xref: /linux/block/blk-mq.c (revision 8eecf1c9929aef24e9e75280a39ed1ba3c64fb71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
137 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
138 		mi->inflight[rq_data_dir(rq)]++;
139 
140 	return true;
141 }
142 
143 unsigned int blk_mq_in_flight(struct request_queue *q,
144 		struct block_device *part)
145 {
146 	struct mq_inflight mi = { .part = part };
147 
148 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
149 
150 	return mi.inflight[0] + mi.inflight[1];
151 }
152 
153 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
154 		unsigned int inflight[2])
155 {
156 	struct mq_inflight mi = { .part = part };
157 
158 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
159 	inflight[0] = mi.inflight[0];
160 	inflight[1] = mi.inflight[1];
161 }
162 
163 void blk_freeze_queue_start(struct request_queue *q)
164 {
165 	mutex_lock(&q->mq_freeze_lock);
166 	if (++q->mq_freeze_depth == 1) {
167 		percpu_ref_kill(&q->q_usage_counter);
168 		mutex_unlock(&q->mq_freeze_lock);
169 		if (queue_is_mq(q))
170 			blk_mq_run_hw_queues(q, false);
171 	} else {
172 		mutex_unlock(&q->mq_freeze_lock);
173 	}
174 }
175 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
176 
177 void blk_mq_freeze_queue_wait(struct request_queue *q)
178 {
179 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
180 }
181 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
182 
183 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
184 				     unsigned long timeout)
185 {
186 	return wait_event_timeout(q->mq_freeze_wq,
187 					percpu_ref_is_zero(&q->q_usage_counter),
188 					timeout);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
191 
192 /*
193  * Guarantee no request is in use, so we can change any data structure of
194  * the queue afterward.
195  */
196 void blk_freeze_queue(struct request_queue *q)
197 {
198 	/*
199 	 * In the !blk_mq case we are only calling this to kill the
200 	 * q_usage_counter, otherwise this increases the freeze depth
201 	 * and waits for it to return to zero.  For this reason there is
202 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
203 	 * exported to drivers as the only user for unfreeze is blk_mq.
204 	 */
205 	blk_freeze_queue_start(q);
206 	blk_mq_freeze_queue_wait(q);
207 }
208 
209 void blk_mq_freeze_queue(struct request_queue *q)
210 {
211 	/*
212 	 * ...just an alias to keep freeze and unfreeze actions balanced
213 	 * in the blk_mq_* namespace
214 	 */
215 	blk_freeze_queue(q);
216 }
217 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
218 
219 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
220 {
221 	mutex_lock(&q->mq_freeze_lock);
222 	if (force_atomic)
223 		q->q_usage_counter.data->force_atomic = true;
224 	q->mq_freeze_depth--;
225 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
226 	if (!q->mq_freeze_depth) {
227 		percpu_ref_resurrect(&q->q_usage_counter);
228 		wake_up_all(&q->mq_freeze_wq);
229 	}
230 	mutex_unlock(&q->mq_freeze_lock);
231 }
232 
233 void blk_mq_unfreeze_queue(struct request_queue *q)
234 {
235 	__blk_mq_unfreeze_queue(q, false);
236 }
237 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
238 
239 /*
240  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
241  * mpt3sas driver such that this function can be removed.
242  */
243 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
244 {
245 	unsigned long flags;
246 
247 	spin_lock_irqsave(&q->queue_lock, flags);
248 	if (!q->quiesce_depth++)
249 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
250 	spin_unlock_irqrestore(&q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
253 
254 /**
255  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
256  * @q: request queue.
257  *
258  * Note: it is driver's responsibility for making sure that quiesce has
259  * been started.
260  */
261 void blk_mq_wait_quiesce_done(struct request_queue *q)
262 {
263 	if (blk_queue_has_srcu(q))
264 		synchronize_srcu(q->srcu);
265 	else
266 		synchronize_rcu();
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
269 
270 /**
271  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
272  * @q: request queue.
273  *
274  * Note: this function does not prevent that the struct request end_io()
275  * callback function is invoked. Once this function is returned, we make
276  * sure no dispatch can happen until the queue is unquiesced via
277  * blk_mq_unquiesce_queue().
278  */
279 void blk_mq_quiesce_queue(struct request_queue *q)
280 {
281 	blk_mq_quiesce_queue_nowait(q);
282 	blk_mq_wait_quiesce_done(q);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
285 
286 /*
287  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
288  * @q: request queue.
289  *
290  * This function recovers queue into the state before quiescing
291  * which is done by blk_mq_quiesce_queue.
292  */
293 void blk_mq_unquiesce_queue(struct request_queue *q)
294 {
295 	unsigned long flags;
296 	bool run_queue = false;
297 
298 	spin_lock_irqsave(&q->queue_lock, flags);
299 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
300 		;
301 	} else if (!--q->quiesce_depth) {
302 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
303 		run_queue = true;
304 	}
305 	spin_unlock_irqrestore(&q->queue_lock, flags);
306 
307 	/* dispatch requests which are inserted during quiescing */
308 	if (run_queue)
309 		blk_mq_run_hw_queues(q, true);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
312 
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315 	struct blk_mq_hw_ctx *hctx;
316 	unsigned long i;
317 
318 	queue_for_each_hw_ctx(q, hctx, i)
319 		if (blk_mq_hw_queue_mapped(hctx))
320 			blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322 
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325 	memset(rq, 0, sizeof(*rq));
326 
327 	INIT_LIST_HEAD(&rq->queuelist);
328 	rq->q = q;
329 	rq->__sector = (sector_t) -1;
330 	INIT_HLIST_NODE(&rq->hash);
331 	RB_CLEAR_NODE(&rq->rb_node);
332 	rq->tag = BLK_MQ_NO_TAG;
333 	rq->internal_tag = BLK_MQ_NO_TAG;
334 	rq->start_time_ns = ktime_get_ns();
335 	rq->part = NULL;
336 	blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339 
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343 	struct blk_mq_ctx *ctx = data->ctx;
344 	struct blk_mq_hw_ctx *hctx = data->hctx;
345 	struct request_queue *q = data->q;
346 	struct request *rq = tags->static_rqs[tag];
347 
348 	rq->q = q;
349 	rq->mq_ctx = ctx;
350 	rq->mq_hctx = hctx;
351 	rq->cmd_flags = data->cmd_flags;
352 
353 	if (data->flags & BLK_MQ_REQ_PM)
354 		data->rq_flags |= RQF_PM;
355 	if (blk_queue_io_stat(q))
356 		data->rq_flags |= RQF_IO_STAT;
357 	rq->rq_flags = data->rq_flags;
358 
359 	if (!(data->rq_flags & RQF_ELV)) {
360 		rq->tag = tag;
361 		rq->internal_tag = BLK_MQ_NO_TAG;
362 	} else {
363 		rq->tag = BLK_MQ_NO_TAG;
364 		rq->internal_tag = tag;
365 	}
366 	rq->timeout = 0;
367 
368 	if (blk_mq_need_time_stamp(rq))
369 		rq->start_time_ns = ktime_get_ns();
370 	else
371 		rq->start_time_ns = 0;
372 	rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374 	rq->alloc_time_ns = alloc_time_ns;
375 #endif
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_ELV) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (!op_is_flush(data->cmd_flags) &&
398 		    e->type->ops.prepare_request) {
399 			e->type->ops.prepare_request(rq);
400 			rq->rq_flags |= RQF_ELVPRIV;
401 		}
402 	}
403 
404 	return rq;
405 }
406 
407 static inline struct request *
408 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
409 		u64 alloc_time_ns)
410 {
411 	unsigned int tag, tag_offset;
412 	struct blk_mq_tags *tags;
413 	struct request *rq;
414 	unsigned long tag_mask;
415 	int i, nr = 0;
416 
417 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
418 	if (unlikely(!tag_mask))
419 		return NULL;
420 
421 	tags = blk_mq_tags_from_data(data);
422 	for (i = 0; tag_mask; i++) {
423 		if (!(tag_mask & (1UL << i)))
424 			continue;
425 		tag = tag_offset + i;
426 		prefetch(tags->static_rqs[tag]);
427 		tag_mask &= ~(1UL << i);
428 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
429 		rq_list_add(data->cached_rq, rq);
430 		nr++;
431 	}
432 	/* caller already holds a reference, add for remainder */
433 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434 	data->nr_tags -= nr;
435 
436 	return rq_list_pop(data->cached_rq);
437 }
438 
439 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
440 {
441 	struct request_queue *q = data->q;
442 	u64 alloc_time_ns = 0;
443 	struct request *rq;
444 	unsigned int tag;
445 
446 	/* alloc_time includes depth and tag waits */
447 	if (blk_queue_rq_alloc_time(q))
448 		alloc_time_ns = ktime_get_ns();
449 
450 	if (data->cmd_flags & REQ_NOWAIT)
451 		data->flags |= BLK_MQ_REQ_NOWAIT;
452 
453 	if (q->elevator) {
454 		struct elevator_queue *e = q->elevator;
455 
456 		data->rq_flags |= RQF_ELV;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list. Don't include reserved tags in the
461 		 * limiting, as it isn't useful.
462 		 */
463 		if (!op_is_flush(data->cmd_flags) &&
464 		    !blk_op_is_passthrough(data->cmd_flags) &&
465 		    e->type->ops.limit_depth &&
466 		    !(data->flags & BLK_MQ_REQ_RESERVED))
467 			e->type->ops.limit_depth(data->cmd_flags, data);
468 	}
469 
470 retry:
471 	data->ctx = blk_mq_get_ctx(q);
472 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
473 	if (!(data->rq_flags & RQF_ELV))
474 		blk_mq_tag_busy(data->hctx);
475 
476 	/*
477 	 * Try batched alloc if we want more than 1 tag.
478 	 */
479 	if (data->nr_tags > 1) {
480 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
481 		if (rq)
482 			return rq;
483 		data->nr_tags = 1;
484 	}
485 
486 	/*
487 	 * Waiting allocations only fail because of an inactive hctx.  In that
488 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
489 	 * should have migrated us to an online CPU by now.
490 	 */
491 	tag = blk_mq_get_tag(data);
492 	if (tag == BLK_MQ_NO_TAG) {
493 		if (data->flags & BLK_MQ_REQ_NOWAIT)
494 			return NULL;
495 		/*
496 		 * Give up the CPU and sleep for a random short time to
497 		 * ensure that thread using a realtime scheduling class
498 		 * are migrated off the CPU, and thus off the hctx that
499 		 * is going away.
500 		 */
501 		msleep(3);
502 		goto retry;
503 	}
504 
505 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 					alloc_time_ns);
507 }
508 
509 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
510 		blk_mq_req_flags_t flags)
511 {
512 	struct blk_mq_alloc_data data = {
513 		.q		= q,
514 		.flags		= flags,
515 		.cmd_flags	= op,
516 		.nr_tags	= 1,
517 	};
518 	struct request *rq;
519 	int ret;
520 
521 	ret = blk_queue_enter(q, flags);
522 	if (ret)
523 		return ERR_PTR(ret);
524 
525 	rq = __blk_mq_alloc_requests(&data);
526 	if (!rq)
527 		goto out_queue_exit;
528 	rq->__data_len = 0;
529 	rq->__sector = (sector_t) -1;
530 	rq->bio = rq->biotail = NULL;
531 	return rq;
532 out_queue_exit:
533 	blk_queue_exit(q);
534 	return ERR_PTR(-EWOULDBLOCK);
535 }
536 EXPORT_SYMBOL(blk_mq_alloc_request);
537 
538 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
539 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
540 {
541 	struct blk_mq_alloc_data data = {
542 		.q		= q,
543 		.flags		= flags,
544 		.cmd_flags	= op,
545 		.nr_tags	= 1,
546 	};
547 	u64 alloc_time_ns = 0;
548 	unsigned int cpu;
549 	unsigned int tag;
550 	int ret;
551 
552 	/* alloc_time includes depth and tag waits */
553 	if (blk_queue_rq_alloc_time(q))
554 		alloc_time_ns = ktime_get_ns();
555 
556 	/*
557 	 * If the tag allocator sleeps we could get an allocation for a
558 	 * different hardware context.  No need to complicate the low level
559 	 * allocator for this for the rare use case of a command tied to
560 	 * a specific queue.
561 	 */
562 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
563 		return ERR_PTR(-EINVAL);
564 
565 	if (hctx_idx >= q->nr_hw_queues)
566 		return ERR_PTR(-EIO);
567 
568 	ret = blk_queue_enter(q, flags);
569 	if (ret)
570 		return ERR_PTR(ret);
571 
572 	/*
573 	 * Check if the hardware context is actually mapped to anything.
574 	 * If not tell the caller that it should skip this queue.
575 	 */
576 	ret = -EXDEV;
577 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
578 	if (!blk_mq_hw_queue_mapped(data.hctx))
579 		goto out_queue_exit;
580 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
581 	data.ctx = __blk_mq_get_ctx(q, cpu);
582 
583 	if (!q->elevator)
584 		blk_mq_tag_busy(data.hctx);
585 	else
586 		data.rq_flags |= RQF_ELV;
587 
588 	ret = -EWOULDBLOCK;
589 	tag = blk_mq_get_tag(&data);
590 	if (tag == BLK_MQ_NO_TAG)
591 		goto out_queue_exit;
592 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
593 					alloc_time_ns);
594 
595 out_queue_exit:
596 	blk_queue_exit(q);
597 	return ERR_PTR(ret);
598 }
599 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
600 
601 static void __blk_mq_free_request(struct request *rq)
602 {
603 	struct request_queue *q = rq->q;
604 	struct blk_mq_ctx *ctx = rq->mq_ctx;
605 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
606 	const int sched_tag = rq->internal_tag;
607 
608 	blk_crypto_free_request(rq);
609 	blk_pm_mark_last_busy(rq);
610 	rq->mq_hctx = NULL;
611 	if (rq->tag != BLK_MQ_NO_TAG)
612 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
613 	if (sched_tag != BLK_MQ_NO_TAG)
614 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
615 	blk_mq_sched_restart(hctx);
616 	blk_queue_exit(q);
617 }
618 
619 void blk_mq_free_request(struct request *rq)
620 {
621 	struct request_queue *q = rq->q;
622 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
623 
624 	if ((rq->rq_flags & RQF_ELVPRIV) &&
625 	    q->elevator->type->ops.finish_request)
626 		q->elevator->type->ops.finish_request(rq);
627 
628 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
629 		__blk_mq_dec_active_requests(hctx);
630 
631 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
632 		laptop_io_completion(q->disk->bdi);
633 
634 	rq_qos_done(q, rq);
635 
636 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
637 	if (req_ref_put_and_test(rq))
638 		__blk_mq_free_request(rq);
639 }
640 EXPORT_SYMBOL_GPL(blk_mq_free_request);
641 
642 void blk_mq_free_plug_rqs(struct blk_plug *plug)
643 {
644 	struct request *rq;
645 
646 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
647 		blk_mq_free_request(rq);
648 }
649 
650 void blk_dump_rq_flags(struct request *rq, char *msg)
651 {
652 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
653 		rq->q->disk ? rq->q->disk->disk_name : "?",
654 		(unsigned long long) rq->cmd_flags);
655 
656 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
657 	       (unsigned long long)blk_rq_pos(rq),
658 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
659 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
660 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
661 }
662 EXPORT_SYMBOL(blk_dump_rq_flags);
663 
664 static void req_bio_endio(struct request *rq, struct bio *bio,
665 			  unsigned int nbytes, blk_status_t error)
666 {
667 	if (unlikely(error)) {
668 		bio->bi_status = error;
669 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
670 		/*
671 		 * Partial zone append completions cannot be supported as the
672 		 * BIO fragments may end up not being written sequentially.
673 		 */
674 		if (bio->bi_iter.bi_size != nbytes)
675 			bio->bi_status = BLK_STS_IOERR;
676 		else
677 			bio->bi_iter.bi_sector = rq->__sector;
678 	}
679 
680 	bio_advance(bio, nbytes);
681 
682 	if (unlikely(rq->rq_flags & RQF_QUIET))
683 		bio_set_flag(bio, BIO_QUIET);
684 	/* don't actually finish bio if it's part of flush sequence */
685 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
686 		bio_endio(bio);
687 }
688 
689 static void blk_account_io_completion(struct request *req, unsigned int bytes)
690 {
691 	if (req->part && blk_do_io_stat(req)) {
692 		const int sgrp = op_stat_group(req_op(req));
693 
694 		part_stat_lock();
695 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
696 		part_stat_unlock();
697 	}
698 }
699 
700 static void blk_print_req_error(struct request *req, blk_status_t status)
701 {
702 	printk_ratelimited(KERN_ERR
703 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
704 		"phys_seg %u prio class %u\n",
705 		blk_status_to_str(status),
706 		req->q->disk ? req->q->disk->disk_name : "?",
707 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
708 		req->cmd_flags & ~REQ_OP_MASK,
709 		req->nr_phys_segments,
710 		IOPRIO_PRIO_CLASS(req->ioprio));
711 }
712 
713 /*
714  * Fully end IO on a request. Does not support partial completions, or
715  * errors.
