2849 plug->mq_list = requeue_list; 2850 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2851 2852 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2853 /* passthrough requests should never be issued to the I/O scheduler */ 2854 if (is_passthrough) { 2855 spin_lock(&this_hctx->lock); 2856 list_splice_tail_init(&list, &this_hctx->dispatch); 2857 spin_unlock(&this_hctx->lock); 2858 blk_mq_run_hw_queue(this_hctx, from_sched); 2859 } else if (this_hctx->queue->elevator) { 2860 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2861 &list, 0); 2862 blk_mq_run_hw_queue(this_hctx, from_sched); 2863 } else { 2864 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2865 } 2866 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2867 } 2868 2869 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2870 { 2871 struct request *rq; 2872 unsigned int depth; 2873 2874 /* 2875 * We may have been called recursively midway through handling 2876 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2877 * To avoid mq_list changing under our feet, clear rq_count early and 2878 * bail out specifically if rq_count is 0 rather than checking 2879 * whether the mq_list is empty. 2880 */ 2881 if (plug->rq_count == 0) 2882 return; 2883 depth = plug->rq_count; 2884 plug->rq_count = 0; 2885 2886 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2887 struct request_queue *q; 2888 2889 rq = rq_list_peek(&plug->mq_list); 2890 q = rq->q; 2891 trace_block_unplug(q, depth, true); 2892 2893 /* 2894 * Peek first request and see if we have a ->queue_rqs() hook. 2895 * If we do, we can dispatch the whole plug list in one go. We 2896 * already know at this point that all requests belong to the 2897 * same queue, caller must ensure that's the case. 2898 */ 2899 if (q->mq_ops->queue_rqs) { 2900 blk_mq_run_dispatch_ops(q, 2901 __blk_mq_flush_plug_list(q, plug)); 2902 if (rq_list_empty(&plug->mq_list)) 2903 return; 2904 } 2905 2906 blk_mq_run_dispatch_ops(q, 2907 blk_mq_plug_issue_direct(plug)); 2908 if (rq_list_empty(&plug->mq_list)) 2909 return; 2910 } 2911 2912 do { 2913 blk_mq_dispatch_plug_list(plug, from_schedule); 2914 } while (!rq_list_empty(&plug->mq_list)); 2915 } 2916 2917 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2918 struct list_head *list) 2919 { 2920 int queued = 0; 2921 blk_status_t ret = BLK_STS_OK; 2922 2923 while (!list_empty(list)) { 2924 struct request *rq = list_first_entry(list, struct request, 2925 queuelist); 2926 2927 list_del_init(&rq->queuelist); 2928 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2929 switch (ret) { 2930 case BLK_STS_OK: 2931 queued++; 2932 break; 2933 case BLK_STS_RESOURCE: 2934 case BLK_STS_DEV_RESOURCE: 2935 blk_mq_request_bypass_insert(rq, 0); 2936 if (list_empty(list)) 2937 blk_mq_run_hw_queue(hctx, false); 2938 goto out; 2939 default: 2940 blk_mq_end_request(rq, ret); 2941 break; 2942 } 2943 } 2944 2945 out: 2946 if (ret != BLK_STS_OK) 2947 blk_mq_commit_rqs(hctx, queued, false); 2948 } 2949 2950 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2951 struct bio *bio, unsigned int nr_segs) 2952 { 2953 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2954 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2955 return true; 2956 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2957 return true; 2958 } 2959 return false; 2960 } 2961 2962 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2963 struct blk_plug *plug, 2964 struct bio *bio, 2965 unsigned int nsegs) 2966 { 2967 struct blk_mq_alloc_data data = { 2968 .q = q, 2969 .nr_tags = 1, 2970 .cmd_flags = bio->bi_opf, 2971 }; 2972 struct request *rq; 2973 2974 rq_qos_throttle(q, bio); 2975 2976 if (plug) { 2977 data.nr_tags = plug->nr_ios; 2978 plug->nr_ios = 1; 2979 data.cached_rqs = &plug->cached_rqs; 2980 } 2981 2982 rq = __blk_mq_alloc_requests(&data); 2983 if (rq) 2984 return rq; 2985 rq_qos_cleanup(q, bio); 2986 if (bio->bi_opf & REQ_NOWAIT) 2987 bio_wouldblock_error(bio); 2988 return NULL; 2989 } 2990 2991 /* 2992 * Check if there is a suitable cached request and return it. 2993 */ 2994 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2995 struct request_queue *q, blk_opf_t opf) 2996 { 2997 enum hctx_type type = blk_mq_get_hctx_type(opf); 2998 struct request *rq; 2999 3000 if (!plug) 3001 return NULL; 3002 rq = rq_list_peek(&plug->cached_rqs); 3003 if (!rq || rq->q != q) 3004 return NULL; 3005 if (type != rq->mq_hctx->type && 3006 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3007 return NULL; 3008 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3009 return NULL; 3010 return rq; 3011 } 3012 3013 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3014 struct bio *bio) 3015 { 3016 if (rq_list_pop(&plug->cached_rqs) != rq) 3017 WARN_ON_ONCE(1); 3018 3019 /* 3020 * If any qos ->throttle() end up blocking, we will have flushed the 3021 * plug and hence killed the cached_rq list as well. Pop this entry 3022 * before we throttle. 3023 */ 3024 rq_qos_throttle(rq->q, bio); 3025 3026 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3027 rq->cmd_flags = bio->bi_opf; 3028 INIT_LIST_HEAD(&rq->queuelist); 3029 } 3030 3031 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3032 { 3033 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3034 3035 /* .bi_sector of any zero sized bio need to be initialized */ 3036 if ((bio->bi_iter.bi_size & bs_mask) || 3037 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3038 return true; 3039 return false; 3040 } 3041 3042 /** 3043 * blk_mq_submit_bio - Create and send a request to block device. 3044 * @bio: Bio pointer. 3045 * 3046 * Builds up a request structure from @q and @bio and send to the device. The 3047 * request may not be queued directly to hardware if: 3048 * * This request can be merged with another one 3049 * * We want to place request at plug queue for possible future merging 3050 * * There is an IO scheduler active at this queue 3051 * 3052 * It will not queue the request if there is an error with the bio, or at the 3053 * request creation. 3054 */ 3055 void blk_mq_submit_bio(struct bio *bio) 3056 { 3057 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3058 struct blk_plug *plug = current->plug; 3059 const int is_sync = op_is_sync(bio->bi_opf); 3060 struct blk_mq_hw_ctx *hctx; 3061 unsigned int nr_segs; 3062 struct request *rq; 3063 blk_status_t ret; 3064 3065 /* 3066 * If the plug has a cached request for this queue, try to use it. 3067 */ 3068 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3069 3070 /* 3071 * A BIO that was released from a zone write plug has already been 3072 * through the preparation in this function, already holds a reference 3073 * on the queue usage counter, and is the only write BIO in-flight for 3074 * the target zone. Go straight to preparing a request for it. 3075 */ 3076 if (bio_zone_write_plugging(bio)) { 3077 nr_segs = bio->__bi_nr_segments; 3078 if (rq) 3079 blk_queue_exit(q); 3080 goto new_request; 3081 } 3082 3083 bio = blk_queue_bounce(bio, q); 3084 3085 /* 3086 * The cached request already holds a q_usage_counter reference and we 3087 * don't have to acquire a new one if we use it. 3088 */ 3089 if (!rq) { 3090 if (unlikely(bio_queue_enter(bio))) 3091 return; 3092 } 3093 3094 /* 3095 * Device reconfiguration may change logical block size, so alignment 3096 * check has to be done with queue usage counter held 3097 */ 3098 if (unlikely(bio_unaligned(bio, q))) { 3099 bio_io_error(bio); 3100 goto queue_exit; 3101 } 3102 3103 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3104 if (!bio) 3105 goto queue_exit; 3106 3107 if (!bio_integrity_prep(bio)) 3108 goto queue_exit; 3109 3110 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3111 goto queue_exit; 3112 3113 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 3114 goto queue_exit; 3115 3116 new_request: 3117 if (!rq) { 3118 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3119 if (unlikely(!rq)) 3120 goto queue_exit; 3121 } else { 3122 