xref: /linux/block/blk-mq.c (revision 83869019c74cc2d01c96a3be2463a4eebe362224)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 
32 #include <trace/events/block.h>
33 
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49 
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52 	int ddir, sectors, bucket;
53 
54 	ddir = rq_data_dir(rq);
55 	sectors = blk_rq_stats_sectors(rq);
56 
57 	bucket = ddir + 2 * ilog2(sectors);
58 
59 	if (bucket < 0)
60 		return -1;
61 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 
64 	return bucket;
65 }
66 
67 #define BLK_QC_T_SHIFT		16
68 #define BLK_QC_T_INTERNAL	(1U << 31)
69 
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71 		blk_qc_t qc)
72 {
73 	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75 
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77 		blk_qc_t qc)
78 {
79 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80 
81 	if (qc & BLK_QC_T_INTERNAL)
82 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83 	return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85 
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89 		(rq->tag != -1 ?
90 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92 
93 /*
94  * Check if any of the ctx, dispatch list or elevator
95  * have pending work in this hardware queue.
96  */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99 	return !list_empty_careful(&hctx->dispatch) ||
100 		sbitmap_any_bit_set(&hctx->ctx_map) ||
101 			blk_mq_sched_has_work(hctx);
102 }
103 
104 /*
105  * Mark this ctx as having pending work in this hardware queue
106  */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108 				     struct blk_mq_ctx *ctx)
109 {
110 	const int bit = ctx->index_hw[hctx->type];
111 
112 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113 		sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115 
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117 				      struct blk_mq_ctx *ctx)
118 {
119 	const int bit = ctx->index_hw[hctx->type];
120 
121 	sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123 
124 struct mq_inflight {
125 	struct block_device *part;
126 	unsigned int inflight[2];
127 };
128 
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130 				  struct request *rq, void *priv,
131 				  bool reserved)
132 {
133 	struct mq_inflight *mi = priv;
134 
135 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 		mi->inflight[rq_data_dir(rq)]++;
138 
139 	return true;
140 }
141 
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 		struct block_device *part)
144 {
145 	struct mq_inflight mi = { .part = part };
146 
147 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148 
149 	return mi.inflight[0] + mi.inflight[1];
150 }
151 
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 		unsigned int inflight[2])
154 {
155 	struct mq_inflight mi = { .part = part };
156 
157 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 	inflight[0] = mi.inflight[0];
159 	inflight[1] = mi.inflight[1];
160 }
161 
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 	mutex_lock(&q->mq_freeze_lock);
165 	if (++q->mq_freeze_depth == 1) {
166 		percpu_ref_kill(&q->q_usage_counter);
167 		mutex_unlock(&q->mq_freeze_lock);
168 		if (queue_is_mq(q))
169 			blk_mq_run_hw_queues(q, false);
170 	} else {
171 		mutex_unlock(&q->mq_freeze_lock);
172 	}
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175 
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181 
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 				     unsigned long timeout)
184 {
185 	return wait_event_timeout(q->mq_freeze_wq,
186 					percpu_ref_is_zero(&q->q_usage_counter),
187 					timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190 
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 	/*
198 	 * In the !blk_mq case we are only calling this to kill the
199 	 * q_usage_counter, otherwise this increases the freeze depth
200 	 * and waits for it to return to zero.  For this reason there is
201 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 	 * exported to drivers as the only user for unfreeze is blk_mq.
203 	 */
204 	blk_freeze_queue_start(q);
205 	blk_mq_freeze_queue_wait(q);
206 }
207 
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 	/*
211 	 * ...just an alias to keep freeze and unfreeze actions balanced
212 	 * in the blk_mq_* namespace
213 	 */
214 	blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	mutex_lock(&q->mq_freeze_lock);
221 	if (force_atomic)
222 		q->q_usage_counter.data->force_atomic = true;
223 	q->mq_freeze_depth--;
224 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 	if (!q->mq_freeze_depth) {
226 		percpu_ref_resurrect(&q->q_usage_counter);
227 		wake_up_all(&q->mq_freeze_wq);
228 	}
229 	mutex_unlock(&q->mq_freeze_lock);
230 }
231 
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 	__blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237 
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&q->queue_lock, flags);
247 	if (!q->quiesce_depth++)
248 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 	spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252 
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 	struct blk_mq_hw_ctx *hctx;
263 	unsigned int i;
264 	bool rcu = false;
265 
266 	queue_for_each_hw_ctx(q, hctx, i) {
267 		if (hctx->flags & BLK_MQ_F_BLOCKING)
268 			synchronize_srcu(hctx->srcu);
269 		else
270 			rcu = true;
271 	}
272 	if (rcu)
273 		synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276 
277 /**
278  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279  * @q: request queue.
280  *
281  * Note: this function does not prevent that the struct request end_io()
282  * callback function is invoked. Once this function is returned, we make
283  * sure no dispatch can happen until the queue is unquiesced via
284  * blk_mq_unquiesce_queue().
285  */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288 	blk_mq_quiesce_queue_nowait(q);
289 	blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292 
293 /*
294  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295  * @q: request queue.
296  *
297  * This function recovers queue into the state before quiescing
298  * which is done by blk_mq_quiesce_queue.
299  */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302 	unsigned long flags;
303 	bool run_queue = false;
304 
305 	spin_lock_irqsave(&q->queue_lock, flags);
306 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307 		;
308 	} else if (!--q->quiesce_depth) {
309 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 		run_queue = true;
311 	}
312 	spin_unlock_irqrestore(&q->queue_lock, flags);
313 
314 	/* dispatch requests which are inserted during quiescing */
315 	if (run_queue)
316 		blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319 
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322 	struct blk_mq_hw_ctx *hctx;
323 	unsigned int i;
324 
325 	queue_for_each_hw_ctx(q, hctx, i)
326 		if (blk_mq_hw_queue_mapped(hctx))
327 			blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329 
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333 	struct blk_mq_ctx *ctx = data->ctx;
334 	struct blk_mq_hw_ctx *hctx = data->hctx;
335 	struct request_queue *q = data->q;
336 	struct request *rq = tags->static_rqs[tag];
337 
338 	rq->q = q;
339 	rq->mq_ctx = ctx;
340 	rq->mq_hctx = hctx;
341 	rq->cmd_flags = data->cmd_flags;
342 
343 	if (data->flags & BLK_MQ_REQ_PM)
344 		data->rq_flags |= RQF_PM;
345 	if (blk_queue_io_stat(q))
346 		data->rq_flags |= RQF_IO_STAT;
347 	rq->rq_flags = data->rq_flags;
348 
349 	if (!(data->rq_flags & RQF_ELV)) {
350 		rq->tag = tag;
351 		rq->internal_tag = BLK_MQ_NO_TAG;
352 	} else {
353 		rq->tag = BLK_MQ_NO_TAG;
354 		rq->internal_tag = tag;
355 	}
356 	rq->timeout = 0;
357 
358 	if (blk_mq_need_time_stamp(rq))
359 		rq->start_time_ns = ktime_get_ns();
360 	else
361 		rq->start_time_ns = 0;
362 	rq->rq_disk = NULL;
363 	rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 	rq->alloc_time_ns = alloc_time_ns;
366 #endif
367 	rq->io_start_time_ns = 0;
368 	rq->stats_sectors = 0;
369 	rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 	rq->nr_integrity_segments = 0;
372 #endif
373 	rq->end_io = NULL;
374 	rq->end_io_data = NULL;
375 
376 	blk_crypto_rq_set_defaults(rq);
377 	INIT_LIST_HEAD(&rq->queuelist);
378 	/* tag was already set */
379 	WRITE_ONCE(rq->deadline, 0);
380 	refcount_set(&rq->ref, 1);
381 
382 	if (rq->rq_flags & RQF_ELV) {
383 		struct elevator_queue *e = data->q->elevator;
384 
385 		rq->elv.icq = NULL;
386 		INIT_HLIST_NODE(&rq->hash);
387 		RB_CLEAR_NODE(&rq->rb_node);
388 
389 		if (!op_is_flush(data->cmd_flags) &&
390 		    e->type->ops.prepare_request) {
391 			if (e->type->icq_cache)
392 				blk_mq_sched_assign_ioc(rq);
393 
394 			e->type->ops.prepare_request(rq);
395 			rq->rq_flags |= RQF_ELVPRIV;
396 		}
397 	}
398 
399 	return rq;
400 }
401 
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404 		u64 alloc_time_ns)
405 {
406 	unsigned int tag, tag_offset;
407 	struct blk_mq_tags *tags;
408 	struct request *rq;
409 	unsigned long tag_mask;
410 	int i, nr = 0;
411 
412 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 	if (unlikely(!tag_mask))
414 		return NULL;
415 
416 	tags = blk_mq_tags_from_data(data);
417 	for (i = 0; tag_mask; i++) {
418 		if (!(tag_mask & (1UL << i)))
419 			continue;
420 		tag = tag_offset + i;
421 		prefetch(tags->static_rqs[tag]);
422 		tag_mask &= ~(1UL << i);
423 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424 		rq_list_add(data->cached_rq, rq);
425 		nr++;
426 	}
427 	/* caller already holds a reference, add for remainder */
428 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429 	data->nr_tags -= nr;
430 
431 	return rq_list_pop(data->cached_rq);
432 }
433 
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436 	struct request_queue *q = data->q;
437 	u64 alloc_time_ns = 0;
438 	struct request *rq;
439 	unsigned int tag;
440 
441 	/* alloc_time includes depth and tag waits */
442 	if (blk_queue_rq_alloc_time(q))
443 		alloc_time_ns = ktime_get_ns();
444 
445 	if (data->cmd_flags & REQ_NOWAIT)
446 		data->flags |= BLK_MQ_REQ_NOWAIT;
447 
448 	if (q->elevator) {
449 		struct elevator_queue *e = q->elevator;
450 
451 		data->rq_flags |= RQF_ELV;
452 
453 		/*
454 		 * Flush/passthrough requests are special and go directly to the
455 		 * dispatch list. Don't include reserved tags in the
456 		 * limiting, as it isn't useful.
457 		 */
458 		if (!op_is_flush(data->cmd_flags) &&
459 		    !blk_op_is_passthrough(data->cmd_flags) &&
460 		    e->type->ops.limit_depth &&
461 		    !(data->flags & BLK_MQ_REQ_RESERVED))
462 			e->type->ops.limit_depth(data->cmd_flags, data);
463 	}
464 
465 retry:
466 	data->ctx = blk_mq_get_ctx(q);
467 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468 	if (!(data->rq_flags & RQF_ELV))
469 		blk_mq_tag_busy(data->hctx);
470 
471 	/*
472 	 * Try batched alloc if we want more than 1 tag.
473 	 */
474 	if (data->nr_tags > 1) {
475 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476 		if (rq)
477 			return rq;
478 		data->nr_tags = 1;
479 	}
480 
481 	/*
482 	 * Waiting allocations only fail because of an inactive hctx.  In that
483 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
484 	 * should have migrated us to an online CPU by now.
485 	 */
486 	tag = blk_mq_get_tag(data);
487 	if (tag == BLK_MQ_NO_TAG) {
488 		if (data->flags & BLK_MQ_REQ_NOWAIT)
489 			return NULL;
490 		/*
491 		 * Give up the CPU and sleep for a random short time to
492 		 * ensure that thread using a realtime scheduling class
493 		 * are migrated off the CPU, and thus off the hctx that
494 		 * is going away.
495 		 */
496 		msleep(3);
497 		goto retry;
498 	}
499 
500 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501 					alloc_time_ns);
502 }
503 
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505 		blk_mq_req_flags_t flags)
506 {
507 	struct blk_mq_alloc_data data = {
508 		.q		= q,
509 		.flags		= flags,
510 		.cmd_flags	= op,
511 		.nr_tags	= 1,
512 	};
513 	struct request *rq;
514 	int ret;
515 
516 	ret = blk_queue_enter(q, flags);
517 	if (ret)
518 		return ERR_PTR(ret);
519 
520 	rq = __blk_mq_alloc_requests(&data);
521 	if (!rq)
522 		goto out_queue_exit;
523 	rq->__data_len = 0;
524 	rq->__sector = (sector_t) -1;
525 	rq->bio = rq->biotail = NULL;
526 	return rq;
527 out_queue_exit:
528 	blk_queue_exit(q);
529 	return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532 
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536 	struct blk_mq_alloc_data data = {
537 		.q		= q,
538 		.flags		= flags,
539 		.cmd_flags	= op,
540 		.nr_tags	= 1,
541 	};
542 	u64 alloc_time_ns = 0;
543 	unsigned int cpu;
544 	unsigned int tag;
545 	int ret;
546 
547 	/* alloc_time includes depth and tag waits */
548 	if (blk_queue_rq_alloc_time(q))
549 		alloc_time_ns = ktime_get_ns();
550 
551 	/*
552 	 * If the tag allocator sleeps we could get an allocation for a
553 	 * different hardware context.  No need to complicate the low level
554 	 * allocator for this for the rare use case of a command tied to
555 	 * a specific queue.
556 	 */
557 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558 		return ERR_PTR(-EINVAL);
559 
560 	if (hctx_idx >= q->nr_hw_queues)
561 		return ERR_PTR(-EIO);
562 
563 	ret = blk_queue_enter(q, flags);
564 	if (ret)
565 		return ERR_PTR(ret);
566 
567 	/*
568 	 * Check if the hardware context is actually mapped to anything.
569 	 * If not tell the caller that it should skip this queue.
570 	 */
571 	ret = -EXDEV;
572 	data.hctx = q->queue_hw_ctx[hctx_idx];
573 	if (!blk_mq_hw_queue_mapped(data.hctx))
574 		goto out_queue_exit;
575 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576 	data.ctx = __blk_mq_get_ctx(q, cpu);
577 
578 	if (!q->elevator)
579 		blk_mq_tag_busy(data.hctx);
580 	else
581 		data.rq_flags |= RQF_ELV;
582 
583 	ret = -EWOULDBLOCK;
584 	tag = blk_mq_get_tag(&data);
585 	if (tag == BLK_MQ_NO_TAG)
586 		goto out_queue_exit;
587 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588 					alloc_time_ns);
589 
590 out_queue_exit:
591 	blk_queue_exit(q);
592 	return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595 
596 static void __blk_mq_free_request(struct request *rq)
597 {
598 	struct request_queue *q = rq->q;
599 	struct blk_mq_ctx *ctx = rq->mq_ctx;
600 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601 	const int sched_tag = rq->internal_tag;
602 
603 	blk_crypto_free_request(rq);
604 	blk_pm_mark_last_busy(rq);
605 	rq->mq_hctx = NULL;
606 	if (rq->tag != BLK_MQ_NO_TAG)
607 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608 	if (sched_tag != BLK_MQ_NO_TAG)
609 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610 	blk_mq_sched_restart(hctx);
611 	blk_queue_exit(q);
612 }
613 
614 void blk_mq_free_request(struct request *rq)
615 {
616 	struct request_queue *q = rq->q;
617 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618 
619 	if (rq->rq_flags & RQF_ELVPRIV) {
620 		struct elevator_queue *e = q->elevator;
621 
622 		if (e->type->ops.finish_request)
623 			e->type->ops.finish_request(rq);
624 		if (rq->elv.icq) {
625 			put_io_context(rq->elv.icq->ioc);
626 			rq->elv.icq = NULL;
627 		}
628 	}
629 
630 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
631 		__blk_mq_dec_active_requests(hctx);
632 
633 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634 		laptop_io_completion(q->disk->bdi);
635 
636 	rq_qos_done(q, rq);
637 
638 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639 	if (refcount_dec_and_test(&rq->ref))
640 		__blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643 
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646 	struct request *rq;
647 
648 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649 		blk_mq_free_request(rq);
650 }
651 
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653 			  unsigned int nbytes, blk_status_t error)
654 {
655 	if (unlikely(error)) {
656 		bio->bi_status = error;
657 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658 		/*
659 		 * Partial zone append completions cannot be supported as the
660 		 * BIO fragments may end up not being written sequentially.
