xref: /linux/block/blk-mq.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->rq_flags & RQF_IO_STAT &&
97 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 #ifdef CONFIG_LOCKDEP
125 static bool blk_freeze_set_owner(struct request_queue *q,
126 				 struct task_struct *owner)
127 {
128 	if (!owner)
129 		return false;
130 
131 	if (!q->mq_freeze_depth) {
132 		q->mq_freeze_owner = owner;
133 		q->mq_freeze_owner_depth = 1;
134 		return true;
135 	}
136 
137 	if (owner == q->mq_freeze_owner)
138 		q->mq_freeze_owner_depth += 1;
139 	return false;
140 }
141 
142 /* verify the last unfreeze in owner context */
143 static bool blk_unfreeze_check_owner(struct request_queue *q)
144 {
145 	if (!q->mq_freeze_owner)
146 		return false;
147 	if (q->mq_freeze_owner != current)
148 		return false;
149 	if (--q->mq_freeze_owner_depth == 0) {
150 		q->mq_freeze_owner = NULL;
151 		return true;
152 	}
153 	return false;
154 }
155 
156 #else
157 
158 static bool blk_freeze_set_owner(struct request_queue *q,
159 				 struct task_struct *owner)
160 {
161 	return false;
162 }
163 
164 static bool blk_unfreeze_check_owner(struct request_queue *q)
165 {
166 	return false;
167 }
168 #endif
169 
170 bool __blk_freeze_queue_start(struct request_queue *q,
171 			      struct task_struct *owner)
172 {
173 	bool freeze;
174 
175 	mutex_lock(&q->mq_freeze_lock);
176 	freeze = blk_freeze_set_owner(q, owner);
177 	if (++q->mq_freeze_depth == 1) {
178 		percpu_ref_kill(&q->q_usage_counter);
179 		mutex_unlock(&q->mq_freeze_lock);
180 		if (queue_is_mq(q))
181 			blk_mq_run_hw_queues(q, false);
182 	} else {
183 		mutex_unlock(&q->mq_freeze_lock);
184 	}
185 
186 	return freeze;
187 }
188 
189 void blk_freeze_queue_start(struct request_queue *q)
190 {
191 	if (__blk_freeze_queue_start(q, current))
192 		blk_freeze_acquire_lock(q, false, false);
193 }
194 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
195 
196 void blk_mq_freeze_queue_wait(struct request_queue *q)
197 {
198 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
201 
202 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
203 				     unsigned long timeout)
204 {
205 	return wait_event_timeout(q->mq_freeze_wq,
206 					percpu_ref_is_zero(&q->q_usage_counter),
207 					timeout);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
210 
211 void blk_mq_freeze_queue(struct request_queue *q)
212 {
213 	blk_freeze_queue_start(q);
214 	blk_mq_freeze_queue_wait(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	bool unfreeze;
221 
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	unfreeze = blk_unfreeze_check_owner(q);
232 	mutex_unlock(&q->mq_freeze_lock);
233 
234 	return unfreeze;
235 }
236 
237 void blk_mq_unfreeze_queue(struct request_queue *q)
238 {
239 	if (__blk_mq_unfreeze_queue(q, false))
240 		blk_unfreeze_release_lock(q, false, false);
241 }
242 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
243 
244 /*
245  * non_owner variant of blk_freeze_queue_start
246  *
247  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
248  * by the same task.  This is fragile and should not be used if at all
249  * possible.
250  */
251 void blk_freeze_queue_start_non_owner(struct request_queue *q)
252 {
253 	__blk_freeze_queue_start(q, NULL);
254 }
255 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
256 
257 /* non_owner variant of blk_mq_unfreeze_queue */
258 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
259 {
260 	__blk_mq_unfreeze_queue(q, false);
261 }
262 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
263 
264 /*
265  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
266  * mpt3sas driver such that this function can be removed.
267  */
268 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
269 {
270 	unsigned long flags;
271 
272 	spin_lock_irqsave(&q->queue_lock, flags);
273 	if (!q->quiesce_depth++)
274 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
275 	spin_unlock_irqrestore(&q->queue_lock, flags);
276 }
277 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
278 
279 /**
280  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
281  * @set: tag_set to wait on
282  *
283  * Note: it is driver's responsibility for making sure that quiesce has
284  * been started on or more of the request_queues of the tag_set.  This
285  * function only waits for the quiesce on those request_queues that had
286  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
287  */
288 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
289 {
290 	if (set->flags & BLK_MQ_F_BLOCKING)
291 		synchronize_srcu(set->srcu);
292 	else
293 		synchronize_rcu();
294 }
295 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
296 
297 /**
298  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
299  * @q: request queue.
300  *
301  * Note: this function does not prevent that the struct request end_io()
302  * callback function is invoked. Once this function is returned, we make
303  * sure no dispatch can happen until the queue is unquiesced via
304  * blk_mq_unquiesce_queue().
305  */
306 void blk_mq_quiesce_queue(struct request_queue *q)
307 {
308 	blk_mq_quiesce_queue_nowait(q);
309 	/* nothing to wait for non-mq queues */
310 	if (queue_is_mq(q))
311 		blk_mq_wait_quiesce_done(q->tag_set);
312 }
313 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
314 
315 /*
316  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
317  * @q: request queue.
318  *
319  * This function recovers queue into the state before quiescing
320  * which is done by blk_mq_quiesce_queue.
321  */
322 void blk_mq_unquiesce_queue(struct request_queue *q)
323 {
324 	unsigned long flags;
325 	bool run_queue = false;
326 
327 	spin_lock_irqsave(&q->queue_lock, flags);
328 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
329 		;
330 	} else if (!--q->quiesce_depth) {
331 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
332 		run_queue = true;
333 	}
334 	spin_unlock_irqrestore(&q->queue_lock, flags);
335 
336 	/* dispatch requests which are inserted during quiescing */
337 	if (run_queue)
338 		blk_mq_run_hw_queues(q, true);
339 }
340 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
341 
342 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
343 {
344 	struct request_queue *q;
345 
346 	mutex_lock(&set->tag_list_lock);
347 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
348 		if (!blk_queue_skip_tagset_quiesce(q))
349 			blk_mq_quiesce_queue_nowait(q);
350 	}
351 	mutex_unlock(&set->tag_list_lock);
352 
353 	blk_mq_wait_quiesce_done(set);
354 }
355 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
356 
357 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
358 {
359 	struct request_queue *q;
360 
361 	mutex_lock(&set->tag_list_lock);
362 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
363 		if (!blk_queue_skip_tagset_quiesce(q))
364 			blk_mq_unquiesce_queue(q);
365 	}
366 	mutex_unlock(&set->tag_list_lock);
367 }
368 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
369 
370 void blk_mq_wake_waiters(struct request_queue *q)
371 {
372 	struct blk_mq_hw_ctx *hctx;
373 	unsigned long i;
374 
375 	queue_for_each_hw_ctx(q, hctx, i)
376 		if (blk_mq_hw_queue_mapped(hctx))
377 			blk_mq_tag_wakeup_all(hctx->tags, true);
378 }
379 
380 void blk_rq_init(struct request_queue *q, struct request *rq)
381 {
382 	memset(rq, 0, sizeof(*rq));
383 
384 	INIT_LIST_HEAD(&rq->queuelist);
385 	rq->q = q;
386 	rq->__sector = (sector_t) -1;
387 	INIT_HLIST_NODE(&rq->hash);
388 	RB_CLEAR_NODE(&rq->rb_node);
389 	rq->tag = BLK_MQ_NO_TAG;
390 	rq->internal_tag = BLK_MQ_NO_TAG;
391 	rq->start_time_ns = blk_time_get_ns();
392 	blk_crypto_rq_set_defaults(rq);
393 }
394 EXPORT_SYMBOL(blk_rq_init);
395 
396 /* Set start and alloc time when the allocated request is actually used */
397 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
398 {
399 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
400 	if (blk_queue_rq_alloc_time(rq->q))
401 		rq->alloc_time_ns = alloc_time_ns;
402 	else
403 		rq->alloc_time_ns = 0;
404 #endif
405 }
406 
407 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
408 		struct blk_mq_tags *tags, unsigned int tag)
409 {
410 	struct blk_mq_ctx *ctx = data->ctx;
411 	struct blk_mq_hw_ctx *hctx = data->hctx;
412 	struct request_queue *q = data->q;
413 	struct request *rq = tags->static_rqs[tag];
414 
415 	rq->q = q;
416 	rq->mq_ctx = ctx;
417 	rq->mq_hctx = hctx;
418 	rq->cmd_flags = data->cmd_flags;
419 
420 	if (data->flags & BLK_MQ_REQ_PM)
421 		data->rq_flags |= RQF_PM;
422 	rq->rq_flags = data->rq_flags;
423 
424 	if (data->rq_flags & RQF_SCHED_TAGS) {
425 		rq->tag = BLK_MQ_NO_TAG;
426 		rq->internal_tag = tag;
427 	} else {
428 		rq->tag = tag;
429 		rq->internal_tag = BLK_MQ_NO_TAG;
430 	}
431 	rq->timeout = 0;
432 
433 	rq->part = NULL;
434 	rq->io_start_time_ns = 0;
435 	rq->stats_sectors = 0;
436 	rq->nr_phys_segments = 0;
437 	rq->nr_integrity_segments = 0;
438 	rq->end_io = NULL;
439 	rq->end_io_data = NULL;
440 
441 	blk_crypto_rq_set_defaults(rq);
442 	INIT_LIST_HEAD(&rq->queuelist);
443 	/* tag was already set */
444 	WRITE_ONCE(rq->deadline, 0);
445 	req_ref_set(rq, 1);
446 
447 	if (rq->rq_flags & RQF_USE_SCHED) {
448 		struct elevator_queue *e = data->q->elevator;
449 
450 		INIT_HLIST_NODE(&rq->hash);
451 		RB_CLEAR_NODE(&rq->rb_node);
452 
453 		if (e->type->ops.prepare_request)
454 			e->type->ops.prepare_request(rq);
455 	}
456 
457 	return rq;
458 }
459 
460 static inline struct request *
461 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
462 {
463 	unsigned int tag, tag_offset;
464 	struct blk_mq_tags *tags;
465 	struct request *rq;
466 	unsigned long tag_mask;
467 	int i, nr = 0;
468 
469 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
470 	if (unlikely(!tag_mask))
471 		return NULL;
472 
473 	tags = blk_mq_tags_from_data(data);
474 	for (i = 0; tag_mask; i++) {
475 		if (!(tag_mask & (1UL << i)))
476 			continue;
477 		tag = tag_offset + i;
478 		prefetch(tags->static_rqs[tag]);
479 		tag_mask &= ~(1UL << i);
480 		rq = blk_mq_rq_ctx_init(data, tags, tag);
481 		rq_list_add_head(data->cached_rqs, rq);
482 		nr++;
483 	}
484 	if (!(data->rq_flags & RQF_SCHED_TAGS))
485 		blk_mq_add_active_requests(data->hctx, nr);
486 	/* caller already holds a reference, add for remainder */
487 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
488 	data->nr_tags -= nr;
489 
490 	return rq_list_pop(data->cached_rqs);
491 }
492 
493 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
494 {
495 	struct request_queue *q = data->q;
496 	u64 alloc_time_ns = 0;
497 	struct request *rq;
498 	unsigned int tag;
499 
500 	/* alloc_time includes depth and tag waits */
501 	if (blk_queue_rq_alloc_time(q))
502 		alloc_time_ns = blk_time_get_ns();
503 
504 	if (data->cmd_flags & REQ_NOWAIT)
505 		data->flags |= BLK_MQ_REQ_NOWAIT;
506 
507 retry:
508 	data->ctx = blk_mq_get_ctx(q);
509 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
510 
511 	if (q->elevator) {
512 		/*
513 		 * All requests use scheduler tags when an I/O scheduler is
514 		 * enabled for the queue.
515 		 */
516 		data->rq_flags |= RQF_SCHED_TAGS;
517 
518 		/*
519 		 * Flush/passthrough requests are special and go directly to the
520 		 * dispatch list.
521 		 */
522 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
523 		    !blk_op_is_passthrough(data->cmd_flags)) {
524 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
525 
526 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
527 
528 			data->rq_flags |= RQF_USE_SCHED;
529 			if (ops->limit_depth)
530 				ops->limit_depth(data->cmd_flags, data);
531 		}
532 	} else {
533 		blk_mq_tag_busy(data->hctx);
534 	}
535 
536 	if (data->flags & BLK_MQ_REQ_RESERVED)
537 		data->rq_flags |= RQF_RESV;
538 
539 	/*
540 	 * Try batched alloc if we want more than 1 tag.
541 	 */
542 	if (data->nr_tags > 1) {
543 		rq = __blk_mq_alloc_requests_batch(data);
544 		if (rq) {
545 			blk_mq_rq_time_init(rq, alloc_time_ns);
546 			return rq;
547 		}
548 		data->nr_tags = 1;
549 	}
550 
551 	/*
552 	 * Waiting allocations only fail because of an inactive hctx.  In that
553 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
554 	 * should have migrated us to an online CPU by now.
555 	 */
556 	tag = blk_mq_get_tag(data);
557 	if (tag == BLK_MQ_NO_TAG) {
558 		if (data->flags & BLK_MQ_REQ_NOWAIT)
559 			return NULL;
560 		/*
561 		 * Give up the CPU and sleep for a random short time to
562 		 * ensure that thread using a realtime scheduling class
563 		 * are migrated off the CPU, and thus off the hctx that
564 		 * is going away.
565 		 */
566 		msleep(3);
567 		goto retry;
568 	}
569 
570 	if (!(data->rq_flags & RQF_SCHED_TAGS))
571 		blk_mq_inc_active_requests(data->hctx);
572 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
573 	blk_mq_rq_time_init(rq, alloc_time_ns);
574 	return rq;
575 }
576 
577 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
578 					    struct blk_plug *plug,
579 					    blk_opf_t opf,
580 					    blk_mq_req_flags_t flags)
581 {
582 	struct blk_mq_alloc_data data = {
583 		.q		= q,
584 		.flags		= flags,
585 		.cmd_flags	= opf,
586 		.nr_tags	= plug->nr_ios,
587 		.cached_rqs	= &plug->cached_rqs,
588 	};
589 	struct request *rq;
590 
591 	if (blk_queue_enter(q, flags))
592 		return NULL;
593 
594 	plug->nr_ios = 1;
595 
596 	rq = __blk_mq_alloc_requests(&data);
597 	if (unlikely(!rq))
598 		blk_queue_exit(q);
599 	return rq;
600 }
601 
602 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
603 						   blk_opf_t opf,
604 						   blk_mq_req_flags_t flags)
605 {
606 	struct blk_plug *plug = current->plug;
607 	struct request *rq;
608 
609 	if (!plug)
610 		return NULL;
611 
612 	if (rq_list_empty(&plug->cached_rqs)) {
613 		if (plug->nr_ios == 1)
614 			return NULL;
615 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
616 		if (!rq)
617 			return NULL;
618 	} else {
619 		rq = rq_list_peek(&plug->cached_rqs);
620 		if (!rq || rq->q != q)
621 			return NULL;
622 
623 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
624 			return NULL;
625 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
626 			return NULL;
627 
628 		rq_list_pop(&plug->cached_rqs);
629 		blk_mq_rq_time_init(rq, blk_time_get_ns());
630 	}
631 
632 	rq->cmd_flags = opf;
633 	INIT_LIST_HEAD(&rq->queuelist);
634 	return rq;
635 }
636 
637 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
638 		blk_mq_req_flags_t flags)
639 {
640 	struct request *rq;
641 
642 	rq = blk_mq_alloc_cached_request(q, opf, flags);
643 	if (!rq) {
644 		struct blk_mq_alloc_data data = {
645 			.q		= q,
646 			.flags		= flags,
647 			.cmd_flags	= opf,
648 			.nr_tags	= 1,
649 		};
650 		int ret;
651 
652 		ret = blk_queue_enter(q, flags);
653 		if (ret)
654 			return ERR_PTR(ret);
655 
656 		rq = __blk_mq_alloc_requests(&data);
657 		if (!rq)
658 			goto out_queue_exit;
659 	}
660 	rq->__data_len = 0;
661 	rq->__sector = (sector_t) -1;
662 	rq->bio = rq->biotail = NULL;
663 	return rq;
664 out_queue_exit:
665 	blk_queue_exit(q);
666 	return ERR_PTR(-EWOULDBLOCK);
667 }
668 EXPORT_SYMBOL(blk_mq_alloc_request);
669 
670 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
671 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
672 {
673 	struct blk_mq_alloc_data data = {
674 		.q		= q,
675 		.flags		= flags,
676 		.cmd_flags	= opf,
677 		.nr_tags	= 1,
678 	};
679 	u64 alloc_time_ns = 0;
680 	struct request *rq;
681 	unsigned int cpu;
682 	unsigned int tag;
683 	int ret;
684 
685 	/* alloc_time includes depth and tag waits */
686 	if (blk_queue_rq_alloc_time(q))
687 		alloc_time_ns = blk_time_get_ns();
688 
689 	/*
690 	 * If the tag allocator sleeps we could get an allocation for a
691 	 * different hardware context.  No need to complicate the low level
692 	 * allocator for this for the rare use case of a command tied to
693 	 * a specific queue.
694 	 */
695 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
696 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
697 		return ERR_PTR(-EINVAL);
698 
699 	if (hctx_idx >= q->nr_hw_queues)
700 		return ERR_PTR(-EIO);
701 
702 	ret = blk_queue_enter(q, flags);
703 	if (ret)
704 		return ERR_PTR(ret);
705 
706 	/*
707 	 * Check if the hardware context is actually mapped to anything.
708 	 * If not tell the caller that it should skip this queue.
709 	 */
710 	ret = -EXDEV;
711 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
712 	if (!blk_mq_hw_queue_mapped(data.hctx))
713 		goto out_queue_exit;
714 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
715 	if (cpu >= nr_cpu_ids)
716 		goto out_queue_exit;
717 	data.ctx = __blk_mq_get_ctx(q, cpu);
718 
719 	if (q->elevator)
720 		data.rq_flags |= RQF_SCHED_TAGS;
721 	else
722 		blk_mq_tag_busy(data.hctx);
723 
724 	if (flags & BLK_MQ_REQ_RESERVED)
725 		data.rq_flags |= RQF_RESV;
726 
727 	ret = -EWOULDBLOCK;
728 	tag = blk_mq_get_tag(&data);
729 	if (tag == BLK_MQ_NO_TAG)
730 		goto out_queue_exit;
731 	if (!(data.rq_flags & RQF_SCHED_TAGS))
732 		blk_mq_inc_active_requests(data.hctx);
733 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
734 	blk_mq_rq_time_init(rq, alloc_time_ns);
735 	rq->__data_len = 0;
736 	rq->__sector = (sector_t) -1;
737 	rq->bio = rq->biotail = NULL;
738 	return rq;
739 
740 out_queue_exit:
741 	blk_queue_exit(q);
742 	return ERR_PTR(ret);
743 }
744 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
745 
746 static void blk_mq_finish_request(struct request *rq)
747 {
748 	struct request_queue *q = rq->q;
749 
750 	blk_zone_finish_request(rq);
751 
752 	if (rq->rq_flags & RQF_USE_SCHED) {
753 		q->elevator->type->ops.finish_request(rq);
754 		/*
755 		 * For postflush request that may need to be
756 		 * completed twice, we should clear this flag
757 		 * to avoid double finish_request() on the rq.