blk_mq_use_cached_rq(rq, plug, bio); 3123 } 3124 3125 trace_block_getrq(bio); 3126 3127 rq_qos_track(q, rq, bio); 3128 3129 blk_mq_bio_to_request(rq, bio, nr_segs); 3130 3131 ret = blk_crypto_rq_get_keyslot(rq); 3132 if (ret != BLK_STS_OK) { 3133 bio->bi_status = ret; 3134 bio_endio(bio); 3135 blk_mq_free_request(rq); 3136 return; 3137 } 3138 3139 if (bio_zone_write_plugging(bio)) 3140 blk_zone_write_plug_init_request(rq); 3141 3142 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3143 return; 3144 3145 if (plug) { 3146 blk_add_rq_to_plug(plug, rq); 3147 return; 3148 } 3149 3150 hctx = rq->mq_hctx; 3151 if ((rq->rq_flags & RQF_USE_SCHED) || 3152 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3153 blk_mq_insert_request(rq, 0); 3154 blk_mq_run_hw_queue(hctx, true); 3155 } else { 3156 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3157 } 3158 return; 3159 3160 queue_exit: 3161 /* 3162 * Don't drop the queue reference if we were trying to use a cached 3163 * request and thus didn't acquire one. 3164 */ 3165 if (!rq) 3166 blk_queue_exit(q); 3167 } 3168 3169 #ifdef CONFIG_BLK_MQ_STACKING 3170 /** 3171 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3172 * @rq: the request being queued 3173 */ 3174 blk_status_t blk_insert_cloned_request(struct request *rq) 3175 { 3176 struct request_queue *q = rq->q; 3177 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3178 unsigned int max_segments = blk_rq_get_max_segments(rq); 3179 blk_status_t ret; 3180 3181 if (blk_rq_sectors(rq) > max_sectors) { 3182 /* 3183 * SCSI device does not have a good way to return if 3184 * Write Same/Zero is actually supported. If a device rejects 3185 * a non-read/write command (discard, write same,etc.) the 3186 * low-level device driver will set the relevant queue limit to 3187 * 0 to prevent blk-lib from issuing more of the offending 3188 * operations. Commands queued prior to the queue limit being 3189 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3190 * errors being propagated to upper layers. 3191 */ 3192 if (max_sectors == 0) 3193 return BLK_STS_NOTSUPP; 3194 3195 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3196 __func__, blk_rq_sectors(rq), max_sectors); 3197 return BLK_STS_IOERR; 3198 } 3199 3200 /* 3201 * The queue settings related to segment counting may differ from the 3202 * original queue. 3203 */ 3204 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3205 if (rq->nr_phys_segments > max_segments) { 3206 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3207 __func__, rq->nr_phys_segments, max_segments); 3208 return BLK_STS_IOERR; 3209 } 3210 3211 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3212 return BLK_STS_IOERR; 3213 3214 ret = blk_crypto_rq_get_keyslot(rq); 3215 if (ret != BLK_STS_OK) 3216 return ret; 3217 3218 blk_account_io_start(rq); 3219 3220 /* 3221 * Since we have a scheduler attached on the top device, 3222 * bypass a potential scheduler on the bottom device for 3223 * insert. 3224 */ 3225 blk_mq_run_dispatch_ops(q, 3226 ret = blk_mq_request_issue_directly(rq, true)); 3227 if (ret) 3228 blk_account_io_done(rq, blk_time_get_ns()); 3229 return ret; 3230 } 3231 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3232 3233 /** 3234 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3235 * @rq: the clone request to be cleaned up 3236 * 3237 * Description: 3238 * Free all bios in @rq for a cloned request. 3239 */ 3240 void blk_rq_unprep_clone(struct request *rq) 3241 { 3242 struct bio *bio; 3243 3244 while ((bio = rq->bio) != NULL) { 3245 rq->bio = bio->bi_next; 3246 3247 bio_put(bio); 3248 } 3249 } 3250 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3251 3252 /** 3253 * blk_rq_prep_clone - Helper function to setup clone request 3254 * @rq: the request to be setup 3255 * @rq_src: original request to be cloned 3256 * @bs: bio_set that bios for clone are allocated from 3257 * @gfp_mask: memory allocation mask for bio 3258 * @bio_ctr: setup function to be called for each clone bio. 3259 * Returns %0 for success, non %0 for failure. 3260 * @data: private data to be passed to @bio_ctr 3261 * 3262 * Description: 3263 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3264 * Also, pages which the original bios are pointing to are not copied 3265 * and the cloned bios just point same pages. 3266 * So cloned bios must be completed before original bios, which means 3267 * the caller must complete @rq before @rq_src. 3268 */ 3269 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3270 struct bio_set *bs, gfp_t gfp_mask, 3271 int (*bio_ctr)(struct bio *, struct bio *, void *), 3272 void *data) 3273 { 3274 struct bio *bio_src; 3275 3276 if (!bs) 3277 bs = &fs_bio_set; 3278 3279 __rq_for_each_bio(bio_src, rq_src) { 3280 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3281 gfp_mask, bs); 3282 if (!bio) 3283 goto free_and_out; 3284 3285 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3286 bio_put(bio); 3287 goto free_and_out; 3288 } 3289 3290 if (rq->bio) { 3291 rq->biotail->bi_next = bio; 3292 rq->biotail = bio; 3293 } else { 3294 rq->bio = rq->biotail = bio; 3295 } 3296 } 3297 3298 /* Copy attributes of the original request to the clone request. */ 3299 rq->__sector = blk_rq_pos(rq_src); 3300 rq->__data_len = blk_rq_bytes(rq_src); 3301 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3302 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3303 rq->special_vec = rq_src->special_vec; 3304 } 3305 rq->nr_phys_segments = rq_src->nr_phys_segments; 3306 3307 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3308 goto free_and_out; 3309 3310 return 0; 3311 3312 free_and_out: 3313 blk_rq_unprep_clone(rq); 3314 3315 return -ENOMEM; 3316 } 3317 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3318 #endif /* CONFIG_BLK_MQ_STACKING */ 3319 3320 /* 3321 * Steal bios from a request and add them to a bio list. 3322 * The request must not have been partially completed before. 3323 */ 3324 void blk_steal_bios(struct bio_list *list, struct request *rq) 3325 { 3326 if (rq->bio) { 3327 if (list->tail) 3328 list->tail->bi_next = rq->bio; 3329 else 3330 list->head = rq->bio; 3331 list->tail = rq->biotail; 3332 3333 rq->bio = NULL; 3334 rq->biotail = NULL; 3335 } 3336 3337 rq->__data_len = 0; 3338 } 3339 EXPORT_SYMBOL_GPL(blk_steal_bios); 3340 3341 static size_t order_to_size(unsigned int order) 3342 { 3343 return (size_t)PAGE_SIZE << order; 3344 } 3345 3346 /* called before freeing request pool in @tags */ 3347 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3348 struct blk_mq_tags *tags) 3349 { 3350 struct page *page; 3351 unsigned long flags; 3352 3353 /* 3354 * There is no need to clear mapping if driver tags is not initialized 3355 * or the mapping belongs to the driver tags. 3356 */ 3357 if (!drv_tags || drv_tags == tags) 3358 return; 3359 3360 list_for_each_entry(page, &tags->page_list, lru) { 3361 unsigned long start = (unsigned long)page_address(page); 3362 unsigned long end = start + order_to_size(page->private); 3363 int i; 3364 3365 for (i = 0; i < drv_tags->nr_tags; i++) { 3366 struct request *rq = drv_tags->rqs[i]; 3367 unsigned long rq_addr = (unsigned long)rq; 3368 3369 if (rq_addr >= start && rq_addr < end) { 3370 WARN_ON_ONCE(req_ref_read(rq) != 0); 3371 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3372 } 3373 } 3374 } 3375 3376 /* 3377 * Wait until all pending iteration is done. 3378 * 3379 * Request reference is cleared and it is guaranteed to be observed 3380 * after the ->lock is released. 