661 		 */
662 		if (bio->bi_iter.bi_size != nbytes)
663 			bio->bi_status = BLK_STS_IOERR;
664 		else
665 			bio->bi_iter.bi_sector = rq->__sector;
666 	}
667 
668 	bio_advance(bio, nbytes);
669 
670 	if (unlikely(rq->rq_flags & RQF_QUIET))
671 		bio_set_flag(bio, BIO_QUIET);
672 	/* don't actually finish bio if it's part of flush sequence */
673 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674 		bio_endio(bio);
675 }
676 
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679 	if (req->part && blk_do_io_stat(req)) {
680 		const int sgrp = op_stat_group(req_op(req));
681 
682 		part_stat_lock();
683 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684 		part_stat_unlock();
685 	}
686 }
687 
688 /**
689  * blk_update_request - Complete multiple bytes without completing the request
690  * @req:      the request being processed
691  * @error:    block status code
692  * @nr_bytes: number of bytes to complete for @req
693  *
694  * Description:
695  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
696  *     the request structure even if @req doesn't have leftover.
697  *     If @req has leftover, sets it up for the next range of segments.
698  *
699  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700  *     %false return from this function.
701  *
702  * Note:
703  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704  *      except in the consistency check at the end of this function.
705  *
706  * Return:
707  *     %false - this request doesn't have any more data
708  *     %true  - this request has more data
709  **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711 		unsigned int nr_bytes)
712 {
713 	int total_bytes;
714 
715 	trace_block_rq_complete(req, error, nr_bytes);
716 
717 	if (!req->bio)
718 		return false;
719 
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722 	    error == BLK_STS_OK)
723 		req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725 
726 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
727 		     !(req->rq_flags & RQF_QUIET)))
728 		blk_print_req_error(req, error);
729 
730 	blk_account_io_completion(req, nr_bytes);
731 
732 	total_bytes = 0;
733 	while (req->bio) {
734 		struct bio *bio = req->bio;
735 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736 
737 		if (bio_bytes == bio->bi_iter.bi_size)
738 			req->bio = bio->bi_next;
739 
740 		/* Completion has already been traced */
741 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742 		req_bio_endio(req, bio, bio_bytes, error);
743 
744 		total_bytes += bio_bytes;
745 		nr_bytes -= bio_bytes;
746 
747 		if (!nr_bytes)
748 			break;
749 	}
750 
751 	/*
752 	 * completely done
753 	 */
754 	if (!req->bio) {
755 		/*
756 		 * Reset counters so that the request stacking driver
757 		 * can find how many bytes remain in the request
758 		 * later.
759 		 */
760 		req->__data_len = 0;
761 		return false;
762 	}
763 
764 	req->__data_len -= total_bytes;
765 
766 	/* update sector only for requests with clear definition of sector */
767 	if (!blk_rq_is_passthrough(req))
768 		req->__sector += total_bytes >> 9;
769 
770 	/* mixed attributes always follow the first bio */
771 	if (req->rq_flags & RQF_MIXED_MERGE) {
772 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774 	}
775 
776 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777 		/*
778 		 * If total number of sectors is less than the first segment
779 		 * size, something has gone terribly wrong.
780 		 */
781 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782 			blk_dump_rq_flags(req, "request botched");
783 			req->__data_len = blk_rq_cur_bytes(req);
784 		}
785 
786 		/* recalculate the number of segments */
787 		req->nr_phys_segments = blk_recalc_rq_segments(req);
788 	}
789 
790 	return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793 
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796 	if (rq->rq_flags & RQF_STATS) {
797 		blk_mq_poll_stats_start(rq->q);
798 		blk_stat_add(rq, now);
799 	}
800 
801 	blk_mq_sched_completed_request(rq, now);
802 	blk_account_io_done(rq, now);
803 }
804 
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807 	if (blk_mq_need_time_stamp(rq))
808 		__blk_mq_end_request_acct(rq, ktime_get_ns());
809 
810 	if (rq->end_io) {
811 		rq_qos_done(rq->q, rq);
812 		rq->end_io(rq, error);
813 	} else {
814 		blk_mq_free_request(rq);
815 	}
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818 
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822 		BUG();
823 	__blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826 
827 #define TAG_COMP_BATCH		32
828 
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830 					  int *tag_array, int nr_tags)
831 {
832 	struct request_queue *q = hctx->queue;
833 
834 	/*
835 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
836 	 * update hctx->nr_active in batch
837 	 */
838 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839 		__blk_mq_sub_active_requests(hctx, nr_tags);
840 
841 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844 
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847 	int tags[TAG_COMP_BATCH], nr_tags = 0;
848 	struct blk_mq_hw_ctx *cur_hctx = NULL;
849 	struct request *rq;
850 	u64 now = 0;
851 
852 	if (iob->need_ts)
853 		now = ktime_get_ns();
854 
855 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856 		prefetch(rq->bio);
857 		prefetch(rq->rq_next);
858 
859 		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860 		if (iob->need_ts)
861 			__blk_mq_end_request_acct(rq, now);
862 
863 		rq_qos_done(rq->q, rq);
864 
865 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
866 		if (!refcount_dec_and_test(&rq->ref))
867 			continue;
868 
869 		blk_crypto_free_request(rq);
870 		blk_pm_mark_last_busy(rq);
871 
872 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
873 			if (cur_hctx)
874 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
875 			nr_tags = 0;
876 			cur_hctx = rq->mq_hctx;
877 		}
878 		tags[nr_tags++] = rq->tag;
879 	}
880 
881 	if (nr_tags)
882 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
883 }
884 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
885 
886 static void blk_complete_reqs(struct llist_head *list)
887 {
888 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
889 	struct request *rq, *next;
890 
891 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
892 		rq->q->mq_ops->complete(rq);
893 }
894 
895 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
896 {
897 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
898 }
899 
900 static int blk_softirq_cpu_dead(unsigned int cpu)
901 {
902 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
903 	return 0;
904 }
905 
906 static void __blk_mq_complete_request_remote(void *data)
907 {
908 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
909 }
910 
911 static inline bool blk_mq_complete_need_ipi(struct request *rq)
912 {
913 	int cpu = raw_smp_processor_id();
914 
915 	if (!IS_ENABLED(CONFIG_SMP) ||
916 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
917 		return false;
918 	/*
919 	 * With force threaded interrupts enabled, raising softirq from an SMP
920 	 * function call will always result in waking the ksoftirqd thread.
921 	 * This is probably worse than completing the request on a different
922 	 * cache domain.
923 	 */
924 	if (force_irqthreads())
925 		return false;
926 
927 	/* same CPU or cache domain?  Complete locally */
928 	if (cpu == rq->mq_ctx->cpu ||
929 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
930 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
931 		return false;
932 
933 	/* don't try to IPI to an offline CPU */
934 	return cpu_online(rq->mq_ctx->cpu);
935 }
936 
937 static void blk_mq_complete_send_ipi(struct request *rq)
938 {
939 	struct llist_head *list;
940 	unsigned int cpu;
941 
942 	cpu = rq->mq_ctx->cpu;
943 	list = &per_cpu(blk_cpu_done, cpu);
944 	if (llist_add(&rq->ipi_list, list)) {
945 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
946 		smp_call_function_single_async(cpu, &rq->csd);
947 	}
948 }
949 
950 static void blk_mq_raise_softirq(struct request *rq)
951 {
952 	struct llist_head *list;
953 
954 	preempt_disable();
955 	list = this_cpu_ptr(&blk_cpu_done);
956 	if (llist_add(&rq->ipi_list, list))
957 		raise_softirq(BLOCK_SOFTIRQ);
958 	preempt_enable();
959 }
960 
961 bool blk_mq_complete_request_remote(struct request *rq)
962 {
963 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
964 
965 	/*
966 	 * For a polled request, always complete locallly, it's pointless
967 	 * to redirect the completion.
968 	 */
969 	if (rq->cmd_flags & REQ_POLLED)
970 		return false;
971 
972 	if (blk_mq_complete_need_ipi(rq)) {
973 		blk_mq_complete_send_ipi(rq);
974 		return true;
975 	}
976 
977 	if (rq->q->nr_hw_queues == 1) {
978 		blk_mq_raise_softirq(rq);
979 		return true;
980 	}
981 	return false;
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
984 
985 /**
986  * blk_mq_complete_request - end I/O on a request
987  * @rq:		the request being processed
988  *
989  * Description:
990  *	Complete a request by scheduling the ->complete_rq operation.
991  **/
992 void blk_mq_complete_request(struct request *rq)
993 {
994 	if (!blk_mq_complete_request_remote(rq))
995 		rq->q->mq_ops->complete(rq);
996 }
997 EXPORT_SYMBOL(blk_mq_complete_request);
998 
999 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
1000 	__releases(hctx->srcu)
1001 {
1002 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1003 		rcu_read_unlock();
1004 	else
1005 		srcu_read_unlock(hctx->srcu, srcu_idx);
1006 }
1007 
1008 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1009 	__acquires(hctx->srcu)
1010 {
1011 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1012 		/* shut up gcc false positive */
1013 		*srcu_idx = 0;
1014 		rcu_read_lock();
1015 	} else
1016 		*srcu_idx = srcu_read_lock(hctx->srcu);
1017 }
1018 
1019 /**
1020  * blk_mq_start_request - Start processing a request
1021  * @rq: Pointer to request to be started
1022  *
1023  * Function used by device drivers to notify the block layer that a request
1024  * is going to be processed now, so blk layer can do proper initializations
1025  * such as starting the timeout timer.
1026  */
1027 void blk_mq_start_request(struct request *rq)
1028 {
1029 	struct request_queue *q = rq->q;
1030 
1031 	trace_block_rq_issue(rq);
1032 
1033 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1034 		u64 start_time;
1035 #ifdef CONFIG_BLK_CGROUP
1036 		if (rq->bio)
1037 			start_time = bio_issue_time(&rq->bio->bi_issue);
1038 		else
1039 #endif
1040 			start_time = ktime_get_ns();
1041 		rq->io_start_time_ns = start_time;
1042 		rq->stats_sectors = blk_rq_sectors(rq);
1043 		rq->rq_flags |= RQF_STATS;
1044 		rq_qos_issue(q, rq);
1045 	}
1046 
1047 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1048 
1049 	blk_add_timer(rq);
1050 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1051 
1052 #ifdef CONFIG_BLK_DEV_INTEGRITY
1053 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1054 		q->integrity.profile->prepare_fn(rq);
1055 #endif
1056 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1057 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1058 }
1059 EXPORT_SYMBOL(blk_mq_start_request);
1060 
1061 static void __blk_mq_requeue_request(struct request *rq)
1062 {
1063 	struct request_queue *q = rq->q;
1064 
1065 	blk_mq_put_driver_tag(rq);
1066 
1067 	trace_block_rq_requeue(rq);
1068 	rq_qos_requeue(q, rq);
1069 
1070 	if (blk_mq_request_started(rq)) {
1071 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1072 		rq->rq_flags &= ~RQF_TIMED_OUT;
1073 	}
1074 }
1075 
1076 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1077 {
1078 	__blk_mq_requeue_request(rq);
1079 
1080 	/* this request will be re-inserted to io scheduler queue */
1081 	blk_mq_sched_requeue_request(rq);
1082 
1083 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1084 }
1085 EXPORT_SYMBOL(blk_mq_requeue_request);
1086 
1087 static void blk_mq_requeue_work(struct work_struct *work)
1088 {
1089 	struct request_queue *q =
1090 		container_of(work, struct request_queue, requeue_work.work);
1091 	LIST_HEAD(rq_list);
1092 	struct request *rq, *next;
1093 
1094 	spin_lock_irq(&q->requeue_lock);
1095 	list_splice_init(&q->requeue_list, &rq_list);
1096 	spin_unlock_irq(&q->requeue_lock);
1097 
1098 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1099 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1100 			continue;
1101 
1102 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1103 		list_del_init(&rq->queuelist);
1104 		/*
1105 		 * If RQF_DONTPREP, rq has contained some driver specific
1106 		 * data, so insert it to hctx dispatch list to avoid any
1107 		 * merge.
1108 		 */
1109 		if (rq->rq_flags & RQF_DONTPREP)
1110 			blk_mq_request_bypass_insert(rq, false, false);
1111 		else
1112 			blk_mq_sched_insert_request(rq, true, false, false);
1113 	}
1114 
1115 	while (!list_empty(&rq_list)) {
1116 		rq = list_entry(rq_list.next, struct request, queuelist);
1117 		list_del_init(&rq->queuelist);
1118 		blk_mq_sched_insert_request(rq, false, false, false);
1119 	}
1120 
1121 	blk_mq_run_hw_queues(q, false);
1122 }
1123 
1124 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1125 				bool kick_requeue_list)
1126 {
1127 	struct request_queue *q = rq->q;
1128 	unsigned long flags;
1129 
1130 	/*
1131 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1132 	 * request head insertion from the workqueue.
1133 	 */
1134 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1135 
1136 	spin_lock_irqsave(&q->requeue_lock, flags);
1137 	if (at_head) {
1138 		rq->rq_flags |= RQF_SOFTBARRIER;
1139 		list_add(&rq->queuelist, &q->requeue_list);
1140 	} else {
1141 		list_add_tail(&rq->queuelist, &q->requeue_list);
1142 	}
1143 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1144 
1145 	if (kick_requeue_list)
1146 		blk_mq_kick_requeue_list(q);
1147 }
1148 
1149 void blk_mq_kick_requeue_list(struct request_queue *q)
1150 {
1151 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1152 }
1153 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1154 
1155 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1156 				    unsigned long msecs)
1157 {
1158 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1159 				    msecs_to_jiffies(msecs));
1160 }
1161 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1162 
1163 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1164 			       void *priv, bool reserved)
1165 {
1166 	/*
1167 	 * If we find a request that isn't idle and the queue matches,
1168 	 * we know the queue is busy. Return false to stop the iteration.
1169 	 */
1170 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1171 		bool *busy = priv;
1172 
1173 		*busy = true;
1174 		return false;
1175 	}
1176 
1177 	return true;
1178 }
1179 
1180 bool blk_mq_queue_inflight(struct request_queue *q)
1181 {
1182 	bool busy = false;
1183 
1184 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1185 	return busy;
1186 }
1187 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1188 
1189 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1190 {
1191 	req->rq_flags |= RQF_TIMED_OUT;
1192 	if (req->q->mq_ops->timeout) {
1193 		enum blk_eh_timer_return ret;
1194 
1195 		ret = req->q->mq_ops->timeout(req, reserved);
1196 		if (ret == BLK_EH_DONE)
1197 			return;
1198 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1199 	}
1200 
1201 	blk_add_timer(req);
1202 }
1203 
1204 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1205 {
1206 	unsigned long deadline;
1207 
1208 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1209 		return false;
1210 	if (rq->rq_flags & RQF_TIMED_OUT)
1211 		return false;
1212 
1213 	deadline = READ_ONCE(rq->deadline);
1214 	if (time_after_eq(jiffies, deadline))
1215 		return true;
1216 
1217 	if (*next == 0)
1218 		*next = deadline;
1219 	else if (time_after(*next, deadline))
1220 		*next = deadline;
1221 	return false;
1222 }
1223 
1224 void blk_mq_put_rq_ref(struct request *rq)
1225 {
1226 	if (is_flush_rq(rq))
1227 		rq->end_io(rq, 0);
1228 	else if (refcount_dec_and_test(&rq->ref))
1229 		__blk_mq_free_request(rq);
1230 }
1231 
1232 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1233 		struct request *rq, void *priv, bool reserved)
1234 {
1235 	unsigned long *next = priv;
1236 
1237 	/*
1238 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1239 	 * be reallocated underneath the timeout handler's processing, then
1240 	 * the expire check is reliable. If the request is not expired, then
1241 	 * it was completed and reallocated as a new request after returning
1242 	 * from blk_mq_check_expired().
1243 	 */
1244 	if (blk_mq_req_expired(rq, next))
1245 		blk_mq_rq_timed_out(rq, reserved);
1246 	return true;
1247 }
1248 
1249 static void blk_mq_timeout_work(struct work_struct *work)
1250 {
1251 	struct request_queue *q =
1252 		container_of(work, struct request_queue, timeout_work);
1253 	unsigned long next = 0;
1254 	struct blk_mq_hw_ctx *hctx;
1255 	int i;
1256 
1257 	/* A deadlock might occur if a request is stuck requiring a
1258 	 * timeout at the same time a queue freeze is waiting
1259 	 * completion, since the timeout code would not be able to
1260 	 * acquire the queue reference here.