716  */
717 static void blk_complete_request(struct request *req)
718 {
719 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
720 	int total_bytes = blk_rq_bytes(req);
721 	struct bio *bio = req->bio;
722 
723 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
724 
725 	if (!bio)
726 		return;
727 
728 #ifdef CONFIG_BLK_DEV_INTEGRITY
729 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
730 		req->q->integrity.profile->complete_fn(req, total_bytes);
731 #endif
732 
733 	blk_account_io_completion(req, total_bytes);
734 
735 	do {
736 		struct bio *next = bio->bi_next;
737 
738 		/* Completion has already been traced */
739 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
740 
741 		if (req_op(req) == REQ_OP_ZONE_APPEND)
742 			bio->bi_iter.bi_sector = req->__sector;
743 
744 		if (!is_flush)
745 			bio_endio(bio);
746 		bio = next;
747 	} while (bio);
748 
749 	/*
750 	 * Reset counters so that the request stacking driver
751 	 * can find how many bytes remain in the request
752 	 * later.
753 	 */
754 	req->bio = NULL;
755 	req->__data_len = 0;
756 }
757 
758 /**
759  * blk_update_request - Complete multiple bytes without completing the request
760  * @req:      the request being processed
761  * @error:    block status code
762  * @nr_bytes: number of bytes to complete for @req
763  *
764  * Description:
765  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
766  *     the request structure even if @req doesn't have leftover.
767  *     If @req has leftover, sets it up for the next range of segments.
768  *
769  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
770  *     %false return from this function.
771  *
772  * Note:
773  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
774  *      except in the consistency check at the end of this function.
775  *
776  * Return:
777  *     %false - this request doesn't have any more data
778  *     %true  - this request has more data
779  **/
780 bool blk_update_request(struct request *req, blk_status_t error,
781 		unsigned int nr_bytes)
782 {
783 	int total_bytes;
784 
785 	trace_block_rq_complete(req, error, nr_bytes);
786 
787 	if (!req->bio)
788 		return false;
789 
790 #ifdef CONFIG_BLK_DEV_INTEGRITY
791 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
792 	    error == BLK_STS_OK)
793 		req->q->integrity.profile->complete_fn(req, nr_bytes);
794 #endif
795 
796 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
797 		     !(req->rq_flags & RQF_QUIET)) &&
798 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
799 		blk_print_req_error(req, error);
800 		trace_block_rq_error(req, error, nr_bytes);
801 	}
802 
803 	blk_account_io_completion(req, nr_bytes);
804 
805 	total_bytes = 0;
806 	while (req->bio) {
807 		struct bio *bio = req->bio;
808 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
809 
810 		if (bio_bytes == bio->bi_iter.bi_size)
811 			req->bio = bio->bi_next;
812 
813 		/* Completion has already been traced */
814 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
815 		req_bio_endio(req, bio, bio_bytes, error);
816 
817 		total_bytes += bio_bytes;
818 		nr_bytes -= bio_bytes;
819 
820 		if (!nr_bytes)
821 			break;
822 	}
823 
824 	/*
825 	 * completely done
826 	 */
827 	if (!req->bio) {
828 		/*
829 		 * Reset counters so that the request stacking driver
830 		 * can find how many bytes remain in the request
831 		 * later.
832 		 */
833 		req->__data_len = 0;
834 		return false;
835 	}
836 
837 	req->__data_len -= total_bytes;
838 
839 	/* update sector only for requests with clear definition of sector */
840 	if (!blk_rq_is_passthrough(req))
841 		req->__sector += total_bytes >> 9;
842 
843 	/* mixed attributes always follow the first bio */
844 	if (req->rq_flags & RQF_MIXED_MERGE) {
845 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
846 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
847 	}
848 
849 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
850 		/*
851 		 * If total number of sectors is less than the first segment
852 		 * size, something has gone terribly wrong.
853 		 */
854 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
855 			blk_dump_rq_flags(req, "request botched");
856 			req->__data_len = blk_rq_cur_bytes(req);
857 		}
858 
859 		/* recalculate the number of segments */
860 		req->nr_phys_segments = blk_recalc_rq_segments(req);
861 	}
862 
863 	return true;
864 }
865 EXPORT_SYMBOL_GPL(blk_update_request);
866 
867 static void __blk_account_io_done(struct request *req, u64 now)
868 {
869 	const int sgrp = op_stat_group(req_op(req));
870 
871 	part_stat_lock();
872 	update_io_ticks(req->part, jiffies, true);
873 	part_stat_inc(req->part, ios[sgrp]);
874 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
875 	part_stat_unlock();
876 }
877 
878 static inline void blk_account_io_done(struct request *req, u64 now)
879 {
880 	/*
881 	 * Account IO completion.  flush_rq isn't accounted as a
882 	 * normal IO on queueing nor completion.  Accounting the
883 	 * containing request is enough.
884 	 */
885 	if (blk_do_io_stat(req) && req->part &&
886 	    !(req->rq_flags & RQF_FLUSH_SEQ))
887 		__blk_account_io_done(req, now);
888 }
889 
890 static void __blk_account_io_start(struct request *rq)
891 {
892 	/*
893 	 * All non-passthrough requests are created from a bio with one
894 	 * exception: when a flush command that is part of a flush sequence
895 	 * generated by the state machine in blk-flush.c is cloned onto the
896 	 * lower device by dm-multipath we can get here without a bio.
897 	 */
898 	if (rq->bio)
899 		rq->part = rq->bio->bi_bdev;
900 	else
901 		rq->part = rq->q->disk->part0;
902 
903 	part_stat_lock();
904 	update_io_ticks(rq->part, jiffies, false);
905 	part_stat_unlock();
906 }
907 
908 static inline void blk_account_io_start(struct request *req)
909 {
910 	if (blk_do_io_stat(req))
911 		__blk_account_io_start(req);
912 }
913 
914 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
915 {
916 	if (rq->rq_flags & RQF_STATS) {
917 		blk_mq_poll_stats_start(rq->q);
918 		blk_stat_add(rq, now);
919 	}
920 
921 	blk_mq_sched_completed_request(rq, now);
922 	blk_account_io_done(rq, now);
923 }
924 
925 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
926 {
927 	if (blk_mq_need_time_stamp(rq))
928 		__blk_mq_end_request_acct(rq, ktime_get_ns());
929 
930 	if (rq->end_io) {
931 		rq_qos_done(rq->q, rq);
932 		rq->end_io(rq, error);
933 	} else {
934 		blk_mq_free_request(rq);
935 	}
936 }
937 EXPORT_SYMBOL(__blk_mq_end_request);
938 
939 void blk_mq_end_request(struct request *rq, blk_status_t error)
940 {
941 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
942 		BUG();
943 	__blk_mq_end_request(rq, error);
944 }
945 EXPORT_SYMBOL(blk_mq_end_request);
946 
947 #define TAG_COMP_BATCH		32
948 
949 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
950 					  int *tag_array, int nr_tags)
951 {
952 	struct request_queue *q = hctx->queue;
953 
954 	/*
955 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
956 	 * update hctx->nr_active in batch
957 	 */
958 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
959 		__blk_mq_sub_active_requests(hctx, nr_tags);
960 
961 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
962 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
963 }
964 
965 void blk_mq_end_request_batch(struct io_comp_batch *iob)
966 {
967 	int tags[TAG_COMP_BATCH], nr_tags = 0;
968 	struct blk_mq_hw_ctx *cur_hctx = NULL;
969 	struct request *rq;
970 	u64 now = 0;
971 
972 	if (iob->need_ts)
973 		now = ktime_get_ns();
974 
975 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
976 		prefetch(rq->bio);
977 		prefetch(rq->rq_next);
978 
979 		blk_complete_request(rq);
980 		if (iob->need_ts)
981 			__blk_mq_end_request_acct(rq, now);
982 
983 		rq_qos_done(rq->q, rq);
984 
985 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
986 		if (!req_ref_put_and_test(rq))
987 			continue;
988 
989 		blk_crypto_free_request(rq);
990 		blk_pm_mark_last_busy(rq);
991 
992 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
993 			if (cur_hctx)
994 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
995 			nr_tags = 0;
996 			cur_hctx = rq->mq_hctx;
997 		}
998 		tags[nr_tags++] = rq->tag;
999 	}
1000 
1001 	if (nr_tags)
1002 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1003 }
1004 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1005 
1006 static void blk_complete_reqs(struct llist_head *list)
1007 {
1008 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1009 	struct request *rq, *next;
1010 
1011 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1012 		rq->q->mq_ops->complete(rq);
1013 }
1014 
1015 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1016 {
1017 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1018 }
1019 
1020 static int blk_softirq_cpu_dead(unsigned int cpu)
1021 {
1022 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1023 	return 0;
1024 }
1025 
1026 static void __blk_mq_complete_request_remote(void *data)
1027 {
1028 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1029 }
1030 
1031 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1032 {
1033 	int cpu = raw_smp_processor_id();
1034 
1035 	if (!IS_ENABLED(CONFIG_SMP) ||
1036 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1037 		return false;
1038 	/*
1039 	 * With force threaded interrupts enabled, raising softirq from an SMP
1040 	 * function call will always result in waking the ksoftirqd thread.
1041 	 * This is probably worse than completing the request on a different
1042 	 * cache domain.
1043 	 */
1044 	if (force_irqthreads())
1045 		return false;
1046 
1047 	/* same CPU or cache domain?  Complete locally */
1048 	if (cpu == rq->mq_ctx->cpu ||
1049 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1050 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1051 		return false;
1052 
1053 	/* don't try to IPI to an offline CPU */
1054 	return cpu_online(rq->mq_ctx->cpu);
1055 }
1056 
1057 static void blk_mq_complete_send_ipi(struct request *rq)
1058 {
1059 	struct llist_head *list;
1060 	unsigned int cpu;
1061 
1062 	cpu = rq->mq_ctx->cpu;
1063 	list = &per_cpu(blk_cpu_done, cpu);
1064 	if (llist_add(&rq->ipi_list, list)) {
1065 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1066 		smp_call_function_single_async(cpu, &rq->csd);
1067 	}
1068 }
1069 
1070 static void blk_mq_raise_softirq(struct request *rq)
1071 {
1072 	struct llist_head *list;
1073 
1074 	preempt_disable();
1075 	list = this_cpu_ptr(&blk_cpu_done);
1076 	if (llist_add(&rq->ipi_list, list))
1077 		raise_softirq(BLOCK_SOFTIRQ);
1078 	preempt_enable();
1079 }
1080 
1081 bool blk_mq_complete_request_remote(struct request *rq)
1082 {
1083 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1084 
1085 	/*
1086 	 * For a polled request, always complete locally, it's pointless
1087 	 * to redirect the completion.
1088 	 */
1089 	if (rq->cmd_flags & REQ_POLLED)
1090 		return false;
1091 
1092 	if (blk_mq_complete_need_ipi(rq)) {
1093 		blk_mq_complete_send_ipi(rq);
1094 		return true;
1095 	}
1096 
1097 	if (rq->q->nr_hw_queues == 1) {
1098 		blk_mq_raise_softirq(rq);
1099 		return true;
1100 	}
1101 	return false;
1102 }
1103 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1104 
1105 /**
1106  * blk_mq_complete_request - end I/O on a request
1107  * @rq:		the request being processed
1108  *
1109  * Description:
1110  *	Complete a request by scheduling the ->complete_rq operation.
1111  **/
1112 void blk_mq_complete_request(struct request *rq)
1113 {
1114 	if (!blk_mq_complete_request_remote(rq))
1115 		rq->q->mq_ops->complete(rq);
1116 }
1117 EXPORT_SYMBOL(blk_mq_complete_request);
1118 
1119 /**
1120  * blk_mq_start_request - Start processing a request
1121  * @rq: Pointer to request to be started
1122  *
1123  * Function used by device drivers to notify the block layer that a request
1124  * is going to be processed now, so blk layer can do proper initializations
1125  * such as starting the timeout timer.
1126  */
1127 void blk_mq_start_request(struct request *rq)
1128 {
1129 	struct request_queue *q = rq->q;
1130 
1131 	trace_block_rq_issue(rq);
1132 
1133 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1134 		rq->io_start_time_ns = ktime_get_ns();
1135 		rq->stats_sectors = blk_rq_sectors(rq);
1136 		rq->rq_flags |= RQF_STATS;
1137 		rq_qos_issue(q, rq);
1138 	}
1139 
1140 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1141 
1142 	blk_add_timer(rq);
1143 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1144 
1145 #ifdef CONFIG_BLK_DEV_INTEGRITY
1146 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1147 		q->integrity.profile->prepare_fn(rq);
1148 #endif
1149 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1150 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1151 }
1152 EXPORT_SYMBOL(blk_mq_start_request);
1153 
1154 /**
1155  * blk_end_sync_rq - executes a completion event on a request
1156  * @rq: request to complete
1157  * @error: end I/O status of the request
1158  */
1159 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1160 {
1161 	struct completion *waiting = rq->end_io_data;
1162 
1163 	rq->end_io_data = (void *)(uintptr_t)error;
1164 
1165 	/*
1166 	 * complete last, if this is a stack request the process (and thus
1167 	 * the rq pointer) could be invalid right after this complete()
1168 	 */
1169 	complete(waiting);
1170 }
1171 
1172 /*
1173  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1174  * queues. This is important for md arrays to benefit from merging
1175  * requests.
1176  */
1177 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1178 {
1179 	if (plug->multiple_queues)
1180 		return BLK_MAX_REQUEST_COUNT * 2;
1181 	return BLK_MAX_REQUEST_COUNT;
1182 }
1183 
1184 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1185 {
1186 	struct request *last = rq_list_peek(&plug->mq_list);
1187 
1188 	if (!plug->rq_count) {
1189 		trace_block_plug(rq->q);
1190 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1191 		   (!blk_queue_nomerges(rq->q) &&
1192 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1193 		blk_mq_flush_plug_list(plug, false);
1194 		trace_block_plug(rq->q);
1195 	}
1196 
1197 	if (!plug->multiple_queues && last && last->q != rq->q)
1198 		plug->multiple_queues = true;
1199 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1200 		plug->has_elevator = true;
1201 	rq->rq_next = NULL;
1202 	rq_list_add(&plug->mq_list, rq);
1203 	plug->rq_count++;
1204 }
1205 
1206 static void __blk_execute_rq_nowait(struct request *rq, bool at_head,
1207 		rq_end_io_fn *done, bool use_plug)
1208 {
1209 	WARN_ON(irqs_disabled());
1210 	WARN_ON(!blk_rq_is_passthrough(rq));
1211 
1212 	rq->end_io = done;
1213 
1214 	blk_account_io_start(rq);
1215 
1216 	if (use_plug && current->plug) {
1217 		blk_add_rq_to_plug(current->plug, rq);
1218 		return;
1219 	}
1220 	/*
1221 	 * don't check dying flag for MQ because the request won't
1222 	 * be reused after dying flag is set
1223 	 */
1224 	blk_mq_sched_insert_request(rq, at_head, true, false);
1225 }
1226 
1227 
1228 /**
1229  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1230  * @rq:		request to insert
1231  * @at_head:    insert request at head or tail of queue
1232  * @done:	I/O completion handler
1233  *
1234  * Description:
1235  *    Insert a fully prepared request at the back of the I/O scheduler queue
1236  *    for execution.  Don't wait for completion.
1237  *
1238  * Note:
1239  *    This function will invoke @done directly if the queue is dead.
1240  */
1241 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1242 {
1243 	__blk_execute_rq_nowait(rq, at_head, done, true);
1244 
1245 }
1246 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1247 
1248 static bool blk_rq_is_poll(struct request *rq)
1249 {
1250 	if (!rq->mq_hctx)
1251 		return false;
1252 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1253 		return false;
1254 	if (WARN_ON_ONCE(!rq->bio))
1255 		return false;
1256 	return true;
1257 }
1258 
1259 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1260 {
1261 	do {
1262 		bio_poll(rq->bio, NULL, 0);
1263 		cond_resched();
1264 	} while (!completion_done(wait));
1265 }
1266 
1267 /**
1268  * blk_execute_rq - insert a request into queue for execution
1269  * @rq:		request to insert
1270  * @at_head:    insert request at head or tail of queue
1271  *
1272  * Description:
1273  *    Insert a fully prepared request at the back of the I/O scheduler queue
1274  *    for execution and wait for completion.
1275  * Return: The blk_status_t result provided to blk_mq_end_request().
1276  */
1277 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1278 {
1279 	DECLARE_COMPLETION_ONSTACK(wait);
1280 	unsigned long hang_check;
1281 
1282 	/*
1283 	 * iopoll requires request to be submitted to driver, so can't
1284 	 * use plug
1285 	 */
1286 	rq->end_io_data = &wait;
1287 	__blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq,
1288 			!blk_rq_is_poll(rq));
1289 
1290 	/* Prevent hang_check timer from firing at us during very long I/O */
1291 	hang_check = sysctl_hung_task_timeout_secs;
1292 
1293 	if (blk_rq_is_poll(rq))
1294 		blk_rq_poll_completion(rq, &wait);
1295 	else if (hang_check)
1296 		while (!wait_for_completion_io_timeout(&wait,
1297 				hang_check * (HZ/2)))
1298 			;
1299 	else
1300 		wait_for_completion_io(&wait);
1301 
1302 	return (blk_status_t)(uintptr_t)rq->end_io_data;
1303 }
1304 EXPORT_SYMBOL(blk_execute_rq);
1305 
1306 static void __blk_mq_requeue_request(struct request *rq)
1307 {
1308 	struct request_queue *q = rq->q;
1309 
1310 	blk_mq_put_driver_tag(rq);
1311 
1312 	trace_block_rq_requeue(rq);
1313 	rq_qos_requeue(q, rq);
1314 
1315 	if (blk_mq_request_started(rq)) {
1316 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1317 		rq->rq_flags &= ~RQF_TIMED_OUT;
1318 	}
1319 }
1320 
1321 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1322 {
1323 	__blk_mq_requeue_request(rq);
1324 
1325 	/* this request will be re-inserted to io scheduler queue */
1326 	blk_mq_sched_requeue_request(rq);
1327 
1328 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1329 }
1330 EXPORT_SYMBOL(blk_mq_requeue_request);
1331 
1332 static void blk_mq_requeue_work(struct work_struct *work)
1333 {
1334 	struct request_queue *q =
1335 		container_of(work, struct request_queue, requeue_work.work);
1336 	LIST_HEAD(rq_list);
1337 	struct request *rq, *next;
1338 
1339 	spin_lock_irq(&q->requeue_lock);
1340 	list_splice_init(&q->requeue_list, &rq_list);
1341 	spin_unlock_irq(&q->requeue_lock);
1342 
1343 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1344 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1345 			continue;
1346 
1347 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1348 		list_del_init(&rq->queuelist);
1349 		/*
1350 		 * If RQF_DONTPREP, rq has contained some driver specific
1351 		 * data, so insert it to hctx dispatch list to avoid any
1352 		 * merge.