3381 */ 3382 spin_lock_irqsave(&drv_tags->lock, flags); 3383 spin_unlock_irqrestore(&drv_tags->lock, flags); 3384 } 3385 3386 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3387 unsigned int hctx_idx) 3388 { 3389 struct blk_mq_tags *drv_tags; 3390 struct page *page; 3391 3392 if (list_empty(&tags->page_list)) 3393 return; 3394 3395 if (blk_mq_is_shared_tags(set->flags)) 3396 drv_tags = set->shared_tags; 3397 else 3398 drv_tags = set->tags[hctx_idx]; 3399 3400 if (tags->static_rqs && set->ops->exit_request) { 3401 int i; 3402 3403 for (i = 0; i < tags->nr_tags; i++) { 3404 struct request *rq = tags->static_rqs[i]; 3405 3406 if (!rq) 3407 continue; 3408 set->ops->exit_request(set, rq, hctx_idx); 3409 tags->static_rqs[i] = NULL; 3410 } 3411 } 3412 3413 blk_mq_clear_rq_mapping(drv_tags, tags); 3414 3415 while (!list_empty(&tags->page_list)) { 3416 page = list_first_entry(&tags->page_list, struct page, lru); 3417 list_del_init(&page->lru); 3418 /* 3419 * Remove kmemleak object previously allocated in 3420 * blk_mq_alloc_rqs(). 3421 */ 3422 kmemleak_free(page_address(page)); 3423 __free_pages(page, page->private); 3424 } 3425 } 3426 3427 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3428 { 3429 kfree(tags->rqs); 3430 tags->rqs = NULL; 3431 kfree(tags->static_rqs); 3432 tags->static_rqs = NULL; 3433 3434 blk_mq_free_tags(tags); 3435 } 3436 3437 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3438 unsigned int hctx_idx) 3439 { 3440 int i; 3441 3442 for (i = 0; i < set->nr_maps; i++) { 3443 unsigned int start = set->map[i].queue_offset; 3444 unsigned int end = start + set->map[i].nr_queues; 3445 3446 if (hctx_idx >= start && hctx_idx < end) 3447 break; 3448 } 3449 3450 if (i >= set->nr_maps) 3451 i = HCTX_TYPE_DEFAULT; 3452 3453 return i; 3454 } 3455 3456 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3457 unsigned int hctx_idx) 3458 { 3459 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3460 3461 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3462 } 3463 3464 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3465 unsigned int hctx_idx, 3466 unsigned int nr_tags, 3467 unsigned int reserved_tags) 3468 { 3469 int node = blk_mq_get_hctx_node(set, hctx_idx); 3470 struct blk_mq_tags *tags; 3471 3472 if (node == NUMA_NO_NODE) 3473 node = set->numa_node; 3474 3475 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3476 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3477 if (!tags) 3478 return NULL; 3479 3480 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3481 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3482 node); 3483 if (!tags->rqs) 3484 goto err_free_tags; 3485 3486 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3487 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3488 node); 3489 if (!tags->static_rqs) 3490 goto err_free_rqs; 3491 3492 return tags; 3493 3494 err_free_rqs: 3495 kfree(tags->rqs); 3496 err_free_tags: 3497 blk_mq_free_tags(tags); 3498 return NULL; 3499 } 3500 3501 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3502 unsigned int hctx_idx, int node) 3503 { 3504 int ret; 3505 3506 if (set->ops->init_request) { 3507 ret = set->ops->init_request(set, rq, hctx_idx, node); 3508 if (ret) 3509 return ret; 3510 } 3511 3512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3513 return 0; 3514 } 3515 3516 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3517 struct blk_mq_tags *tags, 3518 unsigned int hctx_idx, unsigned int depth) 3519 { 3520 unsigned int i, j, entries_per_page, max_order = 4; 3521 int node = blk_mq_get_hctx_node(set, hctx_idx); 3522 size_t rq_size, left; 3523 3524 if (node == NUMA_NO_NODE) 3525 node = set->numa_node; 3526 3527 INIT_LIST_HEAD(&tags->page_list); 3528 3529 /* 3530 * rq_size is the size of the request plus driver payload, rounded 3531 * to the cacheline size 3532 */ 3533 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3534 cache_line_size()); 3535 left = rq_size * depth; 3536 3537 for (i = 0; i < depth; ) { 3538 int this_order = max_order; 3539 struct page *page; 3540 int to_do; 3541 void *p; 3542 3543 while (this_order && left < order_to_size(this_order - 1)) 3544 this_order--; 3545 3546 do { 3547 page = alloc_pages_node(node, 3548 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3549 this_order); 3550 if (page) 3551 break; 3552 if (!this_order--) 3553 break; 3554 if (order_to_size(this_order) < rq_size) 3555 break; 3556 } while (1); 3557 3558 if (!page) 3559 goto fail; 3560 3561 page->private = this_order; 3562 list_add_tail(&page->lru, &tags->page_list); 3563 3564 p = page_address(page); 3565 /* 3566 * Allow kmemleak to scan these pages as they contain pointers 3567 * to additional allocations like via ops->init_request(). 3568 */ 3569 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3570 entries_per_page = order_to_size(this_order) / rq_size; 3571 to_do = min(entries_per_page, depth - i); 3572 left -= to_do * rq_size; 3573 for (j = 0; j < to_do; j++) { 3574 struct request *rq = p; 3575 3576 tags->static_rqs[i] = rq; 3577 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3578 tags->static_rqs[i] = NULL; 3579 goto fail; 3580 } 3581 3582 p += rq_size; 3583 i++; 3584 } 3585 } 3586 return 0; 3587 3588 fail: 3589 blk_mq_free_rqs(set, tags, hctx_idx); 3590 return -ENOMEM; 3591 } 3592 3593 struct rq_iter_data { 3594 struct blk_mq_hw_ctx *hctx; 3595 bool has_rq; 3596 }; 3597 3598 static bool blk_mq_has_request(struct request *rq, void *data) 3599 { 3600 struct rq_iter_data *iter_data = data; 3601 3602 if (rq->mq_hctx != iter_data->hctx) 3603 return true; 3604 iter_data->has_rq = true; 3605 return false; 3606 } 3607 3608 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3609 { 3610 struct blk_mq_tags *tags = hctx->sched_tags ? 3611 hctx->sched_tags : hctx->tags; 3612 struct rq_iter_data data = { 3613 .hctx = hctx, 3614 }; 3615 3616 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3617 return data.has_rq; 3618 } 3619 3620 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3621 unsigned int this_cpu) 3622 { 3623 enum hctx_type type = hctx->type; 3624 int cpu; 3625 3626 /* 3627 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3628 * might submit IOs on these isolated CPUs, so use the queue map to 3629 * check if all CPUs mapped to this hctx are offline 3630 */ 3631 for_each_online_cpu(cpu) { 3632 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3633 type, cpu); 3634 3635 if (h != hctx) 3636 continue; 3637 3638 /* this hctx has at least one online CPU */ 3639 if (this_cpu != cpu) 3640 return true; 3641 } 3642 3643 return false; 3644 } 3645 3646 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3647 { 3648 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3649 struct blk_mq_hw_ctx, cpuhp_online); 3650 3651 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3652 return 0; 3653 3654 /* 3655 * Prevent new request from being allocated on the current hctx. 3656 * 3657 * The smp_mb__after_atomic() Pairs with the implied barrier in 3658 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3659 * seen once we return from the tag allocator. 3660 */ 3661 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3662 smp_mb__after_atomic(); 3663 3664 /* 3665 * Try to grab a reference to the queue and wait for any outstanding 3666 * requests. If we could not grab a reference the queue has been 3667 * frozen and there are no requests. 