xref: /linux/block/blk-mq.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->rq_flags & RQF_IO_STAT &&
97 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 #ifdef CONFIG_LOCKDEP
125 static bool blk_freeze_set_owner(struct request_queue *q,
126 				 struct task_struct *owner)
127 {
128 	if (!owner)
129 		return false;
130 
131 	if (!q->mq_freeze_depth) {
132 		q->mq_freeze_owner = owner;
133 		q->mq_freeze_owner_depth = 1;
134 		return true;
135 	}
136 
137 	if (owner == q->mq_freeze_owner)
138 		q->mq_freeze_owner_depth += 1;
139 	return false;
140 }
141 
142 /* verify the last unfreeze in owner context */
143 static bool blk_unfreeze_check_owner(struct request_queue *q)
144 {
145 	if (!q->mq_freeze_owner)
146 		return false;
147 	if (q->mq_freeze_owner != current)
148 		return false;
149 	if (--q->mq_freeze_owner_depth == 0) {
150 		q->mq_freeze_owner = NULL;
151 		return true;
152 	}
153 	return false;
154 }
155 
156 #else
157 
158 static bool blk_freeze_set_owner(struct request_queue *q,
159 				 struct task_struct *owner)
160 {
161 	return false;
162 }
163 
164 static bool blk_unfreeze_check_owner(struct request_queue *q)
165 {
166 	return false;
167 }
168 #endif
169 
170 bool __blk_freeze_queue_start(struct request_queue *q,
171 			      struct task_struct *owner)
172 {
173 	bool freeze;
174 
175 	mutex_lock(&q->mq_freeze_lock);
176 	freeze = blk_freeze_set_owner(q, owner);
177 	if (++q->mq_freeze_depth == 1) {
178 		percpu_ref_kill(&q->q_usage_counter);
179 		mutex_unlock(&q->mq_freeze_lock);
180 		if (queue_is_mq(q))
181 			blk_mq_run_hw_queues(q, false);
182 	} else {
183 		mutex_unlock(&q->mq_freeze_lock);
184 	}
185 
186 	return freeze;
187 }
188 
189 void blk_freeze_queue_start(struct request_queue *q)
190 {
191 	if (__blk_freeze_queue_start(q, current))
192 		blk_freeze_acquire_lock(q, false, false);
193 }
194 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
195 
196 void blk_mq_freeze_queue_wait(struct request_queue *q)
197 {
198 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
201 
202 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
203 				     unsigned long timeout)
204 {
205 	return wait_event_timeout(q->mq_freeze_wq,
206 					percpu_ref_is_zero(&q->q_usage_counter),
207 					timeout);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
210 
211 void blk_mq_freeze_queue(struct request_queue *q)
212 {
213 	blk_freeze_queue_start(q);
214 	blk_mq_freeze_queue_wait(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	bool unfreeze;
221 
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	unfreeze = blk_unfreeze_check_owner(q);
232 	mutex_unlock(&q->mq_freeze_lock);
233 
234 	return unfreeze;
235 }
236 
237 void blk_mq_unfreeze_queue(struct request_queue *q)
238 {
239 	if (__blk_mq_unfreeze_queue(q, false))
240 		blk_unfreeze_release_lock(q, false, false);
241 }
242 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
243 
244 /*
245  * non_owner variant of blk_freeze_queue_start
246  *
247  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
248  * by the same task.  This is fragile and should not be used if at all
249  * possible.
250  */
251 void blk_freeze_queue_start_non_owner(struct request_queue *q)
252 {
253 	__blk_freeze_queue_start(q, NULL);
254 }
255 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
256 
257 /* non_owner variant of blk_mq_unfreeze_queue */
258 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
259 {
260 	__blk_mq_unfreeze_queue(q, false);
261 }
262 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
263 
264 /*
265  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
266  * mpt3sas driver such that this function can be removed.
267  */
268 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
269 {
270 	unsigned long flags;
271 
272 	spin_lock_irqsave(&q->queue_lock, flags);
273 	if (!q->quiesce_depth++)
274 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
275 	spin_unlock_irqrestore(&q->queue_lock, flags);
276 }
277 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
278 
279 /**
280  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
281  * @set: tag_set to wait on
282  *
283  * Note: it is driver's responsibility for making sure that quiesce has
284  * been started on or more of the request_queues of the tag_set.  This
285  * function only waits for the quiesce on those request_queues that had
286  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
287  */
288 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
289 {
290 	if (set->flags & BLK_MQ_F_BLOCKING)
291 		synchronize_srcu(set->srcu);
292 	else
293 		synchronize_rcu();
294 }
295 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
296 
297 /**
298  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
299  * @q: request queue.
300  *
301  * Note: this function does not prevent that the struct request end_io()
302  * callback function is invoked. Once this function is returned, we make
303  * sure no dispatch can happen until the queue is unquiesced via
304  * blk_mq_unquiesce_queue().
305  */
306 void blk_mq_quiesce_queue(struct request_queue *q)
307 {
308 	blk_mq_quiesce_queue_nowait(q);
309 	/* nothing to wait for non-mq queues */
310 	if (queue_is_mq(q))
311 		blk_mq_wait_quiesce_done(q->tag_set);
312 }
313 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
314 
315 /*
316  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
317  * @q: request queue.
318  *
319  * This function recovers queue into the state before quiescing
320  * which is done by blk_mq_quiesce_queue.
321  */
322 void blk_mq_unquiesce_queue(struct request_queue *q)
323 {
324 	unsigned long flags;
325 	bool run_queue = false;
326 
327 	spin_lock_irqsave(&q->queue_lock, flags);
328 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
329 		;
330 	} else if (!--q->quiesce_depth) {
331 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
332 		run_queue = true;
333 	}
334 	spin_unlock_irqrestore(&q->queue_lock, flags);
335 
336 	/* dispatch requests which are inserted during quiescing */
337 	if (run_queue)
338 		blk_mq_run_hw_queues(q, true);
339 }
340 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
341 
342 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
343 {
344 	struct request_queue *q;
345 
346 	mutex_lock(&set->tag_list_lock);
347 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
348 		if (!blk_queue_skip_tagset_quiesce(q))
349 			blk_mq_quiesce_queue_nowait(q);
350 	}
351 	mutex_unlock(&set->tag_list_lock);
352 
353 	blk_mq_wait_quiesce_done(set);
354 }
355 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
356 
357 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
358 {
359 	struct request_queue *q;
360 
361 	mutex_lock(&set->tag_list_lock);
362 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
363 		if (!blk_queue_skip_tagset_quiesce(q))
364 			blk_mq_unquiesce_queue(q);
365 	}
366 	mutex_unlock(&set->tag_list_lock);
367 }
368 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
369 
370 void blk_mq_wake_waiters(struct request_queue *q)
371 {
372 	struct blk_mq_hw_ctx *hctx;
373 	unsigned long i;
374 
375 	queue_for_each_hw_ctx(q, hctx, i)
376 		if (blk_mq_hw_queue_mapped(hctx))
377 			blk_mq_tag_wakeup_all(hctx->tags, true);
378 }
379 
380 void blk_rq_init(struct request_queue *q, struct request *rq)
381 {
382 	memset(rq, 0, sizeof(*rq));
383 
384 	INIT_LIST_HEAD(&rq->queuelist);
385 	rq->q = q;
386 	rq->__sector = (sector_t) -1;
387 	INIT_HLIST_NODE(&rq->hash);
388 	RB_CLEAR_NODE(&rq->rb_node);
389 	rq->tag = BLK_MQ_NO_TAG;
390 	rq->internal_tag = BLK_MQ_NO_TAG;
391 	rq->start_time_ns = blk_time_get_ns();
392 	blk_crypto_rq_set_defaults(rq);
393 }
394 EXPORT_SYMBOL(blk_rq_init);
395 
396 /* Set start and alloc time when the allocated request is actually used */
397 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
398 {
399 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
400 	if (blk_queue_rq_alloc_time(rq->q))
401 		rq->alloc_time_ns = alloc_time_ns;
402 	else
403 		rq->alloc_time_ns = 0;
404 #endif
405 }
406 
407 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
408 		struct blk_mq_tags *tags, unsigned int tag)
409 {
410 	struct blk_mq_ctx *ctx = data->ctx;
411 	struct blk_mq_hw_ctx *hctx = data->hctx;
412 	struct request_queue *q = data->q;
413 	struct request *rq = tags->static_rqs[tag];
414 
415 	rq->q = q;
416 	rq->mq_ctx = ctx;
417 	rq->mq_hctx = hctx;
418 	rq->cmd_flags = data->cmd_flags;
419 
420 	if (data->flags & BLK_MQ_REQ_PM)
421 		data->rq_flags |= RQF_PM;
422 	rq->rq_flags = data->rq_flags;
423 
424 	if (data->rq_flags & RQF_SCHED_TAGS) {
425 		rq->tag = BLK_MQ_NO_TAG;
426 		rq->internal_tag = tag;
427 	} else {
428 		rq->tag = tag;
429 		rq->internal_tag = BLK_MQ_NO_TAG;
430 	}
431 	rq->timeout = 0;
432 
433 	rq->part = NULL;
434 	rq->io_start_time_ns = 0;
435 	rq->stats_sectors = 0;
436 	rq->nr_phys_segments = 0;
437 	rq->nr_integrity_segments = 0;
438 	rq->end_io = NULL;
439 	rq->end_io_data = NULL;
440 
441 	blk_crypto_rq_set_defaults(rq);
442 	INIT_LIST_HEAD(&rq->queuelist);
443 	/* tag was already set */
444 	WRITE_ONCE(rq->deadline, 0);
445 	req_ref_set(rq, 1);
446 
447 	if (rq->rq_flags & RQF_USE_SCHED) {
448 		struct elevator_queue *e = data->q->elevator;
449 
450 		INIT_HLIST_NODE(&rq->hash);
451 		RB_CLEAR_NODE(&rq->rb_node);
452 
453 		if (e->type->ops.prepare_request)
454 			e->type->ops.prepare_request(rq);
455 	}
456 
457 	return rq;
458 }
459 
460 static inline struct request *
461 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
462 {
463 	unsigned int tag, tag_offset;
464 	struct blk_mq_tags *tags;
465 	struct request *rq;
466 	unsigned long tag_mask;
467 	int i, nr = 0;
468 
469 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
470 	if (unlikely(!tag_mask))
471 		return NULL;
472 
473 	tags = blk_mq_tags_from_data(data);
474 	for (i = 0; tag_mask; i++) {
475 		if (!(tag_mask & (1UL << i)))
476 			continue;
477 		tag = tag_offset + i;
478 		prefetch(tags->static_rqs[tag]);
479 		tag_mask &= ~(1UL << i);
480 		rq = blk_mq_rq_ctx_init(data, tags, tag);
481 		rq_list_add_head(data->cached_rqs, rq);
482 		nr++;
483 	}
484 	if (!(data->rq_flags & RQF_SCHED_TAGS))
485 		blk_mq_add_active_requests(data->hctx, nr);
486 	/* caller already holds a reference, add for remainder */
487 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
488 	data->nr_tags -= nr;
489 
490 	return rq_list_pop(data->cached_rqs);
491 }
492 
493 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
494 {
495 	struct request_queue *q = data->q;
496 	u64 alloc_time_ns = 0;
497 	struct request *rq;
498 	unsigned int tag;
499 
500 	/* alloc_time includes depth and tag waits */
501 	if (blk_queue_rq_alloc_time(q))
502 		alloc_time_ns = blk_time_get_ns();
503 
504 	if (data->cmd_flags & REQ_NOWAIT)
505 		data->flags |= BLK_MQ_REQ_NOWAIT;
506 
507 retry:
508 	data->ctx = blk_mq_get_ctx(q);
509 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
510 
511 	if (q->elevator) {
512 		/*
513 		 * All requests use scheduler tags when an I/O scheduler is
514 		 * enabled for the queue.
515 		 */
516 		data->rq_flags |= RQF_SCHED_TAGS;
517 
518 		/*
519 		 * Flush/passthrough requests are special and go directly to the
520 		 * dispatch list.
521 		 */
522 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
523 		    !blk_op_is_passthrough(data->cmd_flags)) {
524 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
525 
526 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
527 
528 			data->rq_flags |= RQF_USE_SCHED;
529 			if (ops->limit_depth)
530 				ops->limit_depth(data->cmd_flags, data);
531 		}
532 	} else {
533 		blk_mq_tag_busy(data->hctx);
534 	}
535 
536 	if (data->flags & BLK_MQ_REQ_RESERVED)
537 		data->rq_flags |= RQF_RESV;
538 
539 	/*
540 	 * Try batched alloc if we want more than 1 tag.
541 	 */
542 	if (data->nr_tags > 1) {
543 		rq = __blk_mq_alloc_requests_batch(data);
544 		if (rq) {
545 			blk_mq_rq_time_init(rq, alloc_time_ns);
546 			return rq;
547 		}
548 		data->nr_tags = 1;
549 	}
550 
551 	/*
552 	 * Waiting allocations only fail because of an inactive hctx.  In that
553 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
554 	 * should have migrated us to an online CPU by now.
555 	 */
556 	tag = blk_mq_get_tag(data);
557 	if (tag == BLK_MQ_NO_TAG) {
558 		if (data->flags & BLK_MQ_REQ_NOWAIT)
559 			return NULL;
560 		/*
561 		 * Give up the CPU and sleep for a random short time to
562 		 * ensure that thread using a realtime scheduling class
563 		 * are migrated off the CPU, and thus off the hctx that
564 		 * is going away.
565 		 */
566 		msleep(3);
567 		goto retry;
568 	}
569 
570 	if (!(data->rq_flags & RQF_SCHED_TAGS))
571 		blk_mq_inc_active_requests(data->hctx);
572 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
573 	blk_mq_rq_time_init(rq, alloc_time_ns);
574 	return rq;
575 }
576 
577 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
578 					    struct blk_plug *plug,
579 					    blk_opf_t opf,
580 					    blk_mq_req_flags_t flags)
581 {
582 	struct blk_mq_alloc_data data = {
583 		.q		= q,
584 		.flags		= flags,
585 		.cmd_flags	= opf,
586 		.nr_tags	= plug->nr_ios,
587 		.cached_rqs	= &plug->cached_rqs,
588 	};
589 	struct request *rq;
590 
591 	if (blk_queue_enter(q, flags))
592 		return NULL;
593 
594 	plug->nr_ios = 1;
595 
596 	rq = __blk_mq_alloc_requests(&data);
597 	if (unlikely(!rq))
598 		blk_queue_exit(q);
599 	return rq;
600 }
601 
602 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
603 						   blk_opf_t opf,
604 						   blk_mq_req_flags_t flags)
605 {
606 	struct blk_plug *plug = current->plug;
607 	struct request *rq;
608 
609 	if (!plug)
610 		return NULL;
611 
612 	if (rq_list_empty(&plug->cached_rqs)) {
613 		if (plug->nr_ios == 1)
614 			return NULL;
615 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
616 		if (!rq)
617 			return NULL;
618 	} else {
619 		rq = rq_list_peek(&plug->cached_rqs);
620 		if (!rq || rq->q != q)
621 			return NULL;
622 
623 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
624 			return NULL;
625 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
626 			return NULL;
627 
628 		rq_list_pop(&plug->cached_rqs);
629 		blk_mq_rq_time_init(rq, blk_time_get_ns());
630 	}
631 
632 	rq->cmd_flags = opf;
633 	INIT_LIST_HEAD(&rq->queuelist);
634 	return rq;
635 }
636 
637 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
638 		blk_mq_req_flags_t flags)
639 {
640 	struct request *rq;
641 
642 	rq = blk_mq_alloc_cached_request(q, opf, flags);
643 	if (!rq) {
644 		struct blk_mq_alloc_data data = {
645 			.q		= q,
646 			.flags		= flags,
647 			.cmd_flags	= opf,
648 			.nr_tags	= 1,
649 		};
650 		int ret;
651 
652 		ret = blk_queue_enter(q, flags);
653 		if (ret)
654 			return ERR_PTR(ret);
655 
656 		rq = __blk_mq_alloc_requests(&data);
657 		if (!rq)
658 			goto out_queue_exit;
659 	}
660 	rq->__data_len = 0;
661 	rq->__sector = (sector_t) -1;
662 	rq->bio = rq->biotail = NULL;
663 	return rq;
664 out_queue_exit:
665 	blk_queue_exit(q);
666 	return ERR_PTR(-EWOULDBLOCK);
667 }
668 EXPORT_SYMBOL(blk_mq_alloc_request);
669 
670 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
671 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
672 {
673 	struct blk_mq_alloc_data data = {
674 		.q		= q,
675 		.flags		= flags,
676 		.cmd_flags	= opf,
677 		.nr_tags	= 1,
678 	};
679 	u64 alloc_time_ns = 0;
680 	struct request *rq;
681 	unsigned int cpu;
682 	unsigned int tag;
683 	int ret;
684 
685 	/* alloc_time includes depth and tag waits */
686 	if (blk_queue_rq_alloc_time(q))
687 		alloc_time_ns = blk_time_get_ns();
688 
689 	/*
690 	 * If the tag allocator sleeps we could get an allocation for a
691 	 * different hardware context.  No need to complicate the low level
692 	 * allocator for this for the rare use case of a command tied to
693 	 * a specific queue.
694 	 */
695 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
696 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
697 		return ERR_PTR(-EINVAL);
698 
699 	if (hctx_idx >= q->nr_hw_queues)
700 		return ERR_PTR(-EIO);
701 
702 	ret = blk_queue_enter(q, flags);
703 	if (ret)
704 		return ERR_PTR(ret);
705 
706 	/*
707 	 * Check if the hardware context is actually mapped to anything.
708 	 * If not tell the caller that it should skip this queue.
709 	 */
710 	ret = -EXDEV;
711 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
712 	if (!blk_mq_hw_queue_mapped(data.hctx))
713 		goto out_queue_exit;
714 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
715 	if (cpu >= nr_cpu_ids)
716 		goto out_queue_exit;
717 	data.ctx = __blk_mq_get_ctx(q, cpu);
718 
719 	if (q->elevator)
720 		data.rq_flags |= RQF_SCHED_TAGS;
721 	else
722 		blk_mq_tag_busy(data.hctx);
723 
724 	if (flags & BLK_MQ_REQ_RESERVED)
725 		data.rq_flags |= RQF_RESV;
726 
727 	ret = -EWOULDBLOCK;
728 	tag = blk_mq_get_tag(&data);
729 	if (tag == BLK_MQ_NO_TAG)
730 		goto out_queue_exit;
731 	if (!(data.rq_flags & RQF_SCHED_TAGS))
732 		blk_mq_inc_active_requests(data.hctx);
733 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
734 	blk_mq_rq_time_init(rq, alloc_time_ns);
735 	rq->__data_len = 0;
736 	rq->__sector = (sector_t) -1;
737 	rq->bio = rq->biotail = NULL;
738 	return rq;
739 
740 out_queue_exit:
741 	blk_queue_exit(q);
742 	return ERR_PTR(ret);
743 }
744 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
745 
746 static void blk_mq_finish_request(struct request *rq)
747 {
748 	struct request_queue *q = rq->q;
749 
750 	blk_zone_finish_request(rq);
751 
752 	if (rq->rq_flags & RQF_USE_SCHED) {
753 		q->elevator->type->ops.finish_request(rq);
754 		/*
755 		 * For postflush request that may need to be
756 		 * completed twice, we should clear this flag
757 		 * to avoid double finish_request() on the rq.