758 		 */
759 		rq->rq_flags &= ~RQF_USE_SCHED;
760 	}
761 }
762 
763 static void __blk_mq_free_request(struct request *rq)
764 {
765 	struct request_queue *q = rq->q;
766 	struct blk_mq_ctx *ctx = rq->mq_ctx;
767 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
768 	const int sched_tag = rq->internal_tag;
769 
770 	blk_crypto_free_request(rq);
771 	blk_pm_mark_last_busy(rq);
772 	rq->mq_hctx = NULL;
773 
774 	if (rq->tag != BLK_MQ_NO_TAG) {
775 		blk_mq_dec_active_requests(hctx);
776 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
777 	}
778 	if (sched_tag != BLK_MQ_NO_TAG)
779 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
780 	blk_mq_sched_restart(hctx);
781 	blk_queue_exit(q);
782 }
783 
784 void blk_mq_free_request(struct request *rq)
785 {
786 	struct request_queue *q = rq->q;
787 
788 	blk_mq_finish_request(rq);
789 
790 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
791 		laptop_io_completion(q->disk->bdi);
792 
793 	rq_qos_done(q, rq);
794 
795 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
796 	if (req_ref_put_and_test(rq))
797 		__blk_mq_free_request(rq);
798 }
799 EXPORT_SYMBOL_GPL(blk_mq_free_request);
800 
801 void blk_mq_free_plug_rqs(struct blk_plug *plug)
802 {
803 	struct request *rq;
804 
805 	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
806 		blk_mq_free_request(rq);
807 }
808 
809 void blk_dump_rq_flags(struct request *rq, char *msg)
810 {
811 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
812 		rq->q->disk ? rq->q->disk->disk_name : "?",
813 		(__force unsigned long long) rq->cmd_flags);
814 
815 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
816 	       (unsigned long long)blk_rq_pos(rq),
817 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
818 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
819 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
820 }
821 EXPORT_SYMBOL(blk_dump_rq_flags);
822 
823 static void blk_account_io_completion(struct request *req, unsigned int bytes)
824 {
825 	if (req->rq_flags & RQF_IO_STAT) {
826 		const int sgrp = op_stat_group(req_op(req));
827 
828 		part_stat_lock();
829 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
830 		part_stat_unlock();
831 	}
832 }
833 
834 static void blk_print_req_error(struct request *req, blk_status_t status)
835 {
836 	printk_ratelimited(KERN_ERR
837 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
838 		"phys_seg %u prio class %u\n",
839 		blk_status_to_str(status),
840 		req->q->disk ? req->q->disk->disk_name : "?",
841 		blk_rq_pos(req), (__force u32)req_op(req),
842 		blk_op_str(req_op(req)),
843 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
844 		req->nr_phys_segments,
845 		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
846 }
847 
848 /*
849  * Fully end IO on a request. Does not support partial completions, or
850  * errors.
851  */
852 static void blk_complete_request(struct request *req)
853 {
854 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
855 	int total_bytes = blk_rq_bytes(req);
856 	struct bio *bio = req->bio;
857 
858 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
859 
860 	if (!bio)
861 		return;
862 
863 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
864 		blk_integrity_complete(req, total_bytes);
865 
866 	/*
867 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
868 	 * bio_endio().  Therefore, the keyslot must be released before that.
869 	 */
870 	blk_crypto_rq_put_keyslot(req);
871 
872 	blk_account_io_completion(req, total_bytes);
873 
874 	do {
875 		struct bio *next = bio->bi_next;
876 
877 		/* Completion has already been traced */
878 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
879 
880 		blk_zone_update_request_bio(req, bio);
881 
882 		if (!is_flush)
883 			bio_endio(bio);
884 		bio = next;
885 	} while (bio);
886 
887 	/*
888 	 * Reset counters so that the request stacking driver
889 	 * can find how many bytes remain in the request
890 	 * later.
891 	 */
892 	if (!req->end_io) {
893 		req->bio = NULL;
894 		req->__data_len = 0;
895 	}
896 }
897 
898 /**
899  * blk_update_request - Complete multiple bytes without completing the request
900  * @req:      the request being processed
901  * @error:    block status code
902  * @nr_bytes: number of bytes to complete for @req
903  *
904  * Description:
905  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
906  *     the request structure even if @req doesn't have leftover.
907  *     If @req has leftover, sets it up for the next range of segments.
908  *
909  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
910  *     %false return from this function.
911  *
912  * Note:
913  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
914  *      except in the consistency check at the end of this function.
915  *
916  * Return:
917  *     %false - this request doesn't have any more data
918  *     %true  - this request has more data
919  **/
920 bool blk_update_request(struct request *req, blk_status_t error,
921 		unsigned int nr_bytes)
922 {
923 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
924 	bool quiet = req->rq_flags & RQF_QUIET;
925 	int total_bytes;
926 
927 	trace_block_rq_complete(req, error, nr_bytes);
928 
929 	if (!req->bio)
930 		return false;
931 
932 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
933 	    error == BLK_STS_OK)
934 		blk_integrity_complete(req, nr_bytes);
935 
936 	/*
937 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
938 	 * bio_endio().  Therefore, the keyslot must be released before that.
939 	 */
940 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
941 		__blk_crypto_rq_put_keyslot(req);
942 
943 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
944 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
945 		blk_print_req_error(req, error);
946 		trace_block_rq_error(req, error, nr_bytes);
947 	}
948 
949 	blk_account_io_completion(req, nr_bytes);
950 
951 	total_bytes = 0;
952 	while (req->bio) {
953 		struct bio *bio = req->bio;
954 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
955 
956 		if (unlikely(error))
957 			bio->bi_status = error;
958 
959 		if (bio_bytes == bio->bi_iter.bi_size) {
960 			req->bio = bio->bi_next;
961 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
962 			/*
963 			 * Partial zone append completions cannot be supported
964 			 * as the BIO fragments may end up not being written
965 			 * sequentially.
966 			 */
967 			bio->bi_status = BLK_STS_IOERR;
968 		}
969 
970 		/* Completion has already been traced */
971 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
972 		if (unlikely(quiet))
973 			bio_set_flag(bio, BIO_QUIET);
974 
975 		bio_advance(bio, bio_bytes);
976 
977 		/* Don't actually finish bio if it's part of flush sequence */
978 		if (!bio->bi_iter.bi_size) {
979 			blk_zone_update_request_bio(req, bio);
980 			if (!is_flush)
981 				bio_endio(bio);
982 		}
983 
984 		total_bytes += bio_bytes;
985 		nr_bytes -= bio_bytes;
986 
987 		if (!nr_bytes)
988 			break;
989 	}
990 
991 	/*
992 	 * completely done
993 	 */
994 	if (!req->bio) {
995 		/*
996 		 * Reset counters so that the request stacking driver
997 		 * can find how many bytes remain in the request
998 		 * later.
999 		 */
1000 		req->__data_len = 0;
1001 		return false;
1002 	}
1003 
1004 	req->__data_len -= total_bytes;
1005 
1006 	/* update sector only for requests with clear definition of sector */
1007 	if (!blk_rq_is_passthrough(req))
1008 		req->__sector += total_bytes >> 9;
1009 
1010 	/* mixed attributes always follow the first bio */
1011 	if (req->rq_flags & RQF_MIXED_MERGE) {
1012 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1013 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1014 	}
1015 
1016 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1017 		/*
1018 		 * If total number of sectors is less than the first segment
1019 		 * size, something has gone terribly wrong.
1020 		 */
1021 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1022 			blk_dump_rq_flags(req, "request botched");
1023 			req->__data_len = blk_rq_cur_bytes(req);
1024 		}
1025 
1026 		/* recalculate the number of segments */
1027 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1028 	}
1029 
1030 	return true;
1031 }
1032 EXPORT_SYMBOL_GPL(blk_update_request);
1033 
1034 static inline void blk_account_io_done(struct request *req, u64 now)
1035 {
1036 	trace_block_io_done(req);
1037 
1038 	/*
1039 	 * Account IO completion.  flush_rq isn't accounted as a
1040 	 * normal IO on queueing nor completion.  Accounting the
1041 	 * containing request is enough.
1042 	 */
1043 	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1044 		const int sgrp = op_stat_group(req_op(req));
1045 
1046 		part_stat_lock();
1047 		update_io_ticks(req->part, jiffies, true);
1048 		part_stat_inc(req->part, ios[sgrp]);
1049 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1050 		part_stat_local_dec(req->part,
1051 				    in_flight[op_is_write(req_op(req))]);
1052 		part_stat_unlock();
1053 	}
1054 }
1055 
1056 static inline bool blk_rq_passthrough_stats(struct request *req)
1057 {
1058 	struct bio *bio = req->bio;
1059 
1060 	if (!blk_queue_passthrough_stat(req->q))
1061 		return false;
1062 
1063 	/* Requests without a bio do not transfer data. */
1064 	if (!bio)
1065 		return false;
1066 
1067 	/*
1068 	 * Stats are accumulated in the bdev, so must have one attached to a
1069 	 * bio to track stats. Most drivers do not set the bdev for passthrough
1070 	 * requests, but nvme is one that will set it.
1071 	 */
1072 	if (!bio->bi_bdev)
1073 		return false;
1074 
1075 	/*
1076 	 * We don't know what a passthrough command does, but we know the
1077 	 * payload size and data direction. Ensuring the size is aligned to the
1078 	 * block size filters out most commands with payloads that don't
1079 	 * represent sector access.
1080 	 */
1081 	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1082 		return false;
1083 	return true;
1084 }
1085 
1086 static inline void blk_account_io_start(struct request *req)
1087 {
1088 	trace_block_io_start(req);
1089 
1090 	if (!blk_queue_io_stat(req->q))
1091 		return;
1092 	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1093 		return;
1094 
1095 	req->rq_flags |= RQF_IO_STAT;
1096 	req->start_time_ns = blk_time_get_ns();
1097 
1098 	/*
1099 	 * All non-passthrough requests are created from a bio with one
1100 	 * exception: when a flush command that is part of a flush sequence
1101 	 * generated by the state machine in blk-flush.c is cloned onto the
1102 	 * lower device by dm-multipath we can get here without a bio.
1103 	 */
1104 	if (req->bio)
1105 		req->part = req->bio->bi_bdev;
1106 	else
1107 		req->part = req->q->disk->part0;
1108 
1109 	part_stat_lock();
1110 	update_io_ticks(req->part, jiffies, false);
1111 	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1112 	part_stat_unlock();
1113 }
1114 
1115 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1116 {
1117 	if (rq->rq_flags & RQF_STATS)
1118 		blk_stat_add(rq, now);
1119 
1120 	blk_mq_sched_completed_request(rq, now);
1121 	blk_account_io_done(rq, now);
1122 }
1123 
1124 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1125 {
1126 	if (blk_mq_need_time_stamp(rq))
1127 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1128 
1129 	blk_mq_finish_request(rq);
1130 
1131 	if (rq->end_io) {
1132 		rq_qos_done(rq->q, rq);
1133 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1134 			blk_mq_free_request(rq);
1135 	} else {
1136 		blk_mq_free_request(rq);
1137 	}
1138 }
1139 EXPORT_SYMBOL(__blk_mq_end_request);
1140 
1141 void blk_mq_end_request(struct request *rq, blk_status_t error)
1142 {
1143 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1144 		BUG();
1145 	__blk_mq_end_request(rq, error);
1146 }
1147 EXPORT_SYMBOL(blk_mq_end_request);
1148 
1149 #define TAG_COMP_BATCH		32
1150 
1151 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1152 					  int *tag_array, int nr_tags)
1153 {
1154 	struct request_queue *q = hctx->queue;
1155 
1156 	blk_mq_sub_active_requests(hctx, nr_tags);
1157 
1158 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1159 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1160 }
1161 
1162 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1163 {
1164 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1165 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1166 	struct request *rq;
1167 	u64 now = 0;
1168 
1169 	if (iob->need_ts)
1170 		now = blk_time_get_ns();
1171 
1172 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1173 		prefetch(rq->bio);
1174 		prefetch(rq->rq_next);
1175 
1176 		blk_complete_request(rq);
1177 		if (iob->need_ts)
1178 			__blk_mq_end_request_acct(rq, now);
1179 
1180 		blk_mq_finish_request(rq);
1181 
1182 		rq_qos_done(rq->q, rq);
1183 
1184 		/*
1185 		 * If end_io handler returns NONE, then it still has
1186 		 * ownership of the request.
1187 		 */
1188 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1189 			continue;
1190 
1191 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1192 		if (!req_ref_put_and_test(rq))
1193 			continue;
1194 
1195 		blk_crypto_free_request(rq);
1196 		blk_pm_mark_last_busy(rq);
1197 
1198 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1199 			if (cur_hctx)
1200 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1201 			nr_tags = 0;
1202 			cur_hctx = rq->mq_hctx;
1203 		}
1204 		tags[nr_tags++] = rq->tag;
1205 	}
1206 
1207 	if (nr_tags)
1208 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1209 }
1210 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1211 
1212 static void blk_complete_reqs(struct llist_head *list)
1213 {
1214 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1215 	struct request *rq, *next;
1216 
1217 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1218 		rq->q->mq_ops->complete(rq);
1219 }
1220 
1221 static __latent_entropy void blk_done_softirq(void)
1222 {
1223 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1224 }
1225 
1226 static int blk_softirq_cpu_dead(unsigned int cpu)
1227 {
1228 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1229 	return 0;
1230 }
1231 
1232 static void __blk_mq_complete_request_remote(void *data)
1233 {
1234 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1235 }
1236 
1237 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1238 {
1239 	int cpu = raw_smp_processor_id();
1240 
1241 	if (!IS_ENABLED(CONFIG_SMP) ||
1242 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1243 		return false;
1244 	/*
1245 	 * With force threaded interrupts enabled, raising softirq from an SMP
1246 	 * function call will always result in waking the ksoftirqd thread.
1247 	 * This is probably worse than completing the request on a different
1248 	 * cache domain.
1249 	 */
1250 	if (force_irqthreads())
1251 		return false;
1252 
1253 	/* same CPU or cache domain and capacity?  Complete locally */
1254 	if (cpu == rq->mq_ctx->cpu ||
1255 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1256 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1257 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1258 		return false;
1259 
1260 	/* don't try to IPI to an offline CPU */
1261 	return cpu_online(rq->mq_ctx->cpu);
1262 }
1263 
1264 static void blk_mq_complete_send_ipi(struct request *rq)
1265 {
1266 	unsigned int cpu;
1267 
1268 	cpu = rq->mq_ctx->cpu;
1269 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1270 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1271 }
1272 
1273 static void blk_mq_raise_softirq(struct request *rq)
1274 {
1275 	struct llist_head *list;
1276 
1277 	preempt_disable();
1278 	list = this_cpu_ptr(&blk_cpu_done);
1279 	if (llist_add(&rq->ipi_list, list))
1280 		raise_softirq(BLOCK_SOFTIRQ);
1281 	preempt_enable();
1282 }
1283 
1284 bool blk_mq_complete_request_remote(struct request *rq)
1285 {
1286 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1287 
1288 	/*
1289 	 * For request which hctx has only one ctx mapping,
1290 	 * or a polled request, always complete locally,
1291 	 * it's pointless to redirect the completion.
1292 	 */
1293 	if ((rq->mq_hctx->nr_ctx == 1 &&
1294 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1295 	     rq->cmd_flags & REQ_POLLED)
1296 		return false;
1297 
1298 	if (blk_mq_complete_need_ipi(rq)) {
1299 		blk_mq_complete_send_ipi(rq);
1300 		return true;
1301 	}
1302 
1303 	if (rq->q->nr_hw_queues == 1) {
1304 		blk_mq_raise_softirq(rq);
1305 		return true;
1306 	}
1307 	return false;
1308 }
1309 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1310 
1311 /**
1312  * blk_mq_complete_request - end I/O on a request
1313  * @rq:		the request being processed
1314  *
1315  * Description:
1316  *	Complete a request by scheduling the ->complete_rq operation.
1317  **/
1318 void blk_mq_complete_request(struct request *rq)
1319 {
1320 	if (!blk_mq_complete_request_remote(rq))
1321 		rq->q->mq_ops->complete(rq);
1322 }
1323 EXPORT_SYMBOL(blk_mq_complete_request);
1324 
1325 /**
1326  * blk_mq_start_request - Start processing a request
1327  * @rq: Pointer to request to be started
1328  *
1329  * Function used by device drivers to notify the block layer that a request
1330  * is going to be processed now, so blk layer can do proper initializations
1331  * such as starting the timeout timer.
1332  */
1333 void blk_mq_start_request(struct request *rq)
1334 {
1335 	struct request_queue *q = rq->q;
1336 
1337 	trace_block_rq_issue(rq);
1338 
1339 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1340 	    !blk_rq_is_passthrough(rq)) {
1341 		rq->io_start_time_ns = blk_time_get_ns();
1342 		rq->stats_sectors = blk_rq_sectors(rq);
1343 		rq->rq_flags |= RQF_STATS;
1344 		rq_qos_issue(q, rq);
1345 	}
1346 
1347 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1348 
1349 	blk_add_timer(rq);
1350 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1351 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1352 
1353 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1354 		blk_integrity_prepare(rq);
1355 
1356 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1357 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1358 }
1359 EXPORT_SYMBOL(blk_mq_start_request);
1360 
1361 /*
1362  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1363  * queues. This is important for md arrays to benefit from merging
1364  * requests.
1365  */
1366 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1367 {
1368 	if (plug->multiple_queues)
1369 		return BLK_MAX_REQUEST_COUNT * 2;
1370 	return BLK_MAX_REQUEST_COUNT;
1371 }
1372 
1373 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1374 {
1375 	struct request *last = rq_list_peek(&plug->mq_list);
1376 
1377 	if (!plug->rq_count) {
1378 		trace_block_plug(rq->q);
1379 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1380 		   (!blk_queue_nomerges(rq->q) &&
1381 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1382 		blk_mq_flush_plug_list(plug, false);
1383 		last = NULL;
1384 		trace_block_plug(rq->q);
1385 	}
1386 
1387 	if (!plug->multiple_queues && last && last->q != rq->q)
1388 		plug->multiple_queues = true;
1389 	/*
1390 	 * Any request allocated from sched tags can't be issued to
1391 	 * ->queue_rqs() directly
1392 	 */
1393 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1394 		plug->has_elevator = true;
1395 	rq_list_add_tail(&plug->mq_list, rq);
1396 	plug->rq_count++;
1397 }
1398 
1399 /**
1400  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1401  * @rq:		request to insert
1402  * @at_head:    insert request at head or tail of queue
1403  *
1404  * Description:
1405  *    Insert a fully prepared request at the back of the I/O scheduler queue
1406  *    for execution.  Don't wait for completion.