1353 		 */
1354 		if (rq->rq_flags & RQF_DONTPREP)
1355 			blk_mq_request_bypass_insert(rq, false, false);
1356 		else
1357 			blk_mq_sched_insert_request(rq, true, false, false);
1358 	}
1359 
1360 	while (!list_empty(&rq_list)) {
1361 		rq = list_entry(rq_list.next, struct request, queuelist);
1362 		list_del_init(&rq->queuelist);
1363 		blk_mq_sched_insert_request(rq, false, false, false);
1364 	}
1365 
1366 	blk_mq_run_hw_queues(q, false);
1367 }
1368 
1369 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1370 				bool kick_requeue_list)
1371 {
1372 	struct request_queue *q = rq->q;
1373 	unsigned long flags;
1374 
1375 	/*
1376 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1377 	 * request head insertion from the workqueue.
1378 	 */
1379 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1380 
1381 	spin_lock_irqsave(&q->requeue_lock, flags);
1382 	if (at_head) {
1383 		rq->rq_flags |= RQF_SOFTBARRIER;
1384 		list_add(&rq->queuelist, &q->requeue_list);
1385 	} else {
1386 		list_add_tail(&rq->queuelist, &q->requeue_list);
1387 	}
1388 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1389 
1390 	if (kick_requeue_list)
1391 		blk_mq_kick_requeue_list(q);
1392 }
1393 
1394 void blk_mq_kick_requeue_list(struct request_queue *q)
1395 {
1396 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1397 }
1398 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1399 
1400 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1401 				    unsigned long msecs)
1402 {
1403 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1404 				    msecs_to_jiffies(msecs));
1405 }
1406 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1407 
1408 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1409 			       bool reserved)
1410 {
1411 	/*
1412 	 * If we find a request that isn't idle we know the queue is busy
1413 	 * as it's checked in the iter.
1414 	 * Return false to stop the iteration.
1415 	 */
1416 	if (blk_mq_request_started(rq)) {
1417 		bool *busy = priv;
1418 
1419 		*busy = true;
1420 		return false;
1421 	}
1422 
1423 	return true;
1424 }
1425 
1426 bool blk_mq_queue_inflight(struct request_queue *q)
1427 {
1428 	bool busy = false;
1429 
1430 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1431 	return busy;
1432 }
1433 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1434 
1435 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1436 {
1437 	req->rq_flags |= RQF_TIMED_OUT;
1438 	if (req->q->mq_ops->timeout) {
1439 		enum blk_eh_timer_return ret;
1440 
1441 		ret = req->q->mq_ops->timeout(req, reserved);
1442 		if (ret == BLK_EH_DONE)
1443 			return;
1444 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1445 	}
1446 
1447 	blk_add_timer(req);
1448 }
1449 
1450 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1451 {
1452 	unsigned long deadline;
1453 
1454 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1455 		return false;
1456 	if (rq->rq_flags & RQF_TIMED_OUT)
1457 		return false;
1458 
1459 	deadline = READ_ONCE(rq->deadline);
1460 	if (time_after_eq(jiffies, deadline))
1461 		return true;
1462 
1463 	if (*next == 0)
1464 		*next = deadline;
1465 	else if (time_after(*next, deadline))
1466 		*next = deadline;
1467 	return false;
1468 }
1469 
1470 void blk_mq_put_rq_ref(struct request *rq)
1471 {
1472 	if (is_flush_rq(rq))
1473 		rq->end_io(rq, 0);
1474 	else if (req_ref_put_and_test(rq))
1475 		__blk_mq_free_request(rq);
1476 }
1477 
1478 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1479 {
1480 	unsigned long *next = priv;
1481 
1482 	/*
1483 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1484 	 * be reallocated underneath the timeout handler's processing, then
1485 	 * the expire check is reliable. If the request is not expired, then
1486 	 * it was completed and reallocated as a new request after returning
1487 	 * from blk_mq_check_expired().
1488 	 */
1489 	if (blk_mq_req_expired(rq, next))
1490 		blk_mq_rq_timed_out(rq, reserved);
1491 	return true;
1492 }
1493 
1494 static void blk_mq_timeout_work(struct work_struct *work)
1495 {
1496 	struct request_queue *q =
1497 		container_of(work, struct request_queue, timeout_work);
1498 	unsigned long next = 0;
1499 	struct blk_mq_hw_ctx *hctx;
1500 	unsigned long i;
1501 
1502 	/* A deadlock might occur if a request is stuck requiring a
1503 	 * timeout at the same time a queue freeze is waiting
1504 	 * completion, since the timeout code would not be able to
1505 	 * acquire the queue reference here.
1506 	 *
1507 	 * That's why we don't use blk_queue_enter here; instead, we use
1508 	 * percpu_ref_tryget directly, because we need to be able to
1509 	 * obtain a reference even in the short window between the queue
1510 	 * starting to freeze, by dropping the first reference in
1511 	 * blk_freeze_queue_start, and the moment the last request is
1512 	 * consumed, marked by the instant q_usage_counter reaches
1513 	 * zero.
1514 	 */
1515 	if (!percpu_ref_tryget(&q->q_usage_counter))
1516 		return;
1517 
1518 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1519 
1520 	if (next != 0) {
1521 		mod_timer(&q->timeout, next);
1522 	} else {
1523 		/*
1524 		 * Request timeouts are handled as a forward rolling timer. If
1525 		 * we end up here it means that no requests are pending and
1526 		 * also that no request has been pending for a while. Mark
1527 		 * each hctx as idle.
1528 		 */
1529 		queue_for_each_hw_ctx(q, hctx, i) {
1530 			/* the hctx may be unmapped, so check it here */
1531 			if (blk_mq_hw_queue_mapped(hctx))
1532 				blk_mq_tag_idle(hctx);
1533 		}
1534 	}
1535 	blk_queue_exit(q);
1536 }
1537 
1538 struct flush_busy_ctx_data {
1539 	struct blk_mq_hw_ctx *hctx;
1540 	struct list_head *list;
1541 };
1542 
1543 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1544 {
1545 	struct flush_busy_ctx_data *flush_data = data;
1546 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1547 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1548 	enum hctx_type type = hctx->type;
1549 
1550 	spin_lock(&ctx->lock);
1551 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1552 	sbitmap_clear_bit(sb, bitnr);
1553 	spin_unlock(&ctx->lock);
1554 	return true;
1555 }
1556 
1557 /*
1558  * Process software queues that have been marked busy, splicing them
1559  * to the for-dispatch
1560  */
1561 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1562 {
1563 	struct flush_busy_ctx_data data = {
1564 		.hctx = hctx,
1565 		.list = list,
1566 	};
1567 
1568 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1569 }
1570 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1571 
1572 struct dispatch_rq_data {
1573 	struct blk_mq_hw_ctx *hctx;
1574 	struct request *rq;
1575 };
1576 
1577 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1578 		void *data)
1579 {
1580 	struct dispatch_rq_data *dispatch_data = data;
1581 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1582 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1583 	enum hctx_type type = hctx->type;
1584 
1585 	spin_lock(&ctx->lock);
1586 	if (!list_empty(&ctx->rq_lists[type])) {
1587 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1588 		list_del_init(&dispatch_data->rq->queuelist);
1589 		if (list_empty(&ctx->rq_lists[type]))
1590 			sbitmap_clear_bit(sb, bitnr);
1591 	}
1592 	spin_unlock(&ctx->lock);
1593 
1594 	return !dispatch_data->rq;
1595 }
1596 
1597 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1598 					struct blk_mq_ctx *start)
1599 {
1600 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1601 	struct dispatch_rq_data data = {
1602 		.hctx = hctx,
1603 		.rq   = NULL,
1604 	};
1605 
1606 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1607 			       dispatch_rq_from_ctx, &data);
1608 
1609 	return data.rq;
1610 }
1611 
1612 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1613 {
1614 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1615 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1616 	int tag;
1617 
1618 	blk_mq_tag_busy(rq->mq_hctx);
1619 
1620 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1621 		bt = &rq->mq_hctx->tags->breserved_tags;
1622 		tag_offset = 0;
1623 	} else {
1624 		if (!hctx_may_queue(rq->mq_hctx, bt))
1625 			return false;
1626 	}
1627 
1628 	tag = __sbitmap_queue_get(bt);
1629 	if (tag == BLK_MQ_NO_TAG)
1630 		return false;
1631 
1632 	rq->tag = tag + tag_offset;
1633 	return true;
1634 }
1635 
1636 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1637 {
1638 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1639 		return false;
1640 
1641 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1642 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1643 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1644 		__blk_mq_inc_active_requests(hctx);
1645 	}
1646 	hctx->tags->rqs[rq->tag] = rq;
1647 	return true;
1648 }
1649 
1650 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1651 				int flags, void *key)
1652 {
1653 	struct blk_mq_hw_ctx *hctx;
1654 
1655 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1656 
1657 	spin_lock(&hctx->dispatch_wait_lock);
1658 	if (!list_empty(&wait->entry)) {
1659 		struct sbitmap_queue *sbq;
1660 
1661 		list_del_init(&wait->entry);
1662 		sbq = &hctx->tags->bitmap_tags;
1663 		atomic_dec(&sbq->ws_active);
1664 	}
1665 	spin_unlock(&hctx->dispatch_wait_lock);
1666 
1667 	blk_mq_run_hw_queue(hctx, true);
1668 	return 1;
1669 }
1670 
1671 /*
1672  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1673  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1674  * restart. For both cases, take care to check the condition again after
1675  * marking us as waiting.
1676  */
1677 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1678 				 struct request *rq)
1679 {
1680 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1681 	struct wait_queue_head *wq;
1682 	wait_queue_entry_t *wait;
1683 	bool ret;
1684 
1685 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1686 		blk_mq_sched_mark_restart_hctx(hctx);
1687 
1688 		/*
1689 		 * It's possible that a tag was freed in the window between the
1690 		 * allocation failure and adding the hardware queue to the wait
1691 		 * queue.
1692 		 *
1693 		 * Don't clear RESTART here, someone else could have set it.
1694 		 * At most this will cost an extra queue run.
1695 		 */
1696 		return blk_mq_get_driver_tag(rq);
1697 	}
1698 
1699 	wait = &hctx->dispatch_wait;
1700 	if (!list_empty_careful(&wait->entry))
1701 		return false;
1702 
1703 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1704 
1705 	spin_lock_irq(&wq->lock);
1706 	spin_lock(&hctx->dispatch_wait_lock);
1707 	if (!list_empty(&wait->entry)) {
1708 		spin_unlock(&hctx->dispatch_wait_lock);
1709 		spin_unlock_irq(&wq->lock);
1710 		return false;
1711 	}
1712 
1713 	atomic_inc(&sbq->ws_active);
1714 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1715 	__add_wait_queue(wq, wait);
1716 
1717 	/*
1718 	 * It's possible that a tag was freed in the window between the
1719 	 * allocation failure and adding the hardware queue to the wait
1720 	 * queue.
1721 	 */
1722 	ret = blk_mq_get_driver_tag(rq);
1723 	if (!ret) {
1724 		spin_unlock(&hctx->dispatch_wait_lock);
1725 		spin_unlock_irq(&wq->lock);
1726 		return false;
1727 	}
1728 
1729 	/*
1730 	 * We got a tag, remove ourselves from the wait queue to ensure
1731 	 * someone else gets the wakeup.
1732 	 */
1733 	list_del_init(&wait->entry);
1734 	atomic_dec(&sbq->ws_active);
1735 	spin_unlock(&hctx->dispatch_wait_lock);
1736 	spin_unlock_irq(&wq->lock);
1737 
1738 	return true;
1739 }
1740 
1741 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1742 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1743 /*
1744  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1745  * - EWMA is one simple way to compute running average value
1746  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1747  * - take 4 as factor for avoiding to get too small(0) result, and this
1748  *   factor doesn't matter because EWMA decreases exponentially
1749  */
1750 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1751 {
1752 	unsigned int ewma;
1753 
1754 	ewma = hctx->dispatch_busy;
1755 
1756 	if (!ewma && !busy)
1757 		return;
1758 
1759 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1760 	if (busy)
1761 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1762 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1763 
1764 	hctx->dispatch_busy = ewma;
1765 }
1766 
1767 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1768 
1769 static void blk_mq_handle_dev_resource(struct request *rq,
1770 				       struct list_head *list)
1771 {
1772 	struct request *next =
1773 		list_first_entry_or_null(list, struct request, queuelist);
1774 
1775 	/*
1776 	 * If an I/O scheduler has been configured and we got a driver tag for
1777 	 * the next request already, free it.
1778 	 */
1779 	if (next)
1780 		blk_mq_put_driver_tag(next);
1781 
1782 	list_add(&rq->queuelist, list);
1783 	__blk_mq_requeue_request(rq);
1784 }
1785 
1786 static void blk_mq_handle_zone_resource(struct request *rq,
1787 					struct list_head *zone_list)
1788 {
1789 	/*
1790 	 * If we end up here it is because we cannot dispatch a request to a
1791 	 * specific zone due to LLD level zone-write locking or other zone
1792 	 * related resource not being available. In this case, set the request
1793 	 * aside in zone_list for retrying it later.
1794 	 */
1795 	list_add(&rq->queuelist, zone_list);
1796 	__blk_mq_requeue_request(rq);
1797 }
1798 
1799 enum prep_dispatch {
1800 	PREP_DISPATCH_OK,
1801 	PREP_DISPATCH_NO_TAG,
1802 	PREP_DISPATCH_NO_BUDGET,
1803 };
1804 
1805 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1806 						  bool need_budget)
1807 {
1808 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1809 	int budget_token = -1;
1810 
1811 	if (need_budget) {
1812 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1813 		if (budget_token < 0) {
1814 			blk_mq_put_driver_tag(rq);
1815 			return PREP_DISPATCH_NO_BUDGET;
1816 		}
1817 		blk_mq_set_rq_budget_token(rq, budget_token);
1818 	}
1819 
1820 	if (!blk_mq_get_driver_tag(rq)) {
1821 		/*
1822 		 * The initial allocation attempt failed, so we need to
1823 		 * rerun the hardware queue when a tag is freed. The
1824 		 * waitqueue takes care of that. If the queue is run
1825 		 * before we add this entry back on the dispatch list,
1826 		 * we'll re-run it below.
1827 		 */
1828 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1829 			/*
1830 			 * All budgets not got from this function will be put
1831 			 * together during handling partial dispatch
1832 			 */
1833 			if (need_budget)
1834 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1835 			return PREP_DISPATCH_NO_TAG;
1836 		}
1837 	}
1838 
1839 	return PREP_DISPATCH_OK;
1840 }
1841 
1842 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1843 static void blk_mq_release_budgets(struct request_queue *q,
1844 		struct list_head *list)
1845 {
1846 	struct request *rq;
1847 
1848 	list_for_each_entry(rq, list, queuelist) {
1849 		int budget_token = blk_mq_get_rq_budget_token(rq);
1850 
1851 		if (budget_token >= 0)
1852 			blk_mq_put_dispatch_budget(q, budget_token);
1853 	}
1854 }
1855 
1856 /*
1857  * Returns true if we did some work AND can potentially do more.
1858  */
1859 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1860 			     unsigned int nr_budgets)
1861 {
1862 	enum prep_dispatch prep;
1863 	struct request_queue *q = hctx->queue;
1864 	struct request *rq, *nxt;
1865 	int errors, queued;
1866 	blk_status_t ret = BLK_STS_OK;
1867 	LIST_HEAD(zone_list);
1868 	bool needs_resource = false;
1869 
1870 	if (list_empty(list))
1871 		return false;
1872 
1873 	/*
1874 	 * Now process all the entries, sending them to the driver.
1875 	 */
1876 	errors = queued = 0;
1877 	do {
1878 		struct blk_mq_queue_data bd;
1879 
1880 		rq = list_first_entry(list, struct request, queuelist);
1881 
1882 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1883 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1884 		if (prep != PREP_DISPATCH_OK)
1885 			break;
1886 
1887 		list_del_init(&rq->queuelist);
1888 
1889 		bd.rq = rq;
1890 
1891 		/*
1892 		 * Flag last if we have no more requests, or if we have more
1893 		 * but can't assign a driver tag to it.