758 		 */
759 		rq->rq_flags &= ~RQF_USE_SCHED;
760 	}
761 }
762 
763 static void __blk_mq_free_request(struct request *rq)
764 {
765 	struct request_queue *q = rq->q;
766 	struct blk_mq_ctx *ctx = rq->mq_ctx;
767 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
768 	const int sched_tag = rq->internal_tag;
769 
770 	blk_crypto_free_request(rq);
771 	blk_pm_mark_last_busy(rq);
772 	rq->mq_hctx = NULL;
773 
774 	if (rq->tag != BLK_MQ_NO_TAG) {
775 		blk_mq_dec_active_requests(hctx);
776 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
777 	}
778 	if (sched_tag != BLK_MQ_NO_TAG)
779 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
780 	blk_mq_sched_restart(hctx);
781 	blk_queue_exit(q);
782 }
783 
784 void blk_mq_free_request(struct request *rq)
785 {
786 	struct request_queue *q = rq->q;
787 
788 	blk_mq_finish_request(rq);
789 
790 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
791 		laptop_io_completion(q->disk->bdi);
792 
793 	rq_qos_done(q, rq);
794 
795 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
796 	if (req_ref_put_and_test(rq))
797 		__blk_mq_free_request(rq);
798 }
799 EXPORT_SYMBOL_GPL(blk_mq_free_request);
800 
801 void blk_mq_free_plug_rqs(struct blk_plug *plug)
802 {
803 	struct request *rq;
804 
805 	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
806 		blk_mq_free_request(rq);
807 }
808 
809 void blk_dump_rq_flags(struct request *rq, char *msg)
810 {
811 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
812 		rq->q->disk ? rq->q->disk->disk_name : "?",
813 		(__force unsigned long long) rq->cmd_flags);
814 
815 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
816 	       (unsigned long long)blk_rq_pos(rq),
817 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
818 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
819 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
820 }
821 EXPORT_SYMBOL(blk_dump_rq_flags);
822 
823 static void blk_account_io_completion(struct request *req, unsigned int bytes)
824 {
825 	if (req->rq_flags & RQF_IO_STAT) {
826 		const int sgrp = op_stat_group(req_op(req));
827 
828 		part_stat_lock();
829 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
830 		part_stat_unlock();
831 	}
832 }
833 
834 static void blk_print_req_error(struct request *req, blk_status_t status)
835 {
836 	printk_ratelimited(KERN_ERR
837 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
838 		"phys_seg %u prio class %u\n",
839 		blk_status_to_str(status),
840 		req->q->disk ? req->q->disk->disk_name : "?",
841 		blk_rq_pos(req), (__force u32)req_op(req),
842 		blk_op_str(req_op(req)),
843 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
844 		req->nr_phys_segments,
845 		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
846 }
847 
848 /*
849  * Fully end IO on a request. Does not support partial completions, or
850  * errors.
851  */
852 static void blk_complete_request(struct request *req)
853 {
854 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
855 	int total_bytes = blk_rq_bytes(req);
856 	struct bio *bio = req->bio;
857 
858 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
859 
860 	if (!bio)
861 		return;
862 
863 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
864 		blk_integrity_complete(req, total_bytes);
865 
866 	/*
867 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
868 	 * bio_endio().  Therefore, the keyslot must be released before that.
869 	 */
870 	blk_crypto_rq_put_keyslot(req);
871 
872 	blk_account_io_completion(req, total_bytes);
873 
874 	do {
875 		struct bio *next = bio->bi_next;
876 
877 		/* Completion has already been traced */
878 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
879 
880 		blk_zone_update_request_bio(req, bio);
881 
882 		if (!is_flush)
883 			bio_endio(bio);
884 		bio = next;
885 	} while (bio);
886 
887 	/*
888 	 * Reset counters so that the request stacking driver
889 	 * can find how many bytes remain in the request
890 	 * later.
891 	 */
892 	if (!req->end_io) {
893 		req->bio = NULL;
894 		req->__data_len = 0;
895 	}
896 }
897 
898 /**
899  * blk_update_request - Complete multiple bytes without completing the request
900  * @req:      the request being processed
901  * @error:    block status code
902  * @nr_bytes: number of bytes to complete for @req
903  *
904  * Description:
905  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
906  *     the request structure even if @req doesn't have leftover.
907  *     If @req has leftover, sets it up for the next range of segments.
908  *
909  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
910  *     %false return from this function.
911  *
912  * Note:
913  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
914  *      except in the consistency check at the end of this function.
915  *
916  * Return:
917  *     %false - this request doesn't have any more data
918  *     %true  - this request has more data
919  **/
920 bool blk_update_request(struct request *req, blk_status_t error,
921 		unsigned int nr_bytes)
922 {
923 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
924 	bool quiet = req->rq_flags & RQF_QUIET;
925 	int total_bytes;
926 
927 	trace_block_rq_complete(req, error, nr_bytes);
928 
929 	if (!req->bio)
930 		return false;
931 
932 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
933 	    error == BLK_STS_OK)
934 		blk_integrity_complete(req, nr_bytes);
935 
936 	/*
937 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
938 	 * bio_endio().  Therefore, the keyslot must be released before that.
939 	 */
940 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
941 		__blk_crypto_rq_put_keyslot(req);
942 
943 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
944 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
945 		blk_print_req_error(req, error);
946 		trace_block_rq_error(req, error, nr_bytes);
947 	}
948 
949 	blk_account_io_completion(req, nr_bytes);
950 
951 	total_bytes = 0;
952 	while (req->bio) {
953 		struct bio *bio = req->bio;
954 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
955 
956 		if (unlikely(error))
957 			bio->bi_status = error;
958 
959 		if (bio_bytes == bio->bi_iter.bi_size) {
960 			req->bio = bio->bi_next;
961 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
962 			/*
963 			 * Partial zone append completions cannot be supported
964 			 * as the BIO fragments may end up not being written
965 			 * sequentially.
966 			 */
967 			bio->bi_status = BLK_STS_IOERR;
968 		}
969 
970 		/* Completion has already been traced */
971 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
972 		if (unlikely(quiet))
973 			bio_set_flag(bio, BIO_QUIET);
974 
975 		bio_advance(bio, bio_bytes);
976 
977 		/* Don't actually finish bio if it's part of flush sequence */
978 		if (!bio->bi_iter.bi_size) {
979 			blk_zone_update_request_bio(req, bio);
980 			if (!is_flush)
981 				bio_endio(bio);
982 		}
983 
984 		total_bytes += bio_bytes;
985 		nr_bytes -= bio_bytes;
986 
987 		if (!nr_bytes)
988 			break;
989 	}
990 
991 	/*
992 	 * completely done
993 	 */
994 	if (!req->bio) {
995 		/*
996 		 * Reset counters so that the request stacking driver
997 		 * can find how many bytes remain in the request
998 		 * later.
999 		 */
1000 		req->__data_len = 0;
1001 		return false;
1002 	}
1003 
1004 	req->__data_len -= total_bytes;
1005 
1006 	/* update sector only for requests with clear definition of sector */
1007 	if (!blk_rq_is_passthrough(req))
1008 		req->__sector += total_bytes >> 9;
1009 
1010 	/* mixed attributes always follow the first bio */
1011 	if (req->rq_flags & RQF_MIXED_MERGE) {
1012 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1013 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1014 	}
1015 
1016 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1017 		/*
1018 		 * If total number of sectors is less than the first segment
1019 		 * size, something has gone terribly wrong.
1020 		 */
1021 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1022 			blk_dump_rq_flags(req, "request botched");
1023 			req->__data_len = blk_rq_cur_bytes(req);
1024 		}
1025 
1026 		/* recalculate the number of segments */
1027 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1028 	}
1029 
1030 	return true;
1031 }
1032 EXPORT_SYMBOL_GPL(blk_update_request);
1033 
1034 static inline void blk_account_io_done(struct request *req, u64 now)
1035 {
1036 	trace_block_io_done(req);
1037 
1038 	/*
1039 	 * Account IO completion.  flush_rq isn't accounted as a
1040 	 * normal IO on queueing nor completion.  Accounting the
1041 	 * containing request is enough.
1042 	 */
1043 	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1044 		const int sgrp = op_stat_group(req_op(req));
1045 
1046 		part_stat_lock();
1047 		update_io_ticks(req->part, jiffies, true);
1048 		part_stat_inc(req->part, ios[sgrp]);
1049 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1050 		part_stat_local_dec(req->part,
1051 				    in_flight[op_is_write(req_op(req))]);
1052 		part_stat_unlock();
1053 	}
1054 }
1055 
1056 static inline bool blk_rq_passthrough_stats(struct request *req)
1057 {
1058 	struct bio *bio = req->bio;
1059 
1060 	if (!blk_queue_passthrough_stat(req->q))
1061 		return false;
1062 
1063 	/* Requests without a bio do not transfer data. */
1064 	if (!bio)
1065 		return false;
1066 
1067 	/*
1068 	 * Stats are accumulated in the bdev, so must have one attached to a
1069 	 * bio to track stats. Most drivers do not set the bdev for passthrough
1070 	 * requests, but nvme is one that will set it.
1071 	 */
1072 	if (!bio->bi_bdev)
1073 		return false;
1074 
1075 	/*
1076 	 * We don't know what a passthrough command does, but we know the
1077 	 * payload size and data direction. Ensuring the size is aligned to the
1078 	 * block size filters out most commands with payloads that don't
1079 	 * represent sector access.
1080 	 */
1081 	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1082 		return false;
1083 	return true;
1084 }
1085 
1086 static inline void blk_account_io_start(struct request *req)
1087 {
1088 	trace_block_io_start(req);
1089 
1090 	if (!blk_queue_io_stat(req->q))
1091 		return;
1092 	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1093 		return;
1094 
1095 	req->rq_flags |= RQF_IO_STAT;
1096 	req->start_time_ns = blk_time_get_ns();
1097 
1098 	/*
1099 	 * All non-passthrough requests are created from a bio with one
1100 	 * exception: when a flush command that is part of a flush sequence
1101 	 * generated by the state machine in blk-flush.c is cloned onto the
1102 	 * lower device by dm-multipath we can get here without a bio.
1103 	 */
1104 	if (req->bio)
1105 		req->part = req->bio->bi_bdev;
1106 	else
1107 		req->part = req->q->disk->part0;
1108 
1109 	part_stat_lock();
1110 	update_io_ticks(req->part, jiffies, false);
1111 	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1112 	part_stat_unlock();
1113 }
1114 
1115 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1116 {
1117 	if (rq->rq_flags & RQF_STATS)
1118 		blk_stat_add(rq, now);
1119 
1120 	blk_mq_sched_completed_request(rq, now);
1121 	blk_account_io_done(rq, now);
1122 }
1123 
1124 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1125 {
1126 	if (blk_mq_need_time_stamp(rq))
1127 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1128 
1129 	blk_mq_finish_request(rq);
1130 
1131 	if (rq->end_io) {
1132 		rq_qos_done(rq->q, rq);
1133 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1134 			blk_mq_free_request(rq);
1135 	} else {
1136 		blk_mq_free_request(rq);
1137 	}
1138 }
1139 EXPORT_SYMBOL(__blk_mq_end_request);
1140 
1141 void blk_mq_end_request(struct request *rq, blk_status_t error)
1142 {
1143 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1144 		BUG();
1145 	__blk_mq_end_request(rq, error);
1146 }
1147 EXPORT_SYMBOL(blk_mq_end_request);
1148 
1149 #define TAG_COMP_BATCH		32
1150 
1151 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1152 					  int *tag_array, int nr_tags)
1153 {
1154 	struct request_queue *q = hctx->queue;
1155 
1156 	blk_mq_sub_active_requests(hctx, nr_tags);
1157 
1158 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1159 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1160 }
1161 
1162 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1163 {
1164 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1165 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1166 	struct request *rq;
1167 	u64 now = 0;
1168 
1169 	if (iob->need_ts)
1170 		now = blk_time_get_ns();
1171 
1172 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1173 		prefetch(rq->bio);
1174 		prefetch(rq->rq_next);
1175 
1176 		blk_complete_request(rq);
1177 		if (iob->need_ts)
1178 			__blk_mq_end_request_acct(rq, now);
1179 
1180 		blk_mq_finish_request(rq);
1181 
1182 		rq_qos_done(rq->q, rq);
1183 
1184 		/*
1185 		 * If end_io handler returns NONE, then it still has
1186 		 * ownership of the request.
1187 		 */
1188 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1189 			continue;
1190 
1191 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1192 		if (!req_ref_put_and_test(rq))
1193 			continue;
1194 
1195 		blk_crypto_free_request(rq);
1196 		blk_pm_mark_last_busy(rq);
1197 
1198 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1199 			if (cur_hctx)
1200 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1201 			nr_tags = 0;
1202 			cur_hctx = rq->mq_hctx;
1203 		}
1204 		tags[nr_tags++] = rq->tag;
1205 	}
1206 
1207 	if (nr_tags)
1208 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1209 }
1210 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1211 
1212 static void blk_complete_reqs(struct llist_head *list)
1213 {
1214 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1215 	struct request *rq, *next;
1216 
1217 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1218 		rq->q->mq_ops->complete(rq);
1219 }
1220 
1221 static __latent_entropy void blk_done_softirq(void)
1222 {
1223 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1224 }
1225 
1226 static int blk_softirq_cpu_dead(unsigned int cpu)
1227 {
1228 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1229 	return 0;
1230 }
1231 
1232 static void __blk_mq_complete_request_remote(void *data)
1233 {
1234 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1235 }
1236 
1237 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1238 {
1239 	int cpu = raw_smp_processor_id();
1240 
1241 	if (!IS_ENABLED(CONFIG_SMP) ||
1242 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1243 		return false;
1244 	/*
1245 	 * With force threaded interrupts enabled, raising softirq from an SMP
1246 	 * function call will always result in waking the ksoftirqd thread.
1247 	 * This is probably worse than completing the request on a different
1248 	 * cache domain.
1249 	 */
1250 	if (force_irqthreads())
1251 		return false;
1252 
1253 	/* same CPU or cache domain and capacity?  Complete locally */
1254 	if (cpu == rq->mq_ctx->cpu ||
1255 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1256 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1257 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1258 		return false;
1259 
1260 	/* don't try to IPI to an offline CPU */
1261 	return cpu_online(rq->mq_ctx->cpu);
1262 }
1263 
1264 static void blk_mq_complete_send_ipi(struct request *rq)
1265 {
1266 	unsigned int cpu;
1267 
1268 	cpu = rq->mq_ctx->cpu;
1269 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1270 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1271 }
1272 
1273 static void blk_mq_raise_softirq(struct request *rq)
1274 {
1275 	struct llist_head *list;
1276 
1277 	preempt_disable();
1278 	list = this_cpu_ptr(&blk_cpu_done);
1279 	if (llist_add(&rq->ipi_list, list))
1280 		raise_softirq(BLOCK_SOFTIRQ);
1281 	preempt_enable();
1282 }
1283 
1284 bool blk_mq_complete_request_remote(struct request *rq)
1285 {
1286 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1287 
1288 	/*
1289 	 * For request which hctx has only one ctx mapping,
1290 	 * or a polled request, always complete locally,
1291 	 * it's pointless to redirect the completion.
1292 	 */
1293 	if ((rq->mq_hctx->nr_ctx == 1 &&
1294 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1295 	     rq->cmd_flags & REQ_POLLED)
1296 		return false;
1297 
1298 	if (blk_mq_complete_need_ipi(rq)) {
1299 		blk_mq_complete_send_ipi(rq);
1300 		return true;
1301 	}
1302 
1303 	if (rq->q->nr_hw_queues == 1) {
1304 		blk_mq_raise_softirq(rq);
1305 		return true;
1306 	}
1307 	return false;
1308 }
1309 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1310 
1311 /**
1312  * blk_mq_complete_request - end I/O on a request
1313  * @rq:		the request being processed
1314  *
1315  * Description:
1316  *	Complete a request by scheduling the ->complete_rq operation.
1317  **/
1318 void blk_mq_complete_request(struct request *rq)
1319 {
1320 	if (!blk_mq_complete_request_remote(rq))
1321 		rq->q->mq_ops->complete(rq);
1322 }
1323 EXPORT_SYMBOL(blk_mq_complete_request);
1324 
1325 /**
1326  * blk_mq_start_request - Start processing a request
1327  * @rq: Pointer to request to be started
1328  *
1329  * Function used by device drivers to notify the block layer that a request
1330  * is going to be processed now, so blk layer can do proper initializations
1331  * such as starting the timeout timer.
1332  */
1333 void blk_mq_start_request(struct request *rq)
1334 {
1335 	struct request_queue *q = rq->q;
1336 
1337 	trace_block_rq_issue(rq);
1338 
1339 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1340 	    !blk_rq_is_passthrough(rq)) {
1341 		rq->io_start_time_ns = blk_time_get_ns();
1342 		rq->stats_sectors = blk_rq_sectors(rq);
1343 		rq->rq_flags |= RQF_STATS;
1344 		rq_qos_issue(q, rq);
1345 	}
1346 
1347 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1348 
1349 	blk_add_timer(rq);
1350 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1351 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1352 
1353 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1354 		blk_integrity_prepare(rq);
1355 
1356 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1357 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1358 }
1359 EXPORT_SYMBOL(blk_mq_start_request);
1360 
1361 /*
1362  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1363  * queues. This is important for md arrays to benefit from merging
1364  * requests.
1365  */
1366 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1367 {
1368 	if (plug->multiple_queues)
1369 		return BLK_MAX_REQUEST_COUNT * 2;
1370 	return BLK_MAX_REQUEST_COUNT;
1371 }
1372 
1373 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1374 {
1375 	struct request *last = rq_list_peek(&plug->mq_list);
1376 
1377 	if (!plug->rq_count) {
1378 		trace_block_plug(rq->q);
1379 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1380 		   (!blk_queue_nomerges(rq->q) &&
1381 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1382 		blk_mq_flush_plug_list(plug, false);
1383 		last = NULL;
1384 		trace_block_plug(rq->q);
1385 	}
1386 
1387 	if (!plug->multiple_queues && last && last->q != rq->q)
1388 		plug->multiple_queues = true;
1389 	/*
1390 	 * Any request allocated from sched tags can't be issued to
1391 	 * ->queue_rqs() directly
1392 	 */
1393 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1394 		plug->has_elevator = true;
1395 	rq_list_add_tail(&plug->mq_list, rq);
1396 	plug->rq_count++;
1397 }
1398 
1399 /**
1400  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1401  * @rq:		request to insert
1402  * @at_head:    insert request at head or tail of queue
1403  *
1404  * Description:
1405  *    Insert a fully prepared request at the back of the I/O scheduler queue
1406  *    for execution.  Don't wait for completion.
1407  *
1408  * Note:
1409  *    This function will invoke @done directly if the queue is dead.
