1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->rq_flags & RQF_IO_STAT && 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 #ifdef CONFIG_LOCKDEP 124 static bool blk_freeze_set_owner(struct request_queue *q, 125 struct task_struct *owner) 126 { 127 if (!owner) 128 return false; 129 130 if (!q->mq_freeze_depth) { 131 q->mq_freeze_owner = owner; 132 q->mq_freeze_owner_depth = 1; 133 return true; 134 } 135 136 if (owner == q->mq_freeze_owner) 137 q->mq_freeze_owner_depth += 1; 138 return false; 139 } 140 141 /* verify the last unfreeze in owner context */ 142 static bool blk_unfreeze_check_owner(struct request_queue *q) 143 { 144 if (!q->mq_freeze_owner) 145 return false; 146 if (q->mq_freeze_owner != current) 147 return false; 148 if (--q->mq_freeze_owner_depth == 0) { 149 q->mq_freeze_owner = NULL; 150 return true; 151 } 152 return false; 153 } 154 155 #else 156 157 static bool blk_freeze_set_owner(struct request_queue *q, 158 struct task_struct *owner) 159 { 160 return false; 161 } 162 163 static bool blk_unfreeze_check_owner(struct request_queue *q) 164 { 165 return false; 166 } 167 #endif 168 169 bool __blk_freeze_queue_start(struct request_queue *q, 170 struct task_struct *owner) 171 { 172 bool freeze; 173 174 mutex_lock(&q->mq_freeze_lock); 175 freeze = blk_freeze_set_owner(q, owner); 176 if (++q->mq_freeze_depth == 1) { 177 percpu_ref_kill(&q->q_usage_counter); 178 mutex_unlock(&q->mq_freeze_lock); 179 if (queue_is_mq(q)) 180 blk_mq_run_hw_queues(q, false); 181 } else { 182 mutex_unlock(&q->mq_freeze_lock); 183 } 184 185 return freeze; 186 } 187 188 void blk_freeze_queue_start(struct request_queue *q) 189 { 190 if (__blk_freeze_queue_start(q, current)) 191 blk_freeze_acquire_lock(q, false, false); 192 } 193 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 194 195 void blk_mq_freeze_queue_wait(struct request_queue *q) 196 { 197 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 200 201 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 202 unsigned long timeout) 203 { 204 return wait_event_timeout(q->mq_freeze_wq, 205 percpu_ref_is_zero(&q->q_usage_counter), 206 timeout); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 blk_freeze_queue_start(q); 213 blk_mq_freeze_queue_wait(q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 216 217 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 218 { 219 bool unfreeze; 220 221 mutex_lock(&q->mq_freeze_lock); 222 if (force_atomic) 223 q->q_usage_counter.data->force_atomic = true; 224 q->mq_freeze_depth--; 225 WARN_ON_ONCE(q->mq_freeze_depth < 0); 226 if (!q->mq_freeze_depth) { 227 percpu_ref_resurrect(&q->q_usage_counter); 228 wake_up_all(&q->mq_freeze_wq); 229 } 230 unfreeze = blk_unfreeze_check_owner(q); 231 mutex_unlock(&q->mq_freeze_lock); 232 233 return unfreeze; 234 } 235 236 void blk_mq_unfreeze_queue(struct request_queue *q) 237 { 238 if (__blk_mq_unfreeze_queue(q, false)) 239 blk_unfreeze_release_lock(q, false, false); 240 } 241 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 242 243 /* 244 * non_owner variant of blk_freeze_queue_start 245 * 246 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 247 * by the same task. This is fragile and should not be used if at all 248 * possible. 249 */ 250 void blk_freeze_queue_start_non_owner(struct request_queue *q) 251 { 252 __blk_freeze_queue_start(q, NULL); 253 } 254 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 255 256 /* non_owner variant of blk_mq_unfreeze_queue */ 257 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 258 { 259 __blk_mq_unfreeze_queue(q, false); 260 } 261 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 262 263 /* 264 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 265 * mpt3sas driver such that this function can be removed. 266 */ 267 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 268 { 269 unsigned long flags; 270 271 spin_lock_irqsave(&q->queue_lock, flags); 272 if (!q->quiesce_depth++) 273 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 274 spin_unlock_irqrestore(&q->queue_lock, flags); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 277 278 /** 279 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 280 * @set: tag_set to wait on 281 * 282 * Note: it is driver's responsibility for making sure that quiesce has 283 * been started on or more of the request_queues of the tag_set. This 284 * function only waits for the quiesce on those request_queues that had 285 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 286 */ 287 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 288 { 289 if (set->flags & BLK_MQ_F_BLOCKING) 290 synchronize_srcu(set->srcu); 291 else 292 synchronize_rcu(); 293 } 294 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 295 296 /** 297 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 298 * @q: request queue. 299 * 300 * Note: this function does not prevent that the struct request end_io() 301 * callback function is invoked. Once this function is returned, we make 302 * sure no dispatch can happen until the queue is unquiesced via 303 * blk_mq_unquiesce_queue(). 304 */ 305 void blk_mq_quiesce_queue(struct request_queue *q) 306 { 307 blk_mq_quiesce_queue_nowait(q); 308 /* nothing to wait for non-mq queues */ 309 if (queue_is_mq(q)) 310 blk_mq_wait_quiesce_done(q->tag_set); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 313 314 /* 315 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 316 * @q: request queue. 317 * 318 * This function recovers queue into the state before quiescing 319 * which is done by blk_mq_quiesce_queue. 320 */ 321 void blk_mq_unquiesce_queue(struct request_queue *q) 322 { 323 unsigned long flags; 324 bool run_queue = false; 325 326 spin_lock_irqsave(&q->queue_lock, flags); 327 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 328 ; 329 } else if (!--q->quiesce_depth) { 330 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 331 run_queue = true; 332 } 333 spin_unlock_irqrestore(&q->queue_lock, flags); 334 335 /* dispatch requests which are inserted during quiescing */ 336 if (run_queue) 337 blk_mq_run_hw_queues(q, true); 338 } 339 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 340 341 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 342 { 343 struct request_queue *q; 344 345 mutex_lock(&set->tag_list_lock); 346 list_for_each_entry(q, &set->tag_list, tag_set_list) { 347 if (!blk_queue_skip_tagset_quiesce(q)) 348 blk_mq_quiesce_queue_nowait(q); 349 } 350 mutex_unlock(&set->tag_list_lock); 351 352 blk_mq_wait_quiesce_done(set); 353 } 354 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 355 356 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 357 { 358 struct request_queue *q; 359 360 mutex_lock(&set->tag_list_lock); 361 list_for_each_entry(q, &set->tag_list, tag_set_list) { 362 if (!blk_queue_skip_tagset_quiesce(q)) 363 blk_mq_unquiesce_queue(q); 364 } 365 mutex_unlock(&set->tag_list_lock); 366 } 367 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 368 369 void blk_mq_wake_waiters(struct request_queue *q) 370 { 371 struct blk_mq_hw_ctx *hctx; 372 unsigned long i; 373 374 queue_for_each_hw_ctx(q, hctx, i) 375 if (blk_mq_hw_queue_mapped(hctx)) 376 blk_mq_tag_wakeup_all(hctx->tags, true); 377 } 378 379 void blk_rq_init(struct request_queue *q, struct request *rq) 380 { 381 memset(rq, 0, sizeof(*rq)); 382 383 INIT_LIST_HEAD(&rq->queuelist); 384 rq->q = q; 385 rq->__sector = (sector_t) -1; 386 INIT_HLIST_NODE(&rq->hash); 387 RB_CLEAR_NODE(&rq->rb_node); 388 rq->tag = BLK_MQ_NO_TAG; 389 rq->internal_tag = BLK_MQ_NO_TAG; 390 rq->start_time_ns = blk_time_get_ns(); 391 blk_crypto_rq_set_defaults(rq); 392 } 393 EXPORT_SYMBOL(blk_rq_init); 394 395 /* Set start and alloc time when the allocated request is actually used */ 396 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 397 { 398 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 399 if (blk_queue_rq_alloc_time(rq->q)) 400 rq->alloc_time_ns = alloc_time_ns; 401 else 402 rq->alloc_time_ns = 0; 403 #endif 404 } 405 406 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 407 struct blk_mq_tags *tags, unsigned int tag) 408 { 409 struct blk_mq_ctx *ctx = data->ctx; 410 struct blk_mq_hw_ctx *hctx = data->hctx; 411 struct request_queue *q = data->q; 412 struct request *rq = tags->static_rqs[tag]; 413 414 rq->q = q; 415 rq->mq_ctx = ctx; 416 rq->mq_hctx = hctx; 417 rq->cmd_flags = data->cmd_flags; 418 419 if (data->flags & BLK_MQ_REQ_PM) 420 data->rq_flags |= RQF_PM; 421 rq->rq_flags = data->rq_flags; 422 423 if (data->rq_flags & RQF_SCHED_TAGS) { 424 rq->tag = BLK_MQ_NO_TAG; 425 rq->internal_tag = tag; 426 } else { 427 rq->tag = tag; 428 rq->internal_tag = BLK_MQ_NO_TAG; 429 } 430 rq->timeout = 0; 431 432 rq->part = NULL; 433 rq->io_start_time_ns = 0; 434 rq->stats_sectors = 0; 435 rq->nr_phys_segments = 0; 436 rq->nr_integrity_segments = 0; 437 rq->end_io = NULL; 438 rq->end_io_data = NULL; 439 440 blk_crypto_rq_set_defaults(rq); 441 INIT_LIST_HEAD(&rq->queuelist); 442 /* tag was already set */ 443 WRITE_ONCE(rq->deadline, 0); 444 req_ref_set(rq, 1); 445 446 if (rq->rq_flags & RQF_USE_SCHED) { 447 struct elevator_queue *e = data->q->elevator; 448 449 INIT_HLIST_NODE(&rq->hash); 450 RB_CLEAR_NODE(&rq->rb_node); 451 452 if (e->type->ops.prepare_request) 453 e->type->ops.prepare_request(rq); 454 } 455 456 return rq; 457 } 458 459 static inline struct request * 460 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 461 { 462 unsigned int tag, tag_offset; 463 struct blk_mq_tags *tags; 464 struct request *rq; 465 unsigned long tag_mask; 466 int i, nr = 0; 467 468 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 469 if (unlikely(!tag_mask)) 470 return NULL; 471 472 tags = blk_mq_tags_from_data(data); 473 for (i = 0; tag_mask; i++) { 474 if (!(tag_mask & (1UL << i))) 475 continue; 476 tag = tag_offset + i; 477 prefetch(tags->static_rqs[tag]); 478 tag_mask &= ~(1UL << i); 479 rq = blk_mq_rq_ctx_init(data, tags, tag); 480 rq_list_add_head(data->cached_rqs, rq); 481 nr++; 482 } 483 if (!(data->rq_flags & RQF_SCHED_TAGS)) 484 blk_mq_add_active_requests(data->hctx, nr); 485 /* caller already holds a reference, add for remainder */ 486 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 487 data->nr_tags -= nr; 488 489 return rq_list_pop(data->cached_rqs); 490 } 491 492 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 493 { 494 struct request_queue *q = data->q; 495 u64 alloc_time_ns = 0; 496 struct request *rq; 497 unsigned int tag; 498 499 /* alloc_time includes depth and tag waits */ 500 if (blk_queue_rq_alloc_time(q)) 501 alloc_time_ns = blk_time_get_ns(); 502 503 if (data->cmd_flags & REQ_NOWAIT) 504 data->flags |= BLK_MQ_REQ_NOWAIT; 505 506 retry: 507 data->ctx = blk_mq_get_ctx(q); 508 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 509 510 if (q->elevator) { 511 /* 512 * All requests use scheduler tags when an I/O scheduler is 513 * enabled for the queue. 514 */ 515 data->rq_flags |= RQF_SCHED_TAGS; 516 517 /* 518 * Flush/passthrough requests are special and go directly to the 519 * dispatch list. 520 */ 521 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 522 !blk_op_is_passthrough(data->cmd_flags)) { 523 struct elevator_mq_ops *ops = &q->elevator->type->ops; 524 525 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 526 527 data->rq_flags |= RQF_USE_SCHED; 528 if (ops->limit_depth) 529 ops->limit_depth(data->cmd_flags, data); 530 } 531 } else { 532 blk_mq_tag_busy(data->hctx); 533 } 534 535 if (data->flags & BLK_MQ_REQ_RESERVED) 536 data->rq_flags |= RQF_RESV; 537 538 /* 539 * Try batched alloc if we want more than 1 tag. 540 */ 541 if (data->nr_tags > 1) { 542 rq = __blk_mq_alloc_requests_batch(data); 543 if (rq) { 544 blk_mq_rq_time_init(rq, alloc_time_ns); 545 return rq; 546 } 547 data->nr_tags = 1; 548 } 549 550 /* 551 * Waiting allocations only fail because of an inactive hctx. In that 552 * case just retry the hctx assignment and tag allocation as CPU hotplug 553 * should have migrated us to an online CPU by now. 554 */ 555 tag = blk_mq_get_tag(data); 556 if (tag == BLK_MQ_NO_TAG) { 557 if (data->flags & BLK_MQ_REQ_NOWAIT) 558 return NULL; 559 /* 560 * Give up the CPU and sleep for a random short time to 561 * ensure that thread using a realtime scheduling class 562 * are migrated off the CPU, and thus off the hctx that 563 * is going away. 564 */ 565 msleep(3); 566 goto retry; 567 } 568 569 if (!(data->rq_flags & RQF_SCHED_TAGS)) 570 blk_mq_inc_active_requests(data->hctx); 571 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 572 blk_mq_rq_time_init(rq, alloc_time_ns); 573 return rq; 574 } 575 576 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 577 struct blk_plug *plug, 578 blk_opf_t opf, 579 blk_mq_req_flags_t flags) 580 { 581 struct blk_mq_alloc_data data = { 582 .q = q, 583 .flags = flags, 584 .cmd_flags = opf, 585 .nr_tags = plug->nr_ios, 586 .cached_rqs = &plug->cached_rqs, 587 }; 588 struct request *rq; 589 590 if (blk_queue_enter(q, flags)) 591 return NULL; 592 593 plug->nr_ios = 1; 594 595 rq = __blk_mq_alloc_requests(&data); 596 if (unlikely(!rq)) 597 blk_queue_exit(q); 598 return rq; 599 } 600 601 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 602 blk_opf_t opf, 603 blk_mq_req_flags_t flags) 604 { 605 struct blk_plug *plug = current->plug; 606 struct request *rq; 607 608 if (!plug) 609 return NULL; 610 611 if (rq_list_empty(&plug->cached_rqs)) { 612 if (plug->nr_ios == 1) 613 return NULL; 614 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 615 if (!rq) 616 return NULL; 617 } else { 618 rq = rq_list_peek(&plug->cached_rqs); 619 if (!rq || rq->q != q) 620 return NULL; 621 622 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 623 return NULL; 624 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 625 return NULL; 626 627 rq_list_pop(&plug->cached_rqs); 628 blk_mq_rq_time_init(rq, blk_time_get_ns()); 629 } 630 631 rq->cmd_flags = opf; 632 INIT_LIST_HEAD(&rq->queuelist); 633 return rq; 634 } 635 636 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 637 blk_mq_req_flags_t flags) 638 { 639 struct request *rq; 640 641 rq = blk_mq_alloc_cached_request(q, opf, flags); 642 if (!rq) { 643 struct blk_mq_alloc_data data = { 644 .q = q, 645 .flags = flags, 646 .cmd_flags = opf, 647 .nr_tags = 1, 648 }; 649 int ret; 650 651 ret = blk_queue_enter(q, flags); 652 if (ret) 653 return ERR_PTR(ret); 654 655 rq = __blk_mq_alloc_requests(&data); 656 if (!rq) 657 goto out_queue_exit; 658 } 659 rq->__data_len = 0; 660 rq->__sector = (sector_t) -1; 661 rq->bio = rq->biotail = NULL; 662 return rq; 663 out_queue_exit: 664 blk_queue_exit(q); 665 return ERR_PTR(-EWOULDBLOCK); 666 } 667 EXPORT_SYMBOL(blk_mq_alloc_request); 668 669 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 670 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 671 { 672 struct blk_mq_alloc_data data = { 673 .q = q, 674 .flags = flags, 675 .cmd_flags = opf, 676 .nr_tags = 1, 677 }; 678 u64 alloc_time_ns = 0; 679 struct request *rq; 680 unsigned int cpu; 681 unsigned int tag; 682 int ret; 683 684 /* alloc_time includes depth and tag waits */ 685 if (blk_queue_rq_alloc_time(q)) 686 alloc_time_ns = blk_time_get_ns(); 687 688 /* 689 * If the tag allocator sleeps we could get an allocation for a 690 * different hardware context. No need to complicate the low level 691 * allocator for this for the rare use case of a command tied to 692 * a specific queue. 693 */ 694 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 695 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 696 return ERR_PTR(-EINVAL); 697 698 if (hctx_idx >= q->nr_hw_queues) 699 return ERR_PTR(-EIO); 700 701 ret = blk_queue_enter(q, flags); 702 if (ret) 703 return ERR_PTR(ret); 704 705 /* 706 * Check if the hardware context is actually mapped to anything. 707 * If not tell the caller that it should skip this queue. 708 */ 709 ret = -EXDEV; 710 data.hctx = xa_load(&q->hctx_table, hctx_idx); 711 if (!blk_mq_hw_queue_mapped(data.hctx)) 712 goto out_queue_exit; 713 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 714 if (cpu >= nr_cpu_ids) 715 goto out_queue_exit; 716 data.ctx = __blk_mq_get_ctx(q, cpu); 717 718 if (q->elevator) 719 data.rq_flags |= RQF_SCHED_TAGS; 720 else 721 blk_mq_tag_busy(data.hctx); 722 723 if (flags & BLK_MQ_REQ_RESERVED) 724 data.rq_flags |= RQF_RESV; 725 726 ret = -EWOULDBLOCK; 727 tag = blk_mq_get_tag(&data); 728 if (tag == BLK_MQ_NO_TAG) 729 goto out_queue_exit; 730 if (!