1894 		 */
1895 		if (list_empty(list))
1896 			bd.last = true;
1897 		else {
1898 			nxt = list_first_entry(list, struct request, queuelist);
1899 			bd.last = !blk_mq_get_driver_tag(nxt);
1900 		}
1901 
1902 		/*
1903 		 * once the request is queued to lld, no need to cover the
1904 		 * budget any more
1905 		 */
1906 		if (nr_budgets)
1907 			nr_budgets--;
1908 		ret = q->mq_ops->queue_rq(hctx, &bd);
1909 		switch (ret) {
1910 		case BLK_STS_OK:
1911 			queued++;
1912 			break;
1913 		case BLK_STS_RESOURCE:
1914 			needs_resource = true;
1915 			fallthrough;
1916 		case BLK_STS_DEV_RESOURCE:
1917 			blk_mq_handle_dev_resource(rq, list);
1918 			goto out;
1919 		case BLK_STS_ZONE_RESOURCE:
1920 			/*
1921 			 * Move the request to zone_list and keep going through
1922 			 * the dispatch list to find more requests the drive can
1923 			 * accept.
1924 			 */
1925 			blk_mq_handle_zone_resource(rq, &zone_list);
1926 			needs_resource = true;
1927 			break;
1928 		default:
1929 			errors++;
1930 			blk_mq_end_request(rq, ret);
1931 		}
1932 	} while (!list_empty(list));
1933 out:
1934 	if (!list_empty(&zone_list))
1935 		list_splice_tail_init(&zone_list, list);
1936 
1937 	/* If we didn't flush the entire list, we could have told the driver
1938 	 * there was more coming, but that turned out to be a lie.
1939 	 */
1940 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1941 		q->mq_ops->commit_rqs(hctx);
1942 	/*
1943 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1944 	 * that is where we will continue on next queue run.
1945 	 */
1946 	if (!list_empty(list)) {
1947 		bool needs_restart;
1948 		/* For non-shared tags, the RESTART check will suffice */
1949 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1950 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1951 
1952 		if (nr_budgets)
1953 			blk_mq_release_budgets(q, list);
1954 
1955 		spin_lock(&hctx->lock);
1956 		list_splice_tail_init(list, &hctx->dispatch);
1957 		spin_unlock(&hctx->lock);
1958 
1959 		/*
1960 		 * Order adding requests to hctx->dispatch and checking
1961 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1962 		 * in blk_mq_sched_restart(). Avoid restart code path to
1963 		 * miss the new added requests to hctx->dispatch, meantime
1964 		 * SCHED_RESTART is observed here.
1965 		 */
1966 		smp_mb();
1967 
1968 		/*
1969 		 * If SCHED_RESTART was set by the caller of this function and
1970 		 * it is no longer set that means that it was cleared by another
1971 		 * thread and hence that a queue rerun is needed.
1972 		 *
1973 		 * If 'no_tag' is set, that means that we failed getting
1974 		 * a driver tag with an I/O scheduler attached. If our dispatch
1975 		 * waitqueue is no longer active, ensure that we run the queue
1976 		 * AFTER adding our entries back to the list.
1977 		 *
1978 		 * If no I/O scheduler has been configured it is possible that
1979 		 * the hardware queue got stopped and restarted before requests
1980 		 * were pushed back onto the dispatch list. Rerun the queue to
1981 		 * avoid starvation. Notes:
1982 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1983 		 *   been stopped before rerunning a queue.
1984 		 * - Some but not all block drivers stop a queue before
1985 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1986 		 *   and dm-rq.
1987 		 *
1988 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1989 		 * bit is set, run queue after a delay to avoid IO stalls
1990 		 * that could otherwise occur if the queue is idle.  We'll do
1991 		 * similar if we couldn't get budget or couldn't lock a zone
1992 		 * and SCHED_RESTART is set.
1993 		 */
1994 		needs_restart = blk_mq_sched_needs_restart(hctx);
1995 		if (prep == PREP_DISPATCH_NO_BUDGET)
1996 			needs_resource = true;
1997 		if (!needs_restart ||
1998 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1999 			blk_mq_run_hw_queue(hctx, true);
2000 		else if (needs_restart && needs_resource)
2001 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2002 
2003 		blk_mq_update_dispatch_busy(hctx, true);
2004 		return false;
2005 	} else
2006 		blk_mq_update_dispatch_busy(hctx, false);
2007 
2008 	return (queued + errors) != 0;
2009 }
2010 
2011 /**
2012  * __blk_mq_run_hw_queue - Run a hardware queue.
2013  * @hctx: Pointer to the hardware queue to run.
2014  *
2015  * Send pending requests to the hardware.
2016  */
2017 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2018 {
2019 	/*
2020 	 * We can't run the queue inline with ints disabled. Ensure that
2021 	 * we catch bad users of this early.
2022 	 */
2023 	WARN_ON_ONCE(in_interrupt());
2024 
2025 	blk_mq_run_dispatch_ops(hctx->queue,
2026 			blk_mq_sched_dispatch_requests(hctx));
2027 }
2028 
2029 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2030 {
2031 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2032 
2033 	if (cpu >= nr_cpu_ids)
2034 		cpu = cpumask_first(hctx->cpumask);
2035 	return cpu;
2036 }
2037 
2038 /*
2039  * It'd be great if the workqueue API had a way to pass
2040  * in a mask and had some smarts for more clever placement.
2041  * For now we just round-robin here, switching for every
2042  * BLK_MQ_CPU_WORK_BATCH queued items.
2043  */
2044 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2045 {
2046 	bool tried = false;
2047 	int next_cpu = hctx->next_cpu;
2048 
2049 	if (hctx->queue->nr_hw_queues == 1)
2050 		return WORK_CPU_UNBOUND;
2051 
2052 	if (--hctx->next_cpu_batch <= 0) {
2053 select_cpu:
2054 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2055 				cpu_online_mask);
2056 		if (next_cpu >= nr_cpu_ids)
2057 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2058 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2059 	}
2060 
2061 	/*
2062 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2063 	 * and it should only happen in the path of handling CPU DEAD.
2064 	 */
2065 	if (!cpu_online(next_cpu)) {
2066 		if (!tried) {
2067 			tried = true;
2068 			goto select_cpu;
2069 		}
2070 
2071 		/*
2072 		 * Make sure to re-select CPU next time once after CPUs
2073 		 * in hctx->cpumask become online again.
2074 		 */
2075 		hctx->next_cpu = next_cpu;
2076 		hctx->next_cpu_batch = 1;
2077 		return WORK_CPU_UNBOUND;
2078 	}
2079 
2080 	hctx->next_cpu = next_cpu;
2081 	return next_cpu;
2082 }
2083 
2084 /**
2085  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2086  * @hctx: Pointer to the hardware queue to run.
2087  * @async: If we want to run the queue asynchronously.
2088  * @msecs: Milliseconds of delay to wait before running the queue.
2089  *
2090  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2091  * with a delay of @msecs.
2092  */
2093 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2094 					unsigned long msecs)
2095 {
2096 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2097 		return;
2098 
2099 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2100 		int cpu = get_cpu();
2101 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2102 			__blk_mq_run_hw_queue(hctx);
2103 			put_cpu();
2104 			return;
2105 		}
2106 
2107 		put_cpu();
2108 	}
2109 
2110 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2111 				    msecs_to_jiffies(msecs));
2112 }
2113 
2114 /**
2115  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2116  * @hctx: Pointer to the hardware queue to run.
2117  * @msecs: Milliseconds of delay to wait before running the queue.
2118  *
2119  * Run a hardware queue asynchronously with a delay of @msecs.
2120  */
2121 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2122 {
2123 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2124 }
2125 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2126 
2127 /**
2128  * blk_mq_run_hw_queue - Start to run a hardware queue.
2129  * @hctx: Pointer to the hardware queue to run.
2130  * @async: If we want to run the queue asynchronously.
2131  *
2132  * Check if the request queue is not in a quiesced state and if there are
2133  * pending requests to be sent. If this is true, run the queue to send requests
2134  * to hardware.
2135  */
2136 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2137 {
2138 	bool need_run;
2139 
2140 	/*
2141 	 * When queue is quiesced, we may be switching io scheduler, or
2142 	 * updating nr_hw_queues, or other things, and we can't run queue
2143 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2144 	 *
2145 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2146 	 * quiesced.
2147 	 */
2148 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2149 		need_run = !blk_queue_quiesced(hctx->queue) &&
2150 		blk_mq_hctx_has_pending(hctx));
2151 
2152 	if (need_run)
2153 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2154 }
2155 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2156 
2157 /*
2158  * Is the request queue handled by an IO scheduler that does not respect
2159  * hardware queues when dispatching?
2160  */
2161 static bool blk_mq_has_sqsched(struct request_queue *q)
2162 {
2163 	struct elevator_queue *e = q->elevator;
2164 
2165 	if (e && e->type->ops.dispatch_request &&
2166 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2167 		return true;
2168 	return false;
2169 }
2170 
2171 /*
2172  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2173  * scheduler.
2174  */
2175 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2176 {
2177 	struct blk_mq_hw_ctx *hctx;
2178 
2179 	/*
2180 	 * If the IO scheduler does not respect hardware queues when
2181 	 * dispatching, we just don't bother with multiple HW queues and
2182 	 * dispatch from hctx for the current CPU since running multiple queues
2183 	 * just causes lock contention inside the scheduler and pointless cache
2184 	 * bouncing.
2185 	 */
2186 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2187 				     raw_smp_processor_id());
2188 	if (!blk_mq_hctx_stopped(hctx))
2189 		return hctx;
2190 	return NULL;
2191 }
2192 
2193 /**
2194  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2195  * @q: Pointer to the request queue to run.
2196  * @async: If we want to run the queue asynchronously.
2197  */
2198 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2199 {
2200 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2201 	unsigned long i;
2202 
2203 	sq_hctx = NULL;
2204 	if (blk_mq_has_sqsched(q))
2205 		sq_hctx = blk_mq_get_sq_hctx(q);
2206 	queue_for_each_hw_ctx(q, hctx, i) {
2207 		if (blk_mq_hctx_stopped(hctx))
2208 			continue;
2209 		/*
2210 		 * Dispatch from this hctx either if there's no hctx preferred
2211 		 * by IO scheduler or if it has requests that bypass the
2212 		 * scheduler.
2213 		 */
2214 		if (!sq_hctx || sq_hctx == hctx ||
2215 		    !list_empty_careful(&hctx->dispatch))
2216 			blk_mq_run_hw_queue(hctx, async);
2217 	}
2218 }
2219 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2220 
2221 /**
2222  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2223  * @q: Pointer to the request queue to run.
2224  * @msecs: Milliseconds of delay to wait before running the queues.
2225  */
2226 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2227 {
2228 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2229 	unsigned long i;
2230 
2231 	sq_hctx = NULL;
2232 	if (blk_mq_has_sqsched(q))
2233 		sq_hctx = blk_mq_get_sq_hctx(q);
2234 	queue_for_each_hw_ctx(q, hctx, i) {
2235 		if (blk_mq_hctx_stopped(hctx))
2236 			continue;
2237 		/*
2238 		 * If there is already a run_work pending, leave the
2239 		 * pending delay untouched. Otherwise, a hctx can stall
2240 		 * if another hctx is re-delaying the other's work
2241 		 * before the work executes.
2242 		 */
2243 		if (delayed_work_pending(&hctx->run_work))
2244 			continue;
2245 		/*
2246 		 * Dispatch from this hctx either if there's no hctx preferred
2247 		 * by IO scheduler or if it has requests that bypass the
2248 		 * scheduler.
2249 		 */
2250 		if (!sq_hctx || sq_hctx == hctx ||
2251 		    !list_empty_careful(&hctx->dispatch))
2252 			blk_mq_delay_run_hw_queue(hctx, msecs);
2253 	}
2254 }
2255 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2256 
2257 /**
2258  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2259  * @q: request queue.
2260  *
2261  * The caller is responsible for serializing this function against
2262  * blk_mq_{start,stop}_hw_queue().
2263  */
2264 bool blk_mq_queue_stopped(struct request_queue *q)
2265 {
2266 	struct blk_mq_hw_ctx *hctx;
2267 	unsigned long i;
2268 
2269 	queue_for_each_hw_ctx(q, hctx, i)
2270 		if (blk_mq_hctx_stopped(hctx))
2271 			return true;
2272 
2273 	return false;
2274 }
2275 EXPORT_SYMBOL(blk_mq_queue_stopped);
2276 
2277 /*
2278  * This function is often used for pausing .queue_rq() by driver when
2279  * there isn't enough resource or some conditions aren't satisfied, and
2280  * BLK_STS_RESOURCE is usually returned.
2281  *
2282  * We do not guarantee that dispatch can be drained or blocked
2283  * after blk_mq_stop_hw_queue() returns. Please use
2284  * blk_mq_quiesce_queue() for that requirement.
2285  */
2286 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288 	cancel_delayed_work(&hctx->run_work);
2289 
2290 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2291 }
2292 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2293 
2294 /*
2295  * This function is often used for pausing .queue_rq() by driver when
2296  * there isn't enough resource or some conditions aren't satisfied, and
2297  * BLK_STS_RESOURCE is usually returned.
2298  *
2299  * We do not guarantee that dispatch can be drained or blocked
2300  * after blk_mq_stop_hw_queues() returns. Please use
2301  * blk_mq_quiesce_queue() for that requirement.
2302  */
2303 void blk_mq_stop_hw_queues(struct request_queue *q)
2304 {
2305 	struct blk_mq_hw_ctx *hctx;
2306 	unsigned long i;
2307 
2308 	queue_for_each_hw_ctx(q, hctx, i)
2309 		blk_mq_stop_hw_queue(hctx);
2310 }
2311 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2312 
2313 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2314 {
2315 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2316 
2317 	blk_mq_run_hw_queue(hctx, false);
2318 }
2319 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2320 
2321 void blk_mq_start_hw_queues(struct request_queue *q)
2322 {
2323 	struct blk_mq_hw_ctx *hctx;
2324 	unsigned long i;
2325 
2326 	queue_for_each_hw_ctx(q, hctx, i)
2327 		blk_mq_start_hw_queue(hctx);
2328 }
2329 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2330 
2331 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2332 {
2333 	if (!blk_mq_hctx_stopped(hctx))
2334 		return;
2335 
2336 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2337 	blk_mq_run_hw_queue(hctx, async);
2338 }
2339 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2340 
2341 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2342 {
2343 	struct blk_mq_hw_ctx *hctx;
2344 	unsigned long i;
2345 
2346 	queue_for_each_hw_ctx(q, hctx, i)
2347 		blk_mq_start_stopped_hw_queue(hctx, async);
2348 }
2349 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2350 
2351 static void blk_mq_run_work_fn(struct work_struct *work)
2352 {
2353 	struct blk_mq_hw_ctx *hctx;
2354 
2355 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2356 
2357 	/*
2358 	 * If we are stopped, don't run the queue.
2359 	 */
2360 	if (blk_mq_hctx_stopped(hctx))
2361 		return;
2362 
2363 	__blk_mq_run_hw_queue(hctx);
2364 }
2365 
2366 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2367 					    struct request *rq,
2368 					    bool at_head)
2369 {
2370 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2371 	enum hctx_type type = hctx->type;
2372 
2373 	lockdep_assert_held(&ctx->lock);
2374 
2375 	trace_block_rq_insert(rq);
2376 
2377 	if (at_head)
2378 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2379 	else
2380 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2381 }
2382 
2383 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2384 			     bool at_head)
2385 {
2386 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2387 
2388 	lockdep_assert_held(&ctx->lock);
2389 
2390 	__blk_mq_insert_req_list(hctx, rq, at_head);
2391 	blk_mq_hctx_mark_pending(hctx, ctx);
2392 }
2393 
2394 /**
2395  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2396  * @rq: Pointer to request to be inserted.
2397  * @at_head: true if the request should be inserted at the head of the list.
2398  * @run_queue: If we should run the hardware queue after inserting the request.
2399  *
2400  * Should only be used carefully, when the caller knows we want to
2401  * bypass a potential IO scheduler on the target device.
2402  */
2403 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2404 				  bool run_queue)
2405 {
2406 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2407 
2408 	spin_lock(&hctx->lock);
2409 	if (at_head)
2410 		list_add(&rq->queuelist, &hctx->dispatch);
2411 	else
2412 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2413 	spin_unlock(&hctx->lock);
2414 
2415 	if (run_queue)
2416 		blk_mq_run_hw_queue(hctx, false);
2417 }
2418 
2419 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2420 			    struct list_head *list)
2421 
2422 {
2423 	struct request *rq;
2424 	enum hctx_type type = hctx->type;
2425 
2426 	/*
2427 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2428 	 * offline now
2429 	 */
2430 	list_for_each_entry(rq, list, queuelist) {
2431 		BUG_ON(rq->mq_ctx != ctx);
2432 		trace_block_rq_insert(rq);
2433 	}
2434 
2435 	spin_lock(&ctx->lock);
2436 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2437 	blk_mq_hctx_mark_pending(hctx, ctx);
2438 	spin_unlock(&ctx->lock);
2439 }
2440 
2441 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2442 			      bool from_schedule)
2443 {
2444 	if (hctx->queue->mq_ops->commit_rqs) {
2445 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2446 		hctx->queue->mq_ops->commit_rqs(hctx);
2447 	}
2448 	*queued = 0;
2449 }
2450 
2451 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2452 		unsigned int nr_segs)
2453 {
2454 	int err;
2455 
2456 	if (bio->bi_opf & REQ_RAHEAD)
2457 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2458 
2459 	rq->__sector = bio->bi_iter.bi_sector;
2460 	blk_rq_bio_prep(rq, bio, nr_segs);
2461 
2462 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2463 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2464 	WARN_ON_ONCE(err);
2465 
2466 	blk_account_io_start(rq);
2467 }
2468 
2469 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2470 					    struct request *rq, bool last)
2471 {
2472 	struct request_queue *q = rq->q;
2473 	struct blk_mq_queue_data bd = {
2474 		.rq = rq,
2475 		.last = last,
2476 	};
2477 	blk_status_t ret;
2478 
2479 	/*
2480 	 * For OK queue, we are done. For error, caller may kill it.