1261 	 *
1262 	 * That's why we don't use blk_queue_enter here; instead, we use
1263 	 * percpu_ref_tryget directly, because we need to be able to
1264 	 * obtain a reference even in the short window between the queue
1265 	 * starting to freeze, by dropping the first reference in
1266 	 * blk_freeze_queue_start, and the moment the last request is
1267 	 * consumed, marked by the instant q_usage_counter reaches
1268 	 * zero.
1269 	 */
1270 	if (!percpu_ref_tryget(&q->q_usage_counter))
1271 		return;
1272 
1273 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1274 
1275 	if (next != 0) {
1276 		mod_timer(&q->timeout, next);
1277 	} else {
1278 		/*
1279 		 * Request timeouts are handled as a forward rolling timer. If
1280 		 * we end up here it means that no requests are pending and
1281 		 * also that no request has been pending for a while. Mark
1282 		 * each hctx as idle.
1283 		 */
1284 		queue_for_each_hw_ctx(q, hctx, i) {
1285 			/* the hctx may be unmapped, so check it here */
1286 			if (blk_mq_hw_queue_mapped(hctx))
1287 				blk_mq_tag_idle(hctx);
1288 		}
1289 	}
1290 	blk_queue_exit(q);
1291 }
1292 
1293 struct flush_busy_ctx_data {
1294 	struct blk_mq_hw_ctx *hctx;
1295 	struct list_head *list;
1296 };
1297 
1298 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1299 {
1300 	struct flush_busy_ctx_data *flush_data = data;
1301 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1302 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1303 	enum hctx_type type = hctx->type;
1304 
1305 	spin_lock(&ctx->lock);
1306 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1307 	sbitmap_clear_bit(sb, bitnr);
1308 	spin_unlock(&ctx->lock);
1309 	return true;
1310 }
1311 
1312 /*
1313  * Process software queues that have been marked busy, splicing them
1314  * to the for-dispatch
1315  */
1316 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1317 {
1318 	struct flush_busy_ctx_data data = {
1319 		.hctx = hctx,
1320 		.list = list,
1321 	};
1322 
1323 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1324 }
1325 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1326 
1327 struct dispatch_rq_data {
1328 	struct blk_mq_hw_ctx *hctx;
1329 	struct request *rq;
1330 };
1331 
1332 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1333 		void *data)
1334 {
1335 	struct dispatch_rq_data *dispatch_data = data;
1336 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1337 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1338 	enum hctx_type type = hctx->type;
1339 
1340 	spin_lock(&ctx->lock);
1341 	if (!list_empty(&ctx->rq_lists[type])) {
1342 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1343 		list_del_init(&dispatch_data->rq->queuelist);
1344 		if (list_empty(&ctx->rq_lists[type]))
1345 			sbitmap_clear_bit(sb, bitnr);
1346 	}
1347 	spin_unlock(&ctx->lock);
1348 
1349 	return !dispatch_data->rq;
1350 }
1351 
1352 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1353 					struct blk_mq_ctx *start)
1354 {
1355 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1356 	struct dispatch_rq_data data = {
1357 		.hctx = hctx,
1358 		.rq   = NULL,
1359 	};
1360 
1361 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1362 			       dispatch_rq_from_ctx, &data);
1363 
1364 	return data.rq;
1365 }
1366 
1367 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1368 {
1369 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1370 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1371 	int tag;
1372 
1373 	blk_mq_tag_busy(rq->mq_hctx);
1374 
1375 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1376 		bt = &rq->mq_hctx->tags->breserved_tags;
1377 		tag_offset = 0;
1378 	} else {
1379 		if (!hctx_may_queue(rq->mq_hctx, bt))
1380 			return false;
1381 	}
1382 
1383 	tag = __sbitmap_queue_get(bt);
1384 	if (tag == BLK_MQ_NO_TAG)
1385 		return false;
1386 
1387 	rq->tag = tag + tag_offset;
1388 	return true;
1389 }
1390 
1391 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1392 {
1393 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1394 		return false;
1395 
1396 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1397 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1398 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1399 		__blk_mq_inc_active_requests(hctx);
1400 	}
1401 	hctx->tags->rqs[rq->tag] = rq;
1402 	return true;
1403 }
1404 
1405 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1406 				int flags, void *key)
1407 {
1408 	struct blk_mq_hw_ctx *hctx;
1409 
1410 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1411 
1412 	spin_lock(&hctx->dispatch_wait_lock);
1413 	if (!list_empty(&wait->entry)) {
1414 		struct sbitmap_queue *sbq;
1415 
1416 		list_del_init(&wait->entry);
1417 		sbq = &hctx->tags->bitmap_tags;
1418 		atomic_dec(&sbq->ws_active);
1419 	}
1420 	spin_unlock(&hctx->dispatch_wait_lock);
1421 
1422 	blk_mq_run_hw_queue(hctx, true);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1428  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1429  * restart. For both cases, take care to check the condition again after
1430  * marking us as waiting.
1431  */
1432 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1433 				 struct request *rq)
1434 {
1435 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1436 	struct wait_queue_head *wq;
1437 	wait_queue_entry_t *wait;
1438 	bool ret;
1439 
1440 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1441 		blk_mq_sched_mark_restart_hctx(hctx);
1442 
1443 		/*
1444 		 * It's possible that a tag was freed in the window between the
1445 		 * allocation failure and adding the hardware queue to the wait
1446 		 * queue.
1447 		 *
1448 		 * Don't clear RESTART here, someone else could have set it.
1449 		 * At most this will cost an extra queue run.
1450 		 */
1451 		return blk_mq_get_driver_tag(rq);
1452 	}
1453 
1454 	wait = &hctx->dispatch_wait;
1455 	if (!list_empty_careful(&wait->entry))
1456 		return false;
1457 
1458 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1459 
1460 	spin_lock_irq(&wq->lock);
1461 	spin_lock(&hctx->dispatch_wait_lock);
1462 	if (!list_empty(&wait->entry)) {
1463 		spin_unlock(&hctx->dispatch_wait_lock);
1464 		spin_unlock_irq(&wq->lock);
1465 		return false;
1466 	}
1467 
1468 	atomic_inc(&sbq->ws_active);
1469 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1470 	__add_wait_queue(wq, wait);
1471 
1472 	/*
1473 	 * It's possible that a tag was freed in the window between the
1474 	 * allocation failure and adding the hardware queue to the wait
1475 	 * queue.
1476 	 */
1477 	ret = blk_mq_get_driver_tag(rq);
1478 	if (!ret) {
1479 		spin_unlock(&hctx->dispatch_wait_lock);
1480 		spin_unlock_irq(&wq->lock);
1481 		return false;
1482 	}
1483 
1484 	/*
1485 	 * We got a tag, remove ourselves from the wait queue to ensure
1486 	 * someone else gets the wakeup.
1487 	 */
1488 	list_del_init(&wait->entry);
1489 	atomic_dec(&sbq->ws_active);
1490 	spin_unlock(&hctx->dispatch_wait_lock);
1491 	spin_unlock_irq(&wq->lock);
1492 
1493 	return true;
1494 }
1495 
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1497 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1498 /*
1499  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1500  * - EWMA is one simple way to compute running average value
1501  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1502  * - take 4 as factor for avoiding to get too small(0) result, and this
1503  *   factor doesn't matter because EWMA decreases exponentially
1504  */
1505 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1506 {
1507 	unsigned int ewma;
1508 
1509 	ewma = hctx->dispatch_busy;
1510 
1511 	if (!ewma && !busy)
1512 		return;
1513 
1514 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1515 	if (busy)
1516 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1517 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1518 
1519 	hctx->dispatch_busy = ewma;
1520 }
1521 
1522 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1523 
1524 static void blk_mq_handle_dev_resource(struct request *rq,
1525 				       struct list_head *list)
1526 {
1527 	struct request *next =
1528 		list_first_entry_or_null(list, struct request, queuelist);
1529 
1530 	/*
1531 	 * If an I/O scheduler has been configured and we got a driver tag for
1532 	 * the next request already, free it.
1533 	 */
1534 	if (next)
1535 		blk_mq_put_driver_tag(next);
1536 
1537 	list_add(&rq->queuelist, list);
1538 	__blk_mq_requeue_request(rq);
1539 }
1540 
1541 static void blk_mq_handle_zone_resource(struct request *rq,
1542 					struct list_head *zone_list)
1543 {
1544 	/*
1545 	 * If we end up here it is because we cannot dispatch a request to a
1546 	 * specific zone due to LLD level zone-write locking or other zone
1547 	 * related resource not being available. In this case, set the request
1548 	 * aside in zone_list for retrying it later.
1549 	 */
1550 	list_add(&rq->queuelist, zone_list);
1551 	__blk_mq_requeue_request(rq);
1552 }
1553 
1554 enum prep_dispatch {
1555 	PREP_DISPATCH_OK,
1556 	PREP_DISPATCH_NO_TAG,
1557 	PREP_DISPATCH_NO_BUDGET,
1558 };
1559 
1560 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1561 						  bool need_budget)
1562 {
1563 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1564 	int budget_token = -1;
1565 
1566 	if (need_budget) {
1567 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1568 		if (budget_token < 0) {
1569 			blk_mq_put_driver_tag(rq);
1570 			return PREP_DISPATCH_NO_BUDGET;
1571 		}
1572 		blk_mq_set_rq_budget_token(rq, budget_token);
1573 	}
1574 
1575 	if (!blk_mq_get_driver_tag(rq)) {
1576 		/*
1577 		 * The initial allocation attempt failed, so we need to
1578 		 * rerun the hardware queue when a tag is freed. The
1579 		 * waitqueue takes care of that. If the queue is run
1580 		 * before we add this entry back on the dispatch list,
1581 		 * we'll re-run it below.
1582 		 */
1583 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1584 			/*
1585 			 * All budgets not got from this function will be put
1586 			 * together during handling partial dispatch
1587 			 */
1588 			if (need_budget)
1589 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1590 			return PREP_DISPATCH_NO_TAG;
1591 		}
1592 	}
1593 
1594 	return PREP_DISPATCH_OK;
1595 }
1596 
1597 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1598 static void blk_mq_release_budgets(struct request_queue *q,
1599 		struct list_head *list)
1600 {
1601 	struct request *rq;
1602 
1603 	list_for_each_entry(rq, list, queuelist) {
1604 		int budget_token = blk_mq_get_rq_budget_token(rq);
1605 
1606 		if (budget_token >= 0)
1607 			blk_mq_put_dispatch_budget(q, budget_token);
1608 	}
1609 }
1610 
1611 /*
1612  * Returns true if we did some work AND can potentially do more.
1613  */
1614 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1615 			     unsigned int nr_budgets)
1616 {
1617 	enum prep_dispatch prep;
1618 	struct request_queue *q = hctx->queue;
1619 	struct request *rq, *nxt;
1620 	int errors, queued;
1621 	blk_status_t ret = BLK_STS_OK;
1622 	LIST_HEAD(zone_list);
1623 	bool needs_resource = false;
1624 
1625 	if (list_empty(list))
1626 		return false;
1627 
1628 	/*
1629 	 * Now process all the entries, sending them to the driver.
1630 	 */
1631 	errors = queued = 0;
1632 	do {
1633 		struct blk_mq_queue_data bd;
1634 
1635 		rq = list_first_entry(list, struct request, queuelist);
1636 
1637 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1638 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1639 		if (prep != PREP_DISPATCH_OK)
1640 			break;
1641 
1642 		list_del_init(&rq->queuelist);
1643 
1644 		bd.rq = rq;
1645 
1646 		/*
1647 		 * Flag last if we have no more requests, or if we have more
1648 		 * but can't assign a driver tag to it.
1649 		 */
1650 		if (list_empty(list))
1651 			bd.last = true;
1652 		else {
1653 			nxt = list_first_entry(list, struct request, queuelist);
1654 			bd.last = !blk_mq_get_driver_tag(nxt);
1655 		}
1656 
1657 		/*
1658 		 * once the request is queued to lld, no need to cover the
1659 		 * budget any more
1660 		 */
1661 		if (nr_budgets)
1662 			nr_budgets--;
1663 		ret = q->mq_ops->queue_rq(hctx, &bd);
1664 		switch (ret) {
1665 		case BLK_STS_OK:
1666 			queued++;
1667 			break;
1668 		case BLK_STS_RESOURCE:
1669 			needs_resource = true;
1670 			fallthrough;
1671 		case BLK_STS_DEV_RESOURCE:
1672 			blk_mq_handle_dev_resource(rq, list);
1673 			goto out;
1674 		case BLK_STS_ZONE_RESOURCE:
1675 			/*
1676 			 * Move the request to zone_list and keep going through
1677 			 * the dispatch list to find more requests the drive can
1678 			 * accept.
1679 			 */
1680 			blk_mq_handle_zone_resource(rq, &zone_list);
1681 			needs_resource = true;
1682 			break;
1683 		default:
1684 			errors++;
1685 			blk_mq_end_request(rq, ret);
1686 		}
1687 	} while (!list_empty(list));
1688 out:
1689 	if (!list_empty(&zone_list))
1690 		list_splice_tail_init(&zone_list, list);
1691 
1692 	/* If we didn't flush the entire list, we could have told the driver
1693 	 * there was more coming, but that turned out to be a lie.
1694 	 */
1695 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1696 		q->mq_ops->commit_rqs(hctx);
1697 	/*
1698 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1699 	 * that is where we will continue on next queue run.
1700 	 */
1701 	if (!list_empty(list)) {
1702 		bool needs_restart;
1703 		/* For non-shared tags, the RESTART check will suffice */
1704 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1705 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1706 
1707 		if (nr_budgets)
1708 			blk_mq_release_budgets(q, list);
1709 
1710 		spin_lock(&hctx->lock);
1711 		list_splice_tail_init(list, &hctx->dispatch);
1712 		spin_unlock(&hctx->lock);
1713 
1714 		/*
1715 		 * Order adding requests to hctx->dispatch and checking
1716 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1717 		 * in blk_mq_sched_restart(). Avoid restart code path to
1718 		 * miss the new added requests to hctx->dispatch, meantime
1719 		 * SCHED_RESTART is observed here.
1720 		 */
1721 		smp_mb();
1722 
1723 		/*
1724 		 * If SCHED_RESTART was set by the caller of this function and
1725 		 * it is no longer set that means that it was cleared by another
1726 		 * thread and hence that a queue rerun is needed.
1727 		 *
1728 		 * If 'no_tag' is set, that means that we failed getting
1729 		 * a driver tag with an I/O scheduler attached. If our dispatch
1730 		 * waitqueue is no longer active, ensure that we run the queue
1731 		 * AFTER adding our entries back to the list.
1732 		 *
1733 		 * If no I/O scheduler has been configured it is possible that
1734 		 * the hardware queue got stopped and restarted before requests
1735 		 * were pushed back onto the dispatch list. Rerun the queue to
1736 		 * avoid starvation. Notes:
1737 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1738 		 *   been stopped before rerunning a queue.
1739 		 * - Some but not all block drivers stop a queue before
1740 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1741 		 *   and dm-rq.
1742 		 *
1743 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1744 		 * bit is set, run queue after a delay to avoid IO stalls
1745 		 * that could otherwise occur if the queue is idle.  We'll do
1746 		 * similar if we couldn't get budget or couldn't lock a zone
1747 		 * and SCHED_RESTART is set.
1748 		 */
1749 		needs_restart = blk_mq_sched_needs_restart(hctx);
1750 		if (prep == PREP_DISPATCH_NO_BUDGET)
1751 			needs_resource = true;
1752 		if (!needs_restart ||
1753 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1754 			blk_mq_run_hw_queue(hctx, true);
1755 		else if (needs_restart && needs_resource)
1756 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1757 
1758 		blk_mq_update_dispatch_busy(hctx, true);
1759 		return false;
1760 	} else
1761 		blk_mq_update_dispatch_busy(hctx, false);
1762 
1763 	return (queued + errors) != 0;
1764 }
1765 
1766 /**
1767  * __blk_mq_run_hw_queue - Run a hardware queue.