3668 */ 3669 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3670 while (blk_mq_hctx_has_requests(hctx)) 3671 msleep(5); 3672 percpu_ref_put(&hctx->queue->q_usage_counter); 3673 } 3674 3675 return 0; 3676 } 3677 3678 /* 3679 * Check if one CPU is mapped to the specified hctx 3680 * 3681 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3682 * to be used for scheduling kworker only. For other usage, please call this 3683 * helper for checking if one CPU belongs to the specified hctx 3684 */ 3685 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3686 const struct blk_mq_hw_ctx *hctx) 3687 { 3688 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3689 hctx->type, cpu); 3690 3691 return mapped_hctx == hctx; 3692 } 3693 3694 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3695 { 3696 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3697 struct blk_mq_hw_ctx, cpuhp_online); 3698 3699 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3700 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3701 return 0; 3702 } 3703 3704 /* 3705 * 'cpu' is going away. splice any existing rq_list entries from this 3706 * software queue to the hw queue dispatch list, and ensure that it 3707 * gets run. 3708 */ 3709 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3710 { 3711 struct blk_mq_hw_ctx *hctx; 3712 struct blk_mq_ctx *ctx; 3713 LIST_HEAD(tmp); 3714 enum hctx_type type; 3715 3716 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3717 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3718 return 0; 3719 3720 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3721 type = hctx->type; 3722 3723 spin_lock(&ctx->lock); 3724 if (!list_empty(&ctx->rq_lists[type])) { 3725 list_splice_init(&ctx->rq_lists[type], &tmp); 3726 blk_mq_hctx_clear_pending(hctx, ctx); 3727 } 3728 spin_unlock(&ctx->lock); 3729 3730 if (list_empty(&tmp)) 3731 return 0; 3732 3733 spin_lock(&hctx->lock); 3734 list_splice_tail_init(&tmp, &hctx->dispatch); 3735 spin_unlock(&hctx->lock); 3736 3737 blk_mq_run_hw_queue(hctx, true); 3738 return 0; 3739 } 3740 3741 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3742 { 3743 lockdep_assert_held(&blk_mq_cpuhp_lock); 3744 3745 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3746 !hlist_unhashed(&hctx->cpuhp_online)) { 3747 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3748 &hctx->cpuhp_online); 3749 INIT_HLIST_NODE(&hctx->cpuhp_online); 3750 } 3751 3752 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3753 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3754 &hctx->cpuhp_dead); 3755 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3756 } 3757 } 3758 3759 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3760 { 3761 mutex_lock(&blk_mq_cpuhp_lock); 3762 __blk_mq_remove_cpuhp(hctx); 3763 mutex_unlock(&blk_mq_cpuhp_lock); 3764 } 3765 3766 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3767 { 3768 lockdep_assert_held(&blk_mq_cpuhp_lock); 3769 3770 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3771 hlist_unhashed(&hctx->cpuhp_online)) 3772 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3773 &hctx->cpuhp_online); 3774 3775 if (hlist_unhashed(&hctx->cpuhp_dead)) 3776 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3777 &hctx->cpuhp_dead); 3778 } 3779 3780 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3781 { 3782 struct blk_mq_hw_ctx *hctx; 3783 3784 lockdep_assert_held(&blk_mq_cpuhp_lock); 3785 3786 list_for_each_entry(hctx, head, hctx_list) 3787 __blk_mq_remove_cpuhp(hctx); 3788 } 3789 3790 /* 3791 * Unregister cpuhp callbacks from exited hw queues 3792 * 3793 * Safe to call if this `request_queue` is live 3794 */ 3795 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3796 { 3797 LIST_HEAD(hctx_list); 3798 3799 spin_lock(&q->unused_hctx_lock); 3800 list_splice_init(&q->unused_hctx_list, &hctx_list); 3801 spin_unlock(&q->unused_hctx_lock); 3802 3803 mutex_lock(&blk_mq_cpuhp_lock); 3804 __blk_mq_remove_cpuhp_list(&hctx_list); 3805 mutex_unlock(&blk_mq_cpuhp_lock); 3806 3807 spin_lock(&q->unused_hctx_lock); 3808 list_splice(&hctx_list, &q->unused_hctx_list); 3809 spin_unlock(&q->unused_hctx_lock); 3810 } 3811 3812 /* 3813 * Register cpuhp callbacks from all hw queues 3814 * 3815 * Safe to call if this `request_queue` is live 3816 */ 3817 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3818 { 3819 struct blk_mq_hw_ctx *hctx; 3820 unsigned long i; 3821 3822 mutex_lock(&blk_mq_cpuhp_lock); 3823 queue_for_each_hw_ctx(q, hctx, i) 3824 __blk_mq_add_cpuhp(hctx); 3825 mutex_unlock(&blk_mq_cpuhp_lock); 3826 } 3827 3828 /* 3829 * Before freeing hw queue, clearing the flush request reference in 3830 * tags->rqs[] for avoiding potential UAF. 3831 */ 3832 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3833 unsigned int queue_depth, struct request *flush_rq) 3834 { 3835 int i; 3836 unsigned long flags; 3837 3838 /* The hw queue may not be mapped yet */ 3839 if (!tags) 3840 return; 3841 3842 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3843 3844 for (i = 0; i < queue_depth; i++) 3845 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3846 3847 /* 3848 * Wait until all pending iteration is done. 3849 * 3850 * Request reference is cleared and it is guaranteed to be observed 3851 * after the ->lock is released. 3852 */ 3853 spin_lock_irqsave(&tags->lock, flags); 3854 spin_unlock_irqrestore(&tags->lock, flags); 3855 } 3856 3857 /* hctx->ctxs will be freed in queue's release handler */ 3858 static void blk_mq_exit_hctx(struct request_queue *q, 3859 struct blk_mq_tag_set *set, 3860 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3861 { 3862 struct request *flush_rq = hctx->fq->flush_rq; 3863 3864 if (blk_mq_hw_queue_mapped(hctx)) 3865 blk_mq_tag_idle(hctx); 3866 3867 if (blk_queue_init_done(q)) 3868 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3869 set->queue_depth, flush_rq); 3870 if (set->ops->exit_request) 3871 set->ops->exit_request(set, flush_rq, hctx_idx); 3872 3873 if (set->ops->exit_hctx) 3874 set->ops->exit_hctx(hctx, hctx_idx); 3875 3876 xa_erase(&q->hctx_table, hctx_idx); 3877 3878 spin_lock(&q->unused_hctx_lock); 3879 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3880 spin_unlock(&q->unused_hctx_lock); 3881 } 3882 3883 static void blk_mq_exit_hw_queues(struct request_queue *q, 3884 struct blk_mq_tag_set *set, int nr_queue) 3885 { 3886 struct blk_mq_hw_ctx *hctx; 3887 unsigned long i; 3888 3889 queue_for_each_hw_ctx(q, hctx, i) { 3890 if (i == nr_queue) 3891 break; 3892 blk_mq_remove_cpuhp(hctx); 3893 blk_mq_exit_hctx(q, set, hctx, i); 3894 } 3895 } 3896 3897 static int blk_mq_init_hctx(struct request_queue *q, 3898 struct blk_mq_tag_set *set, 3899 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3900 { 3901 hctx->queue_num = hctx_idx; 3902 3903 hctx->tags = set->tags[hctx_idx]; 3904 3905 if (set->ops->init_hctx && 3906 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3907 goto fail; 3908 3909 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3910 hctx->numa_node)) 3911 goto exit_hctx; 3912 3913 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3914 goto exit_flush_rq; 3915 3916 return 0; 3917 3918 exit_flush_rq: 3919 if (set->ops->exit_request) 3920 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3921 exit_hctx: 3922 if (set->ops->exit_hctx) 3923 set->ops->exit_hctx(hctx, hctx_idx); 3924 fail: 3925 return -1; 3926 } 3927 3928 static struct blk_mq_hw_ctx * 3929 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3930 int node) 3931 { 3932 struct blk_mq_hw_ctx *hctx; 3933 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3934 3935 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3936 if (!hctx) 3937 goto fail_alloc_hctx; 3938 3939 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3940 goto free_hctx; 3941 3942 atomic_set(&hctx->nr_active, 0); 3943 if (node == NUMA_NO_NODE) 3944 node = set->numa_node; 3945 hctx->numa_node = node; 3946 3947 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3948 spin_lock_init(&hctx->lock); 3949 INIT_LIST_HEAD(&hctx->dispatch); 3950 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3951 INIT_HLIST_NODE(&hctx->cpuhp_online); 3952 hctx->queue = q; 3953 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3954 3955 INIT_LIST_HEAD(&hctx->hctx_list); 3956 3957 /* 3958 * Allocate space for all possible cpus to avoid allocation at 3959 * runtime 3960 */ 3961 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3962 gfp, node); 3963 if (!hctx->ctxs) 3964 goto free_cpumask; 3965 3966 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3967 gfp, node, false, false)) 3968 goto free_ctxs; 3969 hctx->nr_ctx = 0; 3970 3971 spin_lock_init(&hctx->dispatch_wait_lock); 3972 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3973 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3974 3975 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3976 if (!hctx->fq) 3977 goto free_bitmap; 3978 3979 blk_mq_hctx_kobj_init(hctx); 3980 3981 return hctx; 3982 3983 free_bitmap: 3984 sbitmap_free(&hctx->ctx_map); 3985 