xref: /linux/block/blk-mq.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	if (!(data->rq_flags & RQF_SCHED_TAGS))
430 		blk_mq_add_active_requests(data->hctx, nr);
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		/*
454 		 * All requests use scheduler tags when an I/O scheduler is
455 		 * enabled for the queue.
456 		 */
457 		data->rq_flags |= RQF_SCHED_TAGS;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list.
462 		 */
463 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464 		    !blk_op_is_passthrough(data->cmd_flags)) {
465 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
466 
467 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468 
469 			data->rq_flags |= RQF_USE_SCHED;
470 			if (ops->limit_depth)
471 				ops->limit_depth(data->cmd_flags, data);
472 		}
473 	}
474 
475 retry:
476 	data->ctx = blk_mq_get_ctx(q);
477 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478 	if (!(data->rq_flags & RQF_SCHED_TAGS))
479 		blk_mq_tag_busy(data->hctx);
480 
481 	if (data->flags & BLK_MQ_REQ_RESERVED)
482 		data->rq_flags |= RQF_RESV;
483 
484 	/*
485 	 * Try batched alloc if we want more than 1 tag.
486 	 */
487 	if (data->nr_tags > 1) {
488 		rq = __blk_mq_alloc_requests_batch(data);
489 		if (rq) {
490 			blk_mq_rq_time_init(rq, alloc_time_ns);
491 			return rq;
492 		}
493 		data->nr_tags = 1;
494 	}
495 
496 	/*
497 	 * Waiting allocations only fail because of an inactive hctx.  In that
498 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
499 	 * should have migrated us to an online CPU by now.
500 	 */
501 	tag = blk_mq_get_tag(data);
502 	if (tag == BLK_MQ_NO_TAG) {
503 		if (data->flags & BLK_MQ_REQ_NOWAIT)
504 			return NULL;
505 		/*
506 		 * Give up the CPU and sleep for a random short time to
507 		 * ensure that thread using a realtime scheduling class
508 		 * are migrated off the CPU, and thus off the hctx that
509 		 * is going away.
510 		 */
511 		msleep(3);
512 		goto retry;
513 	}
514 
515 	if (!(data->rq_flags & RQF_SCHED_TAGS))
516 		blk_mq_inc_active_requests(data->hctx);
517 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518 	blk_mq_rq_time_init(rq, alloc_time_ns);
519 	return rq;
520 }
521 
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523 					    struct blk_plug *plug,
524 					    blk_opf_t opf,
525 					    blk_mq_req_flags_t flags)
526 {
527 	struct blk_mq_alloc_data data = {
528 		.q		= q,
529 		.flags		= flags,
530 		.cmd_flags	= opf,
531 		.nr_tags	= plug->nr_ios,
532 		.cached_rq	= &plug->cached_rq,
533 	};
534 	struct request *rq;
535 
536 	if (blk_queue_enter(q, flags))
537 		return NULL;
538 
539 	plug->nr_ios = 1;
540 
541 	rq = __blk_mq_alloc_requests(&data);
542 	if (unlikely(!rq))
543 		blk_queue_exit(q);
544 	return rq;
545 }
546 
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 						   blk_opf_t opf,
549 						   blk_mq_req_flags_t flags)
550 {
551 	struct blk_plug *plug = current->plug;
552 	struct request *rq;
553 
554 	if (!plug)
555 		return NULL;
556 
557 	if (rq_list_empty(plug->cached_rq)) {
558 		if (plug->nr_ios == 1)
559 			return NULL;
560 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561 		if (!rq)
562 			return NULL;
563 	} else {
564 		rq = rq_list_peek(&plug->cached_rq);
565 		if (!rq || rq->q != q)
566 			return NULL;
567 
568 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 			return NULL;
570 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571 			return NULL;