(data.rq_flags & RQF_SCHED_TAGS)) 731 blk_mq_inc_active_requests(data.hctx); 732 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 733 blk_mq_rq_time_init(rq, alloc_time_ns); 734 rq->__data_len = 0; 735 rq->__sector = (sector_t) -1; 736 rq->bio = rq->biotail = NULL; 737 return rq; 738 739 out_queue_exit: 740 blk_queue_exit(q); 741 return ERR_PTR(ret); 742 } 743 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 744 745 static void blk_mq_finish_request(struct request *rq) 746 { 747 struct request_queue *q = rq->q; 748 749 blk_zone_finish_request(rq); 750 751 if (rq->rq_flags & RQF_USE_SCHED) { 752 q->elevator->type->ops.finish_request(rq); 753 /* 754 * For postflush request that may need to be 755 * completed twice, we should clear this flag 756 * to avoid double finish_request() on the rq. 757 */ 758 rq->rq_flags &= ~RQF_USE_SCHED; 759 } 760 } 761 762 static void __blk_mq_free_request(struct request *rq) 763 { 764 struct request_queue *q = rq->q; 765 struct blk_mq_ctx *ctx = rq->mq_ctx; 766 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 767 const int sched_tag = rq->internal_tag; 768 769 blk_crypto_free_request(rq); 770 blk_pm_mark_last_busy(rq); 771 rq->mq_hctx = NULL; 772 773 if (rq->tag != BLK_MQ_NO_TAG) { 774 blk_mq_dec_active_requests(hctx); 775 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 776 } 777 if (sched_tag != BLK_MQ_NO_TAG) 778 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 779 blk_mq_sched_restart(hctx); 780 blk_queue_exit(q); 781 } 782 783 void blk_mq_free_request(struct request *rq) 784 { 785 struct request_queue *q = rq->q; 786 787 blk_mq_finish_request(rq); 788 789 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 790 laptop_io_completion(q->disk->bdi); 791 792 rq_qos_done(q, rq); 793 794 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 795 if (req_ref_put_and_test(rq)) 796 __blk_mq_free_request(rq); 797 } 798 EXPORT_SYMBOL_GPL(blk_mq_free_request); 799 800 void blk_mq_free_plug_rqs(struct blk_plug *plug) 801 { 802 struct request *rq; 803 804 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 805 blk_mq_free_request(rq); 806 } 807 808 void blk_dump_rq_flags(struct request *rq, char *msg) 809 { 810 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 811 rq->q->disk ? rq->q->disk->disk_name : "?", 812 (__force unsigned long long) rq->cmd_flags); 813 814 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 815 (unsigned long long)blk_rq_pos(rq), 816 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 817 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 818 rq->bio, rq->biotail, blk_rq_bytes(rq)); 819 } 820 EXPORT_SYMBOL(blk_dump_rq_flags); 821 822 static void blk_account_io_completion(struct request *req, unsigned int bytes) 823 { 824 if (req->rq_flags & RQF_IO_STAT) { 825 const int sgrp = op_stat_group(req_op(req)); 826 827 part_stat_lock(); 828 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 829 part_stat_unlock(); 830 } 831 } 832 833 static void blk_print_req_error(struct request *req, blk_status_t status) 834 { 835 printk_ratelimited(KERN_ERR 836 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 837 "phys_seg %u prio class %u\n", 838 blk_status_to_str(status), 839 req->q->disk ? req->q->disk->disk_name : "?", 840 blk_rq_pos(req), (__force u32)req_op(req), 841 blk_op_str(req_op(req)), 842 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 843 req->nr_phys_segments, 844 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 845 } 846 847 /* 848 * Fully end IO on a request. Does not support partial completions, or 849 * errors. 850 */ 851 static void blk_complete_request(struct request *req) 852 { 853 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 854 int total_bytes = blk_rq_bytes(req); 855 struct bio *bio = req->bio; 856 857 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 858 859 if (!bio) 860 return; 861 862 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 863 blk_integrity_complete(req, total_bytes); 864 865 /* 866 * Upper layers may call blk_crypto_evict_key() anytime after the last 867 * bio_endio(). Therefore, the keyslot must be released before that. 868 */ 869 blk_crypto_rq_put_keyslot(req); 870 871 blk_account_io_completion(req, total_bytes); 872 873 do { 874 struct bio *next = bio->bi_next; 875 876 /* Completion has already been traced */ 877 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 878 879 blk_zone_update_request_bio(req, bio); 880 881 if (!is_flush) 882 bio_endio(bio); 883 bio = next; 884 } while (bio); 885 886 /* 887 * Reset counters so that the request stacking driver 888 * can find how many bytes remain in the request 889 * later. 890 */ 891 if (!req->end_io) { 892 req->bio = NULL; 893 req->__data_len = 0; 894 } 895 } 896 897 /** 898 * blk_update_request - Complete multiple bytes without completing the request 899 * @req: the request being processed 900 * @error: block status code 901 * @nr_bytes: number of bytes to complete for @req 902 * 903 * Description: 904 * Ends I/O on a number of bytes attached to @req, but doesn't complete 905 * the request structure even if @req doesn't have leftover. 906 * If @req has leftover, sets it up for the next range of segments. 907 * 908 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 909 * %false return from this function. 910 * 911 * Note: 912 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 913 * except in the consistency check at the end of this function. 914 * 915 * Return: 916 * %false - this request doesn't have any more data 917 * %true - this request has more data 918 **/ 919 bool blk_update_request(struct request *req, blk_status_t error, 920 unsigned int nr_bytes) 921 { 922 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 923 bool quiet = req->rq_flags & RQF_QUIET; 924 int total_bytes; 925 926 trace_block_rq_complete(req, error, nr_bytes); 927 928 if (!req->bio) 929 return false; 930 931 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 932 error == BLK_STS_OK) 933 blk_integrity_complete(req, nr_bytes); 934 935 /* 936 * Upper layers may call blk_crypto_evict_key() anytime after the last 937 * bio_endio(). Therefore, the keyslot must be released before that. 938 */ 939 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 940 __blk_crypto_rq_put_keyslot(req); 941 942 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 943 !test_bit(GD_DEAD, &req->q->disk->state)) { 944 blk_print_req_error(req, error); 945 trace_block_rq_error(req, error, nr_bytes); 946 } 947 948 blk_account_io_completion(req, nr_bytes); 949 950 total_bytes = 0; 951 while (req->bio) { 952 struct bio *bio = req->bio; 953 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 954 955 if (unlikely(error)) 956 bio->bi_status = error; 957 958 if (bio_bytes == bio->bi_iter.bi_size) { 959 req->bio = bio->bi_next; 960 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 961 /* 962 * Partial zone append completions cannot be supported 963 * as the BIO fragments may end up not being written 964 * sequentially. 965 */ 966 bio->bi_status = BLK_STS_IOERR; 967 } 968 969 /* Completion has already been traced */ 970 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 971 if (unlikely(quiet)) 972 bio_set_flag(bio, BIO_QUIET); 973 974 bio_advance(bio, bio_bytes); 975 976 /* Don't actually finish bio if it's part of flush sequence */ 977 if (!bio->bi_iter.bi_size) { 978 blk_zone_update_request_bio(req, bio); 979 if (!is_flush) 980 bio_endio(bio); 981 } 982 983 total_bytes += bio_bytes; 984 nr_bytes -= bio_bytes; 985 986 if (!nr_bytes) 987 break; 988 } 989 990 /* 991 * completely done 992 */ 993 if (!req->bio) { 994 /* 995 * Reset counters so that the request stacking driver 996 * can find how many bytes remain in the request 997 * later. 998 */ 999 req->__data_len = 0; 1000 return false; 1001 } 1002 1003 req->__data_len -= total_bytes; 1004 1005 /* update sector only for requests with clear definition of sector */ 1006 if (!blk_rq_is_passthrough(req)) 1007 req->__sector += total_bytes >> 9; 1008 1009 /* mixed attributes always follow the first bio */ 1010 if (req->rq_flags & RQF_MIXED_MERGE) { 1011 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1012 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1013 } 1014 1015 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1016 /* 1017 * If total number of sectors is less than the first segment 1018 * size, something has gone terribly wrong. 1019 */ 1020 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1021 blk_dump_rq_flags(req, "request botched"); 1022 req->__data_len = blk_rq_cur_bytes(req); 1023 } 1024 1025 /* recalculate the number of segments */ 1026 req->nr_phys_segments = blk_recalc_rq_segments(req); 1027 } 1028 1029 return true; 1030 } 1031 EXPORT_SYMBOL_GPL(blk_update_request); 1032 1033 static inline void blk_account_io_done(struct request *req, u64 now) 1034 { 1035 trace_block_io_done(req); 1036 1037 /* 1038 * Account IO completion. flush_rq isn't accounted as a 1039 * normal IO on queueing nor completion. Accounting the 1040 * containing request is enough. 1041 */ 1042 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1043 const int sgrp = op_stat_group(req_op(req)); 1044 1045 part_stat_lock(); 1046 update_io_ticks(req->part, jiffies, true); 1047 part_stat_inc(req->part, ios[sgrp]); 1048 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1049 part_stat_local_dec(req->part, 1050 in_flight[op_is_write(req_op(req))]); 1051 part_stat_unlock(); 1052 } 1053 } 1054 1055 static inline bool blk_rq_passthrough_stats(struct request *req) 1056 { 1057 struct bio *bio = req->bio; 1058 1059 if (!blk_queue_passthrough_stat(req->q)) 1060 return false; 1061 1062 /* Requests without a bio do not transfer data. */ 1063 if (!bio) 1064 return false; 1065 1066 /* 1067 * Stats are accumulated in the bdev, so must have one attached to a 1068 * bio to track stats. Most drivers do not set the bdev for passthrough 1069 * requests, but nvme is one that will set it. 1070 */ 1071 if (!bio->bi_bdev) 1072 return false; 1073 1074 /* 1075 * We don't know what a passthrough command does, but we know the 1076 * payload size and data direction. Ensuring the size is aligned to the 1077 * block size filters out most commands with payloads that don't 1078 * represent sector access. 1079 */ 1080 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1081 return false; 1082 return true; 1083 } 1084 1085 static inline void blk_account_io_start(struct request *req) 1086 { 1087 trace_block_io_start(req); 1088 1089 if (!blk_queue_io_stat(req->q)) 1090 return; 1091 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1092 return; 1093 1094 req->rq_flags |= RQF_IO_STAT; 1095 req->start_time_ns = blk_time_get_ns(); 1096 1097 /* 1098 * All non-passthrough requests are created from a bio with one 1099 * exception: when a flush command that is part of a flush sequence 1100 * generated by the state machine in blk-flush.c is cloned onto the 1101 * lower device by dm-multipath we can get here without a bio. 1102 */ 1103 if (req->bio) 1104 req->part = req->bio->bi_bdev; 1105 else 1106 req->part = req->q->disk->part0; 1107 1108 part_stat_lock(); 1109 update_io_ticks(req->part, jiffies, false); 1110 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1111 part_stat_unlock(); 1112 } 1113 1114 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1115 { 1116 if (rq->rq_flags & RQF_STATS) 1117 blk_stat_add(rq, now); 1118 1119 blk_mq_sched_completed_request(rq, now); 1120 blk_account_io_done(rq, now); 1121 } 1122 1123 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1124 { 1125 if (blk_mq_need_time_stamp(rq)) 1126 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1127 1128 blk_mq_finish_request(rq); 1129 1130 if (rq->end_io) { 1131 rq_qos_done(rq->q, rq); 1132 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1133 blk_mq_free_request(rq); 1134 } else { 1135 blk_mq_free_request(rq); 1136 } 1137 } 1138 EXPORT_SYMBOL(__blk_mq_end_request); 1139 1140 void blk_mq_end_request(struct request *rq, blk_status_t error) 1141 { 1142 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1143 BUG(); 1144 __blk_mq_end_request(rq, error); 1145 } 1146 EXPORT_SYMBOL(blk_mq_end_request); 1147 1148 #define TAG_COMP_BATCH 32 1149 1150 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1151 int *tag_array, int nr_tags) 1152 { 1153 struct request_queue *q = hctx->queue; 1154 1155 blk_mq_sub_active_requests(hctx, nr_tags); 1156 1157 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1158 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1159 } 1160 1161 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1162 { 1163 int tags[TAG_COMP_BATCH], nr_tags = 0; 1164 struct blk_mq_hw_ctx *cur_hctx = NULL; 1165 struct request *rq; 1166 u64 now = 0; 1167 1168 if (iob->need_ts) 1169 now = blk_time_get_ns(); 1170 1171 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1172 prefetch(rq->bio); 1173 prefetch(rq->rq_next); 1174 1175 blk_complete_request(rq); 1176 if (iob->need_ts) 1177 __blk_mq_end_request_acct(rq, now); 1178 1179 blk_mq_finish_request(rq); 1180 1181 rq_qos_done(rq->q, rq); 1182 1183 /* 1184 * If end_io handler returns NONE, then it still has 1185 * ownership of the request. 1186 */ 1187 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1188 continue; 1189 1190 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1191 if (!req_ref_put_and_test(rq)) 1192 continue; 1193 1194 blk_crypto_free_request(rq); 1195 blk_pm_mark_last_busy(rq); 1196 1197 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1198 if (cur_hctx) 1199 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1200 nr_tags = 0; 1201 cur_hctx = rq->mq_hctx; 1202 } 1203 tags[nr_tags++] = rq->tag; 1204 } 1205 1206 if (nr_tags) 1207 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1208 } 1209 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1210 1211 static void blk_complete_reqs(struct llist_head *list) 1212 { 1213 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1214 struct request *rq, *next; 1215 1216 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1217 rq->q->mq_ops->complete(rq); 1218 } 1219 1220 static __latent_entropy void blk_done_softirq(void) 1221 { 1222 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1223 } 1224 1225 static int blk_softirq_cpu_dead(unsigned int cpu) 1226 { 1227 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1228 return 0; 1229 } 1230 1231 static void __blk_mq_complete_request_remote(void *data) 1232 { 1233 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1234 } 1235 1236 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1237 { 1238 int cpu = raw_smp_processor_id(); 1239 1240 if (!IS_ENABLED(CONFIG_SMP) || 1241 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1242 return false; 1243 /* 1244 * With force threaded interrupts enabled, raising softirq from an SMP 1245 * function call will always result in waking the ksoftirqd thread. 1246 * This is probably worse than completing the request on a different 1247 * cache domain. 1248 */ 1249 if (force_irqthreads()) 1250 return false; 1251 1252 /* same CPU or cache domain and capacity? Complete locally */ 1253 if (cpu == rq->mq_ctx->cpu || 1254 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1255 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1256 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1257 return false; 1258 1259 /* don't try to IPI to an offline CPU */ 1260 return cpu_online(rq->mq_ctx->cpu); 1261 } 1262 1263 static void blk_mq_complete_send_ipi(struct request *rq) 1264 { 1265 unsigned int cpu; 1266 1267 cpu = rq->mq_ctx->cpu; 1268 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1269 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1270 } 1271 1272 static void blk_mq_raise_softirq(struct request *rq) 1273 { 1274 struct llist_head *list; 1275 1276 preempt_disable(); 1277 list = this_cpu_ptr(&blk_cpu_done); 1278 if (llist_add(&rq->ipi_list, list)) 1279 raise_softirq(BLOCK_SOFTIRQ); 1280 preempt_enable(); 1281 } 1282 1283 bool blk_mq_complete_request_remote(struct request *rq) 1284 { 1285 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1286 1287 /* 1288 * For request which hctx has only one ctx mapping, 1289 * or a polled request, always complete locally, 1290 * it's pointless to redirect the completion. 1291 */ 1292 if ((rq->mq_hctx->nr_ctx == 1 && 1293 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1294 rq->cmd_flags & REQ_POLLED) 1295 return false; 1296 1297 if (blk_mq_complete_need_ipi(rq)) { 1298 blk_mq_complete_send_ipi(rq); 1299 return true; 1300 } 1301 1302 if (rq->q->nr_hw_queues == 1) { 1303 blk_mq_raise_softirq(rq); 1304 return true; 1305 } 1306 return false; 1307 } 1308 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1309 1310 /** 1311 * blk_mq_complete_request - end I/O on a request 1312 * @rq: the request being processed 1313 * 1314 * Description: 1315 * Complete a request by scheduling the ->complete_rq operation. 1316 **/ 1317 void blk_mq_complete_request(struct request *rq) 1318 { 1319 if (!blk_mq_complete_request_remote(rq)) 1320 rq->q->mq_ops->complete(rq); 1321 } 1322 EXPORT_SYMBOL(blk_mq_complete_request); 1323 1324 /** 1325 * blk_mq_start_request - Start processing a request 1326 * @rq: Pointer to request to be started 1327 * 1328 * Function used by device drivers to notify the block layer that a request 1329 * is going to be processed now, so blk layer can do proper initializations 1330 * such as starting the timeout timer. 1331 */ 1332 void blk_mq_start_request(struct request *rq) 1333 { 1334 struct request_queue *q = rq->q; 1335 1336 trace_block_rq_issue(rq); 1337 1338 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1339 !blk_rq_is_passthrough(rq)) { 1340 rq->io_start_time_ns = blk_time_get_ns(); 1341 rq->stats_sectors = blk_rq_sectors(rq); 1342 rq->rq_flags |= RQF_STATS; 1343 rq_qos_issue(q, rq); 1344 } 1345 1346 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1347 1348 blk_add_timer(rq); 1349 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1350 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1351 1352 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1353 blk_integrity_prepare(rq); 1354 1355 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1356 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1357 } 1358 EXPORT_SYMBOL(blk_mq_start_request); 1359 1360 /* 1361 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1362 * queues. This is important for md arrays to benefit from merging 1363 * requests. 