1768  * @hctx: Pointer to the hardware queue to run.
1769  *
1770  * Send pending requests to the hardware.
1771  */
1772 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1773 {
1774 	int srcu_idx;
1775 
1776 	/*
1777 	 * We can't run the queue inline with ints disabled. Ensure that
1778 	 * we catch bad users of this early.
1779 	 */
1780 	WARN_ON_ONCE(in_interrupt());
1781 
1782 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1783 
1784 	hctx_lock(hctx, &srcu_idx);
1785 	blk_mq_sched_dispatch_requests(hctx);
1786 	hctx_unlock(hctx, srcu_idx);
1787 }
1788 
1789 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1790 {
1791 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1792 
1793 	if (cpu >= nr_cpu_ids)
1794 		cpu = cpumask_first(hctx->cpumask);
1795 	return cpu;
1796 }
1797 
1798 /*
1799  * It'd be great if the workqueue API had a way to pass
1800  * in a mask and had some smarts for more clever placement.
1801  * For now we just round-robin here, switching for every
1802  * BLK_MQ_CPU_WORK_BATCH queued items.
1803  */
1804 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1805 {
1806 	bool tried = false;
1807 	int next_cpu = hctx->next_cpu;
1808 
1809 	if (hctx->queue->nr_hw_queues == 1)
1810 		return WORK_CPU_UNBOUND;
1811 
1812 	if (--hctx->next_cpu_batch <= 0) {
1813 select_cpu:
1814 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1815 				cpu_online_mask);
1816 		if (next_cpu >= nr_cpu_ids)
1817 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1818 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1819 	}
1820 
1821 	/*
1822 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1823 	 * and it should only happen in the path of handling CPU DEAD.
1824 	 */
1825 	if (!cpu_online(next_cpu)) {
1826 		if (!tried) {
1827 			tried = true;
1828 			goto select_cpu;
1829 		}
1830 
1831 		/*
1832 		 * Make sure to re-select CPU next time once after CPUs
1833 		 * in hctx->cpumask become online again.
1834 		 */
1835 		hctx->next_cpu = next_cpu;
1836 		hctx->next_cpu_batch = 1;
1837 		return WORK_CPU_UNBOUND;
1838 	}
1839 
1840 	hctx->next_cpu = next_cpu;
1841 	return next_cpu;
1842 }
1843 
1844 /**
1845  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1846  * @hctx: Pointer to the hardware queue to run.
1847  * @async: If we want to run the queue asynchronously.
1848  * @msecs: Milliseconds of delay to wait before running the queue.
1849  *
1850  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1851  * with a delay of @msecs.
1852  */
1853 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1854 					unsigned long msecs)
1855 {
1856 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1857 		return;
1858 
1859 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1860 		int cpu = get_cpu();
1861 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1862 			__blk_mq_run_hw_queue(hctx);
1863 			put_cpu();
1864 			return;
1865 		}
1866 
1867 		put_cpu();
1868 	}
1869 
1870 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1871 				    msecs_to_jiffies(msecs));
1872 }
1873 
1874 /**
1875  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1876  * @hctx: Pointer to the hardware queue to run.
1877  * @msecs: Milliseconds of delay to wait before running the queue.
1878  *
1879  * Run a hardware queue asynchronously with a delay of @msecs.
1880  */
1881 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1882 {
1883 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1884 }
1885 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1886 
1887 /**
1888  * blk_mq_run_hw_queue - Start to run a hardware queue.
1889  * @hctx: Pointer to the hardware queue to run.
1890  * @async: If we want to run the queue asynchronously.
1891  *
1892  * Check if the request queue is not in a quiesced state and if there are
1893  * pending requests to be sent. If this is true, run the queue to send requests
1894  * to hardware.
1895  */
1896 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1897 {
1898 	int srcu_idx;
1899 	bool need_run;
1900 
1901 	/*
1902 	 * When queue is quiesced, we may be switching io scheduler, or
1903 	 * updating nr_hw_queues, or other things, and we can't run queue
1904 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1905 	 *
1906 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1907 	 * quiesced.
1908 	 */
1909 	hctx_lock(hctx, &srcu_idx);
1910 	need_run = !blk_queue_quiesced(hctx->queue) &&
1911 		blk_mq_hctx_has_pending(hctx);
1912 	hctx_unlock(hctx, srcu_idx);
1913 
1914 	if (need_run)
1915 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1916 }
1917 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1918 
1919 /*
1920  * Is the request queue handled by an IO scheduler that does not respect
1921  * hardware queues when dispatching?
1922  */
1923 static bool blk_mq_has_sqsched(struct request_queue *q)
1924 {
1925 	struct elevator_queue *e = q->elevator;
1926 
1927 	if (e && e->type->ops.dispatch_request &&
1928 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1929 		return true;
1930 	return false;
1931 }
1932 
1933 /*
1934  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1935  * scheduler.
1936  */
1937 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1938 {
1939 	struct blk_mq_hw_ctx *hctx;
1940 
1941 	/*
1942 	 * If the IO scheduler does not respect hardware queues when
1943 	 * dispatching, we just don't bother with multiple HW queues and
1944 	 * dispatch from hctx for the current CPU since running multiple queues
1945 	 * just causes lock contention inside the scheduler and pointless cache
1946 	 * bouncing.
1947 	 */
1948 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1949 				     raw_smp_processor_id());
1950 	if (!blk_mq_hctx_stopped(hctx))
1951 		return hctx;
1952 	return NULL;
1953 }
1954 
1955 /**
1956  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1957  * @q: Pointer to the request queue to run.
1958  * @async: If we want to run the queue asynchronously.
1959  */
1960 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1961 {
1962 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1963 	int i;
1964 
1965 	sq_hctx = NULL;
1966 	if (blk_mq_has_sqsched(q))
1967 		sq_hctx = blk_mq_get_sq_hctx(q);
1968 	queue_for_each_hw_ctx(q, hctx, i) {
1969 		if (blk_mq_hctx_stopped(hctx))
1970 			continue;
1971 		/*
1972 		 * Dispatch from this hctx either if there's no hctx preferred
1973 		 * by IO scheduler or if it has requests that bypass the
1974 		 * scheduler.
1975 		 */
1976 		if (!sq_hctx || sq_hctx == hctx ||
1977 		    !list_empty_careful(&hctx->dispatch))
1978 			blk_mq_run_hw_queue(hctx, async);
1979 	}
1980 }
1981 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1982 
1983 /**
1984  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1985  * @q: Pointer to the request queue to run.
1986  * @msecs: Milliseconds of delay to wait before running the queues.
1987  */
1988 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1989 {
1990 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1991 	int i;
1992 
1993 	sq_hctx = NULL;
1994 	if (blk_mq_has_sqsched(q))
1995 		sq_hctx = blk_mq_get_sq_hctx(q);
1996 	queue_for_each_hw_ctx(q, hctx, i) {
1997 		if (blk_mq_hctx_stopped(hctx))
1998 			continue;
1999 		/*
2000 		 * Dispatch from this hctx either if there's no hctx preferred
2001 		 * by IO scheduler or if it has requests that bypass the
2002 		 * scheduler.
2003 		 */
2004 		if (!sq_hctx || sq_hctx == hctx ||
2005 		    !list_empty_careful(&hctx->dispatch))
2006 			blk_mq_delay_run_hw_queue(hctx, msecs);
2007 	}
2008 }
2009 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2010 
2011 /**
2012  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2013  * @q: request queue.
2014  *
2015  * The caller is responsible for serializing this function against
2016  * blk_mq_{start,stop}_hw_queue().
2017  */
2018 bool blk_mq_queue_stopped(struct request_queue *q)
2019 {
2020 	struct blk_mq_hw_ctx *hctx;
2021 	int i;
2022 
2023 	queue_for_each_hw_ctx(q, hctx, i)
2024 		if (blk_mq_hctx_stopped(hctx))
2025 			return true;
2026 
2027 	return false;
2028 }
2029 EXPORT_SYMBOL(blk_mq_queue_stopped);
2030 
2031 /*
2032  * This function is often used for pausing .queue_rq() by driver when
2033  * there isn't enough resource or some conditions aren't satisfied, and
2034  * BLK_STS_RESOURCE is usually returned.
2035  *
2036  * We do not guarantee that dispatch can be drained or blocked
2037  * after blk_mq_stop_hw_queue() returns. Please use
2038  * blk_mq_quiesce_queue() for that requirement.
2039  */
2040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2041 {
2042 	cancel_delayed_work(&hctx->run_work);
2043 
2044 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2045 }
2046 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2047 
2048 /*
2049  * This function is often used for pausing .queue_rq() by driver when
2050  * there isn't enough resource or some conditions aren't satisfied, and
2051  * BLK_STS_RESOURCE is usually returned.
2052  *
2053  * We do not guarantee that dispatch can be drained or blocked
2054  * after blk_mq_stop_hw_queues() returns. Please use
2055  * blk_mq_quiesce_queue() for that requirement.
2056  */
2057 void blk_mq_stop_hw_queues(struct request_queue *q)
2058 {
2059 	struct blk_mq_hw_ctx *hctx;
2060 	int i;
2061 
2062 	queue_for_each_hw_ctx(q, hctx, i)
2063 		blk_mq_stop_hw_queue(hctx);
2064 }
2065 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2066 
2067 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2068 {
2069 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2070 
2071 	blk_mq_run_hw_queue(hctx, false);
2072 }
2073 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2074 
2075 void blk_mq_start_hw_queues(struct request_queue *q)
2076 {
2077 	struct blk_mq_hw_ctx *hctx;
2078 	int i;
2079 
2080 	queue_for_each_hw_ctx(q, hctx, i)
2081 		blk_mq_start_hw_queue(hctx);
2082 }
2083 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2084 
2085 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2086 {
2087 	if (!blk_mq_hctx_stopped(hctx))
2088 		return;
2089 
2090 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2091 	blk_mq_run_hw_queue(hctx, async);
2092 }
2093 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2094 
2095 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2096 {
2097 	struct blk_mq_hw_ctx *hctx;
2098 	int i;
2099 
2100 	queue_for_each_hw_ctx(q, hctx, i)
2101 		blk_mq_start_stopped_hw_queue(hctx, async);
2102 }
2103 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2104 
2105 static void blk_mq_run_work_fn(struct work_struct *work)
2106 {
2107 	struct blk_mq_hw_ctx *hctx;
2108 
2109 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2110 
2111 	/*
2112 	 * If we are stopped, don't run the queue.
2113 	 */
2114 	if (blk_mq_hctx_stopped(hctx))
2115 		return;
2116 
2117 	__blk_mq_run_hw_queue(hctx);
2118 }
2119 
2120 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2121 					    struct request *rq,
2122 					    bool at_head)
2123 {
2124 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2125 	enum hctx_type type = hctx->type;
2126 
2127 	lockdep_assert_held(&ctx->lock);
2128 
2129 	trace_block_rq_insert(rq);
2130 
2131 	if (at_head)
2132 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2133 	else
2134 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2135 }
2136 
2137 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2138 			     bool at_head)
2139 {
2140 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2141 
2142 	lockdep_assert_held(&ctx->lock);
2143 
2144 	__blk_mq_insert_req_list(hctx, rq, at_head);
2145 	blk_mq_hctx_mark_pending(hctx, ctx);
2146 }
2147 
2148 /**
2149  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2150  * @rq: Pointer to request to be inserted.
2151  * @at_head: true if the request should be inserted at the head of the list.
2152  * @run_queue: If we should run the hardware queue after inserting the request.
2153  *
2154  * Should only be used carefully, when the caller knows we want to
2155  * bypass a potential IO scheduler on the target device.
2156  */
2157 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2158 				  bool run_queue)
2159 {
2160 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2161 
2162 	spin_lock(&hctx->lock);
2163 	if (at_head)
2164 		list_add(&rq->queuelist, &hctx->dispatch);
2165 	else
2166 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2167 	spin_unlock(&hctx->lock);
2168 
2169 	if (run_queue)
2170 		blk_mq_run_hw_queue(hctx, false);
2171 }
2172 
2173 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2174 			    struct list_head *list)
2175 
2176 {
2177 	struct request *rq;
2178 	enum hctx_type type = hctx->type;
2179 
2180 	/*
2181 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2182 	 * offline now
2183 	 */
2184 	list_for_each_entry(rq, list, queuelist) {
2185 		BUG_ON(rq->mq_ctx != ctx);
2186 		trace_block_rq_insert(rq);
2187 	}
2188 
2189 	spin_lock(&ctx->lock);
2190 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2191 	blk_mq_hctx_mark_pending(hctx, ctx);
2192 	spin_unlock(&ctx->lock);
2193 }
2194 
2195 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2196 			      bool from_schedule)
2197 {
2198 	if (hctx->queue->mq_ops->commit_rqs) {
2199 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2200 		hctx->queue->mq_ops->commit_rqs(hctx);
2201 	}
2202 	*queued = 0;
2203 }
2204 
2205 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2206 {
2207 	struct blk_mq_hw_ctx *hctx = NULL;
2208 	struct request *rq;
2209 	int queued = 0;
2210 	int errors = 0;
2211 
2212 	while ((rq = rq_list_pop(&plug->mq_list))) {
2213 		bool last = rq_list_empty(plug->mq_list);
2214 		blk_status_t ret;
2215 
2216 		if (hctx != rq->mq_hctx) {
2217 			if (hctx)
2218 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2219 			hctx = rq->mq_hctx;
2220 		}
2221 
2222 		ret = blk_mq_request_issue_directly(rq, last);
2223 		switch (ret) {
2224 		case BLK_STS_OK:
2225 			queued++;
2226 			break;
2227 		case BLK_STS_RESOURCE:
2228 		case BLK_STS_DEV_RESOURCE:
2229 			blk_mq_request_bypass_insert(rq, false, last);
2230 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2231 			return;
2232 		default:
2233 			blk_mq_end_request(rq, ret);
2234 			errors++;
2235 			break;
2236 		}
2237 	}
2238 
2239 	/*
2240 	 * If we didn't flush the entire list, we could have told the driver
2241 	 * there was more coming, but that turned out to be a lie.
2242 	 */
2243 	if (errors)
2244 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2245 }
2246 
2247 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2248 {
2249 	struct blk_mq_hw_ctx *this_hctx;
2250 	struct blk_mq_ctx *this_ctx;
2251 	unsigned int depth;
2252 	LIST_HEAD(list);
2253 
2254 	if (rq_list_empty(plug->mq_list))
2255 		return;
2256 	plug->rq_count = 0;
2257 
2258 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2259 		blk_mq_plug_issue_direct(plug, false);
2260 		if (rq_list_empty(plug->mq_list))
2261 			return;
2262 	}
2263 
2264 	this_hctx = NULL;
2265 	this_ctx = NULL;
2266 	depth = 0;
2267 	do {
2268 		struct request *rq;
2269 
2270 		rq = rq_list_pop(&plug->mq_list);
2271 
2272 		if (!this_hctx) {
2273 			this_hctx = rq->mq_hctx;
2274 			this_ctx = rq->mq_ctx;
2275 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2276 			trace_block_unplug(this_hctx->queue, depth,
2277 						!from_schedule);
2278 			blk_mq_sched_insert_requests(this_hctx, this_ctx,
2279 						&list, from_schedule);
2280 			depth = 0;
2281 			this_hctx = rq->mq_hctx;
2282 			this_ctx = rq->mq_ctx;
2283 
2284 		}
2285 
2286 		list_add(&rq->queuelist, &list);
2287 		depth++;
2288 	} while (!rq_list_empty(plug->mq_list));
2289 
2290 	if (!list_empty(&list)) {
2291 		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2292 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2293 						from_schedule);
2294 	}
2295 }
2296 
2297 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2298 		unsigned int nr_segs)
2299 {
2300 	int err;
2301 
2302 	if (bio->bi_opf & REQ_RAHEAD)
2303 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2304 
2305 	rq->__sector = bio->bi_iter.bi_sector;
2306 	rq->write_hint = bio->bi_write_hint;
2307 	blk_rq_bio_prep(rq, bio, nr_segs);
2308 
2309 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2310 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2311 	WARN_ON_ONCE(err);
2312 
2313 	blk_account_io_start(rq);
2314 }
2315 
2316 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2317 					    struct request *rq, bool last)
2318 {
2319 	struct request_queue *q = rq->q;
2320 	struct blk_mq_queue_data bd = {
2321 		.rq = rq,
2322 		.last = last,
2323 	};
2324 	blk_status_t ret;
2325 
2326 	/*
2327 	 * For OK queue, we are done. For error, caller may kill it.