1407  *
1408  * Note:
1409  *    This function will invoke @done directly if the queue is dead.
1410  */
1411 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1412 {
1413 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1414 
1415 	WARN_ON(irqs_disabled());
1416 	WARN_ON(!blk_rq_is_passthrough(rq));
1417 
1418 	blk_account_io_start(rq);
1419 
1420 	if (current->plug && !at_head) {
1421 		blk_add_rq_to_plug(current->plug, rq);
1422 		return;
1423 	}
1424 
1425 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1426 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1427 }
1428 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1429 
1430 struct blk_rq_wait {
1431 	struct completion done;
1432 	blk_status_t ret;
1433 };
1434 
1435 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1436 {
1437 	struct blk_rq_wait *wait = rq->end_io_data;
1438 
1439 	wait->ret = ret;
1440 	complete(&wait->done);
1441 	return RQ_END_IO_NONE;
1442 }
1443 
1444 bool blk_rq_is_poll(struct request *rq)
1445 {
1446 	if (!rq->mq_hctx)
1447 		return false;
1448 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1449 		return false;
1450 	return true;
1451 }
1452 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1453 
1454 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1455 {
1456 	do {
1457 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1458 		cond_resched();
1459 	} while (!completion_done(wait));
1460 }
1461 
1462 /**
1463  * blk_execute_rq - insert a request into queue for execution
1464  * @rq:		request to insert
1465  * @at_head:    insert request at head or tail of queue
1466  *
1467  * Description:
1468  *    Insert a fully prepared request at the back of the I/O scheduler queue
1469  *    for execution and wait for completion.
1470  * Return: The blk_status_t result provided to blk_mq_end_request().
1471  */
1472 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1473 {
1474 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1475 	struct blk_rq_wait wait = {
1476 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1477 	};
1478 
1479 	WARN_ON(irqs_disabled());
1480 	WARN_ON(!blk_rq_is_passthrough(rq));
1481 
1482 	rq->end_io_data = &wait;
1483 	rq->end_io = blk_end_sync_rq;
1484 
1485 	blk_account_io_start(rq);
1486 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1487 	blk_mq_run_hw_queue(hctx, false);
1488 
1489 	if (blk_rq_is_poll(rq))
1490 		blk_rq_poll_completion(rq, &wait.done);
1491 	else
1492 		blk_wait_io(&wait.done);
1493 
1494 	return wait.ret;
1495 }
1496 EXPORT_SYMBOL(blk_execute_rq);
1497 
1498 static void __blk_mq_requeue_request(struct request *rq)
1499 {
1500 	struct request_queue *q = rq->q;
1501 
1502 	blk_mq_put_driver_tag(rq);
1503 
1504 	trace_block_rq_requeue(rq);
1505 	rq_qos_requeue(q, rq);
1506 
1507 	if (blk_mq_request_started(rq)) {
1508 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1509 		rq->rq_flags &= ~RQF_TIMED_OUT;
1510 	}
1511 }
1512 
1513 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1514 {
1515 	struct request_queue *q = rq->q;
1516 	unsigned long flags;
1517 
1518 	__blk_mq_requeue_request(rq);
1519 
1520 	/* this request will be re-inserted to io scheduler queue */
1521 	blk_mq_sched_requeue_request(rq);
1522 
1523 	spin_lock_irqsave(&q->requeue_lock, flags);
1524 	list_add_tail(&rq->queuelist, &q->requeue_list);
1525 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1526 
1527 	if (kick_requeue_list)
1528 		blk_mq_kick_requeue_list(q);
1529 }
1530 EXPORT_SYMBOL(blk_mq_requeue_request);
1531 
1532 static void blk_mq_requeue_work(struct work_struct *work)
1533 {
1534 	struct request_queue *q =
1535 		container_of(work, struct request_queue, requeue_work.work);
1536 	LIST_HEAD(rq_list);
1537 	LIST_HEAD(flush_list);
1538 	struct request *rq;
1539 
1540 	spin_lock_irq(&q->requeue_lock);
1541 	list_splice_init(&q->requeue_list, &rq_list);
1542 	list_splice_init(&q->flush_list, &flush_list);
1543 	spin_unlock_irq(&q->requeue_lock);
1544 
1545 	while (!list_empty(&rq_list)) {
1546 		rq = list_entry(rq_list.next, struct request, queuelist);
1547 		list_del_init(&rq->queuelist);
1548 		/*
1549 		 * If RQF_DONTPREP is set, the request has been started by the
1550 		 * driver already and might have driver-specific data allocated
1551 		 * already.  Insert it into the hctx dispatch list to avoid
1552 		 * block layer merges for the request.
1553 		 */
1554 		if (rq->rq_flags & RQF_DONTPREP)
1555 			blk_mq_request_bypass_insert(rq, 0);
1556 		else
1557 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1558 	}
1559 
1560 	while (!list_empty(&flush_list)) {
1561 		rq = list_entry(flush_list.next, struct request, queuelist);
1562 		list_del_init(&rq->queuelist);
1563 		blk_mq_insert_request(rq, 0);
1564 	}
1565 
1566 	blk_mq_run_hw_queues(q, false);
1567 }
1568 
1569 void blk_mq_kick_requeue_list(struct request_queue *q)
1570 {
1571 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1572 }
1573 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1574 
1575 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1576 				    unsigned long msecs)
1577 {
1578 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1579 				    msecs_to_jiffies(msecs));
1580 }
1581 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1582 
1583 static bool blk_is_flush_data_rq(struct request *rq)
1584 {
1585 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1586 }
1587 
1588 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1589 {
1590 	/*
1591 	 * If we find a request that isn't idle we know the queue is busy
1592 	 * as it's checked in the iter.
1593 	 * Return false to stop the iteration.
1594 	 *
1595 	 * In case of queue quiesce, if one flush data request is completed,
1596 	 * don't count it as inflight given the flush sequence is suspended,
1597 	 * and the original flush data request is invisible to driver, just
1598 	 * like other pending requests because of quiesce
1599 	 */
1600 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1601 				blk_is_flush_data_rq(rq) &&
1602 				blk_mq_request_completed(rq))) {
1603 		bool *busy = priv;
1604 
1605 		*busy = true;
1606 		return false;
1607 	}
1608 
1609 	return true;
1610 }
1611 
1612 bool blk_mq_queue_inflight(struct request_queue *q)
1613 {
1614 	bool busy = false;
1615 
1616 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1617 	return busy;
1618 }
1619 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1620 
1621 static void blk_mq_rq_timed_out(struct request *req)
1622 {
1623 	req->rq_flags |= RQF_TIMED_OUT;
1624 	if (req->q->mq_ops->timeout) {
1625 		enum blk_eh_timer_return ret;
1626 
1627 		ret = req->q->mq_ops->timeout(req);
1628 		if (ret == BLK_EH_DONE)
1629 			return;
1630 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1631 	}
1632 
1633 	blk_add_timer(req);
1634 }
1635 
1636 struct blk_expired_data {
1637 	bool has_timedout_rq;
1638 	unsigned long next;
1639 	unsigned long timeout_start;
1640 };
1641 
1642 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1643 {
1644 	unsigned long deadline;
1645 
1646 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1647 		return false;
1648 	if (rq->rq_flags & RQF_TIMED_OUT)
1649 		return false;
1650 
1651 	deadline = READ_ONCE(rq->deadline);
1652 	if (time_after_eq(expired->timeout_start, deadline))
1653 		return true;
1654 
1655 	if (expired->next == 0)
1656 		expired->next = deadline;
1657 	else if (time_after(expired->next, deadline))
1658 		expired->next = deadline;
1659 	return false;
1660 }
1661 
1662 void blk_mq_put_rq_ref(struct request *rq)
1663 {
1664 	if (is_flush_rq(rq)) {
1665 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1666 			blk_mq_free_request(rq);
1667 	} else if (req_ref_put_and_test(rq)) {
1668 		__blk_mq_free_request(rq);
1669 	}
1670 }
1671 
1672 static bool blk_mq_check_expired(struct request *rq, void *priv)
1673 {
1674 	struct blk_expired_data *expired = priv;
1675 
1676 	/*
1677 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1678 	 * be reallocated underneath the timeout handler's processing, then
1679 	 * the expire check is reliable. If the request is not expired, then
1680 	 * it was completed and reallocated as a new request after returning
1681 	 * from blk_mq_check_expired().
1682 	 */
1683 	if (blk_mq_req_expired(rq, expired)) {
1684 		expired->has_timedout_rq = true;
1685 		return false;
1686 	}
1687 	return true;
1688 }
1689 
1690 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1691 {
1692 	struct blk_expired_data *expired = priv;
1693 
1694 	if (blk_mq_req_expired(rq, expired))
1695 		blk_mq_rq_timed_out(rq);
1696 	return true;
1697 }
1698 
1699 static void blk_mq_timeout_work(struct work_struct *work)
1700 {
1701 	struct request_queue *q =
1702 		container_of(work, struct request_queue, timeout_work);
1703 	struct blk_expired_data expired = {
1704 		.timeout_start = jiffies,
1705 	};
1706 	struct blk_mq_hw_ctx *hctx;
1707 	unsigned long i;
1708 
1709 	/* A deadlock might occur if a request is stuck requiring a
1710 	 * timeout at the same time a queue freeze is waiting
1711 	 * completion, since the timeout code would not be able to
1712 	 * acquire the queue reference here.
1713 	 *
1714 	 * That's why we don't use blk_queue_enter here; instead, we use
1715 	 * percpu_ref_tryget directly, because we need to be able to
1716 	 * obtain a reference even in the short window between the queue
1717 	 * starting to freeze, by dropping the first reference in
1718 	 * blk_freeze_queue_start, and the moment the last request is
1719 	 * consumed, marked by the instant q_usage_counter reaches
1720 	 * zero.
1721 	 */
1722 	if (!percpu_ref_tryget(&q->q_usage_counter))
1723 		return;
1724 
1725 	/* check if there is any timed-out request */
1726 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1727 	if (expired.has_timedout_rq) {
1728 		/*
1729 		 * Before walking tags, we must ensure any submit started
1730 		 * before the current time has finished. Since the submit
1731 		 * uses srcu or rcu, wait for a synchronization point to
1732 		 * ensure all running submits have finished
1733 		 */
1734 		blk_mq_wait_quiesce_done(q->tag_set);
1735 
1736 		expired.next = 0;
1737 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1738 	}
1739 
1740 	if (expired.next != 0) {
1741 		mod_timer(&q->timeout, expired.next);
1742 	} else {
1743 		/*
1744 		 * Request timeouts are handled as a forward rolling timer. If
1745 		 * we end up here it means that no requests are pending and
1746 		 * also that no request has been pending for a while. Mark
1747 		 * each hctx as idle.
1748 		 */
1749 		queue_for_each_hw_ctx(q, hctx, i) {
1750 			/* the hctx may be unmapped, so check it here */
1751 			if (blk_mq_hw_queue_mapped(hctx))
1752 				blk_mq_tag_idle(hctx);
1753 		}
1754 	}
1755 	blk_queue_exit(q);
1756 }
1757 
1758 struct flush_busy_ctx_data {
1759 	struct blk_mq_hw_ctx *hctx;
1760 	struct list_head *list;
1761 };
1762 
1763 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1764 {
1765 	struct flush_busy_ctx_data *flush_data = data;
1766 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1767 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1768 	enum hctx_type type = hctx->type;
1769 
1770 	spin_lock(&ctx->lock);
1771 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1772 	sbitmap_clear_bit(sb, bitnr);
1773 	spin_unlock(&ctx->lock);
1774 	return true;
1775 }
1776 
1777 /*
1778  * Process software queues that have been marked busy, splicing them
1779  * to the for-dispatch
1780  */
1781 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1782 {
1783 	struct flush_busy_ctx_data data = {
1784 		.hctx = hctx,
1785 		.list = list,
1786 	};
1787 
1788 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1789 }
1790 
1791 struct dispatch_rq_data {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	struct request *rq;
1794 };
1795 
1796 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1797 		void *data)
1798 {
1799 	struct dispatch_rq_data *dispatch_data = data;
1800 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1801 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1802 	enum hctx_type type = hctx->type;
1803 
1804 	spin_lock(&ctx->lock);
1805 	if (!list_empty(&ctx->rq_lists[type])) {
1806 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1807 		list_del_init(&dispatch_data->rq->queuelist);
1808 		if (list_empty(&ctx->rq_lists[type]))
1809 			sbitmap_clear_bit(sb, bitnr);
1810 	}
1811 	spin_unlock(&ctx->lock);
1812 
1813 	return !dispatch_data->rq;
1814 }
1815 
1816 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1817 					struct blk_mq_ctx *start)
1818 {
1819 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1820 	struct dispatch_rq_data data = {
1821 		.hctx = hctx,
1822 		.rq   = NULL,
1823 	};
1824 
1825 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1826 			       dispatch_rq_from_ctx, &data);
1827 
1828 	return data.rq;
1829 }
1830 
1831 bool __blk_mq_alloc_driver_tag(struct request *rq)
1832 {
1833 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1834 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1835 	int tag;
1836 
1837 	blk_mq_tag_busy(rq->mq_hctx);
1838 
1839 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1840 		bt = &rq->mq_hctx->tags->breserved_tags;
1841 		tag_offset = 0;
1842 	} else {
1843 		if (!hctx_may_queue(rq->mq_hctx, bt))
1844 			return false;
1845 	}
1846 
1847 	tag = __sbitmap_queue_get(bt);
1848 	if (tag == BLK_MQ_NO_TAG)
1849 		return false;
1850 
1851 	rq->tag = tag + tag_offset;
1852 	blk_mq_inc_active_requests(rq->mq_hctx);
1853 	return true;
1854 }
1855 
1856 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1857 				int flags, void *key)
1858 {
1859 	struct blk_mq_hw_ctx *hctx;
1860 
1861 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1862 
1863 	spin_lock(&hctx->dispatch_wait_lock);
1864 	if (!list_empty(&wait->entry)) {
1865 		struct sbitmap_queue *sbq;
1866 
1867 		list_del_init(&wait->entry);
1868 		sbq = &hctx->tags->bitmap_tags;
1869 		atomic_dec(&sbq->ws_active);
1870 	}
1871 	spin_unlock(&hctx->dispatch_wait_lock);
1872 
1873 	blk_mq_run_hw_queue(hctx, true);
1874 	return 1;
1875 }
1876 
1877 /*
1878  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1879  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1880  * restart. For both cases, take care to check the condition again after
1881  * marking us as waiting.
1882  */
1883 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1884 				 struct request *rq)
1885 {
1886 	struct sbitmap_queue *sbq;
1887 	struct wait_queue_head *wq;
1888 	wait_queue_entry_t *wait;
1889 	bool ret;
1890 
1891 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1892 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1893 		blk_mq_sched_mark_restart_hctx(hctx);
1894 
1895 		/*
1896 		 * It's possible that a tag was freed in the window between the
1897 		 * allocation failure and adding the hardware queue to the wait
1898 		 * queue.
1899 		 *
1900 		 * Don't clear RESTART here, someone else could have set it.
1901 		 * At most this will cost an extra queue run.
1902 		 */
1903 		return blk_mq_get_driver_tag(rq);
1904 	}
1905 
1906 	wait = &hctx->dispatch_wait;
1907 	if (!list_empty_careful(&wait->entry))
1908 		return false;
1909 
1910 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1911 		sbq = &hctx->tags->breserved_tags;
1912 	else
1913 		sbq = &hctx->tags->bitmap_tags;
1914 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1915 
1916 	spin_lock_irq(&wq->lock);
1917 	spin_lock(&hctx->dispatch_wait_lock);
1918 	if (!list_empty(&wait->entry)) {
1919 		spin_unlock(&hctx->dispatch_wait_lock);
1920 		spin_unlock_irq(&wq->lock);
1921 		return false;
1922 	}
1923 
1924 	atomic_inc(&sbq->ws_active);
1925 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1926 	__add_wait_queue(wq, wait);
1927 
1928 	/*
1929 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1930 	 * not imply barrier in case of failure.
1931 	 *
1932 	 * Order adding us to wait queue and allocating driver tag.
1933 	 *
1934 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1935 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1936 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1937 	 *
1938 	 * Otherwise, re-order of adding wait queue and getting driver tag
1939 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1940 	 * the waitqueue_active() may not observe us in wait queue.
1941 	 */
1942 	smp_mb();
1943 
1944 	/*
1945 	 * It's possible that a tag was freed in the window between the
1946 	 * allocation failure and adding the hardware queue to the wait
1947 	 * queue.
1948 	 */
1949 	ret = blk_mq_get_driver_tag(rq);
1950 	if (!ret) {
1951 		spin_unlock(&hctx->dispatch_wait_lock);
1952 		spin_unlock_irq(&wq->lock);
1953 		return false;
1954 	}
1955 
1956 	/*
1957 	 * We got a tag, remove ourselves from the wait queue to ensure
1958 	 * someone else gets the wakeup.
1959 	 */
1960 	list_del_init(&wait->entry);
1961 	atomic_dec(&sbq->ws_active);
1962 	spin_unlock(&hctx->dispatch_wait_lock);
1963 	spin_unlock_irq(&wq->lock);
1964 
1965 	return true;
1966 }
1967 
1968 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1969 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1970 /*
1971  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1972  * - EWMA is one simple way to compute running average value
1973  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1974  * - take 4 as factor for avoiding to get too small(0) result, and this
1975  *   factor doesn't matter because EWMA decreases exponentially
1976  */
1977 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1978 {
1979 	unsigned int ewma;
1980 
1981 	ewma = hctx->dispatch_busy;
1982 
1983 	if (!ewma && !busy)
1984 		return;
1985 
1986 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1987 	if (busy)
1988 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1989 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1990 
1991 	hctx->dispatch_busy = ewma;
1992 }
1993 
1994 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1995 
1996 static void blk_mq_handle_dev_resource(struct request *rq,
1997 				       struct list_head *list)
1998 {
1999 	list_add(&rq->queuelist, list);
2000 	__blk_mq_requeue_request(rq);
2001 }
2002 
2003 enum prep_dispatch {
2004 	PREP_DISPATCH_OK,
2005 	PREP_DISPATCH_NO_TAG,
2006 	PREP_DISPATCH_NO_BUDGET,
2007 };
2008 
2009 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2010 						  bool need_budget)
2011 {
2012 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2013 	int budget_token = -1;
2014 
2015 	if (need_budget) {
2016 		budget_token = blk_mq_get_dispatch_budget(rq->q);
2017 		if (budget_token < 0) {
2018 			blk_mq_put_driver_tag(rq);
2019 			return PREP_DISPATCH_NO_BUDGET;
2020 		}
2021 		blk_mq_set_rq_budget_token(rq, budget_token);
2022 	}
2023 
2024 	if (!blk_mq_get_driver_tag(rq)) {
2025 		/*
2026 		 * The initial allocation attempt failed, so we need to
2027 		 * rerun the hardware queue when a tag is freed. The
2028 		 * waitqueue takes care of that. If the queue is run
2029 		 * before we add this entry back on the dispatch list,
2030 		 * we'll re-run it below.