1364 */ 1365 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1366 { 1367 if (plug->multiple_queues) 1368 return BLK_MAX_REQUEST_COUNT * 2; 1369 return BLK_MAX_REQUEST_COUNT; 1370 } 1371 1372 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1373 { 1374 struct request *last = rq_list_peek(&plug->mq_list); 1375 1376 if (!plug->rq_count) { 1377 trace_block_plug(rq->q); 1378 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1379 (!blk_queue_nomerges(rq->q) && 1380 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1381 blk_mq_flush_plug_list(plug, false); 1382 last = NULL; 1383 trace_block_plug(rq->q); 1384 } 1385 1386 if (!plug->multiple_queues && last && last->q != rq->q) 1387 plug->multiple_queues = true; 1388 /* 1389 * Any request allocated from sched tags can't be issued to 1390 * ->queue_rqs() directly 1391 */ 1392 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1393 plug->has_elevator = true; 1394 rq_list_add_tail(&plug->mq_list, rq); 1395 plug->rq_count++; 1396 } 1397 1398 /** 1399 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1400 * @rq: request to insert 1401 * @at_head: insert request at head or tail of queue 1402 * 1403 * Description: 1404 * Insert a fully prepared request at the back of the I/O scheduler queue 1405 * for execution. Don't wait for completion. 1406 * 1407 * Note: 1408 * This function will invoke @done directly if the queue is dead. 1409 */ 1410 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1411 { 1412 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1413 1414 WARN_ON(irqs_disabled()); 1415 WARN_ON(!blk_rq_is_passthrough(rq)); 1416 1417 blk_account_io_start(rq); 1418 1419 if (current->plug && !at_head) { 1420 blk_add_rq_to_plug(current->plug, rq); 1421 return; 1422 } 1423 1424 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1425 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1426 } 1427 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1428 1429 struct blk_rq_wait { 1430 struct completion done; 1431 blk_status_t ret; 1432 }; 1433 1434 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1435 { 1436 struct blk_rq_wait *wait = rq->end_io_data; 1437 1438 wait->ret = ret; 1439 complete(&wait->done); 1440 return RQ_END_IO_NONE; 1441 } 1442 1443 bool blk_rq_is_poll(struct request *rq) 1444 { 1445 if (!rq->mq_hctx) 1446 return false; 1447 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1448 return false; 1449 return true; 1450 } 1451 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1452 1453 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1454 { 1455 do { 1456 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1457 cond_resched(); 1458 } while (!completion_done(wait)); 1459 } 1460 1461 /** 1462 * blk_execute_rq - insert a request into queue for execution 1463 * @rq: request to insert 1464 * @at_head: insert request at head or tail of queue 1465 * 1466 * Description: 1467 * Insert a fully prepared request at the back of the I/O scheduler queue 1468 * for execution and wait for completion. 1469 * Return: The blk_status_t result provided to blk_mq_end_request(). 1470 */ 1471 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1472 { 1473 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1474 struct blk_rq_wait wait = { 1475 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1476 }; 1477 1478 WARN_ON(irqs_disabled()); 1479 WARN_ON(!blk_rq_is_passthrough(rq)); 1480 1481 rq->end_io_data = &wait; 1482 rq->end_io = blk_end_sync_rq; 1483 1484 blk_account_io_start(rq); 1485 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1486 blk_mq_run_hw_queue(hctx, false); 1487 1488 if (blk_rq_is_poll(rq)) 1489 blk_rq_poll_completion(rq, &wait.done); 1490 else 1491 blk_wait_io(&wait.done); 1492 1493 return wait.ret; 1494 } 1495 EXPORT_SYMBOL(blk_execute_rq); 1496 1497 static void __blk_mq_requeue_request(struct request *rq) 1498 { 1499 struct request_queue *q = rq->q; 1500 1501 blk_mq_put_driver_tag(rq); 1502 1503 trace_block_rq_requeue(rq); 1504 rq_qos_requeue(q, rq); 1505 1506 if (blk_mq_request_started(rq)) { 1507 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1508 rq->rq_flags &= ~RQF_TIMED_OUT; 1509 } 1510 } 1511 1512 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1513 { 1514 struct request_queue *q = rq->q; 1515 unsigned long flags; 1516 1517 __blk_mq_requeue_request(rq); 1518 1519 /* this request will be re-inserted to io scheduler queue */ 1520 blk_mq_sched_requeue_request(rq); 1521 1522 spin_lock_irqsave(&q->requeue_lock, flags); 1523 list_add_tail(&rq->queuelist, &q->requeue_list); 1524 spin_unlock_irqrestore(&q->requeue_lock, flags); 1525 1526 if (kick_requeue_list) 1527 blk_mq_kick_requeue_list(q); 1528 } 1529 EXPORT_SYMBOL(blk_mq_requeue_request); 1530 1531 static void blk_mq_requeue_work(struct work_struct *work) 1532 { 1533 struct request_queue *q = 1534 container_of(work, struct request_queue, requeue_work.work); 1535 LIST_HEAD(rq_list); 1536 LIST_HEAD(flush_list); 1537 struct request *rq; 1538 1539 spin_lock_irq(&q->requeue_lock); 1540 list_splice_init(&q->requeue_list, &rq_list); 1541 list_splice_init(&q->flush_list, &flush_list); 1542 spin_unlock_irq(&q->requeue_lock); 1543 1544 while (!list_empty(&rq_list)) { 1545 rq = list_entry(rq_list.next, struct request, queuelist); 1546 /* 1547 * If RQF_DONTPREP ist set, the request has been started by the 1548 * driver already and might have driver-specific data allocated 1549 * already. Insert it into the hctx dispatch list to avoid 1550 * block layer merges for the request. 1551 */ 1552 if (rq->rq_flags & RQF_DONTPREP) { 1553 list_del_init(&rq->queuelist); 1554 blk_mq_request_bypass_insert(rq, 0); 1555 } else { 1556 list_del_init(&rq->queuelist); 1557 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1558 } 1559 } 1560 1561 while (!list_empty(&flush_list)) { 1562 rq = list_entry(flush_list.next, struct request, queuelist); 1563 list_del_init(&rq->queuelist); 1564 blk_mq_insert_request(rq, 0); 1565 } 1566 1567 blk_mq_run_hw_queues(q, false); 1568 } 1569 1570 void blk_mq_kick_requeue_list(struct request_queue *q) 1571 { 1572 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1573 } 1574 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1575 1576 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1577 unsigned long msecs) 1578 { 1579 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1580 msecs_to_jiffies(msecs)); 1581 } 1582 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1583 1584 static bool blk_is_flush_data_rq(struct request *rq) 1585 { 1586 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1587 } 1588 1589 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1590 { 1591 /* 1592 * If we find a request that isn't idle we know the queue is busy 1593 * as it's checked in the iter. 1594 * Return false to stop the iteration. 1595 * 1596 * In case of queue quiesce, if one flush data request is completed, 1597 * don't count it as inflight given the flush sequence is suspended, 1598 * and the original flush data request is invisible to driver, just 1599 * like other pending requests because of quiesce 1600 */ 1601 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1602 blk_is_flush_data_rq(rq) && 1603 blk_mq_request_completed(rq))) { 1604 bool *busy = priv; 1605 1606 *busy = true; 1607 return false; 1608 } 1609 1610 return true; 1611 } 1612 1613 bool blk_mq_queue_inflight(struct request_queue *q) 1614 { 1615 bool busy = false; 1616 1617 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1618 return busy; 1619 } 1620 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1621 1622 static void blk_mq_rq_timed_out(struct request *req) 1623 { 1624 req->rq_flags |= RQF_TIMED_OUT; 1625 if (req->q->mq_ops->timeout) { 1626 enum blk_eh_timer_return ret; 1627 1628 ret = req->q->mq_ops->timeout(req); 1629 if (ret == BLK_EH_DONE) 1630 return; 1631 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1632 } 1633 1634 blk_add_timer(req); 1635 } 1636 1637 struct blk_expired_data { 1638 bool has_timedout_rq; 1639 unsigned long next; 1640 unsigned long timeout_start; 1641 }; 1642 1643 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1644 { 1645 unsigned long deadline; 1646 1647 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1648 return false; 1649 if (rq->rq_flags & RQF_TIMED_OUT) 1650 return false; 1651 1652 deadline = READ_ONCE(rq->deadline); 1653 if (time_after_eq(expired->timeout_start, deadline)) 1654 return true; 1655 1656 if (expired->next == 0) 1657 expired->next = deadline; 1658 else if (time_after(expired->next, deadline)) 1659 expired->next = deadline; 1660 return false; 1661 } 1662 1663 void blk_mq_put_rq_ref(struct request *rq) 1664 { 1665 if (is_flush_rq(rq)) { 1666 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1667 blk_mq_free_request(rq); 1668 } else if (req_ref_put_and_test(rq)) { 1669 __blk_mq_free_request(rq); 1670 } 1671 } 1672 1673 static bool blk_mq_check_expired(struct request *rq, void *priv) 1674 { 1675 struct blk_expired_data *expired = priv; 1676 1677 /* 1678 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1679 * be reallocated underneath the timeout handler's processing, then 1680 * the expire check is reliable. If the request is not expired, then 1681 * it was completed and reallocated as a new request after returning 1682 * from blk_mq_check_expired(). 1683 */ 1684 if (blk_mq_req_expired(rq, expired)) { 1685 expired->has_timedout_rq = true; 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1692 { 1693 struct blk_expired_data *expired = priv; 1694 1695 if (blk_mq_req_expired(rq, expired)) 1696 blk_mq_rq_timed_out(rq); 1697 return true; 1698 } 1699 1700 static void blk_mq_timeout_work(struct work_struct *work) 1701 { 1702 struct request_queue *q = 1703 container_of(work, struct request_queue, timeout_work); 1704 struct blk_expired_data expired = { 1705 .timeout_start = jiffies, 1706 }; 1707 struct blk_mq_hw_ctx *hctx; 1708 unsigned long i; 1709 1710 /* A deadlock might occur if a request is stuck requiring a 1711 * timeout at the same time a queue freeze is waiting 1712 * completion, since the timeout code would not be able to 1713 * acquire the queue reference here. 1714 * 1715 * That's why we don't use blk_queue_enter here; instead, we use 1716 * percpu_ref_tryget directly, because we need to be able to 1717 * obtain a reference even in the short window between the queue 1718 * starting to freeze, by dropping the first reference in 1719 * blk_freeze_queue_start, and the moment the last request is 1720 * consumed, marked by the instant q_usage_counter reaches 1721 * zero. 1722 */ 1723 if (!percpu_ref_tryget(&q->q_usage_counter)) 1724 return; 1725 1726 /* check if there is any timed-out request */ 1727 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1728 if (expired.has_timedout_rq) { 1729 /* 1730 * Before walking tags, we must ensure any submit started 1731 * before the current time has finished. Since the submit 1732 * uses srcu or rcu, wait for a synchronization point to 1733 * ensure all running submits have finished 1734 */ 1735 blk_mq_wait_quiesce_done(q->tag_set); 1736 1737 expired.next = 0; 1738 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1739 } 1740 1741 if (expired.next != 0) { 1742 mod_timer(&q->timeout, expired.next); 1743 } else { 1744 /* 1745 * Request timeouts are handled as a forward rolling timer. If 1746 * we end up here it means that no requests are pending and 1747 * also that no request has been pending for a while. Mark 1748 * each hctx as idle. 1749 */ 1750 queue_for_each_hw_ctx(q, hctx, i) { 1751 /* the hctx may be unmapped, so check it here */ 1752 if (blk_mq_hw_queue_mapped(hctx)) 1753 blk_mq_tag_idle(hctx); 1754 } 1755 } 1756 blk_queue_exit(q); 1757 } 1758 1759 struct flush_busy_ctx_data { 1760 struct blk_mq_hw_ctx *hctx; 1761 struct list_head *list; 1762 }; 1763 1764 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1765 { 1766 struct flush_busy_ctx_data *flush_data = data; 1767 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1768 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1769 enum hctx_type type = hctx->type; 1770 1771 spin_lock(&ctx->lock); 1772 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1773 sbitmap_clear_bit(sb, bitnr); 1774 spin_unlock(&ctx->lock); 1775 return true; 1776 } 1777 1778 /* 1779 * Process software queues that have been marked busy, splicing them 1780 * to the for-dispatch 1781 */ 1782 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1783 { 1784 struct flush_busy_ctx_data data = { 1785 .hctx = hctx, 1786 .list = list, 1787 }; 1788 1789 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1790 } 1791 1792 struct dispatch_rq_data { 1793 struct blk_mq_hw_ctx *hctx; 1794 struct request *rq; 1795 }; 1796 1797 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1798 void *data) 1799 { 1800 struct dispatch_rq_data *dispatch_data = data; 1801 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1802 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1803 enum hctx_type type = hctx->type; 1804 1805 spin_lock(&ctx->lock); 1806 if (!list_empty(&ctx->rq_lists[type])) { 1807 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1808 list_del_init(&dispatch_data->rq->queuelist); 1809 if (list_empty(&ctx->rq_lists[type])) 1810 sbitmap_clear_bit(sb, bitnr); 1811 } 1812 spin_unlock(&ctx->lock); 1813 1814 return !dispatch_data->rq; 1815 } 1816 1817 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1818 struct blk_mq_ctx *start) 1819 { 1820 unsigned off = start ? start->index_hw[hctx->type] : 0; 1821 struct dispatch_rq_data data = { 1822 .hctx = hctx, 1823 .rq = NULL, 1824 }; 1825 1826 __sbitmap_for_each_set(&hctx->ctx_map, off, 1827 dispatch_rq_from_ctx, &data); 1828 1829 return data.rq; 1830 } 1831 1832 bool __blk_mq_alloc_driver_tag(struct request *rq) 1833 { 1834 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1835 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1836 int tag; 1837 1838 blk_mq_tag_busy(rq->mq_hctx); 1839 1840 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1841 bt = &rq->mq_hctx->tags->breserved_tags; 1842 tag_offset = 0; 1843 } else { 1844 if (!hctx_may_queue(rq->mq_hctx, bt)) 1845 return false; 1846 } 1847 1848 tag = __sbitmap_queue_get(bt); 1849 if (tag == BLK_MQ_NO_TAG) 1850 return false; 1851 1852 rq->tag = tag + tag_offset; 1853 blk_mq_inc_active_requests(rq->mq_hctx); 1854 return true; 1855 } 1856 1857 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1858 int flags, void *key) 1859 { 1860 struct blk_mq_hw_ctx *hctx; 1861 1862 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1863 1864 spin_lock(&hctx->dispatch_wait_lock); 1865 if (!list_empty(&wait->entry)) { 1866 struct sbitmap_queue *sbq; 1867 1868 list_del_init(&wait->entry); 1869 sbq = &hctx->tags->bitmap_tags; 1870 atomic_dec(&sbq->ws_active); 1871 } 1872 spin_unlock(&hctx->dispatch_wait_lock); 1873 1874 blk_mq_run_hw_queue(hctx, true); 1875 return 1; 1876 } 1877 1878 /* 1879 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1880 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1881 * restart. For both cases, take care to check the condition again after 1882 * marking us as waiting. 1883 */ 1884 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1885 struct request *rq) 1886 { 1887 struct sbitmap_queue *sbq; 1888 struct wait_queue_head *wq; 1889 wait_queue_entry_t *wait; 1890 bool ret; 1891 1892 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1893 !(blk_mq_is_shared_tags(hctx->flags))) { 1894 blk_mq_sched_mark_restart_hctx(hctx); 1895 1896 /* 1897 * It's possible that a tag was freed in the window between the 1898 * allocation failure and adding the hardware queue to the wait 1899 * queue. 1900 * 1901 * Don't clear RESTART here, someone else could have set it. 1902 * At most this will cost an extra queue run. 1903 */ 1904 return blk_mq_get_driver_tag(rq); 1905 } 1906 1907 wait = &hctx->dispatch_wait; 1908 if (!list_empty_careful(&wait->entry)) 1909 return false; 1910 1911 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1912 sbq = &hctx->tags->breserved_tags; 1913 else 1914 sbq = &hctx->tags->bitmap_tags; 1915 wq = &bt_wait_ptr(sbq, hctx)->wait; 1916 1917 spin_lock_irq(&wq->lock); 1918 spin_lock(&hctx->dispatch_wait_lock); 1919 if (!list_empty(&wait->entry)) { 1920 spin_unlock(&hctx->dispatch_wait_lock); 1921 spin_unlock_irq(&wq->lock); 1922 return false; 1923 } 1924 1925 atomic_inc(&sbq->ws_active); 1926 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1927 __add_wait_queue(wq, wait); 1928 1929 /* 1930 * Add one explicit barrier since blk_mq_get_driver_tag() may 1931 * not imply barrier in case of failure. 1932 * 1933 * Order adding us to wait queue and allocating driver tag. 1934 * 1935 * The pair is the one implied in sbitmap_queue_wake_up() which 1936 * orders clearing sbitmap tag bits and waitqueue_active() in 1937 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1938 * 1939 * Otherwise, re-order of adding wait queue and getting driver tag 1940 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1941 * the waitqueue_active() may not observe us in wait queue. 1942 */ 1943 smp_mb(); 1944 1945 /* 1946 * It's possible that a tag was freed in the window between the 1947 * allocation failure and adding the hardware queue to the wait 1948 * queue. 1949 */ 1950 ret = blk_mq_get_driver_tag(rq); 1951 if (!ret) { 1952 spin_unlock(&hctx->dispatch_wait_lock); 1953 spin_unlock_irq(&wq->lock); 1954 return false; 1955 } 1956 1957 /* 1958 * We got a tag, remove ourselves from the wait queue to ensure 1959 * someone else gets the wakeup. 