free_ctxs: 3986 kfree(hctx->ctxs); 3987 free_cpumask: 3988 free_cpumask_var(hctx->cpumask); 3989 free_hctx: 3990 kfree(hctx); 3991 fail_alloc_hctx: 3992 return NULL; 3993 } 3994 3995 static void blk_mq_init_cpu_queues(struct request_queue *q, 3996 unsigned int nr_hw_queues) 3997 { 3998 struct blk_mq_tag_set *set = q->tag_set; 3999 unsigned int i, j; 4000 4001 for_each_possible_cpu(i) { 4002 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 4003 struct blk_mq_hw_ctx *hctx; 4004 int k; 4005 4006 __ctx->cpu = i; 4007 spin_lock_init(&__ctx->lock); 4008 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 4009 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 4010 4011 __ctx->queue = q; 4012 4013 /* 4014 * Set local node, IFF we have more than one hw queue. If 4015 * not, we remain on the home node of the device 4016 */ 4017 for (j = 0; j < set->nr_maps; j++) { 4018 hctx = blk_mq_map_queue_type(q, j, i); 4019 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 4020 hctx->numa_node = cpu_to_node(i); 4021 } 4022 } 4023 } 4024 4025 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4026 unsigned int hctx_idx, 4027 unsigned int depth) 4028 { 4029 struct blk_mq_tags *tags; 4030 int ret; 4031 4032 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 4033 if (!tags) 4034 return NULL; 4035 4036 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 4037 if (ret) { 4038 blk_mq_free_rq_map(tags); 4039 return NULL; 4040 } 4041 4042 return tags; 4043 } 4044 4045 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4046 int hctx_idx) 4047 { 4048 if (blk_mq_is_shared_tags(set->flags)) { 4049 set->tags[hctx_idx] = set->shared_tags; 4050 4051 return true; 4052 } 4053 4054 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 4055 set->queue_depth); 4056 4057 return set->tags[hctx_idx]; 4058 } 4059 4060 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4061 struct blk_mq_tags *tags, 4062 unsigned int hctx_idx) 4063 { 4064 if (tags) { 4065 blk_mq_free_rqs(set, tags, hctx_idx); 4066 blk_mq_free_rq_map(tags); 4067 } 4068 } 4069 4070 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4071 unsigned int hctx_idx) 4072 { 4073 if (!blk_mq_is_shared_tags(set->flags)) 4074 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4075 4076 set->tags[hctx_idx] = NULL; 4077 } 4078 4079 static void blk_mq_map_swqueue(struct request_queue *q) 4080 { 4081 unsigned int j, hctx_idx; 4082 unsigned long i; 4083 struct blk_mq_hw_ctx *hctx; 4084 struct blk_mq_ctx *ctx; 4085 struct blk_mq_tag_set *set = q->tag_set; 4086 4087 queue_for_each_hw_ctx(q, hctx, i) { 4088 cpumask_clear(hctx->cpumask); 4089 hctx->nr_ctx = 0; 4090 hctx->dispatch_from = NULL; 4091 } 4092 4093 /* 4094 * Map software to hardware queues. 4095 * 4096 * If the cpu isn't present, the cpu is mapped to first hctx. 4097 */ 4098 for_each_possible_cpu(i) { 4099 4100 ctx = per_cpu_ptr(q->queue_ctx, i); 4101 for (j = 0; j < set->nr_maps; j++) { 4102 if (!set->map[j].nr_queues) { 4103 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4104 HCTX_TYPE_DEFAULT, i); 4105 continue; 4106 } 4107 hctx_idx = set->map[j].mq_map[i]; 4108 /* unmapped hw queue can be remapped after CPU topo changed */ 4109 if (!set->tags[hctx_idx] && 4110 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4111 /* 4112 * If tags initialization fail for some hctx, 4113 * that hctx won't be brought online. In this 4114 * case, remap the current ctx to hctx[0] which 4115 * is guaranteed to always have tags allocated 4116 */ 4117 set->map[j].mq_map[i] = 0; 4118 } 4119 4120 hctx = blk_mq_map_queue_type(q, j, i); 4121 ctx->hctxs[j] = hctx; 4122 /* 4123 * If the CPU is already set in the mask, then we've 4124 * mapped this one already. This can happen if 4125 * devices share queues across queue maps. 4126 */ 4127 if (cpumask_test_cpu(i, hctx->cpumask)) 4128 continue; 4129 4130 cpumask_set_cpu(i, hctx->cpumask); 4131 hctx->type = j; 4132 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4133 hctx->ctxs[hctx->nr_ctx++] = ctx; 4134 4135 /* 4136 * If the nr_ctx type overflows, we have exceeded the 4137 * amount of sw queues we can support. 4138 */ 4139 BUG_ON(!hctx->nr_ctx); 4140 } 4141 4142 for (; j < HCTX_MAX_TYPES; j++) 4143 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4144 HCTX_TYPE_DEFAULT, i); 4145 } 4146 4147 queue_for_each_hw_ctx(q, hctx, i) { 4148 int cpu; 4149 4150 /* 4151 * If no software queues are mapped to this hardware queue, 4152 * disable it and free the request entries. 4153 */ 4154 if (!hctx->nr_ctx) { 4155 /* Never unmap queue 0. We need it as a 4156 * fallback in case of a new remap fails 4157 * allocation 4158 */ 4159 if (i) 4160 __blk_mq_free_map_and_rqs(set, i); 4161 4162 hctx->tags = NULL; 4163 continue; 4164 } 4165 4166 hctx->tags = set->tags[i]; 4167 WARN_ON(!hctx->tags); 4168 4169 /* 4170 * Set the map size to the number of mapped software queues. 4171 * This is more accurate and more efficient than looping 4172 * over all possibly mapped software queues. 4173 */ 4174 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4175 4176 /* 4177 * Rule out isolated CPUs from hctx->cpumask to avoid 4178 * running block kworker on isolated CPUs 4179 */ 4180 for_each_cpu(cpu, hctx->cpumask) { 4181 if (cpu_is_isolated(cpu)) 4182 cpumask_clear_cpu(cpu, hctx->cpumask); 4183 } 4184 4185 /* 4186 * Initialize batch roundrobin counts 4187 */ 4188 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4189 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4190 } 4191 } 4192 4193 /* 4194 * Caller needs to ensure that we're either frozen/quiesced, or that 4195 * the queue isn't live yet. 4196 */ 4197 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4198 { 4199 struct blk_mq_hw_ctx *hctx; 4200 unsigned long i; 4201 4202 queue_for_each_hw_ctx(q, hctx, i) { 4203 if (shared) { 4204 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4205 } else { 4206 blk_mq_tag_idle(hctx); 4207 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4208 } 4209 } 4210 } 4211 4212 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4213 bool shared) 4214 { 4215 struct request_queue *q; 4216 4217 lockdep_assert_held(&set->tag_list_lock); 4218 4219 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4220 blk_mq_freeze_queue(q); 4221 queue_set_hctx_shared(q, shared); 4222 blk_mq_unfreeze_queue(q); 4223 } 4224 } 4225 4226 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4227 { 4228 struct blk_mq_tag_set *set = q->tag_set; 4229 4230 mutex_lock(&set->tag_list_lock); 4231 list_del(&q->tag_set_list); 4232 if (list_is_singular(&set->tag_list)) { 4233 /* just transitioned to unshared */ 4234 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4235 /* update existing queue */ 4236 blk_mq_update_tag_set_shared(set, false); 4237 } 4238 mutex_unlock(&set->tag_list_lock); 4239 INIT_LIST_HEAD(&q->tag_set_list); 4240 } 4241 4242 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4243 struct request_queue *q) 4244 { 4245 mutex_lock(&set->tag_list_lock); 4246 4247 /* 4248 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4249 */ 4250 if (!list_empty(&set->tag_list) && 4251 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4252 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4253 /* update existing queue */ 4254 blk_mq_update_tag_set_shared(set, true); 4255 } 4256 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4257 queue_set_hctx_shared(q, true); 4258 list_add_tail(&q->tag_set_list, &set->tag_list); 4259 4260 mutex_unlock(&set->tag_list_lock); 4261 } 4262 4263 /* All allocations will be freed in release handler of q->mq_kobj */ 4264 static int blk_mq_alloc_ctxs(struct request_queue *q) 4265 { 4266 struct blk_mq_ctxs *ctxs; 4267 int cpu; 4268 4269 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4270 if (!ctxs) 4271 return -ENOMEM; 4272 4273 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4274 if (!ctxs->queue_ctx) 4275 goto fail; 4276 4277 for_each_possible_cpu(cpu) { 4278 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4279 ctx->ctxs = ctxs; 4280 } 4281 4282 q->mq_kobj = &ctxs->kobj; 4283 q->queue_ctx = ctxs->queue_ctx; 4284 4285 return 0; 4286 fail: 4287 kfree(ctxs); 4288 return -ENOMEM; 4289 } 4290 4291 /* 4292 * It is the actual release handler for mq, but we do it from 4293 * request queue's release handler for avoiding use-after-free 4294 * and headache because q->mq_kobj shouldn't have been introduced, 4295 * but we can't group ctx/kctx kobj without it. 4296 */ 4297 void blk_mq_release(struct request_queue *q) 4298 { 4299 struct blk_mq_hw_ctx *hctx, *next; 4300 unsigned long i; 4301 4302 queue_for_each_hw_ctx(q, hctx, i) 4303 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4304 4305 /* all hctx are in .unused_hctx_list now */ 4306 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4307 list_del_init(&hctx->hctx_list); 4308 kobject_put(&hctx->kobj); 4309 } 4310 4311 xa_destroy(&q->hctx_table); 4312 4313 /* 4314 * release .mq_kobj and sw queue's kobject now because 4315 * both share lifetime with request queue. 