2031 		 */
2032 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2033 			/*
2034 			 * All budgets not got from this function will be put
2035 			 * together during handling partial dispatch
2036 			 */
2037 			if (need_budget)
2038 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2039 			return PREP_DISPATCH_NO_TAG;
2040 		}
2041 	}
2042 
2043 	return PREP_DISPATCH_OK;
2044 }
2045 
2046 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2047 static void blk_mq_release_budgets(struct request_queue *q,
2048 		struct list_head *list)
2049 {
2050 	struct request *rq;
2051 
2052 	list_for_each_entry(rq, list, queuelist) {
2053 		int budget_token = blk_mq_get_rq_budget_token(rq);
2054 
2055 		if (budget_token >= 0)
2056 			blk_mq_put_dispatch_budget(q, budget_token);
2057 	}
2058 }
2059 
2060 /*
2061  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2062  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2063  * details)
2064  * Attention, we should explicitly call this in unusual cases:
2065  *  1) did not queue everything initially scheduled to queue
2066  *  2) the last attempt to queue a request failed
2067  */
2068 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2069 			      bool from_schedule)
2070 {
2071 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2072 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2073 		hctx->queue->mq_ops->commit_rqs(hctx);
2074 	}
2075 }
2076 
2077 /*
2078  * Returns true if we did some work AND can potentially do more.
2079  */
2080 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2081 			     unsigned int nr_budgets)
2082 {
2083 	enum prep_dispatch prep;
2084 	struct request_queue *q = hctx->queue;
2085 	struct request *rq;
2086 	int queued;
2087 	blk_status_t ret = BLK_STS_OK;
2088 	bool needs_resource = false;
2089 
2090 	if (list_empty(list))
2091 		return false;
2092 
2093 	/*
2094 	 * Now process all the entries, sending them to the driver.
2095 	 */
2096 	queued = 0;
2097 	do {
2098 		struct blk_mq_queue_data bd;
2099 
2100 		rq = list_first_entry(list, struct request, queuelist);
2101 
2102 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2103 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2104 		if (prep != PREP_DISPATCH_OK)
2105 			break;
2106 
2107 		list_del_init(&rq->queuelist);
2108 
2109 		bd.rq = rq;
2110 		bd.last = list_empty(list);
2111 
2112 		/*
2113 		 * once the request is queued to lld, no need to cover the
2114 		 * budget any more
2115 		 */
2116 		if (nr_budgets)
2117 			nr_budgets--;
2118 		ret = q->mq_ops->queue_rq(hctx, &bd);
2119 		switch (ret) {
2120 		case BLK_STS_OK:
2121 			queued++;
2122 			break;
2123 		case BLK_STS_RESOURCE:
2124 			needs_resource = true;
2125 			fallthrough;
2126 		case BLK_STS_DEV_RESOURCE:
2127 			blk_mq_handle_dev_resource(rq, list);
2128 			goto out;
2129 		default:
2130 			blk_mq_end_request(rq, ret);
2131 		}
2132 	} while (!list_empty(list));
2133 out:
2134 	/* If we didn't flush the entire list, we could have told the driver
2135 	 * there was more coming, but that turned out to be a lie.
2136 	 */
2137 	if (!list_empty(list) || ret != BLK_STS_OK)
2138 		blk_mq_commit_rqs(hctx, queued, false);
2139 
2140 	/*
2141 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2142 	 * that is where we will continue on next queue run.
2143 	 */
2144 	if (!list_empty(list)) {
2145 		bool needs_restart;
2146 		/* For non-shared tags, the RESTART check will suffice */
2147 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2148 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2149 			blk_mq_is_shared_tags(hctx->flags));
2150 
2151 		if (nr_budgets)
2152 			blk_mq_release_budgets(q, list);
2153 
2154 		spin_lock(&hctx->lock);
2155 		list_splice_tail_init(list, &hctx->dispatch);
2156 		spin_unlock(&hctx->lock);
2157 
2158 		/*
2159 		 * Order adding requests to hctx->dispatch and checking
2160 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2161 		 * in blk_mq_sched_restart(). Avoid restart code path to
2162 		 * miss the new added requests to hctx->dispatch, meantime
2163 		 * SCHED_RESTART is observed here.
2164 		 */
2165 		smp_mb();
2166 
2167 		/*
2168 		 * If SCHED_RESTART was set by the caller of this function and
2169 		 * it is no longer set that means that it was cleared by another
2170 		 * thread and hence that a queue rerun is needed.
2171 		 *
2172 		 * If 'no_tag' is set, that means that we failed getting
2173 		 * a driver tag with an I/O scheduler attached. If our dispatch
2174 		 * waitqueue is no longer active, ensure that we run the queue
2175 		 * AFTER adding our entries back to the list.
2176 		 *
2177 		 * If no I/O scheduler has been configured it is possible that
2178 		 * the hardware queue got stopped and restarted before requests
2179 		 * were pushed back onto the dispatch list. Rerun the queue to
2180 		 * avoid starvation. Notes:
2181 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2182 		 *   been stopped before rerunning a queue.
2183 		 * - Some but not all block drivers stop a queue before
2184 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2185 		 *   and dm-rq.
2186 		 *
2187 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2188 		 * bit is set, run queue after a delay to avoid IO stalls
2189 		 * that could otherwise occur if the queue is idle.  We'll do
2190 		 * similar if we couldn't get budget or couldn't lock a zone
2191 		 * and SCHED_RESTART is set.
2192 		 */
2193 		needs_restart = blk_mq_sched_needs_restart(hctx);
2194 		if (prep == PREP_DISPATCH_NO_BUDGET)
2195 			needs_resource = true;
2196 		if (!needs_restart ||
2197 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2198 			blk_mq_run_hw_queue(hctx, true);
2199 		else if (needs_resource)
2200 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2201 
2202 		blk_mq_update_dispatch_busy(hctx, true);
2203 		return false;
2204 	}
2205 
2206 	blk_mq_update_dispatch_busy(hctx, false);
2207 	return true;
2208 }
2209 
2210 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2211 {
2212 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2213 
2214 	if (cpu >= nr_cpu_ids)
2215 		cpu = cpumask_first(hctx->cpumask);
2216 	return cpu;
2217 }
2218 
2219 /*
2220  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2221  * it for speeding up the check
2222  */
2223 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2224 {
2225         return hctx->next_cpu >= nr_cpu_ids;
2226 }
2227 
2228 /*
2229  * It'd be great if the workqueue API had a way to pass
2230  * in a mask and had some smarts for more clever placement.
2231  * For now we just round-robin here, switching for every
2232  * BLK_MQ_CPU_WORK_BATCH queued items.
2233  */
2234 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2235 {
2236 	bool tried = false;
2237 	int next_cpu = hctx->next_cpu;
2238 
2239 	/* Switch to unbound if no allowable CPUs in this hctx */
2240 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2241 		return WORK_CPU_UNBOUND;
2242 
2243 	if (--hctx->next_cpu_batch <= 0) {
2244 select_cpu:
2245 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2246 				cpu_online_mask);
2247 		if (next_cpu >= nr_cpu_ids)
2248 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2249 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2250 	}
2251 
2252 	/*
2253 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2254 	 * and it should only happen in the path of handling CPU DEAD.
2255 	 */
2256 	if (!cpu_online(next_cpu)) {
2257 		if (!tried) {
2258 			tried = true;
2259 			goto select_cpu;
2260 		}
2261 
2262 		/*
2263 		 * Make sure to re-select CPU next time once after CPUs
2264 		 * in hctx->cpumask become online again.
2265 		 */
2266 		hctx->next_cpu = next_cpu;
2267 		hctx->next_cpu_batch = 1;
2268 		return WORK_CPU_UNBOUND;
2269 	}
2270 
2271 	hctx->next_cpu = next_cpu;
2272 	return next_cpu;
2273 }
2274 
2275 /**
2276  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @msecs: Milliseconds of delay to wait before running the queue.
2279  *
2280  * Run a hardware queue asynchronously with a delay of @msecs.
2281  */
2282 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2283 {
2284 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2285 		return;
2286 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2287 				    msecs_to_jiffies(msecs));
2288 }
2289 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2290 
2291 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2292 {
2293 	bool need_run;
2294 
2295 	/*
2296 	 * When queue is quiesced, we may be switching io scheduler, or
2297 	 * updating nr_hw_queues, or other things, and we can't run queue
2298 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2299 	 *
2300 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2301 	 * quiesced.
2302 	 */
2303 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2304 		need_run = !blk_queue_quiesced(hctx->queue) &&
2305 		blk_mq_hctx_has_pending(hctx));
2306 	return need_run;
2307 }
2308 
2309 /**
2310  * blk_mq_run_hw_queue - Start to run a hardware queue.
2311  * @hctx: Pointer to the hardware queue to run.
2312  * @async: If we want to run the queue asynchronously.
2313  *
2314  * Check if the request queue is not in a quiesced state and if there are
2315  * pending requests to be sent. If this is true, run the queue to send requests
2316  * to hardware.
2317  */
2318 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2319 {
2320 	bool need_run;
2321 
2322 	/*
2323 	 * We can't run the queue inline with interrupts disabled.
2324 	 */
2325 	WARN_ON_ONCE(!async && in_interrupt());
2326 
2327 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2328 
2329 	need_run = blk_mq_hw_queue_need_run(hctx);
2330 	if (!need_run) {
2331 		unsigned long flags;
2332 
2333 		/*
2334 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2335 		 * if hw queue is quiesced locklessly above, we need the use
2336 		 * ->queue_lock to make sure we see the up-to-date status to
2337 		 * not miss rerunning the hw queue.
2338 		 */
2339 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2340 		need_run = blk_mq_hw_queue_need_run(hctx);
2341 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2342 
2343 		if (!need_run)
2344 			return;
2345 	}
2346 
2347 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2348 		blk_mq_delay_run_hw_queue(hctx, 0);
2349 		return;
2350 	}
2351 
2352 	blk_mq_run_dispatch_ops(hctx->queue,
2353 				blk_mq_sched_dispatch_requests(hctx));
2354 }
2355 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2356 
2357 /*
2358  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2359  * scheduler.
2360  */
2361 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2362 {
2363 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2364 	/*
2365 	 * If the IO scheduler does not respect hardware queues when
2366 	 * dispatching, we just don't bother with multiple HW queues and
2367 	 * dispatch from hctx for the current CPU since running multiple queues
2368 	 * just causes lock contention inside the scheduler and pointless cache
2369 	 * bouncing.
2370 	 */
2371 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2372 
2373 	if (!blk_mq_hctx_stopped(hctx))
2374 		return hctx;
2375 	return NULL;
2376 }
2377 
2378 /**
2379  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2380  * @q: Pointer to the request queue to run.
2381  * @async: If we want to run the queue asynchronously.
2382  */
2383 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2384 {
2385 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2386 	unsigned long i;
2387 
2388 	sq_hctx = NULL;
2389 	if (blk_queue_sq_sched(q))
2390 		sq_hctx = blk_mq_get_sq_hctx(q);
2391 	queue_for_each_hw_ctx(q, hctx, i) {
2392 		if (blk_mq_hctx_stopped(hctx))
2393 			continue;
2394 		/*
2395 		 * Dispatch from this hctx either if there's no hctx preferred
2396 		 * by IO scheduler or if it has requests that bypass the
2397 		 * scheduler.
2398 		 */
2399 		if (!sq_hctx || sq_hctx == hctx ||
2400 		    !list_empty_careful(&hctx->dispatch))
2401 			blk_mq_run_hw_queue(hctx, async);
2402 	}
2403 }
2404 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2405 
2406 /**
2407  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2408  * @q: Pointer to the request queue to run.
2409  * @msecs: Milliseconds of delay to wait before running the queues.
2410  */
2411 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2412 {
2413 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2414 	unsigned long i;
2415 
2416 	sq_hctx = NULL;
2417 	if (blk_queue_sq_sched(q))
2418 		sq_hctx = blk_mq_get_sq_hctx(q);
2419 	queue_for_each_hw_ctx(q, hctx, i) {
2420 		if (blk_mq_hctx_stopped(hctx))
2421 			continue;
2422 		/*
2423 		 * If there is already a run_work pending, leave the
2424 		 * pending delay untouched. Otherwise, a hctx can stall
2425 		 * if another hctx is re-delaying the other's work
2426 		 * before the work executes.
2427 		 */
2428 		if (delayed_work_pending(&hctx->run_work))
2429 			continue;
2430 		/*
2431 		 * Dispatch from this hctx either if there's no hctx preferred
2432 		 * by IO scheduler or if it has requests that bypass the
2433 		 * scheduler.
2434 		 */
2435 		if (!sq_hctx || sq_hctx == hctx ||
2436 		    !list_empty_careful(&hctx->dispatch))
2437 			blk_mq_delay_run_hw_queue(hctx, msecs);
2438 	}
2439 }
2440 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2441 
2442 /*
2443  * This function is often used for pausing .queue_rq() by driver when
2444  * there isn't enough resource or some conditions aren't satisfied, and
2445  * BLK_STS_RESOURCE is usually returned.
2446  *
2447  * We do not guarantee that dispatch can be drained or blocked
2448  * after blk_mq_stop_hw_queue() returns. Please use
2449  * blk_mq_quiesce_queue() for that requirement.
2450  */
2451 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2452 {
2453 	cancel_delayed_work(&hctx->run_work);
2454 
2455 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2456 }
2457 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2458 
2459 /*
2460  * This function is often used for pausing .queue_rq() by driver when
2461  * there isn't enough resource or some conditions aren't satisfied, and
2462  * BLK_STS_RESOURCE is usually returned.
2463  *
2464  * We do not guarantee that dispatch can be drained or blocked
2465  * after blk_mq_stop_hw_queues() returns. Please use
2466  * blk_mq_quiesce_queue() for that requirement.
2467  */
2468 void blk_mq_stop_hw_queues(struct request_queue *q)
2469 {
2470 	struct blk_mq_hw_ctx *hctx;
2471 	unsigned long i;
2472 
2473 	queue_for_each_hw_ctx(q, hctx, i)
2474 		blk_mq_stop_hw_queue(hctx);
2475 }
2476 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2477 
2478 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2479 {
2480 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2481 
2482 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2483 }
2484 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2485 
2486 void blk_mq_start_hw_queues(struct request_queue *q)
2487 {
2488 	struct blk_mq_hw_ctx *hctx;
2489 	unsigned long i;
2490 
2491 	queue_for_each_hw_ctx(q, hctx, i)
2492 		blk_mq_start_hw_queue(hctx);
2493 }
2494 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2495 
2496 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2497 {
2498 	if (!blk_mq_hctx_stopped(hctx))
2499 		return;
2500 
2501 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2502 	/*
2503 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2504 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2505 	 * list in the subsequent routine.
2506 	 */
2507 	smp_mb__after_atomic();
2508 	blk_mq_run_hw_queue(hctx, async);
2509 }
2510 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2511 
2512 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2513 {
2514 	struct blk_mq_hw_ctx *hctx;
2515 	unsigned long i;
2516 
2517 	queue_for_each_hw_ctx(q, hctx, i)
2518 		blk_mq_start_stopped_hw_queue(hctx, async ||
2519 					(hctx->flags & BLK_MQ_F_BLOCKING));
2520 }
2521 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2522 
2523 static void blk_mq_run_work_fn(struct work_struct *work)
2524 {
2525 	struct blk_mq_hw_ctx *hctx =
2526 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2527 
2528 	blk_mq_run_dispatch_ops(hctx->queue,
2529 				blk_mq_sched_dispatch_requests(hctx));
2530 }
2531 
2532 /**
2533  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2534  * @rq: Pointer to request to be inserted.
2535  * @flags: BLK_MQ_INSERT_*
2536  *
2537  * Should only be used carefully, when the caller knows we want to
2538  * bypass a potential IO scheduler on the target device.
2539  */
2540 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2541 {
2542 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2543 
2544 	spin_lock(&hctx->lock);
2545 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2546 		list_add(&rq->queuelist, &hctx->dispatch);
2547 	else
2548 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2549 	spin_unlock(&hctx->lock);
2550 }
2551 
2552 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2553 		struct blk_mq_ctx *ctx, struct list_head *list,
2554 		bool run_queue_async)
2555 {
2556 	struct request *rq;
2557 	enum hctx_type type = hctx->type;
2558 
2559 	/*
2560 	 * Try to issue requests directly if the hw queue isn't busy to save an
2561 	 * extra enqueue & dequeue to the sw queue.
2562 	 */
2563 	if (!hctx->dispatch_busy && !run_queue_async) {
2564 		blk_mq_run_dispatch_ops(hctx->queue,
2565 			blk_mq_try_issue_list_directly(hctx, list));
2566 		if (list_empty(list))
2567 			goto out;
2568 	}
2569 
2570 	/*
2571 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2572 	 * offline now
2573 	 */
2574 	list_for_each_entry(rq, list, queuelist) {
2575 		BUG_ON(rq->mq_ctx != ctx);
2576 		trace_block_rq_insert(rq);
2577 		if (rq->cmd_flags & REQ_NOWAIT)
2578 			run_queue_async = true;
2579 	}
2580 
2581 	spin_lock(&ctx->lock);
2582 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2583 	blk_mq_hctx_mark_pending(hctx, ctx);
2584 	spin_unlock(&ctx->lock);
2585 out:
2586 	blk_mq_run_hw_queue(hctx, run_queue_async);
2587 }
2588 
2589 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2590 {
2591 	struct request_queue *q = rq->q;
2592 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2593 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2594 
2595 	if (blk_rq_is_passthrough(rq)) {
2596 		/*
2597 		 * Passthrough request have to be added to hctx->dispatch
2598 		 * directly.  The device may be in a situation where it can't
2599 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2600 		 * them, which gets them added to hctx->dispatch.
2601 		 *
2602 		 * If a passthrough request is required to unblock the queues,
2603 		 * and it is added to the scheduler queue, there is no chance to
2604 		 * dispatch it given we prioritize requests in hctx->dispatch.
2605 		 */
2606 		blk_mq_request_bypass_insert(rq, flags);
2607 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2608 		/*
2609 		 * Firstly normal IO request is inserted to scheduler queue or
2610 		 * sw queue, meantime we add flush request to dispatch queue(
2611 		 * hctx->dispatch) directly and there is at most one in-flight
2612 		 * flush request for each hw queue, so it doesn't matter to add
2613 		 * flush request to tail or front of the dispatch queue.
2614 		 *
2615 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2616 		 * command, and queueing it will fail when there is any
2617 		 * in-flight normal IO request(NCQ command). When adding flush
2618 		 * rq to the front of hctx->dispatch, it is easier to introduce
2619 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2620 		 * compared with adding to the tail of dispatch queue, then
2621 		 * chance of flush merge is increased, and less flush requests
2622 		 * will be issued to controller. It is observed that ~10% time
2623 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2624 		 * drive when adding flush rq to the front of hctx->dispatch.
2625 		 *
2626 		 * Simply queue flush rq to the front of hctx->dispatch so that
2627 		 * intensive flush workloads can benefit in case of NCQ HW.