2328 	 * Any other error (busy), just add it to our list as we
2329 	 * previously would have done.
2330 	 */
2331 	ret = q->mq_ops->queue_rq(hctx, &bd);
2332 	switch (ret) {
2333 	case BLK_STS_OK:
2334 		blk_mq_update_dispatch_busy(hctx, false);
2335 		break;
2336 	case BLK_STS_RESOURCE:
2337 	case BLK_STS_DEV_RESOURCE:
2338 		blk_mq_update_dispatch_busy(hctx, true);
2339 		__blk_mq_requeue_request(rq);
2340 		break;
2341 	default:
2342 		blk_mq_update_dispatch_busy(hctx, false);
2343 		break;
2344 	}
2345 
2346 	return ret;
2347 }
2348 
2349 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2350 						struct request *rq,
2351 						bool bypass_insert, bool last)
2352 {
2353 	struct request_queue *q = rq->q;
2354 	bool run_queue = true;
2355 	int budget_token;
2356 
2357 	/*
2358 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2359 	 *
2360 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2361 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2362 	 * and avoid driver to try to dispatch again.
2363 	 */
2364 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2365 		run_queue = false;
2366 		bypass_insert = false;
2367 		goto insert;
2368 	}
2369 
2370 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2371 		goto insert;
2372 
2373 	budget_token = blk_mq_get_dispatch_budget(q);
2374 	if (budget_token < 0)
2375 		goto insert;
2376 
2377 	blk_mq_set_rq_budget_token(rq, budget_token);
2378 
2379 	if (!blk_mq_get_driver_tag(rq)) {
2380 		blk_mq_put_dispatch_budget(q, budget_token);
2381 		goto insert;
2382 	}
2383 
2384 	return __blk_mq_issue_directly(hctx, rq, last);
2385 insert:
2386 	if (bypass_insert)
2387 		return BLK_STS_RESOURCE;
2388 
2389 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2390 
2391 	return BLK_STS_OK;
2392 }
2393 
2394 /**
2395  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2396  * @hctx: Pointer of the associated hardware queue.
2397  * @rq: Pointer to request to be sent.
2398  *
2399  * If the device has enough resources to accept a new request now, send the
2400  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2401  * we can try send it another time in the future. Requests inserted at this
2402  * queue have higher priority.
2403  */
2404 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2405 		struct request *rq)
2406 {
2407 	blk_status_t ret;
2408 	int srcu_idx;
2409 
2410 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2411 
2412 	hctx_lock(hctx, &srcu_idx);
2413 
2414 	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2415 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2416 		blk_mq_request_bypass_insert(rq, false, true);
2417 	else if (ret != BLK_STS_OK)
2418 		blk_mq_end_request(rq, ret);
2419 
2420 	hctx_unlock(hctx, srcu_idx);
2421 }
2422 
2423 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2424 {
2425 	blk_status_t ret;
2426 	int srcu_idx;
2427 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2428 
2429 	hctx_lock(hctx, &srcu_idx);
2430 	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2431 	hctx_unlock(hctx, srcu_idx);
2432 
2433 	return ret;
2434 }
2435 
2436 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2437 		struct list_head *list)
2438 {
2439 	int queued = 0;
2440 	int errors = 0;
2441 
2442 	while (!list_empty(list)) {
2443 		blk_status_t ret;
2444 		struct request *rq = list_first_entry(list, struct request,
2445 				queuelist);
2446 
2447 		list_del_init(&rq->queuelist);
2448 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2449 		if (ret != BLK_STS_OK) {
2450 			if (ret == BLK_STS_RESOURCE ||
2451 					ret == BLK_STS_DEV_RESOURCE) {
2452 				blk_mq_request_bypass_insert(rq, false,
2453 							list_empty(list));
2454 				break;
2455 			}
2456 			blk_mq_end_request(rq, ret);
2457 			errors++;
2458 		} else
2459 			queued++;
2460 	}
2461 
2462 	/*
2463 	 * If we didn't flush the entire list, we could have told
2464 	 * the driver there was more coming, but that turned out to
2465 	 * be a lie.
2466 	 */
2467 	if ((!list_empty(list) || errors) &&
2468 	     hctx->queue->mq_ops->commit_rqs && queued)
2469 		hctx->queue->mq_ops->commit_rqs(hctx);
2470 }
2471 
2472 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2473 {
2474 	if (!plug->multiple_queues) {
2475 		struct request *nxt = rq_list_peek(&plug->mq_list);
2476 
2477 		if (nxt && nxt->q != rq->q)
2478 			plug->multiple_queues = true;
2479 	}
2480 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2481 		plug->has_elevator = true;
2482 	rq->rq_next = NULL;
2483 	rq_list_add(&plug->mq_list, rq);
2484 	plug->rq_count++;
2485 }
2486 
2487 /*
2488  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2489  * queues. This is important for md arrays to benefit from merging
2490  * requests.
2491  */
2492 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2493 {
2494 	if (plug->multiple_queues)
2495 		return BLK_MAX_REQUEST_COUNT * 2;
2496 	return BLK_MAX_REQUEST_COUNT;
2497 }
2498 
2499 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2500 				     struct bio *bio, unsigned int nr_segs,
2501 				     bool *same_queue_rq)
2502 {
2503 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2504 		if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2505 			return true;
2506 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2507 			return true;
2508 	}
2509 	return false;
2510 }
2511 
2512 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2513 					       struct blk_plug *plug,
2514 					       struct bio *bio,
2515 					       unsigned int nsegs,
2516 					       bool *same_queue_rq)
2517 {
2518 	struct blk_mq_alloc_data data = {
2519 		.q		= q,
2520 		.nr_tags	= 1,
2521 		.cmd_flags	= bio->bi_opf,
2522 	};
2523 	struct request *rq;
2524 
2525 	if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2526 		return NULL;
2527 
2528 	rq_qos_throttle(q, bio);
2529 
2530 	if (plug) {
2531 		data.nr_tags = plug->nr_ios;
2532 		plug->nr_ios = 1;
2533 		data.cached_rq = &plug->cached_rq;
2534 	}
2535 
2536 	rq = __blk_mq_alloc_requests(&data);
2537 	if (rq)
2538 		return rq;
2539 
2540 	rq_qos_cleanup(q, bio);
2541 	if (bio->bi_opf & REQ_NOWAIT)
2542 		bio_wouldblock_error(bio);
2543 
2544 	return NULL;
2545 }
2546 
2547 static inline bool blk_mq_can_use_cached_rq(struct request *rq, struct bio *bio)
2548 {
2549 	if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2550 		return false;
2551 
2552 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2553 		return false;
2554 
2555 	return true;
2556 }
2557 
2558 static inline struct request *blk_mq_get_request(struct request_queue *q,
2559 						 struct blk_plug *plug,
2560 						 struct bio *bio,
2561 						 unsigned int nsegs,
2562 						 bool *same_queue_rq)
2563 {
2564 	struct request *rq;
2565 	bool checked = false;
2566 
2567 	if (plug) {
2568 		rq = rq_list_peek(&plug->cached_rq);
2569 		if (rq && rq->q == q) {
2570 			if (unlikely(!submit_bio_checks(bio)))
2571 				return NULL;
2572 			if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2573 						same_queue_rq))
2574 				return NULL;
2575 			checked = true;
2576 			if (!blk_mq_can_use_cached_rq(rq, bio))
2577 				goto fallback;
2578 			rq->cmd_flags = bio->bi_opf;
2579 			plug->cached_rq = rq_list_next(rq);
2580 			INIT_LIST_HEAD(&rq->queuelist);
2581 			rq_qos_throttle(q, bio);
2582 			return rq;
2583 		}
2584 	}
2585 
2586 fallback:
2587 	if (unlikely(bio_queue_enter(bio)))
2588 		return NULL;
2589 	if (unlikely(!checked && !submit_bio_checks(bio)))
2590 		goto out_put;
2591 	rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2592 	if (rq)
2593 		return rq;
2594 out_put:
2595 	blk_queue_exit(q);
2596 	return NULL;
2597 }
2598 
2599 /**
2600  * blk_mq_submit_bio - Create and send a request to block device.
2601  * @bio: Bio pointer.
2602  *
2603  * Builds up a request structure from @q and @bio and send to the device. The
2604  * request may not be queued directly to hardware if:
2605  * * This request can be merged with another one
2606  * * We want to place request at plug queue for possible future merging
2607  * * There is an IO scheduler active at this queue
2608  *
2609  * It will not queue the request if there is an error with the bio, or at the
2610  * request creation.
2611  */
2612 void blk_mq_submit_bio(struct bio *bio)
2613 {
2614 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2615 	const int is_sync = op_is_sync(bio->bi_opf);
2616 	struct request *rq;
2617 	struct blk_plug *plug;
2618 	bool same_queue_rq = false;
2619 	unsigned int nr_segs = 1;
2620 	blk_status_t ret;
2621 
2622 	if (unlikely(!blk_crypto_bio_prep(&bio)))
2623 		return;
2624 
2625 	blk_queue_bounce(q, &bio);
2626 	if (blk_may_split(q, bio))
2627 		__blk_queue_split(q, &bio, &nr_segs);
2628 
2629 	if (!bio_integrity_prep(bio))
2630 		return;
2631 
2632 	plug = blk_mq_plug(q, bio);
2633 	rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2634 	if (unlikely(!rq))
2635 		return;
2636 
2637 	trace_block_getrq(bio);
2638 
2639 	rq_qos_track(q, rq, bio);
2640 
2641 	blk_mq_bio_to_request(rq, bio, nr_segs);
2642 
2643 	ret = blk_crypto_init_request(rq);
2644 	if (ret != BLK_STS_OK) {
2645 		bio->bi_status = ret;
2646 		bio_endio(bio);
2647 		blk_mq_free_request(rq);
2648 		return;
2649 	}
2650 
2651 	if (op_is_flush(bio->bi_opf)) {
2652 		blk_insert_flush(rq);
2653 		return;
2654 	}
2655 
2656 	if (plug && (q->nr_hw_queues == 1 ||
2657 	    blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2658 	    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2659 		/*
2660 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2661 		 * we know the driver uses bd->last in a smart fashion.
2662 		 *
2663 		 * Use normal plugging if this disk is slow HDD, as sequential
2664 		 * IO may benefit a lot from plug merging.
2665 		 */
2666 		unsigned int request_count = plug->rq_count;
2667 		struct request *last = NULL;
2668 
2669 		if (!request_count) {
2670 			trace_block_plug(q);
2671 		} else if (!blk_queue_nomerges(q)) {
2672 			last = rq_list_peek(&plug->mq_list);
2673 			if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2674 				last = NULL;
2675 		}
2676 
2677 		if (request_count >= blk_plug_max_rq_count(plug) || last) {
2678 			blk_mq_flush_plug_list(plug, false);
2679 			trace_block_plug(q);
2680 		}
2681 
2682 		blk_add_rq_to_plug(plug, rq);
2683 	} else if (rq->rq_flags & RQF_ELV) {
2684 		/* Insert the request at the IO scheduler queue */
2685 		blk_mq_sched_insert_request(rq, false, true, true);
2686 	} else if (plug && !blk_queue_nomerges(q)) {
2687 		struct request *next_rq = NULL;
2688 
2689 		/*
2690 		 * We do limited plugging. If the bio can be merged, do that.
2691 		 * Otherwise the existing request in the plug list will be
2692 		 * issued. So the plug list will have one request at most
2693 		 * The plug list might get flushed before this. If that happens,
2694 		 * the plug list is empty, and same_queue_rq is invalid.
2695 		 */
2696 		if (same_queue_rq) {
2697 			next_rq = rq_list_pop(&plug->mq_list);
2698 			plug->rq_count--;
2699 		}
2700 		blk_add_rq_to_plug(plug, rq);
2701 		trace_block_plug(q);
2702 
2703 		if (next_rq) {
2704 			trace_block_unplug(q, 1, true);
2705 			blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2706 		}
2707 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2708 		   !rq->mq_hctx->dispatch_busy) {
2709 		/*
2710 		 * There is no scheduler and we can try to send directly
2711 		 * to the hardware.
2712 		 */
2713 		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2714 	} else {
2715 		/* Default case. */
2716 		blk_mq_sched_insert_request(rq, false, true, true);
2717 	}
2718 }
2719 
2720 static size_t order_to_size(unsigned int order)
2721 {
2722 	return (size_t)PAGE_SIZE << order;
2723 }
2724 
2725 /* called before freeing request pool in @tags */
2726 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2727 				    struct blk_mq_tags *tags)
2728 {
2729 	struct page *page;
2730 	unsigned long flags;
2731 
2732 	/* There is no need to clear a driver tags own mapping */
2733 	if (drv_tags == tags)
2734 		return;
2735 
2736 	list_for_each_entry(page, &tags->page_list, lru) {
2737 		unsigned long start = (unsigned long)page_address(page);
2738 		unsigned long end = start + order_to_size(page->private);
2739 		int i;
2740 
2741 		for (i = 0; i < drv_tags->nr_tags; i++) {
2742 			struct request *rq = drv_tags->rqs[i];
2743 			unsigned long rq_addr = (unsigned long)rq;
2744 
2745 			if (rq_addr >= start && rq_addr < end) {
2746 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2747 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2748 			}
2749 		}
2750 	}
2751 
2752 	/*
2753 	 * Wait until all pending iteration is done.
2754 	 *
2755 	 * Request reference is cleared and it is guaranteed to be observed
2756 	 * after the ->lock is released.
2757 	 */
2758 	spin_lock_irqsave(&drv_tags->lock, flags);
2759 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2760 }
2761 
2762 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2763 		     unsigned int hctx_idx)
2764 {
2765 	struct blk_mq_tags *drv_tags;
2766 	struct page *page;
2767 
2768 	if (blk_mq_is_shared_tags(set->flags))
2769 		drv_tags = set->shared_tags;
2770 	else
2771 		drv_tags = set->tags[hctx_idx];
2772 
2773 	if (tags->static_rqs && set->ops->exit_request) {
2774 		int i;
2775 
2776 		for (i = 0; i < tags->nr_tags; i++) {
2777 			struct request *rq = tags->static_rqs[i];
2778 
2779 			if (!rq)
2780 				continue;
2781 			set->ops->exit_request(set, rq, hctx_idx);
2782 			tags->static_rqs[i] = NULL;
2783 		}
2784 	}
2785 
2786 	blk_mq_clear_rq_mapping(drv_tags, tags);
2787 
2788 	while (!list_empty(&tags->page_list)) {
2789 		page = list_first_entry(&tags->page_list, struct page, lru);
2790 		list_del_init(&page->lru);
2791 		/*
2792 		 * Remove kmemleak object previously allocated in
2793 		 * blk_mq_alloc_rqs().