572 
573 		plug->cached_rq = rq_list_next(rq);
574 		blk_mq_rq_time_init(rq, 0);
575 	}
576 
577 	rq->cmd_flags = opf;
578 	INIT_LIST_HEAD(&rq->queuelist);
579 	return rq;
580 }
581 
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583 		blk_mq_req_flags_t flags)
584 {
585 	struct request *rq;
586 
587 	rq = blk_mq_alloc_cached_request(q, opf, flags);
588 	if (!rq) {
589 		struct blk_mq_alloc_data data = {
590 			.q		= q,
591 			.flags		= flags,
592 			.cmd_flags	= opf,
593 			.nr_tags	= 1,
594 		};
595 		int ret;
596 
597 		ret = blk_queue_enter(q, flags);
598 		if (ret)
599 			return ERR_PTR(ret);
600 
601 		rq = __blk_mq_alloc_requests(&data);
602 		if (!rq)
603 			goto out_queue_exit;
604 	}
605 	rq->__data_len = 0;
606 	rq->__sector = (sector_t) -1;
607 	rq->bio = rq->biotail = NULL;
608 	return rq;
609 out_queue_exit:
610 	blk_queue_exit(q);
611 	return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614 
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618 	struct blk_mq_alloc_data data = {
619 		.q		= q,
620 		.flags		= flags,
621 		.cmd_flags	= opf,
622 		.nr_tags	= 1,
623 	};
624 	u64 alloc_time_ns = 0;
625 	struct request *rq;
626 	unsigned int cpu;
627 	unsigned int tag;
628 	int ret;
629 
630 	/* alloc_time includes depth and tag waits */
631 	if (blk_queue_rq_alloc_time(q))
632 		alloc_time_ns = ktime_get_ns();
633 
634 	/*
635 	 * If the tag allocator sleeps we could get an allocation for a
636 	 * different hardware context.  No need to complicate the low level
637 	 * allocator for this for the rare use case of a command tied to
638 	 * a specific queue.
639 	 */
640 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642 		return ERR_PTR(-EINVAL);
643 
644 	if (hctx_idx >= q->nr_hw_queues)
645 		return ERR_PTR(-EIO);
646 
647 	ret = blk_queue_enter(q, flags);
648 	if (ret)
649 		return ERR_PTR(ret);
650 
651 	/*
652 	 * Check if the hardware context is actually mapped to anything.
653 	 * If not tell the caller that it should skip this queue.
654 	 */
655 	ret = -EXDEV;
656 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
657 	if (!blk_mq_hw_queue_mapped(data.hctx))
658 		goto out_queue_exit;
659 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660 	if (cpu >= nr_cpu_ids)
661 		goto out_queue_exit;
662 	data.ctx = __blk_mq_get_ctx(q, cpu);
663 
664 	if (q->elevator)
665 		data.rq_flags |= RQF_SCHED_TAGS;
666 	else
667 		blk_mq_tag_busy(data.hctx);
668 
669 	if (flags & BLK_MQ_REQ_RESERVED)
670 		data.rq_flags |= RQF_RESV;
671 
672 	ret = -EWOULDBLOCK;
673 	tag = blk_mq_get_tag(&data);
674 	if (tag == BLK_MQ_NO_TAG)
675 		goto out_queue_exit;
676 	if (!(data.rq_flags & RQF_SCHED_TAGS))
677 		blk_mq_inc_active_requests(data.hctx);
678 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679 	blk_mq_rq_time_init(rq, alloc_time_ns);
680 	rq->__data_len = 0;
681 	rq->__sector = (sector_t) -1;
682 	rq->bio = rq->biotail = NULL;
683 	return rq;
684 
685 out_queue_exit:
686 	blk_queue_exit(q);
687 	return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690 
691 static void blk_mq_finish_request(struct request *rq)
692 {
693 	struct request_queue *q = rq->q;
694 
695 	if (rq->rq_flags & RQF_USE_SCHED) {
696 		q->elevator->type->ops.finish_request(rq);
697 		/*
698 		 * For postflush request that may need to be
699 		 * completed twice, we should clear this flag
700 		 * to avoid double finish_request() on the rq.