2628 		 */
2629 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2630 	} else if (q->elevator) {
2631 		LIST_HEAD(list);
2632 
2633 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2634 
2635 		list_add(&rq->queuelist, &list);
2636 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2637 	} else {
2638 		trace_block_rq_insert(rq);
2639 
2640 		spin_lock(&ctx->lock);
2641 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2642 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2643 		else
2644 			list_add_tail(&rq->queuelist,
2645 				      &ctx->rq_lists[hctx->type]);
2646 		blk_mq_hctx_mark_pending(hctx, ctx);
2647 		spin_unlock(&ctx->lock);
2648 	}
2649 }
2650 
2651 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2652 		unsigned int nr_segs)
2653 {
2654 	int err;
2655 
2656 	if (bio->bi_opf & REQ_RAHEAD)
2657 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2658 
2659 	rq->__sector = bio->bi_iter.bi_sector;
2660 	blk_rq_bio_prep(rq, bio, nr_segs);
2661 	if (bio_integrity(bio))
2662 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2663 								      bio);
2664 
2665 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2666 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2667 	WARN_ON_ONCE(err);
2668 
2669 	blk_account_io_start(rq);
2670 }
2671 
2672 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2673 					    struct request *rq, bool last)
2674 {
2675 	struct request_queue *q = rq->q;
2676 	struct blk_mq_queue_data bd = {
2677 		.rq = rq,
2678 		.last = last,
2679 	};
2680 	blk_status_t ret;
2681 
2682 	/*
2683 	 * For OK queue, we are done. For error, caller may kill it.
2684 	 * Any other error (busy), just add it to our list as we
2685 	 * previously would have done.
2686 	 */
2687 	ret = q->mq_ops->queue_rq(hctx, &bd);
2688 	switch (ret) {
2689 	case BLK_STS_OK:
2690 		blk_mq_update_dispatch_busy(hctx, false);
2691 		break;
2692 	case BLK_STS_RESOURCE:
2693 	case BLK_STS_DEV_RESOURCE:
2694 		blk_mq_update_dispatch_busy(hctx, true);
2695 		__blk_mq_requeue_request(rq);
2696 		break;
2697 	default:
2698 		blk_mq_update_dispatch_busy(hctx, false);
2699 		break;
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 static bool blk_mq_get_budget_and_tag(struct request *rq)
2706 {
2707 	int budget_token;
2708 
2709 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2710 	if (budget_token < 0)
2711 		return false;
2712 	blk_mq_set_rq_budget_token(rq, budget_token);
2713 	if (!blk_mq_get_driver_tag(rq)) {
2714 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2715 		return false;
2716 	}
2717 	return true;
2718 }
2719 
2720 /**
2721  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2722  * @hctx: Pointer of the associated hardware queue.
2723  * @rq: Pointer to request to be sent.
2724  *
2725  * If the device has enough resources to accept a new request now, send the
2726  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2727  * we can try send it another time in the future. Requests inserted at this
2728  * queue have higher priority.
2729  */
2730 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2731 		struct request *rq)
2732 {
2733 	blk_status_t ret;
2734 
2735 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2736 		blk_mq_insert_request(rq, 0);
2737 		blk_mq_run_hw_queue(hctx, false);
2738 		return;
2739 	}
2740 
2741 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2742 		blk_mq_insert_request(rq, 0);
2743 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2744 		return;
2745 	}
2746 
2747 	ret = __blk_mq_issue_directly(hctx, rq, true);
2748 	switch (ret) {
2749 	case BLK_STS_OK:
2750 		break;
2751 	case BLK_STS_RESOURCE:
2752 	case BLK_STS_DEV_RESOURCE:
2753 		blk_mq_request_bypass_insert(rq, 0);
2754 		blk_mq_run_hw_queue(hctx, false);
2755 		break;
2756 	default:
2757 		blk_mq_end_request(rq, ret);
2758 		break;
2759 	}
2760 }
2761 
2762 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2763 {
2764 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2765 
2766 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2767 		blk_mq_insert_request(rq, 0);
2768 		blk_mq_run_hw_queue(hctx, false);
2769 		return BLK_STS_OK;
2770 	}
2771 
2772 	if (!blk_mq_get_budget_and_tag(rq))
2773 		return BLK_STS_RESOURCE;
2774 	return __blk_mq_issue_directly(hctx, rq, last);
2775 }
2776 
2777 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2778 {
2779 	struct blk_mq_hw_ctx *hctx = NULL;
2780 	struct request *rq;
2781 	int queued = 0;
2782 	blk_status_t ret = BLK_STS_OK;
2783 
2784 	while ((rq = rq_list_pop(&plug->mq_list))) {
2785 		bool last = rq_list_empty(&plug->mq_list);
2786 
2787 		if (hctx != rq->mq_hctx) {
2788 			if (hctx) {
2789 				blk_mq_commit_rqs(hctx, queued, false);
2790 				queued = 0;
2791 			}
2792 			hctx = rq->mq_hctx;
2793 		}
2794 
2795 		ret = blk_mq_request_issue_directly(rq, last);
2796 		switch (ret) {
2797 		case BLK_STS_OK:
2798 			queued++;
2799 			break;
2800 		case BLK_STS_RESOURCE:
2801 		case BLK_STS_DEV_RESOURCE:
2802 			blk_mq_request_bypass_insert(rq, 0);
2803 			blk_mq_run_hw_queue(hctx, false);
2804 			goto out;
2805 		default:
2806 			blk_mq_end_request(rq, ret);
2807 			break;
2808 		}
2809 	}
2810 
2811 out:
2812 	if (ret != BLK_STS_OK)
2813 		blk_mq_commit_rqs(hctx, queued, false);
2814 }
2815 
2816 static void __blk_mq_flush_plug_list(struct request_queue *q,
2817 				     struct blk_plug *plug)
2818 {
2819 	if (blk_queue_quiesced(q))
2820 		return;
2821 	q->mq_ops->queue_rqs(&plug->mq_list);
2822 }
2823 
2824 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2825 {
2826 	struct blk_mq_hw_ctx *this_hctx = NULL;
2827 	struct blk_mq_ctx *this_ctx = NULL;
2828 	struct rq_list requeue_list = {};
2829 	unsigned int depth = 0;
2830 	bool is_passthrough = false;
2831 	LIST_HEAD(list);
2832 
2833 	do {
2834 		struct request *rq = rq_list_pop(&plug->mq_list);
2835 
2836 		if (!this_hctx) {
2837 			this_hctx = rq->mq_hctx;
2838 			this_ctx = rq->mq_ctx;
2839 			is_passthrough = blk_rq_is_passthrough(rq);
2840 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2841 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2842 			rq_list_add_tail(&requeue_list, rq);
2843 			continue;
2844 		}
2845 		list_add_tail(&rq->queuelist, &list);
2846 		depth++;
2847 	} while (!rq_list_empty(&plug->mq_list));
2848 
2849 	plug->mq_list = requeue_list;
2850 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2851 
2852 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2853 	/* passthrough requests should never be issued to the I/O scheduler */
2854 	if (is_passthrough) {
2855 		spin_lock(&this_hctx->lock);
2856 		list_splice_tail_init(&list, &this_hctx->dispatch);
2857 		spin_unlock(&this_hctx->lock);
2858 		blk_mq_run_hw_queue(this_hctx, from_sched);
2859 	} else if (this_hctx->queue->elevator) {
2860 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2861 				&list, 0);
2862 		blk_mq_run_hw_queue(this_hctx, from_sched);
2863 	} else {
2864 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2865 	}
2866 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2867 }
2868 
2869 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2870 {
2871 	struct request *rq;
2872 	unsigned int depth;
2873 
2874 	/*
2875 	 * We may have been called recursively midway through handling
2876 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2877 	 * To avoid mq_list changing under our feet, clear rq_count early and
2878 	 * bail out specifically if rq_count is 0 rather than checking
2879 	 * whether the mq_list is empty.
2880 	 */
2881 	if (plug->rq_count == 0)
2882 		return;
2883 	depth = plug->rq_count;
2884 	plug->rq_count = 0;
2885 
2886 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2887 		struct request_queue *q;
2888 
2889 		rq = rq_list_peek(&plug->mq_list);
2890 		q = rq->q;
2891 		trace_block_unplug(q, depth, true);
2892 
2893 		/*
2894 		 * Peek first request and see if we have a ->queue_rqs() hook.
2895 		 * If we do, we can dispatch the whole plug list in one go. We
2896 		 * already know at this point that all requests belong to the
2897 		 * same queue, caller must ensure that's the case.
2898 		 */
2899 		if (q->mq_ops->queue_rqs) {
2900 			blk_mq_run_dispatch_ops(q,
2901 				__blk_mq_flush_plug_list(q, plug));
2902 			if (rq_list_empty(&plug->mq_list))
2903 				return;
2904 		}
2905 
2906 		blk_mq_run_dispatch_ops(q,
2907 				blk_mq_plug_issue_direct(plug));
2908 		if (rq_list_empty(&plug->mq_list))
2909 			return;
2910 	}
2911 
2912 	do {
2913 		blk_mq_dispatch_plug_list(plug, from_schedule);
2914 	} while (!rq_list_empty(&plug->mq_list));
2915 }
2916 
2917 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2918 		struct list_head *list)
2919 {
2920 	int queued = 0;
2921 	blk_status_t ret = BLK_STS_OK;
2922 
2923 	while (!list_empty(list)) {
2924 		struct request *rq = list_first_entry(list, struct request,
2925 				queuelist);
2926 
2927 		list_del_init(&rq->queuelist);
2928 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2929 		switch (ret) {
2930 		case BLK_STS_OK:
2931 			queued++;
2932 			break;
2933 		case BLK_STS_RESOURCE:
2934 		case BLK_STS_DEV_RESOURCE:
2935 			blk_mq_request_bypass_insert(rq, 0);
2936 			if (list_empty(list))
2937 				blk_mq_run_hw_queue(hctx, false);
2938 			goto out;
2939 		default:
2940 			blk_mq_end_request(rq, ret);
2941 			break;
2942 		}
2943 	}
2944 
2945 out:
2946 	if (ret != BLK_STS_OK)
2947 		blk_mq_commit_rqs(hctx, queued, false);
2948 }
2949 
2950 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2951 				     struct bio *bio, unsigned int nr_segs)
2952 {
2953 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2954 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2955 			return true;
2956 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2957 			return true;
2958 	}
2959 	return false;
2960 }
2961 
2962 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2963 					       struct blk_plug *plug,
2964 					       struct bio *bio,
2965 					       unsigned int nsegs)
2966 {
2967 	struct blk_mq_alloc_data data = {
2968 		.q		= q,
2969 		.nr_tags	= 1,
2970 		.cmd_flags	= bio->bi_opf,
2971 	};
2972 	struct request *rq;
2973 
2974 	rq_qos_throttle(q, bio);
2975 
2976 	if (plug) {
2977 		data.nr_tags = plug->nr_ios;
2978 		plug->nr_ios = 1;
2979 		data.cached_rqs = &plug->cached_rqs;
2980 	}
2981 
2982 	rq = __blk_mq_alloc_requests(&data);
2983 	if (rq)
2984 		return rq;
2985 	rq_qos_cleanup(q, bio);
2986 	if (bio->bi_opf & REQ_NOWAIT)
2987 		bio_wouldblock_error(bio);
2988 	return NULL;
2989 }
2990 
2991 /*
2992  * Check if there is a suitable cached request and return it.
2993  */
2994 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2995 		struct request_queue *q, blk_opf_t opf)
2996 {
2997 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2998 	struct request *rq;
2999 
3000 	if (!plug)
3001 		return NULL;
3002 	rq = rq_list_peek(&plug->cached_rqs);
3003 	if (!rq || rq->q != q)
3004 		return NULL;
3005 	if (type != rq->mq_hctx->type &&
3006 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3007 		return NULL;
3008 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3009 		return NULL;
3010 	return rq;
3011 }
3012 
3013 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3014 		struct bio *bio)
3015 {
3016 	if (rq_list_pop(&plug->cached_rqs) != rq)
3017 		WARN_ON_ONCE(1);
3018 
3019 	/*
3020 	 * If any qos ->throttle() end up blocking, we will have flushed the
3021 	 * plug and hence killed the cached_rq list as well. Pop this entry
3022 	 * before we throttle.
3023 	 */
3024 	rq_qos_throttle(rq->q, bio);
3025 
3026 	blk_mq_rq_time_init(rq, blk_time_get_ns());
3027 	rq->cmd_flags = bio->bi_opf;
3028 	INIT_LIST_HEAD(&rq->queuelist);
3029 }
3030 
3031 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3032 {
3033 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3034 
3035 	/* .bi_sector of any zero sized bio need to be initialized */
3036 	if ((bio->bi_iter.bi_size & bs_mask) ||
3037 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3038 		return true;
3039 	return false;
3040 }
3041 
3042 /**
3043  * blk_mq_submit_bio - Create and send a request to block device.
3044  * @bio: Bio pointer.
3045  *
3046  * Builds up a request structure from @q and @bio and send to the device. The
3047  * request may not be queued directly to hardware if:
3048  * * This request can be merged with another one
3049  * * We want to place request at plug queue for possible future merging
3050  * * There is an IO scheduler active at this queue
3051  *
3052  * It will not queue the request if there is an error with the bio, or at the
3053  * request creation.
3054  */
3055 void blk_mq_submit_bio(struct bio *bio)
3056 {
3057 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3058 	struct blk_plug *plug = current->plug;
3059 	const int is_sync = op_is_sync(bio->bi_opf);
3060 	struct blk_mq_hw_ctx *hctx;
3061 	unsigned int nr_segs;
3062 	struct request *rq;
3063 	blk_status_t ret;
3064 
3065 	/*
3066 	 * If the plug has a cached request for this queue, try to use it.
3067 	 */
3068 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3069 
3070 	/*
3071 	 * A BIO that was released from a zone write plug has already been
3072 	 * through the preparation in this function, already holds a reference
3073 	 * on the queue usage counter, and is the only write BIO in-flight for
3074 	 * the target zone. Go straight to preparing a request for it.
3075 	 */
3076 	if (bio_zone_write_plugging(bio)) {
3077 		nr_segs = bio->__bi_nr_segments;
3078 		if (rq)
3079 			blk_queue_exit(q);
3080 		goto new_request;
3081 	}
3082 
3083 	bio = blk_queue_bounce(bio, q);
3084 
3085 	/*
3086 	 * The cached request already holds a q_usage_counter reference and we
3087 	 * don't have to acquire a new one if we use it.
3088 	 */
3089 	if (!rq) {
3090 		if (unlikely(bio_queue_enter(bio)))
3091 			return;
3092 	}
3093 
3094 	/*
3095 	 * Device reconfiguration may change logical block size, so alignment
3096 	 * check has to be done with queue usage counter held
3097 	 */
3098 	if (unlikely(bio_unaligned(bio, q))) {
3099 		bio_io_error(bio);
3100 		goto queue_exit;
3101 	}
3102 
3103 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3104 	if (!bio)
3105 		goto queue_exit;
3106 
3107 	if (!bio_integrity_prep(bio))
3108 		goto queue_exit;
3109 
3110 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3111 		goto queue_exit;
3112 
3113 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3114 		goto queue_exit;
3115 
3116 new_request:
3117 	if (!rq) {
3118 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3119 		if (unlikely(!rq))
3120 			goto queue_exit;
3121 	} else {
3122 		blk_mq_use_cached_rq(rq, plug, bio);
3123 	}
3124 
3125 	trace_block_getrq(bio);
3126 
3127 	rq_qos_track(q, rq, bio);
3128 
3129 	blk_mq_bio_to_request(rq, bio, nr_segs);
3130 
3131 	ret = blk_crypto_rq_get_keyslot(rq);
3132 	if (ret != BLK_STS_OK) {
3133 		bio->bi_status = ret;
3134 		bio_endio(bio);
3135 		blk_mq_free_request(rq);
3136 		return;
3137 	}
3138 
3139 	if (bio_zone_write_plugging(bio))
3140 		blk_zone_write_plug_init_request(rq);
3141 
3142 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3143 		return;
3144 
3145 	if (plug) {
3146 		blk_add_rq_to_plug(plug, rq);
3147 		return;
3148 	}
3149 
3150 	hctx = rq->mq_hctx;
3151 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3152 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3153 		blk_mq_insert_request(rq, 0);
3154 		blk_mq_run_hw_queue(hctx, true);
3155 	} else {
3156 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3157 	}
3158 	return;
3159 
3160 queue_exit:
3161 	/*
3162 	 * Don't drop the queue reference if we were trying to use a cached
3163 	 * request and thus didn't acquire one.
3164 	 */
3165 	if (!rq)
3166 		blk_queue_exit(q);
3167 }
3168 
3169 #ifdef CONFIG_BLK_MQ_STACKING
3170 /**
3171  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3172  * @rq: the request being queued
3173  */
3174 blk_status_t blk_insert_cloned_request(struct request *rq)
3175 {
3176 	struct request_queue *q = rq->q;
3177 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3178 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3179 	blk_status_t ret;
3180 
3181 	if (blk_rq_sectors(rq) > max_sectors) {
3182 		/*
3183 		 * SCSI device does not have a good way to return if
3184 		 * Write Same/Zero is actually supported. If a device rejects
3185 		 * a non-read/write command (discard, write same,etc.) the
3186 		 * low-level device driver will set the relevant queue limit to
3187 		 * 0 to prevent blk-lib from issuing more of the offending
3188 		 * operations. Commands queued prior to the queue limit being
3189 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3190 		 * errors being propagated to upper layers.
3191 		 */
3192 		if (max_sectors == 0)
3193 			return BLK_STS_NOTSUPP;
3194 
3195 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3196 			__func__, blk_rq_sectors(rq), max_sectors);
3197 		return BLK_STS_IOERR;
3198 	}
3199 
3200 	/*
3201 	 * The queue settings related to segment counting may differ from the
3202 	 * original queue.
3203 	 */
3204 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3205 	if (rq->nr_phys_segments > max_segments) {
3206 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3207 			__func__, rq->nr_phys_segments, max_segments);
3208 		return BLK_STS_IOERR;
3209 	}
3210 
3211 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3212 		return BLK_STS_IOERR;
3213 
3214 	ret = blk_crypto_rq_get_keyslot(rq);
3215 	if (ret != BLK_STS_OK)
3216 		return ret;
3217 
3218 	blk_account_io_start(rq);
3219 
3220 	/*
3221 	 * Since we have a scheduler attached on the top device,
3222 	 * bypass a potential scheduler on the bottom device for
3223 	 * insert.
3224 	 */
3225 	blk_mq_run_dispatch_ops(q,
3226 			ret = blk_mq_request_issue_directly(rq, true));
3227 	if (ret)
3228 		blk_account_io_done(rq, blk_time_get_ns());
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3232 
3233 /**
3234  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3235  * @rq: the clone request to be cleaned up
3236  *
3237  * Description:
3238  *     Free all bios in @rq for a cloned request.