2794 		 */
2795 		kmemleak_free(page_address(page));
2796 		__free_pages(page, page->private);
2797 	}
2798 }
2799 
2800 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2801 {
2802 	kfree(tags->rqs);
2803 	tags->rqs = NULL;
2804 	kfree(tags->static_rqs);
2805 	tags->static_rqs = NULL;
2806 
2807 	blk_mq_free_tags(tags);
2808 }
2809 
2810 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2811 					       unsigned int hctx_idx,
2812 					       unsigned int nr_tags,
2813 					       unsigned int reserved_tags)
2814 {
2815 	struct blk_mq_tags *tags;
2816 	int node;
2817 
2818 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2819 	if (node == NUMA_NO_NODE)
2820 		node = set->numa_node;
2821 
2822 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2823 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2824 	if (!tags)
2825 		return NULL;
2826 
2827 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2828 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2829 				 node);
2830 	if (!tags->rqs) {
2831 		blk_mq_free_tags(tags);
2832 		return NULL;
2833 	}
2834 
2835 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2836 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2837 					node);
2838 	if (!tags->static_rqs) {
2839 		kfree(tags->rqs);
2840 		blk_mq_free_tags(tags);
2841 		return NULL;
2842 	}
2843 
2844 	return tags;
2845 }
2846 
2847 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2848 			       unsigned int hctx_idx, int node)
2849 {
2850 	int ret;
2851 
2852 	if (set->ops->init_request) {
2853 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2854 		if (ret)
2855 			return ret;
2856 	}
2857 
2858 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2859 	return 0;
2860 }
2861 
2862 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2863 			    struct blk_mq_tags *tags,
2864 			    unsigned int hctx_idx, unsigned int depth)
2865 {
2866 	unsigned int i, j, entries_per_page, max_order = 4;
2867 	size_t rq_size, left;
2868 	int node;
2869 
2870 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2871 	if (node == NUMA_NO_NODE)
2872 		node = set->numa_node;
2873 
2874 	INIT_LIST_HEAD(&tags->page_list);
2875 
2876 	/*
2877 	 * rq_size is the size of the request plus driver payload, rounded
2878 	 * to the cacheline size
2879 	 */
2880 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2881 				cache_line_size());
2882 	left = rq_size * depth;
2883 
2884 	for (i = 0; i < depth; ) {
2885 		int this_order = max_order;
2886 		struct page *page;
2887 		int to_do;
2888 		void *p;
2889 
2890 		while (this_order && left < order_to_size(this_order - 1))
2891 			this_order--;
2892 
2893 		do {
2894 			page = alloc_pages_node(node,
2895 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2896 				this_order);
2897 			if (page)
2898 				break;
2899 			if (!this_order--)
2900 				break;
2901 			if (order_to_size(this_order) < rq_size)
2902 				break;
2903 		} while (1);
2904 
2905 		if (!page)
2906 			goto fail;
2907 
2908 		page->private = this_order;
2909 		list_add_tail(&page->lru, &tags->page_list);
2910 
2911 		p = page_address(page);
2912 		/*
2913 		 * Allow kmemleak to scan these pages as they contain pointers
2914 		 * to additional allocations like via ops->init_request().
2915 		 */
2916 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2917 		entries_per_page = order_to_size(this_order) / rq_size;
2918 		to_do = min(entries_per_page, depth - i);
2919 		left -= to_do * rq_size;
2920 		for (j = 0; j < to_do; j++) {
2921 			struct request *rq = p;
2922 
2923 			tags->static_rqs[i] = rq;
2924 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2925 				tags->static_rqs[i] = NULL;
2926 				goto fail;
2927 			}
2928 
2929 			p += rq_size;
2930 			i++;
2931 		}
2932 	}
2933 	return 0;
2934 
2935 fail:
2936 	blk_mq_free_rqs(set, tags, hctx_idx);
2937 	return -ENOMEM;
2938 }
2939 
2940 struct rq_iter_data {
2941 	struct blk_mq_hw_ctx *hctx;
2942 	bool has_rq;
2943 };
2944 
2945 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2946 {
2947 	struct rq_iter_data *iter_data = data;
2948 
2949 	if (rq->mq_hctx != iter_data->hctx)
2950 		return true;
2951 	iter_data->has_rq = true;
2952 	return false;
2953 }
2954 
2955 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2956 {
2957 	struct blk_mq_tags *tags = hctx->sched_tags ?
2958 			hctx->sched_tags : hctx->tags;
2959 	struct rq_iter_data data = {
2960 		.hctx	= hctx,
2961 	};
2962 
2963 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2964 	return data.has_rq;
2965 }
2966 
2967 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2968 		struct blk_mq_hw_ctx *hctx)
2969 {
2970 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2971 		return false;
2972 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2973 		return false;
2974 	return true;
2975 }
2976 
2977 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2978 {
2979 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2980 			struct blk_mq_hw_ctx, cpuhp_online);
2981 
2982 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2983 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2984 		return 0;
2985 
2986 	/*
2987 	 * Prevent new request from being allocated on the current hctx.
2988 	 *
2989 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2990 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2991 	 * seen once we return from the tag allocator.
2992 	 */
2993 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2994 	smp_mb__after_atomic();
2995 
2996 	/*
2997 	 * Try to grab a reference to the queue and wait for any outstanding
2998 	 * requests.  If we could not grab a reference the queue has been
2999 	 * frozen and there are no requests.
3000 	 */
3001 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3002 		while (blk_mq_hctx_has_requests(hctx))
3003 			msleep(5);
3004 		percpu_ref_put(&hctx->queue->q_usage_counter);
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3011 {
3012 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3013 			struct blk_mq_hw_ctx, cpuhp_online);
3014 
3015 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3016 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3017 	return 0;
3018 }
3019 
3020 /*
3021  * 'cpu' is going away. splice any existing rq_list entries from this
3022  * software queue to the hw queue dispatch list, and ensure that it
3023  * gets run.
3024  */
3025 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3026 {
3027 	struct blk_mq_hw_ctx *hctx;
3028 	struct blk_mq_ctx *ctx;
3029 	LIST_HEAD(tmp);
3030 	enum hctx_type type;
3031 
3032 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3033 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3034 		return 0;
3035 
3036 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3037 	type = hctx->type;
3038 
3039 	spin_lock(&ctx->lock);
3040 	if (!list_empty(&ctx->rq_lists[type])) {
3041 		list_splice_init(&ctx->rq_lists[type], &tmp);
3042 		blk_mq_hctx_clear_pending(hctx, ctx);
3043 	}
3044 	spin_unlock(&ctx->lock);
3045 
3046 	if (list_empty(&tmp))
3047 		return 0;
3048 
3049 	spin_lock(&hctx->lock);
3050 	list_splice_tail_init(&tmp, &hctx->dispatch);
3051 	spin_unlock(&hctx->lock);
3052 
3053 	blk_mq_run_hw_queue(hctx, true);
3054 	return 0;
3055 }
3056 
3057 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3058 {
3059 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3060 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3061 						    &hctx->cpuhp_online);
3062 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3063 					    &hctx->cpuhp_dead);
3064 }
3065 
3066 /*
3067  * Before freeing hw queue, clearing the flush request reference in
3068  * tags->rqs[] for avoiding potential UAF.
3069  */
3070 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3071 		unsigned int queue_depth, struct request *flush_rq)
3072 {
3073 	int i;
3074 	unsigned long flags;
3075 
3076 	/* The hw queue may not be mapped yet */
3077 	if (!tags)
3078 		return;
3079 
3080 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3081 
3082 	for (i = 0; i < queue_depth; i++)
3083 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3084 
3085 	/*
3086 	 * Wait until all pending iteration is done.
3087 	 *
3088 	 * Request reference is cleared and it is guaranteed to be observed
3089 	 * after the ->lock is released.
3090 	 */
3091 	spin_lock_irqsave(&tags->lock, flags);
3092 	spin_unlock_irqrestore(&tags->lock, flags);
3093 }
3094 
3095 /* hctx->ctxs will be freed in queue's release handler */
3096 static void blk_mq_exit_hctx(struct request_queue *q,
3097 		struct blk_mq_tag_set *set,
3098 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3099 {
3100 	struct request *flush_rq = hctx->fq->flush_rq;
3101 
3102 	if (blk_mq_hw_queue_mapped(hctx))
3103 		blk_mq_tag_idle(hctx);
3104 
3105 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3106 			set->queue_depth, flush_rq);
3107 	if (set->ops->exit_request)
3108 		set->ops->exit_request(set, flush_rq, hctx_idx);
3109 
3110 	if (set->ops->exit_hctx)
3111 		set->ops->exit_hctx(hctx, hctx_idx);
3112 
3113 	blk_mq_remove_cpuhp(hctx);
3114 
3115 	spin_lock(&q->unused_hctx_lock);
3116 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3117 	spin_unlock(&q->unused_hctx_lock);
3118 }
3119 
3120 static void blk_mq_exit_hw_queues(struct request_queue *q,
3121 		struct blk_mq_tag_set *set, int nr_queue)
3122 {
3123 	struct blk_mq_hw_ctx *hctx;
3124 	unsigned int i;
3125 
3126 	queue_for_each_hw_ctx(q, hctx, i) {
3127 		if (i == nr_queue)
3128 			break;
3129 		blk_mq_debugfs_unregister_hctx(hctx);
3130 		blk_mq_exit_hctx(q, set, hctx, i);
3131 	}
3132 }
3133 
3134 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3135 {
3136 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3137 
3138 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3139 			   __alignof__(struct blk_mq_hw_ctx)) !=
3140 		     sizeof(struct blk_mq_hw_ctx));
3141 
3142 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
3143 		hw_ctx_size += sizeof(struct srcu_struct);
3144 
3145 	return hw_ctx_size;
3146 }
3147 
3148 static int blk_mq_init_hctx(struct request_queue *q,
3149 		struct blk_mq_tag_set *set,
3150 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3151 {
3152 	hctx->queue_num = hctx_idx;
3153 
3154 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3155 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3156 				&hctx->cpuhp_online);
3157 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3158 
3159 	hctx->tags = set->tags[hctx_idx];
3160 
3161 	if (set->ops->init_hctx &&
3162 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3163 		goto unregister_cpu_notifier;
3164 
3165 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3166 				hctx->numa_node))
3167 		goto exit_hctx;
3168 	return 0;
3169 
3170  exit_hctx:
3171 	if (set->ops->exit_hctx)
3172 		set->ops->exit_hctx(hctx, hctx_idx);
3173  unregister_cpu_notifier:
3174 	blk_mq_remove_cpuhp(hctx);
3175 	return -1;
3176 }
3177 
3178 static struct blk_mq_hw_ctx *
3179 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3180 		int node)
3181 {
3182 	struct blk_mq_hw_ctx *hctx;
3183 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3184 
3185 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3186 	if (!hctx)
3187 		goto fail_alloc_hctx;
3188 
3189 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3190 		goto free_hctx;
3191 
3192 	atomic_set(&hctx->nr_active, 0);
3193 	if (node == NUMA_NO_NODE)
3194 		node = set->numa_node;
3195 	hctx->numa_node = node;
3196 
3197 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3198 	spin_lock_init(&hctx->lock);
3199 	INIT_LIST_HEAD(&hctx->dispatch);
3200 	hctx->queue = q;
3201 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3202 
3203 	INIT_LIST_HEAD(&hctx->hctx_list);
3204 
3205 	/*
3206 	 * Allocate space for all possible cpus to avoid allocation at
3207 	 * runtime
3208 	 */
3209 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3210 			gfp, node);
3211 	if (!hctx->ctxs)
3212 		goto free_cpumask;
3213 
3214 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3215 				gfp, node, false, false))
3216 		goto free_ctxs;
3217 	hctx->nr_ctx = 0;
3218 
3219 	spin_lock_init(&hctx->dispatch_wait_lock);
3220 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3221 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3222 
3223 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3224 	if (!hctx->fq)
3225 		goto free_bitmap;
3226 
3227 	if (hctx->flags & BLK_MQ_F_BLOCKING)
3228 		init_srcu_struct(hctx->srcu);
3229 	blk_mq_hctx_kobj_init(hctx);
3230 
3231 	return hctx;
3232 
3233  free_bitmap:
3234 	sbitmap_free(&hctx->ctx_map);
3235  free_ctxs:
3236 	kfree(hctx->ctxs);
3237  free_cpumask:
3238 	free_cpumask_var(hctx->cpumask);
3239  free_hctx:
3240 	kfree(hctx);
3241  fail_alloc_hctx:
3242 	return NULL;
3243 }
3244 
3245 static void blk_mq_init_cpu_queues(struct request_queue *q,
3246 				   unsigned int nr_hw_queues)
3247 {
3248 	struct blk_mq_tag_set *set = q->tag_set;
3249 	unsigned int i, j;
3250 
3251 	for_each_possible_cpu(i) {
3252 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3253 		struct blk_mq_hw_ctx *hctx;
3254 		int k;
3255 
3256 		__ctx->cpu = i;
3257 		spin_lock_init(&__ctx->lock);
3258 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3259 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3260 
3261 		__ctx->queue = q;
3262 
3263 		/*
3264 		 * Set local node, IFF we have more than one hw queue. If
3265 		 * not, we remain on the home node of the device
3266 		 */
3267 		for (j = 0; j < set->nr_maps; j++) {
3268 			hctx = blk_mq_map_queue_type(q, j, i);
3269 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3270 				hctx->numa_node = cpu_to_node(i);
3271 		}
3272 	}
3273 }
3274 
3275 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3276 					     unsigned int hctx_idx,
3277 					     unsigned int depth)
3278 {
3279 	struct blk_mq_tags *tags;
3280 	int ret;
3281 
3282 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3283 	if (!tags)
3284 		return NULL;
3285 
3286 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3287 	if (ret) {
3288 		blk_mq_free_rq_map(tags);
3289 		return NULL;
3290 	}
3291 
3292 	return tags;
3293 }
3294 
3295 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3296 				       int hctx_idx)
3297 {
3298 	if (blk_mq_is_shared_tags(set->flags)) {
3299 		set->tags[hctx_idx] = set->shared_tags;
3300 
3301 		return true;
3302 	}
3303 
3304 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3305 						       set->queue_depth);
3306 
3307 	return set->tags[hctx_idx];
3308 }
3309 
3310 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3311 			     struct blk_mq_tags *tags,
3312 			     unsigned int hctx_idx)
3313 {
3314 	if (tags) {
3315 		blk_mq_free_rqs(set, tags, hctx_idx);
3316 		blk_mq_free_rq_map(tags);
3317 	}
3318 }
3319 
3320 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3321 				      unsigned int hctx_idx)
3322 {
3323 	if (!blk_mq_is_shared_tags(set->flags))
3324 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3325 
3326 	set->tags[hctx_idx] = NULL;
3327 }
3328 
3329 static void blk_mq_map_swqueue(struct request_queue *q)
3330 {
3331 	unsigned int i, j, hctx_idx;
3332 	struct blk_mq_hw_ctx *hctx;
3333 	struct blk_mq_ctx *ctx;
3334 	struct blk_mq_tag_set *set = q->tag_set;
3335 
3336 	queue_for_each_hw_ctx(q, hctx, i) {
3337 		cpumask_clear(hctx->cpumask);
3338 		hctx->nr_ctx = 0;
3339 		hctx->dispatch_from = NULL;
3340 	}
3341 
3342 	/*
3343 	 * Map software to hardware queues.
3344 	 *
3345 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3346 	 */
3347 	for_each_possible_cpu(i) {
3348 
3349 		ctx = per_cpu_ptr(q->queue_ctx, i);
3350 		for (j = 0; j < set->nr_maps; j++) {
3351 			if (!set->map[j].nr_queues) {
3352 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3353 						HCTX_TYPE_DEFAULT, i);
3354 				continue;
3355 			}
3356 			hctx_idx = set->map[j].mq_map[i];
3357 			/* unmapped hw queue can be remapped after CPU topo changed */
3358 			if (!set->tags[hctx_idx] &&
3359 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3360 				/*
3361 				 * If tags initialization fail for some hctx,
3362 				 * that hctx won't be brought online.  In this
3363 				 * case, remap the current ctx to hctx[0] which
3364 				 * is guaranteed to always have tags allocated
3365 				 */
3366 				set->map[j].mq_map[i] = 0;
3367 			}
3368 
3369 			hctx = blk_mq_map_queue_type(q, j, i);
3370 			ctx->hctxs[j] = hctx;
3371 			/*
3372 			 * If the CPU is already set in the mask, then we've
3373 			 * mapped this one already. This can happen if
3374 			 * devices share queues across queue maps.
3375 			 */
3376 			if (cpumask_test_cpu(i, hctx->cpumask))
3377 				continue;
3378 
3379 			cpumask_set_cpu(i, hctx->cpumask);
3380 			hctx->type = j;
3381 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3382 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3383 
3384 			/*
3385 			 * If the nr_ctx type overflows, we have exceeded the
3386 			 * amount of sw queues we can support.