2481 	 * Any other error (busy), just add it to our list as we
2482 	 * previously would have done.
2483 	 */
2484 	ret = q->mq_ops->queue_rq(hctx, &bd);
2485 	switch (ret) {
2486 	case BLK_STS_OK:
2487 		blk_mq_update_dispatch_busy(hctx, false);
2488 		break;
2489 	case BLK_STS_RESOURCE:
2490 	case BLK_STS_DEV_RESOURCE:
2491 		blk_mq_update_dispatch_busy(hctx, true);
2492 		__blk_mq_requeue_request(rq);
2493 		break;
2494 	default:
2495 		blk_mq_update_dispatch_busy(hctx, false);
2496 		break;
2497 	}
2498 
2499 	return ret;
2500 }
2501 
2502 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2503 						struct request *rq,
2504 						bool bypass_insert, bool last)
2505 {
2506 	struct request_queue *q = rq->q;
2507 	bool run_queue = true;
2508 	int budget_token;
2509 
2510 	/*
2511 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2512 	 *
2513 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2514 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2515 	 * and avoid driver to try to dispatch again.
2516 	 */
2517 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2518 		run_queue = false;
2519 		bypass_insert = false;
2520 		goto insert;
2521 	}
2522 
2523 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2524 		goto insert;
2525 
2526 	budget_token = blk_mq_get_dispatch_budget(q);
2527 	if (budget_token < 0)
2528 		goto insert;
2529 
2530 	blk_mq_set_rq_budget_token(rq, budget_token);
2531 
2532 	if (!blk_mq_get_driver_tag(rq)) {
2533 		blk_mq_put_dispatch_budget(q, budget_token);
2534 		goto insert;
2535 	}
2536 
2537 	return __blk_mq_issue_directly(hctx, rq, last);
2538 insert:
2539 	if (bypass_insert)
2540 		return BLK_STS_RESOURCE;
2541 
2542 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2543 
2544 	return BLK_STS_OK;
2545 }
2546 
2547 /**
2548  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2549  * @hctx: Pointer of the associated hardware queue.
2550  * @rq: Pointer to request to be sent.
2551  *
2552  * If the device has enough resources to accept a new request now, send the
2553  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2554  * we can try send it another time in the future. Requests inserted at this
2555  * queue have higher priority.
2556  */
2557 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2558 		struct request *rq)
2559 {
2560 	blk_status_t ret =
2561 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2562 
2563 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2564 		blk_mq_request_bypass_insert(rq, false, true);
2565 	else if (ret != BLK_STS_OK)
2566 		blk_mq_end_request(rq, ret);
2567 }
2568 
2569 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2570 {
2571 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2572 }
2573 
2574 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2575 {
2576 	struct blk_mq_hw_ctx *hctx = NULL;
2577 	struct request *rq;
2578 	int queued = 0;
2579 	int errors = 0;
2580 
2581 	while ((rq = rq_list_pop(&plug->mq_list))) {
2582 		bool last = rq_list_empty(plug->mq_list);
2583 		blk_status_t ret;
2584 
2585 		if (hctx != rq->mq_hctx) {
2586 			if (hctx)
2587 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2588 			hctx = rq->mq_hctx;
2589 		}
2590 
2591 		ret = blk_mq_request_issue_directly(rq, last);
2592 		switch (ret) {
2593 		case BLK_STS_OK:
2594 			queued++;
2595 			break;
2596 		case BLK_STS_RESOURCE:
2597 		case BLK_STS_DEV_RESOURCE:
2598 			blk_mq_request_bypass_insert(rq, false, last);
2599 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2600 			return;
2601 		default:
2602 			blk_mq_end_request(rq, ret);
2603 			errors++;
2604 			break;
2605 		}
2606 	}
2607 
2608 	/*
2609 	 * If we didn't flush the entire list, we could have told the driver
2610 	 * there was more coming, but that turned out to be a lie.
2611 	 */
2612 	if (errors)
2613 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2614 }
2615 
2616 static void __blk_mq_flush_plug_list(struct request_queue *q,
2617 				     struct blk_plug *plug)
2618 {
2619 	if (blk_queue_quiesced(q))
2620 		return;
2621 	q->mq_ops->queue_rqs(&plug->mq_list);
2622 }
2623 
2624 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2625 {
2626 	struct blk_mq_hw_ctx *this_hctx = NULL;
2627 	struct blk_mq_ctx *this_ctx = NULL;
2628 	struct request *requeue_list = NULL;
2629 	unsigned int depth = 0;
2630 	LIST_HEAD(list);
2631 
2632 	do {
2633 		struct request *rq = rq_list_pop(&plug->mq_list);
2634 
2635 		if (!this_hctx) {
2636 			this_hctx = rq->mq_hctx;
2637 			this_ctx = rq->mq_ctx;
2638 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2639 			rq_list_add(&requeue_list, rq);
2640 			continue;
2641 		}
2642 		list_add_tail(&rq->queuelist, &list);
2643 		depth++;
2644 	} while (!rq_list_empty(plug->mq_list));
2645 
2646 	plug->mq_list = requeue_list;
2647 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2648 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2649 }
2650 
2651 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2652 {
2653 	struct request *rq;
2654 
2655 	if (rq_list_empty(plug->mq_list))
2656 		return;
2657 	plug->rq_count = 0;
2658 
2659 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2660 		struct request_queue *q;
2661 
2662 		rq = rq_list_peek(&plug->mq_list);
2663 		q = rq->q;
2664 
2665 		/*
2666 		 * Peek first request and see if we have a ->queue_rqs() hook.
2667 		 * If we do, we can dispatch the whole plug list in one go. We
2668 		 * already know at this point that all requests belong to the
2669 		 * same queue, caller must ensure that's the case.
2670 		 *
2671 		 * Since we pass off the full list to the driver at this point,
2672 		 * we do not increment the active request count for the queue.
2673 		 * Bypass shared tags for now because of that.
2674 		 */
2675 		if (q->mq_ops->queue_rqs &&
2676 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2677 			blk_mq_run_dispatch_ops(q,
2678 				__blk_mq_flush_plug_list(q, plug));
2679 			if (rq_list_empty(plug->mq_list))
2680 				return;
2681 		}
2682 
2683 		blk_mq_run_dispatch_ops(q,
2684 				blk_mq_plug_issue_direct(plug, false));
2685 		if (rq_list_empty(plug->mq_list))
2686 			return;
2687 	}
2688 
2689 	do {
2690 		blk_mq_dispatch_plug_list(plug, from_schedule);
2691 	} while (!rq_list_empty(plug->mq_list));
2692 }
2693 
2694 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2695 		struct list_head *list)
2696 {
2697 	int queued = 0;
2698 	int errors = 0;
2699 
2700 	while (!list_empty(list)) {
2701 		blk_status_t ret;
2702 		struct request *rq = list_first_entry(list, struct request,
2703 				queuelist);
2704 
2705 		list_del_init(&rq->queuelist);
2706 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2707 		if (ret != BLK_STS_OK) {
2708 			if (ret == BLK_STS_RESOURCE ||
2709 					ret == BLK_STS_DEV_RESOURCE) {
2710 				blk_mq_request_bypass_insert(rq, false,
2711 							list_empty(list));
2712 				break;
2713 			}
2714 			blk_mq_end_request(rq, ret);
2715 			errors++;
2716 		} else
2717 			queued++;
2718 	}
2719 
2720 	/*
2721 	 * If we didn't flush the entire list, we could have told
2722 	 * the driver there was more coming, but that turned out to
2723 	 * be a lie.
2724 	 */
2725 	if ((!list_empty(list) || errors) &&
2726 	     hctx->queue->mq_ops->commit_rqs && queued)
2727 		hctx->queue->mq_ops->commit_rqs(hctx);
2728 }
2729 
2730 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2731 				     struct bio *bio, unsigned int nr_segs)
2732 {
2733 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2734 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2735 			return true;
2736 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2737 			return true;
2738 	}
2739 	return false;
2740 }
2741 
2742 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2743 					       struct blk_plug *plug,
2744 					       struct bio *bio,
2745 					       unsigned int nsegs)
2746 {
2747 	struct blk_mq_alloc_data data = {
2748 		.q		= q,
2749 		.nr_tags	= 1,
2750 		.cmd_flags	= bio->bi_opf,
2751 	};
2752 	struct request *rq;
2753 
2754 	if (unlikely(bio_queue_enter(bio)))
2755 		return NULL;
2756 
2757 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2758 		goto queue_exit;
2759 
2760 	rq_qos_throttle(q, bio);
2761 
2762 	if (plug) {
2763 		data.nr_tags = plug->nr_ios;
2764 		plug->nr_ios = 1;
2765 		data.cached_rq = &plug->cached_rq;
2766 	}
2767 
2768 	rq = __blk_mq_alloc_requests(&data);
2769 	if (rq)
2770 		return rq;
2771 	rq_qos_cleanup(q, bio);
2772 	if (bio->bi_opf & REQ_NOWAIT)
2773 		bio_wouldblock_error(bio);
2774 queue_exit:
2775 	blk_queue_exit(q);
2776 	return NULL;
2777 }
2778 
2779 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2780 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2781 {
2782 	struct request *rq;
2783 
2784 	if (!plug)
2785 		return NULL;
2786 	rq = rq_list_peek(&plug->cached_rq);
2787 	if (!rq || rq->q != q)
2788 		return NULL;
2789 
2790 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2791 		*bio = NULL;
2792 		return NULL;
2793 	}
2794 
2795 	rq_qos_throttle(q, *bio);
2796 
2797 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2798 		return NULL;
2799 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2800 		return NULL;
2801 
2802 	rq->cmd_flags = (*bio)->bi_opf;
2803 	plug->cached_rq = rq_list_next(rq);
2804 	INIT_LIST_HEAD(&rq->queuelist);
2805 	return rq;
2806 }
2807 
2808 /**
2809  * blk_mq_submit_bio - Create and send a request to block device.
2810  * @bio: Bio pointer.
2811  *
2812  * Builds up a request structure from @q and @bio and send to the device. The
2813  * request may not be queued directly to hardware if:
2814  * * This request can be merged with another one
2815  * * We want to place request at plug queue for possible future merging
2816  * * There is an IO scheduler active at this queue
2817  *
2818  * It will not queue the request if there is an error with the bio, or at the
2819  * request creation.
2820  */
2821 void blk_mq_submit_bio(struct bio *bio)
2822 {
2823 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2824 	struct blk_plug *plug = blk_mq_plug(q, bio);
2825 	const int is_sync = op_is_sync(bio->bi_opf);
2826 	struct request *rq;
2827 	unsigned int nr_segs = 1;
2828 	blk_status_t ret;
2829 
2830 	blk_queue_bounce(q, &bio);
2831 	if (blk_may_split(q, bio))
2832 		__blk_queue_split(q, &bio, &nr_segs);
2833 
2834 	if (!bio_integrity_prep(bio))
2835 		return;
2836 
2837 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2838 	if (!rq) {
2839 		if (!bio)
2840 			return;
2841 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2842 		if (unlikely(!rq))
2843 			return;
2844 	}
2845 
2846 	trace_block_getrq(bio);
2847 
2848 	rq_qos_track(q, rq, bio);
2849 
2850 	blk_mq_bio_to_request(rq, bio, nr_segs);
2851 
2852 	ret = blk_crypto_init_request(rq);
2853 	if (ret != BLK_STS_OK) {
2854 		bio->bi_status = ret;
2855 		bio_endio(bio);
2856 		blk_mq_free_request(rq);
2857 		return;
2858 	}
2859 
2860 	if (op_is_flush(bio->bi_opf)) {
2861 		blk_insert_flush(rq);
2862 		return;
2863 	}
2864 
2865 	if (plug)
2866 		blk_add_rq_to_plug(plug, rq);
2867 	else if ((rq->rq_flags & RQF_ELV) ||
2868 		 (rq->mq_hctx->dispatch_busy &&
2869 		  (q->nr_hw_queues == 1 || !is_sync)))
2870 		blk_mq_sched_insert_request(rq, false, true, true);
2871 	else
2872 		blk_mq_run_dispatch_ops(rq->q,
2873 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2874 }
2875 
2876 #ifdef CONFIG_BLK_MQ_STACKING
2877 /**
2878  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2879  * @rq: the request being queued
2880  */
2881 blk_status_t blk_insert_cloned_request(struct request *rq)
2882 {
2883 	struct request_queue *q = rq->q;
2884 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2885 	blk_status_t ret;
2886 
2887 	if (blk_rq_sectors(rq) > max_sectors) {
2888 		/*
2889 		 * SCSI device does not have a good way to return if
2890 		 * Write Same/Zero is actually supported. If a device rejects
2891 		 * a non-read/write command (discard, write same,etc.) the
2892 		 * low-level device driver will set the relevant queue limit to
2893 		 * 0 to prevent blk-lib from issuing more of the offending
2894 		 * operations. Commands queued prior to the queue limit being
2895 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2896 		 * errors being propagated to upper layers.
2897 		 */
2898 		if (max_sectors == 0)
2899 			return BLK_STS_NOTSUPP;
2900 
2901 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2902 			__func__, blk_rq_sectors(rq), max_sectors);
2903 		return BLK_STS_IOERR;
2904 	}
2905 
2906 	/*
2907 	 * The queue settings related to segment counting may differ from the
2908 	 * original queue.
2909 	 */
2910 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2911 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2912 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2913 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2914 		return BLK_STS_IOERR;
2915 	}
2916 
2917 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2918 		return BLK_STS_IOERR;
2919 
2920 	if (blk_crypto_insert_cloned_request(rq))
2921 		return BLK_STS_IOERR;
2922 
2923 	blk_account_io_start(rq);
2924 
2925 	/*
2926 	 * Since we have a scheduler attached on the top device,
2927 	 * bypass a potential scheduler on the bottom device for
2928 	 * insert.
2929 	 */
2930 	blk_mq_run_dispatch_ops(q,
2931 			ret = blk_mq_request_issue_directly(rq, true));
2932 	if (ret)
2933 		blk_account_io_done(rq, ktime_get_ns());
2934 	return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2937 
2938 /**
2939  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2940  * @rq: the clone request to be cleaned up
2941  *
2942  * Description:
2943  *     Free all bios in @rq for a cloned request.
2944  */
2945 void blk_rq_unprep_clone(struct request *rq)
2946 {
2947 	struct bio *bio;
2948 
2949 	while ((bio = rq->bio) != NULL) {
2950 		rq->bio = bio->bi_next;
2951 
2952 		bio_put(bio);
2953 	}
2954 }
2955 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2956 
2957 /**
2958  * blk_rq_prep_clone - Helper function to setup clone request
2959  * @rq: the request to be setup
2960  * @rq_src: original request to be cloned
2961  * @bs: bio_set that bios for clone are allocated from
2962  * @gfp_mask: memory allocation mask for bio
2963  * @bio_ctr: setup function to be called for each clone bio.
2964  *           Returns %0 for success, non %0 for failure.
2965  * @data: private data to be passed to @bio_ctr
2966  *
2967  * Description:
2968  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2969  *     Also, pages which the original bios are pointing to are not copied
2970  *     and the cloned bios just point same pages.
2971  *     So cloned bios must be completed before original bios, which means
2972  *     the caller must complete @rq before @rq_src.
2973  */
2974 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2975 		      struct bio_set *bs, gfp_t gfp_mask,
2976 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2977 		      void *data)
2978 {
2979 	struct bio *bio, *bio_src;
2980 
2981 	if (!bs)
2982 		bs = &fs_bio_set;
2983 
2984 	__rq_for_each_bio(bio_src, rq_src) {
2985 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2986 				      bs);
2987 		if (!bio)
2988 			goto free_and_out;
2989 
2990 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2991 			goto free_and_out;
2992 
2993 		if (rq->bio) {
2994 			rq->biotail->bi_next = bio;
2995 			rq->biotail = bio;
2996 		} else {
2997 			rq->bio = rq->biotail = bio;
2998 		}
2999 		bio = NULL;
3000 	}
3001 
3002 	/* Copy attributes of the original request to the clone request. */
3003 	rq->__sector = blk_rq_pos(rq_src);
3004 	rq->__data_len = blk_rq_bytes(rq_src);
3005 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3006 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3007 		rq->special_vec = rq_src->special_vec;
3008 	}
3009 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3010 	rq->ioprio = rq_src->ioprio;
3011 
3012 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3013 		goto free_and_out;
3014 
3015 	return 0;
3016 
3017 free_and_out:
3018 	if (bio)
3019 		bio_put(bio);
3020 	blk_rq_unprep_clone(rq);
3021 
3022 	return -ENOMEM;
3023 }
3024 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3025 #endif /* CONFIG_BLK_MQ_STACKING */
3026 
3027 /*
3028  * Steal bios from a request and add them to a bio list.