1960 */ 1961 list_del_init(&wait->entry); 1962 atomic_dec(&sbq->ws_active); 1963 spin_unlock(&hctx->dispatch_wait_lock); 1964 spin_unlock_irq(&wq->lock); 1965 1966 return true; 1967 } 1968 1969 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1971 /* 1972 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1973 * - EWMA is one simple way to compute running average value 1974 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1975 * - take 4 as factor for avoiding to get too small(0) result, and this 1976 * factor doesn't matter because EWMA decreases exponentially 1977 */ 1978 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1979 { 1980 unsigned int ewma; 1981 1982 ewma = hctx->dispatch_busy; 1983 1984 if (!ewma && !busy) 1985 return; 1986 1987 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1988 if (busy) 1989 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1990 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1991 1992 hctx->dispatch_busy = ewma; 1993 } 1994 1995 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1996 1997 static void blk_mq_handle_dev_resource(struct request *rq, 1998 struct list_head *list) 1999 { 2000 list_add(&rq->queuelist, list); 2001 __blk_mq_requeue_request(rq); 2002 } 2003 2004 enum prep_dispatch { 2005 PREP_DISPATCH_OK, 2006 PREP_DISPATCH_NO_TAG, 2007 PREP_DISPATCH_NO_BUDGET, 2008 }; 2009 2010 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2011 bool need_budget) 2012 { 2013 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2014 int budget_token = -1; 2015 2016 if (need_budget) { 2017 budget_token = blk_mq_get_dispatch_budget(rq->q); 2018 if (budget_token < 0) { 2019 blk_mq_put_driver_tag(rq); 2020 return PREP_DISPATCH_NO_BUDGET; 2021 } 2022 blk_mq_set_rq_budget_token(rq, budget_token); 2023 } 2024 2025 if (!blk_mq_get_driver_tag(rq)) { 2026 /* 2027 * The initial allocation attempt failed, so we need to 2028 * rerun the hardware queue when a tag is freed. The 2029 * waitqueue takes care of that. If the queue is run 2030 * before we add this entry back on the dispatch list, 2031 * we'll re-run it below. 2032 */ 2033 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2034 /* 2035 * All budgets not got from this function will be put 2036 * together during handling partial dispatch 2037 */ 2038 if (need_budget) 2039 blk_mq_put_dispatch_budget(rq->q, budget_token); 2040 return PREP_DISPATCH_NO_TAG; 2041 } 2042 } 2043 2044 return PREP_DISPATCH_OK; 2045 } 2046 2047 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2048 static void blk_mq_release_budgets(struct request_queue *q, 2049 struct list_head *list) 2050 { 2051 struct request *rq; 2052 2053 list_for_each_entry(rq, list, queuelist) { 2054 int budget_token = blk_mq_get_rq_budget_token(rq); 2055 2056 if (budget_token >= 0) 2057 blk_mq_put_dispatch_budget(q, budget_token); 2058 } 2059 } 2060 2061 /* 2062 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2063 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2064 * details) 2065 * Attention, we should explicitly call this in unusual cases: 2066 * 1) did not queue everything initially scheduled to queue 2067 * 2) the last attempt to queue a request failed 2068 */ 2069 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2070 bool from_schedule) 2071 { 2072 if (hctx->queue->mq_ops->commit_rqs && queued) { 2073 trace_block_unplug(hctx->queue, queued, !from_schedule); 2074 hctx->queue->mq_ops->commit_rqs(hctx); 2075 } 2076 } 2077 2078 /* 2079 * Returns true if we did some work AND can potentially do more. 2080 */ 2081 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2082 unsigned int nr_budgets) 2083 { 2084 enum prep_dispatch prep; 2085 struct request_queue *q = hctx->queue; 2086 struct request *rq; 2087 int queued; 2088 blk_status_t ret = BLK_STS_OK; 2089 bool needs_resource = false; 2090 2091 if (list_empty(list)) 2092 return false; 2093 2094 /* 2095 * Now process all the entries, sending them to the driver. 2096 */ 2097 queued = 0; 2098 do { 2099 struct blk_mq_queue_data bd; 2100 2101 rq = list_first_entry(list, struct request, queuelist); 2102 2103 WARN_ON_ONCE(hctx != rq->mq_hctx); 2104 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2105 if (prep != PREP_DISPATCH_OK) 2106 break; 2107 2108 list_del_init(&rq->queuelist); 2109 2110 bd.rq = rq; 2111 bd.last = list_empty(list); 2112 2113 /* 2114 * once the request is queued to lld, no need to cover the 2115 * budget any more 2116 */ 2117 if (nr_budgets) 2118 nr_budgets--; 2119 ret = q->mq_ops->queue_rq(hctx, &bd); 2120 switch (ret) { 2121 case BLK_STS_OK: 2122 queued++; 2123 break; 2124 case BLK_STS_RESOURCE: 2125 needs_resource = true; 2126 fallthrough; 2127 case BLK_STS_DEV_RESOURCE: 2128 blk_mq_handle_dev_resource(rq, list); 2129 goto out; 2130 default: 2131 blk_mq_end_request(rq, ret); 2132 } 2133 } while (!list_empty(list)); 2134 out: 2135 /* If we didn't flush the entire list, we could have told the driver 2136 * there was more coming, but that turned out to be a lie. 2137 */ 2138 if (!list_empty(list) || ret != BLK_STS_OK) 2139 blk_mq_commit_rqs(hctx, queued, false); 2140 2141 /* 2142 * Any items that need requeuing? Stuff them into hctx->dispatch, 2143 * that is where we will continue on next queue run. 2144 */ 2145 if (!list_empty(list)) { 2146 bool needs_restart; 2147 /* For non-shared tags, the RESTART check will suffice */ 2148 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2149 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2150 blk_mq_is_shared_tags(hctx->flags)); 2151 2152 if (nr_budgets) 2153 blk_mq_release_budgets(q, list); 2154 2155 spin_lock(&hctx->lock); 2156 list_splice_tail_init(list, &hctx->dispatch); 2157 spin_unlock(&hctx->lock); 2158 2159 /* 2160 * Order adding requests to hctx->dispatch and checking 2161 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2162 * in blk_mq_sched_restart(). Avoid restart code path to 2163 * miss the new added requests to hctx->dispatch, meantime 2164 * SCHED_RESTART is observed here. 2165 */ 2166 smp_mb(); 2167 2168 /* 2169 * If SCHED_RESTART was set by the caller of this function and 2170 * it is no longer set that means that it was cleared by another 2171 * thread and hence that a queue rerun is needed. 2172 * 2173 * If 'no_tag' is set, that means that we failed getting 2174 * a driver tag with an I/O scheduler attached. If our dispatch 2175 * waitqueue is no longer active, ensure that we run the queue 2176 * AFTER adding our entries back to the list. 2177 * 2178 * If no I/O scheduler has been configured it is possible that 2179 * the hardware queue got stopped and restarted before requests 2180 * were pushed back onto the dispatch list. Rerun the queue to 2181 * avoid starvation. Notes: 2182 * - blk_mq_run_hw_queue() checks whether or not a queue has 2183 * been stopped before rerunning a queue. 2184 * - Some but not all block drivers stop a queue before 2185 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2186 * and dm-rq. 2187 * 2188 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2189 * bit is set, run queue after a delay to avoid IO stalls 2190 * that could otherwise occur if the queue is idle. We'll do 2191 * similar if we couldn't get budget or couldn't lock a zone 2192 * and SCHED_RESTART is set. 2193 */ 2194 needs_restart = blk_mq_sched_needs_restart(hctx); 2195 if (prep == PREP_DISPATCH_NO_BUDGET) 2196 needs_resource = true; 2197 if (!needs_restart || 2198 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2199 blk_mq_run_hw_queue(hctx, true); 2200 else if (needs_resource) 2201 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2202 2203 blk_mq_update_dispatch_busy(hctx, true); 2204 return false; 2205 } 2206 2207 blk_mq_update_dispatch_busy(hctx, false); 2208 return true; 2209 } 2210 2211 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2212 { 2213 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2214 2215 if (cpu >= nr_cpu_ids) 2216 cpu = cpumask_first(hctx->cpumask); 2217 return cpu; 2218 } 2219 2220 /* 2221 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2222 * it for speeding up the check 2223 */ 2224 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2225 { 2226 return hctx->next_cpu >= nr_cpu_ids; 2227 } 2228 2229 /* 2230 * It'd be great if the workqueue API had a way to pass 2231 * in a mask and had some smarts for more clever placement. 2232 * For now we just round-robin here, switching for every 2233 * BLK_MQ_CPU_WORK_BATCH queued items. 2234 */ 2235 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2236 { 2237 bool tried = false; 2238 int next_cpu = hctx->next_cpu; 2239 2240 /* Switch to unbound if no allowable CPUs in this hctx */ 2241 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2242 return WORK_CPU_UNBOUND; 2243 2244 if (--hctx->next_cpu_batch <= 0) { 2245 select_cpu: 2246 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2247 cpu_online_mask); 2248 if (next_cpu >= nr_cpu_ids) 2249 next_cpu = blk_mq_first_mapped_cpu(hctx); 2250 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2251 } 2252 2253 /* 2254 * Do unbound schedule if we can't find a online CPU for this hctx, 2255 * and it should only happen in the path of handling CPU DEAD. 2256 */ 2257 if (!cpu_online(next_cpu)) { 2258 if (!tried) { 2259 tried = true; 2260 goto select_cpu; 2261 } 2262 2263 /* 2264 * Make sure to re-select CPU next time once after CPUs 2265 * in hctx->cpumask become online again. 2266 */ 2267 hctx->next_cpu = next_cpu; 2268 hctx->next_cpu_batch = 1; 2269 return WORK_CPU_UNBOUND; 2270 } 2271 2272 hctx->next_cpu = next_cpu; 2273 return next_cpu; 2274 } 2275 2276 /** 2277 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2278 * @hctx: Pointer to the hardware queue to run. 2279 * @msecs: Milliseconds of delay to wait before running the queue. 2280 * 2281 * Run a hardware queue asynchronously with a delay of @msecs. 2282 */ 2283 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2284 { 2285 if (unlikely(blk_mq_hctx_stopped(hctx))) 2286 return; 2287 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2288 msecs_to_jiffies(msecs)); 2289 } 2290 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2291 2292 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2293 { 2294 bool need_run; 2295 2296 /* 2297 * When queue is quiesced, we may be switching io scheduler, or 2298 * updating nr_hw_queues, or other things, and we can't run queue 2299 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2300 * 2301 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2302 * quiesced. 2303 */ 2304 __blk_mq_run_dispatch_ops(hctx->queue, false, 2305 need_run = !blk_queue_quiesced(hctx->queue) && 2306 blk_mq_hctx_has_pending(hctx)); 2307 return need_run; 2308 } 2309 2310 /** 2311 * blk_mq_run_hw_queue - Start to run a hardware queue. 2312 * @hctx: Pointer to the hardware queue to run. 2313 * @async: If we want to run the queue asynchronously. 2314 * 2315 * Check if the request queue is not in a quiesced state and if there are 2316 * pending requests to be sent. If this is true, run the queue to send requests 2317 * to hardware. 2318 */ 2319 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2320 { 2321 bool need_run; 2322 2323 /* 2324 * We can't run the queue inline with interrupts disabled. 2325 */ 2326 WARN_ON_ONCE(!async && in_interrupt()); 2327 2328 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2329 2330 need_run = blk_mq_hw_queue_need_run(hctx); 2331 if (!need_run) { 2332 unsigned long flags; 2333 2334 /* 2335 * Synchronize with blk_mq_unquiesce_queue(), because we check 2336 * if hw queue is quiesced locklessly above, we need the use 2337 * ->queue_lock to make sure we see the up-to-date status to 2338 * not miss rerunning the hw queue. 2339 */ 2340 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2341 need_run = blk_mq_hw_queue_need_run(hctx); 2342 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2343 2344 if (!need_run) 2345 return; 2346 } 2347 2348 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2349 blk_mq_delay_run_hw_queue(hctx, 0); 2350 return; 2351 } 2352 2353 blk_mq_run_dispatch_ops(hctx->queue, 2354 blk_mq_sched_dispatch_requests(hctx)); 2355 } 2356 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2357 2358 /* 2359 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2360 * scheduler. 2361 */ 2362 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2363 { 2364 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2365 /* 2366 * If the IO scheduler does not respect hardware queues when 2367 * dispatching, we just don't bother with multiple HW queues and 2368 * dispatch from hctx for the current CPU since running multiple queues 2369 * just causes lock contention inside the scheduler and pointless cache 2370 * bouncing. 2371 */ 2372 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2373 2374 if (!blk_mq_hctx_stopped(hctx)) 2375 return hctx; 2376 return NULL; 2377 } 2378 2379 /** 2380 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2381 * @q: Pointer to the request queue to run. 2382 * @async: If we want to run the queue asynchronously. 2383 */ 2384 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2385 { 2386 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2387 unsigned long i; 2388 2389 sq_hctx = NULL; 2390 if (blk_queue_sq_sched(q)) 2391 sq_hctx = blk_mq_get_sq_hctx(q); 2392 queue_for_each_hw_ctx(q, hctx, i) { 2393 if (blk_mq_hctx_stopped(hctx)) 2394 continue; 2395 /* 2396 * Dispatch from this hctx either if there's no hctx preferred 2397 * by IO scheduler or if it has requests that bypass the 2398 * scheduler. 2399 */ 2400 if (!sq_hctx || sq_hctx == hctx || 2401 !list_empty_careful(&hctx->dispatch)) 2402 blk_mq_run_hw_queue(hctx, async); 2403 } 2404 } 2405 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2406 2407 /** 2408 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2409 * @q: Pointer to the request queue to run. 2410 * @msecs: Milliseconds of delay to wait before running the queues. 2411 */ 2412 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2413 { 2414 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2415 unsigned long i; 2416 2417 sq_hctx = NULL; 2418 if (blk_queue_sq_sched(q)) 2419 sq_hctx = blk_mq_get_sq_hctx(q); 2420 queue_for_each_hw_ctx(q, hctx, i) { 2421 if (blk_mq_hctx_stopped(hctx)) 2422 continue; 2423 /* 2424 * If there is already a run_work pending, leave the 2425 * pending delay untouched. Otherwise, a hctx can stall 2426 * if another hctx is re-delaying the other's work 2427 * before the work executes. 2428 */ 2429 if (delayed_work_pending(&hctx->run_work)) 2430 continue; 2431 /* 2432 * Dispatch from this hctx either if there's no hctx preferred 2433 * by IO scheduler or if it has requests that bypass the 2434 * scheduler. 2435 */ 2436 if (!sq_hctx || sq_hctx == hctx || 2437 !list_empty_careful(&hctx->dispatch)) 2438 blk_mq_delay_run_hw_queue(hctx, msecs); 2439 } 2440 } 2441 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2442 2443 /* 2444 * This function is often used for pausing .queue_rq() by driver when 2445 * there isn't enough resource or some conditions aren't satisfied, and 2446 * BLK_STS_RESOURCE is usually returned. 2447 * 2448 * We do not guarantee that dispatch can be drained or blocked 2449 * after blk_mq_stop_hw_queue() returns. Please use 2450 * blk_mq_quiesce_queue() for that requirement. 2451 */ 2452 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2453 { 2454 cancel_delayed_work(&hctx->run_work); 2455 2456 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2457 } 2458 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2459 2460 /* 2461 * This function is often used for pausing .queue_rq() by driver when 2462 * there isn't enough resource or some conditions aren't satisfied, and 2463 * BLK_STS_RESOURCE is usually returned. 2464 * 2465 * We do not guarantee that dispatch can be drained or blocked 2466 * after blk_mq_stop_hw_queues() returns. Please use 2467 * blk_mq_quiesce_queue() for that requirement. 2468 */ 2469 void blk_mq_stop_hw_queues(struct request_queue *q) 2470 { 2471 struct blk_mq_hw_ctx *hctx; 2472 unsigned long i; 2473 2474 queue_for_each_hw_ctx(q, hctx, i) 2475 blk_mq_stop_hw_queue(hctx); 2476 } 2477 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2478 2479 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2480 { 2481 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2482 2483 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2484 } 2485 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2486 2487 void blk_mq_start_hw_queues(struct request_queue *q) 2488 { 2489 struct blk_mq_hw_ctx *hctx; 2490 unsigned long i; 2491 2492 queue_for_each_hw_ctx(q, hctx, i) 2493 blk_mq_start_hw_queue(hctx); 2494 } 2495 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2496 2497 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2498 { 2499 if (!blk_mq_hctx_stopped(hctx)) 2500 return; 2501 2502 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2503 /* 2504 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2505 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2506 * list in the subsequent routine. 2507 */ 2508 smp_mb__after_atomic(); 2509 blk_mq_run_hw_queue(hctx, async); 2510 } 2511 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2512 2513 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2514 { 2515 struct blk_mq_hw_ctx *hctx; 2516 unsigned long i; 2517 2518 queue_for_each_hw_ctx(q, hctx, i) 2519 blk_mq_start_stopped_hw_queue(hctx, async || 2520 (hctx->flags & BLK_MQ_F_BLOCKING)); 2521 } 2522 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2523 2524 static void blk_mq_run_work_fn(struct work_struct *work) 2525 { 2526 struct blk_mq_hw_ctx *hctx = 2527 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2528 2529 blk_mq_run_dispatch_ops(hctx->queue, 2530 blk_mq_sched_dispatch_requests(hctx)); 2531 } 2532 2533 /** 2534 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2535 * @rq: Pointer to request to be inserted. 2536 * @flags: BLK_MQ_INSERT_* 2537 * 2538 * Should only be used carefully, when the caller knows we want to 2539 * bypass a potential IO scheduler on the target device. 