3239  */
3240 void blk_rq_unprep_clone(struct request *rq)
3241 {
3242 	struct bio *bio;
3243 
3244 	while ((bio = rq->bio) != NULL) {
3245 		rq->bio = bio->bi_next;
3246 
3247 		bio_put(bio);
3248 	}
3249 }
3250 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3251 
3252 /**
3253  * blk_rq_prep_clone - Helper function to setup clone request
3254  * @rq: the request to be setup
3255  * @rq_src: original request to be cloned
3256  * @bs: bio_set that bios for clone are allocated from
3257  * @gfp_mask: memory allocation mask for bio
3258  * @bio_ctr: setup function to be called for each clone bio.
3259  *           Returns %0 for success, non %0 for failure.
3260  * @data: private data to be passed to @bio_ctr
3261  *
3262  * Description:
3263  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3264  *     Also, pages which the original bios are pointing to are not copied
3265  *     and the cloned bios just point same pages.
3266  *     So cloned bios must be completed before original bios, which means
3267  *     the caller must complete @rq before @rq_src.
3268  */
3269 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3270 		      struct bio_set *bs, gfp_t gfp_mask,
3271 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3272 		      void *data)
3273 {
3274 	struct bio *bio_src;
3275 
3276 	if (!bs)
3277 		bs = &fs_bio_set;
3278 
3279 	__rq_for_each_bio(bio_src, rq_src) {
3280 		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3281 					gfp_mask, bs);
3282 		if (!bio)
3283 			goto free_and_out;
3284 
3285 		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3286 			bio_put(bio);
3287 			goto free_and_out;
3288 		}
3289 
3290 		if (rq->bio) {
3291 			rq->biotail->bi_next = bio;
3292 			rq->biotail = bio;
3293 		} else {
3294 			rq->bio = rq->biotail = bio;
3295 		}
3296 	}
3297 
3298 	/* Copy attributes of the original request to the clone request. */
3299 	rq->__sector = blk_rq_pos(rq_src);
3300 	rq->__data_len = blk_rq_bytes(rq_src);
3301 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3302 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3303 		rq->special_vec = rq_src->special_vec;
3304 	}
3305 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3306 
3307 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3308 		goto free_and_out;
3309 
3310 	return 0;
3311 
3312 free_and_out:
3313 	blk_rq_unprep_clone(rq);
3314 
3315 	return -ENOMEM;
3316 }
3317 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3318 #endif /* CONFIG_BLK_MQ_STACKING */
3319 
3320 /*
3321  * Steal bios from a request and add them to a bio list.
3322  * The request must not have been partially completed before.
3323  */
3324 void blk_steal_bios(struct bio_list *list, struct request *rq)
3325 {
3326 	if (rq->bio) {
3327 		if (list->tail)
3328 			list->tail->bi_next = rq->bio;
3329 		else
3330 			list->head = rq->bio;
3331 		list->tail = rq->biotail;
3332 
3333 		rq->bio = NULL;
3334 		rq->biotail = NULL;
3335 	}
3336 
3337 	rq->__data_len = 0;
3338 }
3339 EXPORT_SYMBOL_GPL(blk_steal_bios);
3340 
3341 static size_t order_to_size(unsigned int order)
3342 {
3343 	return (size_t)PAGE_SIZE << order;
3344 }
3345 
3346 /* called before freeing request pool in @tags */
3347 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3348 				    struct blk_mq_tags *tags)
3349 {
3350 	struct page *page;
3351 	unsigned long flags;
3352 
3353 	/*
3354 	 * There is no need to clear mapping if driver tags is not initialized
3355 	 * or the mapping belongs to the driver tags.
3356 	 */
3357 	if (!drv_tags || drv_tags == tags)
3358 		return;
3359 
3360 	list_for_each_entry(page, &tags->page_list, lru) {
3361 		unsigned long start = (unsigned long)page_address(page);
3362 		unsigned long end = start + order_to_size(page->private);
3363 		int i;
3364 
3365 		for (i = 0; i < drv_tags->nr_tags; i++) {
3366 			struct request *rq = drv_tags->rqs[i];
3367 			unsigned long rq_addr = (unsigned long)rq;
3368 
3369 			if (rq_addr >= start && rq_addr < end) {
3370 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3371 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3372 			}
3373 		}
3374 	}
3375 
3376 	/*
3377 	 * Wait until all pending iteration is done.
3378 	 *
3379 	 * Request reference is cleared and it is guaranteed to be observed
3380 	 * after the ->lock is released.
3381 	 */
3382 	spin_lock_irqsave(&drv_tags->lock, flags);
3383 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3384 }
3385 
3386 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3387 		     unsigned int hctx_idx)
3388 {
3389 	struct blk_mq_tags *drv_tags;
3390 	struct page *page;
3391 
3392 	if (list_empty(&tags->page_list))
3393 		return;
3394 
3395 	if (blk_mq_is_shared_tags(set->flags))
3396 		drv_tags = set->shared_tags;
3397 	else
3398 		drv_tags = set->tags[hctx_idx];
3399 
3400 	if (tags->static_rqs && set->ops->exit_request) {
3401 		int i;
3402 
3403 		for (i = 0; i < tags->nr_tags; i++) {
3404 			struct request *rq = tags->static_rqs[i];
3405 
3406 			if (!rq)
3407 				continue;
3408 			set->ops->exit_request(set, rq, hctx_idx);
3409 			tags->static_rqs[i] = NULL;
3410 		}
3411 	}
3412 
3413 	blk_mq_clear_rq_mapping(drv_tags, tags);
3414 
3415 	while (!list_empty(&tags->page_list)) {
3416 		page = list_first_entry(&tags->page_list, struct page, lru);
3417 		list_del_init(&page->lru);
3418 		/*
3419 		 * Remove kmemleak object previously allocated in
3420 		 * blk_mq_alloc_rqs().
3421 		 */
3422 		kmemleak_free(page_address(page));
3423 		__free_pages(page, page->private);
3424 	}
3425 }
3426 
3427 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3428 {
3429 	kfree(tags->rqs);
3430 	tags->rqs = NULL;
3431 	kfree(tags->static_rqs);
3432 	tags->static_rqs = NULL;
3433 
3434 	blk_mq_free_tags(tags);
3435 }
3436 
3437 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3438 		unsigned int hctx_idx)
3439 {
3440 	int i;
3441 
3442 	for (i = 0; i < set->nr_maps; i++) {
3443 		unsigned int start = set->map[i].queue_offset;
3444 		unsigned int end = start + set->map[i].nr_queues;
3445 
3446 		if (hctx_idx >= start && hctx_idx < end)
3447 			break;
3448 	}
3449 
3450 	if (i >= set->nr_maps)
3451 		i = HCTX_TYPE_DEFAULT;
3452 
3453 	return i;
3454 }
3455 
3456 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3457 		unsigned int hctx_idx)
3458 {
3459 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3460 
3461 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3462 }
3463 
3464 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3465 					       unsigned int hctx_idx,
3466 					       unsigned int nr_tags,
3467 					       unsigned int reserved_tags)
3468 {
3469 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3470 	struct blk_mq_tags *tags;
3471 
3472 	if (node == NUMA_NO_NODE)
3473 		node = set->numa_node;
3474 
3475 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3476 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3477 	if (!tags)
3478 		return NULL;
3479 
3480 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3481 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3482 				 node);
3483 	if (!tags->rqs)
3484 		goto err_free_tags;
3485 
3486 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3487 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3488 					node);
3489 	if (!tags->static_rqs)
3490 		goto err_free_rqs;
3491 
3492 	return tags;
3493 
3494 err_free_rqs:
3495 	kfree(tags->rqs);
3496 err_free_tags:
3497 	blk_mq_free_tags(tags);
3498 	return NULL;
3499 }
3500 
3501 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3502 			       unsigned int hctx_idx, int node)
3503 {
3504 	int ret;
3505 
3506 	if (set->ops->init_request) {
3507 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3508 		if (ret)
3509 			return ret;
3510 	}
3511 
3512 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3513 	return 0;
3514 }
3515 
3516 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3517 			    struct blk_mq_tags *tags,
3518 			    unsigned int hctx_idx, unsigned int depth)
3519 {
3520 	unsigned int i, j, entries_per_page, max_order = 4;
3521 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3522 	size_t rq_size, left;
3523 
3524 	if (node == NUMA_NO_NODE)
3525 		node = set->numa_node;
3526 
3527 	INIT_LIST_HEAD(&tags->page_list);
3528 
3529 	/*
3530 	 * rq_size is the size of the request plus driver payload, rounded
3531 	 * to the cacheline size
3532 	 */
3533 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3534 				cache_line_size());
3535 	left = rq_size * depth;
3536 
3537 	for (i = 0; i < depth; ) {
3538 		int this_order = max_order;
3539 		struct page *page;
3540 		int to_do;
3541 		void *p;
3542 
3543 		while (this_order && left < order_to_size(this_order - 1))
3544 			this_order--;
3545 
3546 		do {
3547 			page = alloc_pages_node(node,
3548 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3549 				this_order);
3550 			if (page)
3551 				break;
3552 			if (!this_order--)
3553 				break;
3554 			if (order_to_size(this_order) < rq_size)
3555 				break;
3556 		} while (1);
3557 
3558 		if (!page)
3559 			goto fail;
3560 
3561 		page->private = this_order;
3562 		list_add_tail(&page->lru, &tags->page_list);
3563 
3564 		p = page_address(page);
3565 		/*
3566 		 * Allow kmemleak to scan these pages as they contain pointers
3567 		 * to additional allocations like via ops->init_request().
3568 		 */
3569 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3570 		entries_per_page = order_to_size(this_order) / rq_size;
3571 		to_do = min(entries_per_page, depth - i);
3572 		left -= to_do * rq_size;
3573 		for (j = 0; j < to_do; j++) {
3574 			struct request *rq = p;
3575 
3576 			tags->static_rqs[i] = rq;
3577 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3578 				tags->static_rqs[i] = NULL;
3579 				goto fail;
3580 			}
3581 
3582 			p += rq_size;
3583 			i++;
3584 		}
3585 	}
3586 	return 0;
3587 
3588 fail:
3589 	blk_mq_free_rqs(set, tags, hctx_idx);
3590 	return -ENOMEM;
3591 }
3592 
3593 struct rq_iter_data {
3594 	struct blk_mq_hw_ctx *hctx;
3595 	bool has_rq;
3596 };
3597 
3598 static bool blk_mq_has_request(struct request *rq, void *data)
3599 {
3600 	struct rq_iter_data *iter_data = data;
3601 
3602 	if (rq->mq_hctx != iter_data->hctx)
3603 		return true;
3604 	iter_data->has_rq = true;
3605 	return false;
3606 }
3607 
3608 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3609 {
3610 	struct blk_mq_tags *tags = hctx->sched_tags ?
3611 			hctx->sched_tags : hctx->tags;
3612 	struct rq_iter_data data = {
3613 		.hctx	= hctx,
3614 	};
3615 
3616 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3617 	return data.has_rq;
3618 }
3619 
3620 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3621 		unsigned int this_cpu)
3622 {
3623 	enum hctx_type type = hctx->type;
3624 	int cpu;
3625 
3626 	/*
3627 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3628 	 * might submit IOs on these isolated CPUs, so use the queue map to
3629 	 * check if all CPUs mapped to this hctx are offline
3630 	 */
3631 	for_each_online_cpu(cpu) {
3632 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3633 				type, cpu);
3634 
3635 		if (h != hctx)
3636 			continue;
3637 
3638 		/* this hctx has at least one online CPU */
3639 		if (this_cpu != cpu)
3640 			return true;
3641 	}
3642 
3643 	return false;
3644 }
3645 
3646 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3647 {
3648 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3649 			struct blk_mq_hw_ctx, cpuhp_online);
3650 
3651 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3652 		return 0;
3653 
3654 	/*
3655 	 * Prevent new request from being allocated on the current hctx.
3656 	 *
3657 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3658 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3659 	 * seen once we return from the tag allocator.
3660 	 */
3661 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3662 	smp_mb__after_atomic();
3663 
3664 	/*
3665 	 * Try to grab a reference to the queue and wait for any outstanding
3666 	 * requests.  If we could not grab a reference the queue has been
3667 	 * frozen and there are no requests.
3668 	 */
3669 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3670 		while (blk_mq_hctx_has_requests(hctx))
3671 			msleep(5);
3672 		percpu_ref_put(&hctx->queue->q_usage_counter);
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 /*
3679  * Check if one CPU is mapped to the specified hctx
3680  *
3681  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3682  * to be used for scheduling kworker only. For other usage, please call this
3683  * helper for checking if one CPU belongs to the specified hctx
3684  */
3685 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3686 		const struct blk_mq_hw_ctx *hctx)
3687 {
3688 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3689 			hctx->type, cpu);
3690 
3691 	return mapped_hctx == hctx;
3692 }
3693 
3694 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3695 {
3696 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3697 			struct blk_mq_hw_ctx, cpuhp_online);
3698 
3699 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3700 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3701 	return 0;
3702 }
3703 
3704 /*
3705  * 'cpu' is going away. splice any existing rq_list entries from this
3706  * software queue to the hw queue dispatch list, and ensure that it
3707  * gets run.
3708  */
3709 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3710 {
3711 	struct blk_mq_hw_ctx *hctx;
3712 	struct blk_mq_ctx *ctx;
3713 	LIST_HEAD(tmp);
3714 	enum hctx_type type;
3715 
3716 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3717 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3718 		return 0;
3719 
3720 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3721 	type = hctx->type;
3722 
3723 	spin_lock(&ctx->lock);
3724 	if (!list_empty(&ctx->rq_lists[type])) {
3725 		list_splice_init(&ctx->rq_lists[type], &tmp);
3726 		blk_mq_hctx_clear_pending(hctx, ctx);
3727 	}
3728 	spin_unlock(&ctx->lock);
3729 
3730 	if (list_empty(&tmp))
3731 		return 0;
3732 
3733 	spin_lock(&hctx->lock);
3734 	list_splice_tail_init(&tmp, &hctx->dispatch);
3735 	spin_unlock(&hctx->lock);
3736 
3737 	blk_mq_run_hw_queue(hctx, true);
3738 	return 0;
3739 }
3740 
3741 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3742 {
3743 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3744 
3745 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3746 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3747 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3748 						    &hctx->cpuhp_online);
3749 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3750 	}
3751 
3752 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3753 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3754 						    &hctx->cpuhp_dead);
3755 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3756 	}
3757 }
3758 
3759 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3760 {
3761 	mutex_lock(&blk_mq_cpuhp_lock);
3762 	__blk_mq_remove_cpuhp(hctx);
3763 	mutex_unlock(&blk_mq_cpuhp_lock);
3764 }
3765 
3766 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3767 {
3768 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3769 
3770 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3771 	    hlist_unhashed(&hctx->cpuhp_online))
3772 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3773 				&hctx->cpuhp_online);
3774 
3775 	if (hlist_unhashed(&hctx->cpuhp_dead))
3776 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3777 				&hctx->cpuhp_dead);
3778 }
3779 
3780 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3781 {
3782 	struct blk_mq_hw_ctx *hctx;
3783 
3784 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3785 
3786 	list_for_each_entry(hctx, head, hctx_list)
3787 		__blk_mq_remove_cpuhp(hctx);
3788 }
3789 
3790 /*
3791  * Unregister cpuhp callbacks from exited hw queues
3792  *
3793  * Safe to call if this `request_queue` is live
3794  */
3795 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3796 {
3797 	LIST_HEAD(hctx_list);
3798 
3799 	spin_lock(&q->unused_hctx_lock);
3800 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3801 	spin_unlock(&q->unused_hctx_lock);
3802 
3803 	mutex_lock(&blk_mq_cpuhp_lock);
3804 	__blk_mq_remove_cpuhp_list(&hctx_list);
3805 	mutex_unlock(&blk_mq_cpuhp_lock);
3806 
3807 	spin_lock(&q->unused_hctx_lock);
3808 	list_splice(&hctx_list, &q->unused_hctx_list);
3809 	spin_unlock(&q->unused_hctx_lock);
3810 }
3811 
3812 /*
3813  * Register cpuhp callbacks from all hw queues
3814  *
3815  * Safe to call if this `request_queue` is live
3816  */
3817 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3818 {
3819 	struct blk_mq_hw_ctx *hctx;
3820 	unsigned long i;
3821 
3822 	mutex_lock(&blk_mq_cpuhp_lock);
3823 	queue_for_each_hw_ctx(q, hctx, i)
3824 		__blk_mq_add_cpuhp(hctx);
3825 	mutex_unlock(&blk_mq_cpuhp_lock);
3826 }
3827 
3828 /*
3829  * Before freeing hw queue, clearing the flush request reference in
3830  * tags->rqs[] for avoiding potential UAF.
3831  */
3832 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3833 		unsigned int queue_depth, struct request *flush_rq)
3834 {
3835 	int i;
3836 	unsigned long flags;
3837 
3838 	/* The hw queue may not be mapped yet */
3839 	if (!tags)
3840 		return;
3841 
3842 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3843 
3844 	for (i = 0; i < queue_depth; i++)
3845 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3846 
3847 	/*
3848 	 * Wait until all pending iteration is done.
3849 	 *
3850 	 * Request reference is cleared and it is guaranteed to be observed
3851 	 * after the ->lock is released.