3029  * The request must not have been partially completed before.
3030  */
3031 void blk_steal_bios(struct bio_list *list, struct request *rq)
3032 {
3033 	if (rq->bio) {
3034 		if (list->tail)
3035 			list->tail->bi_next = rq->bio;
3036 		else
3037 			list->head = rq->bio;
3038 		list->tail = rq->biotail;
3039 
3040 		rq->bio = NULL;
3041 		rq->biotail = NULL;
3042 	}
3043 
3044 	rq->__data_len = 0;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_steal_bios);
3047 
3048 static size_t order_to_size(unsigned int order)
3049 {
3050 	return (size_t)PAGE_SIZE << order;
3051 }
3052 
3053 /* called before freeing request pool in @tags */
3054 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3055 				    struct blk_mq_tags *tags)
3056 {
3057 	struct page *page;
3058 	unsigned long flags;
3059 
3060 	/* There is no need to clear a driver tags own mapping */
3061 	if (drv_tags == tags)
3062 		return;
3063 
3064 	list_for_each_entry(page, &tags->page_list, lru) {
3065 		unsigned long start = (unsigned long)page_address(page);
3066 		unsigned long end = start + order_to_size(page->private);
3067 		int i;
3068 
3069 		for (i = 0; i < drv_tags->nr_tags; i++) {
3070 			struct request *rq = drv_tags->rqs[i];
3071 			unsigned long rq_addr = (unsigned long)rq;
3072 
3073 			if (rq_addr >= start && rq_addr < end) {
3074 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3075 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3076 			}
3077 		}
3078 	}
3079 
3080 	/*
3081 	 * Wait until all pending iteration is done.
3082 	 *
3083 	 * Request reference is cleared and it is guaranteed to be observed
3084 	 * after the ->lock is released.
3085 	 */
3086 	spin_lock_irqsave(&drv_tags->lock, flags);
3087 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3088 }
3089 
3090 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3091 		     unsigned int hctx_idx)
3092 {
3093 	struct blk_mq_tags *drv_tags;
3094 	struct page *page;
3095 
3096 	if (list_empty(&tags->page_list))
3097 		return;
3098 
3099 	if (blk_mq_is_shared_tags(set->flags))
3100 		drv_tags = set->shared_tags;
3101 	else
3102 		drv_tags = set->tags[hctx_idx];
3103 
3104 	if (tags->static_rqs && set->ops->exit_request) {
3105 		int i;
3106 
3107 		for (i = 0; i < tags->nr_tags; i++) {
3108 			struct request *rq = tags->static_rqs[i];
3109 
3110 			if (!rq)
3111 				continue;
3112 			set->ops->exit_request(set, rq, hctx_idx);
3113 			tags->static_rqs[i] = NULL;
3114 		}
3115 	}
3116 
3117 	blk_mq_clear_rq_mapping(drv_tags, tags);
3118 
3119 	while (!list_empty(&tags->page_list)) {
3120 		page = list_first_entry(&tags->page_list, struct page, lru);
3121 		list_del_init(&page->lru);
3122 		/*
3123 		 * Remove kmemleak object previously allocated in
3124 		 * blk_mq_alloc_rqs().
3125 		 */
3126 		kmemleak_free(page_address(page));
3127 		__free_pages(page, page->private);
3128 	}
3129 }
3130 
3131 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3132 {
3133 	kfree(tags->rqs);
3134 	tags->rqs = NULL;
3135 	kfree(tags->static_rqs);
3136 	tags->static_rqs = NULL;
3137 
3138 	blk_mq_free_tags(tags);
3139 }
3140 
3141 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3142 		unsigned int hctx_idx)
3143 {
3144 	int i;
3145 
3146 	for (i = 0; i < set->nr_maps; i++) {
3147 		unsigned int start = set->map[i].queue_offset;
3148 		unsigned int end = start + set->map[i].nr_queues;
3149 
3150 		if (hctx_idx >= start && hctx_idx < end)
3151 			break;
3152 	}
3153 
3154 	if (i >= set->nr_maps)
3155 		i = HCTX_TYPE_DEFAULT;
3156 
3157 	return i;
3158 }
3159 
3160 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3161 		unsigned int hctx_idx)
3162 {
3163 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3164 
3165 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3166 }
3167 
3168 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3169 					       unsigned int hctx_idx,
3170 					       unsigned int nr_tags,
3171 					       unsigned int reserved_tags)
3172 {
3173 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3174 	struct blk_mq_tags *tags;
3175 
3176 	if (node == NUMA_NO_NODE)
3177 		node = set->numa_node;
3178 
3179 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3180 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3181 	if (!tags)
3182 		return NULL;
3183 
3184 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3185 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3186 				 node);
3187 	if (!tags->rqs) {
3188 		blk_mq_free_tags(tags);
3189 		return NULL;
3190 	}
3191 
3192 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3193 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3194 					node);
3195 	if (!tags->static_rqs) {
3196 		kfree(tags->rqs);
3197 		blk_mq_free_tags(tags);
3198 		return NULL;
3199 	}
3200 
3201 	return tags;
3202 }
3203 
3204 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3205 			       unsigned int hctx_idx, int node)
3206 {
3207 	int ret;
3208 
3209 	if (set->ops->init_request) {
3210 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3211 		if (ret)
3212 			return ret;
3213 	}
3214 
3215 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3216 	return 0;
3217 }
3218 
3219 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3220 			    struct blk_mq_tags *tags,
3221 			    unsigned int hctx_idx, unsigned int depth)
3222 {
3223 	unsigned int i, j, entries_per_page, max_order = 4;
3224 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3225 	size_t rq_size, left;
3226 
3227 	if (node == NUMA_NO_NODE)
3228 		node = set->numa_node;
3229 
3230 	INIT_LIST_HEAD(&tags->page_list);
3231 
3232 	/*
3233 	 * rq_size is the size of the request plus driver payload, rounded
3234 	 * to the cacheline size
3235 	 */
3236 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3237 				cache_line_size());
3238 	left = rq_size * depth;
3239 
3240 	for (i = 0; i < depth; ) {
3241 		int this_order = max_order;
3242 		struct page *page;
3243 		int to_do;
3244 		void *p;
3245 
3246 		while (this_order && left < order_to_size(this_order - 1))
3247 			this_order--;
3248 
3249 		do {
3250 			page = alloc_pages_node(node,
3251 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3252 				this_order);
3253 			if (page)
3254 				break;
3255 			if (!this_order--)
3256 				break;
3257 			if (order_to_size(this_order) < rq_size)
3258 				break;
3259 		} while (1);
3260 
3261 		if (!page)
3262 			goto fail;
3263 
3264 		page->private = this_order;
3265 		list_add_tail(&page->lru, &tags->page_list);
3266 
3267 		p = page_address(page);
3268 		/*
3269 		 * Allow kmemleak to scan these pages as they contain pointers
3270 		 * to additional allocations like via ops->init_request().
3271 		 */
3272 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3273 		entries_per_page = order_to_size(this_order) / rq_size;
3274 		to_do = min(entries_per_page, depth - i);
3275 		left -= to_do * rq_size;
3276 		for (j = 0; j < to_do; j++) {
3277 			struct request *rq = p;
3278 
3279 			tags->static_rqs[i] = rq;
3280 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3281 				tags->static_rqs[i] = NULL;
3282 				goto fail;
3283 			}
3284 
3285 			p += rq_size;
3286 			i++;
3287 		}
3288 	}
3289 	return 0;
3290 
3291 fail:
3292 	blk_mq_free_rqs(set, tags, hctx_idx);
3293 	return -ENOMEM;
3294 }
3295 
3296 struct rq_iter_data {
3297 	struct blk_mq_hw_ctx *hctx;
3298 	bool has_rq;
3299 };
3300 
3301 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3302 {
3303 	struct rq_iter_data *iter_data = data;
3304 
3305 	if (rq->mq_hctx != iter_data->hctx)
3306 		return true;
3307 	iter_data->has_rq = true;
3308 	return false;
3309 }
3310 
3311 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3312 {
3313 	struct blk_mq_tags *tags = hctx->sched_tags ?
3314 			hctx->sched_tags : hctx->tags;
3315 	struct rq_iter_data data = {
3316 		.hctx	= hctx,
3317 	};
3318 
3319 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3320 	return data.has_rq;
3321 }
3322 
3323 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3324 		struct blk_mq_hw_ctx *hctx)
3325 {
3326 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3327 		return false;
3328 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3329 		return false;
3330 	return true;
3331 }
3332 
3333 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3334 {
3335 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3336 			struct blk_mq_hw_ctx, cpuhp_online);
3337 
3338 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3339 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3340 		return 0;
3341 
3342 	/*
3343 	 * Prevent new request from being allocated on the current hctx.
3344 	 *
3345 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3346 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3347 	 * seen once we return from the tag allocator.
3348 	 */
3349 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3350 	smp_mb__after_atomic();
3351 
3352 	/*
3353 	 * Try to grab a reference to the queue and wait for any outstanding
3354 	 * requests.  If we could not grab a reference the queue has been
3355 	 * frozen and there are no requests.
3356 	 */
3357 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3358 		while (blk_mq_hctx_has_requests(hctx))
3359 			msleep(5);
3360 		percpu_ref_put(&hctx->queue->q_usage_counter);
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3367 {
3368 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3369 			struct blk_mq_hw_ctx, cpuhp_online);
3370 
3371 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3372 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3373 	return 0;
3374 }
3375 
3376 /*
3377  * 'cpu' is going away. splice any existing rq_list entries from this
3378  * software queue to the hw queue dispatch list, and ensure that it
3379  * gets run.
3380  */
3381 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3382 {
3383 	struct blk_mq_hw_ctx *hctx;
3384 	struct blk_mq_ctx *ctx;
3385 	LIST_HEAD(tmp);
3386 	enum hctx_type type;
3387 
3388 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3389 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3390 		return 0;
3391 
3392 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3393 	type = hctx->type;
3394 
3395 	spin_lock(&ctx->lock);
3396 	if (!list_empty(&ctx->rq_lists[type])) {
3397 		list_splice_init(&ctx->rq_lists[type], &tmp);
3398 		blk_mq_hctx_clear_pending(hctx, ctx);
3399 	}
3400 	spin_unlock(&ctx->lock);
3401 
3402 	if (list_empty(&tmp))
3403 		return 0;
3404 
3405 	spin_lock(&hctx->lock);
3406 	list_splice_tail_init(&tmp, &hctx->dispatch);
3407 	spin_unlock(&hctx->lock);
3408 
3409 	blk_mq_run_hw_queue(hctx, true);
3410 	return 0;
3411 }
3412 
3413 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3414 {
3415 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3416 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3417 						    &hctx->cpuhp_online);
3418 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3419 					    &hctx->cpuhp_dead);
3420 }
3421 
3422 /*
3423  * Before freeing hw queue, clearing the flush request reference in
3424  * tags->rqs[] for avoiding potential UAF.
3425  */
3426 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3427 		unsigned int queue_depth, struct request *flush_rq)
3428 {
3429 	int i;
3430 	unsigned long flags;
3431 
3432 	/* The hw queue may not be mapped yet */
3433 	if (!tags)
3434 		return;
3435 
3436 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3437 
3438 	for (i = 0; i < queue_depth; i++)
3439 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3440 
3441 	/*
3442 	 * Wait until all pending iteration is done.
3443 	 *
3444 	 * Request reference is cleared and it is guaranteed to be observed
3445 	 * after the ->lock is released.
3446 	 */
3447 	spin_lock_irqsave(&tags->lock, flags);
3448 	spin_unlock_irqrestore(&tags->lock, flags);
3449 }
3450 
3451 /* hctx->ctxs will be freed in queue's release handler */
3452 static void blk_mq_exit_hctx(struct request_queue *q,
3453 		struct blk_mq_tag_set *set,
3454 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3455 {
3456 	struct request *flush_rq = hctx->fq->flush_rq;
3457 
3458 	if (blk_mq_hw_queue_mapped(hctx))
3459 		blk_mq_tag_idle(hctx);
3460 
3461 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3462 			set->queue_depth, flush_rq);
3463 	if (set->ops->exit_request)
3464 		set->ops->exit_request(set, flush_rq, hctx_idx);
3465 
3466 	if (set->ops->exit_hctx)
3467 		set->ops->exit_hctx(hctx, hctx_idx);
3468 
3469 	blk_mq_remove_cpuhp(hctx);
3470 
3471 	xa_erase(&q->hctx_table, hctx_idx);
3472 
3473 	spin_lock(&q->unused_hctx_lock);
3474 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3475 	spin_unlock(&q->unused_hctx_lock);
3476 }
3477 
3478 static void blk_mq_exit_hw_queues(struct request_queue *q,
3479 		struct blk_mq_tag_set *set, int nr_queue)
3480 {
3481 	struct blk_mq_hw_ctx *hctx;
3482 	unsigned long i;
3483 
3484 	queue_for_each_hw_ctx(q, hctx, i) {
3485 		if (i == nr_queue)
3486 			break;
3487 		blk_mq_exit_hctx(q, set, hctx, i);
3488 	}
3489 }
3490 
3491 static int blk_mq_init_hctx(struct request_queue *q,
3492 		struct blk_mq_tag_set *set,
3493 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3494 {
3495 	hctx->queue_num = hctx_idx;
3496 
3497 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3498 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3499 				&hctx->cpuhp_online);
3500 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3501 
3502 	hctx->tags = set->tags[hctx_idx];
3503 
3504 	if (set->ops->init_hctx &&
3505 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3506 		goto unregister_cpu_notifier;
3507 
3508 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3509 				hctx->numa_node))
3510 		goto exit_hctx;
3511 
3512 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3513 		goto exit_flush_rq;
3514 
3515 	return 0;
3516 
3517  exit_flush_rq:
3518 	if (set->ops->exit_request)
3519 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3520  exit_hctx:
3521 	if (set->ops->exit_hctx)
3522 		set->ops->exit_hctx(hctx, hctx_idx);
3523  unregister_cpu_notifier:
3524 	blk_mq_remove_cpuhp(hctx);
3525 	return -1;
3526 }
3527 
3528 static struct blk_mq_hw_ctx *
3529 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3530 		int node)
3531 {
3532 	struct blk_mq_hw_ctx *hctx;
3533 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3534 
3535 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3536 	if (!hctx)
3537 		goto fail_alloc_hctx;
3538 
3539 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3540 		goto free_hctx;
3541 
3542 	atomic_set(&hctx->nr_active, 0);
3543 	if (node == NUMA_NO_NODE)
3544 		node = set->numa_node;
3545 	hctx->numa_node = node;
3546 
3547 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3548 	spin_lock_init(&hctx->lock);
3549 	INIT_LIST_HEAD(&hctx->dispatch);
3550 	hctx->queue = q;
3551 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3552 
3553 	INIT_LIST_HEAD(&hctx->hctx_list);
3554 
3555 	/*
3556 	 * Allocate space for all possible cpus to avoid allocation at
3557 	 * runtime
3558 	 */
3559 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3560 			gfp, node);
3561 	if (!hctx->ctxs)
3562 		goto free_cpumask;
3563 
3564 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3565 				gfp, node, false, false))
3566 		goto free_ctxs;
3567 	hctx->nr_ctx = 0;
3568 
3569 	spin_lock_init(&hctx->dispatch_wait_lock);
3570 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3571 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3572 
3573 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3574 	if (!hctx->fq)
3575 		goto free_bitmap;
3576 
3577 	blk_mq_hctx_kobj_init(hctx);
3578 
3579 	return hctx;
3580 
3581  free_bitmap:
3582 	sbitmap_free(&hctx->ctx_map);
3583  free_ctxs:
3584 	kfree(hctx->ctxs);
3585  free_cpumask:
3586 	free_cpumask_var(hctx->cpumask);
3587  free_hctx:
3588 	kfree(hctx);
3589  fail_alloc_hctx:
3590 	return NULL;
3591 }
3592 
3593 static void blk_mq_init_cpu_queues(struct request_queue *q,
3594 				   unsigned int nr_hw_queues)
3595 {
3596 	struct blk_mq_tag_set *set = q->tag_set;
3597 	unsigned int i, j;
3598 
3599 	for_each_possible_cpu(i) {
3600 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3601 		struct blk_mq_hw_ctx *hctx;
3602 		int k;
3603 
3604 		__ctx->cpu = i;
3605 		spin_lock_init(&__ctx->lock);
3606 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3607 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3608 
3609 		__ctx->queue = q;
3610 
3611 		/*
3612 		 * Set local node, IFF we have more than one hw queue. If
3613 		 * not, we remain on the home node of the device
3614 		 */
3615 		for (j = 0; j < set->nr_maps; j++) {
3616 			hctx = blk_mq_map_queue_type(q, j, i);
3617 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3618 				hctx->numa_node = cpu_to_node(i);
3619 		}
3620 	}
3621 }
3622 
3623 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3624 					     unsigned int hctx_idx,
3625 					     unsigned int depth)
3626 {
3627 	struct blk_mq_tags *tags;
3628 	int ret;
3629 
3630 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3631 	if (!tags)
3632 		return NULL;
3633 
3634 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3635 	if (ret) {
3636 		blk_mq_free_rq_map(tags);
3637 		return NULL;
3638 	}
3639 
3640 	return tags;
3641 }
3642 
3643 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3644 				       int hctx_idx)
3645 {
3646 	if (blk_mq_is_shared_tags(set->flags)) {
3647 		set->tags[hctx_idx] = set->shared_tags;
3648 
3649 		return true;
3650 	}
3651 
3652 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3653 						       set->queue_depth);
3654 
3655 	return set->tags[hctx_idx];
3656 }
3657 
3658 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3659 			     struct blk_mq_tags *tags,
3660 			     unsigned int hctx_idx)
3661 {
3662 	if (tags) {
3663 		blk_mq_free_rqs(set, tags, hctx_idx);
3664 		blk_mq_free_rq_map(tags);
3665 	}
3666 }
3667 
3668 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3669 				      unsigned int hctx_idx)
3670 {
3671 	if (!blk_mq_is_shared_tags(set->flags))
3672 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3673 
3674 	set->tags[hctx_idx] = NULL;
3675 }
3676 
3677 static void blk_mq_map_swqueue(struct request_queue *q)
3678 {
3679 	unsigned int j, hctx_idx;
3680 	unsigned long i;
3681 	struct blk_mq_hw_ctx *hctx;
3682 	struct blk_mq_ctx *ctx;
3683 	struct blk_mq_tag_set *set = q->tag_set;
3684 
3685 	queue_for_each_hw_ctx(q, hctx, i) {
3686 		cpumask_clear(hctx->cpumask);
3687 		hctx->nr_ctx = 0;
3688 		hctx->dispatch_from = NULL;
3689 	}
3690 
3691 	/*
3692 	 * Map software to hardware queues.