3387 			 */
3388 			BUG_ON(!hctx->nr_ctx);
3389 		}
3390 
3391 		for (; j < HCTX_MAX_TYPES; j++)
3392 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3393 					HCTX_TYPE_DEFAULT, i);
3394 	}
3395 
3396 	queue_for_each_hw_ctx(q, hctx, i) {
3397 		/*
3398 		 * If no software queues are mapped to this hardware queue,
3399 		 * disable it and free the request entries.
3400 		 */
3401 		if (!hctx->nr_ctx) {
3402 			/* Never unmap queue 0.  We need it as a
3403 			 * fallback in case of a new remap fails
3404 			 * allocation
3405 			 */
3406 			if (i)
3407 				__blk_mq_free_map_and_rqs(set, i);
3408 
3409 			hctx->tags = NULL;
3410 			continue;
3411 		}
3412 
3413 		hctx->tags = set->tags[i];
3414 		WARN_ON(!hctx->tags);
3415 
3416 		/*
3417 		 * Set the map size to the number of mapped software queues.
3418 		 * This is more accurate and more efficient than looping
3419 		 * over all possibly mapped software queues.
3420 		 */
3421 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3422 
3423 		/*
3424 		 * Initialize batch roundrobin counts
3425 		 */
3426 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3427 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3428 	}
3429 }
3430 
3431 /*
3432  * Caller needs to ensure that we're either frozen/quiesced, or that
3433  * the queue isn't live yet.
3434  */
3435 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3436 {
3437 	struct blk_mq_hw_ctx *hctx;
3438 	int i;
3439 
3440 	queue_for_each_hw_ctx(q, hctx, i) {
3441 		if (shared) {
3442 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3443 		} else {
3444 			blk_mq_tag_idle(hctx);
3445 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3446 		}
3447 	}
3448 }
3449 
3450 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3451 					 bool shared)
3452 {
3453 	struct request_queue *q;
3454 
3455 	lockdep_assert_held(&set->tag_list_lock);
3456 
3457 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3458 		blk_mq_freeze_queue(q);
3459 		queue_set_hctx_shared(q, shared);
3460 		blk_mq_unfreeze_queue(q);
3461 	}
3462 }
3463 
3464 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3465 {
3466 	struct blk_mq_tag_set *set = q->tag_set;
3467 
3468 	mutex_lock(&set->tag_list_lock);
3469 	list_del(&q->tag_set_list);
3470 	if (list_is_singular(&set->tag_list)) {
3471 		/* just transitioned to unshared */
3472 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3473 		/* update existing queue */
3474 		blk_mq_update_tag_set_shared(set, false);
3475 	}
3476 	mutex_unlock(&set->tag_list_lock);
3477 	INIT_LIST_HEAD(&q->tag_set_list);
3478 }
3479 
3480 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3481 				     struct request_queue *q)
3482 {
3483 	mutex_lock(&set->tag_list_lock);
3484 
3485 	/*
3486 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3487 	 */
3488 	if (!list_empty(&set->tag_list) &&
3489 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3490 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3491 		/* update existing queue */
3492 		blk_mq_update_tag_set_shared(set, true);
3493 	}
3494 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3495 		queue_set_hctx_shared(q, true);
3496 	list_add_tail(&q->tag_set_list, &set->tag_list);
3497 
3498 	mutex_unlock(&set->tag_list_lock);
3499 }
3500 
3501 /* All allocations will be freed in release handler of q->mq_kobj */
3502 static int blk_mq_alloc_ctxs(struct request_queue *q)
3503 {
3504 	struct blk_mq_ctxs *ctxs;
3505 	int cpu;
3506 
3507 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3508 	if (!ctxs)
3509 		return -ENOMEM;
3510 
3511 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3512 	if (!ctxs->queue_ctx)
3513 		goto fail;
3514 
3515 	for_each_possible_cpu(cpu) {
3516 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3517 		ctx->ctxs = ctxs;
3518 	}
3519 
3520 	q->mq_kobj = &ctxs->kobj;
3521 	q->queue_ctx = ctxs->queue_ctx;
3522 
3523 	return 0;
3524  fail:
3525 	kfree(ctxs);
3526 	return -ENOMEM;
3527 }
3528 
3529 /*
3530  * It is the actual release handler for mq, but we do it from
3531  * request queue's release handler for avoiding use-after-free
3532  * and headache because q->mq_kobj shouldn't have been introduced,
3533  * but we can't group ctx/kctx kobj without it.
3534  */
3535 void blk_mq_release(struct request_queue *q)
3536 {
3537 	struct blk_mq_hw_ctx *hctx, *next;
3538 	int i;
3539 
3540 	queue_for_each_hw_ctx(q, hctx, i)
3541 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3542 
3543 	/* all hctx are in .unused_hctx_list now */
3544 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3545 		list_del_init(&hctx->hctx_list);
3546 		kobject_put(&hctx->kobj);
3547 	}
3548 
3549 	kfree(q->queue_hw_ctx);
3550 
3551 	/*
3552 	 * release .mq_kobj and sw queue's kobject now because
3553 	 * both share lifetime with request queue.
3554 	 */
3555 	blk_mq_sysfs_deinit(q);
3556 }
3557 
3558 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3559 		void *queuedata)
3560 {
3561 	struct request_queue *q;
3562 	int ret;
3563 
3564 	q = blk_alloc_queue(set->numa_node);
3565 	if (!q)
3566 		return ERR_PTR(-ENOMEM);
3567 	q->queuedata = queuedata;
3568 	ret = blk_mq_init_allocated_queue(set, q);
3569 	if (ret) {
3570 		blk_cleanup_queue(q);
3571 		return ERR_PTR(ret);
3572 	}
3573 	return q;
3574 }
3575 
3576 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3577 {
3578 	return blk_mq_init_queue_data(set, NULL);
3579 }
3580 EXPORT_SYMBOL(blk_mq_init_queue);
3581 
3582 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3583 		struct lock_class_key *lkclass)
3584 {
3585 	struct request_queue *q;
3586 	struct gendisk *disk;
3587 
3588 	q = blk_mq_init_queue_data(set, queuedata);
3589 	if (IS_ERR(q))
3590 		return ERR_CAST(q);
3591 
3592 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3593 	if (!disk) {
3594 		blk_cleanup_queue(q);
3595 		return ERR_PTR(-ENOMEM);
3596 	}
3597 	return disk;
3598 }
3599 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3600 
3601 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3602 		struct blk_mq_tag_set *set, struct request_queue *q,
3603 		int hctx_idx, int node)
3604 {
3605 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3606 
3607 	/* reuse dead hctx first */
3608 	spin_lock(&q->unused_hctx_lock);
3609 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3610 		if (tmp->numa_node == node) {
3611 			hctx = tmp;
3612 			break;
3613 		}
3614 	}
3615 	if (hctx)
3616 		list_del_init(&hctx->hctx_list);
3617 	spin_unlock(&q->unused_hctx_lock);
3618 
3619 	if (!hctx)
3620 		hctx = blk_mq_alloc_hctx(q, set, node);
3621 	if (!hctx)
3622 		goto fail;
3623 
3624 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3625 		goto free_hctx;
3626 
3627 	return hctx;
3628 
3629  free_hctx:
3630 	kobject_put(&hctx->kobj);
3631  fail:
3632 	return NULL;
3633 }
3634 
3635 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3636 						struct request_queue *q)
3637 {
3638 	int i, j, end;
3639 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3640 
3641 	if (q->nr_hw_queues < set->nr_hw_queues) {
3642 		struct blk_mq_hw_ctx **new_hctxs;
3643 
3644 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3645 				       sizeof(*new_hctxs), GFP_KERNEL,
3646 				       set->numa_node);
3647 		if (!new_hctxs)
3648 			return;
3649 		if (hctxs)
3650 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3651 			       sizeof(*hctxs));
3652 		q->queue_hw_ctx = new_hctxs;
3653 		kfree(hctxs);
3654 		hctxs = new_hctxs;
3655 	}
3656 
3657 	/* protect against switching io scheduler  */
3658 	mutex_lock(&q->sysfs_lock);
3659 	for (i = 0; i < set->nr_hw_queues; i++) {
3660 		int node;
3661 		struct blk_mq_hw_ctx *hctx;
3662 
3663 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3664 		/*
3665 		 * If the hw queue has been mapped to another numa node,
3666 		 * we need to realloc the hctx. If allocation fails, fallback
3667 		 * to use the previous one.
3668 		 */
3669 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3670 			continue;
3671 
3672 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3673 		if (hctx) {
3674 			if (hctxs[i])
3675 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3676 			hctxs[i] = hctx;
3677 		} else {
3678 			if (hctxs[i])
3679 				pr_warn("Allocate new hctx on node %d fails,\
3680 						fallback to previous one on node %d\n",
3681 						node, hctxs[i]->numa_node);
3682 			else
3683 				break;
3684 		}
3685 	}
3686 	/*
3687 	 * Increasing nr_hw_queues fails. Free the newly allocated
3688 	 * hctxs and keep the previous q->nr_hw_queues.
3689 	 */
3690 	if (i != set->nr_hw_queues) {
3691 		j = q->nr_hw_queues;
3692 		end = i;
3693 	} else {
3694 		j = i;
3695 		end = q->nr_hw_queues;
3696 		q->nr_hw_queues = set->nr_hw_queues;
3697 	}
3698 
3699 	for (; j < end; j++) {
3700 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3701 
3702 		if (hctx) {
3703 			blk_mq_exit_hctx(q, set, hctx, j);
3704 			hctxs[j] = NULL;
3705 		}
3706 	}
3707 	mutex_unlock(&q->sysfs_lock);
3708 }
3709 
3710 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3711 		struct request_queue *q)
3712 {
3713 	/* mark the queue as mq asap */
3714 	q->mq_ops = set->ops;
3715 
3716 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3717 					     blk_mq_poll_stats_bkt,
3718 					     BLK_MQ_POLL_STATS_BKTS, q);
3719 	if (!q->poll_cb)
3720 		goto err_exit;
3721 
3722 	if (blk_mq_alloc_ctxs(q))
3723 		goto err_poll;
3724 
3725 	/* init q->mq_kobj and sw queues' kobjects */
3726 	blk_mq_sysfs_init(q);
3727 
3728 	INIT_LIST_HEAD(&q->unused_hctx_list);
3729 	spin_lock_init(&q->unused_hctx_lock);
3730 
3731 	blk_mq_realloc_hw_ctxs(set, q);
3732 	if (!q->nr_hw_queues)
3733 		goto err_hctxs;
3734 
3735 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3736 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3737 
3738 	q->tag_set = set;
3739 
3740 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3741 	if (set->nr_maps > HCTX_TYPE_POLL &&
3742 	    set->map[HCTX_TYPE_POLL].nr_queues)
3743 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3744 
3745 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3746 	INIT_LIST_HEAD(&q->requeue_list);
3747 	spin_lock_init(&q->requeue_lock);
3748 
3749 	q->nr_requests = set->queue_depth;
3750 
3751 	/*
3752 	 * Default to classic polling
3753 	 */
3754 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3755 
3756 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3757 	blk_mq_add_queue_tag_set(set, q);
3758 	blk_mq_map_swqueue(q);
3759 	return 0;
3760 
3761 err_hctxs:
3762 	kfree(q->queue_hw_ctx);
3763 	q->nr_hw_queues = 0;
3764 	blk_mq_sysfs_deinit(q);
3765 err_poll:
3766 	blk_stat_free_callback(q->poll_cb);
3767 	q->poll_cb = NULL;
3768 err_exit:
3769 	q->mq_ops = NULL;
3770 	return -ENOMEM;
3771 }
3772 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3773 
3774 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3775 void blk_mq_exit_queue(struct request_queue *q)
3776 {
3777 	struct blk_mq_tag_set *set = q->tag_set;
3778 
3779 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3780 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3781 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3782 	blk_mq_del_queue_tag_set(q);
3783 }
3784 
3785 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3786 {
3787 	int i;
3788 
3789 	if (blk_mq_is_shared_tags(set->flags)) {
3790 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3791 						BLK_MQ_NO_HCTX_IDX,
3792 						set->queue_depth);
3793 		if (!set->shared_tags)
3794 			return -ENOMEM;
3795 	}
3796 
3797 	for (i = 0; i < set->nr_hw_queues; i++) {
3798 		if (!__blk_mq_alloc_map_and_rqs(set, i))
3799 			goto out_unwind;
3800 		cond_resched();
3801 	}
3802 
3803 	return 0;
3804 
3805 out_unwind:
3806 	while (--i >= 0)
3807 		__blk_mq_free_map_and_rqs(set, i);
3808 
3809 	if (blk_mq_is_shared_tags(set->flags)) {
3810 		blk_mq_free_map_and_rqs(set, set->shared_tags,
3811 					BLK_MQ_NO_HCTX_IDX);
3812 	}
3813 
3814 	return -ENOMEM;
3815 }
3816 
3817 /*
3818  * Allocate the request maps associated with this tag_set. Note that this
3819  * may reduce the depth asked for, if memory is tight. set->queue_depth
3820  * will be updated to reflect the allocated depth.
3821  */
3822 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3823 {
3824 	unsigned int depth;
3825 	int err;
3826 
3827 	depth = set->queue_depth;
3828 	do {
3829 		err = __blk_mq_alloc_rq_maps(set);
3830 		if (!err)
3831 			break;
3832 
3833 		set->queue_depth >>= 1;
3834 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3835 			err = -ENOMEM;
3836 			break;
3837 		}
3838 	} while (set->queue_depth);
3839 
3840 	if (!set->queue_depth || err) {
3841 		pr_err("blk-mq: failed to allocate request map\n");
3842 		return -ENOMEM;
3843 	}
3844 
3845 	if (depth != set->queue_depth)
3846 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3847 						depth, set->queue_depth);
3848 
3849 	return 0;
3850 }
3851 
3852 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3853 {
3854 	/*
3855 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3856 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3857 	 * number of hardware queues.
3858 	 */
3859 	if (set->nr_maps == 1)
3860 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3861 
3862 	if (set->ops->map_queues && !is_kdump_kernel()) {
3863 		int i;
3864 
3865 		/*
3866 		 * transport .map_queues is usually done in the following
3867 		 * way:
3868 		 *
3869 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3870 		 * 	mask = get_cpu_mask(queue)
3871 		 * 	for_each_cpu(cpu, mask)
3872 		 * 		set->map[x].mq_map[cpu] = queue;
3873 		 * }
3874 		 *
3875 		 * When we need to remap, the table has to be cleared for
3876 		 * killing stale mapping since one CPU may not be mapped
3877 		 * to any hw queue.
3878 		 */
3879 		for (i = 0; i < set->nr_maps; i++)
3880 			blk_mq_clear_mq_map(&set->map[i]);
3881 
3882 		return set->ops->map_queues(set);
3883 	} else {
3884 		BUG_ON(set->nr_maps > 1);
3885 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3886 	}
3887 }
3888 
3889 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3890 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3891 {
3892 	struct blk_mq_tags **new_tags;
3893 
3894 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3895 		return 0;
3896 
3897 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3898 				GFP_KERNEL, set->numa_node);
3899 	if (!new_tags)
3900 		return -ENOMEM;
3901 
3902 	if (set->tags)
3903 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3904 		       sizeof(*set->tags));
3905 	kfree(set->tags);
3906 	set->tags = new_tags;
3907 	set->nr_hw_queues = new_nr_hw_queues;
3908 
3909 	return 0;
3910 }
3911 
3912 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3913 				int new_nr_hw_queues)
3914 {
3915 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3916 }
3917 
3918 /*
3919  * Alloc a tag set to be associated with one or more request queues.
3920  * May fail with EINVAL for various error conditions. May adjust the
3921  * requested depth down, if it's too large. In that case, the set
3922  * value will be stored in set->queue_depth.