3852 	 */
3853 	spin_lock_irqsave(&tags->lock, flags);
3854 	spin_unlock_irqrestore(&tags->lock, flags);
3855 }
3856 
3857 /* hctx->ctxs will be freed in queue's release handler */
3858 static void blk_mq_exit_hctx(struct request_queue *q,
3859 		struct blk_mq_tag_set *set,
3860 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3861 {
3862 	struct request *flush_rq = hctx->fq->flush_rq;
3863 
3864 	if (blk_mq_hw_queue_mapped(hctx))
3865 		blk_mq_tag_idle(hctx);
3866 
3867 	if (blk_queue_init_done(q))
3868 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3869 				set->queue_depth, flush_rq);
3870 	if (set->ops->exit_request)
3871 		set->ops->exit_request(set, flush_rq, hctx_idx);
3872 
3873 	if (set->ops->exit_hctx)
3874 		set->ops->exit_hctx(hctx, hctx_idx);
3875 
3876 	xa_erase(&q->hctx_table, hctx_idx);
3877 
3878 	spin_lock(&q->unused_hctx_lock);
3879 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3880 	spin_unlock(&q->unused_hctx_lock);
3881 }
3882 
3883 static void blk_mq_exit_hw_queues(struct request_queue *q,
3884 		struct blk_mq_tag_set *set, int nr_queue)
3885 {
3886 	struct blk_mq_hw_ctx *hctx;
3887 	unsigned long i;
3888 
3889 	queue_for_each_hw_ctx(q, hctx, i) {
3890 		if (i == nr_queue)
3891 			break;
3892 		blk_mq_remove_cpuhp(hctx);
3893 		blk_mq_exit_hctx(q, set, hctx, i);
3894 	}
3895 }
3896 
3897 static int blk_mq_init_hctx(struct request_queue *q,
3898 		struct blk_mq_tag_set *set,
3899 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3900 {
3901 	hctx->queue_num = hctx_idx;
3902 
3903 	hctx->tags = set->tags[hctx_idx];
3904 
3905 	if (set->ops->init_hctx &&
3906 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3907 		goto fail;
3908 
3909 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3910 				hctx->numa_node))
3911 		goto exit_hctx;
3912 
3913 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3914 		goto exit_flush_rq;
3915 
3916 	return 0;
3917 
3918  exit_flush_rq:
3919 	if (set->ops->exit_request)
3920 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3921  exit_hctx:
3922 	if (set->ops->exit_hctx)
3923 		set->ops->exit_hctx(hctx, hctx_idx);
3924  fail:
3925 	return -1;
3926 }
3927 
3928 static struct blk_mq_hw_ctx *
3929 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3930 		int node)
3931 {
3932 	struct blk_mq_hw_ctx *hctx;
3933 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3934 
3935 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3936 	if (!hctx)
3937 		goto fail_alloc_hctx;
3938 
3939 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3940 		goto free_hctx;
3941 
3942 	atomic_set(&hctx->nr_active, 0);
3943 	if (node == NUMA_NO_NODE)
3944 		node = set->numa_node;
3945 	hctx->numa_node = node;
3946 
3947 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3948 	spin_lock_init(&hctx->lock);
3949 	INIT_LIST_HEAD(&hctx->dispatch);
3950 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3951 	INIT_HLIST_NODE(&hctx->cpuhp_online);
3952 	hctx->queue = q;
3953 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3954 
3955 	INIT_LIST_HEAD(&hctx->hctx_list);
3956 
3957 	/*
3958 	 * Allocate space for all possible cpus to avoid allocation at
3959 	 * runtime
3960 	 */
3961 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3962 			gfp, node);
3963 	if (!hctx->ctxs)
3964 		goto free_cpumask;
3965 
3966 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3967 				gfp, node, false, false))
3968 		goto free_ctxs;
3969 	hctx->nr_ctx = 0;
3970 
3971 	spin_lock_init(&hctx->dispatch_wait_lock);
3972 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3973 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3974 
3975 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3976 	if (!hctx->fq)
3977 		goto free_bitmap;
3978 
3979 	blk_mq_hctx_kobj_init(hctx);
3980 
3981 	return hctx;
3982 
3983  free_bitmap:
3984 	sbitmap_free(&hctx->ctx_map);
3985  free_ctxs:
3986 	kfree(hctx->ctxs);
3987  free_cpumask:
3988 	free_cpumask_var(hctx->cpumask);
3989  free_hctx:
3990 	kfree(hctx);
3991  fail_alloc_hctx:
3992 	return NULL;
3993 }
3994 
3995 static void blk_mq_init_cpu_queues(struct request_queue *q,
3996 				   unsigned int nr_hw_queues)
3997 {
3998 	struct blk_mq_tag_set *set = q->tag_set;
3999 	unsigned int i, j;
4000 
4001 	for_each_possible_cpu(i) {
4002 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4003 		struct blk_mq_hw_ctx *hctx;
4004 		int k;
4005 
4006 		__ctx->cpu = i;
4007 		spin_lock_init(&__ctx->lock);
4008 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4009 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4010 
4011 		__ctx->queue = q;
4012 
4013 		/*
4014 		 * Set local node, IFF we have more than one hw queue. If
4015 		 * not, we remain on the home node of the device
4016 		 */
4017 		for (j = 0; j < set->nr_maps; j++) {
4018 			hctx = blk_mq_map_queue_type(q, j, i);
4019 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4020 				hctx->numa_node = cpu_to_node(i);
4021 		}
4022 	}
4023 }
4024 
4025 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4026 					     unsigned int hctx_idx,
4027 					     unsigned int depth)
4028 {
4029 	struct blk_mq_tags *tags;
4030 	int ret;
4031 
4032 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4033 	if (!tags)
4034 		return NULL;
4035 
4036 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4037 	if (ret) {
4038 		blk_mq_free_rq_map(tags);
4039 		return NULL;
4040 	}
4041 
4042 	return tags;
4043 }
4044 
4045 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4046 				       int hctx_idx)
4047 {
4048 	if (blk_mq_is_shared_tags(set->flags)) {
4049 		set->tags[hctx_idx] = set->shared_tags;
4050 
4051 		return true;
4052 	}
4053 
4054 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4055 						       set->queue_depth);
4056 
4057 	return set->tags[hctx_idx];
4058 }
4059 
4060 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4061 			     struct blk_mq_tags *tags,
4062 			     unsigned int hctx_idx)
4063 {
4064 	if (tags) {
4065 		blk_mq_free_rqs(set, tags, hctx_idx);
4066 		blk_mq_free_rq_map(tags);
4067 	}
4068 }
4069 
4070 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4071 				      unsigned int hctx_idx)
4072 {
4073 	if (!blk_mq_is_shared_tags(set->flags))
4074 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4075 
4076 	set->tags[hctx_idx] = NULL;
4077 }
4078 
4079 static void blk_mq_map_swqueue(struct request_queue *q)
4080 {
4081 	unsigned int j, hctx_idx;
4082 	unsigned long i;
4083 	struct blk_mq_hw_ctx *hctx;
4084 	struct blk_mq_ctx *ctx;
4085 	struct blk_mq_tag_set *set = q->tag_set;
4086 
4087 	queue_for_each_hw_ctx(q, hctx, i) {
4088 		cpumask_clear(hctx->cpumask);
4089 		hctx->nr_ctx = 0;
4090 		hctx->dispatch_from = NULL;
4091 	}
4092 
4093 	/*
4094 	 * Map software to hardware queues.
4095 	 *
4096 	 * If the cpu isn't present, the cpu is mapped to first hctx.
4097 	 */
4098 	for_each_possible_cpu(i) {
4099 
4100 		ctx = per_cpu_ptr(q->queue_ctx, i);
4101 		for (j = 0; j < set->nr_maps; j++) {
4102 			if (!set->map[j].nr_queues) {
4103 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4104 						HCTX_TYPE_DEFAULT, i);
4105 				continue;
4106 			}
4107 			hctx_idx = set->map[j].mq_map[i];
4108 			/* unmapped hw queue can be remapped after CPU topo changed */
4109 			if (!set->tags[hctx_idx] &&
4110 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4111 				/*
4112 				 * If tags initialization fail for some hctx,
4113 				 * that hctx won't be brought online.  In this
4114 				 * case, remap the current ctx to hctx[0] which
4115 				 * is guaranteed to always have tags allocated
4116 				 */
4117 				set->map[j].mq_map[i] = 0;
4118 			}
4119 
4120 			hctx = blk_mq_map_queue_type(q, j, i);
4121 			ctx->hctxs[j] = hctx;
4122 			/*
4123 			 * If the CPU is already set in the mask, then we've
4124 			 * mapped this one already. This can happen if
4125 			 * devices share queues across queue maps.
4126 			 */
4127 			if (cpumask_test_cpu(i, hctx->cpumask))
4128 				continue;
4129 
4130 			cpumask_set_cpu(i, hctx->cpumask);
4131 			hctx->type = j;
4132 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4133 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4134 
4135 			/*
4136 			 * If the nr_ctx type overflows, we have exceeded the
4137 			 * amount of sw queues we can support.
4138 			 */
4139 			BUG_ON(!hctx->nr_ctx);
4140 		}
4141 
4142 		for (; j < HCTX_MAX_TYPES; j++)
4143 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4144 					HCTX_TYPE_DEFAULT, i);
4145 	}
4146 
4147 	queue_for_each_hw_ctx(q, hctx, i) {
4148 		int cpu;
4149 
4150 		/*
4151 		 * If no software queues are mapped to this hardware queue,
4152 		 * disable it and free the request entries.
4153 		 */
4154 		if (!hctx->nr_ctx) {
4155 			/* Never unmap queue 0.  We need it as a
4156 			 * fallback in case of a new remap fails
4157 			 * allocation
4158 			 */
4159 			if (i)
4160 				__blk_mq_free_map_and_rqs(set, i);
4161 
4162 			hctx->tags = NULL;
4163 			continue;
4164 		}
4165 
4166 		hctx->tags = set->tags[i];
4167 		WARN_ON(!hctx->tags);
4168 
4169 		/*
4170 		 * Set the map size to the number of mapped software queues.
4171 		 * This is more accurate and more efficient than looping
4172 		 * over all possibly mapped software queues.
4173 		 */
4174 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4175 
4176 		/*
4177 		 * Rule out isolated CPUs from hctx->cpumask to avoid
4178 		 * running block kworker on isolated CPUs
4179 		 */
4180 		for_each_cpu(cpu, hctx->cpumask) {
4181 			if (cpu_is_isolated(cpu))
4182 				cpumask_clear_cpu(cpu, hctx->cpumask);
4183 		}
4184 
4185 		/*
4186 		 * Initialize batch roundrobin counts
4187 		 */
4188 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4189 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4190 	}
4191 }
4192 
4193 /*
4194  * Caller needs to ensure that we're either frozen/quiesced, or that
4195  * the queue isn't live yet.
4196  */
4197 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4198 {
4199 	struct blk_mq_hw_ctx *hctx;
4200 	unsigned long i;
4201 
4202 	queue_for_each_hw_ctx(q, hctx, i) {
4203 		if (shared) {
4204 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4205 		} else {
4206 			blk_mq_tag_idle(hctx);
4207 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4208 		}
4209 	}
4210 }
4211 
4212 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4213 					 bool shared)
4214 {
4215 	struct request_queue *q;
4216 
4217 	lockdep_assert_held(&set->tag_list_lock);
4218 
4219 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4220 		blk_mq_freeze_queue(q);
4221 		queue_set_hctx_shared(q, shared);
4222 		blk_mq_unfreeze_queue(q);
4223 	}
4224 }
4225 
4226 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4227 {
4228 	struct blk_mq_tag_set *set = q->tag_set;
4229 
4230 	mutex_lock(&set->tag_list_lock);
4231 	list_del(&q->tag_set_list);
4232 	if (list_is_singular(&set->tag_list)) {
4233 		/* just transitioned to unshared */
4234 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4235 		/* update existing queue */
4236 		blk_mq_update_tag_set_shared(set, false);
4237 	}
4238 	mutex_unlock(&set->tag_list_lock);
4239 	INIT_LIST_HEAD(&q->tag_set_list);
4240 }
4241 
4242 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4243 				     struct request_queue *q)
4244 {
4245 	mutex_lock(&set->tag_list_lock);
4246 
4247 	/*
4248 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4249 	 */
4250 	if (!list_empty(&set->tag_list) &&
4251 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4252 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4253 		/* update existing queue */
4254 		blk_mq_update_tag_set_shared(set, true);
4255 	}
4256 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4257 		queue_set_hctx_shared(q, true);
4258 	list_add_tail(&q->tag_set_list, &set->tag_list);
4259 
4260 	mutex_unlock(&set->tag_list_lock);
4261 }
4262 
4263 /* All allocations will be freed in release handler of q->mq_kobj */
4264 static int blk_mq_alloc_ctxs(struct request_queue *q)
4265 {
4266 	struct blk_mq_ctxs *ctxs;
4267 	int cpu;
4268 
4269 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4270 	if (!ctxs)
4271 		return -ENOMEM;
4272 
4273 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4274 	if (!ctxs->queue_ctx)
4275 		goto fail;
4276 
4277 	for_each_possible_cpu(cpu) {
4278 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4279 		ctx->ctxs = ctxs;
4280 	}
4281 
4282 	q->mq_kobj = &ctxs->kobj;
4283 	q->queue_ctx = ctxs->queue_ctx;
4284 
4285 	return 0;
4286  fail:
4287 	kfree(ctxs);
4288 	return -ENOMEM;
4289 }
4290 
4291 /*
4292  * It is the actual release handler for mq, but we do it from
4293  * request queue's release handler for avoiding use-after-free
4294  * and headache because q->mq_kobj shouldn't have been introduced,
4295  * but we can't group ctx/kctx kobj without it.
4296  */
4297 void blk_mq_release(struct request_queue *q)
4298 {
4299 	struct blk_mq_hw_ctx *hctx, *next;
4300 	unsigned long i;
4301 
4302 	queue_for_each_hw_ctx(q, hctx, i)
4303 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4304 
4305 	/* all hctx are in .unused_hctx_list now */
4306 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4307 		list_del_init(&hctx->hctx_list);
4308 		kobject_put(&hctx->kobj);
4309 	}
4310 
4311 	xa_destroy(&q->hctx_table);
4312 
4313 	/*
4314 	 * release .mq_kobj and sw queue's kobject now because
4315 	 * both share lifetime with request queue.
4316 	 */
4317 	blk_mq_sysfs_deinit(q);
4318 }
4319 
4320 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4321 {
4322 	return set->nr_maps > HCTX_TYPE_POLL &&
4323 		set->map[HCTX_TYPE_POLL].nr_queues;
4324 }
4325 
4326 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4327 		struct queue_limits *lim, void *queuedata)
4328 {
4329 	struct queue_limits default_lim = { };
4330 	struct request_queue *q;
4331 	int ret;
4332 
4333 	if (!lim)
4334 		lim = &default_lim;
4335 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4336 	if (blk_mq_can_poll(set))
4337 		lim->features |= BLK_FEAT_POLL;
4338 
4339 	q = blk_alloc_queue(lim, set->numa_node);
4340 	if (IS_ERR(q))
4341 		return q;
4342 	q->queuedata = queuedata;
4343 	ret = blk_mq_init_allocated_queue(set, q);
4344 	if (ret) {
4345 		blk_put_queue(q);
4346 		return ERR_PTR(ret);
4347 	}
4348 	return q;
4349 }
4350 EXPORT_SYMBOL(blk_mq_alloc_queue);
4351 
4352 /**
4353  * blk_mq_destroy_queue - shutdown a request queue
4354  * @q: request queue to shutdown
4355  *
4356  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4357  * requests will be failed with -ENODEV. The caller is responsible for dropping
4358  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4359  *
4360  * Context: can sleep
4361  */
4362 void blk_mq_destroy_queue(struct request_queue *q)
4363 {
4364 	WARN_ON_ONCE(!queue_is_mq(q));
4365 	WARN_ON_ONCE(blk_queue_registered(q));
4366 
4367 	might_sleep();
4368 
4369 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4370 	blk_queue_start_drain(q);
4371 	blk_mq_freeze_queue_wait(q);
4372 
4373 	blk_sync_queue(q);
4374 	blk_mq_cancel_work_sync(q);
4375 	blk_mq_exit_queue(q);
4376 }
4377 EXPORT_SYMBOL(blk_mq_destroy_queue);
4378 
4379 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4380 		struct queue_limits *lim, void *queuedata,
4381 		struct lock_class_key *lkclass)
4382 {
4383 	struct request_queue *q;
4384 	struct gendisk *disk;
4385 
4386 	q = blk_mq_alloc_queue(set, lim, queuedata);
4387 	if (IS_ERR(q))
4388 		return ERR_CAST(q);
4389 
4390 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4391 	if (!disk) {
4392 		blk_mq_destroy_queue(q);
4393 		blk_put_queue(q);
4394 		return ERR_PTR(-ENOMEM);
4395 	}
4396 	set_bit(GD_OWNS_QUEUE, &disk->state);
4397 	return disk;
4398 }
4399 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4400 
4401 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4402 		struct lock_class_key *lkclass)
4403 {
4404 	struct gendisk *disk;
4405 
4406 	if (!blk_get_queue(q))
4407 		return NULL;
4408 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4409 	if (!disk)
4410 		blk_put_queue(q);
4411 	return disk;
4412 }
4413 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4414 
4415 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4416 		struct blk_mq_tag_set *set, struct request_queue *q,
4417 		int hctx_idx, int node)
4418 {
4419 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4420 
4421 	/* reuse dead hctx first */
4422 	spin_lock(&q->unused_hctx_lock);
4423 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4424 		if (tmp->numa_node == node) {
4425 			hctx = tmp;
4426 			break;
4427 		}
4428 	}
4429 	if (hctx)
4430 		list_del_init(&hctx->hctx_list);
4431 	spin_unlock(&q->unused_hctx_lock);
4432 
4433 	if (!hctx)
4434 		hctx = blk_mq_alloc_hctx(q, set, node);
4435 	if (!hctx)
4436 		goto fail;
4437 
4438 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4439 		goto free_hctx;
4440 
4441 	return hctx;
4442 
4443  free_hctx:
4444 	kobject_put(&hctx->kobj);
4445  fail:
4446 	return NULL;
4447 }
4448 
4449 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4450 						struct request_queue *q)
4451 {
4452 	struct blk_mq_hw_ctx *hctx;
4453 	unsigned long i, j;
4454 
4455 	/* protect against switching io scheduler  */
4456 	lockdep_assert_held(&q->sysfs_lock);
4457 
4458 	for (i = 0; i < set->nr_hw_queues; i++) {
4459 		int old_node;
4460 		int node = blk_mq_get_hctx_node(set, i);
4461 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4462 
4463 		if (old_hctx) {
4464 			old_node = old_hctx->numa_node;
4465 			blk_mq_exit_hctx(q, set, old_hctx, i);
4466 		}
4467 
4468 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4469 			if (!old_hctx)
4470 				break;
4471 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4472 					node, old_node);
4473 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4474 			WARN_ON_ONCE(!hctx);
4475 		}
4476 	}
4477 	/*
4478 	 * Increasing nr_hw_queues fails. Free the newly allocated
4479 	 * hctxs and keep the previous q->nr_hw_queues.
4480 	 */
4481 	if (i != set->nr_hw_queues) {
4482 		j = q->nr_hw_queues;
4483 	} else {
4484 		j = i;
4485 		q->nr_hw_queues = set->nr_hw_queues;
4486 	}
4487 
4488 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4489 		blk_mq_exit_hctx(q, set, hctx, j);
4490 
4491 	/* unregister cpuhp callbacks for exited hctxs */
4492 	blk_mq_remove_hw_queues_cpuhp(q);
4493 
4494 	/* register cpuhp for new initialized hctxs */
4495 	blk_mq_add_hw_queues_cpuhp(q);
4496 }
4497 
4498 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4499 		struct request_queue *q)
4500 {
4501 	/* mark the queue as mq asap */
4502 	q->mq_ops = set->ops;
4503 
4504 	/*
4505 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4506 	 * handler needs it for checking queue mapping
4507 	 */
4508 	q->tag_set = set;
4509 
4510 	if (blk_mq_alloc_ctxs(q))
4511 		goto err_exit;
4512 
4513 	/* init q->mq_kobj and sw queues' kobjects */
4514 	blk_mq_sysfs_init(q);
4515 
4516 	INIT_LIST_HEAD(&q->unused_hctx_list);
4517 	spin_lock_init(&q->unused_hctx_lock);
4518 
4519 	xa_init(&q->hctx_table);
4520 
4521 	mutex_lock(&q->sysfs_lock);
4522 
4523 	blk_mq_realloc_hw_ctxs(set, q);
4524 	if (!q->nr_hw_queues)
4525 		goto err_hctxs;
4526 
4527 	mutex_unlock(&q->sysfs_lock);
4528 
4529 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4530 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4531 
4532 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4533 
4534 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4535 	INIT_LIST_HEAD(&q->flush_list);
4536 	INIT_LIST_HEAD(&q->requeue_list);
4537 	spin_lock_init(&q->requeue_lock);
4538 
4539 	q->nr_requests = set->queue_depth;
4540 
4541 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4542 	blk_mq_add_queue_tag_set(set, q);
4543 	blk_mq_map_swqueue(q);
4544 	return 0;
4545 
4546 err_hctxs:
4547 	mutex_unlock(&q->sysfs_lock);
4548 	blk_mq_release(q);
4549 err_exit:
4550 	q->mq_ops = NULL;
4551 	return -ENOMEM;
4552 }
4553 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4554 
4555 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4556 void blk_mq_exit_queue(struct request_queue *q)
4557 {
4558 	struct blk_mq_tag_set *set = q->tag_set;
4559 
4560 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4561 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4562 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4563 	blk_mq_del_queue_tag_set(q);
4564 }
4565 
4566 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4567 {
4568 	int i;
4569 
4570 	if (blk_mq_is_shared_tags(set->flags)) {
4571 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4572 						BLK_MQ_NO_HCTX_IDX,
4573 						set->queue_depth);
4574 		if (!set->shared_tags)
4575 			return -ENOMEM;
4576 	}
4577 
4578 	for (i = 0; i < set->nr_hw_queues; i++) {
4579 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4580 			goto out_unwind;
4581 		cond_resched();
4582 	}
4583 
4584 	return 0;
4585 
4586 out_unwind:
4587 	while (--i >= 0)
4588 		__blk_mq_free_map_and_rqs(set, i);
4589 
4590 	if (blk_mq_is_shared_tags(set->flags)) {
4591 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4592 					BLK_MQ_NO_HCTX_IDX);
4593 	}
4594 
4595 	return -ENOMEM;
4596 }
4597 
4598 /*
4599  * Allocate the request maps associated with this tag_set. Note that this
4600  * may reduce the depth asked for, if memory is tight. set->queue_depth
4601  * will be updated to reflect the allocated depth.