4316 */ 4317 blk_mq_sysfs_deinit(q); 4318 } 4319 4320 static bool blk_mq_can_poll(struct blk_mq_tag_set *set) 4321 { 4322 return set->nr_maps > HCTX_TYPE_POLL && 4323 set->map[HCTX_TYPE_POLL].nr_queues; 4324 } 4325 4326 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4327 struct queue_limits *lim, void *queuedata) 4328 { 4329 struct queue_limits default_lim = { }; 4330 struct request_queue *q; 4331 int ret; 4332 4333 if (!lim) 4334 lim = &default_lim; 4335 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4336 if (blk_mq_can_poll(set)) 4337 lim->features |= BLK_FEAT_POLL; 4338 4339 q = blk_alloc_queue(lim, set->numa_node); 4340 if (IS_ERR(q)) 4341 return q; 4342 q->queuedata = queuedata; 4343 ret = blk_mq_init_allocated_queue(set, q); 4344 if (ret) { 4345 blk_put_queue(q); 4346 return ERR_PTR(ret); 4347 } 4348 return q; 4349 } 4350 EXPORT_SYMBOL(blk_mq_alloc_queue); 4351 4352 /** 4353 * blk_mq_destroy_queue - shutdown a request queue 4354 * @q: request queue to shutdown 4355 * 4356 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4357 * requests will be failed with -ENODEV. The caller is responsible for dropping 4358 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4359 * 4360 * Context: can sleep 4361 */ 4362 void blk_mq_destroy_queue(struct request_queue *q) 4363 { 4364 WARN_ON_ONCE(!queue_is_mq(q)); 4365 WARN_ON_ONCE(blk_queue_registered(q)); 4366 4367 might_sleep(); 4368 4369 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4370 blk_queue_start_drain(q); 4371 blk_mq_freeze_queue_wait(q); 4372 4373 blk_sync_queue(q); 4374 blk_mq_cancel_work_sync(q); 4375 blk_mq_exit_queue(q); 4376 } 4377 EXPORT_SYMBOL(blk_mq_destroy_queue); 4378 4379 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4380 struct queue_limits *lim, void *queuedata, 4381 struct lock_class_key *lkclass) 4382 { 4383 struct request_queue *q; 4384 struct gendisk *disk; 4385 4386 q = blk_mq_alloc_queue(set, lim, queuedata); 4387 if (IS_ERR(q)) 4388 return ERR_CAST(q); 4389 4390 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4391 if (!disk) { 4392 blk_mq_destroy_queue(q); 4393 blk_put_queue(q); 4394 return ERR_PTR(-ENOMEM); 4395 } 4396 set_bit(GD_OWNS_QUEUE, &disk->state); 4397 return disk; 4398 } 4399 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4400 4401 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4402 struct lock_class_key *lkclass) 4403 { 4404 struct gendisk *disk; 4405 4406 if (!blk_get_queue(q)) 4407 return NULL; 4408 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4409 if (!disk) 4410 blk_put_queue(q); 4411 return disk; 4412 } 4413 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4414 4415 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4416 struct blk_mq_tag_set *set, struct request_queue *q, 4417 int hctx_idx, int node) 4418 { 4419 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4420 4421 /* reuse dead hctx first */ 4422 spin_lock(&q->unused_hctx_lock); 4423 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4424 if (tmp->numa_node == node) { 4425 hctx = tmp; 4426 break; 4427 } 4428 } 4429 if (hctx) 4430 list_del_init(&hctx->hctx_list); 4431 spin_unlock(&q->unused_hctx_lock); 4432 4433 if (!hctx) 4434 hctx = blk_mq_alloc_hctx(q, set, node); 4435 if (!hctx) 4436 goto fail; 4437 4438 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4439 goto free_hctx; 4440 4441 return hctx; 4442 4443 free_hctx: 4444 kobject_put(&hctx->kobj); 4445 fail: 4446 return NULL; 4447 } 4448 4449 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4450 struct request_queue *q) 4451 { 4452 struct blk_mq_hw_ctx *hctx; 4453 unsigned long i, j; 4454 4455 /* protect against switching io scheduler */ 4456 lockdep_assert_held(&q->sysfs_lock); 4457 4458 for (i = 0; i < set->nr_hw_queues; i++) { 4459 int old_node; 4460 int node = blk_mq_get_hctx_node(set, i); 4461 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4462 4463 if (old_hctx) { 4464 old_node = old_hctx->numa_node; 4465 blk_mq_exit_hctx(q, set, old_hctx, i); 4466 } 4467 4468 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4469 if (!old_hctx) 4470 break; 4471 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4472 node, old_node); 4473 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4474 WARN_ON_ONCE(!hctx); 4475 } 4476 } 4477 /* 4478 * Increasing nr_hw_queues fails. Free the newly allocated 4479 * hctxs and keep the previous q->nr_hw_queues. 4480 */ 4481 if (i != set->nr_hw_queues) { 4482 j = q->nr_hw_queues; 4483 } else { 4484 j = i; 4485 q->nr_hw_queues = set->nr_hw_queues; 4486 } 4487 4488 xa_for_each_start(&q->hctx_table, j, hctx, j) 4489 blk_mq_exit_hctx(q, set, hctx, j); 4490 4491 /* unregister cpuhp callbacks for exited hctxs */ 4492 blk_mq_remove_hw_queues_cpuhp(q); 4493 4494 /* register cpuhp for new initialized hctxs */ 4495 blk_mq_add_hw_queues_cpuhp(q); 4496 } 4497 4498 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4499 struct request_queue *q) 4500 { 4501 /* mark the queue as mq asap */ 4502 q->mq_ops = set->ops; 4503 4504 /* 4505 * ->tag_set has to be setup before initialize hctx, which cpuphp 4506 * handler needs it for checking queue mapping 4507 */ 4508 q->tag_set = set; 4509 4510 if (blk_mq_alloc_ctxs(q)) 4511 goto err_exit; 4512 4513 /* init q->mq_kobj and sw queues' kobjects */ 4514 blk_mq_sysfs_init(q); 4515 4516 INIT_LIST_HEAD(&q->unused_hctx_list); 4517 spin_lock_init(&q->unused_hctx_lock); 4518 4519 xa_init(&q->hctx_table); 4520 4521 mutex_lock(&q->sysfs_lock); 4522 4523 blk_mq_realloc_hw_ctxs(set, q); 4524 if (!q->nr_hw_queues) 4525 goto err_hctxs; 4526 4527 mutex_unlock(&q->sysfs_lock); 4528 4529 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4530 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4531 4532 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4533 4534 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4535 INIT_LIST_HEAD(&q->flush_list); 4536 INIT_LIST_HEAD(&q->requeue_list); 4537 spin_lock_init(&q->requeue_lock); 4538 4539 q->nr_requests = set->queue_depth; 4540 4541 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4542 blk_mq_add_queue_tag_set(set, q); 4543 blk_mq_map_swqueue(q); 4544 return 0; 4545 4546 err_hctxs: 4547 mutex_unlock(&q->sysfs_lock); 4548 blk_mq_release(q); 4549 err_exit: 4550 q->mq_ops = NULL; 4551 return -ENOMEM; 4552 } 4553 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4554 4555 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4556 void blk_mq_exit_queue(struct request_queue *q) 4557 { 4558 struct blk_mq_tag_set *set = q->tag_set; 4559 4560 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4561 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4562 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4563 blk_mq_del_queue_tag_set(q); 4564 } 4565 4566 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4567 { 4568 int i; 4569 4570 if (blk_mq_is_shared_tags(set->flags)) { 4571 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4572 BLK_MQ_NO_HCTX_IDX, 4573 set->queue_depth); 4574 if (!set->shared_tags) 4575 return -ENOMEM; 4576 } 4577 4578 for (i = 0; i < set->nr_hw_queues; i++) { 4579 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4580 goto out_unwind; 4581 cond_resched(); 4582 } 4583 4584 return 0; 4585 4586 out_unwind: 4587 while (--i >= 0) 4588 __blk_mq_free_map_and_rqs(set, i); 4589 4590 if (blk_mq_is_shared_tags(set->flags)) { 4591 blk_mq_free_map_and_rqs(set, set->shared_tags, 4592 BLK_MQ_NO_HCTX_IDX); 4593 } 4594 4595 return -ENOMEM; 4596 } 4597 4598 /* 4599 * Allocate the request maps associated with this tag_set. Note that this 4600 * may reduce the depth asked for, if memory is tight. set->queue_depth 4601 * will be updated to reflect the allocated depth. 