1410  */
1411 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1412 {
1413 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1414 
1415 	WARN_ON(irqs_disabled());
1416 	WARN_ON(!blk_rq_is_passthrough(rq));
1417 
1418 	blk_account_io_start(rq);
1419 
1420 	if (current->plug && !at_head) {
1421 		blk_add_rq_to_plug(current->plug, rq);
1422 		return;
1423 	}
1424 
1425 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1426 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1427 }
1428 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1429 
1430 struct blk_rq_wait {
1431 	struct completion done;
1432 	blk_status_t ret;
1433 };
1434 
1435 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1436 {
1437 	struct blk_rq_wait *wait = rq->end_io_data;
1438 
1439 	wait->ret = ret;
1440 	complete(&wait->done);
1441 	return RQ_END_IO_NONE;
1442 }
1443 
1444 bool blk_rq_is_poll(struct request *rq)
1445 {
1446 	if (!rq->mq_hctx)
1447 		return false;
1448 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1449 		return false;
1450 	return true;
1451 }
1452 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1453 
1454 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1455 {
1456 	do {
1457 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1458 		cond_resched();
1459 	} while (!completion_done(wait));
1460 }
1461 
1462 /**
1463  * blk_execute_rq - insert a request into queue for execution
1464  * @rq:		request to insert
1465  * @at_head:    insert request at head or tail of queue
1466  *
1467  * Description:
1468  *    Insert a fully prepared request at the back of the I/O scheduler queue
1469  *    for execution and wait for completion.
1470  * Return: The blk_status_t result provided to blk_mq_end_request().
1471  */
1472 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1473 {
1474 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1475 	struct blk_rq_wait wait = {
1476 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1477 	};
1478 
1479 	WARN_ON(irqs_disabled());
1480 	WARN_ON(!blk_rq_is_passthrough(rq));
1481 
1482 	rq->end_io_data = &wait;
1483 	rq->end_io = blk_end_sync_rq;
1484 
1485 	blk_account_io_start(rq);
1486 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1487 	blk_mq_run_hw_queue(hctx, false);
1488 
1489 	if (blk_rq_is_poll(rq))
1490 		blk_rq_poll_completion(rq, &wait.done);
1491 	else
1492 		blk_wait_io(&wait.done);
1493 
1494 	return wait.ret;
1495 }
1496 EXPORT_SYMBOL(blk_execute_rq);
1497 
1498 static void __blk_mq_requeue_request(struct request *rq)
1499 {
1500 	struct request_queue *q = rq->q;
1501 
1502 	blk_mq_put_driver_tag(rq);
1503 
1504 	trace_block_rq_requeue(rq);
1505 	rq_qos_requeue(q, rq);
1506 
1507 	if (blk_mq_request_started(rq)) {
1508 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1509 		rq->rq_flags &= ~RQF_TIMED_OUT;
1510 	}
1511 }
1512 
1513 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1514 {
1515 	struct request_queue *q = rq->q;
1516 	unsigned long flags;
1517 
1518 	__blk_mq_requeue_request(rq);
1519 
1520 	/* this request will be re-inserted to io scheduler queue */
1521 	blk_mq_sched_requeue_request(rq);
1522 
1523 	spin_lock_irqsave(&q->requeue_lock, flags);
1524 	list_add_tail(&rq->queuelist, &q->requeue_list);
1525 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1526 
1527 	if (kick_requeue_list)
1528 		blk_mq_kick_requeue_list(q);
1529 }
1530 EXPORT_SYMBOL(blk_mq_requeue_request);
1531 
1532 static void blk_mq_requeue_work(struct work_struct *work)
1533 {
1534 	struct request_queue *q =
1535 		container_of(work, struct request_queue, requeue_work.work);
1536 	LIST_HEAD(rq_list);
1537 	LIST_HEAD(flush_list);
1538 	struct request *rq;
1539 
1540 	spin_lock_irq(&q->requeue_lock);
1541 	list_splice_init(&q->requeue_list, &rq_list);
1542 	list_splice_init(&q->flush_list, &flush_list);
1543 	spin_unlock_irq(&q->requeue_lock);
1544 
1545 	while (!list_empty(&rq_list)) {
1546 		rq = list_entry(rq_list.next, struct request, queuelist);
1547 		/*
1548 		 * If RQF_DONTPREP ist set, the request has been started by the
1549 		 * driver already and might have driver-specific data allocated
1550 		 * already.  Insert it into the hctx dispatch list to avoid
1551 		 * block layer merges for the request.
1552 		 */
1553 		if (rq->rq_flags & RQF_DONTPREP) {
1554 			list_del_init(&rq->queuelist);
1555 			blk_mq_request_bypass_insert(rq, 0);
1556 		} else {
1557 			list_del_init(&rq->queuelist);
1558 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1559 		}
1560 	}
1561 
1562 	while (!list_empty(&flush_list)) {
1563 		rq = list_entry(flush_list.next, struct request, queuelist);
1564 		list_del_init(&rq->queuelist);
1565 		blk_mq_insert_request(rq, 0);
1566 	}
1567 
1568 	blk_mq_run_hw_queues(q, false);
1569 }
1570 
1571 void blk_mq_kick_requeue_list(struct request_queue *q)
1572 {
1573 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1574 }
1575 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1576 
1577 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1578 				    unsigned long msecs)
1579 {
1580 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1581 				    msecs_to_jiffies(msecs));
1582 }
1583 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1584 
1585 static bool blk_is_flush_data_rq(struct request *rq)
1586 {
1587 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1588 }
1589 
1590 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1591 {
1592 	/*
1593 	 * If we find a request that isn't idle we know the queue is busy
1594 	 * as it's checked in the iter.
1595 	 * Return false to stop the iteration.
1596 	 *
1597 	 * In case of queue quiesce, if one flush data request is completed,
1598 	 * don't count it as inflight given the flush sequence is suspended,
1599 	 * and the original flush data request is invisible to driver, just
1600 	 * like other pending requests because of quiesce
1601 	 */
1602 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1603 				blk_is_flush_data_rq(rq) &&
1604 				blk_mq_request_completed(rq))) {
1605 		bool *busy = priv;
1606 
1607 		*busy = true;
1608 		return false;
1609 	}
1610 
1611 	return true;
1612 }
1613 
1614 bool blk_mq_queue_inflight(struct request_queue *q)
1615 {
1616 	bool busy = false;
1617 
1618 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1619 	return busy;
1620 }
1621 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1622 
1623 static void blk_mq_rq_timed_out(struct request *req)
1624 {
1625 	req->rq_flags |= RQF_TIMED_OUT;
1626 	if (req->q->mq_ops->timeout) {
1627 		enum blk_eh_timer_return ret;
1628 
1629 		ret = req->q->mq_ops->timeout(req);
1630 		if (ret == BLK_EH_DONE)
1631 			return;
1632 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1633 	}
1634 
1635 	blk_add_timer(req);
1636 }
1637 
1638 struct blk_expired_data {
1639 	bool has_timedout_rq;
1640 	unsigned long next;
1641 	unsigned long timeout_start;
1642 };
1643 
1644 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1645 {
1646 	unsigned long deadline;
1647 
1648 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1649 		return false;
1650 	if (rq->rq_flags & RQF_TIMED_OUT)
1651 		return false;
1652 
1653 	deadline = READ_ONCE(rq->deadline);
1654 	if (time_after_eq(expired->timeout_start, deadline))
1655 		return true;
1656 
1657 	if (expired->next == 0)
1658 		expired->next = deadline;
1659 	else if (time_after(expired->next, deadline))
1660 		expired->next = deadline;
1661 	return false;
1662 }
1663 
1664 void blk_mq_put_rq_ref(struct request *rq)
1665 {
1666 	if (is_flush_rq(rq)) {
1667 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1668 			blk_mq_free_request(rq);
1669 	} else if (req_ref_put_and_test(rq)) {
1670 		__blk_mq_free_request(rq);
1671 	}
1672 }
1673 
1674 static bool blk_mq_check_expired(struct request *rq, void *priv)
1675 {
1676 	struct blk_expired_data *expired = priv;
1677 
1678 	/*
1679 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1680 	 * be reallocated underneath the timeout handler's processing, then
1681 	 * the expire check is reliable. If the request is not expired, then
1682 	 * it was completed and reallocated as a new request after returning
1683 	 * from blk_mq_check_expired().
1684 	 */
1685 	if (blk_mq_req_expired(rq, expired)) {
1686 		expired->has_timedout_rq = true;
1687 		return false;
1688 	}
1689 	return true;
1690 }
1691 
1692 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1693 {
1694 	struct blk_expired_data *expired = priv;
1695 
1696 	if (blk_mq_req_expired(rq, expired))
1697 		blk_mq_rq_timed_out(rq);
1698 	return true;
1699 }
1700 
1701 static void blk_mq_timeout_work(struct work_struct *work)
1702 {
1703 	struct request_queue *q =
1704 		container_of(work, struct request_queue, timeout_work);
1705 	struct blk_expired_data expired = {
1706 		.timeout_start = jiffies,
1707 	};
1708 	struct blk_mq_hw_ctx *hctx;
1709 	unsigned long i;
1710 
1711 	/* A deadlock might occur if a request is stuck requiring a
1712 	 * timeout at the same time a queue freeze is waiting
1713 	 * completion, since the timeout code would not be able to
1714 	 * acquire the queue reference here.
1715 	 *
1716 	 * That's why we don't use blk_queue_enter here; instead, we use
1717 	 * percpu_ref_tryget directly, because we need to be able to
1718 	 * obtain a reference even in the short window between the queue
1719 	 * starting to freeze, by dropping the first reference in
1720 	 * blk_freeze_queue_start, and the moment the last request is
1721 	 * consumed, marked by the instant q_usage_counter reaches
1722 	 * zero.
1723 	 */
1724 	if (!percpu_ref_tryget(&q->q_usage_counter))
1725 		return;
1726 
1727 	/* check if there is any timed-out request */
1728 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1729 	if (expired.has_timedout_rq) {
1730 		/*
1731 		 * Before walking tags, we must ensure any submit started
1732 		 * before the current time has finished. Since the submit
1733 		 * uses srcu or rcu, wait for a synchronization point to
1734 		 * ensure all running submits have finished
1735 		 */
1736 		blk_mq_wait_quiesce_done(q->tag_set);
1737 
1738 		expired.next = 0;
1739 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1740 	}
1741 
1742 	if (expired.next != 0) {
1743 		mod_timer(&q->timeout, expired.next);
1744 	} else {
1745 		/*
1746 		 * Request timeouts are handled as a forward rolling timer. If
1747 		 * we end up here it means that no requests are pending and
1748 		 * also that no request has been pending for a while. Mark
1749 		 * each hctx as idle.
1750 		 */
1751 		queue_for_each_hw_ctx(q, hctx, i) {
1752 			/* the hctx may be unmapped, so check it here */
1753 			if (blk_mq_hw_queue_mapped(hctx))
1754 				blk_mq_tag_idle(hctx);
1755 		}
1756 	}
1757 	blk_queue_exit(q);
1758 }
1759 
1760 struct flush_busy_ctx_data {
1761 	struct blk_mq_hw_ctx *hctx;
1762 	struct list_head *list;
1763 };
1764 
1765 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1766 {
1767 	struct flush_busy_ctx_data *flush_data = data;
1768 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1769 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1770 	enum hctx_type type = hctx->type;
1771 
1772 	spin_lock(&ctx->lock);
1773 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1774 	sbitmap_clear_bit(sb, bitnr);
1775 	spin_unlock(&ctx->lock);
1776 	return true;
1777 }
1778 
1779 /*
1780  * Process software queues that have been marked busy, splicing them
1781  * to the for-dispatch
1782  */
1783 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1784 {
1785 	struct flush_busy_ctx_data data = {
1786 		.hctx = hctx,
1787 		.list = list,
1788 	};
1789 
1790 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1791 }
1792 
1793 struct dispatch_rq_data {
1794 	struct blk_mq_hw_ctx *hctx;
1795 	struct request *rq;
1796 };
1797 
1798 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1799 		void *data)
1800 {
1801 	struct dispatch_rq_data *dispatch_data = data;
1802 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1803 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1804 	enum hctx_type type = hctx->type;
1805 
1806 	spin_lock(&ctx->lock);
1807 	if (!list_empty(&ctx->rq_lists[type])) {
1808 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1809 		list_del_init(&dispatch_data->rq->queuelist);
1810 		if (list_empty(&ctx->rq_lists[type]))
1811 			sbitmap_clear_bit(sb, bitnr);
1812 	}
1813 	spin_unlock(&ctx->lock);
1814 
1815 	return !dispatch_data->rq;
1816 }
1817 
1818 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1819 					struct blk_mq_ctx *start)
1820 {
1821 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1822 	struct dispatch_rq_data data = {
1823 		.hctx = hctx,
1824 		.rq   = NULL,
1825 	};
1826 
1827 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1828 			       dispatch_rq_from_ctx, &data);
1829 
1830 	return data.rq;
1831 }
1832 
1833 bool __blk_mq_alloc_driver_tag(struct request *rq)
1834 {
1835 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1836 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1837 	int tag;
1838 
1839 	blk_mq_tag_busy(rq->mq_hctx);
1840 
1841 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1842 		bt = &rq->mq_hctx->tags->breserved_tags;
1843 		tag_offset = 0;
1844 	} else {
1845 		if (!hctx_may_queue(rq->mq_hctx, bt))
1846 			return false;
1847 	}
1848 
1849 	tag = __sbitmap_queue_get(bt);
1850 	if (tag == BLK_MQ_NO_TAG)
1851 		return false;
1852 
1853 	rq->tag = tag + tag_offset;
1854 	blk_mq_inc_active_requests(rq->mq_hctx);
1855 	return true;
1856 }
1857 
1858 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1859 				int flags, void *key)
1860 {
1861 	struct blk_mq_hw_ctx *hctx;
1862 
1863 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1864 
1865 	spin_lock(&hctx->dispatch_wait_lock);
1866 	if (!list_empty(&wait->entry)) {
1867 		struct sbitmap_queue *sbq;
1868 
1869 		list_del_init(&wait->entry);
1870 		sbq = &hctx->tags->bitmap_tags;
1871 		atomic_dec(&sbq->ws_active);
1872 	}
1873 	spin_unlock(&hctx->dispatch_wait_lock);
1874 
1875 	blk_mq_run_hw_queue(hctx, true);
1876 	return 1;
1877 }
1878 
1879 /*
1880  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1881  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1882  * restart. For both cases, take care to check the condition again after
1883  * marking us as waiting.
1884  */
1885 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1886 				 struct request *rq)
1887 {
1888 	struct sbitmap_queue *sbq;
1889 	struct wait_queue_head *wq;
1890 	wait_queue_entry_t *wait;
1891 	bool ret;
1892 
1893 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1894 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1895 		blk_mq_sched_mark_restart_hctx(hctx);
1896 
1897 		/*
1898 		 * It's possible that a tag was freed in the window between the
1899 		 * allocation failure and adding the hardware queue to the wait
1900 		 * queue.
1901 		 *
1902 		 * Don't clear RESTART here, someone else could have set it.
1903 		 * At most this will cost an extra queue run.
1904 		 */
1905 		return blk_mq_get_driver_tag(rq);
1906 	}
1907 
1908 	wait = &hctx->dispatch_wait;
1909 	if (!list_empty_careful(&wait->entry))
1910 		return false;
1911 
1912 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1913 		sbq = &hctx->tags->breserved_tags;
1914 	else
1915 		sbq = &hctx->tags->bitmap_tags;
1916 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1917 
1918 	spin_lock_irq(&wq->lock);
1919 	spin_lock(&hctx->dispatch_wait_lock);
1920 	if (!list_empty(&wait->entry)) {
1921 		spin_unlock(&hctx->dispatch_wait_lock);
1922 		spin_unlock_irq(&wq->lock);
1923 		return false;
1924 	}
1925 
1926 	atomic_inc(&sbq->ws_active);
1927 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1928 	__add_wait_queue(wq, wait);
1929 
1930 	/*
1931 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1932 	 * not imply barrier in case of failure.
1933 	 *
1934 	 * Order adding us to wait queue and allocating driver tag.
1935 	 *
1936 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1937 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1938 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1939 	 *
1940 	 * Otherwise, re-order of adding wait queue and getting driver tag
1941 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1942 	 * the waitqueue_active() may not observe us in wait queue.
1943 	 */
1944 	smp_mb();
1945 
1946 	/*
1947 	 * It's possible that a tag was freed in the window between the
1948 	 * allocation failure and adding the hardware queue to the wait
1949 	 * queue.
1950 	 */
1951 	ret = blk_mq_get_driver_tag(rq);
1952 	if (!ret) {
1953 		spin_unlock(&hctx->dispatch_wait_lock);
1954 		spin_unlock_irq(&wq->lock);
1955 		return false;
1956 	}
1957 
1958 	/*
1959 	 * We got a tag, remove ourselves from the wait queue to ensure
1960 	 * someone else gets the wakeup.
1961 	 */
1962 	list_del_init(&wait->entry);
1963 	atomic_dec(&sbq->ws_active);
1964 	spin_unlock(&hctx->dispatch_wait_lock);
1965 	spin_unlock_irq(&wq->lock);
1966 
1967 	return true;
1968 }
1969 
1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1971 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1972 /*
1973  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1974  * - EWMA is one simple way to compute running average value
1975  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1976  * - take 4 as factor for avoiding to get too small(0) result, and this
1977  *   factor doesn't matter because EWMA decreases exponentially
1978  */
1979 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1980 {
1981 	unsigned int ewma;
1982 
1983 	ewma = hctx->dispatch_busy;
1984 
1985 	if (!ewma && !busy)
1986 		return;
1987 
1988 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1989 	if (busy)
1990 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1991 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1992 
1993 	hctx->dispatch_busy = ewma;
1994 }
1995 
1996 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1997 
1998 static void blk_mq_handle_dev_resource(struct request *rq,
1999 				       struct list_head *list)
2000 {
2001 	list_add(&rq->queuelist, list);
2002 	__blk_mq_requeue_request(rq);
2003 }
2004 
2005 enum prep_dispatch {
2006 	PREP_DISPATCH_OK,
2007 	PREP_DISPATCH_NO_TAG,
2008 	PREP_DISPATCH_NO_BUDGET,
2009 };
2010 
2011 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2012 						  bool need_budget)
2013 {
2014 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2015 	int budget_token = -1;
2016 
2017 	if (need_budget) {
2018 		budget_token = blk_mq_get_dispatch_budget(rq->q);
2019 		if (budget_token < 0) {
2020 			blk_mq_put_driver_tag(rq);
2021 			return PREP_DISPATCH_NO_BUDGET;
2022 		}
2023 		blk_mq_set_rq_budget_token(rq, budget_token);
2024 	}
2025 
2026 	if (!blk_mq_get_driver_tag(rq)) {
2027 		/*
2028 		 * The initial allocation attempt failed, so we need to
2029 		 * rerun the hardware queue when a tag is freed. The
2030 		 * waitqueue takes care of that. If the queue is run
2031 		 * before we add this entry back on the dispatch list,
2032 		 * we'll re-run it below.