2540 */ 2541 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2542 { 2543 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2544 2545 spin_lock(&hctx->lock); 2546 if (flags & BLK_MQ_INSERT_AT_HEAD) 2547 list_add(&rq->queuelist, &hctx->dispatch); 2548 else 2549 list_add_tail(&rq->queuelist, &hctx->dispatch); 2550 spin_unlock(&hctx->lock); 2551 } 2552 2553 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2554 struct blk_mq_ctx *ctx, struct list_head *list, 2555 bool run_queue_async) 2556 { 2557 struct request *rq; 2558 enum hctx_type type = hctx->type; 2559 2560 /* 2561 * Try to issue requests directly if the hw queue isn't busy to save an 2562 * extra enqueue & dequeue to the sw queue. 2563 */ 2564 if (!hctx->dispatch_busy && !run_queue_async) { 2565 blk_mq_run_dispatch_ops(hctx->queue, 2566 blk_mq_try_issue_list_directly(hctx, list)); 2567 if (list_empty(list)) 2568 goto out; 2569 } 2570 2571 /* 2572 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2573 * offline now 2574 */ 2575 list_for_each_entry(rq, list, queuelist) { 2576 BUG_ON(rq->mq_ctx != ctx); 2577 trace_block_rq_insert(rq); 2578 if (rq->cmd_flags & REQ_NOWAIT) 2579 run_queue_async = true; 2580 } 2581 2582 spin_lock(&ctx->lock); 2583 list_splice_tail_init(list, &ctx->rq_lists[type]); 2584 blk_mq_hctx_mark_pending(hctx, ctx); 2585 spin_unlock(&ctx->lock); 2586 out: 2587 blk_mq_run_hw_queue(hctx, run_queue_async); 2588 } 2589 2590 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2591 { 2592 struct request_queue *q = rq->q; 2593 struct blk_mq_ctx *ctx = rq->mq_ctx; 2594 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2595 2596 if (blk_rq_is_passthrough(rq)) { 2597 /* 2598 * Passthrough request have to be added to hctx->dispatch 2599 * directly. The device may be in a situation where it can't 2600 * handle FS request, and always returns BLK_STS_RESOURCE for 2601 * them, which gets them added to hctx->dispatch. 2602 * 2603 * If a passthrough request is required to unblock the queues, 2604 * and it is added to the scheduler queue, there is no chance to 2605 * dispatch it given we prioritize requests in hctx->dispatch. 2606 */ 2607 blk_mq_request_bypass_insert(rq, flags); 2608 } else if (req_op(rq) == REQ_OP_FLUSH) { 2609 /* 2610 * Firstly normal IO request is inserted to scheduler queue or 2611 * sw queue, meantime we add flush request to dispatch queue( 2612 * hctx->dispatch) directly and there is at most one in-flight 2613 * flush request for each hw queue, so it doesn't matter to add 2614 * flush request to tail or front of the dispatch queue. 2615 * 2616 * Secondly in case of NCQ, flush request belongs to non-NCQ 2617 * command, and queueing it will fail when there is any 2618 * in-flight normal IO request(NCQ command). When adding flush 2619 * rq to the front of hctx->dispatch, it is easier to introduce 2620 * extra time to flush rq's latency because of S_SCHED_RESTART 2621 * compared with adding to the tail of dispatch queue, then 2622 * chance of flush merge is increased, and less flush requests 2623 * will be issued to controller. It is observed that ~10% time 2624 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2625 * drive when adding flush rq to the front of hctx->dispatch. 2626 * 2627 * Simply queue flush rq to the front of hctx->dispatch so that 2628 * intensive flush workloads can benefit in case of NCQ HW. 2629 */ 2630 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2631 } else if (q->elevator) { 2632 LIST_HEAD(list); 2633 2634 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2635 2636 list_add(&rq->queuelist, &list); 2637 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2638 } else { 2639 trace_block_rq_insert(rq); 2640 2641 spin_lock(&ctx->lock); 2642 if (flags & BLK_MQ_INSERT_AT_HEAD) 2643 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2644 else 2645 list_add_tail(&rq->queuelist, 2646 &ctx->rq_lists[hctx->type]); 2647 blk_mq_hctx_mark_pending(hctx, ctx); 2648 spin_unlock(&ctx->lock); 2649 } 2650 } 2651 2652 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2653 unsigned int nr_segs) 2654 { 2655 int err; 2656 2657 if (bio->bi_opf & REQ_RAHEAD) 2658 rq->cmd_flags |= REQ_FAILFAST_MASK; 2659 2660 rq->__sector = bio->bi_iter.bi_sector; 2661 blk_rq_bio_prep(rq, bio, nr_segs); 2662 if (bio_integrity(bio)) 2663 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2664 bio); 2665 2666 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2667 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2668 WARN_ON_ONCE(err); 2669 2670 blk_account_io_start(rq); 2671 } 2672 2673 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2674 struct request *rq, bool last) 2675 { 2676 struct request_queue *q = rq->q; 2677 struct blk_mq_queue_data bd = { 2678 .rq = rq, 2679 .last = last, 2680 }; 2681 blk_status_t ret; 2682 2683 /* 2684 * For OK queue, we are done. For error, caller may kill it. 2685 * Any other error (busy), just add it to our list as we 2686 * previously would have done. 2687 */ 2688 ret = q->mq_ops->queue_rq(hctx, &bd); 2689 switch (ret) { 2690 case BLK_STS_OK: 2691 blk_mq_update_dispatch_busy(hctx, false); 2692 break; 2693 case BLK_STS_RESOURCE: 2694 case BLK_STS_DEV_RESOURCE: 2695 blk_mq_update_dispatch_busy(hctx, true); 2696 __blk_mq_requeue_request(rq); 2697 break; 2698 default: 2699 blk_mq_update_dispatch_busy(hctx, false); 2700 break; 2701 } 2702 2703 return ret; 2704 } 2705 2706 static bool blk_mq_get_budget_and_tag(struct request *rq) 2707 { 2708 int budget_token; 2709 2710 budget_token = blk_mq_get_dispatch_budget(rq->q); 2711 if (budget_token < 0) 2712 return false; 2713 blk_mq_set_rq_budget_token(rq, budget_token); 2714 if (!blk_mq_get_driver_tag(rq)) { 2715 blk_mq_put_dispatch_budget(rq->q, budget_token); 2716 return false; 2717 } 2718 return true; 2719 } 2720 2721 /** 2722 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2723 * @hctx: Pointer of the associated hardware queue. 2724 * @rq: Pointer to request to be sent. 2725 * 2726 * If the device has enough resources to accept a new request now, send the 2727 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2728 * we can try send it another time in the future. Requests inserted at this 2729 * queue have higher priority. 2730 */ 2731 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2732 struct request *rq) 2733 { 2734 blk_status_t ret; 2735 2736 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2737 blk_mq_insert_request(rq, 0); 2738 blk_mq_run_hw_queue(hctx, false); 2739 return; 2740 } 2741 2742 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2743 blk_mq_insert_request(rq, 0); 2744 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2745 return; 2746 } 2747 2748 ret = __blk_mq_issue_directly(hctx, rq, true); 2749 switch (ret) { 2750 case BLK_STS_OK: 2751 break; 2752 case BLK_STS_RESOURCE: 2753 case BLK_STS_DEV_RESOURCE: 2754 blk_mq_request_bypass_insert(rq, 0); 2755 blk_mq_run_hw_queue(hctx, false); 2756 break; 2757 default: 2758 blk_mq_end_request(rq, ret); 2759 break; 2760 } 2761 } 2762 2763 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2764 { 2765 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2766 2767 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2768 blk_mq_insert_request(rq, 0); 2769 blk_mq_run_hw_queue(hctx, false); 2770 return BLK_STS_OK; 2771 } 2772 2773 if (!blk_mq_get_budget_and_tag(rq)) 2774 return BLK_STS_RESOURCE; 2775 return __blk_mq_issue_directly(hctx, rq, last); 2776 } 2777 2778 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2779 { 2780 struct blk_mq_hw_ctx *hctx = NULL; 2781 struct request *rq; 2782 int queued = 0; 2783 blk_status_t ret = BLK_STS_OK; 2784 2785 while ((rq = rq_list_pop(&plug->mq_list))) { 2786 bool last = rq_list_empty(&plug->mq_list); 2787 2788 if (hctx != rq->mq_hctx) { 2789 if (hctx) { 2790 blk_mq_commit_rqs(hctx, queued, false); 2791 queued = 0; 2792 } 2793 hctx = rq->mq_hctx; 2794 } 2795 2796 ret = blk_mq_request_issue_directly(rq, last); 2797 switch (ret) { 2798 case BLK_STS_OK: 2799 queued++; 2800 break; 2801 case BLK_STS_RESOURCE: 2802 case BLK_STS_DEV_RESOURCE: 2803 blk_mq_request_bypass_insert(rq, 0); 2804 blk_mq_run_hw_queue(hctx, false); 2805 goto out; 2806 default: 2807 blk_mq_end_request(rq, ret); 2808 break; 2809 } 2810 } 2811 2812 out: 2813 if (ret != BLK_STS_OK) 2814 blk_mq_commit_rqs(hctx, queued, false); 2815 } 2816 2817 static void __blk_mq_flush_plug_list(struct request_queue *q, 2818 struct blk_plug *plug) 2819 { 2820 if (blk_queue_quiesced(q)) 2821 return; 2822 q->mq_ops->queue_rqs(&plug->mq_list); 2823 } 2824 2825 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2826 { 2827 struct blk_mq_hw_ctx *this_hctx = NULL; 2828 struct blk_mq_ctx *this_ctx = NULL; 2829 struct rq_list requeue_list = {}; 2830 unsigned int depth = 0; 2831 bool is_passthrough = false; 2832 LIST_HEAD(list); 2833 2834 do { 2835 struct request *rq = rq_list_pop(&plug->mq_list); 2836 2837 if (!this_hctx) { 2838 this_hctx = rq->mq_hctx; 2839 this_ctx = rq->mq_ctx; 2840 is_passthrough = blk_rq_is_passthrough(rq); 2841 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2842 is_passthrough != blk_rq_is_passthrough(rq)) { 2843 rq_list_add_tail(&requeue_list, rq); 2844 continue; 2845 } 2846 list_add_tail(&rq->queuelist, &list); 2847 depth++; 2848 } while (!rq_list_empty(&plug->mq_list)); 2849 2850 plug->mq_list = requeue_list; 2851 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2852 2853 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2854 /* passthrough requests should never be issued to the I/O scheduler */ 2855 if (is_passthrough) { 2856 spin_lock(&this_hctx->lock); 2857 list_splice_tail_init(&list, &this_hctx->dispatch); 2858 spin_unlock(&this_hctx->lock); 2859 blk_mq_run_hw_queue(this_hctx, from_sched); 2860 } else if (this_hctx->queue->elevator) { 2861 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2862 &list, 0); 2863 blk_mq_run_hw_queue(this_hctx, from_sched); 2864 } else { 2865 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2866 } 2867 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2868 } 2869 2870 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2871 { 2872 struct request *rq; 2873 unsigned int depth; 2874 2875 /* 2876 * We may have been called recursively midway through handling 2877 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2878 * To avoid mq_list changing under our feet, clear rq_count early and 2879 * bail out specifically if rq_count is 0 rather than checking 2880 * whether the mq_list is empty. 2881 */ 2882 if (plug->rq_count == 0) 2883 return; 2884 depth = plug->rq_count; 2885 plug->rq_count = 0; 2886 2887 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2888 struct request_queue *q; 2889 2890 rq = rq_list_peek(&plug->mq_list); 2891 q = rq->q; 2892 trace_block_unplug(q, depth, true); 2893 2894 /* 2895 * Peek first request and see if we have a ->queue_rqs() hook. 2896 * If we do, we can dispatch the whole plug list in one go. We 2897 * already know at this point that all requests belong to the 2898 * same queue, caller must ensure that's the case. 2899 */ 2900 if (q->mq_ops->queue_rqs) { 2901 blk_mq_run_dispatch_ops(q, 2902 __blk_mq_flush_plug_list(q, plug)); 2903 if (rq_list_empty(&plug->mq_list)) 2904 return; 2905 } 2906 2907 blk_mq_run_dispatch_ops(q, 2908 blk_mq_plug_issue_direct(plug)); 2909 if (rq_list_empty(&plug->mq_list)) 2910 return; 2911 } 2912 2913 do { 2914 blk_mq_dispatch_plug_list(plug, from_schedule); 2915 } while (!rq_list_empty(&plug->mq_list)); 2916 } 2917 2918 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2919 struct list_head *list) 2920 { 2921 int queued = 0; 2922 blk_status_t ret = BLK_STS_OK; 2923 2924 while (!list_empty(list)) { 2925 struct request *rq = list_first_entry(list, struct request, 2926 queuelist); 2927 2928 list_del_init(&rq->queuelist); 2929 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2930 switch (ret) { 2931 case BLK_STS_OK: 2932 queued++; 2933 break; 2934 case BLK_STS_RESOURCE: 2935 case BLK_STS_DEV_RESOURCE: 2936 blk_mq_request_bypass_insert(rq, 0); 2937 if (list_empty(list)) 2938 blk_mq_run_hw_queue(hctx, false); 2939 goto out; 2940 default: 2941 blk_mq_end_request(rq, ret); 2942 break; 2943 } 2944 } 2945 2946 out: 2947 if (ret != BLK_STS_OK) 2948 blk_mq_commit_rqs(hctx, queued, false); 2949 } 2950 2951 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2952 struct bio *bio, unsigned int nr_segs) 2953 { 2954 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2955 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2956 return true; 2957 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2958 return true; 2959 } 2960 return false; 2961 } 2962 2963 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2964 struct blk_plug *plug, 2965 struct bio *bio, 2966 unsigned int nsegs) 2967 { 2968 struct blk_mq_alloc_data data = { 2969 .q = q, 2970 .nr_tags = 1, 2971 .cmd_flags = bio->bi_opf, 2972 }; 2973 struct request *rq; 2974 2975 rq_qos_throttle(q, bio); 2976 2977 if (plug) { 2978 data.nr_tags = plug->nr_ios; 2979 plug->nr_ios = 1; 2980 data.cached_rqs = &plug->cached_rqs; 2981 } 2982 2983 rq = __blk_mq_alloc_requests(&data); 2984 if (rq) 2985 return rq; 2986 rq_qos_cleanup(q, bio); 2987 if (bio->bi_opf & REQ_NOWAIT) 2988 bio_wouldblock_error(bio); 2989 return NULL; 2990 } 2991 2992 /* 2993 * Check if there is a suitable cached request and return it. 2994 */ 2995 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2996 struct request_queue *q, blk_opf_t opf) 2997 { 2998 enum hctx_type type = blk_mq_get_hctx_type(opf); 2999 struct request *rq; 3000 3001 if (!plug) 3002 return NULL; 3003 rq = rq_list_peek(&plug->cached_rqs); 3004 if (!rq || rq->q != q) 3005 return NULL; 3006 if (type != rq->mq_hctx->type && 3007 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3008 return NULL; 3009 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3010 return NULL; 3011 return rq; 3012 } 3013 3014 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3015 struct bio *bio) 3016 { 3017 if (rq_list_pop(&plug->cached_rqs) != rq) 3018 WARN_ON_ONCE(1); 3019 3020 /* 3021 * If any qos ->throttle() end up blocking, we will have flushed the 3022 * plug and hence killed the cached_rq list as well. Pop this entry 3023 * before we throttle. 3024 */ 3025 rq_qos_throttle(rq->q, bio); 3026 3027 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3028 rq->cmd_flags = bio->bi_opf; 3029 INIT_LIST_HEAD(&rq->queuelist); 3030 } 3031 3032 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3033 { 3034 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3035 3036 /* .bi_sector of any zero sized bio need to be initialized */ 3037 if ((bio->bi_iter.bi_size & bs_mask) || 3038 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3039 return true; 3040 return false; 3041 } 3042 3043 /** 3044 * blk_mq_submit_bio - Create and send a request to block device. 3045 * @bio: Bio pointer. 3046 * 3047 * Builds up a request structure from @q and @bio and send to the device. The 3048 * request may not be queued directly to hardware if: 3049 * * This request can be merged with another one 3050 * * We want to place request at plug queue for possible future merging 3051 * * There is an IO scheduler active at this queue 3052 * 3053 * It will not queue the request if there is an error with the bio, or at the 3054 * request creation. 3055 */ 3056 void blk_mq_submit_bio(struct bio *bio) 3057 { 3058 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3059 struct blk_plug *plug = current->plug; 3060 const int is_sync = op_is_sync(bio->bi_opf); 3061 struct blk_mq_hw_ctx *hctx; 3062 unsigned int nr_segs; 3063 struct request *rq; 3064 blk_status_t ret; 3065 3066 /* 3067 * If the plug has a cached request for this queue, try to use it. 3068 */ 3069 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3070 3071 /* 3072 * A BIO that was released from a zone write plug has already been 3073 * through the preparation in this function, already holds a reference 3074 * on the queue usage counter, and is the only write BIO in-flight for 3075 * the target zone. Go straight to preparing a request for it. 3076 */ 3077 if (bio_zone_write_plugging(bio)) { 3078 nr_segs = bio->__bi_nr_segments; 3079 if (rq) 3080 blk_queue_exit(q); 3081 goto new_request; 3082 } 3083 3084 bio = blk_queue_bounce(bio, q); 3085 3086 /* 3087 * The cached request already holds a q_usage_counter reference and we 3088 * don't have to acquire a new one if we use it. 3089 */ 3090 if (!rq) { 3091 if (unlikely(bio_queue_enter(bio))) 3092 return; 3093 } 3094 3095 /* 3096 * Device reconfiguration may change logical block size, so alignment 3097 * check has to be done with queue usage counter held 3098 */ 3099 if (unlikely(bio_unaligned(bio, q))) { 3100 bio_io_error(bio); 3101 goto queue_exit; 3102 } 3103 3104 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3105 if (!bio) 3106 goto queue_exit; 3107 3108 if (!bio_integrity_prep(bio)) 3109 goto queue_exit; 3110 3111 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3112 goto queue_exit; 3113 3114 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 3115 goto queue_exit; 3116 3117 new_request: 3118 if (!rq) { 3119 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3120 if (unlikely(!rq)) 3121 goto queue_exit; 3122 } else { 3123 blk_mq_use_cached_rq(rq, plug, bio); 3124 } 3125 3126 trace_block_getrq(bio); 3127 3128 rq_qos_track(q, rq, bio); 3129 3130 blk_mq_bio_to_request(rq, bio, nr_segs); 3131 3132 ret = blk_crypto_rq_get_keyslot(rq); 3133 if (ret != BLK_STS_OK) { 3134 bio->bi_status = ret; 3135 bio_endio(bio); 3136 blk_mq_free_request(rq); 3137 return; 3138 } 3139 3140 if (bio_zone_write_plugging(bio)) 3141 blk_zone_write_plug_init_request(rq); 3142 3143 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3144 return; 3145 3146 if (plug) { 3147 blk_add_rq_to_plug(plug, rq); 3148 return; 3149 } 3150 3151 hctx = rq->mq_hctx; 3152 if ((rq->rq_flags & RQF_USE_SCHED) || 3153 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3154 blk_mq_insert_request(rq, 0); 3155 blk_mq_run_hw_queue(hctx, true); 3156 } else { 3157 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3158 } 3159 return; 3160 3161 queue_exit: 3162 /* 3163 * Don't drop the queue reference if we were trying to use a cached 3164 * request and thus didn't acquire one. 3165 */ 3166 if (!rq) 3167 blk_queue_exit(q); 3168 } 3169 3170 #ifdef CONFIG_BLK_MQ_STACKING 3171 /** 3172 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3173 * @rq: the request being queued 3174 */ 3175 blk_status_t blk_insert_cloned_request(struct request *rq) 3176 { 3177 struct request_queue *q = rq->q; 3178 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3179 unsigned int max_segments = blk_rq_get_max_segments(rq); 3180 blk_status_t ret; 3181 3182 if (blk_rq_sectors(rq) > max_sectors) { 3183 /* 3184 * SCSI device does not have a good way to return if 3185 * Write Same/Zero is actually supported. If a device rejects 3186 * a non-read/write command (discard, write same,etc.) the 3187 * low-level device driver will set the relevant queue limit to 3188 * 0 to prevent blk-lib from issuing more of the offending 3189 * operations. Commands queued prior to the queue limit being 3190 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3191 * errors being propagated to upper layers. 