4602 */ 4603 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4604 { 4605 unsigned int depth; 4606 int err; 4607 4608 depth = set->queue_depth; 4609 do { 4610 err = __blk_mq_alloc_rq_maps(set); 4611 if (!err) 4612 break; 4613 4614 set->queue_depth >>= 1; 4615 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4616 err = -ENOMEM; 4617 break; 4618 } 4619 } while (set->queue_depth); 4620 4621 if (!set->queue_depth || err) { 4622 pr_err("blk-mq: failed to allocate request map\n"); 4623 return -ENOMEM; 4624 } 4625 4626 if (depth != set->queue_depth) 4627 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4628 depth, set->queue_depth); 4629 4630 return 0; 4631 } 4632 4633 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4634 { 4635 /* 4636 * blk_mq_map_queues() and multiple .map_queues() implementations 4637 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4638 * number of hardware queues. 4639 */ 4640 if (set->nr_maps == 1) 4641 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4642 4643 if (set->ops->map_queues) { 4644 int i; 4645 4646 /* 4647 * transport .map_queues is usually done in the following 4648 * way: 4649 * 4650 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4651 * mask = get_cpu_mask(queue) 4652 * for_each_cpu(cpu, mask) 4653 * set->map[x].mq_map[cpu] = queue; 4654 * } 4655 * 4656 * When we need to remap, the table has to be cleared for 4657 * killing stale mapping since one CPU may not be mapped 4658 * to any hw queue. 4659 */ 4660 for (i = 0; i < set->nr_maps; i++) 4661 blk_mq_clear_mq_map(&set->map[i]); 4662 4663 set->ops->map_queues(set); 4664 } else { 4665 BUG_ON(set->nr_maps > 1); 4666 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4667 } 4668 } 4669 4670 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4671 int new_nr_hw_queues) 4672 { 4673 struct blk_mq_tags **new_tags; 4674 int i; 4675 4676 if (set->nr_hw_queues >= new_nr_hw_queues) 4677 goto done; 4678 4679 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4680 GFP_KERNEL, set->numa_node); 4681 if (!new_tags) 4682 return -ENOMEM; 4683 4684 if (set->tags) 4685 memcpy(new_tags, set->tags, set->nr_hw_queues * 4686 sizeof(*set->tags)); 4687 kfree(set->tags); 4688 set->tags = new_tags; 4689 4690 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4691 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4692 while (--i >= set->nr_hw_queues) 4693 __blk_mq_free_map_and_rqs(set, i); 4694 return -ENOMEM; 4695 } 4696 cond_resched(); 4697 } 4698 4699 done: 4700 set->nr_hw_queues = new_nr_hw_queues; 4701 return 0; 4702 } 4703 4704 /* 4705 * Alloc a tag set to be associated with one or more request queues. 4706 * May fail with EINVAL for various error conditions. May adjust the 4707 * requested depth down, if it's too large. In that case, the set 4708 * value will be stored in set->queue_depth. 4709 */ 4710 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4711 { 4712 int i, ret; 4713 4714 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4715 4716 if (!set->nr_hw_queues) 4717 return -EINVAL; 4718 if (!set->queue_depth) 4719 return -EINVAL; 4720 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4721 return -EINVAL; 4722 4723 if (!set->ops->queue_rq) 4724 return -EINVAL; 4725 4726 if (!set->ops->get_budget ^ !set->ops->put_budget) 4727 return -EINVAL; 4728 4729 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4730 pr_info("blk-mq: reduced tag depth to %u\n", 4731 BLK_MQ_MAX_DEPTH); 4732 set->queue_depth = BLK_MQ_MAX_DEPTH; 4733 } 4734 4735 if (!set->nr_maps) 4736 set->nr_maps = 1; 4737 else if (set->nr_maps > HCTX_MAX_TYPES) 4738 return -EINVAL; 4739 4740 /* 4741 * If a crashdump is active, then we are potentially in a very 4742 * memory constrained environment. Limit us to 64 tags to prevent 4743 * using too much memory. 4744 */ 4745 if (is_kdump_kernel()) 4746 set->queue_depth = min(64U, set->queue_depth); 4747 4748 /* 4749 * There is no use for more h/w queues than cpus if we just have 4750 * a single map 4751 */ 4752 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4753 set->nr_hw_queues = nr_cpu_ids; 4754 4755 if (set->flags & BLK_MQ_F_BLOCKING) { 4756 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4757 if (!set->srcu) 4758 return -ENOMEM; 4759 ret = init_srcu_struct(set->srcu); 4760 if (ret) 4761 goto out_free_srcu; 4762 } 4763 4764 ret = -ENOMEM; 4765 set->tags = kcalloc_node(set->nr_hw_queues, 4766 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4767 set->numa_node); 4768 if (!set->tags) 4769 goto out_cleanup_srcu; 4770 4771 for (i = 0; i < set->nr_maps; i++) { 4772 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4773 sizeof(set->map[i].mq_map[0]), 4774 GFP_KERNEL, set->numa_node); 4775 if (!set->map[i].mq_map) 4776 goto out_free_mq_map; 4777 set->map[i].nr_queues = set->nr_hw_queues; 4778 } 4779 4780 blk_mq_update_queue_map(set); 4781 4782 ret = blk_mq_alloc_set_map_and_rqs(set); 4783 if (ret) 4784 goto out_free_mq_map; 4785 4786 mutex_init(&set->tag_list_lock); 4787 INIT_LIST_HEAD(&set->tag_list); 4788 4789 return 0; 4790 4791 out_free_mq_map: 4792 for (i = 0; i < set->nr_maps; i++) { 4793 kfree(set->map[i].mq_map); 4794 set->map[i].mq_map = NULL; 4795 } 4796 kfree(set->tags); 4797 set->tags = NULL; 4798 out_cleanup_srcu: 4799 if (set->flags & BLK_MQ_F_BLOCKING) 4800 cleanup_srcu_struct(set->srcu); 4801 out_free_srcu: 4802 if (set->flags & BLK_MQ_F_BLOCKING) 4803 kfree(set->srcu); 4804 return ret; 4805 } 4806 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4807 4808 /* allocate and initialize a tagset for a simple single-queue device */ 4809 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4810 const struct blk_mq_ops *ops, unsigned int queue_depth, 4811 unsigned int set_flags) 4812 { 4813 memset(set, 0, sizeof(*set)); 4814 set->ops = ops; 4815 set->nr_hw_queues = 1; 4816 set->nr_maps = 1; 4817 set->queue_depth = queue_depth; 4818 set->numa_node = NUMA_NO_NODE; 4819 set->flags = set_flags; 4820 return blk_mq_alloc_tag_set(set); 4821 } 4822 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4823 4824 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4825 { 4826 int i, j; 4827 4828 for (i = 0; i < set->nr_hw_queues; i++) 4829 __blk_mq_free_map_and_rqs(set, i); 4830 4831 if (blk_mq_is_shared_tags(set->flags)) { 4832 blk_mq_free_map_and_rqs(set, set->shared_tags, 4833 BLK_MQ_NO_HCTX_IDX); 4834 } 4835 4836 for (j = 0; j < set->nr_maps; j++) { 4837 kfree(set->map[j].mq_map); 4838 set->map[j].mq_map = NULL; 4839 } 4840 4841 kfree(set->tags); 4842 set->tags = NULL; 4843 if (set->flags & BLK_MQ_F_BLOCKING) { 4844 cleanup_srcu_struct(set->srcu); 4845 kfree(set->srcu); 4846 } 4847 } 4848 EXPORT_SYMBOL(blk_mq_free_tag_set); 4849 4850 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4851 { 4852 struct blk_mq_tag_set *set = q->tag_set; 4853 struct blk_mq_hw_ctx *hctx; 4854 int ret; 4855 unsigned long i; 4856 4857 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4858 return -EINVAL; 4859 4860 if (!set) 4861 return -EINVAL; 4862 4863 if (q->nr_requests == nr) 4864 return 0; 4865 4866 blk_mq_quiesce_queue(q); 4867 4868 ret = 0; 4869 queue_for_each_hw_ctx(q, hctx, i) { 4870 if (!hctx->tags) 4871 continue; 4872 /* 4873 * If we're using an MQ scheduler, just update the scheduler 4874 * queue depth. This is similar to what the old code would do. 4875 */ 4876 if (hctx->sched_tags) { 4877 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4878 nr, true); 4879 } else { 4880 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4881 false); 4882 } 4883 if (ret) 4884 break; 4885 if (q->elevator && q->elevator->type->ops.depth_updated) 4886 q->elevator->type->ops.depth_updated(hctx); 4887 } 4888 if (!ret) { 4889 q->nr_requests = nr; 4890 if (blk_mq_is_shared_tags(set->flags)) { 4891 if (q->elevator) 4892 blk_mq_tag_update_sched_shared_tags(q); 4893 else 4894 blk_mq_tag_resize_shared_tags(set, nr); 4895 } 4896 } 4897 4898 blk_mq_unquiesce_queue(q); 4899 4900 return ret; 4901 } 4902 4903 /* 4904 * request_queue and elevator_type pair. 4905 * It is just used by __blk_mq_update_nr_hw_queues to cache 4906 * the elevator_type associated with a request_queue. 