2033 		 */
2034 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2035 			/*
2036 			 * All budgets not got from this function will be put
2037 			 * together during handling partial dispatch
2038 			 */
2039 			if (need_budget)
2040 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2041 			return PREP_DISPATCH_NO_TAG;
2042 		}
2043 	}
2044 
2045 	return PREP_DISPATCH_OK;
2046 }
2047 
2048 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2049 static void blk_mq_release_budgets(struct request_queue *q,
2050 		struct list_head *list)
2051 {
2052 	struct request *rq;
2053 
2054 	list_for_each_entry(rq, list, queuelist) {
2055 		int budget_token = blk_mq_get_rq_budget_token(rq);
2056 
2057 		if (budget_token >= 0)
2058 			blk_mq_put_dispatch_budget(q, budget_token);
2059 	}
2060 }
2061 
2062 /*
2063  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2064  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2065  * details)
2066  * Attention, we should explicitly call this in unusual cases:
2067  *  1) did not queue everything initially scheduled to queue
2068  *  2) the last attempt to queue a request failed
2069  */
2070 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2071 			      bool from_schedule)
2072 {
2073 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2074 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2075 		hctx->queue->mq_ops->commit_rqs(hctx);
2076 	}
2077 }
2078 
2079 /*
2080  * Returns true if we did some work AND can potentially do more.
2081  */
2082 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2083 			     unsigned int nr_budgets)
2084 {
2085 	enum prep_dispatch prep;
2086 	struct request_queue *q = hctx->queue;
2087 	struct request *rq;
2088 	int queued;
2089 	blk_status_t ret = BLK_STS_OK;
2090 	bool needs_resource = false;
2091 
2092 	if (list_empty(list))
2093 		return false;
2094 
2095 	/*
2096 	 * Now process all the entries, sending them to the driver.
2097 	 */
2098 	queued = 0;
2099 	do {
2100 		struct blk_mq_queue_data bd;
2101 
2102 		rq = list_first_entry(list, struct request, queuelist);
2103 
2104 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2105 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2106 		if (prep != PREP_DISPATCH_OK)
2107 			break;
2108 
2109 		list_del_init(&rq->queuelist);
2110 
2111 		bd.rq = rq;
2112 		bd.last = list_empty(list);
2113 
2114 		/*
2115 		 * once the request is queued to lld, no need to cover the
2116 		 * budget any more
2117 		 */
2118 		if (nr_budgets)
2119 			nr_budgets--;
2120 		ret = q->mq_ops->queue_rq(hctx, &bd);
2121 		switch (ret) {
2122 		case BLK_STS_OK:
2123 			queued++;
2124 			break;
2125 		case BLK_STS_RESOURCE:
2126 			needs_resource = true;
2127 			fallthrough;
2128 		case BLK_STS_DEV_RESOURCE:
2129 			blk_mq_handle_dev_resource(rq, list);
2130 			goto out;
2131 		default:
2132 			blk_mq_end_request(rq, ret);
2133 		}
2134 	} while (!list_empty(list));
2135 out:
2136 	/* If we didn't flush the entire list, we could have told the driver
2137 	 * there was more coming, but that turned out to be a lie.
2138 	 */
2139 	if (!list_empty(list) || ret != BLK_STS_OK)
2140 		blk_mq_commit_rqs(hctx, queued, false);
2141 
2142 	/*
2143 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2144 	 * that is where we will continue on next queue run.
2145 	 */
2146 	if (!list_empty(list)) {
2147 		bool needs_restart;
2148 		/* For non-shared tags, the RESTART check will suffice */
2149 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2150 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2151 			blk_mq_is_shared_tags(hctx->flags));
2152 
2153 		if (nr_budgets)
2154 			blk_mq_release_budgets(q, list);
2155 
2156 		spin_lock(&hctx->lock);
2157 		list_splice_tail_init(list, &hctx->dispatch);
2158 		spin_unlock(&hctx->lock);
2159 
2160 		/*
2161 		 * Order adding requests to hctx->dispatch and checking
2162 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2163 		 * in blk_mq_sched_restart(). Avoid restart code path to
2164 		 * miss the new added requests to hctx->dispatch, meantime
2165 		 * SCHED_RESTART is observed here.
2166 		 */
2167 		smp_mb();
2168 
2169 		/*
2170 		 * If SCHED_RESTART was set by the caller of this function and
2171 		 * it is no longer set that means that it was cleared by another
2172 		 * thread and hence that a queue rerun is needed.
2173 		 *
2174 		 * If 'no_tag' is set, that means that we failed getting
2175 		 * a driver tag with an I/O scheduler attached. If our dispatch
2176 		 * waitqueue is no longer active, ensure that we run the queue
2177 		 * AFTER adding our entries back to the list.
2178 		 *
2179 		 * If no I/O scheduler has been configured it is possible that
2180 		 * the hardware queue got stopped and restarted before requests
2181 		 * were pushed back onto the dispatch list. Rerun the queue to
2182 		 * avoid starvation. Notes:
2183 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2184 		 *   been stopped before rerunning a queue.
2185 		 * - Some but not all block drivers stop a queue before
2186 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2187 		 *   and dm-rq.
2188 		 *
2189 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2190 		 * bit is set, run queue after a delay to avoid IO stalls
2191 		 * that could otherwise occur if the queue is idle.  We'll do
2192 		 * similar if we couldn't get budget or couldn't lock a zone
2193 		 * and SCHED_RESTART is set.
2194 		 */
2195 		needs_restart = blk_mq_sched_needs_restart(hctx);
2196 		if (prep == PREP_DISPATCH_NO_BUDGET)
2197 			needs_resource = true;
2198 		if (!needs_restart ||
2199 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2200 			blk_mq_run_hw_queue(hctx, true);
2201 		else if (needs_resource)
2202 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2203 
2204 		blk_mq_update_dispatch_busy(hctx, true);
2205 		return false;
2206 	}
2207 
2208 	blk_mq_update_dispatch_busy(hctx, false);
2209 	return true;
2210 }
2211 
2212 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2213 {
2214 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2215 
2216 	if (cpu >= nr_cpu_ids)
2217 		cpu = cpumask_first(hctx->cpumask);
2218 	return cpu;
2219 }
2220 
2221 /*
2222  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2223  * it for speeding up the check
2224  */
2225 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2226 {
2227         return hctx->next_cpu >= nr_cpu_ids;
2228 }
2229 
2230 /*
2231  * It'd be great if the workqueue API had a way to pass
2232  * in a mask and had some smarts for more clever placement.
2233  * For now we just round-robin here, switching for every
2234  * BLK_MQ_CPU_WORK_BATCH queued items.
2235  */
2236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2237 {
2238 	bool tried = false;
2239 	int next_cpu = hctx->next_cpu;
2240 
2241 	/* Switch to unbound if no allowable CPUs in this hctx */
2242 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2243 		return WORK_CPU_UNBOUND;
2244 
2245 	if (--hctx->next_cpu_batch <= 0) {
2246 select_cpu:
2247 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2248 				cpu_online_mask);
2249 		if (next_cpu >= nr_cpu_ids)
2250 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2251 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2252 	}
2253 
2254 	/*
2255 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2256 	 * and it should only happen in the path of handling CPU DEAD.
2257 	 */
2258 	if (!cpu_online(next_cpu)) {
2259 		if (!tried) {
2260 			tried = true;
2261 			goto select_cpu;
2262 		}
2263 
2264 		/*
2265 		 * Make sure to re-select CPU next time once after CPUs
2266 		 * in hctx->cpumask become online again.
2267 		 */
2268 		hctx->next_cpu = next_cpu;
2269 		hctx->next_cpu_batch = 1;
2270 		return WORK_CPU_UNBOUND;
2271 	}
2272 
2273 	hctx->next_cpu = next_cpu;
2274 	return next_cpu;
2275 }
2276 
2277 /**
2278  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2279  * @hctx: Pointer to the hardware queue to run.
2280  * @msecs: Milliseconds of delay to wait before running the queue.
2281  *
2282  * Run a hardware queue asynchronously with a delay of @msecs.
2283  */
2284 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2285 {
2286 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2287 		return;
2288 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2289 				    msecs_to_jiffies(msecs));
2290 }
2291 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2292 
2293 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2294 {
2295 	bool need_run;
2296 
2297 	/*
2298 	 * When queue is quiesced, we may be switching io scheduler, or
2299 	 * updating nr_hw_queues, or other things, and we can't run queue
2300 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2301 	 *
2302 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2303 	 * quiesced.
2304 	 */
2305 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2306 		need_run = !blk_queue_quiesced(hctx->queue) &&
2307 		blk_mq_hctx_has_pending(hctx));
2308 	return need_run;
2309 }
2310 
2311 /**
2312  * blk_mq_run_hw_queue - Start to run a hardware queue.
2313  * @hctx: Pointer to the hardware queue to run.
2314  * @async: If we want to run the queue asynchronously.
2315  *
2316  * Check if the request queue is not in a quiesced state and if there are
2317  * pending requests to be sent. If this is true, run the queue to send requests
2318  * to hardware.
2319  */
2320 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2321 {
2322 	bool need_run;
2323 
2324 	/*
2325 	 * We can't run the queue inline with interrupts disabled.
2326 	 */
2327 	WARN_ON_ONCE(!async && in_interrupt());
2328 
2329 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2330 
2331 	need_run = blk_mq_hw_queue_need_run(hctx);
2332 	if (!need_run) {
2333 		unsigned long flags;
2334 
2335 		/*
2336 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2337 		 * if hw queue is quiesced locklessly above, we need the use
2338 		 * ->queue_lock to make sure we see the up-to-date status to
2339 		 * not miss rerunning the hw queue.
2340 		 */
2341 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2342 		need_run = blk_mq_hw_queue_need_run(hctx);
2343 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2344 
2345 		if (!need_run)
2346 			return;
2347 	}
2348 
2349 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2350 		blk_mq_delay_run_hw_queue(hctx, 0);
2351 		return;
2352 	}
2353 
2354 	blk_mq_run_dispatch_ops(hctx->queue,
2355 				blk_mq_sched_dispatch_requests(hctx));
2356 }
2357 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2358 
2359 /*
2360  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2361  * scheduler.
2362  */
2363 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2364 {
2365 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2366 	/*
2367 	 * If the IO scheduler does not respect hardware queues when
2368 	 * dispatching, we just don't bother with multiple HW queues and
2369 	 * dispatch from hctx for the current CPU since running multiple queues
2370 	 * just causes lock contention inside the scheduler and pointless cache
2371 	 * bouncing.
2372 	 */
2373 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2374 
2375 	if (!blk_mq_hctx_stopped(hctx))
2376 		return hctx;
2377 	return NULL;
2378 }
2379 
2380 /**
2381  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2382  * @q: Pointer to the request queue to run.
2383  * @async: If we want to run the queue asynchronously.
2384  */
2385 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2386 {
2387 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2388 	unsigned long i;
2389 
2390 	sq_hctx = NULL;
2391 	if (blk_queue_sq_sched(q))
2392 		sq_hctx = blk_mq_get_sq_hctx(q);
2393 	queue_for_each_hw_ctx(q, hctx, i) {
2394 		if (blk_mq_hctx_stopped(hctx))
2395 			continue;
2396 		/*
2397 		 * Dispatch from this hctx either if there's no hctx preferred
2398 		 * by IO scheduler or if it has requests that bypass the
2399 		 * scheduler.
2400 		 */
2401 		if (!sq_hctx || sq_hctx == hctx ||
2402 		    !list_empty_careful(&hctx->dispatch))
2403 			blk_mq_run_hw_queue(hctx, async);
2404 	}
2405 }
2406 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2407 
2408 /**
2409  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2410  * @q: Pointer to the request queue to run.
2411  * @msecs: Milliseconds of delay to wait before running the queues.
2412  */
2413 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2414 {
2415 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2416 	unsigned long i;
2417 
2418 	sq_hctx = NULL;
2419 	if (blk_queue_sq_sched(q))
2420 		sq_hctx = blk_mq_get_sq_hctx(q);
2421 	queue_for_each_hw_ctx(q, hctx, i) {
2422 		if (blk_mq_hctx_stopped(hctx))
2423 			continue;
2424 		/*
2425 		 * If there is already a run_work pending, leave the
2426 		 * pending delay untouched. Otherwise, a hctx can stall
2427 		 * if another hctx is re-delaying the other's work
2428 		 * before the work executes.
2429 		 */
2430 		if (delayed_work_pending(&hctx->run_work))
2431 			continue;
2432 		/*
2433 		 * Dispatch from this hctx either if there's no hctx preferred
2434 		 * by IO scheduler or if it has requests that bypass the
2435 		 * scheduler.
2436 		 */
2437 		if (!sq_hctx || sq_hctx == hctx ||
2438 		    !list_empty_careful(&hctx->dispatch))
2439 			blk_mq_delay_run_hw_queue(hctx, msecs);
2440 	}
2441 }
2442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2443 
2444 /*
2445  * This function is often used for pausing .queue_rq() by driver when
2446  * there isn't enough resource or some conditions aren't satisfied, and
2447  * BLK_STS_RESOURCE is usually returned.
2448  *
2449  * We do not guarantee that dispatch can be drained or blocked
2450  * after blk_mq_stop_hw_queue() returns. Please use
2451  * blk_mq_quiesce_queue() for that requirement.
2452  */
2453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2454 {
2455 	cancel_delayed_work(&hctx->run_work);
2456 
2457 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2458 }
2459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2460 
2461 /*
2462  * This function is often used for pausing .queue_rq() by driver when
2463  * there isn't enough resource or some conditions aren't satisfied, and
2464  * BLK_STS_RESOURCE is usually returned.
2465  *
2466  * We do not guarantee that dispatch can be drained or blocked
2467  * after blk_mq_stop_hw_queues() returns. Please use
2468  * blk_mq_quiesce_queue() for that requirement.
2469  */
2470 void blk_mq_stop_hw_queues(struct request_queue *q)
2471 {
2472 	struct blk_mq_hw_ctx *hctx;
2473 	unsigned long i;
2474 
2475 	queue_for_each_hw_ctx(q, hctx, i)
2476 		blk_mq_stop_hw_queue(hctx);
2477 }
2478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2479 
2480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2481 {
2482 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2483 
2484 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2485 }
2486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2487 
2488 void blk_mq_start_hw_queues(struct request_queue *q)
2489 {
2490 	struct blk_mq_hw_ctx *hctx;
2491 	unsigned long i;
2492 
2493 	queue_for_each_hw_ctx(q, hctx, i)
2494 		blk_mq_start_hw_queue(hctx);
2495 }
2496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2497 
2498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2499 {
2500 	if (!blk_mq_hctx_stopped(hctx))
2501 		return;
2502 
2503 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2504 	/*
2505 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2506 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2507 	 * list in the subsequent routine.
2508 	 */
2509 	smp_mb__after_atomic();
2510 	blk_mq_run_hw_queue(hctx, async);
2511 }
2512 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2513 
2514 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2515 {
2516 	struct blk_mq_hw_ctx *hctx;
2517 	unsigned long i;
2518 
2519 	queue_for_each_hw_ctx(q, hctx, i)
2520 		blk_mq_start_stopped_hw_queue(hctx, async ||
2521 					(hctx->flags & BLK_MQ_F_BLOCKING));
2522 }
2523 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2524 
2525 static void blk_mq_run_work_fn(struct work_struct *work)
2526 {
2527 	struct blk_mq_hw_ctx *hctx =
2528 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2529 
2530 	blk_mq_run_dispatch_ops(hctx->queue,
2531 				blk_mq_sched_dispatch_requests(hctx));
2532 }
2533 
2534 /**
2535  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2536  * @rq: Pointer to request to be inserted.
2537  * @flags: BLK_MQ_INSERT_*
2538  *
2539  * Should only be used carefully, when the caller knows we want to
2540  * bypass a potential IO scheduler on the target device.
2541  */
2542 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2543 {
2544 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2545 
2546 	spin_lock(&hctx->lock);
2547 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 		list_add(&rq->queuelist, &hctx->dispatch);
2549 	else
2550 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2551 	spin_unlock(&hctx->lock);
2552 }
2553 
2554 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2555 		struct blk_mq_ctx *ctx, struct list_head *list,
2556 		bool run_queue_async)
2557 {
2558 	struct request *rq;
2559 	enum hctx_type type = hctx->type;
2560 
2561 	/*
2562 	 * Try to issue requests directly if the hw queue isn't busy to save an
2563 	 * extra enqueue & dequeue to the sw queue.
2564 	 */
2565 	if (!hctx->dispatch_busy && !run_queue_async) {
2566 		blk_mq_run_dispatch_ops(hctx->queue,
2567 			blk_mq_try_issue_list_directly(hctx, list));
2568 		if (list_empty(list))
2569 			goto out;
2570 	}
2571 
2572 	/*
2573 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2574 	 * offline now
2575 	 */
2576 	list_for_each_entry(rq, list, queuelist) {
2577 		BUG_ON(rq->mq_ctx != ctx);
2578 		trace_block_rq_insert(rq);
2579 		if (rq->cmd_flags & REQ_NOWAIT)
2580 			run_queue_async = true;
2581 	}
2582 
2583 	spin_lock(&ctx->lock);
2584 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2585 	blk_mq_hctx_mark_pending(hctx, ctx);
2586 	spin_unlock(&ctx->lock);
2587 out:
2588 	blk_mq_run_hw_queue(hctx, run_queue_async);
2589 }
2590 
2591 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2592 {
2593 	struct request_queue *q = rq->q;
2594 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2595 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2596 
2597 	if (blk_rq_is_passthrough(rq)) {
2598 		/*
2599 		 * Passthrough request have to be added to hctx->dispatch
2600 		 * directly.  The device may be in a situation where it can't
2601 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2602 		 * them, which gets them added to hctx->dispatch.
2603 		 *
2604 		 * If a passthrough request is required to unblock the queues,
2605 		 * and it is added to the scheduler queue, there is no chance to
2606 		 * dispatch it given we prioritize requests in hctx->dispatch.
2607 		 */
2608 		blk_mq_request_bypass_insert(rq, flags);
2609 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2610 		/*
2611 		 * Firstly normal IO request is inserted to scheduler queue or
2612 		 * sw queue, meantime we add flush request to dispatch queue(
2613 		 * hctx->dispatch) directly and there is at most one in-flight
2614 		 * flush request for each hw queue, so it doesn't matter to add
2615 		 * flush request to tail or front of the dispatch queue.
2616 		 *
2617 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2618 		 * command, and queueing it will fail when there is any
2619 		 * in-flight normal IO request(NCQ command). When adding flush
2620 		 * rq to the front of hctx->dispatch, it is easier to introduce
2621 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2622 		 * compared with adding to the tail of dispatch queue, then
2623 		 * chance of flush merge is increased, and less flush requests
2624 		 * will be issued to controller. It is observed that ~10% time
2625 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2626 		 * drive when adding flush rq to the front of hctx->dispatch.
2627 		 *
2628 		 * Simply queue flush rq to the front of hctx->dispatch so that
2629 		 * intensive flush workloads can benefit in case of NCQ HW.