3693 	 *
3694 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3695 	 */
3696 	for_each_possible_cpu(i) {
3697 
3698 		ctx = per_cpu_ptr(q->queue_ctx, i);
3699 		for (j = 0; j < set->nr_maps; j++) {
3700 			if (!set->map[j].nr_queues) {
3701 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3702 						HCTX_TYPE_DEFAULT, i);
3703 				continue;
3704 			}
3705 			hctx_idx = set->map[j].mq_map[i];
3706 			/* unmapped hw queue can be remapped after CPU topo changed */
3707 			if (!set->tags[hctx_idx] &&
3708 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3709 				/*
3710 				 * If tags initialization fail for some hctx,
3711 				 * that hctx won't be brought online.  In this
3712 				 * case, remap the current ctx to hctx[0] which
3713 				 * is guaranteed to always have tags allocated
3714 				 */
3715 				set->map[j].mq_map[i] = 0;
3716 			}
3717 
3718 			hctx = blk_mq_map_queue_type(q, j, i);
3719 			ctx->hctxs[j] = hctx;
3720 			/*
3721 			 * If the CPU is already set in the mask, then we've
3722 			 * mapped this one already. This can happen if
3723 			 * devices share queues across queue maps.
3724 			 */
3725 			if (cpumask_test_cpu(i, hctx->cpumask))
3726 				continue;
3727 
3728 			cpumask_set_cpu(i, hctx->cpumask);
3729 			hctx->type = j;
3730 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3731 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3732 
3733 			/*
3734 			 * If the nr_ctx type overflows, we have exceeded the
3735 			 * amount of sw queues we can support.
3736 			 */
3737 			BUG_ON(!hctx->nr_ctx);
3738 		}
3739 
3740 		for (; j < HCTX_MAX_TYPES; j++)
3741 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3742 					HCTX_TYPE_DEFAULT, i);
3743 	}
3744 
3745 	queue_for_each_hw_ctx(q, hctx, i) {
3746 		/*
3747 		 * If no software queues are mapped to this hardware queue,
3748 		 * disable it and free the request entries.
3749 		 */
3750 		if (!hctx->nr_ctx) {
3751 			/* Never unmap queue 0.  We need it as a
3752 			 * fallback in case of a new remap fails
3753 			 * allocation
3754 			 */
3755 			if (i)
3756 				__blk_mq_free_map_and_rqs(set, i);
3757 
3758 			hctx->tags = NULL;
3759 			continue;
3760 		}
3761 
3762 		hctx->tags = set->tags[i];
3763 		WARN_ON(!hctx->tags);
3764 
3765 		/*
3766 		 * Set the map size to the number of mapped software queues.
3767 		 * This is more accurate and more efficient than looping
3768 		 * over all possibly mapped software queues.
3769 		 */
3770 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3771 
3772 		/*
3773 		 * Initialize batch roundrobin counts
3774 		 */
3775 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3776 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3777 	}
3778 }
3779 
3780 /*
3781  * Caller needs to ensure that we're either frozen/quiesced, or that
3782  * the queue isn't live yet.
3783  */
3784 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3785 {
3786 	struct blk_mq_hw_ctx *hctx;
3787 	unsigned long i;
3788 
3789 	queue_for_each_hw_ctx(q, hctx, i) {
3790 		if (shared) {
3791 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3792 		} else {
3793 			blk_mq_tag_idle(hctx);
3794 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3795 		}
3796 	}
3797 }
3798 
3799 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3800 					 bool shared)
3801 {
3802 	struct request_queue *q;
3803 
3804 	lockdep_assert_held(&set->tag_list_lock);
3805 
3806 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3807 		blk_mq_freeze_queue(q);
3808 		queue_set_hctx_shared(q, shared);
3809 		blk_mq_unfreeze_queue(q);
3810 	}
3811 }
3812 
3813 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3814 {
3815 	struct blk_mq_tag_set *set = q->tag_set;
3816 
3817 	mutex_lock(&set->tag_list_lock);
3818 	list_del(&q->tag_set_list);
3819 	if (list_is_singular(&set->tag_list)) {
3820 		/* just transitioned to unshared */
3821 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3822 		/* update existing queue */
3823 		blk_mq_update_tag_set_shared(set, false);
3824 	}
3825 	mutex_unlock(&set->tag_list_lock);
3826 	INIT_LIST_HEAD(&q->tag_set_list);
3827 }
3828 
3829 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3830 				     struct request_queue *q)
3831 {
3832 	mutex_lock(&set->tag_list_lock);
3833 
3834 	/*
3835 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3836 	 */
3837 	if (!list_empty(&set->tag_list) &&
3838 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3839 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3840 		/* update existing queue */
3841 		blk_mq_update_tag_set_shared(set, true);
3842 	}
3843 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3844 		queue_set_hctx_shared(q, true);
3845 	list_add_tail(&q->tag_set_list, &set->tag_list);
3846 
3847 	mutex_unlock(&set->tag_list_lock);
3848 }
3849 
3850 /* All allocations will be freed in release handler of q->mq_kobj */
3851 static int blk_mq_alloc_ctxs(struct request_queue *q)
3852 {
3853 	struct blk_mq_ctxs *ctxs;
3854 	int cpu;
3855 
3856 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3857 	if (!ctxs)
3858 		return -ENOMEM;
3859 
3860 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3861 	if (!ctxs->queue_ctx)
3862 		goto fail;
3863 
3864 	for_each_possible_cpu(cpu) {
3865 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3866 		ctx->ctxs = ctxs;
3867 	}
3868 
3869 	q->mq_kobj = &ctxs->kobj;
3870 	q->queue_ctx = ctxs->queue_ctx;
3871 
3872 	return 0;
3873  fail:
3874 	kfree(ctxs);
3875 	return -ENOMEM;
3876 }
3877 
3878 /*
3879  * It is the actual release handler for mq, but we do it from
3880  * request queue's release handler for avoiding use-after-free
3881  * and headache because q->mq_kobj shouldn't have been introduced,
3882  * but we can't group ctx/kctx kobj without it.
3883  */
3884 void blk_mq_release(struct request_queue *q)
3885 {
3886 	struct blk_mq_hw_ctx *hctx, *next;
3887 	unsigned long i;
3888 
3889 	queue_for_each_hw_ctx(q, hctx, i)
3890 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3891 
3892 	/* all hctx are in .unused_hctx_list now */
3893 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3894 		list_del_init(&hctx->hctx_list);
3895 		kobject_put(&hctx->kobj);
3896 	}
3897 
3898 	xa_destroy(&q->hctx_table);
3899 
3900 	/*
3901 	 * release .mq_kobj and sw queue's kobject now because
3902 	 * both share lifetime with request queue.
3903 	 */
3904 	blk_mq_sysfs_deinit(q);
3905 }
3906 
3907 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3908 		void *queuedata)
3909 {
3910 	struct request_queue *q;
3911 	int ret;
3912 
3913 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3914 	if (!q)
3915 		return ERR_PTR(-ENOMEM);
3916 	q->queuedata = queuedata;
3917 	ret = blk_mq_init_allocated_queue(set, q);
3918 	if (ret) {
3919 		blk_cleanup_queue(q);
3920 		return ERR_PTR(ret);
3921 	}
3922 	return q;
3923 }
3924 
3925 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3926 {
3927 	return blk_mq_init_queue_data(set, NULL);
3928 }
3929 EXPORT_SYMBOL(blk_mq_init_queue);
3930 
3931 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3932 		struct lock_class_key *lkclass)
3933 {
3934 	struct request_queue *q;
3935 	struct gendisk *disk;
3936 
3937 	q = blk_mq_init_queue_data(set, queuedata);
3938 	if (IS_ERR(q))
3939 		return ERR_CAST(q);
3940 
3941 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3942 	if (!disk) {
3943 		blk_cleanup_queue(q);
3944 		return ERR_PTR(-ENOMEM);
3945 	}
3946 	return disk;
3947 }
3948 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3949 
3950 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3951 		struct blk_mq_tag_set *set, struct request_queue *q,
3952 		int hctx_idx, int node)
3953 {
3954 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3955 
3956 	/* reuse dead hctx first */
3957 	spin_lock(&q->unused_hctx_lock);
3958 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3959 		if (tmp->numa_node == node) {
3960 			hctx = tmp;
3961 			break;
3962 		}
3963 	}
3964 	if (hctx)
3965 		list_del_init(&hctx->hctx_list);
3966 	spin_unlock(&q->unused_hctx_lock);
3967 
3968 	if (!hctx)
3969 		hctx = blk_mq_alloc_hctx(q, set, node);
3970 	if (!hctx)
3971 		goto fail;
3972 
3973 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3974 		goto free_hctx;
3975 
3976 	return hctx;
3977 
3978  free_hctx:
3979 	kobject_put(&hctx->kobj);
3980  fail:
3981 	return NULL;
3982 }
3983 
3984 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3985 						struct request_queue *q)
3986 {
3987 	struct blk_mq_hw_ctx *hctx;
3988 	unsigned long i, j;
3989 
3990 	/* protect against switching io scheduler  */
3991 	mutex_lock(&q->sysfs_lock);
3992 	for (i = 0; i < set->nr_hw_queues; i++) {
3993 		int old_node;
3994 		int node = blk_mq_get_hctx_node(set, i);
3995 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3996 
3997 		if (old_hctx) {
3998 			old_node = old_hctx->numa_node;
3999 			blk_mq_exit_hctx(q, set, old_hctx, i);
4000 		}
4001 
4002 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4003 			if (!old_hctx)
4004 				break;
4005 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4006 					node, old_node);
4007 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4008 			WARN_ON_ONCE(!hctx);
4009 		}
4010 	}
4011 	/*
4012 	 * Increasing nr_hw_queues fails. Free the newly allocated
4013 	 * hctxs and keep the previous q->nr_hw_queues.
4014 	 */
4015 	if (i != set->nr_hw_queues) {
4016 		j = q->nr_hw_queues;
4017 	} else {
4018 		j = i;
4019 		q->nr_hw_queues = set->nr_hw_queues;
4020 	}
4021 
4022 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4023 		blk_mq_exit_hctx(q, set, hctx, j);
4024 	mutex_unlock(&q->sysfs_lock);
4025 }
4026 
4027 static void blk_mq_update_poll_flag(struct request_queue *q)
4028 {
4029 	struct blk_mq_tag_set *set = q->tag_set;
4030 
4031 	if (set->nr_maps > HCTX_TYPE_POLL &&
4032 	    set->map[HCTX_TYPE_POLL].nr_queues)
4033 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4034 	else
4035 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4036 }
4037 
4038 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4039 		struct request_queue *q)
4040 {
4041 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4042 			!!(set->flags & BLK_MQ_F_BLOCKING));
4043 
4044 	/* mark the queue as mq asap */
4045 	q->mq_ops = set->ops;
4046 
4047 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4048 					     blk_mq_poll_stats_bkt,
4049 					     BLK_MQ_POLL_STATS_BKTS, q);
4050 	if (!q->poll_cb)
4051 		goto err_exit;
4052 
4053 	if (blk_mq_alloc_ctxs(q))
4054 		goto err_poll;
4055 
4056 	/* init q->mq_kobj and sw queues' kobjects */
4057 	blk_mq_sysfs_init(q);
4058 
4059 	INIT_LIST_HEAD(&q->unused_hctx_list);
4060 	spin_lock_init(&q->unused_hctx_lock);
4061 
4062 	xa_init(&q->hctx_table);
4063 
4064 	blk_mq_realloc_hw_ctxs(set, q);
4065 	if (!q->nr_hw_queues)
4066 		goto err_hctxs;
4067 
4068 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4069 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4070 
4071 	q->tag_set = set;
4072 
4073 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4074 	blk_mq_update_poll_flag(q);
4075 
4076 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4077 	INIT_LIST_HEAD(&q->requeue_list);
4078 	spin_lock_init(&q->requeue_lock);
4079 
4080 	q->nr_requests = set->queue_depth;
4081 
4082 	/*
4083 	 * Default to classic polling
4084 	 */
4085 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4086 
4087 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4088 	blk_mq_add_queue_tag_set(set, q);
4089 	blk_mq_map_swqueue(q);
4090 	return 0;
4091 
4092 err_hctxs:
4093 	xa_destroy(&q->hctx_table);
4094 	q->nr_hw_queues = 0;
4095 	blk_mq_sysfs_deinit(q);
4096 err_poll:
4097 	blk_stat_free_callback(q->poll_cb);
4098 	q->poll_cb = NULL;
4099 err_exit:
4100 	q->mq_ops = NULL;
4101 	return -ENOMEM;
4102 }
4103 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4104 
4105 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4106 void blk_mq_exit_queue(struct request_queue *q)
4107 {
4108 	struct blk_mq_tag_set *set = q->tag_set;
4109 
4110 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4111 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4112 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4113 	blk_mq_del_queue_tag_set(q);
4114 }
4115 
4116 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4117 {
4118 	int i;
4119 
4120 	if (blk_mq_is_shared_tags(set->flags)) {
4121 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4122 						BLK_MQ_NO_HCTX_IDX,
4123 						set->queue_depth);
4124 		if (!set->shared_tags)
4125 			return -ENOMEM;
4126 	}
4127 
4128 	for (i = 0; i < set->nr_hw_queues; i++) {
4129 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4130 			goto out_unwind;
4131 		cond_resched();
4132 	}
4133 
4134 	return 0;
4135 
4136 out_unwind:
4137 	while (--i >= 0)
4138 		__blk_mq_free_map_and_rqs(set, i);
4139 
4140 	if (blk_mq_is_shared_tags(set->flags)) {
4141 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4142 					BLK_MQ_NO_HCTX_IDX);
4143 	}
4144 
4145 	return -ENOMEM;
4146 }
4147 
4148 /*
4149  * Allocate the request maps associated with this tag_set. Note that this
4150  * may reduce the depth asked for, if memory is tight. set->queue_depth
4151  * will be updated to reflect the allocated depth.
4152  */
4153 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4154 {
4155 	unsigned int depth;
4156 	int err;
4157 
4158 	depth = set->queue_depth;
4159 	do {
4160 		err = __blk_mq_alloc_rq_maps(set);
4161 		if (!err)
4162 			break;
4163 
4164 		set->queue_depth >>= 1;
4165 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4166 			err = -ENOMEM;
4167 			break;
4168 		}
4169 	} while (set->queue_depth);
4170 
4171 	if (!set->queue_depth || err) {
4172 		pr_err("blk-mq: failed to allocate request map\n");
4173 		return -ENOMEM;
4174 	}
4175 
4176 	if (depth != set->queue_depth)
4177 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4178 						depth, set->queue_depth);
4179 
4180 	return 0;
4181 }
4182 
4183 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4184 {
4185 	/*
4186 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4187 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4188 	 * number of hardware queues.
4189 	 */
4190 	if (set->nr_maps == 1)
4191 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4192 
4193 	if (set->ops->map_queues && !is_kdump_kernel()) {
4194 		int i;
4195 
4196 		/*
4197 		 * transport .map_queues is usually done in the following
4198 		 * way:
4199 		 *
4200 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4201 		 * 	mask = get_cpu_mask(queue)
4202 		 * 	for_each_cpu(cpu, mask)
4203 		 * 		set->map[x].mq_map[cpu] = queue;
4204 		 * }
4205 		 *
4206 		 * When we need to remap, the table has to be cleared for
4207 		 * killing stale mapping since one CPU may not be mapped
4208 		 * to any hw queue.
4209 		 */
4210 		for (i = 0; i < set->nr_maps; i++)
4211 			blk_mq_clear_mq_map(&set->map[i]);
4212 
4213 		return set->ops->map_queues(set);
4214 	} else {
4215 		BUG_ON(set->nr_maps > 1);
4216 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4217 	}
4218 }
4219 
4220 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4221 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4222 {
4223 	struct blk_mq_tags **new_tags;
4224 
4225 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4226 		return 0;
4227 
4228 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4229 				GFP_KERNEL, set->numa_node);
4230 	if (!new_tags)
4231 		return -ENOMEM;
4232 
4233 	if (set->tags)
4234 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4235 		       sizeof(*set->tags));
4236 	kfree(set->tags);
4237 	set->tags = new_tags;
4238 	set->nr_hw_queues = new_nr_hw_queues;
4239 
4240 	return 0;
4241 }
4242 
4243 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4244 				int new_nr_hw_queues)
4245 {
4246 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4247 }
4248 
4249 /*
4250  * Alloc a tag set to be associated with one or more request queues.