3192 */ 3193 if (max_sectors == 0) 3194 return BLK_STS_NOTSUPP; 3195 3196 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3197 __func__, blk_rq_sectors(rq), max_sectors); 3198 return BLK_STS_IOERR; 3199 } 3200 3201 /* 3202 * The queue settings related to segment counting may differ from the 3203 * original queue. 3204 */ 3205 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3206 if (rq->nr_phys_segments > max_segments) { 3207 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3208 __func__, rq->nr_phys_segments, max_segments); 3209 return BLK_STS_IOERR; 3210 } 3211 3212 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3213 return BLK_STS_IOERR; 3214 3215 ret = blk_crypto_rq_get_keyslot(rq); 3216 if (ret != BLK_STS_OK) 3217 return ret; 3218 3219 blk_account_io_start(rq); 3220 3221 /* 3222 * Since we have a scheduler attached on the top device, 3223 * bypass a potential scheduler on the bottom device for 3224 * insert. 3225 */ 3226 blk_mq_run_dispatch_ops(q, 3227 ret = blk_mq_request_issue_directly(rq, true)); 3228 if (ret) 3229 blk_account_io_done(rq, blk_time_get_ns()); 3230 return ret; 3231 } 3232 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3233 3234 /** 3235 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3236 * @rq: the clone request to be cleaned up 3237 * 3238 * Description: 3239 * Free all bios in @rq for a cloned request. 3240 */ 3241 void blk_rq_unprep_clone(struct request *rq) 3242 { 3243 struct bio *bio; 3244 3245 while ((bio = rq->bio) != NULL) { 3246 rq->bio = bio->bi_next; 3247 3248 bio_put(bio); 3249 } 3250 } 3251 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3252 3253 /** 3254 * blk_rq_prep_clone - Helper function to setup clone request 3255 * @rq: the request to be setup 3256 * @rq_src: original request to be cloned 3257 * @bs: bio_set that bios for clone are allocated from 3258 * @gfp_mask: memory allocation mask for bio 3259 * @bio_ctr: setup function to be called for each clone bio. 3260 * Returns %0 for success, non %0 for failure. 3261 * @data: private data to be passed to @bio_ctr 3262 * 3263 * Description: 3264 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3265 * Also, pages which the original bios are pointing to are not copied 3266 * and the cloned bios just point same pages. 3267 * So cloned bios must be completed before original bios, which means 3268 * the caller must complete @rq before @rq_src. 3269 */ 3270 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3271 struct bio_set *bs, gfp_t gfp_mask, 3272 int (*bio_ctr)(struct bio *, struct bio *, void *), 3273 void *data) 3274 { 3275 struct bio *bio_src; 3276 3277 if (!bs) 3278 bs = &fs_bio_set; 3279 3280 __rq_for_each_bio(bio_src, rq_src) { 3281 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3282 gfp_mask, bs); 3283 if (!bio) 3284 goto free_and_out; 3285 3286 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3287 bio_put(bio); 3288 goto free_and_out; 3289 } 3290 3291 if (rq->bio) { 3292 rq->biotail->bi_next = bio; 3293 rq->biotail = bio; 3294 } else { 3295 rq->bio = rq->biotail = bio; 3296 } 3297 } 3298 3299 /* Copy attributes of the original request to the clone request. */ 3300 rq->__sector = blk_rq_pos(rq_src); 3301 rq->__data_len = blk_rq_bytes(rq_src); 3302 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3303 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3304 rq->special_vec = rq_src->special_vec; 3305 } 3306 rq->nr_phys_segments = rq_src->nr_phys_segments; 3307 3308 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3309 goto free_and_out; 3310 3311 return 0; 3312 3313 free_and_out: 3314 blk_rq_unprep_clone(rq); 3315 3316 return -ENOMEM; 3317 } 3318 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3319 #endif /* CONFIG_BLK_MQ_STACKING */ 3320 3321 /* 3322 * Steal bios from a request and add them to a bio list. 3323 * The request must not have been partially completed before. 3324 */ 3325 void blk_steal_bios(struct bio_list *list, struct request *rq) 3326 { 3327 if (rq->bio) { 3328 if (list->tail) 3329 list->tail->bi_next = rq->bio; 3330 else 3331 list->head = rq->bio; 3332 list->tail = rq->biotail; 3333 3334 rq->bio = NULL; 3335 rq->biotail = NULL; 3336 } 3337 3338 rq->__data_len = 0; 3339 } 3340 EXPORT_SYMBOL_GPL(blk_steal_bios); 3341 3342 static size_t order_to_size(unsigned int order) 3343 { 3344 return (size_t)PAGE_SIZE << order; 3345 } 3346 3347 /* called before freeing request pool in @tags */ 3348 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3349 struct blk_mq_tags *tags) 3350 { 3351 struct page *page; 3352 unsigned long flags; 3353 3354 /* 3355 * There is no need to clear mapping if driver tags is not initialized 3356 * or the mapping belongs to the driver tags. 3357 */ 3358 if (!drv_tags || drv_tags == tags) 3359 return; 3360 3361 list_for_each_entry(page, &tags->page_list, lru) { 3362 unsigned long start = (unsigned long)page_address(page); 3363 unsigned long end = start + order_to_size(page->private); 3364 int i; 3365 3366 for (i = 0; i < drv_tags->nr_tags; i++) { 3367 struct request *rq = drv_tags->rqs[i]; 3368 unsigned long rq_addr = (unsigned long)rq; 3369 3370 if (rq_addr >= start && rq_addr < end) { 3371 WARN_ON_ONCE(req_ref_read(rq) != 0); 3372 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3373 } 3374 } 3375 } 3376 3377 /* 3378 * Wait until all pending iteration is done. 3379 * 3380 * Request reference is cleared and it is guaranteed to be observed 3381 * after the ->lock is released. 3382 */ 3383 spin_lock_irqsave(&drv_tags->lock, flags); 3384 spin_unlock_irqrestore(&drv_tags->lock, flags); 3385 } 3386 3387 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3388 unsigned int hctx_idx) 3389 { 3390 struct blk_mq_tags *drv_tags; 3391 struct page *page; 3392 3393 if (list_empty(&tags->page_list)) 3394 return; 3395 3396 if (blk_mq_is_shared_tags(set->flags)) 3397 drv_tags = set->shared_tags; 3398 else 3399 drv_tags = set->tags[hctx_idx]; 3400 3401 if (tags->static_rqs && set->ops->exit_request) { 3402 int i; 3403 3404 for (i = 0; i < tags->nr_tags; i++) { 3405 struct request *rq = tags->static_rqs[i]; 3406 3407 if (!rq) 3408 continue; 3409 set->ops->exit_request(set, rq, hctx_idx); 3410 tags->static_rqs[i] = NULL; 3411 } 3412 } 3413 3414 blk_mq_clear_rq_mapping(drv_tags, tags); 3415 3416 while (!list_empty(&tags->page_list)) { 3417 page = list_first_entry(&tags->page_list, struct page, lru); 3418 list_del_init(&page->lru); 3419 /* 3420 * Remove kmemleak object previously allocated in 3421 * blk_mq_alloc_rqs(). 3422 */ 3423 kmemleak_free(page_address(page)); 3424 __free_pages(page, page->private); 3425 } 3426 } 3427 3428 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3429 { 3430 kfree(tags->rqs); 3431 tags->rqs = NULL; 3432 kfree(tags->static_rqs); 3433 tags->static_rqs = NULL; 3434 3435 blk_mq_free_tags(tags); 3436 } 3437 3438 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3439 unsigned int hctx_idx) 3440 { 3441 int i; 3442 3443 for (i = 0; i < set->nr_maps; i++) { 3444 unsigned int start = set->map[i].queue_offset; 3445 unsigned int end = start + set->map[i].nr_queues; 3446 3447 if (hctx_idx >= start && hctx_idx < end) 3448 break; 3449 } 3450 3451 if (i >= set->nr_maps) 3452 i = HCTX_TYPE_DEFAULT; 3453 3454 return i; 3455 } 3456 3457 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3458 unsigned int hctx_idx) 3459 { 3460 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3461 3462 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3463 } 3464 3465 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3466 unsigned int hctx_idx, 3467 unsigned int nr_tags, 3468 unsigned int reserved_tags) 3469 { 3470 int node = blk_mq_get_hctx_node(set, hctx_idx); 3471 struct blk_mq_tags *tags; 3472 3473 if (node == NUMA_NO_NODE) 3474 node = set->numa_node; 3475 3476 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3477 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3478 if (!tags) 3479 return NULL; 3480 3481 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3482 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3483 node); 3484 if (!tags->rqs) 3485 goto err_free_tags; 3486 3487 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3488 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3489 node); 3490 if (!tags->static_rqs) 3491 goto err_free_rqs; 3492 3493 return tags; 3494 3495 err_free_rqs: 3496 kfree(tags->rqs); 3497 err_free_tags: 3498 blk_mq_free_tags(tags); 3499 return NULL; 3500 } 3501 3502 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3503 unsigned int hctx_idx, int node) 3504 { 3505 int ret; 3506 3507 if (set->ops->init_request) { 3508 ret = set->ops->init_request(set, rq, hctx_idx, node); 3509 if (ret) 3510 return ret; 3511 } 3512 3513 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3514 return 0; 3515 } 3516 3517 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3518 struct blk_mq_tags *tags, 3519 unsigned int hctx_idx, unsigned int depth) 3520 { 3521 unsigned int i, j, entries_per_page, max_order = 4; 3522 int node = blk_mq_get_hctx_node(set, hctx_idx); 3523 size_t rq_size, left; 3524 3525 if (node == NUMA_NO_NODE) 3526 node = set->numa_node; 3527 3528 INIT_LIST_HEAD(&tags->page_list); 3529 3530 /* 3531 * rq_size is the size of the request plus driver payload, rounded 3532 * to the cacheline size 3533 */ 3534 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3535 cache_line_size()); 3536 left = rq_size * depth; 3537 3538 for (i = 0; i < depth; ) { 3539 int this_order = max_order; 3540 struct page *page; 3541 int to_do; 3542 void *p; 3543 3544 while (this_order && left < order_to_size(this_order - 1)) 3545 this_order--; 3546 3547 do { 3548 page = alloc_pages_node(node, 3549 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3550 this_order); 3551 if (page) 3552 break; 3553 if (!this_order--) 3554 break; 3555 if (order_to_size(this_order) < rq_size) 3556 break; 3557 } while (1); 3558 3559 if (!page) 3560 goto fail; 3561 3562 page->private = this_order; 3563 list_add_tail(&page->lru, &tags->page_list); 3564 3565 p = page_address(page); 3566 /* 3567 * Allow kmemleak to scan these pages as they contain pointers 3568 * to additional allocations like via ops->init_request(). 3569 */ 3570 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3571 entries_per_page = order_to_size(this_order) / rq_size; 3572 to_do = min(entries_per_page, depth - i); 3573 left -= to_do * rq_size; 3574 for (j = 0; j < to_do; j++) { 3575 struct request *rq = p; 3576 3577 tags->static_rqs[i] = rq; 3578 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3579 tags->static_rqs[i] = NULL; 3580 goto fail; 3581 } 3582 3583 p += rq_size; 3584 i++; 3585 } 3586 } 3587 return 0; 3588 3589 fail: 3590 blk_mq_free_rqs(set, tags, hctx_idx); 3591 return -ENOMEM; 3592 } 3593 3594 struct rq_iter_data { 3595 struct blk_mq_hw_ctx *hctx; 3596 bool has_rq; 3597 }; 3598 3599 static bool blk_mq_has_request(struct request *rq, void *data) 3600 { 3601 struct rq_iter_data *iter_data = data; 3602 3603 if (rq->mq_hctx != iter_data->hctx) 3604 return true; 3605 iter_data->has_rq = true; 3606 return false; 3607 } 3608 3609 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3610 { 3611 struct blk_mq_tags *tags = hctx->sched_tags ? 3612 hctx->sched_tags : hctx->tags; 3613 struct rq_iter_data data = { 3614 .hctx = hctx, 3615 }; 3616 3617 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3618 return data.has_rq; 3619 } 3620 3621 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3622 unsigned int this_cpu) 3623 { 3624 enum hctx_type type = hctx->type; 3625 int cpu; 3626 3627 /* 3628 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3629 * might submit IOs on these isolated CPUs, so use the queue map to 3630 * check if all CPUs mapped to this hctx are offline 3631 */ 3632 for_each_online_cpu(cpu) { 3633 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3634 type, cpu); 3635 3636 if (h != hctx) 3637 continue; 3638 3639 /* this hctx has at least one online CPU */ 3640 if (this_cpu != cpu) 3641 return true; 3642 } 3643 3644 return false; 3645 } 3646 3647 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3648 { 3649 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3650 struct blk_mq_hw_ctx, cpuhp_online); 3651 3652 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3653 return 0; 3654 3655 /* 3656 * Prevent new request from being allocated on the current hctx. 3657 * 3658 * The smp_mb__after_atomic() Pairs with the implied barrier in 3659 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3660 * seen once we return from the tag allocator. 3661 */ 3662 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3663 smp_mb__after_atomic(); 3664 3665 /* 3666 * Try to grab a reference to the queue and wait for any outstanding 3667 * requests. If we could not grab a reference the queue has been 3668 * frozen and there are no requests. 3669 */ 3670 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3671 while (blk_mq_hctx_has_requests(hctx)) 3672 msleep(5); 3673 percpu_ref_put(&hctx->queue->q_usage_counter); 3674 } 3675 3676 return 0; 3677 } 3678 3679 /* 3680 * Check if one CPU is mapped to the specified hctx 3681 * 3682 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3683 * to be used for scheduling kworker only. For other usage, please call this 3684 * helper for checking if one CPU belongs to the specified hctx 3685 */ 3686 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3687 const struct blk_mq_hw_ctx *hctx) 3688 { 3689 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3690 hctx->type, cpu); 3691 3692 return mapped_hctx == hctx; 3693 } 3694 3695 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3696 { 3697 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3698 struct blk_mq_hw_ctx, cpuhp_online); 3699 3700 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3701 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3702 return 0; 3703 } 3704 3705 /* 3706 * 'cpu' is going away. splice any existing rq_list entries from this 3707 * software queue to the hw queue dispatch list, and ensure that it 3708 * gets run. 3709 */ 3710 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3711 { 3712 struct blk_mq_hw_ctx *hctx; 3713 struct blk_mq_ctx *ctx; 3714 LIST_HEAD(tmp); 3715 enum hctx_type type; 3716 3717 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3718 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3719 return 0; 3720 3721 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3722 type = hctx->type; 3723 3724 spin_lock(&ctx->lock); 3725 if (!list_empty(&ctx->rq_lists[type])) { 3726 list_splice_init(&ctx->rq_lists[type], &tmp); 3727 blk_mq_hctx_clear_pending(hctx, ctx); 3728 } 3729 spin_unlock(&ctx->lock); 3730 3731 if (list_empty(&tmp)) 3732 return 0; 3733 3734 spin_lock(&hctx->lock); 3735 list_splice_tail_init(&tmp, &hctx->dispatch); 3736 spin_unlock(&hctx->lock); 3737 3738 blk_mq_run_hw_queue(hctx, true); 3739 return 0; 3740 } 3741 3742 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3743 { 3744 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3745 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3746 &hctx->cpuhp_online); 3747 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3748 &hctx->cpuhp_dead); 3749 } 3750 3751 /* 3752 * Before freeing hw queue, clearing the flush request reference in 3753 * tags->rqs[] for avoiding potential UAF. 3754 */ 3755 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3756 unsigned int queue_depth, struct request *flush_rq) 3757 { 3758 int i; 3759 unsigned long flags; 3760 3761 /* The hw queue may not be mapped yet */ 3762 if (!tags) 3763 return; 3764 3765 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3766 3767 for (i = 0; i < queue_depth; i++) 3768 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3769 3770 /* 3771 * Wait until all pending iteration is done. 3772 * 3773 * Request reference is cleared and it is guaranteed to be observed 3774 * after the ->lock is released. 