2630 		 */
2631 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2632 	} else if (q->elevator) {
2633 		LIST_HEAD(list);
2634 
2635 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2636 
2637 		list_add(&rq->queuelist, &list);
2638 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2639 	} else {
2640 		trace_block_rq_insert(rq);
2641 
2642 		spin_lock(&ctx->lock);
2643 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2644 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2645 		else
2646 			list_add_tail(&rq->queuelist,
2647 				      &ctx->rq_lists[hctx->type]);
2648 		blk_mq_hctx_mark_pending(hctx, ctx);
2649 		spin_unlock(&ctx->lock);
2650 	}
2651 }
2652 
2653 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2654 		unsigned int nr_segs)
2655 {
2656 	int err;
2657 
2658 	if (bio->bi_opf & REQ_RAHEAD)
2659 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2660 
2661 	rq->__sector = bio->bi_iter.bi_sector;
2662 	blk_rq_bio_prep(rq, bio, nr_segs);
2663 	if (bio_integrity(bio))
2664 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2665 								      bio);
2666 
2667 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2668 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2669 	WARN_ON_ONCE(err);
2670 
2671 	blk_account_io_start(rq);
2672 }
2673 
2674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2675 					    struct request *rq, bool last)
2676 {
2677 	struct request_queue *q = rq->q;
2678 	struct blk_mq_queue_data bd = {
2679 		.rq = rq,
2680 		.last = last,
2681 	};
2682 	blk_status_t ret;
2683 
2684 	/*
2685 	 * For OK queue, we are done. For error, caller may kill it.
2686 	 * Any other error (busy), just add it to our list as we
2687 	 * previously would have done.
2688 	 */
2689 	ret = q->mq_ops->queue_rq(hctx, &bd);
2690 	switch (ret) {
2691 	case BLK_STS_OK:
2692 		blk_mq_update_dispatch_busy(hctx, false);
2693 		break;
2694 	case BLK_STS_RESOURCE:
2695 	case BLK_STS_DEV_RESOURCE:
2696 		blk_mq_update_dispatch_busy(hctx, true);
2697 		__blk_mq_requeue_request(rq);
2698 		break;
2699 	default:
2700 		blk_mq_update_dispatch_busy(hctx, false);
2701 		break;
2702 	}
2703 
2704 	return ret;
2705 }
2706 
2707 static bool blk_mq_get_budget_and_tag(struct request *rq)
2708 {
2709 	int budget_token;
2710 
2711 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2712 	if (budget_token < 0)
2713 		return false;
2714 	blk_mq_set_rq_budget_token(rq, budget_token);
2715 	if (!blk_mq_get_driver_tag(rq)) {
2716 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2717 		return false;
2718 	}
2719 	return true;
2720 }
2721 
2722 /**
2723  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2724  * @hctx: Pointer of the associated hardware queue.
2725  * @rq: Pointer to request to be sent.
2726  *
2727  * If the device has enough resources to accept a new request now, send the
2728  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2729  * we can try send it another time in the future. Requests inserted at this
2730  * queue have higher priority.
2731  */
2732 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2733 		struct request *rq)
2734 {
2735 	blk_status_t ret;
2736 
2737 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2738 		blk_mq_insert_request(rq, 0);
2739 		blk_mq_run_hw_queue(hctx, false);
2740 		return;
2741 	}
2742 
2743 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2744 		blk_mq_insert_request(rq, 0);
2745 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2746 		return;
2747 	}
2748 
2749 	ret = __blk_mq_issue_directly(hctx, rq, true);
2750 	switch (ret) {
2751 	case BLK_STS_OK:
2752 		break;
2753 	case BLK_STS_RESOURCE:
2754 	case BLK_STS_DEV_RESOURCE:
2755 		blk_mq_request_bypass_insert(rq, 0);
2756 		blk_mq_run_hw_queue(hctx, false);
2757 		break;
2758 	default:
2759 		blk_mq_end_request(rq, ret);
2760 		break;
2761 	}
2762 }
2763 
2764 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2765 {
2766 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2767 
2768 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2769 		blk_mq_insert_request(rq, 0);
2770 		blk_mq_run_hw_queue(hctx, false);
2771 		return BLK_STS_OK;
2772 	}
2773 
2774 	if (!blk_mq_get_budget_and_tag(rq))
2775 		return BLK_STS_RESOURCE;
2776 	return __blk_mq_issue_directly(hctx, rq, last);
2777 }
2778 
2779 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2780 {
2781 	struct blk_mq_hw_ctx *hctx = NULL;
2782 	struct request *rq;
2783 	int queued = 0;
2784 	blk_status_t ret = BLK_STS_OK;
2785 
2786 	while ((rq = rq_list_pop(&plug->mq_list))) {
2787 		bool last = rq_list_empty(&plug->mq_list);
2788 
2789 		if (hctx != rq->mq_hctx) {
2790 			if (hctx) {
2791 				blk_mq_commit_rqs(hctx, queued, false);
2792 				queued = 0;
2793 			}
2794 			hctx = rq->mq_hctx;
2795 		}
2796 
2797 		ret = blk_mq_request_issue_directly(rq, last);
2798 		switch (ret) {
2799 		case BLK_STS_OK:
2800 			queued++;
2801 			break;
2802 		case BLK_STS_RESOURCE:
2803 		case BLK_STS_DEV_RESOURCE:
2804 			blk_mq_request_bypass_insert(rq, 0);
2805 			blk_mq_run_hw_queue(hctx, false);
2806 			goto out;
2807 		default:
2808 			blk_mq_end_request(rq, ret);
2809 			break;
2810 		}
2811 	}
2812 
2813 out:
2814 	if (ret != BLK_STS_OK)
2815 		blk_mq_commit_rqs(hctx, queued, false);
2816 }
2817 
2818 static void __blk_mq_flush_plug_list(struct request_queue *q,
2819 				     struct blk_plug *plug)
2820 {
2821 	if (blk_queue_quiesced(q))
2822 		return;
2823 	q->mq_ops->queue_rqs(&plug->mq_list);
2824 }
2825 
2826 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2827 {
2828 	struct blk_mq_hw_ctx *this_hctx = NULL;
2829 	struct blk_mq_ctx *this_ctx = NULL;
2830 	struct rq_list requeue_list = {};
2831 	unsigned int depth = 0;
2832 	bool is_passthrough = false;
2833 	LIST_HEAD(list);
2834 
2835 	do {
2836 		struct request *rq = rq_list_pop(&plug->mq_list);
2837 
2838 		if (!this_hctx) {
2839 			this_hctx = rq->mq_hctx;
2840 			this_ctx = rq->mq_ctx;
2841 			is_passthrough = blk_rq_is_passthrough(rq);
2842 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2843 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2844 			rq_list_add_tail(&requeue_list, rq);
2845 			continue;
2846 		}
2847 		list_add_tail(&rq->queuelist, &list);
2848 		depth++;
2849 	} while (!rq_list_empty(&plug->mq_list));
2850 
2851 	plug->mq_list = requeue_list;
2852 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2853 
2854 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2855 	/* passthrough requests should never be issued to the I/O scheduler */
2856 	if (is_passthrough) {
2857 		spin_lock(&this_hctx->lock);
2858 		list_splice_tail_init(&list, &this_hctx->dispatch);
2859 		spin_unlock(&this_hctx->lock);
2860 		blk_mq_run_hw_queue(this_hctx, from_sched);
2861 	} else if (this_hctx->queue->elevator) {
2862 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2863 				&list, 0);
2864 		blk_mq_run_hw_queue(this_hctx, from_sched);
2865 	} else {
2866 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2867 	}
2868 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2869 }
2870 
2871 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2872 {
2873 	struct request *rq;
2874 	unsigned int depth;
2875 
2876 	/*
2877 	 * We may have been called recursively midway through handling
2878 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2879 	 * To avoid mq_list changing under our feet, clear rq_count early and
2880 	 * bail out specifically if rq_count is 0 rather than checking
2881 	 * whether the mq_list is empty.
2882 	 */
2883 	if (plug->rq_count == 0)
2884 		return;
2885 	depth = plug->rq_count;
2886 	plug->rq_count = 0;
2887 
2888 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2889 		struct request_queue *q;
2890 
2891 		rq = rq_list_peek(&plug->mq_list);
2892 		q = rq->q;
2893 		trace_block_unplug(q, depth, true);
2894 
2895 		/*
2896 		 * Peek first request and see if we have a ->queue_rqs() hook.
2897 		 * If we do, we can dispatch the whole plug list in one go. We
2898 		 * already know at this point that all requests belong to the
2899 		 * same queue, caller must ensure that's the case.
2900 		 */
2901 		if (q->mq_ops->queue_rqs) {
2902 			blk_mq_run_dispatch_ops(q,
2903 				__blk_mq_flush_plug_list(q, plug));
2904 			if (rq_list_empty(&plug->mq_list))
2905 				return;
2906 		}
2907 
2908 		blk_mq_run_dispatch_ops(q,
2909 				blk_mq_plug_issue_direct(plug));
2910 		if (rq_list_empty(&plug->mq_list))
2911 			return;
2912 	}
2913 
2914 	do {
2915 		blk_mq_dispatch_plug_list(plug, from_schedule);
2916 	} while (!rq_list_empty(&plug->mq_list));
2917 }
2918 
2919 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2920 		struct list_head *list)
2921 {
2922 	int queued = 0;
2923 	blk_status_t ret = BLK_STS_OK;
2924 
2925 	while (!list_empty(list)) {
2926 		struct request *rq = list_first_entry(list, struct request,
2927 				queuelist);
2928 
2929 		list_del_init(&rq->queuelist);
2930 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2931 		switch (ret) {
2932 		case BLK_STS_OK:
2933 			queued++;
2934 			break;
2935 		case BLK_STS_RESOURCE:
2936 		case BLK_STS_DEV_RESOURCE:
2937 			blk_mq_request_bypass_insert(rq, 0);
2938 			if (list_empty(list))
2939 				blk_mq_run_hw_queue(hctx, false);
2940 			goto out;
2941 		default:
2942 			blk_mq_end_request(rq, ret);
2943 			break;
2944 		}
2945 	}
2946 
2947 out:
2948 	if (ret != BLK_STS_OK)
2949 		blk_mq_commit_rqs(hctx, queued, false);
2950 }
2951 
2952 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2953 				     struct bio *bio, unsigned int nr_segs)
2954 {
2955 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2956 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2957 			return true;
2958 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2959 			return true;
2960 	}
2961 	return false;
2962 }
2963 
2964 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2965 					       struct blk_plug *plug,
2966 					       struct bio *bio,
2967 					       unsigned int nsegs)
2968 {
2969 	struct blk_mq_alloc_data data = {
2970 		.q		= q,
2971 		.nr_tags	= 1,
2972 		.cmd_flags	= bio->bi_opf,
2973 	};
2974 	struct request *rq;
2975 
2976 	rq_qos_throttle(q, bio);
2977 
2978 	if (plug) {
2979 		data.nr_tags = plug->nr_ios;
2980 		plug->nr_ios = 1;
2981 		data.cached_rqs = &plug->cached_rqs;
2982 	}
2983 
2984 	rq = __blk_mq_alloc_requests(&data);
2985 	if (rq)
2986 		return rq;
2987 	rq_qos_cleanup(q, bio);
2988 	if (bio->bi_opf & REQ_NOWAIT)
2989 		bio_wouldblock_error(bio);
2990 	return NULL;
2991 }
2992 
2993 /*
2994  * Check if there is a suitable cached request and return it.
2995  */
2996 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2997 		struct request_queue *q, blk_opf_t opf)
2998 {
2999 	enum hctx_type type = blk_mq_get_hctx_type(opf);
3000 	struct request *rq;
3001 
3002 	if (!plug)
3003 		return NULL;
3004 	rq = rq_list_peek(&plug->cached_rqs);
3005 	if (!rq || rq->q != q)
3006 		return NULL;
3007 	if (type != rq->mq_hctx->type &&
3008 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3009 		return NULL;
3010 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3011 		return NULL;
3012 	return rq;
3013 }
3014 
3015 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3016 		struct bio *bio)
3017 {
3018 	if (rq_list_pop(&plug->cached_rqs) != rq)
3019 		WARN_ON_ONCE(1);
3020 
3021 	/*
3022 	 * If any qos ->throttle() end up blocking, we will have flushed the
3023 	 * plug and hence killed the cached_rq list as well. Pop this entry
3024 	 * before we throttle.
3025 	 */
3026 	rq_qos_throttle(rq->q, bio);
3027 
3028 	blk_mq_rq_time_init(rq, blk_time_get_ns());
3029 	rq->cmd_flags = bio->bi_opf;
3030 	INIT_LIST_HEAD(&rq->queuelist);
3031 }
3032 
3033 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3034 {
3035 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3036 
3037 	/* .bi_sector of any zero sized bio need to be initialized */
3038 	if ((bio->bi_iter.bi_size & bs_mask) ||
3039 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3040 		return true;
3041 	return false;
3042 }
3043 
3044 /**
3045  * blk_mq_submit_bio - Create and send a request to block device.
3046  * @bio: Bio pointer.
3047  *
3048  * Builds up a request structure from @q and @bio and send to the device. The
3049  * request may not be queued directly to hardware if:
3050  * * This request can be merged with another one
3051  * * We want to place request at plug queue for possible future merging
3052  * * There is an IO scheduler active at this queue
3053  *
3054  * It will not queue the request if there is an error with the bio, or at the
3055  * request creation.
3056  */
3057 void blk_mq_submit_bio(struct bio *bio)
3058 {
3059 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3060 	struct blk_plug *plug = current->plug;
3061 	const int is_sync = op_is_sync(bio->bi_opf);
3062 	struct blk_mq_hw_ctx *hctx;
3063 	unsigned int nr_segs;
3064 	struct request *rq;
3065 	blk_status_t ret;
3066 
3067 	/*
3068 	 * If the plug has a cached request for this queue, try to use it.
3069 	 */
3070 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3071 
3072 	/*
3073 	 * A BIO that was released from a zone write plug has already been
3074 	 * through the preparation in this function, already holds a reference
3075 	 * on the queue usage counter, and is the only write BIO in-flight for
3076 	 * the target zone. Go straight to preparing a request for it.
3077 	 */
3078 	if (bio_zone_write_plugging(bio)) {
3079 		nr_segs = bio->__bi_nr_segments;
3080 		if (rq)
3081 			blk_queue_exit(q);
3082 		goto new_request;
3083 	}
3084 
3085 	bio = blk_queue_bounce(bio, q);
3086 
3087 	/*
3088 	 * The cached request already holds a q_usage_counter reference and we
3089 	 * don't have to acquire a new one if we use it.
3090 	 */
3091 	if (!rq) {
3092 		if (unlikely(bio_queue_enter(bio)))
3093 			return;
3094 	}
3095 
3096 	/*
3097 	 * Device reconfiguration may change logical block size, so alignment
3098 	 * check has to be done with queue usage counter held
3099 	 */
3100 	if (unlikely(bio_unaligned(bio, q))) {
3101 		bio_io_error(bio);
3102 		goto queue_exit;
3103 	}
3104 
3105 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3106 	if (!bio)
3107 		goto queue_exit;
3108 
3109 	if (!bio_integrity_prep(bio))
3110 		goto queue_exit;
3111 
3112 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3113 		goto queue_exit;
3114 
3115 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3116 		goto queue_exit;
3117 
3118 new_request:
3119 	if (!rq) {
3120 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3121 		if (unlikely(!rq))
3122 			goto queue_exit;
3123 	} else {
3124 		blk_mq_use_cached_rq(rq, plug, bio);
3125 	}
3126 
3127 	trace_block_getrq(bio);
3128 
3129 	rq_qos_track(q, rq, bio);
3130 
3131 	blk_mq_bio_to_request(rq, bio, nr_segs);
3132 
3133 	ret = blk_crypto_rq_get_keyslot(rq);
3134 	if (ret != BLK_STS_OK) {
3135 		bio->bi_status = ret;
3136 		bio_endio(bio);
3137 		blk_mq_free_request(rq);
3138 		return;
3139 	}
3140 
3141 	if (bio_zone_write_plugging(bio))
3142 		blk_zone_write_plug_init_request(rq);
3143 
3144 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3145 		return;
3146 
3147 	if (plug) {
3148 		blk_add_rq_to_plug(plug, rq);
3149 		return;
3150 	}
3151 
3152 	hctx = rq->mq_hctx;
3153 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3154 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3155 		blk_mq_insert_request(rq, 0);
3156 		blk_mq_run_hw_queue(hctx, true);
3157 	} else {
3158 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3159 	}
3160 	return;
3161 
3162 queue_exit:
3163 	/*
3164 	 * Don't drop the queue reference if we were trying to use a cached
3165 	 * request and thus didn't acquire one.
3166 	 */
3167 	if (!rq)
3168 		blk_queue_exit(q);
3169 }
3170 
3171 #ifdef CONFIG_BLK_MQ_STACKING
3172 /**
3173  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3174  * @rq: the request being queued
3175  */
3176 blk_status_t blk_insert_cloned_request(struct request *rq)
3177 {
3178 	struct request_queue *q = rq->q;
3179 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3180 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3181 	blk_status_t ret;
3182 
3183 	if (blk_rq_sectors(rq) > max_sectors) {
3184 		/*
3185 		 * SCSI device does not have a good way to return if
3186 		 * Write Same/Zero is actually supported. If a device rejects
3187 		 * a non-read/write command (discard, write same,etc.) the
3188 		 * low-level device driver will set the relevant queue limit to
3189 		 * 0 to prevent blk-lib from issuing more of the offending
3190 		 * operations. Commands queued prior to the queue limit being
3191 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3192 		 * errors being propagated to upper layers.
3193 		 */
3194 		if (max_sectors == 0)
3195 			return BLK_STS_NOTSUPP;
3196 
3197 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3198 			__func__, blk_rq_sectors(rq), max_sectors);
3199 		return BLK_STS_IOERR;
3200 	}
3201 
3202 	/*
3203 	 * The queue settings related to segment counting may differ from the
3204 	 * original queue.
3205 	 */
3206 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3207 	if (rq->nr_phys_segments > max_segments) {
3208 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3209 			__func__, rq->nr_phys_segments, max_segments);
3210 		return BLK_STS_IOERR;
3211 	}
3212 
3213 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3214 		return BLK_STS_IOERR;
3215 
3216 	ret = blk_crypto_rq_get_keyslot(rq);
3217 	if (ret != BLK_STS_OK)
3218 		return ret;
3219 
3220 	blk_account_io_start(rq);
3221 
3222 	/*
3223 	 * Since we have a scheduler attached on the top device,
3224 	 * bypass a potential scheduler on the bottom device for
3225 	 * insert.
3226 	 */
3227 	blk_mq_run_dispatch_ops(q,
3228 			ret = blk_mq_request_issue_directly(rq, true));
3229 	if (ret)
3230 		blk_account_io_done(rq, blk_time_get_ns());
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3234 
3235 /**
3236  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3237  * @rq: the clone request to be cleaned up
3238  *
3239  * Description:
3240  *     Free all bios in @rq for a cloned request.