4907 */ 4908 struct blk_mq_qe_pair { 4909 struct list_head node; 4910 struct request_queue *q; 4911 struct elevator_type *type; 4912 }; 4913 4914 /* 4915 * Cache the elevator_type in qe pair list and switch the 4916 * io scheduler to 'none' 4917 */ 4918 static bool blk_mq_elv_switch_none(struct list_head *head, 4919 struct request_queue *q) 4920 { 4921 struct blk_mq_qe_pair *qe; 4922 4923 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4924 if (!qe) 4925 return false; 4926 4927 /* q->elevator needs protection from ->sysfs_lock */ 4928 lockdep_assert_held(&q->sysfs_lock); 4929 4930 /* the check has to be done with holding sysfs_lock */ 4931 if (!q->elevator) { 4932 kfree(qe); 4933 goto out; 4934 } 4935 4936 INIT_LIST_HEAD(&qe->node); 4937 qe->q = q; 4938 qe->type = q->elevator->type; 4939 /* keep a reference to the elevator module as we'll switch back */ 4940 __elevator_get(qe->type); 4941 list_add(&qe->node, head); 4942 elevator_disable(q); 4943 out: 4944 return true; 4945 } 4946 4947 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4948 struct request_queue *q) 4949 { 4950 struct blk_mq_qe_pair *qe; 4951 4952 list_for_each_entry(qe, head, node) 4953 if (qe->q == q) 4954 return qe; 4955 4956 return NULL; 4957 } 4958 4959 static void blk_mq_elv_switch_back(struct list_head *head, 4960 struct request_queue *q) 4961 { 4962 struct blk_mq_qe_pair *qe; 4963 struct elevator_type *t; 4964 4965 qe = blk_lookup_qe_pair(head, q); 4966 if (!qe) 4967 return; 4968 t = qe->type; 4969 list_del(&qe->node); 4970 kfree(qe); 4971 4972 elevator_switch(q, t); 4973 /* drop the reference acquired in blk_mq_elv_switch_none */ 4974 elevator_put(t); 4975 } 4976 4977 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4978 int nr_hw_queues) 4979 { 4980 struct request_queue *q; 4981 LIST_HEAD(head); 4982 int prev_nr_hw_queues = set->nr_hw_queues; 4983 int i; 4984 4985 lockdep_assert_held(&set->tag_list_lock); 4986 4987 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4988 nr_hw_queues = nr_cpu_ids; 4989 if (nr_hw_queues < 1) 4990 return; 4991 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4992 return; 4993 4994 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4995 mutex_lock(&q->sysfs_dir_lock); 4996 mutex_lock(&q->sysfs_lock); 4997 blk_mq_freeze_queue(q); 4998 } 4999 /* 5000 * Switch IO scheduler to 'none', cleaning up the data associated 5001 * with the previous scheduler. We will switch back once we are done 5002 * updating the new sw to hw queue mappings. 5003 */ 5004 list_for_each_entry(q, &set->tag_list, tag_set_list) 5005 if (!blk_mq_elv_switch_none(&head, q)) 5006 goto switch_back; 5007 5008 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5009 blk_mq_debugfs_unregister_hctxs(q); 5010 blk_mq_sysfs_unregister_hctxs(q); 5011 } 5012 5013 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 5014 goto reregister; 5015 5016 fallback: 5017 blk_mq_update_queue_map(set); 5018 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5019 struct queue_limits lim; 5020 5021 blk_mq_realloc_hw_ctxs(set, q); 5022 5023 if (q->nr_hw_queues != set->nr_hw_queues) { 5024 int i = prev_nr_hw_queues; 5025 5026 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 5027 nr_hw_queues, prev_nr_hw_queues); 5028 for (; i < set->nr_hw_queues; i++) 5029 __blk_mq_free_map_and_rqs(set, i); 5030 5031 set->nr_hw_queues = prev_nr_hw_queues; 5032 goto fallback; 5033 } 5034 lim = queue_limits_start_update(q); 5035 if (blk_mq_can_poll(set)) 5036 lim.features |= BLK_FEAT_POLL; 5037 else 5038 lim.features &= ~BLK_FEAT_POLL; 5039 if (queue_limits_commit_update(q, &lim) < 0) 5040 pr_warn("updating the poll flag failed\n"); 5041 blk_mq_map_swqueue(q); 5042 } 5043 5044 reregister: 5045 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5046 blk_mq_sysfs_register_hctxs(q); 5047 blk_mq_debugfs_register_hctxs(q); 5048 } 5049 5050 switch_back: 5051 list_for_each_entry(q, &set->tag_list, tag_set_list) 5052 blk_mq_elv_switch_back(&head, q); 5053 5054 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5055 blk_mq_unfreeze_queue(q); 5056 mutex_unlock(&q->sysfs_lock); 5057 mutex_unlock(&q->sysfs_dir_lock); 5058 } 5059 5060 /* Free the excess tags when nr_hw_queues shrink. */ 5061 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 5062 __blk_mq_free_map_and_rqs(set, i); 5063 } 5064 5065 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 5066 { 5067 mutex_lock(&set->tag_list_lock); 5068 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 5069 mutex_unlock(&set->tag_list_lock); 5070 } 5071 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 5072 5073 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 5074 struct io_comp_batch *iob, unsigned int flags) 5075 { 5076 long state = get_current_state(); 5077 int ret; 5078 5079 do { 5080 ret = q->mq_ops->poll(hctx, iob); 5081 if (ret > 0) { 5082 __set_current_state(TASK_RUNNING); 5083 return ret; 5084 } 5085 5086 if (signal_pending_state(state, current)) 5087 __set_current_state(TASK_RUNNING); 5088 if (task_is_running(current)) 5089 return 1; 5090 5091 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5092 break; 5093 cpu_relax(); 5094 } while (!need_resched()); 5095 5096 __set_current_state(TASK_RUNNING); 5097 return 0; 5098 } 5099 5100 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5101 struct io_comp_batch *iob, unsigned int flags) 5102 { 5103 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 5104 5105 return blk_hctx_poll(q, hctx, iob, flags); 5106 } 5107 5108 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5109 unsigned int poll_flags) 5110 { 5111 struct request_queue *q = rq->q; 5112 int ret; 5113 5114 if (!blk_rq_is_poll(rq)) 5115 return 0; 5116 if (!percpu_ref_tryget(&q->q_usage_counter)) 5117 return 0; 5118 5119 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5120 blk_queue_exit(q); 5121 5122 return ret; 5123 } 5124 EXPORT_SYMBOL_GPL(blk_rq_poll); 5125 5126 unsigned int blk_mq_rq_cpu(struct request *rq) 5127 { 5128 return rq->mq_ctx->cpu; 5129 } 5130 EXPORT_SYMBOL(blk_mq_rq_cpu); 5131 5132 void blk_mq_cancel_work_sync(struct request_queue *q) 5133 { 5134 struct blk_mq_hw_ctx *hctx; 5135 unsigned long i; 5136 5137 cancel_delayed_work_sync(&q->requeue_work); 5138 5139 queue_for_each_hw_ctx(q, hctx, i) 5140 cancel_delayed_work_sync(&hctx->run_work); 5141 } 5142 5143 static int __init blk_mq_init(void) 5144 { 5145 int i; 5146 5147 for_each_possible_cpu(i) 5148 init_llist_head(&per_cpu(blk_cpu_done, i)); 5149 for_each_possible_cpu(i) 5150 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5151 __blk_mq_complete_request_remote, NULL); 5152 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5153 5154 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5155 "block/softirq:dead", NULL, 5156 blk_softirq_cpu_dead); 5157 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5158 blk_mq_hctx_notify_dead); 5159 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5160 blk_mq_hctx_notify_online, 5161 blk_mq_hctx_notify_offline); 5162 return 0; 5163 } 5164 subsys_initcall(blk_mq_init); 5165