4602  */
4603 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4604 {
4605 	unsigned int depth;
4606 	int err;
4607 
4608 	depth = set->queue_depth;
4609 	do {
4610 		err = __blk_mq_alloc_rq_maps(set);
4611 		if (!err)
4612 			break;
4613 
4614 		set->queue_depth >>= 1;
4615 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4616 			err = -ENOMEM;
4617 			break;
4618 		}
4619 	} while (set->queue_depth);
4620 
4621 	if (!set->queue_depth || err) {
4622 		pr_err("blk-mq: failed to allocate request map\n");
4623 		return -ENOMEM;
4624 	}
4625 
4626 	if (depth != set->queue_depth)
4627 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4628 						depth, set->queue_depth);
4629 
4630 	return 0;
4631 }
4632 
4633 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4634 {
4635 	/*
4636 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4637 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4638 	 * number of hardware queues.
4639 	 */
4640 	if (set->nr_maps == 1)
4641 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4642 
4643 	if (set->ops->map_queues) {
4644 		int i;
4645 
4646 		/*
4647 		 * transport .map_queues is usually done in the following
4648 		 * way:
4649 		 *
4650 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4651 		 * 	mask = get_cpu_mask(queue)
4652 		 * 	for_each_cpu(cpu, mask)
4653 		 * 		set->map[x].mq_map[cpu] = queue;
4654 		 * }
4655 		 *
4656 		 * When we need to remap, the table has to be cleared for
4657 		 * killing stale mapping since one CPU may not be mapped
4658 		 * to any hw queue.
4659 		 */
4660 		for (i = 0; i < set->nr_maps; i++)
4661 			blk_mq_clear_mq_map(&set->map[i]);
4662 
4663 		set->ops->map_queues(set);
4664 	} else {
4665 		BUG_ON(set->nr_maps > 1);
4666 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4667 	}
4668 }
4669 
4670 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4671 				       int new_nr_hw_queues)
4672 {
4673 	struct blk_mq_tags **new_tags;
4674 	int i;
4675 
4676 	if (set->nr_hw_queues >= new_nr_hw_queues)
4677 		goto done;
4678 
4679 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4680 				GFP_KERNEL, set->numa_node);
4681 	if (!new_tags)
4682 		return -ENOMEM;
4683 
4684 	if (set->tags)
4685 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4686 		       sizeof(*set->tags));
4687 	kfree(set->tags);
4688 	set->tags = new_tags;
4689 
4690 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4691 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4692 			while (--i >= set->nr_hw_queues)
4693 				__blk_mq_free_map_and_rqs(set, i);
4694 			return -ENOMEM;
4695 		}
4696 		cond_resched();
4697 	}
4698 
4699 done:
4700 	set->nr_hw_queues = new_nr_hw_queues;
4701 	return 0;
4702 }
4703 
4704 /*
4705  * Alloc a tag set to be associated with one or more request queues.
4706  * May fail with EINVAL for various error conditions. May adjust the
4707  * requested depth down, if it's too large. In that case, the set
4708  * value will be stored in set->queue_depth.
4709  */
4710 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4711 {
4712 	int i, ret;
4713 
4714 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4715 
4716 	if (!set->nr_hw_queues)
4717 		return -EINVAL;
4718 	if (!set->queue_depth)
4719 		return -EINVAL;
4720 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4721 		return -EINVAL;
4722 
4723 	if (!set->ops->queue_rq)
4724 		return -EINVAL;
4725 
4726 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4727 		return -EINVAL;
4728 
4729 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4730 		pr_info("blk-mq: reduced tag depth to %u\n",
4731 			BLK_MQ_MAX_DEPTH);
4732 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4733 	}
4734 
4735 	if (!set->nr_maps)
4736 		set->nr_maps = 1;
4737 	else if (set->nr_maps > HCTX_MAX_TYPES)
4738 		return -EINVAL;
4739 
4740 	/*
4741 	 * If a crashdump is active, then we are potentially in a very
4742 	 * memory constrained environment. Limit us to  64 tags to prevent
4743 	 * using too much memory.
4744 	 */
4745 	if (is_kdump_kernel())
4746 		set->queue_depth = min(64U, set->queue_depth);
4747 
4748 	/*
4749 	 * There is no use for more h/w queues than cpus if we just have
4750 	 * a single map
4751 	 */
4752 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4753 		set->nr_hw_queues = nr_cpu_ids;
4754 
4755 	if (set->flags & BLK_MQ_F_BLOCKING) {
4756 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4757 		if (!set->srcu)
4758 			return -ENOMEM;
4759 		ret = init_srcu_struct(set->srcu);
4760 		if (ret)
4761 			goto out_free_srcu;
4762 	}
4763 
4764 	ret = -ENOMEM;
4765 	set->tags = kcalloc_node(set->nr_hw_queues,
4766 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4767 				 set->numa_node);
4768 	if (!set->tags)
4769 		goto out_cleanup_srcu;
4770 
4771 	for (i = 0; i < set->nr_maps; i++) {
4772 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4773 						  sizeof(set->map[i].mq_map[0]),
4774 						  GFP_KERNEL, set->numa_node);
4775 		if (!set->map[i].mq_map)
4776 			goto out_free_mq_map;
4777 		set->map[i].nr_queues = set->nr_hw_queues;
4778 	}
4779 
4780 	blk_mq_update_queue_map(set);
4781 
4782 	ret = blk_mq_alloc_set_map_and_rqs(set);
4783 	if (ret)
4784 		goto out_free_mq_map;
4785 
4786 	mutex_init(&set->tag_list_lock);
4787 	INIT_LIST_HEAD(&set->tag_list);
4788 
4789 	return 0;
4790 
4791 out_free_mq_map:
4792 	for (i = 0; i < set->nr_maps; i++) {
4793 		kfree(set->map[i].mq_map);
4794 		set->map[i].mq_map = NULL;
4795 	}
4796 	kfree(set->tags);
4797 	set->tags = NULL;
4798 out_cleanup_srcu:
4799 	if (set->flags & BLK_MQ_F_BLOCKING)
4800 		cleanup_srcu_struct(set->srcu);
4801 out_free_srcu:
4802 	if (set->flags & BLK_MQ_F_BLOCKING)
4803 		kfree(set->srcu);
4804 	return ret;
4805 }
4806 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4807 
4808 /* allocate and initialize a tagset for a simple single-queue device */
4809 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4810 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4811 		unsigned int set_flags)
4812 {
4813 	memset(set, 0, sizeof(*set));
4814 	set->ops = ops;
4815 	set->nr_hw_queues = 1;
4816 	set->nr_maps = 1;
4817 	set->queue_depth = queue_depth;
4818 	set->numa_node = NUMA_NO_NODE;
4819 	set->flags = set_flags;
4820 	return blk_mq_alloc_tag_set(set);
4821 }
4822 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4823 
4824 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4825 {
4826 	int i, j;
4827 
4828 	for (i = 0; i < set->nr_hw_queues; i++)
4829 		__blk_mq_free_map_and_rqs(set, i);
4830 
4831 	if (blk_mq_is_shared_tags(set->flags)) {
4832 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4833 					BLK_MQ_NO_HCTX_IDX);
4834 	}
4835 
4836 	for (j = 0; j < set->nr_maps; j++) {
4837 		kfree(set->map[j].mq_map);
4838 		set->map[j].mq_map = NULL;
4839 	}
4840 
4841 	kfree(set->tags);
4842 	set->tags = NULL;
4843 	if (set->flags & BLK_MQ_F_BLOCKING) {
4844 		cleanup_srcu_struct(set->srcu);
4845 		kfree(set->srcu);
4846 	}
4847 }
4848 EXPORT_SYMBOL(blk_mq_free_tag_set);
4849 
4850 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4851 {
4852 	struct blk_mq_tag_set *set = q->tag_set;
4853 	struct blk_mq_hw_ctx *hctx;
4854 	int ret;
4855 	unsigned long i;
4856 
4857 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4858 		return -EINVAL;
4859 
4860 	if (!set)
4861 		return -EINVAL;
4862 
4863 	if (q->nr_requests == nr)
4864 		return 0;
4865 
4866 	blk_mq_quiesce_queue(q);
4867 
4868 	ret = 0;
4869 	queue_for_each_hw_ctx(q, hctx, i) {
4870 		if (!hctx->tags)
4871 			continue;
4872 		/*
4873 		 * If we're using an MQ scheduler, just update the scheduler
4874 		 * queue depth. This is similar to what the old code would do.
4875 		 */
4876 		if (hctx->sched_tags) {
4877 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4878 						      nr, true);
4879 		} else {
4880 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4881 						      false);
4882 		}
4883 		if (ret)
4884 			break;
4885 		if (q->elevator && q->elevator->type->ops.depth_updated)
4886 			q->elevator->type->ops.depth_updated(hctx);
4887 	}
4888 	if (!ret) {
4889 		q->nr_requests = nr;
4890 		if (blk_mq_is_shared_tags(set->flags)) {
4891 			if (q->elevator)
4892 				blk_mq_tag_update_sched_shared_tags(q);
4893 			else
4894 				blk_mq_tag_resize_shared_tags(set, nr);
4895 		}
4896 	}
4897 
4898 	blk_mq_unquiesce_queue(q);
4899 
4900 	return ret;
4901 }
4902 
4903 /*
4904  * request_queue and elevator_type pair.
4905  * It is just used by __blk_mq_update_nr_hw_queues to cache
4906  * the elevator_type associated with a request_queue.
4907  */
4908 struct blk_mq_qe_pair {
4909 	struct list_head node;
4910 	struct request_queue *q;
4911 	struct elevator_type *type;
4912 };
4913 
4914 /*
4915  * Cache the elevator_type in qe pair list and switch the
4916  * io scheduler to 'none'
4917  */
4918 static bool blk_mq_elv_switch_none(struct list_head *head,
4919 		struct request_queue *q)
4920 {
4921 	struct blk_mq_qe_pair *qe;
4922 
4923 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4924 	if (!qe)
4925 		return false;
4926 
4927 	/* q->elevator needs protection from ->sysfs_lock */
4928 	lockdep_assert_held(&q->sysfs_lock);
4929 
4930 	/* the check has to be done with holding sysfs_lock */
4931 	if (!q->elevator) {
4932 		kfree(qe);
4933 		goto out;
4934 	}
4935 
4936 	INIT_LIST_HEAD(&qe->node);
4937 	qe->q = q;
4938 	qe->type = q->elevator->type;
4939 	/* keep a reference to the elevator module as we'll switch back */
4940 	__elevator_get(qe->type);
4941 	list_add(&qe->node, head);
4942 	elevator_disable(q);
4943 out:
4944 	return true;
4945 }
4946 
4947 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4948 						struct request_queue *q)
4949 {
4950 	struct blk_mq_qe_pair *qe;
4951 
4952 	list_for_each_entry(qe, head, node)
4953 		if (qe->q == q)
4954 			return qe;
4955 
4956 	return NULL;
4957 }
4958 
4959 static void blk_mq_elv_switch_back(struct list_head *head,
4960 				  struct request_queue *q)
4961 {
4962 	struct blk_mq_qe_pair *qe;
4963 	struct elevator_type *t;
4964 
4965 	qe = blk_lookup_qe_pair(head, q);
4966 	if (!qe)
4967 		return;
4968 	t = qe->type;
4969 	list_del(&qe->node);
4970 	kfree(qe);
4971 
4972 	elevator_switch(q, t);
4973 	/* drop the reference acquired in blk_mq_elv_switch_none */
4974 	elevator_put(t);
4975 }
4976 
4977 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4978 							int nr_hw_queues)
4979 {
4980 	struct request_queue *q;
4981 	LIST_HEAD(head);
4982 	int prev_nr_hw_queues = set->nr_hw_queues;
4983 	int i;
4984 
4985 	lockdep_assert_held(&set->tag_list_lock);
4986 
4987 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4988 		nr_hw_queues = nr_cpu_ids;
4989 	if (nr_hw_queues < 1)
4990 		return;
4991 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4992 		return;
4993 
4994 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4995 		mutex_lock(&q->sysfs_dir_lock);
4996 		mutex_lock(&q->sysfs_lock);
4997 		blk_mq_freeze_queue(q);
4998 	}
4999 	/*
5000 	 * Switch IO scheduler to 'none', cleaning up the data associated
5001 	 * with the previous scheduler. We will switch back once we are done
5002 	 * updating the new sw to hw queue mappings.
5003 	 */
5004 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5005 		if (!blk_mq_elv_switch_none(&head, q))
5006 			goto switch_back;
5007 
5008 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5009 		blk_mq_debugfs_unregister_hctxs(q);
5010 		blk_mq_sysfs_unregister_hctxs(q);
5011 	}
5012 
5013 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5014 		goto reregister;
5015 
5016 fallback:
5017 	blk_mq_update_queue_map(set);
5018 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5019 		struct queue_limits lim;
5020 
5021 		blk_mq_realloc_hw_ctxs(set, q);
5022 
5023 		if (q->nr_hw_queues != set->nr_hw_queues) {
5024 			int i = prev_nr_hw_queues;
5025 
5026 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5027 					nr_hw_queues, prev_nr_hw_queues);
5028 			for (; i < set->nr_hw_queues; i++)
5029 				__blk_mq_free_map_and_rqs(set, i);
5030 
5031 			set->nr_hw_queues = prev_nr_hw_queues;
5032 			goto fallback;
5033 		}
5034 		lim = queue_limits_start_update(q);
5035 		if (blk_mq_can_poll(set))
5036 			lim.features |= BLK_FEAT_POLL;
5037 		else
5038 			lim.features &= ~BLK_FEAT_POLL;
5039 		if (queue_limits_commit_update(q, &lim) < 0)
5040 			pr_warn("updating the poll flag failed\n");
5041 		blk_mq_map_swqueue(q);
5042 	}
5043 
5044 reregister:
5045 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5046 		blk_mq_sysfs_register_hctxs(q);
5047 		blk_mq_debugfs_register_hctxs(q);
5048 	}
5049 
5050 switch_back:
5051 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5052 		blk_mq_elv_switch_back(&head, q);
5053 
5054 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5055 		blk_mq_unfreeze_queue(q);
5056 		mutex_unlock(&q->sysfs_lock);
5057 		mutex_unlock(&q->sysfs_dir_lock);
5058 	}
5059 
5060 	/* Free the excess tags when nr_hw_queues shrink. */
5061 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5062 		__blk_mq_free_map_and_rqs(set, i);
5063 }
5064 
5065 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5066 {
5067 	mutex_lock(&set->tag_list_lock);
5068 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5069 	mutex_unlock(&set->tag_list_lock);
5070 }
5071 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5072 
5073 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5074 			 struct io_comp_batch *iob, unsigned int flags)
5075 {
5076 	long state = get_current_state();
5077 	int ret;
5078 
5079 	do {
5080 		ret = q->mq_ops->poll(hctx, iob);
5081 		if (ret > 0) {
5082 			__set_current_state(TASK_RUNNING);
5083 			return ret;
5084 		}
5085 
5086 		if (signal_pending_state(state, current))
5087 			__set_current_state(TASK_RUNNING);
5088 		if (task_is_running(current))
5089 			return 1;
5090 
5091 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5092 			break;
5093 		cpu_relax();
5094 	} while (!need_resched());
5095 
5096 	__set_current_state(TASK_RUNNING);
5097 	return 0;
5098 }
5099 
5100 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5101 		struct io_comp_batch *iob, unsigned int flags)
5102 {
5103 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
5104 
5105 	return blk_hctx_poll(q, hctx, iob, flags);
5106 }
5107 
5108 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5109 		unsigned int poll_flags)
5110 {
5111 	struct request_queue *q = rq->q;
5112 	int ret;
5113 
5114 	if (!blk_rq_is_poll(rq))
5115 		return 0;
5116 	if (!percpu_ref_tryget(&q->q_usage_counter))
5117 		return 0;
5118 
5119 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5120 	blk_queue_exit(q);
5121 
5122 	return ret;
5123 }
5124 EXPORT_SYMBOL_GPL(blk_rq_poll);
5125 
5126 unsigned int blk_mq_rq_cpu(struct request *rq)
5127 {
5128 	return rq->mq_ctx->cpu;
5129 }
5130 EXPORT_SYMBOL(blk_mq_rq_cpu);
5131 
5132 void blk_mq_cancel_work_sync(struct request_queue *q)
5133 {
5134 	struct blk_mq_hw_ctx *hctx;
5135 	unsigned long i;
5136 
5137 	cancel_delayed_work_sync(&q->requeue_work);
5138 
5139 	queue_for_each_hw_ctx(q, hctx, i)
5140 		cancel_delayed_work_sync(&hctx->run_work);
5141 }
5142 
5143 static int __init blk_mq_init(void)
5144 {
5145 	int i;
5146 
5147 	for_each_possible_cpu(i)
5148 		init_llist_head(&per_cpu(blk_cpu_done, i));
5149 	for_each_possible_cpu(i)
5150 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5151 			 __blk_mq_complete_request_remote, NULL);
5152 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5153 
5154 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5155 				  "block/softirq:dead", NULL,
5156 				  blk_softirq_cpu_dead);
5157 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5158 				blk_mq_hctx_notify_dead);
5159 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5160 				blk_mq_hctx_notify_online,
5161 				blk_mq_hctx_notify_offline);
5162 	return 0;
5163 }
5164 subsys_initcall(blk_mq_init);
5165