3241  */
3242 void blk_rq_unprep_clone(struct request *rq)
3243 {
3244 	struct bio *bio;
3245 
3246 	while ((bio = rq->bio) != NULL) {
3247 		rq->bio = bio->bi_next;
3248 
3249 		bio_put(bio);
3250 	}
3251 }
3252 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3253 
3254 /**
3255  * blk_rq_prep_clone - Helper function to setup clone request
3256  * @rq: the request to be setup
3257  * @rq_src: original request to be cloned
3258  * @bs: bio_set that bios for clone are allocated from
3259  * @gfp_mask: memory allocation mask for bio
3260  * @bio_ctr: setup function to be called for each clone bio.
3261  *           Returns %0 for success, non %0 for failure.
3262  * @data: private data to be passed to @bio_ctr
3263  *
3264  * Description:
3265  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3266  *     Also, pages which the original bios are pointing to are not copied
3267  *     and the cloned bios just point same pages.
3268  *     So cloned bios must be completed before original bios, which means
3269  *     the caller must complete @rq before @rq_src.
3270  */
3271 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3272 		      struct bio_set *bs, gfp_t gfp_mask,
3273 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3274 		      void *data)
3275 {
3276 	struct bio *bio_src;
3277 
3278 	if (!bs)
3279 		bs = &fs_bio_set;
3280 
3281 	__rq_for_each_bio(bio_src, rq_src) {
3282 		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3283 					gfp_mask, bs);
3284 		if (!bio)
3285 			goto free_and_out;
3286 
3287 		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3288 			bio_put(bio);
3289 			goto free_and_out;
3290 		}
3291 
3292 		if (rq->bio) {
3293 			rq->biotail->bi_next = bio;
3294 			rq->biotail = bio;
3295 		} else {
3296 			rq->bio = rq->biotail = bio;
3297 		}
3298 	}
3299 
3300 	/* Copy attributes of the original request to the clone request. */
3301 	rq->__sector = blk_rq_pos(rq_src);
3302 	rq->__data_len = blk_rq_bytes(rq_src);
3303 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3304 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3305 		rq->special_vec = rq_src->special_vec;
3306 	}
3307 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3308 
3309 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3310 		goto free_and_out;
3311 
3312 	return 0;
3313 
3314 free_and_out:
3315 	blk_rq_unprep_clone(rq);
3316 
3317 	return -ENOMEM;
3318 }
3319 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3320 #endif /* CONFIG_BLK_MQ_STACKING */
3321 
3322 /*
3323  * Steal bios from a request and add them to a bio list.
3324  * The request must not have been partially completed before.
3325  */
3326 void blk_steal_bios(struct bio_list *list, struct request *rq)
3327 {
3328 	if (rq->bio) {
3329 		if (list->tail)
3330 			list->tail->bi_next = rq->bio;
3331 		else
3332 			list->head = rq->bio;
3333 		list->tail = rq->biotail;
3334 
3335 		rq->bio = NULL;
3336 		rq->biotail = NULL;
3337 	}
3338 
3339 	rq->__data_len = 0;
3340 }
3341 EXPORT_SYMBOL_GPL(blk_steal_bios);
3342 
3343 static size_t order_to_size(unsigned int order)
3344 {
3345 	return (size_t)PAGE_SIZE << order;
3346 }
3347 
3348 /* called before freeing request pool in @tags */
3349 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3350 				    struct blk_mq_tags *tags)
3351 {
3352 	struct page *page;
3353 	unsigned long flags;
3354 
3355 	/*
3356 	 * There is no need to clear mapping if driver tags is not initialized
3357 	 * or the mapping belongs to the driver tags.
3358 	 */
3359 	if (!drv_tags || drv_tags == tags)
3360 		return;
3361 
3362 	list_for_each_entry(page, &tags->page_list, lru) {
3363 		unsigned long start = (unsigned long)page_address(page);
3364 		unsigned long end = start + order_to_size(page->private);
3365 		int i;
3366 
3367 		for (i = 0; i < drv_tags->nr_tags; i++) {
3368 			struct request *rq = drv_tags->rqs[i];
3369 			unsigned long rq_addr = (unsigned long)rq;
3370 
3371 			if (rq_addr >= start && rq_addr < end) {
3372 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3373 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3374 			}
3375 		}
3376 	}
3377 
3378 	/*
3379 	 * Wait until all pending iteration is done.
3380 	 *
3381 	 * Request reference is cleared and it is guaranteed to be observed
3382 	 * after the ->lock is released.
3383 	 */
3384 	spin_lock_irqsave(&drv_tags->lock, flags);
3385 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3386 }
3387 
3388 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3389 		     unsigned int hctx_idx)
3390 {
3391 	struct blk_mq_tags *drv_tags;
3392 	struct page *page;
3393 
3394 	if (list_empty(&tags->page_list))
3395 		return;
3396 
3397 	if (blk_mq_is_shared_tags(set->flags))
3398 		drv_tags = set->shared_tags;
3399 	else
3400 		drv_tags = set->tags[hctx_idx];
3401 
3402 	if (tags->static_rqs && set->ops->exit_request) {
3403 		int i;
3404 
3405 		for (i = 0; i < tags->nr_tags; i++) {
3406 			struct request *rq = tags->static_rqs[i];
3407 
3408 			if (!rq)
3409 				continue;
3410 			set->ops->exit_request(set, rq, hctx_idx);
3411 			tags->static_rqs[i] = NULL;
3412 		}
3413 	}
3414 
3415 	blk_mq_clear_rq_mapping(drv_tags, tags);
3416 
3417 	while (!list_empty(&tags->page_list)) {
3418 		page = list_first_entry(&tags->page_list, struct page, lru);
3419 		list_del_init(&page->lru);
3420 		/*
3421 		 * Remove kmemleak object previously allocated in
3422 		 * blk_mq_alloc_rqs().
3423 		 */
3424 		kmemleak_free(page_address(page));
3425 		__free_pages(page, page->private);
3426 	}
3427 }
3428 
3429 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3430 {
3431 	kfree(tags->rqs);
3432 	tags->rqs = NULL;
3433 	kfree(tags->static_rqs);
3434 	tags->static_rqs = NULL;
3435 
3436 	blk_mq_free_tags(tags);
3437 }
3438 
3439 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3440 		unsigned int hctx_idx)
3441 {
3442 	int i;
3443 
3444 	for (i = 0; i < set->nr_maps; i++) {
3445 		unsigned int start = set->map[i].queue_offset;
3446 		unsigned int end = start + set->map[i].nr_queues;
3447 
3448 		if (hctx_idx >= start && hctx_idx < end)
3449 			break;
3450 	}
3451 
3452 	if (i >= set->nr_maps)
3453 		i = HCTX_TYPE_DEFAULT;
3454 
3455 	return i;
3456 }
3457 
3458 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3459 		unsigned int hctx_idx)
3460 {
3461 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3462 
3463 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3464 }
3465 
3466 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3467 					       unsigned int hctx_idx,
3468 					       unsigned int nr_tags,
3469 					       unsigned int reserved_tags)
3470 {
3471 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3472 	struct blk_mq_tags *tags;
3473 
3474 	if (node == NUMA_NO_NODE)
3475 		node = set->numa_node;
3476 
3477 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3478 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3479 	if (!tags)
3480 		return NULL;
3481 
3482 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3483 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3484 				 node);
3485 	if (!tags->rqs)
3486 		goto err_free_tags;
3487 
3488 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3489 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3490 					node);
3491 	if (!tags->static_rqs)
3492 		goto err_free_rqs;
3493 
3494 	return tags;
3495 
3496 err_free_rqs:
3497 	kfree(tags->rqs);
3498 err_free_tags:
3499 	blk_mq_free_tags(tags);
3500 	return NULL;
3501 }
3502 
3503 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3504 			       unsigned int hctx_idx, int node)
3505 {
3506 	int ret;
3507 
3508 	if (set->ops->init_request) {
3509 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3510 		if (ret)
3511 			return ret;
3512 	}
3513 
3514 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3515 	return 0;
3516 }
3517 
3518 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3519 			    struct blk_mq_tags *tags,
3520 			    unsigned int hctx_idx, unsigned int depth)
3521 {
3522 	unsigned int i, j, entries_per_page, max_order = 4;
3523 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3524 	size_t rq_size, left;
3525 
3526 	if (node == NUMA_NO_NODE)
3527 		node = set->numa_node;
3528 
3529 	INIT_LIST_HEAD(&tags->page_list);
3530 
3531 	/*
3532 	 * rq_size is the size of the request plus driver payload, rounded
3533 	 * to the cacheline size
3534 	 */
3535 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3536 				cache_line_size());
3537 	left = rq_size * depth;
3538 
3539 	for (i = 0; i < depth; ) {
3540 		int this_order = max_order;
3541 		struct page *page;
3542 		int to_do;
3543 		void *p;
3544 
3545 		while (this_order && left < order_to_size(this_order - 1))
3546 			this_order--;
3547 
3548 		do {
3549 			page = alloc_pages_node(node,
3550 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3551 				this_order);
3552 			if (page)
3553 				break;
3554 			if (!this_order--)
3555 				break;
3556 			if (order_to_size(this_order) < rq_size)
3557 				break;
3558 		} while (1);
3559 
3560 		if (!page)
3561 			goto fail;
3562 
3563 		page->private = this_order;
3564 		list_add_tail(&page->lru, &tags->page_list);
3565 
3566 		p = page_address(page);
3567 		/*
3568 		 * Allow kmemleak to scan these pages as they contain pointers
3569 		 * to additional allocations like via ops->init_request().
3570 		 */
3571 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3572 		entries_per_page = order_to_size(this_order) / rq_size;
3573 		to_do = min(entries_per_page, depth - i);
3574 		left -= to_do * rq_size;
3575 		for (j = 0; j < to_do; j++) {
3576 			struct request *rq = p;
3577 
3578 			tags->static_rqs[i] = rq;
3579 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3580 				tags->static_rqs[i] = NULL;
3581 				goto fail;
3582 			}
3583 
3584 			p += rq_size;
3585 			i++;
3586 		}
3587 	}
3588 	return 0;
3589 
3590 fail:
3591 	blk_mq_free_rqs(set, tags, hctx_idx);
3592 	return -ENOMEM;
3593 }
3594 
3595 struct rq_iter_data {
3596 	struct blk_mq_hw_ctx *hctx;
3597 	bool has_rq;
3598 };
3599 
3600 static bool blk_mq_has_request(struct request *rq, void *data)
3601 {
3602 	struct rq_iter_data *iter_data = data;
3603 
3604 	if (rq->mq_hctx != iter_data->hctx)
3605 		return true;
3606 	iter_data->has_rq = true;
3607 	return false;
3608 }
3609 
3610 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3611 {
3612 	struct blk_mq_tags *tags = hctx->sched_tags ?
3613 			hctx->sched_tags : hctx->tags;
3614 	struct rq_iter_data data = {
3615 		.hctx	= hctx,
3616 	};
3617 
3618 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3619 	return data.has_rq;
3620 }
3621 
3622 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3623 		unsigned int this_cpu)
3624 {
3625 	enum hctx_type type = hctx->type;
3626 	int cpu;
3627 
3628 	/*
3629 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3630 	 * might submit IOs on these isolated CPUs, so use the queue map to
3631 	 * check if all CPUs mapped to this hctx are offline
3632 	 */
3633 	for_each_online_cpu(cpu) {
3634 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3635 				type, cpu);
3636 
3637 		if (h != hctx)
3638 			continue;
3639 
3640 		/* this hctx has at least one online CPU */
3641 		if (this_cpu != cpu)
3642 			return true;
3643 	}
3644 
3645 	return false;
3646 }
3647 
3648 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3649 {
3650 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3651 			struct blk_mq_hw_ctx, cpuhp_online);
3652 
3653 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3654 		return 0;
3655 
3656 	/*
3657 	 * Prevent new request from being allocated on the current hctx.
3658 	 *
3659 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3660 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3661 	 * seen once we return from the tag allocator.
3662 	 */
3663 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3664 	smp_mb__after_atomic();
3665 
3666 	/*
3667 	 * Try to grab a reference to the queue and wait for any outstanding
3668 	 * requests.  If we could not grab a reference the queue has been
3669 	 * frozen and there are no requests.
3670 	 */
3671 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3672 		while (blk_mq_hctx_has_requests(hctx))
3673 			msleep(5);
3674 		percpu_ref_put(&hctx->queue->q_usage_counter);
3675 	}
3676 
3677 	return 0;
3678 }
3679 
3680 /*
3681  * Check if one CPU is mapped to the specified hctx
3682  *
3683  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3684  * to be used for scheduling kworker only. For other usage, please call this
3685  * helper for checking if one CPU belongs to the specified hctx
3686  */
3687 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3688 		const struct blk_mq_hw_ctx *hctx)
3689 {
3690 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3691 			hctx->type, cpu);
3692 
3693 	return mapped_hctx == hctx;
3694 }
3695 
3696 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3697 {
3698 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3699 			struct blk_mq_hw_ctx, cpuhp_online);
3700 
3701 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3702 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3703 	return 0;
3704 }
3705 
3706 /*
3707  * 'cpu' is going away. splice any existing rq_list entries from this
3708  * software queue to the hw queue dispatch list, and ensure that it
3709  * gets run.
3710  */
3711 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3712 {
3713 	struct blk_mq_hw_ctx *hctx;
3714 	struct blk_mq_ctx *ctx;
3715 	LIST_HEAD(tmp);
3716 	enum hctx_type type;
3717 
3718 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3719 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3720 		return 0;
3721 
3722 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3723 	type = hctx->type;
3724 
3725 	spin_lock(&ctx->lock);
3726 	if (!list_empty(&ctx->rq_lists[type])) {
3727 		list_splice_init(&ctx->rq_lists[type], &tmp);
3728 		blk_mq_hctx_clear_pending(hctx, ctx);
3729 	}
3730 	spin_unlock(&ctx->lock);
3731 
3732 	if (list_empty(&tmp))
3733 		return 0;
3734 
3735 	spin_lock(&hctx->lock);
3736 	list_splice_tail_init(&tmp, &hctx->dispatch);
3737 	spin_unlock(&hctx->lock);
3738 
3739 	blk_mq_run_hw_queue(hctx, true);
3740 	return 0;
3741 }
3742 
3743 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3744 {
3745 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3746 
3747 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3748 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3749 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3750 						    &hctx->cpuhp_online);
3751 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3752 	}
3753 
3754 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3755 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3756 						    &hctx->cpuhp_dead);
3757 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3758 	}
3759 }
3760 
3761 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3762 {
3763 	mutex_lock(&blk_mq_cpuhp_lock);
3764 	__blk_mq_remove_cpuhp(hctx);
3765 	mutex_unlock(&blk_mq_cpuhp_lock);
3766 }
3767 
3768 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3769 {
3770 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3771 
3772 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3773 	    hlist_unhashed(&hctx->cpuhp_online))
3774 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3775 				&hctx->cpuhp_online);
3776 
3777 	if (hlist_unhashed(&hctx->cpuhp_dead))
3778 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3779 				&hctx->cpuhp_dead);
3780 }
3781 
3782 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3783 {
3784 	struct blk_mq_hw_ctx *hctx;
3785 
3786 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3787 
3788 	list_for_each_entry(hctx, head, hctx_list)
3789 		__blk_mq_remove_cpuhp(hctx);
3790 }
3791 
3792 /*
3793  * Unregister cpuhp callbacks from exited hw queues
3794  *
3795  * Safe to call if this `request_queue` is live
3796  */
3797 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3798 {
3799 	LIST_HEAD(hctx_list);
3800 
3801 	spin_lock(&q->unused_hctx_lock);
3802 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3803 	spin_unlock(&q->unused_hctx_lock);
3804 
3805 	mutex_lock(&blk_mq_cpuhp_lock);
3806 	__blk_mq_remove_cpuhp_list(&hctx_list);
3807 	mutex_unlock(&blk_mq_cpuhp_lock);
3808 
3809 	spin_lock(&q->unused_hctx_lock);
3810 	list_splice(&hctx_list, &q->unused_hctx_list);
3811 	spin_unlock(&q->unused_hctx_lock);
3812 }
3813 
3814 /*
3815  * Register cpuhp callbacks from all hw queues
3816  *
3817  * Safe to call if this `request_queue` is live
3818  */
3819 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3820 {
3821 	struct blk_mq_hw_ctx *hctx;
3822 	unsigned long i;
3823 
3824 	mutex_lock(&blk_mq_cpuhp_lock);
3825 	queue_for_each_hw_ctx(q, hctx, i)
3826 		__blk_mq_add_cpuhp(hctx);
3827 	mutex_unlock(&blk_mq_cpuhp_lock);
3828 }
3829 
3830 /*
3831  * Before freeing hw queue, clearing the flush request reference in
3832  * tags->rqs[] for avoiding potential UAF.
3833  */
3834 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3835 		unsigned int queue_depth, struct request *flush_rq)
3836 {
3837 	int i;
3838 	unsigned long flags;
3839 
3840 	/* The hw queue may not be mapped yet */
3841 	if (!tags)
3842 		return;
3843 
3844 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3845 
3846 	for (i = 0; i < queue_depth; i++)
3847 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3848 
3849 	/*
3850 	 * Wait until all pending iteration is done.
3851 	 *
3852 	 * Request reference is cleared and it is guaranteed to be observed
3853 	 * after the ->lock is released.