3775 */ 3776 spin_lock_irqsave(&tags->lock, flags); 3777 spin_unlock_irqrestore(&tags->lock, flags); 3778 } 3779 3780 /* hctx->ctxs will be freed in queue's release handler */ 3781 static void blk_mq_exit_hctx(struct request_queue *q, 3782 struct blk_mq_tag_set *set, 3783 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3784 { 3785 struct request *flush_rq = hctx->fq->flush_rq; 3786 3787 if (blk_mq_hw_queue_mapped(hctx)) 3788 blk_mq_tag_idle(hctx); 3789 3790 if (blk_queue_init_done(q)) 3791 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3792 set->queue_depth, flush_rq); 3793 if (set->ops->exit_request) 3794 set->ops->exit_request(set, flush_rq, hctx_idx); 3795 3796 if (set->ops->exit_hctx) 3797 set->ops->exit_hctx(hctx, hctx_idx); 3798 3799 blk_mq_remove_cpuhp(hctx); 3800 3801 xa_erase(&q->hctx_table, hctx_idx); 3802 3803 spin_lock(&q->unused_hctx_lock); 3804 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3805 spin_unlock(&q->unused_hctx_lock); 3806 } 3807 3808 static void blk_mq_exit_hw_queues(struct request_queue *q, 3809 struct blk_mq_tag_set *set, int nr_queue) 3810 { 3811 struct blk_mq_hw_ctx *hctx; 3812 unsigned long i; 3813 3814 queue_for_each_hw_ctx(q, hctx, i) { 3815 if (i == nr_queue) 3816 break; 3817 blk_mq_exit_hctx(q, set, hctx, i); 3818 } 3819 } 3820 3821 static int blk_mq_init_hctx(struct request_queue *q, 3822 struct blk_mq_tag_set *set, 3823 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3824 { 3825 hctx->queue_num = hctx_idx; 3826 3827 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3828 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3829 &hctx->cpuhp_online); 3830 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3831 3832 hctx->tags = set->tags[hctx_idx]; 3833 3834 if (set->ops->init_hctx && 3835 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3836 goto unregister_cpu_notifier; 3837 3838 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3839 hctx->numa_node)) 3840 goto exit_hctx; 3841 3842 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3843 goto exit_flush_rq; 3844 3845 return 0; 3846 3847 exit_flush_rq: 3848 if (set->ops->exit_request) 3849 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3850 exit_hctx: 3851 if (set->ops->exit_hctx) 3852 set->ops->exit_hctx(hctx, hctx_idx); 3853 unregister_cpu_notifier: 3854 blk_mq_remove_cpuhp(hctx); 3855 return -1; 3856 } 3857 3858 static struct blk_mq_hw_ctx * 3859 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3860 int node) 3861 { 3862 struct blk_mq_hw_ctx *hctx; 3863 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3864 3865 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3866 if (!hctx) 3867 goto fail_alloc_hctx; 3868 3869 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3870 goto free_hctx; 3871 3872 atomic_set(&hctx->nr_active, 0); 3873 if (node == NUMA_NO_NODE) 3874 node = set->numa_node; 3875 hctx->numa_node = node; 3876 3877 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3878 spin_lock_init(&hctx->lock); 3879 INIT_LIST_HEAD(&hctx->dispatch); 3880 hctx->queue = q; 3881 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3882 3883 INIT_LIST_HEAD(&hctx->hctx_list); 3884 3885 /* 3886 * Allocate space for all possible cpus to avoid allocation at 3887 * runtime 3888 */ 3889 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3890 gfp, node); 3891 if (!hctx->ctxs) 3892 goto free_cpumask; 3893 3894 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3895 gfp, node, false, false)) 3896 goto free_ctxs; 3897 hctx->nr_ctx = 0; 3898 3899 spin_lock_init(&hctx->dispatch_wait_lock); 3900 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3901 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3902 3903 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3904 if (!hctx->fq) 3905 goto free_bitmap; 3906 3907 blk_mq_hctx_kobj_init(hctx); 3908 3909 return hctx; 3910 3911 free_bitmap: 3912 sbitmap_free(&hctx->ctx_map); 3913 free_ctxs: 3914 kfree(hctx->ctxs); 3915 free_cpumask: 3916 free_cpumask_var(hctx->cpumask); 3917 free_hctx: 3918 kfree(hctx); 3919 fail_alloc_hctx: 3920 return NULL; 3921 } 3922 3923 static void blk_mq_init_cpu_queues(struct request_queue *q, 3924 unsigned int nr_hw_queues) 3925 { 3926 struct blk_mq_tag_set *set = q->tag_set; 3927 unsigned int i, j; 3928 3929 for_each_possible_cpu(i) { 3930 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3931 struct blk_mq_hw_ctx *hctx; 3932 int k; 3933 3934 __ctx->cpu = i; 3935 spin_lock_init(&__ctx->lock); 3936 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3937 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3938 3939 __ctx->queue = q; 3940 3941 /* 3942 * Set local node, IFF we have more than one hw queue. If 3943 * not, we remain on the home node of the device 3944 */ 3945 for (j = 0; j < set->nr_maps; j++) { 3946 hctx = blk_mq_map_queue_type(q, j, i); 3947 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3948 hctx->numa_node = cpu_to_node(i); 3949 } 3950 } 3951 } 3952 3953 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3954 unsigned int hctx_idx, 3955 unsigned int depth) 3956 { 3957 struct blk_mq_tags *tags; 3958 int ret; 3959 3960 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3961 if (!tags) 3962 return NULL; 3963 3964 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3965 if (ret) { 3966 blk_mq_free_rq_map(tags); 3967 return NULL; 3968 } 3969 3970 return tags; 3971 } 3972 3973 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3974 int hctx_idx) 3975 { 3976 if (blk_mq_is_shared_tags(set->flags)) { 3977 set->tags[hctx_idx] = set->shared_tags; 3978 3979 return true; 3980 } 3981 3982 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3983 set->queue_depth); 3984 3985 return set->tags[hctx_idx]; 3986 } 3987 3988 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3989 struct blk_mq_tags *tags, 3990 unsigned int hctx_idx) 3991 { 3992 if (tags) { 3993 blk_mq_free_rqs(set, tags, hctx_idx); 3994 blk_mq_free_rq_map(tags); 3995 } 3996 } 3997 3998 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3999 unsigned int hctx_idx) 4000 { 4001 if (!blk_mq_is_shared_tags(set->flags)) 4002 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4003 4004 set->tags[hctx_idx] = NULL; 4005 } 4006 4007 static void blk_mq_map_swqueue(struct request_queue *q) 4008 { 4009 unsigned int j, hctx_idx; 4010 unsigned long i; 4011 struct blk_mq_hw_ctx *hctx; 4012 struct blk_mq_ctx *ctx; 4013 struct blk_mq_tag_set *set = q->tag_set; 4014 4015 queue_for_each_hw_ctx(q, hctx, i) { 4016 cpumask_clear(hctx->cpumask); 4017 hctx->nr_ctx = 0; 4018 hctx->dispatch_from = NULL; 4019 } 4020 4021 /* 4022 * Map software to hardware queues. 4023 * 4024 * If the cpu isn't present, the cpu is mapped to first hctx. 4025 */ 4026 for_each_possible_cpu(i) { 4027 4028 ctx = per_cpu_ptr(q->queue_ctx, i); 4029 for (j = 0; j < set->nr_maps; j++) { 4030 if (!set->map[j].nr_queues) { 4031 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4032 HCTX_TYPE_DEFAULT, i); 4033 continue; 4034 } 4035 hctx_idx = set->map[j].mq_map[i]; 4036 /* unmapped hw queue can be remapped after CPU topo changed */ 4037 if (!set->tags[hctx_idx] && 4038 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4039 /* 4040 * If tags initialization fail for some hctx, 4041 * that hctx won't be brought online. In this 4042 * case, remap the current ctx to hctx[0] which 4043 * is guaranteed to always have tags allocated 4044 */ 4045 set->map[j].mq_map[i] = 0; 4046 } 4047 4048 hctx = blk_mq_map_queue_type(q, j, i); 4049 ctx->hctxs[j] = hctx; 4050 /* 4051 * If the CPU is already set in the mask, then we've 4052 * mapped this one already. This can happen if 4053 * devices share queues across queue maps. 4054 */ 4055 if (cpumask_test_cpu(i, hctx->cpumask)) 4056 continue; 4057 4058 cpumask_set_cpu(i, hctx->cpumask); 4059 hctx->type = j; 4060 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4061 hctx->ctxs[hctx->nr_ctx++] = ctx; 4062 4063 /* 4064 * If the nr_ctx type overflows, we have exceeded the 4065 * amount of sw queues we can support. 4066 */ 4067 BUG_ON(!hctx->nr_ctx); 4068 } 4069 4070 for (; j < HCTX_MAX_TYPES; j++) 4071 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4072 HCTX_TYPE_DEFAULT, i); 4073 } 4074 4075 queue_for_each_hw_ctx(q, hctx, i) { 4076 int cpu; 4077 4078 /* 4079 * If no software queues are mapped to this hardware queue, 4080 * disable it and free the request entries. 4081 */ 4082 if (!hctx->nr_ctx) { 4083 /* Never unmap queue 0. We need it as a 4084 * fallback in case of a new remap fails 4085 * allocation 4086 */ 4087 if (i) 4088 __blk_mq_free_map_and_rqs(set, i); 4089 4090 hctx->tags = NULL; 4091 continue; 4092 } 4093 4094 hctx->tags = set->tags[i]; 4095 WARN_ON(!hctx->tags); 4096 4097 /* 4098 * Set the map size to the number of mapped software queues. 4099 * This is more accurate and more efficient than looping 4100 * over all possibly mapped software queues. 4101 */ 4102 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4103 4104 /* 4105 * Rule out isolated CPUs from hctx->cpumask to avoid 4106 * running block kworker on isolated CPUs 4107 */ 4108 for_each_cpu(cpu, hctx->cpumask) { 4109 if (cpu_is_isolated(cpu)) 4110 cpumask_clear_cpu(cpu, hctx->cpumask); 4111 } 4112 4113 /* 4114 * Initialize batch roundrobin counts 4115 */ 4116 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4117 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4118 } 4119 } 4120 4121 /* 4122 * Caller needs to ensure that we're either frozen/quiesced, or that 4123 * the queue isn't live yet. 4124 */ 4125 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4126 { 4127 struct blk_mq_hw_ctx *hctx; 4128 unsigned long i; 4129 4130 queue_for_each_hw_ctx(q, hctx, i) { 4131 if (shared) { 4132 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4133 } else { 4134 blk_mq_tag_idle(hctx); 4135 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4136 } 4137 } 4138 } 4139 4140 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4141 bool shared) 4142 { 4143 struct request_queue *q; 4144 4145 lockdep_assert_held(&set->tag_list_lock); 4146 4147 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4148 blk_mq_freeze_queue(q); 4149 queue_set_hctx_shared(q, shared); 4150 blk_mq_unfreeze_queue(q); 4151 } 4152 } 4153 4154 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4155 { 4156 struct blk_mq_tag_set *set = q->tag_set; 4157 4158 mutex_lock(&set->tag_list_lock); 4159 list_del(&q->tag_set_list); 4160 if (list_is_singular(&set->tag_list)) { 4161 /* just transitioned to unshared */ 4162 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4163 /* update existing queue */ 4164 blk_mq_update_tag_set_shared(set, false); 4165 } 4166 mutex_unlock(&set->tag_list_lock); 4167 INIT_LIST_HEAD(&q->tag_set_list); 4168 } 4169 4170 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4171 struct request_queue *q) 4172 { 4173 mutex_lock(&set->tag_list_lock); 4174 4175 /* 4176 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4177 */ 4178 if (!list_empty(&set->tag_list) && 4179 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4180 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4181 /* update existing queue */ 4182 blk_mq_update_tag_set_shared(set, true); 4183 } 4184 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4185 queue_set_hctx_shared(q, true); 4186 list_add_tail(&q->tag_set_list, &set->tag_list); 4187 4188 mutex_unlock(&set->tag_list_lock); 4189 } 4190 4191 /* All allocations will be freed in release handler of q->mq_kobj */ 4192 static int blk_mq_alloc_ctxs(struct request_queue *q) 4193 { 4194 struct blk_mq_ctxs *ctxs; 4195 int cpu; 4196 4197 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4198 if (!ctxs) 4199 return -ENOMEM; 4200 4201 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4202 if (!ctxs->queue_ctx) 4203 goto fail; 4204 4205 for_each_possible_cpu(cpu) { 4206 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4207 ctx->ctxs = ctxs; 4208 } 4209 4210 q->mq_kobj = &ctxs->kobj; 4211 q->queue_ctx = ctxs->queue_ctx; 4212 4213 return 0; 4214 fail: 4215 kfree(ctxs); 4216 return -ENOMEM; 4217 } 4218 4219 /* 4220 * It is the actual release handler for mq, but we do it from 4221 * request queue's release handler for avoiding use-after-free 4222 * and headache because q->mq_kobj shouldn't have been introduced, 4223 * but we can't group ctx/kctx kobj without it. 4224 */ 4225 void blk_mq_release(struct request_queue *q) 4226 { 4227 struct blk_mq_hw_ctx *hctx, *next; 4228 unsigned long i; 4229 4230 queue_for_each_hw_ctx(q, hctx, i) 4231 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4232 4233 /* all hctx are in .unused_hctx_list now */ 4234 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4235 list_del_init(&hctx->hctx_list); 4236 kobject_put(&hctx->kobj); 4237 } 4238 4239 xa_destroy(&q->hctx_table); 4240 4241 /* 4242 * release .mq_kobj and sw queue's kobject now because 4243 * both share lifetime with request queue. 4244 */ 4245 blk_mq_sysfs_deinit(q); 4246 } 4247 4248 static bool blk_mq_can_poll(struct blk_mq_tag_set *set) 4249 { 4250 return set->nr_maps > HCTX_TYPE_POLL && 4251 set->map[HCTX_TYPE_POLL].nr_queues; 4252 } 4253 4254 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4255 struct queue_limits *lim, void *queuedata) 4256 { 4257 struct queue_limits default_lim = { }; 4258 struct request_queue *q; 4259 int ret; 4260 4261 if (!lim) 4262 lim = &default_lim; 4263 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4264 if (blk_mq_can_poll(set)) 4265 lim->features |= BLK_FEAT_POLL; 4266 4267 q = blk_alloc_queue(lim, set->numa_node); 4268 if (IS_ERR(q)) 4269 return q; 4270 q->queuedata = queuedata; 4271 ret = blk_mq_init_allocated_queue(set, q); 4272 if (ret) { 4273 blk_put_queue(q); 4274 return ERR_PTR(ret); 4275 } 4276 return q; 4277 } 4278 EXPORT_SYMBOL(blk_mq_alloc_queue); 4279 4280 /** 4281 * blk_mq_destroy_queue - shutdown a request queue 4282 * @q: request queue to shutdown 4283 * 4284 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4285 * requests will be failed with -ENODEV. The caller is responsible for dropping 4286 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4287 * 4288 * Context: can sleep 4289 */ 4290 void blk_mq_destroy_queue(struct request_queue *q) 4291 { 4292 WARN_ON_ONCE(!queue_is_mq(q)); 4293 WARN_ON_ONCE(blk_queue_registered(q)); 4294 4295 might_sleep(); 4296 4297 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4298 blk_queue_start_drain(q); 4299 blk_mq_freeze_queue_wait(q); 4300 4301 blk_sync_queue(q); 4302 blk_mq_cancel_work_sync(q); 4303 blk_mq_exit_queue(q); 4304 } 4305 EXPORT_SYMBOL(blk_mq_destroy_queue); 4306 4307 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4308 struct queue_limits *lim, void *queuedata, 4309 struct lock_class_key *lkclass) 4310 { 4311 struct request_queue *q; 4312 struct gendisk *disk; 4313 4314 q = blk_mq_alloc_queue(set, lim, queuedata); 4315 if (IS_ERR(q)) 4316 return ERR_CAST(q); 4317 4318 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4319 if (!disk) { 4320 blk_mq_destroy_queue(q); 4321 blk_put_queue(q); 4322 return ERR_PTR(-ENOMEM); 4323 } 4324 set_bit(GD_OWNS_QUEUE, &disk->state); 4325 return disk; 4326 } 4327 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4328 4329 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4330 struct lock_class_key *lkclass) 4331 { 4332 struct gendisk *disk; 4333 4334 if (!blk_get_queue(q)) 4335 return NULL; 4336 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4337 if (!disk) 4338 blk_put_queue(q); 4339 return disk; 4340 } 4341 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4342 4343 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4344 struct blk_mq_tag_set *set, struct request_queue *q, 4345 int hctx_idx, int node) 4346 { 4347 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4348 4349 /* reuse dead hctx first */ 4350 spin_lock(&q->unused_hctx_lock); 4351 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4352 if (tmp->numa_node == node) { 4353 hctx = tmp; 4354 break; 4355 } 4356 } 4357 if (hctx) 4358 list_del_init(&hctx->hctx_list); 4359 spin_unlock(&q->unused_hctx_lock); 4360 4361 if (!hctx) 4362 hctx = blk_mq_alloc_hctx(q, set, node); 4363 if (!hctx) 4364 goto fail; 4365 4366 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4367 goto free_hctx; 4368 4369 return hctx; 4370 4371 free_hctx: 4372 kobject_put(&hctx->kobj); 4373 fail: 4374 return NULL; 4375 } 4376 4377 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4378 struct request_queue *q) 4379 { 4380 struct blk_mq_hw_ctx *hctx; 4381 unsigned long i, j; 4382 4383 /* protect against switching io scheduler */ 4384 mutex_lock(&q->sysfs_lock); 4385 for (i = 0; i < set->nr_hw_queues; i++) { 4386 int old_node; 4387 int node = blk_mq_get_hctx_node(set, i); 4388 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4389 4390 if (old_hctx) { 4391 old_node = old_hctx->numa_node; 4392 blk_mq_exit_hctx(q, set, old_hctx, i); 4393 } 4394 4395 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4396 if (!old_hctx) 4397 break; 4398 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4399 node, old_node); 4400 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4401 WARN_ON_ONCE(!hctx); 4402 } 4403 } 4404 /* 4405 * Increasing nr_hw_queues fails. Free the newly allocated 4406 * hctxs and keep the previous q->nr_hw_queues. 