4251  * May fail with EINVAL for various error conditions. May adjust the
4252  * requested depth down, if it's too large. In that case, the set
4253  * value will be stored in set->queue_depth.
4254  */
4255 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4256 {
4257 	int i, ret;
4258 
4259 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4260 
4261 	if (!set->nr_hw_queues)
4262 		return -EINVAL;
4263 	if (!set->queue_depth)
4264 		return -EINVAL;
4265 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4266 		return -EINVAL;
4267 
4268 	if (!set->ops->queue_rq)
4269 		return -EINVAL;
4270 
4271 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4272 		return -EINVAL;
4273 
4274 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4275 		pr_info("blk-mq: reduced tag depth to %u\n",
4276 			BLK_MQ_MAX_DEPTH);
4277 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4278 	}
4279 
4280 	if (!set->nr_maps)
4281 		set->nr_maps = 1;
4282 	else if (set->nr_maps > HCTX_MAX_TYPES)
4283 		return -EINVAL;
4284 
4285 	/*
4286 	 * If a crashdump is active, then we are potentially in a very
4287 	 * memory constrained environment. Limit us to 1 queue and
4288 	 * 64 tags to prevent using too much memory.
4289 	 */
4290 	if (is_kdump_kernel()) {
4291 		set->nr_hw_queues = 1;
4292 		set->nr_maps = 1;
4293 		set->queue_depth = min(64U, set->queue_depth);
4294 	}
4295 	/*
4296 	 * There is no use for more h/w queues than cpus if we just have
4297 	 * a single map
4298 	 */
4299 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4300 		set->nr_hw_queues = nr_cpu_ids;
4301 
4302 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4303 		return -ENOMEM;
4304 
4305 	ret = -ENOMEM;
4306 	for (i = 0; i < set->nr_maps; i++) {
4307 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4308 						  sizeof(set->map[i].mq_map[0]),
4309 						  GFP_KERNEL, set->numa_node);
4310 		if (!set->map[i].mq_map)
4311 			goto out_free_mq_map;
4312 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4313 	}
4314 
4315 	ret = blk_mq_update_queue_map(set);
4316 	if (ret)
4317 		goto out_free_mq_map;
4318 
4319 	ret = blk_mq_alloc_set_map_and_rqs(set);
4320 	if (ret)
4321 		goto out_free_mq_map;
4322 
4323 	mutex_init(&set->tag_list_lock);
4324 	INIT_LIST_HEAD(&set->tag_list);
4325 
4326 	return 0;
4327 
4328 out_free_mq_map:
4329 	for (i = 0; i < set->nr_maps; i++) {
4330 		kfree(set->map[i].mq_map);
4331 		set->map[i].mq_map = NULL;
4332 	}
4333 	kfree(set->tags);
4334 	set->tags = NULL;
4335 	return ret;
4336 }
4337 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4338 
4339 /* allocate and initialize a tagset for a simple single-queue device */
4340 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4341 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4342 		unsigned int set_flags)
4343 {
4344 	memset(set, 0, sizeof(*set));
4345 	set->ops = ops;
4346 	set->nr_hw_queues = 1;
4347 	set->nr_maps = 1;
4348 	set->queue_depth = queue_depth;
4349 	set->numa_node = NUMA_NO_NODE;
4350 	set->flags = set_flags;
4351 	return blk_mq_alloc_tag_set(set);
4352 }
4353 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4354 
4355 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4356 {
4357 	int i, j;
4358 
4359 	for (i = 0; i < set->nr_hw_queues; i++)
4360 		__blk_mq_free_map_and_rqs(set, i);
4361 
4362 	if (blk_mq_is_shared_tags(set->flags)) {
4363 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4364 					BLK_MQ_NO_HCTX_IDX);
4365 	}
4366 
4367 	for (j = 0; j < set->nr_maps; j++) {
4368 		kfree(set->map[j].mq_map);
4369 		set->map[j].mq_map = NULL;
4370 	}
4371 
4372 	kfree(set->tags);
4373 	set->tags = NULL;
4374 }
4375 EXPORT_SYMBOL(blk_mq_free_tag_set);
4376 
4377 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4378 {
4379 	struct blk_mq_tag_set *set = q->tag_set;
4380 	struct blk_mq_hw_ctx *hctx;
4381 	int ret;
4382 	unsigned long i;
4383 
4384 	if (!set)
4385 		return -EINVAL;
4386 
4387 	if (q->nr_requests == nr)
4388 		return 0;
4389 
4390 	blk_mq_freeze_queue(q);
4391 	blk_mq_quiesce_queue(q);
4392 
4393 	ret = 0;
4394 	queue_for_each_hw_ctx(q, hctx, i) {
4395 		if (!hctx->tags)
4396 			continue;
4397 		/*
4398 		 * If we're using an MQ scheduler, just update the scheduler
4399 		 * queue depth. This is similar to what the old code would do.
4400 		 */
4401 		if (hctx->sched_tags) {
4402 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4403 						      nr, true);
4404 		} else {
4405 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4406 						      false);
4407 		}
4408 		if (ret)
4409 			break;
4410 		if (q->elevator && q->elevator->type->ops.depth_updated)
4411 			q->elevator->type->ops.depth_updated(hctx);
4412 	}
4413 	if (!ret) {
4414 		q->nr_requests = nr;
4415 		if (blk_mq_is_shared_tags(set->flags)) {
4416 			if (q->elevator)
4417 				blk_mq_tag_update_sched_shared_tags(q);
4418 			else
4419 				blk_mq_tag_resize_shared_tags(set, nr);
4420 		}
4421 	}
4422 
4423 	blk_mq_unquiesce_queue(q);
4424 	blk_mq_unfreeze_queue(q);
4425 
4426 	return ret;
4427 }
4428 
4429 /*
4430  * request_queue and elevator_type pair.
4431  * It is just used by __blk_mq_update_nr_hw_queues to cache
4432  * the elevator_type associated with a request_queue.
4433  */
4434 struct blk_mq_qe_pair {
4435 	struct list_head node;
4436 	struct request_queue *q;
4437 	struct elevator_type *type;
4438 };
4439 
4440 /*
4441  * Cache the elevator_type in qe pair list and switch the
4442  * io scheduler to 'none'
4443  */
4444 static bool blk_mq_elv_switch_none(struct list_head *head,
4445 		struct request_queue *q)
4446 {
4447 	struct blk_mq_qe_pair *qe;
4448 
4449 	if (!q->elevator)
4450 		return true;
4451 
4452 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4453 	if (!qe)
4454 		return false;
4455 
4456 	INIT_LIST_HEAD(&qe->node);
4457 	qe->q = q;
4458 	qe->type = q->elevator->type;
4459 	list_add(&qe->node, head);
4460 
4461 	mutex_lock(&q->sysfs_lock);
4462 	/*
4463 	 * After elevator_switch_mq, the previous elevator_queue will be
4464 	 * released by elevator_release. The reference of the io scheduler
4465 	 * module get by elevator_get will also be put. So we need to get
4466 	 * a reference of the io scheduler module here to prevent it to be
4467 	 * removed.
4468 	 */
4469 	__module_get(qe->type->elevator_owner);
4470 	elevator_switch_mq(q, NULL);
4471 	mutex_unlock(&q->sysfs_lock);
4472 
4473 	return true;
4474 }
4475 
4476 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4477 						struct request_queue *q)
4478 {
4479 	struct blk_mq_qe_pair *qe;
4480 
4481 	list_for_each_entry(qe, head, node)
4482 		if (qe->q == q)
4483 			return qe;
4484 
4485 	return NULL;
4486 }
4487 
4488 static void blk_mq_elv_switch_back(struct list_head *head,
4489 				  struct request_queue *q)
4490 {
4491 	struct blk_mq_qe_pair *qe;
4492 	struct elevator_type *t;
4493 
4494 	qe = blk_lookup_qe_pair(head, q);
4495 	if (!qe)
4496 		return;
4497 	t = qe->type;
4498 	list_del(&qe->node);
4499 	kfree(qe);
4500 
4501 	mutex_lock(&q->sysfs_lock);
4502 	elevator_switch_mq(q, t);
4503 	mutex_unlock(&q->sysfs_lock);
4504 }
4505 
4506 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4507 							int nr_hw_queues)
4508 {
4509 	struct request_queue *q;
4510 	LIST_HEAD(head);
4511 	int prev_nr_hw_queues;
4512 
4513 	lockdep_assert_held(&set->tag_list_lock);
4514 
4515 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4516 		nr_hw_queues = nr_cpu_ids;
4517 	if (nr_hw_queues < 1)
4518 		return;
4519 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4520 		return;
4521 
4522 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4523 		blk_mq_freeze_queue(q);
4524 	/*
4525 	 * Switch IO scheduler to 'none', cleaning up the data associated
4526 	 * with the previous scheduler. We will switch back once we are done
4527 	 * updating the new sw to hw queue mappings.
4528 	 */
4529 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4530 		if (!blk_mq_elv_switch_none(&head, q))
4531 			goto switch_back;
4532 
4533 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4534 		blk_mq_debugfs_unregister_hctxs(q);
4535 		blk_mq_sysfs_unregister(q);
4536 	}
4537 
4538 	prev_nr_hw_queues = set->nr_hw_queues;
4539 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4540 	    0)
4541 		goto reregister;
4542 
4543 	set->nr_hw_queues = nr_hw_queues;
4544 fallback:
4545 	blk_mq_update_queue_map(set);
4546 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547 		blk_mq_realloc_hw_ctxs(set, q);
4548 		blk_mq_update_poll_flag(q);
4549 		if (q->nr_hw_queues != set->nr_hw_queues) {
4550 			int i = prev_nr_hw_queues;
4551 
4552 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4553 					nr_hw_queues, prev_nr_hw_queues);
4554 			for (; i < set->nr_hw_queues; i++)
4555 				__blk_mq_free_map_and_rqs(set, i);
4556 
4557 			set->nr_hw_queues = prev_nr_hw_queues;
4558 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4559 			goto fallback;
4560 		}
4561 		blk_mq_map_swqueue(q);
4562 	}
4563 
4564 reregister:
4565 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4566 		blk_mq_sysfs_register(q);
4567 		blk_mq_debugfs_register_hctxs(q);
4568 	}
4569 
4570 switch_back:
4571 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4572 		blk_mq_elv_switch_back(&head, q);
4573 
4574 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4575 		blk_mq_unfreeze_queue(q);
4576 }
4577 
4578 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4579 {
4580 	mutex_lock(&set->tag_list_lock);
4581 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4582 	mutex_unlock(&set->tag_list_lock);
4583 }
4584 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4585 
4586 /* Enable polling stats and return whether they were already enabled. */
4587 static bool blk_poll_stats_enable(struct request_queue *q)
4588 {
4589 	if (q->poll_stat)
4590 		return true;
4591 
4592 	return blk_stats_alloc_enable(q);
4593 }
4594 
4595 static void blk_mq_poll_stats_start(struct request_queue *q)
4596 {
4597 	/*
4598 	 * We don't arm the callback if polling stats are not enabled or the
4599 	 * callback is already active.
4600 	 */
4601 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4602 		return;
4603 
4604 	blk_stat_activate_msecs(q->poll_cb, 100);
4605 }
4606 
4607 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4608 {
4609 	struct request_queue *q = cb->data;
4610 	int bucket;
4611 
4612 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4613 		if (cb->stat[bucket].nr_samples)
4614 			q->poll_stat[bucket] = cb->stat[bucket];
4615 	}
4616 }
4617 
4618 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4619 				       struct request *rq)
4620 {
4621 	unsigned long ret = 0;
4622 	int bucket;
4623 
4624 	/*
4625 	 * If stats collection isn't on, don't sleep but turn it on for
4626 	 * future users
4627 	 */
4628 	if (!blk_poll_stats_enable(q))
4629 		return 0;
4630 
4631 	/*
4632 	 * As an optimistic guess, use half of the mean service time
4633 	 * for this type of request. We can (and should) make this smarter.
4634 	 * For instance, if the completion latencies are tight, we can
4635 	 * get closer than just half the mean. This is especially
4636 	 * important on devices where the completion latencies are longer
4637 	 * than ~10 usec. We do use the stats for the relevant IO size
4638 	 * if available which does lead to better estimates.
4639 	 */
4640 	bucket = blk_mq_poll_stats_bkt(rq);
4641 	if (bucket < 0)
4642 		return ret;
4643 
4644 	if (q->poll_stat[bucket].nr_samples)
4645 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4646 
4647 	return ret;
4648 }
4649 
4650 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4651 {
4652 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4653 	struct request *rq = blk_qc_to_rq(hctx, qc);
4654 	struct hrtimer_sleeper hs;
4655 	enum hrtimer_mode mode;
4656 	unsigned int nsecs;
4657 	ktime_t kt;
4658 
4659 	/*
4660 	 * If a request has completed on queue that uses an I/O scheduler, we
4661 	 * won't get back a request from blk_qc_to_rq.
4662 	 */
4663 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4664 		return false;
4665 
4666 	/*
4667 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4668 	 *
4669 	 *  0:	use half of prev avg
4670 	 * >0:	use this specific value
4671 	 */
4672 	if (q->poll_nsec > 0)
4673 		nsecs = q->poll_nsec;
4674 	else
4675 		nsecs = blk_mq_poll_nsecs(q, rq);
4676 
4677 	if (!nsecs)
4678 		return false;
4679 
4680 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4681 
4682 	/*
4683 	 * This will be replaced with the stats tracking code, using
4684 	 * 'avg_completion_time / 2' as the pre-sleep target.
4685 	 */
4686 	kt = nsecs;
4687 
4688 	mode = HRTIMER_MODE_REL;
4689 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4690 	hrtimer_set_expires(&hs.timer, kt);
4691 
4692 	do {
4693 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4694 			break;
4695 		set_current_state(TASK_UNINTERRUPTIBLE);
4696 		hrtimer_sleeper_start_expires(&hs, mode);
4697 		if (hs.task)
4698 			io_schedule();
4699 		hrtimer_cancel(&hs.timer);
4700 		mode = HRTIMER_MODE_ABS;
4701 	} while (hs.task && !signal_pending(current));
4702 
4703 	__set_current_state(TASK_RUNNING);
4704 	destroy_hrtimer_on_stack(&hs.timer);
4705 
4706 	/*
4707 	 * If we sleep, have the caller restart the poll loop to reset the
4708 	 * state.  Like for the other success return cases, the caller is
4709 	 * responsible for checking if the IO completed.  If the IO isn't
4710 	 * complete, we'll get called again and will go straight to the busy
4711 	 * poll loop.
4712 	 */
4713 	return true;
4714 }
4715 
4716 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4717 			       struct io_comp_batch *iob, unsigned int flags)
4718 {
4719 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4720 	long state = get_current_state();
4721 	int ret;
4722 
4723 	do {
4724 		ret = q->mq_ops->poll(hctx, iob);
4725 		if (ret > 0) {
4726 			__set_current_state(TASK_RUNNING);
4727 			return ret;
4728 		}
4729 
4730 		if (signal_pending_state(state, current))
4731 			__set_current_state(TASK_RUNNING);
4732 		if (task_is_running(current))
4733 			return 1;
4734 
4735 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4736 			break;
4737 		cpu_relax();
4738 	} while (!need_resched());
4739 
4740 	__set_current_state(TASK_RUNNING);
4741 	return 0;
4742 }
4743 
4744 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4745 		unsigned int flags)
4746 {
4747 	if (!(flags & BLK_POLL_NOSLEEP) &&
4748 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4749 		if (blk_mq_poll_hybrid(q, cookie))
4750 			return 1;
4751 	}
4752 	return blk_mq_poll_classic(q, cookie, iob, flags);
4753 }
4754 
4755 unsigned int blk_mq_rq_cpu(struct request *rq)
4756 {
4757 	return rq->mq_ctx->cpu;
4758 }
4759 EXPORT_SYMBOL(blk_mq_rq_cpu);
4760 
4761 void blk_mq_cancel_work_sync(struct request_queue *q)
4762 {
4763 	if (queue_is_mq(q)) {
4764 		struct blk_mq_hw_ctx *hctx;
4765 		unsigned long i;
4766 
4767 		cancel_delayed_work_sync(&q->requeue_work);
4768 
4769 		queue_for_each_hw_ctx(q, hctx, i)
4770 			cancel_delayed_work_sync(&hctx->run_work);
4771 	}
4772 }
4773 
4774 static int __init blk_mq_init(void)
4775 {
4776 	int i;
4777 
4778 	for_each_possible_cpu(i)
4779 		init_llist_head(&per_cpu(blk_cpu_done, i));
4780 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4781 
4782 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4783 				  "block/softirq:dead", NULL,
4784 				  blk_softirq_cpu_dead);
4785 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4786 				blk_mq_hctx_notify_dead);
4787 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4788 				blk_mq_hctx_notify_online,
4789 				blk_mq_hctx_notify_offline);
4790 	return 0;
4791 }
4792 subsys_initcall(blk_mq_init);
4793