3854 	 */
3855 	spin_lock_irqsave(&tags->lock, flags);
3856 	spin_unlock_irqrestore(&tags->lock, flags);
3857 }
3858 
3859 /* hctx->ctxs will be freed in queue's release handler */
3860 static void blk_mq_exit_hctx(struct request_queue *q,
3861 		struct blk_mq_tag_set *set,
3862 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3863 {
3864 	struct request *flush_rq = hctx->fq->flush_rq;
3865 
3866 	if (blk_mq_hw_queue_mapped(hctx))
3867 		blk_mq_tag_idle(hctx);
3868 
3869 	if (blk_queue_init_done(q))
3870 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3871 				set->queue_depth, flush_rq);
3872 	if (set->ops->exit_request)
3873 		set->ops->exit_request(set, flush_rq, hctx_idx);
3874 
3875 	if (set->ops->exit_hctx)
3876 		set->ops->exit_hctx(hctx, hctx_idx);
3877 
3878 	xa_erase(&q->hctx_table, hctx_idx);
3879 
3880 	spin_lock(&q->unused_hctx_lock);
3881 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3882 	spin_unlock(&q->unused_hctx_lock);
3883 }
3884 
3885 static void blk_mq_exit_hw_queues(struct request_queue *q,
3886 		struct blk_mq_tag_set *set, int nr_queue)
3887 {
3888 	struct blk_mq_hw_ctx *hctx;
3889 	unsigned long i;
3890 
3891 	queue_for_each_hw_ctx(q, hctx, i) {
3892 		if (i == nr_queue)
3893 			break;
3894 		blk_mq_remove_cpuhp(hctx);
3895 		blk_mq_exit_hctx(q, set, hctx, i);
3896 	}
3897 }
3898 
3899 static int blk_mq_init_hctx(struct request_queue *q,
3900 		struct blk_mq_tag_set *set,
3901 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3902 {
3903 	hctx->queue_num = hctx_idx;
3904 
3905 	hctx->tags = set->tags[hctx_idx];
3906 
3907 	if (set->ops->init_hctx &&
3908 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3909 		goto fail;
3910 
3911 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3912 				hctx->numa_node))
3913 		goto exit_hctx;
3914 
3915 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3916 		goto exit_flush_rq;
3917 
3918 	return 0;
3919 
3920  exit_flush_rq:
3921 	if (set->ops->exit_request)
3922 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3923  exit_hctx:
3924 	if (set->ops->exit_hctx)
3925 		set->ops->exit_hctx(hctx, hctx_idx);
3926  fail:
3927 	return -1;
3928 }
3929 
3930 static struct blk_mq_hw_ctx *
3931 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3932 		int node)
3933 {
3934 	struct blk_mq_hw_ctx *hctx;
3935 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3936 
3937 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3938 	if (!hctx)
3939 		goto fail_alloc_hctx;
3940 
3941 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3942 		goto free_hctx;
3943 
3944 	atomic_set(&hctx->nr_active, 0);
3945 	if (node == NUMA_NO_NODE)
3946 		node = set->numa_node;
3947 	hctx->numa_node = node;
3948 
3949 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3950 	spin_lock_init(&hctx->lock);
3951 	INIT_LIST_HEAD(&hctx->dispatch);
3952 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3953 	INIT_HLIST_NODE(&hctx->cpuhp_online);
3954 	hctx->queue = q;
3955 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3956 
3957 	INIT_LIST_HEAD(&hctx->hctx_list);
3958 
3959 	/*
3960 	 * Allocate space for all possible cpus to avoid allocation at
3961 	 * runtime
3962 	 */
3963 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3964 			gfp, node);
3965 	if (!hctx->ctxs)
3966 		goto free_cpumask;
3967 
3968 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3969 				gfp, node, false, false))
3970 		goto free_ctxs;
3971 	hctx->nr_ctx = 0;
3972 
3973 	spin_lock_init(&hctx->dispatch_wait_lock);
3974 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3975 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3976 
3977 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3978 	if (!hctx->fq)
3979 		goto free_bitmap;
3980 
3981 	blk_mq_hctx_kobj_init(hctx);
3982 
3983 	return hctx;
3984 
3985  free_bitmap:
3986 	sbitmap_free(&hctx->ctx_map);
3987  free_ctxs:
3988 	kfree(hctx->ctxs);
3989  free_cpumask:
3990 	free_cpumask_var(hctx->cpumask);
3991  free_hctx:
3992 	kfree(hctx);
3993  fail_alloc_hctx:
3994 	return NULL;
3995 }
3996 
3997 static void blk_mq_init_cpu_queues(struct request_queue *q,
3998 				   unsigned int nr_hw_queues)
3999 {
4000 	struct blk_mq_tag_set *set = q->tag_set;
4001 	unsigned int i, j;
4002 
4003 	for_each_possible_cpu(i) {
4004 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4005 		struct blk_mq_hw_ctx *hctx;
4006 		int k;
4007 
4008 		__ctx->cpu = i;
4009 		spin_lock_init(&__ctx->lock);
4010 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4011 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4012 
4013 		__ctx->queue = q;
4014 
4015 		/*
4016 		 * Set local node, IFF we have more than one hw queue. If
4017 		 * not, we remain on the home node of the device
4018 		 */
4019 		for (j = 0; j < set->nr_maps; j++) {
4020 			hctx = blk_mq_map_queue_type(q, j, i);
4021 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4022 				hctx->numa_node = cpu_to_node(i);
4023 		}
4024 	}
4025 }
4026 
4027 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4028 					     unsigned int hctx_idx,
4029 					     unsigned int depth)
4030 {
4031 	struct blk_mq_tags *tags;
4032 	int ret;
4033 
4034 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4035 	if (!tags)
4036 		return NULL;
4037 
4038 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4039 	if (ret) {
4040 		blk_mq_free_rq_map(tags);
4041 		return NULL;
4042 	}
4043 
4044 	return tags;
4045 }
4046 
4047 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4048 				       int hctx_idx)
4049 {
4050 	if (blk_mq_is_shared_tags(set->flags)) {
4051 		set->tags[hctx_idx] = set->shared_tags;
4052 
4053 		return true;
4054 	}
4055 
4056 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4057 						       set->queue_depth);
4058 
4059 	return set->tags[hctx_idx];
4060 }
4061 
4062 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4063 			     struct blk_mq_tags *tags,
4064 			     unsigned int hctx_idx)
4065 {
4066 	if (tags) {
4067 		blk_mq_free_rqs(set, tags, hctx_idx);
4068 		blk_mq_free_rq_map(tags);
4069 	}
4070 }
4071 
4072 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4073 				      unsigned int hctx_idx)
4074 {
4075 	if (!blk_mq_is_shared_tags(set->flags))
4076 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4077 
4078 	set->tags[hctx_idx] = NULL;
4079 }
4080 
4081 static void blk_mq_map_swqueue(struct request_queue *q)
4082 {
4083 	unsigned int j, hctx_idx;
4084 	unsigned long i;
4085 	struct blk_mq_hw_ctx *hctx;
4086 	struct blk_mq_ctx *ctx;
4087 	struct blk_mq_tag_set *set = q->tag_set;
4088 
4089 	queue_for_each_hw_ctx(q, hctx, i) {
4090 		cpumask_clear(hctx->cpumask);
4091 		hctx->nr_ctx = 0;
4092 		hctx->dispatch_from = NULL;
4093 	}
4094 
4095 	/*
4096 	 * Map software to hardware queues.
4097 	 *
4098 	 * If the cpu isn't present, the cpu is mapped to first hctx.
4099 	 */
4100 	for_each_possible_cpu(i) {
4101 
4102 		ctx = per_cpu_ptr(q->queue_ctx, i);
4103 		for (j = 0; j < set->nr_maps; j++) {
4104 			if (!set->map[j].nr_queues) {
4105 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4106 						HCTX_TYPE_DEFAULT, i);
4107 				continue;
4108 			}
4109 			hctx_idx = set->map[j].mq_map[i];
4110 			/* unmapped hw queue can be remapped after CPU topo changed */
4111 			if (!set->tags[hctx_idx] &&
4112 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4113 				/*
4114 				 * If tags initialization fail for some hctx,
4115 				 * that hctx won't be brought online.  In this
4116 				 * case, remap the current ctx to hctx[0] which
4117 				 * is guaranteed to always have tags allocated
4118 				 */
4119 				set->map[j].mq_map[i] = 0;
4120 			}
4121 
4122 			hctx = blk_mq_map_queue_type(q, j, i);
4123 			ctx->hctxs[j] = hctx;
4124 			/*
4125 			 * If the CPU is already set in the mask, then we've
4126 			 * mapped this one already. This can happen if
4127 			 * devices share queues across queue maps.
4128 			 */
4129 			if (cpumask_test_cpu(i, hctx->cpumask))
4130 				continue;
4131 
4132 			cpumask_set_cpu(i, hctx->cpumask);
4133 			hctx->type = j;
4134 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4135 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4136 
4137 			/*
4138 			 * If the nr_ctx type overflows, we have exceeded the
4139 			 * amount of sw queues we can support.
4140 			 */
4141 			BUG_ON(!hctx->nr_ctx);
4142 		}
4143 
4144 		for (; j < HCTX_MAX_TYPES; j++)
4145 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4146 					HCTX_TYPE_DEFAULT, i);
4147 	}
4148 
4149 	queue_for_each_hw_ctx(q, hctx, i) {
4150 		int cpu;
4151 
4152 		/*
4153 		 * If no software queues are mapped to this hardware queue,
4154 		 * disable it and free the request entries.
4155 		 */
4156 		if (!hctx->nr_ctx) {
4157 			/* Never unmap queue 0.  We need it as a
4158 			 * fallback in case of a new remap fails
4159 			 * allocation
4160 			 */
4161 			if (i)
4162 				__blk_mq_free_map_and_rqs(set, i);
4163 
4164 			hctx->tags = NULL;
4165 			continue;
4166 		}
4167 
4168 		hctx->tags = set->tags[i];
4169 		WARN_ON(!hctx->tags);
4170 
4171 		/*
4172 		 * Set the map size to the number of mapped software queues.
4173 		 * This is more accurate and more efficient than looping
4174 		 * over all possibly mapped software queues.
4175 		 */
4176 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4177 
4178 		/*
4179 		 * Rule out isolated CPUs from hctx->cpumask to avoid
4180 		 * running block kworker on isolated CPUs
4181 		 */
4182 		for_each_cpu(cpu, hctx->cpumask) {
4183 			if (cpu_is_isolated(cpu))
4184 				cpumask_clear_cpu(cpu, hctx->cpumask);
4185 		}
4186 
4187 		/*
4188 		 * Initialize batch roundrobin counts
4189 		 */
4190 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4191 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4192 	}
4193 }
4194 
4195 /*
4196  * Caller needs to ensure that we're either frozen/quiesced, or that
4197  * the queue isn't live yet.
4198  */
4199 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4200 {
4201 	struct blk_mq_hw_ctx *hctx;
4202 	unsigned long i;
4203 
4204 	queue_for_each_hw_ctx(q, hctx, i) {
4205 		if (shared) {
4206 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4207 		} else {
4208 			blk_mq_tag_idle(hctx);
4209 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4210 		}
4211 	}
4212 }
4213 
4214 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4215 					 bool shared)
4216 {
4217 	struct request_queue *q;
4218 
4219 	lockdep_assert_held(&set->tag_list_lock);
4220 
4221 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4222 		blk_mq_freeze_queue(q);
4223 		queue_set_hctx_shared(q, shared);
4224 		blk_mq_unfreeze_queue(q);
4225 	}
4226 }
4227 
4228 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4229 {
4230 	struct blk_mq_tag_set *set = q->tag_set;
4231 
4232 	mutex_lock(&set->tag_list_lock);
4233 	list_del(&q->tag_set_list);
4234 	if (list_is_singular(&set->tag_list)) {
4235 		/* just transitioned to unshared */
4236 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4237 		/* update existing queue */
4238 		blk_mq_update_tag_set_shared(set, false);
4239 	}
4240 	mutex_unlock(&set->tag_list_lock);
4241 	INIT_LIST_HEAD(&q->tag_set_list);
4242 }
4243 
4244 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4245 				     struct request_queue *q)
4246 {
4247 	mutex_lock(&set->tag_list_lock);
4248 
4249 	/*
4250 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4251 	 */
4252 	if (!list_empty(&set->tag_list) &&
4253 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4254 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4255 		/* update existing queue */
4256 		blk_mq_update_tag_set_shared(set, true);
4257 	}
4258 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4259 		queue_set_hctx_shared(q, true);
4260 	list_add_tail(&q->tag_set_list, &set->tag_list);
4261 
4262 	mutex_unlock(&set->tag_list_lock);
4263 }
4264 
4265 /* All allocations will be freed in release handler of q->mq_kobj */
4266 static int blk_mq_alloc_ctxs(struct request_queue *q)
4267 {
4268 	struct blk_mq_ctxs *ctxs;
4269 	int cpu;
4270 
4271 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4272 	if (!ctxs)
4273 		return -ENOMEM;
4274 
4275 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4276 	if (!ctxs->queue_ctx)
4277 		goto fail;
4278 
4279 	for_each_possible_cpu(cpu) {
4280 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4281 		ctx->ctxs = ctxs;
4282 	}
4283 
4284 	q->mq_kobj = &ctxs->kobj;
4285 	q->queue_ctx = ctxs->queue_ctx;
4286 
4287 	return 0;
4288  fail:
4289 	kfree(ctxs);
4290 	return -ENOMEM;
4291 }
4292 
4293 /*
4294  * It is the actual release handler for mq, but we do it from
4295  * request queue's release handler for avoiding use-after-free
4296  * and headache because q->mq_kobj shouldn't have been introduced,
4297  * but we can't group ctx/kctx kobj without it.
4298  */
4299 void blk_mq_release(struct request_queue *q)
4300 {
4301 	struct blk_mq_hw_ctx *hctx, *next;
4302 	unsigned long i;
4303 
4304 	queue_for_each_hw_ctx(q, hctx, i)
4305 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4306 
4307 	/* all hctx are in .unused_hctx_list now */
4308 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4309 		list_del_init(&hctx->hctx_list);
4310 		kobject_put(&hctx->kobj);
4311 	}
4312 
4313 	xa_destroy(&q->hctx_table);
4314 
4315 	/*
4316 	 * release .mq_kobj and sw queue's kobject now because
4317 	 * both share lifetime with request queue.
4318 	 */
4319 	blk_mq_sysfs_deinit(q);
4320 }
4321 
4322 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4323 {
4324 	return set->nr_maps > HCTX_TYPE_POLL &&
4325 		set->map[HCTX_TYPE_POLL].nr_queues;
4326 }
4327 
4328 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4329 		struct queue_limits *lim, void *queuedata)
4330 {
4331 	struct queue_limits default_lim = { };
4332 	struct request_queue *q;
4333 	int ret;
4334 
4335 	if (!lim)
4336 		lim = &default_lim;
4337 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4338 	if (blk_mq_can_poll(set))
4339 		lim->features |= BLK_FEAT_POLL;
4340 
4341 	q = blk_alloc_queue(lim, set->numa_node);
4342 	if (IS_ERR(q))
4343 		return q;
4344 	q->queuedata = queuedata;
4345 	ret = blk_mq_init_allocated_queue(set, q);
4346 	if (ret) {
4347 		blk_put_queue(q);
4348 		return ERR_PTR(ret);
4349 	}
4350 	return q;
4351 }
4352 EXPORT_SYMBOL(blk_mq_alloc_queue);
4353 
4354 /**
4355  * blk_mq_destroy_queue - shutdown a request queue
4356  * @q: request queue to shutdown
4357  *
4358  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4359  * requests will be failed with -ENODEV. The caller is responsible for dropping
4360  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4361  *
4362  * Context: can sleep
4363  */
4364 void blk_mq_destroy_queue(struct request_queue *q)
4365 {
4366 	WARN_ON_ONCE(!queue_is_mq(q));
4367 	WARN_ON_ONCE(blk_queue_registered(q));
4368 
4369 	might_sleep();
4370 
4371 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4372 	blk_queue_start_drain(q);
4373 	blk_mq_freeze_queue_wait(q);
4374 
4375 	blk_sync_queue(q);
4376 	blk_mq_cancel_work_sync(q);
4377 	blk_mq_exit_queue(q);
4378 }
4379 EXPORT_SYMBOL(blk_mq_destroy_queue);
4380 
4381 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4382 		struct queue_limits *lim, void *queuedata,
4383 		struct lock_class_key *lkclass)
4384 {
4385 	struct request_queue *q;
4386 	struct gendisk *disk;
4387 
4388 	q = blk_mq_alloc_queue(set, lim, queuedata);
4389 	if (IS_ERR(q))
4390 		return ERR_CAST(q);
4391 
4392 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4393 	if (!disk) {
4394 		blk_mq_destroy_queue(q);
4395 		blk_put_queue(q);
4396 		return ERR_PTR(-ENOMEM);
4397 	}
4398 	set_bit(GD_OWNS_QUEUE, &disk->state);
4399 	return disk;
4400 }
4401 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4402 
4403 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4404 		struct lock_class_key *lkclass)
4405 {
4406 	struct gendisk *disk;
4407 
4408 	if (!blk_get_queue(q))
4409 		return NULL;
4410 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4411 	if (!disk)
4412 		blk_put_queue(q);
4413 	return disk;
4414 }
4415 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4416 
4417 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4418 		struct blk_mq_tag_set *set, struct request_queue *q,
4419 		int hctx_idx, int node)
4420 {
4421 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4422 
4423 	/* reuse dead hctx first */
4424 	spin_lock(&q->unused_hctx_lock);
4425 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4426 		if (tmp->numa_node == node) {
4427 			hctx = tmp;
4428 			break;
4429 		}
4430 	}
4431 	if (hctx)
4432 		list_del_init(&hctx->hctx_list);
4433 	spin_unlock(&q->unused_hctx_lock);
4434 
4435 	if (!hctx)
4436 		hctx = blk_mq_alloc_hctx(q, set, node);
4437 	if (!hctx)
4438 		goto fail;
4439 
4440 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4441 		goto free_hctx;
4442 
4443 	return hctx;
4444 
4445  free_hctx:
4446 	kobject_put(&hctx->kobj);
4447  fail:
4448 	return NULL;
4449 }
4450 
4451 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4452 						struct request_queue *q)
4453 {
4454 	struct blk_mq_hw_ctx *hctx;
4455 	unsigned long i, j;
4456 
4457 	/* protect against switching io scheduler  */
4458 	mutex_lock(&q->sysfs_lock);
4459 	for (i = 0; i < set->nr_hw_queues; i++) {
4460 		int old_node;
4461 		int node = blk_mq_get_hctx_node(set, i);
4462 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4463 
4464 		if (old_hctx) {
4465 			old_node = old_hctx->numa_node;
4466 			blk_mq_exit_hctx(q, set, old_hctx, i);
4467 		}
4468 
4469 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4470 			if (!old_hctx)
4471 				break;
4472 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4473 					node, old_node);
4474 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4475 			WARN_ON_ONCE(!hctx);
4476 		}
4477 	}
4478 	/*
4479 	 * Increasing nr_hw_queues fails. Free the newly allocated
4480 	 * hctxs and keep the previous q->nr_hw_queues.