3923  */
3924 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3925 {
3926 	int i, ret;
3927 
3928 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3929 
3930 	if (!set->nr_hw_queues)
3931 		return -EINVAL;
3932 	if (!set->queue_depth)
3933 		return -EINVAL;
3934 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3935 		return -EINVAL;
3936 
3937 	if (!set->ops->queue_rq)
3938 		return -EINVAL;
3939 
3940 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3941 		return -EINVAL;
3942 
3943 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3944 		pr_info("blk-mq: reduced tag depth to %u\n",
3945 			BLK_MQ_MAX_DEPTH);
3946 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3947 	}
3948 
3949 	if (!set->nr_maps)
3950 		set->nr_maps = 1;
3951 	else if (set->nr_maps > HCTX_MAX_TYPES)
3952 		return -EINVAL;
3953 
3954 	/*
3955 	 * If a crashdump is active, then we are potentially in a very
3956 	 * memory constrained environment. Limit us to 1 queue and
3957 	 * 64 tags to prevent using too much memory.
3958 	 */
3959 	if (is_kdump_kernel()) {
3960 		set->nr_hw_queues = 1;
3961 		set->nr_maps = 1;
3962 		set->queue_depth = min(64U, set->queue_depth);
3963 	}
3964 	/*
3965 	 * There is no use for more h/w queues than cpus if we just have
3966 	 * a single map
3967 	 */
3968 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3969 		set->nr_hw_queues = nr_cpu_ids;
3970 
3971 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3972 		return -ENOMEM;
3973 
3974 	ret = -ENOMEM;
3975 	for (i = 0; i < set->nr_maps; i++) {
3976 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3977 						  sizeof(set->map[i].mq_map[0]),
3978 						  GFP_KERNEL, set->numa_node);
3979 		if (!set->map[i].mq_map)
3980 			goto out_free_mq_map;
3981 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3982 	}
3983 
3984 	ret = blk_mq_update_queue_map(set);
3985 	if (ret)
3986 		goto out_free_mq_map;
3987 
3988 	ret = blk_mq_alloc_set_map_and_rqs(set);
3989 	if (ret)
3990 		goto out_free_mq_map;
3991 
3992 	mutex_init(&set->tag_list_lock);
3993 	INIT_LIST_HEAD(&set->tag_list);
3994 
3995 	return 0;
3996 
3997 out_free_mq_map:
3998 	for (i = 0; i < set->nr_maps; i++) {
3999 		kfree(set->map[i].mq_map);
4000 		set->map[i].mq_map = NULL;
4001 	}
4002 	kfree(set->tags);
4003 	set->tags = NULL;
4004 	return ret;
4005 }
4006 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4007 
4008 /* allocate and initialize a tagset for a simple single-queue device */
4009 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4010 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4011 		unsigned int set_flags)
4012 {
4013 	memset(set, 0, sizeof(*set));
4014 	set->ops = ops;
4015 	set->nr_hw_queues = 1;
4016 	set->nr_maps = 1;
4017 	set->queue_depth = queue_depth;
4018 	set->numa_node = NUMA_NO_NODE;
4019 	set->flags = set_flags;
4020 	return blk_mq_alloc_tag_set(set);
4021 }
4022 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4023 
4024 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4025 {
4026 	int i, j;
4027 
4028 	for (i = 0; i < set->nr_hw_queues; i++)
4029 		__blk_mq_free_map_and_rqs(set, i);
4030 
4031 	if (blk_mq_is_shared_tags(set->flags)) {
4032 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4033 					BLK_MQ_NO_HCTX_IDX);
4034 	}
4035 
4036 	for (j = 0; j < set->nr_maps; j++) {
4037 		kfree(set->map[j].mq_map);
4038 		set->map[j].mq_map = NULL;
4039 	}
4040 
4041 	kfree(set->tags);
4042 	set->tags = NULL;
4043 }
4044 EXPORT_SYMBOL(blk_mq_free_tag_set);
4045 
4046 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4047 {
4048 	struct blk_mq_tag_set *set = q->tag_set;
4049 	struct blk_mq_hw_ctx *hctx;
4050 	int i, ret;
4051 
4052 	if (!set)
4053 		return -EINVAL;
4054 
4055 	if (q->nr_requests == nr)
4056 		return 0;
4057 
4058 	blk_mq_freeze_queue(q);
4059 	blk_mq_quiesce_queue(q);
4060 
4061 	ret = 0;
4062 	queue_for_each_hw_ctx(q, hctx, i) {
4063 		if (!hctx->tags)
4064 			continue;
4065 		/*
4066 		 * If we're using an MQ scheduler, just update the scheduler
4067 		 * queue depth. This is similar to what the old code would do.
4068 		 */
4069 		if (hctx->sched_tags) {
4070 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4071 						      nr, true);
4072 		} else {
4073 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4074 						      false);
4075 		}
4076 		if (ret)
4077 			break;
4078 		if (q->elevator && q->elevator->type->ops.depth_updated)
4079 			q->elevator->type->ops.depth_updated(hctx);
4080 	}
4081 	if (!ret) {
4082 		q->nr_requests = nr;
4083 		if (blk_mq_is_shared_tags(set->flags)) {
4084 			if (q->elevator)
4085 				blk_mq_tag_update_sched_shared_tags(q);
4086 			else
4087 				blk_mq_tag_resize_shared_tags(set, nr);
4088 		}
4089 	}
4090 
4091 	blk_mq_unquiesce_queue(q);
4092 	blk_mq_unfreeze_queue(q);
4093 
4094 	return ret;
4095 }
4096 
4097 /*
4098  * request_queue and elevator_type pair.
4099  * It is just used by __blk_mq_update_nr_hw_queues to cache
4100  * the elevator_type associated with a request_queue.
4101  */
4102 struct blk_mq_qe_pair {
4103 	struct list_head node;
4104 	struct request_queue *q;
4105 	struct elevator_type *type;
4106 };
4107 
4108 /*
4109  * Cache the elevator_type in qe pair list and switch the
4110  * io scheduler to 'none'
4111  */
4112 static bool blk_mq_elv_switch_none(struct list_head *head,
4113 		struct request_queue *q)
4114 {
4115 	struct blk_mq_qe_pair *qe;
4116 
4117 	if (!q->elevator)
4118 		return true;
4119 
4120 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4121 	if (!qe)
4122 		return false;
4123 
4124 	INIT_LIST_HEAD(&qe->node);
4125 	qe->q = q;
4126 	qe->type = q->elevator->type;
4127 	list_add(&qe->node, head);
4128 
4129 	mutex_lock(&q->sysfs_lock);
4130 	/*
4131 	 * After elevator_switch_mq, the previous elevator_queue will be
4132 	 * released by elevator_release. The reference of the io scheduler
4133 	 * module get by elevator_get will also be put. So we need to get
4134 	 * a reference of the io scheduler module here to prevent it to be
4135 	 * removed.
4136 	 */
4137 	__module_get(qe->type->elevator_owner);
4138 	elevator_switch_mq(q, NULL);
4139 	mutex_unlock(&q->sysfs_lock);
4140 
4141 	return true;
4142 }
4143 
4144 static void blk_mq_elv_switch_back(struct list_head *head,
4145 		struct request_queue *q)
4146 {
4147 	struct blk_mq_qe_pair *qe;
4148 	struct elevator_type *t = NULL;
4149 
4150 	list_for_each_entry(qe, head, node)
4151 		if (qe->q == q) {
4152 			t = qe->type;
4153 			break;
4154 		}
4155 
4156 	if (!t)
4157 		return;
4158 
4159 	list_del(&qe->node);
4160 	kfree(qe);
4161 
4162 	mutex_lock(&q->sysfs_lock);
4163 	elevator_switch_mq(q, t);
4164 	mutex_unlock(&q->sysfs_lock);
4165 }
4166 
4167 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4168 							int nr_hw_queues)
4169 {
4170 	struct request_queue *q;
4171 	LIST_HEAD(head);
4172 	int prev_nr_hw_queues;
4173 
4174 	lockdep_assert_held(&set->tag_list_lock);
4175 
4176 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4177 		nr_hw_queues = nr_cpu_ids;
4178 	if (nr_hw_queues < 1)
4179 		return;
4180 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4181 		return;
4182 
4183 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4184 		blk_mq_freeze_queue(q);
4185 	/*
4186 	 * Switch IO scheduler to 'none', cleaning up the data associated
4187 	 * with the previous scheduler. We will switch back once we are done
4188 	 * updating the new sw to hw queue mappings.
4189 	 */
4190 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4191 		if (!blk_mq_elv_switch_none(&head, q))
4192 			goto switch_back;
4193 
4194 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4195 		blk_mq_debugfs_unregister_hctxs(q);
4196 		blk_mq_sysfs_unregister(q);
4197 	}
4198 
4199 	prev_nr_hw_queues = set->nr_hw_queues;
4200 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4201 	    0)
4202 		goto reregister;
4203 
4204 	set->nr_hw_queues = nr_hw_queues;
4205 fallback:
4206 	blk_mq_update_queue_map(set);
4207 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4208 		blk_mq_realloc_hw_ctxs(set, q);
4209 		if (q->nr_hw_queues != set->nr_hw_queues) {
4210 			int i = prev_nr_hw_queues;
4211 
4212 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4213 					nr_hw_queues, prev_nr_hw_queues);
4214 			for (; i < set->nr_hw_queues; i++)
4215 				__blk_mq_free_map_and_rqs(set, i);
4216 
4217 			set->nr_hw_queues = prev_nr_hw_queues;
4218 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4219 			goto fallback;
4220 		}
4221 		blk_mq_map_swqueue(q);
4222 	}
4223 
4224 reregister:
4225 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4226 		blk_mq_sysfs_register(q);
4227 		blk_mq_debugfs_register_hctxs(q);
4228 	}
4229 
4230 switch_back:
4231 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4232 		blk_mq_elv_switch_back(&head, q);
4233 
4234 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4235 		blk_mq_unfreeze_queue(q);
4236 }
4237 
4238 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4239 {
4240 	mutex_lock(&set->tag_list_lock);
4241 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4242 	mutex_unlock(&set->tag_list_lock);
4243 }
4244 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4245 
4246 /* Enable polling stats and return whether they were already enabled. */
4247 static bool blk_poll_stats_enable(struct request_queue *q)
4248 {
4249 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4250 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4251 		return true;
4252 	blk_stat_add_callback(q, q->poll_cb);
4253 	return false;
4254 }
4255 
4256 static void blk_mq_poll_stats_start(struct request_queue *q)
4257 {
4258 	/*
4259 	 * We don't arm the callback if polling stats are not enabled or the
4260 	 * callback is already active.
4261 	 */
4262 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4263 	    blk_stat_is_active(q->poll_cb))
4264 		return;
4265 
4266 	blk_stat_activate_msecs(q->poll_cb, 100);
4267 }
4268 
4269 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4270 {
4271 	struct request_queue *q = cb->data;
4272 	int bucket;
4273 
4274 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4275 		if (cb->stat[bucket].nr_samples)
4276 			q->poll_stat[bucket] = cb->stat[bucket];
4277 	}
4278 }
4279 
4280 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4281 				       struct request *rq)
4282 {
4283 	unsigned long ret = 0;
4284 	int bucket;
4285 
4286 	/*
4287 	 * If stats collection isn't on, don't sleep but turn it on for
4288 	 * future users
4289 	 */
4290 	if (!blk_poll_stats_enable(q))
4291 		return 0;
4292 
4293 	/*
4294 	 * As an optimistic guess, use half of the mean service time
4295 	 * for this type of request. We can (and should) make this smarter.
4296 	 * For instance, if the completion latencies are tight, we can
4297 	 * get closer than just half the mean. This is especially
4298 	 * important on devices where the completion latencies are longer
4299 	 * than ~10 usec. We do use the stats for the relevant IO size
4300 	 * if available which does lead to better estimates.
4301 	 */
4302 	bucket = blk_mq_poll_stats_bkt(rq);
4303 	if (bucket < 0)
4304 		return ret;
4305 
4306 	if (q->poll_stat[bucket].nr_samples)
4307 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4308 
4309 	return ret;
4310 }
4311 
4312 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4313 {
4314 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4315 	struct request *rq = blk_qc_to_rq(hctx, qc);
4316 	struct hrtimer_sleeper hs;
4317 	enum hrtimer_mode mode;
4318 	unsigned int nsecs;
4319 	ktime_t kt;
4320 
4321 	/*
4322 	 * If a request has completed on queue that uses an I/O scheduler, we
4323 	 * won't get back a request from blk_qc_to_rq.
4324 	 */
4325 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4326 		return false;
4327 
4328 	/*
4329 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4330 	 *
4331 	 *  0:	use half of prev avg
4332 	 * >0:	use this specific value
4333 	 */
4334 	if (q->poll_nsec > 0)
4335 		nsecs = q->poll_nsec;
4336 	else
4337 		nsecs = blk_mq_poll_nsecs(q, rq);
4338 
4339 	if (!nsecs)
4340 		return false;
4341 
4342 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4343 
4344 	/*
4345 	 * This will be replaced with the stats tracking code, using
4346 	 * 'avg_completion_time / 2' as the pre-sleep target.
4347 	 */
4348 	kt = nsecs;
4349 
4350 	mode = HRTIMER_MODE_REL;
4351 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4352 	hrtimer_set_expires(&hs.timer, kt);
4353 
4354 	do {
4355 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4356 			break;
4357 		set_current_state(TASK_UNINTERRUPTIBLE);
4358 		hrtimer_sleeper_start_expires(&hs, mode);
4359 		if (hs.task)
4360 			io_schedule();
4361 		hrtimer_cancel(&hs.timer);
4362 		mode = HRTIMER_MODE_ABS;
4363 	} while (hs.task && !signal_pending(current));
4364 
4365 	__set_current_state(TASK_RUNNING);
4366 	destroy_hrtimer_on_stack(&hs.timer);
4367 
4368 	/*
4369 	 * If we sleep, have the caller restart the poll loop to reset the
4370 	 * state.  Like for the other success return cases, the caller is
4371 	 * responsible for checking if the IO completed.  If the IO isn't
4372 	 * complete, we'll get called again and will go straight to the busy
4373 	 * poll loop.
4374 	 */
4375 	return true;
4376 }
4377 
4378 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4379 			       struct io_comp_batch *iob, unsigned int flags)
4380 {
4381 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4382 	long state = get_current_state();
4383 	int ret;
4384 
4385 	do {
4386 		ret = q->mq_ops->poll(hctx, iob);
4387 		if (ret > 0) {
4388 			__set_current_state(TASK_RUNNING);
4389 			return ret;
4390 		}
4391 
4392 		if (signal_pending_state(state, current))
4393 			__set_current_state(TASK_RUNNING);
4394 		if (task_is_running(current))
4395 			return 1;
4396 
4397 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4398 			break;
4399 		cpu_relax();
4400 	} while (!need_resched());
4401 
4402 	__set_current_state(TASK_RUNNING);
4403 	return 0;
4404 }
4405 
4406 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4407 		unsigned int flags)
4408 {
4409 	if (!(flags & BLK_POLL_NOSLEEP) &&
4410 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4411 		if (blk_mq_poll_hybrid(q, cookie))
4412 			return 1;
4413 	}
4414 	return blk_mq_poll_classic(q, cookie, iob, flags);
4415 }
4416 
4417 unsigned int blk_mq_rq_cpu(struct request *rq)
4418 {
4419 	return rq->mq_ctx->cpu;
4420 }
4421 EXPORT_SYMBOL(blk_mq_rq_cpu);
4422 
4423 void blk_mq_cancel_work_sync(struct request_queue *q)
4424 {
4425 	if (queue_is_mq(q)) {
4426 		struct blk_mq_hw_ctx *hctx;
4427 		int i;
4428 
4429 		cancel_delayed_work_sync(&q->requeue_work);
4430 
4431 		queue_for_each_hw_ctx(q, hctx, i)
4432 			cancel_delayed_work_sync(&hctx->run_work);
4433 	}
4434 }
4435 
4436 static int __init blk_mq_init(void)
4437 {
4438 	int i;
4439 
4440 	for_each_possible_cpu(i)
4441 		init_llist_head(&per_cpu(blk_cpu_done, i));
4442 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4443 
4444 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4445 				  "block/softirq:dead", NULL,
4446 				  blk_softirq_cpu_dead);
4447 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4448 				blk_mq_hctx_notify_dead);
4449 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4450 				blk_mq_hctx_notify_online,
4451 				blk_mq_hctx_notify_offline);
4452 	return 0;
4453 }
4454 subsys_initcall(blk_mq_init);
4455