4407 */ 4408 if (i != set->nr_hw_queues) { 4409 j = q->nr_hw_queues; 4410 } else { 4411 j = i; 4412 q->nr_hw_queues = set->nr_hw_queues; 4413 } 4414 4415 xa_for_each_start(&q->hctx_table, j, hctx, j) 4416 blk_mq_exit_hctx(q, set, hctx, j); 4417 mutex_unlock(&q->sysfs_lock); 4418 } 4419 4420 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4421 struct request_queue *q) 4422 { 4423 /* mark the queue as mq asap */ 4424 q->mq_ops = set->ops; 4425 4426 /* 4427 * ->tag_set has to be setup before initialize hctx, which cpuphp 4428 * handler needs it for checking queue mapping 4429 */ 4430 q->tag_set = set; 4431 4432 if (blk_mq_alloc_ctxs(q)) 4433 goto err_exit; 4434 4435 /* init q->mq_kobj and sw queues' kobjects */ 4436 blk_mq_sysfs_init(q); 4437 4438 INIT_LIST_HEAD(&q->unused_hctx_list); 4439 spin_lock_init(&q->unused_hctx_lock); 4440 4441 xa_init(&q->hctx_table); 4442 4443 blk_mq_realloc_hw_ctxs(set, q); 4444 if (!q->nr_hw_queues) 4445 goto err_hctxs; 4446 4447 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4448 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4449 4450 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4451 4452 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4453 INIT_LIST_HEAD(&q->flush_list); 4454 INIT_LIST_HEAD(&q->requeue_list); 4455 spin_lock_init(&q->requeue_lock); 4456 4457 q->nr_requests = set->queue_depth; 4458 4459 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4460 blk_mq_add_queue_tag_set(set, q); 4461 blk_mq_map_swqueue(q); 4462 return 0; 4463 4464 err_hctxs: 4465 blk_mq_release(q); 4466 err_exit: 4467 q->mq_ops = NULL; 4468 return -ENOMEM; 4469 } 4470 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4471 4472 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4473 void blk_mq_exit_queue(struct request_queue *q) 4474 { 4475 struct blk_mq_tag_set *set = q->tag_set; 4476 4477 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4478 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4479 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4480 blk_mq_del_queue_tag_set(q); 4481 } 4482 4483 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4484 { 4485 int i; 4486 4487 if (blk_mq_is_shared_tags(set->flags)) { 4488 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4489 BLK_MQ_NO_HCTX_IDX, 4490 set->queue_depth); 4491 if (!set->shared_tags) 4492 return -ENOMEM; 4493 } 4494 4495 for (i = 0; i < set->nr_hw_queues; i++) { 4496 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4497 goto out_unwind; 4498 cond_resched(); 4499 } 4500 4501 return 0; 4502 4503 out_unwind: 4504 while (--i >= 0) 4505 __blk_mq_free_map_and_rqs(set, i); 4506 4507 if (blk_mq_is_shared_tags(set->flags)) { 4508 blk_mq_free_map_and_rqs(set, set->shared_tags, 4509 BLK_MQ_NO_HCTX_IDX); 4510 } 4511 4512 return -ENOMEM; 4513 } 4514 4515 /* 4516 * Allocate the request maps associated with this tag_set. Note that this 4517 * may reduce the depth asked for, if memory is tight. set->queue_depth 4518 * will be updated to reflect the allocated depth. 4519 */ 4520 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4521 { 4522 unsigned int depth; 4523 int err; 4524 4525 depth = set->queue_depth; 4526 do { 4527 err = __blk_mq_alloc_rq_maps(set); 4528 if (!err) 4529 break; 4530 4531 set->queue_depth >>= 1; 4532 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4533 err = -ENOMEM; 4534 break; 4535 } 4536 } while (set->queue_depth); 4537 4538 if (!set->queue_depth || err) { 4539 pr_err("blk-mq: failed to allocate request map\n"); 4540 return -ENOMEM; 4541 } 4542 4543 if (depth != set->queue_depth) 4544 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4545 depth, set->queue_depth); 4546 4547 return 0; 4548 } 4549 4550 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4551 { 4552 /* 4553 * blk_mq_map_queues() and multiple .map_queues() implementations 4554 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4555 * number of hardware queues. 4556 */ 4557 if (set->nr_maps == 1) 4558 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4559 4560 if (set->ops->map_queues) { 4561 int i; 4562 4563 /* 4564 * transport .map_queues is usually done in the following 4565 * way: 4566 * 4567 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4568 * mask = get_cpu_mask(queue) 4569 * for_each_cpu(cpu, mask) 4570 * set->map[x].mq_map[cpu] = queue; 4571 * } 4572 * 4573 * When we need to remap, the table has to be cleared for 4574 * killing stale mapping since one CPU may not be mapped 4575 * to any hw queue. 4576 */ 4577 for (i = 0; i < set->nr_maps; i++) 4578 blk_mq_clear_mq_map(&set->map[i]); 4579 4580 set->ops->map_queues(set); 4581 } else { 4582 BUG_ON(set->nr_maps > 1); 4583 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4584 } 4585 } 4586 4587 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4588 int new_nr_hw_queues) 4589 { 4590 struct blk_mq_tags **new_tags; 4591 int i; 4592 4593 if (set->nr_hw_queues >= new_nr_hw_queues) 4594 goto done; 4595 4596 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4597 GFP_KERNEL, set->numa_node); 4598 if (!new_tags) 4599 return -ENOMEM; 4600 4601 if (set->tags) 4602 memcpy(new_tags, set->tags, set->nr_hw_queues * 4603 sizeof(*set->tags)); 4604 kfree(set->tags); 4605 set->tags = new_tags; 4606 4607 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4608 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4609 while (--i >= set->nr_hw_queues) 4610 __blk_mq_free_map_and_rqs(set, i); 4611 return -ENOMEM; 4612 } 4613 cond_resched(); 4614 } 4615 4616 done: 4617 set->nr_hw_queues = new_nr_hw_queues; 4618 return 0; 4619 } 4620 4621 /* 4622 * Alloc a tag set to be associated with one or more request queues. 4623 * May fail with EINVAL for various error conditions. May adjust the 4624 * requested depth down, if it's too large. In that case, the set 4625 * value will be stored in set->queue_depth. 4626 */ 4627 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4628 { 4629 int i, ret; 4630 4631 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4632 4633 if (!set->nr_hw_queues) 4634 return -EINVAL; 4635 if (!set->queue_depth) 4636 return -EINVAL; 4637 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4638 return -EINVAL; 4639 4640 if (!set->ops->queue_rq) 4641 return -EINVAL; 4642 4643 if (!set->ops->get_budget ^ !set->ops->put_budget) 4644 return -EINVAL; 4645 4646 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4647 pr_info("blk-mq: reduced tag depth to %u\n", 4648 BLK_MQ_MAX_DEPTH); 4649 set->queue_depth = BLK_MQ_MAX_DEPTH; 4650 } 4651 4652 if (!set->nr_maps) 4653 set->nr_maps = 1; 4654 else if (set->nr_maps > HCTX_MAX_TYPES) 4655 return -EINVAL; 4656 4657 /* 4658 * If a crashdump is active, then we are potentially in a very 4659 * memory constrained environment. Limit us to 64 tags to prevent 4660 * using too much memory. 4661 */ 4662 if (is_kdump_kernel()) 4663 set->queue_depth = min(64U, set->queue_depth); 4664 4665 /* 4666 * There is no use for more h/w queues than cpus if we just have 4667 * a single map 4668 */ 4669 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4670 set->nr_hw_queues = nr_cpu_ids; 4671 4672 if (set->flags & BLK_MQ_F_BLOCKING) { 4673 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4674 if (!set->srcu) 4675 return -ENOMEM; 4676 ret = init_srcu_struct(set->srcu); 4677 if (ret) 4678 goto out_free_srcu; 4679 } 4680 4681 ret = -ENOMEM; 4682 set->tags = kcalloc_node(set->nr_hw_queues, 4683 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4684 set->numa_node); 4685 if (!set->tags) 4686 goto out_cleanup_srcu; 4687 4688 for (i = 0; i < set->nr_maps; i++) { 4689 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4690 sizeof(set->map[i].mq_map[0]), 4691 GFP_KERNEL, set->numa_node); 4692 if (!set->map[i].mq_map) 4693 goto out_free_mq_map; 4694 set->map[i].nr_queues = set->nr_hw_queues; 4695 } 4696 4697 blk_mq_update_queue_map(set); 4698 4699 ret = blk_mq_alloc_set_map_and_rqs(set); 4700 if (ret) 4701 goto out_free_mq_map; 4702 4703 mutex_init(&set->tag_list_lock); 4704 INIT_LIST_HEAD(&set->tag_list); 4705 4706 return 0; 4707 4708 out_free_mq_map: 4709 for (i = 0; i < set->nr_maps; i++) { 4710 kfree(set->map[i].mq_map); 4711 set->map[i].mq_map = NULL; 4712 } 4713 kfree(set->tags); 4714 set->tags = NULL; 4715 out_cleanup_srcu: 4716 if (set->flags & BLK_MQ_F_BLOCKING) 4717 cleanup_srcu_struct(set->srcu); 4718 out_free_srcu: 4719 if (set->flags & BLK_MQ_F_BLOCKING) 4720 kfree(set->srcu); 4721 return ret; 4722 } 4723 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4724 4725 /* allocate and initialize a tagset for a simple single-queue device */ 4726 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4727 const struct blk_mq_ops *ops, unsigned int queue_depth, 4728 unsigned int set_flags) 4729 { 4730 memset(set, 0, sizeof(*set)); 4731 set->ops = ops; 4732 set->nr_hw_queues = 1; 4733 set->nr_maps = 1; 4734 set->queue_depth = queue_depth; 4735 set->numa_node = NUMA_NO_NODE; 4736 set->flags = set_flags; 4737 return blk_mq_alloc_tag_set(set); 4738 } 4739 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4740 4741 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4742 { 4743 int i, j; 4744 4745 for (i = 0; i < set->nr_hw_queues; i++) 4746 __blk_mq_free_map_and_rqs(set, i); 4747 4748 if (blk_mq_is_shared_tags(set->flags)) { 4749 blk_mq_free_map_and_rqs(set, set->shared_tags, 4750 BLK_MQ_NO_HCTX_IDX); 4751 } 4752 4753 for (j = 0; j < set->nr_maps; j++) { 4754 kfree(set->map[j].mq_map); 4755 set->map[j].mq_map = NULL; 4756 } 4757 4758 kfree(set->tags); 4759 set->tags = NULL; 4760 if (set->flags & BLK_MQ_F_BLOCKING) { 4761 cleanup_srcu_struct(set->srcu); 4762 kfree(set->srcu); 4763 } 4764 } 4765 EXPORT_SYMBOL(blk_mq_free_tag_set); 4766 4767 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4768 { 4769 struct blk_mq_tag_set *set = q->tag_set; 4770 struct blk_mq_hw_ctx *hctx; 4771 int ret; 4772 unsigned long i; 4773 4774 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4775 return -EINVAL; 4776 4777 if (!set) 4778 return -EINVAL; 4779 4780 if (q->nr_requests == nr) 4781 return 0; 4782 4783 blk_mq_quiesce_queue(q); 4784 4785 ret = 0; 4786 queue_for_each_hw_ctx(q, hctx, i) { 4787 if (!hctx->tags) 4788 continue; 4789 /* 4790 * If we're using an MQ scheduler, just update the scheduler 4791 * queue depth. This is similar to what the old code would do. 4792 */ 4793 if (hctx->sched_tags) { 4794 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4795 nr, true); 4796 } else { 4797 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4798 false); 4799 } 4800 if (ret) 4801 break; 4802 if (q->elevator && q->elevator->type->ops.depth_updated) 4803 q->elevator->type->ops.depth_updated(hctx); 4804 } 4805 if (!ret) { 4806 q->nr_requests = nr; 4807 if (blk_mq_is_shared_tags(set->flags)) { 4808 if (q->elevator) 4809 blk_mq_tag_update_sched_shared_tags(q); 4810 else 4811 blk_mq_tag_resize_shared_tags(set, nr); 4812 } 4813 } 4814 4815 blk_mq_unquiesce_queue(q); 4816 4817 return ret; 4818 } 4819 4820 /* 4821 * request_queue and elevator_type pair. 4822 * It is just used by __blk_mq_update_nr_hw_queues to cache 4823 * the elevator_type associated with a request_queue. 4824 */ 4825 struct blk_mq_qe_pair { 4826 struct list_head node; 4827 struct request_queue *q; 4828 struct elevator_type *type; 4829 }; 4830 4831 /* 4832 * Cache the elevator_type in qe pair list and switch the 4833 * io scheduler to 'none' 4834 */ 4835 static bool blk_mq_elv_switch_none(struct list_head *head, 4836 struct request_queue *q) 4837 { 4838 struct blk_mq_qe_pair *qe; 4839 4840 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4841 if (!qe) 4842 return false; 4843 4844 /* q->elevator needs protection from ->sysfs_lock */ 4845 mutex_lock(&q->sysfs_lock); 4846 4847 /* the check has to be done with holding sysfs_lock */ 4848 if (!q->elevator) { 4849 kfree(qe); 4850 goto unlock; 4851 } 4852 4853 INIT_LIST_HEAD(&qe->node); 4854 qe->q = q; 4855 qe->type = q->elevator->type; 4856 /* keep a reference to the elevator module as we'll switch back */ 4857 __elevator_get(qe->type); 4858 list_add(&qe->node, head); 4859 elevator_disable(q); 4860 unlock: 4861 mutex_unlock(&q->sysfs_lock); 4862 4863 return true; 4864 } 4865 4866 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4867 struct request_queue *q) 4868 { 4869 struct blk_mq_qe_pair *qe; 4870 4871 list_for_each_entry(qe, head, node) 4872 if (qe->q == q) 4873 return qe; 4874 4875 return NULL; 4876 } 4877 4878 static void blk_mq_elv_switch_back(struct list_head *head, 4879 struct request_queue *q) 4880 { 4881 struct blk_mq_qe_pair *qe; 4882 struct elevator_type *t; 4883 4884 qe = blk_lookup_qe_pair(head, q); 4885 if (!qe) 4886 return; 4887 t = qe->type; 4888 list_del(&qe->node); 4889 kfree(qe); 4890 4891 mutex_lock(&q->sysfs_lock); 4892 elevator_switch(q, t); 4893 /* drop the reference acquired in blk_mq_elv_switch_none */ 4894 elevator_put(t); 4895 mutex_unlock(&q->sysfs_lock); 4896 } 4897 4898 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4899 int nr_hw_queues) 4900 { 4901 struct request_queue *q; 4902 LIST_HEAD(head); 4903 int prev_nr_hw_queues = set->nr_hw_queues; 4904 int i; 4905 4906 lockdep_assert_held(&set->tag_list_lock); 4907 4908 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4909 nr_hw_queues = nr_cpu_ids; 4910 if (nr_hw_queues < 1) 4911 return; 4912 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4913 return; 4914 4915 list_for_each_entry(q, &set->tag_list, tag_set_list) 4916 blk_mq_freeze_queue(q); 4917 /* 4918 * Switch IO scheduler to 'none', cleaning up the data associated 4919 * with the previous scheduler. We will switch back once we are done 4920 * updating the new sw to hw queue mappings. 4921 */ 4922 list_for_each_entry(q, &set->tag_list, tag_set_list) 4923 if (!blk_mq_elv_switch_none(&head, q)) 4924 goto switch_back; 4925 4926 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4927 blk_mq_debugfs_unregister_hctxs(q); 4928 blk_mq_sysfs_unregister_hctxs(q); 4929 } 4930 4931 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4932 goto reregister; 4933 4934 fallback: 4935 blk_mq_update_queue_map(set); 4936 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4937 struct queue_limits lim; 4938 4939 blk_mq_realloc_hw_ctxs(set, q); 4940 4941 if (q->nr_hw_queues != set->nr_hw_queues) { 4942 int i = prev_nr_hw_queues; 4943 4944 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4945 nr_hw_queues, prev_nr_hw_queues); 4946 for (; i < set->nr_hw_queues; i++) 4947 __blk_mq_free_map_and_rqs(set, i); 4948 4949 set->nr_hw_queues = prev_nr_hw_queues; 4950 goto fallback; 4951 } 4952 lim = queue_limits_start_update(q); 4953 if (blk_mq_can_poll(set)) 4954 lim.features |= BLK_FEAT_POLL; 4955 else 4956 lim.features &= ~BLK_FEAT_POLL; 4957 if (queue_limits_commit_update(q, &lim) < 0) 4958 pr_warn("updating the poll flag failed\n"); 4959 blk_mq_map_swqueue(q); 4960 } 4961 4962 reregister: 4963 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4964 blk_mq_sysfs_register_hctxs(q); 4965 blk_mq_debugfs_register_hctxs(q); 4966 } 4967 4968 switch_back: 4969 list_for_each_entry(q, &set->tag_list, tag_set_list) 4970 blk_mq_elv_switch_back(&head, q); 4971 4972 list_for_each_entry(q, &set->tag_list, tag_set_list) 4973 blk_mq_unfreeze_queue(q); 4974 4975 /* Free the excess tags when nr_hw_queues shrink. */ 4976 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4977 __blk_mq_free_map_and_rqs(set, i); 4978 } 4979 4980 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4981 { 4982 mutex_lock(&set->tag_list_lock); 4983 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4984 mutex_unlock(&set->tag_list_lock); 4985 } 4986 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4987 4988 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4989 struct io_comp_batch *iob, unsigned int flags) 4990 { 4991 long state = get_current_state(); 4992 int ret; 4993 4994 do { 4995 ret = q->mq_ops->poll(hctx, iob); 4996 if (ret > 0) { 4997 __set_current_state(TASK_RUNNING); 4998 return ret; 4999 } 5000 5001 if (signal_pending_state(state, current)) 5002 __set_current_state(TASK_RUNNING); 5003 if (task_is_running(current)) 5004 return 1; 5005 5006 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5007 break; 5008 cpu_relax(); 5009 } while (!need_resched()); 5010 5011 __set_current_state(TASK_RUNNING); 5012 return 0; 5013 } 5014 5015 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5016 struct io_comp_batch *iob, unsigned int flags) 5017 { 5018 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 5019 5020 return blk_hctx_poll(q, hctx, iob, flags); 5021 } 5022 5023 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5024 unsigned int poll_flags) 5025 { 5026 struct request_queue *q = rq->q; 5027 int ret; 5028 5029 if (!blk_rq_is_poll(rq)) 5030 return 0; 5031 if (!percpu_ref_tryget(&q->q_usage_counter)) 5032 return 0; 5033 5034 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5035 blk_queue_exit(q); 5036 5037 return ret; 5038 } 5039 EXPORT_SYMBOL_GPL(blk_rq_poll); 5040 5041 unsigned int blk_mq_rq_cpu(struct request *rq) 5042 { 5043 return rq->mq_ctx->cpu; 5044 } 5045 EXPORT_SYMBOL(blk_mq_rq_cpu); 5046 5047 void blk_mq_cancel_work_sync(struct request_queue *q) 5048 { 5049 struct blk_mq_hw_ctx *hctx; 5050 unsigned long i; 5051 5052 cancel_delayed_work_sync(&q->requeue_work); 5053 5054 queue_for_each_hw_ctx(q, hctx, i) 5055 cancel_delayed_work_sync(&hctx->run_work); 5056 } 5057 5058 static int __init blk_mq_init(void) 5059 { 5060 int i; 5061 5062 for_each_possible_cpu(i) 5063 init_llist_head(&per_cpu(blk_cpu_done, i)); 5064 for_each_possible_cpu(i) 5065 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5066 __blk_mq_complete_request_remote, NULL); 5067 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5068 5069 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5070 "block/softirq:dead", NULL, 5071 blk_softirq_cpu_dead); 5072 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5073 blk_mq_hctx_notify_dead); 5074 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5075 blk_mq_hctx_notify_online, 5076 blk_mq_hctx_notify_offline); 5077 return 0; 5078 } 5079 subsys_initcall(blk_mq_init); 5080