4481 	 */
4482 	if (i != set->nr_hw_queues) {
4483 		j = q->nr_hw_queues;
4484 	} else {
4485 		j = i;
4486 		q->nr_hw_queues = set->nr_hw_queues;
4487 	}
4488 
4489 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4490 		blk_mq_exit_hctx(q, set, hctx, j);
4491 	mutex_unlock(&q->sysfs_lock);
4492 
4493 	/* unregister cpuhp callbacks for exited hctxs */
4494 	blk_mq_remove_hw_queues_cpuhp(q);
4495 
4496 	/* register cpuhp for new initialized hctxs */
4497 	blk_mq_add_hw_queues_cpuhp(q);
4498 }
4499 
4500 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4501 		struct request_queue *q)
4502 {
4503 	/* mark the queue as mq asap */
4504 	q->mq_ops = set->ops;
4505 
4506 	/*
4507 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4508 	 * handler needs it for checking queue mapping
4509 	 */
4510 	q->tag_set = set;
4511 
4512 	if (blk_mq_alloc_ctxs(q))
4513 		goto err_exit;
4514 
4515 	/* init q->mq_kobj and sw queues' kobjects */
4516 	blk_mq_sysfs_init(q);
4517 
4518 	INIT_LIST_HEAD(&q->unused_hctx_list);
4519 	spin_lock_init(&q->unused_hctx_lock);
4520 
4521 	xa_init(&q->hctx_table);
4522 
4523 	blk_mq_realloc_hw_ctxs(set, q);
4524 	if (!q->nr_hw_queues)
4525 		goto err_hctxs;
4526 
4527 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4528 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4529 
4530 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4531 
4532 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4533 	INIT_LIST_HEAD(&q->flush_list);
4534 	INIT_LIST_HEAD(&q->requeue_list);
4535 	spin_lock_init(&q->requeue_lock);
4536 
4537 	q->nr_requests = set->queue_depth;
4538 
4539 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4540 	blk_mq_add_queue_tag_set(set, q);
4541 	blk_mq_map_swqueue(q);
4542 	return 0;
4543 
4544 err_hctxs:
4545 	blk_mq_release(q);
4546 err_exit:
4547 	q->mq_ops = NULL;
4548 	return -ENOMEM;
4549 }
4550 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4551 
4552 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4553 void blk_mq_exit_queue(struct request_queue *q)
4554 {
4555 	struct blk_mq_tag_set *set = q->tag_set;
4556 
4557 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4558 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4559 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4560 	blk_mq_del_queue_tag_set(q);
4561 }
4562 
4563 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4564 {
4565 	int i;
4566 
4567 	if (blk_mq_is_shared_tags(set->flags)) {
4568 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4569 						BLK_MQ_NO_HCTX_IDX,
4570 						set->queue_depth);
4571 		if (!set->shared_tags)
4572 			return -ENOMEM;
4573 	}
4574 
4575 	for (i = 0; i < set->nr_hw_queues; i++) {
4576 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4577 			goto out_unwind;
4578 		cond_resched();
4579 	}
4580 
4581 	return 0;
4582 
4583 out_unwind:
4584 	while (--i >= 0)
4585 		__blk_mq_free_map_and_rqs(set, i);
4586 
4587 	if (blk_mq_is_shared_tags(set->flags)) {
4588 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4589 					BLK_MQ_NO_HCTX_IDX);
4590 	}
4591 
4592 	return -ENOMEM;
4593 }
4594 
4595 /*
4596  * Allocate the request maps associated with this tag_set. Note that this
4597  * may reduce the depth asked for, if memory is tight. set->queue_depth
4598  * will be updated to reflect the allocated depth.
4599  */
4600 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4601 {
4602 	unsigned int depth;
4603 	int err;
4604 
4605 	depth = set->queue_depth;
4606 	do {
4607 		err = __blk_mq_alloc_rq_maps(set);
4608 		if (!err)
4609 			break;
4610 
4611 		set->queue_depth >>= 1;
4612 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4613 			err = -ENOMEM;
4614 			break;
4615 		}
4616 	} while (set->queue_depth);
4617 
4618 	if (!set->queue_depth || err) {
4619 		pr_err("blk-mq: failed to allocate request map\n");
4620 		return -ENOMEM;
4621 	}
4622 
4623 	if (depth != set->queue_depth)
4624 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4625 						depth, set->queue_depth);
4626 
4627 	return 0;
4628 }
4629 
4630 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4631 {
4632 	/*
4633 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4634 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4635 	 * number of hardware queues.
4636 	 */
4637 	if (set->nr_maps == 1)
4638 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4639 
4640 	if (set->ops->map_queues) {
4641 		int i;
4642 
4643 		/*
4644 		 * transport .map_queues is usually done in the following
4645 		 * way:
4646 		 *
4647 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4648 		 * 	mask = get_cpu_mask(queue)
4649 		 * 	for_each_cpu(cpu, mask)
4650 		 * 		set->map[x].mq_map[cpu] = queue;
4651 		 * }
4652 		 *
4653 		 * When we need to remap, the table has to be cleared for
4654 		 * killing stale mapping since one CPU may not be mapped
4655 		 * to any hw queue.
4656 		 */
4657 		for (i = 0; i < set->nr_maps; i++)
4658 			blk_mq_clear_mq_map(&set->map[i]);
4659 
4660 		set->ops->map_queues(set);
4661 	} else {
4662 		BUG_ON(set->nr_maps > 1);
4663 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4664 	}
4665 }
4666 
4667 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4668 				       int new_nr_hw_queues)
4669 {
4670 	struct blk_mq_tags **new_tags;
4671 	int i;
4672 
4673 	if (set->nr_hw_queues >= new_nr_hw_queues)
4674 		goto done;
4675 
4676 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4677 				GFP_KERNEL, set->numa_node);
4678 	if (!new_tags)
4679 		return -ENOMEM;
4680 
4681 	if (set->tags)
4682 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4683 		       sizeof(*set->tags));
4684 	kfree(set->tags);
4685 	set->tags = new_tags;
4686 
4687 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4688 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4689 			while (--i >= set->nr_hw_queues)
4690 				__blk_mq_free_map_and_rqs(set, i);
4691 			return -ENOMEM;
4692 		}
4693 		cond_resched();
4694 	}
4695 
4696 done:
4697 	set->nr_hw_queues = new_nr_hw_queues;
4698 	return 0;
4699 }
4700 
4701 /*
4702  * Alloc a tag set to be associated with one or more request queues.
4703  * May fail with EINVAL for various error conditions. May adjust the
4704  * requested depth down, if it's too large. In that case, the set
4705  * value will be stored in set->queue_depth.
4706  */
4707 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4708 {
4709 	int i, ret;
4710 
4711 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4712 
4713 	if (!set->nr_hw_queues)
4714 		return -EINVAL;
4715 	if (!set->queue_depth)
4716 		return -EINVAL;
4717 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4718 		return -EINVAL;
4719 
4720 	if (!set->ops->queue_rq)
4721 		return -EINVAL;
4722 
4723 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4724 		return -EINVAL;
4725 
4726 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4727 		pr_info("blk-mq: reduced tag depth to %u\n",
4728 			BLK_MQ_MAX_DEPTH);
4729 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4730 	}
4731 
4732 	if (!set->nr_maps)
4733 		set->nr_maps = 1;
4734 	else if (set->nr_maps > HCTX_MAX_TYPES)
4735 		return -EINVAL;
4736 
4737 	/*
4738 	 * If a crashdump is active, then we are potentially in a very
4739 	 * memory constrained environment. Limit us to  64 tags to prevent
4740 	 * using too much memory.
4741 	 */
4742 	if (is_kdump_kernel())
4743 		set->queue_depth = min(64U, set->queue_depth);
4744 
4745 	/*
4746 	 * There is no use for more h/w queues than cpus if we just have
4747 	 * a single map
4748 	 */
4749 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4750 		set->nr_hw_queues = nr_cpu_ids;
4751 
4752 	if (set->flags & BLK_MQ_F_BLOCKING) {
4753 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4754 		if (!set->srcu)
4755 			return -ENOMEM;
4756 		ret = init_srcu_struct(set->srcu);
4757 		if (ret)
4758 			goto out_free_srcu;
4759 	}
4760 
4761 	ret = -ENOMEM;
4762 	set->tags = kcalloc_node(set->nr_hw_queues,
4763 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4764 				 set->numa_node);
4765 	if (!set->tags)
4766 		goto out_cleanup_srcu;
4767 
4768 	for (i = 0; i < set->nr_maps; i++) {
4769 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4770 						  sizeof(set->map[i].mq_map[0]),
4771 						  GFP_KERNEL, set->numa_node);
4772 		if (!set->map[i].mq_map)
4773 			goto out_free_mq_map;
4774 		set->map[i].nr_queues = set->nr_hw_queues;
4775 	}
4776 
4777 	blk_mq_update_queue_map(set);
4778 
4779 	ret = blk_mq_alloc_set_map_and_rqs(set);
4780 	if (ret)
4781 		goto out_free_mq_map;
4782 
4783 	mutex_init(&set->tag_list_lock);
4784 	INIT_LIST_HEAD(&set->tag_list);
4785 
4786 	return 0;
4787 
4788 out_free_mq_map:
4789 	for (i = 0; i < set->nr_maps; i++) {
4790 		kfree(set->map[i].mq_map);
4791 		set->map[i].mq_map = NULL;
4792 	}
4793 	kfree(set->tags);
4794 	set->tags = NULL;
4795 out_cleanup_srcu:
4796 	if (set->flags & BLK_MQ_F_BLOCKING)
4797 		cleanup_srcu_struct(set->srcu);
4798 out_free_srcu:
4799 	if (set->flags & BLK_MQ_F_BLOCKING)
4800 		kfree(set->srcu);
4801 	return ret;
4802 }
4803 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4804 
4805 /* allocate and initialize a tagset for a simple single-queue device */
4806 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4807 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4808 		unsigned int set_flags)
4809 {
4810 	memset(set, 0, sizeof(*set));
4811 	set->ops = ops;
4812 	set->nr_hw_queues = 1;
4813 	set->nr_maps = 1;
4814 	set->queue_depth = queue_depth;
4815 	set->numa_node = NUMA_NO_NODE;
4816 	set->flags = set_flags;
4817 	return blk_mq_alloc_tag_set(set);
4818 }
4819 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4820 
4821 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4822 {
4823 	int i, j;
4824 
4825 	for (i = 0; i < set->nr_hw_queues; i++)
4826 		__blk_mq_free_map_and_rqs(set, i);
4827 
4828 	if (blk_mq_is_shared_tags(set->flags)) {
4829 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4830 					BLK_MQ_NO_HCTX_IDX);
4831 	}
4832 
4833 	for (j = 0; j < set->nr_maps; j++) {
4834 		kfree(set->map[j].mq_map);
4835 		set->map[j].mq_map = NULL;
4836 	}
4837 
4838 	kfree(set->tags);
4839 	set->tags = NULL;
4840 	if (set->flags & BLK_MQ_F_BLOCKING) {
4841 		cleanup_srcu_struct(set->srcu);
4842 		kfree(set->srcu);
4843 	}
4844 }
4845 EXPORT_SYMBOL(blk_mq_free_tag_set);
4846 
4847 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4848 {
4849 	struct blk_mq_tag_set *set = q->tag_set;
4850 	struct blk_mq_hw_ctx *hctx;
4851 	int ret;
4852 	unsigned long i;
4853 
4854 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4855 		return -EINVAL;
4856 
4857 	if (!set)
4858 		return -EINVAL;
4859 
4860 	if (q->nr_requests == nr)
4861 		return 0;
4862 
4863 	blk_mq_quiesce_queue(q);
4864 
4865 	ret = 0;
4866 	queue_for_each_hw_ctx(q, hctx, i) {
4867 		if (!hctx->tags)
4868 			continue;
4869 		/*
4870 		 * If we're using an MQ scheduler, just update the scheduler
4871 		 * queue depth. This is similar to what the old code would do.
4872 		 */
4873 		if (hctx->sched_tags) {
4874 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4875 						      nr, true);
4876 		} else {
4877 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4878 						      false);
4879 		}
4880 		if (ret)
4881 			break;
4882 		if (q->elevator && q->elevator->type->ops.depth_updated)
4883 			q->elevator->type->ops.depth_updated(hctx);
4884 	}
4885 	if (!ret) {
4886 		q->nr_requests = nr;
4887 		if (blk_mq_is_shared_tags(set->flags)) {
4888 			if (q->elevator)
4889 				blk_mq_tag_update_sched_shared_tags(q);
4890 			else
4891 				blk_mq_tag_resize_shared_tags(set, nr);
4892 		}
4893 	}
4894 
4895 	blk_mq_unquiesce_queue(q);
4896 
4897 	return ret;
4898 }
4899 
4900 /*
4901  * request_queue and elevator_type pair.
4902  * It is just used by __blk_mq_update_nr_hw_queues to cache
4903  * the elevator_type associated with a request_queue.
4904  */
4905 struct blk_mq_qe_pair {
4906 	struct list_head node;
4907 	struct request_queue *q;
4908 	struct elevator_type *type;
4909 };
4910 
4911 /*
4912  * Cache the elevator_type in qe pair list and switch the
4913  * io scheduler to 'none'
4914  */
4915 static bool blk_mq_elv_switch_none(struct list_head *head,
4916 		struct request_queue *q)
4917 {
4918 	struct blk_mq_qe_pair *qe;
4919 
4920 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4921 	if (!qe)
4922 		return false;
4923 
4924 	/* q->elevator needs protection from ->sysfs_lock */
4925 	mutex_lock(&q->sysfs_lock);
4926 
4927 	/* the check has to be done with holding sysfs_lock */
4928 	if (!q->elevator) {
4929 		kfree(qe);
4930 		goto unlock;
4931 	}
4932 
4933 	INIT_LIST_HEAD(&qe->node);
4934 	qe->q = q;
4935 	qe->type = q->elevator->type;
4936 	/* keep a reference to the elevator module as we'll switch back */
4937 	__elevator_get(qe->type);
4938 	list_add(&qe->node, head);
4939 	elevator_disable(q);
4940 unlock:
4941 	mutex_unlock(&q->sysfs_lock);
4942 
4943 	return true;
4944 }
4945 
4946 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4947 						struct request_queue *q)
4948 {
4949 	struct blk_mq_qe_pair *qe;
4950 
4951 	list_for_each_entry(qe, head, node)
4952 		if (qe->q == q)
4953 			return qe;
4954 
4955 	return NULL;
4956 }
4957 
4958 static void blk_mq_elv_switch_back(struct list_head *head,
4959 				  struct request_queue *q)
4960 {
4961 	struct blk_mq_qe_pair *qe;
4962 	struct elevator_type *t;
4963 
4964 	qe = blk_lookup_qe_pair(head, q);
4965 	if (!qe)
4966 		return;
4967 	t = qe->type;
4968 	list_del(&qe->node);
4969 	kfree(qe);
4970 
4971 	mutex_lock(&q->sysfs_lock);
4972 	elevator_switch(q, t);
4973 	/* drop the reference acquired in blk_mq_elv_switch_none */
4974 	elevator_put(t);
4975 	mutex_unlock(&q->sysfs_lock);
4976 }
4977 
4978 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4979 							int nr_hw_queues)
4980 {
4981 	struct request_queue *q;
4982 	LIST_HEAD(head);
4983 	int prev_nr_hw_queues = set->nr_hw_queues;
4984 	int i;
4985 
4986 	lockdep_assert_held(&set->tag_list_lock);
4987 
4988 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4989 		nr_hw_queues = nr_cpu_ids;
4990 	if (nr_hw_queues < 1)
4991 		return;
4992 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4993 		return;
4994 
4995 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4996 		blk_mq_freeze_queue(q);
4997 	/*
4998 	 * Switch IO scheduler to 'none', cleaning up the data associated
4999 	 * with the previous scheduler. We will switch back once we are done
5000 	 * updating the new sw to hw queue mappings.
5001 	 */
5002 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5003 		if (!blk_mq_elv_switch_none(&head, q))
5004 			goto switch_back;
5005 
5006 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5007 		blk_mq_debugfs_unregister_hctxs(q);
5008 		blk_mq_sysfs_unregister_hctxs(q);
5009 	}
5010 
5011 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5012 		goto reregister;
5013 
5014 fallback:
5015 	blk_mq_update_queue_map(set);
5016 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5017 		struct queue_limits lim;
5018 
5019 		blk_mq_realloc_hw_ctxs(set, q);
5020 
5021 		if (q->nr_hw_queues != set->nr_hw_queues) {
5022 			int i = prev_nr_hw_queues;
5023 
5024 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5025 					nr_hw_queues, prev_nr_hw_queues);
5026 			for (; i < set->nr_hw_queues; i++)
5027 				__blk_mq_free_map_and_rqs(set, i);
5028 
5029 			set->nr_hw_queues = prev_nr_hw_queues;
5030 			goto fallback;
5031 		}
5032 		lim = queue_limits_start_update(q);
5033 		if (blk_mq_can_poll(set))
5034 			lim.features |= BLK_FEAT_POLL;
5035 		else
5036 			lim.features &= ~BLK_FEAT_POLL;
5037 		if (queue_limits_commit_update(q, &lim) < 0)
5038 			pr_warn("updating the poll flag failed\n");
5039 		blk_mq_map_swqueue(q);
5040 	}
5041 
5042 reregister:
5043 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5044 		blk_mq_sysfs_register_hctxs(q);
5045 		blk_mq_debugfs_register_hctxs(q);
5046 	}
5047 
5048 switch_back:
5049 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5050 		blk_mq_elv_switch_back(&head, q);
5051 
5052 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5053 		blk_mq_unfreeze_queue(q);
5054 
5055 	/* Free the excess tags when nr_hw_queues shrink. */
5056 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5057 		__blk_mq_free_map_and_rqs(set, i);
5058 }
5059 
5060 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5061 {
5062 	mutex_lock(&set->tag_list_lock);
5063 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5064 	mutex_unlock(&set->tag_list_lock);
5065 }
5066 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5067 
5068 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5069 			 struct io_comp_batch *iob, unsigned int flags)
5070 {
5071 	long state = get_current_state();
5072 	int ret;
5073 
5074 	do {
5075 		ret = q->mq_ops->poll(hctx, iob);
5076 		if (ret > 0) {
5077 			__set_current_state(TASK_RUNNING);
5078 			return ret;
5079 		}
5080 
5081 		if (signal_pending_state(state, current))
5082 			__set_current_state(TASK_RUNNING);
5083 		if (task_is_running(current))
5084 			return 1;
5085 
5086 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5087 			break;
5088 		cpu_relax();
5089 	} while (!need_resched());
5090 
5091 	__set_current_state(TASK_RUNNING);
5092 	return 0;
5093 }
5094 
5095 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5096 		struct io_comp_batch *iob, unsigned int flags)
5097 {
5098 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
5099 
5100 	return blk_hctx_poll(q, hctx, iob, flags);
5101 }
5102 
5103 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5104 		unsigned int poll_flags)
5105 {
5106 	struct request_queue *q = rq->q;
5107 	int ret;
5108 
5109 	if (!blk_rq_is_poll(rq))
5110 		return 0;
5111 	if (!percpu_ref_tryget(&q->q_usage_counter))
5112 		return 0;
5113 
5114 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5115 	blk_queue_exit(q);
5116 
5117 	return ret;
5118 }
5119 EXPORT_SYMBOL_GPL(blk_rq_poll);
5120 
5121 unsigned int blk_mq_rq_cpu(struct request *rq)
5122 {
5123 	return rq->mq_ctx->cpu;
5124 }
5125 EXPORT_SYMBOL(blk_mq_rq_cpu);
5126 
5127 void blk_mq_cancel_work_sync(struct request_queue *q)
5128 {
5129 	struct blk_mq_hw_ctx *hctx;
5130 	unsigned long i;
5131 
5132 	cancel_delayed_work_sync(&q->requeue_work);
5133 
5134 	queue_for_each_hw_ctx(q, hctx, i)
5135 		cancel_delayed_work_sync(&hctx->run_work);
5136 }
5137 
5138 static int __init blk_mq_init(void)
5139 {
5140 	int i;
5141 
5142 	for_each_possible_cpu(i)
5143 		init_llist_head(&per_cpu(blk_cpu_done, i));
5144 	for_each_possible_cpu(i)
5145 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5146 			 __blk_mq_complete_request_remote, NULL);
5147 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5148 
5149 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5150 				  "block/softirq:dead", NULL,
5151 				  blk_softirq_cpu_dead);
5152 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5153 				blk_mq_hctx_notify_dead);
5154 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5155 				blk_mq_hctx_notify_online,
5156 				blk_mq_hctx_notify_offline);
5157 	return 0;
5158 }
5159 subsys_initcall(blk_mq_init);
5160