701 		 */
702 		rq->rq_flags &= ~RQF_USE_SCHED;
703 	}
704 }
705 
706 static void __blk_mq_free_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 	struct blk_mq_ctx *ctx = rq->mq_ctx;
710 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711 	const int sched_tag = rq->internal_tag;
712 
713 	blk_crypto_free_request(rq);
714 	blk_pm_mark_last_busy(rq);
715 	rq->mq_hctx = NULL;
716 
717 	if (rq->tag != BLK_MQ_NO_TAG) {
718 		blk_mq_dec_active_requests(hctx);
719 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 	}
721 	if (sched_tag != BLK_MQ_NO_TAG)
722 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 	blk_mq_sched_restart(hctx);
724 	blk_queue_exit(q);
725 }
726 
727 void blk_mq_free_request(struct request *rq)
728 {
729 	struct request_queue *q = rq->q;
730 
731 	blk_mq_finish_request(rq);
732 
733 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734 		laptop_io_completion(q->disk->bdi);
735 
736 	rq_qos_done(q, rq);
737 
738 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739 	if (req_ref_put_and_test(rq))
740 		__blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746 	struct request *rq;
747 
748 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749 		blk_mq_free_request(rq);
750 }
751 
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755 		rq->q->disk ? rq->q->disk->disk_name : "?",
756 		(__force unsigned long long) rq->cmd_flags);
757 
758 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759 	       (unsigned long long)blk_rq_pos(rq),
760 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765 
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767 			  unsigned int nbytes, blk_status_t error)
768 {
769 	if (unlikely(error)) {
770 		bio->bi_status = error;
771 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 		/*
773 		 * Partial zone append completions cannot be supported as the
774 		 * BIO fragments may end up not being written sequentially.
775 		 */
776 		if (bio->bi_iter.bi_size != nbytes)
777 			bio->bi_status = BLK_STS_IOERR;
778 		else
779 			bio->bi_iter.bi_sector = rq->__sector;
780 	}
781 
782 	bio_advance(bio, nbytes);
783 
784 	if (unlikely(rq->rq_flags & RQF_QUIET))
785 		bio_set_flag(bio, BIO_QUIET);
786 	/* don't actually finish bio if it's part of flush sequence */
787 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788 		bio_endio(bio);
789 }
790 
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793 	if (req->part && blk_do_io_stat(req)) {
794 		const int sgrp = op_stat_group(req_op(req));
795 
796 		part_stat_lock();
797 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798 		part_stat_unlock();
799 	}
800 }
801 
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804 	printk_ratelimited(KERN_ERR
805 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806 		"phys_seg %u prio class %u\n",
807 		blk_status_to_str(status),
808 		req->q->disk ? req->q->disk->disk_name : "?",
809 		blk_rq_pos(req), (__force u32)req_op(req),
810 		blk_op_str(req_op(req)),
811 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812 		req->nr_phys_segments,
813 		IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815 
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823 	int total_bytes = blk_rq_bytes(req);
824 	struct bio *bio = req->bio;
825 
826 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827 
828 	if (!bio)
829 		return;
830 
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833 		req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835 
836 	/*
837 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
838 	 * bio_endio().  Therefore, the keyslot must be released before that.
839 	 */
840 	blk_crypto_rq_put_keyslot(req);
841 
842 	blk_account_io_completion(req, total_bytes);
843 
844 	do {
845 		struct bio *next = bio->bi_next;
846 
847 		/* Completion has already been traced */
848 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849 
850 		if (req_op(req) == REQ_OP_ZONE_APPEND)
851 			bio->bi_iter.bi_sector = req->__sector;
852 
853 		if (!is_flush)
854 			bio_endio(bio);
855 		bio = next;
856 	} while (bio);
857 
858 	/*
859 	 * Reset counters so that the request stacking driver
860 	 * can find how many bytes remain in the request
861 	 * later.
862 	 */
863 	if (!req->end_io) {
864 		req->bio = NULL;
865 		req->__data_len = 0;
866 	}
867 }
868 
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892 		unsigned int nr_bytes)
893 {
894 	int total_bytes;
895 
896 	trace_block_rq_complete(req, error, nr_bytes);
897 
898 	if (!req->bio)
899 		return false;
900 
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903 	    error == BLK_STS_OK)
904 		req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906 
907 	/*
908 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
909 	 * bio_endio().  Therefore, the keyslot must be released before that.
910 	 */
911 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912 		__blk_crypto_rq_put_keyslot(req);
913 
914 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
915 		     !(req->rq_flags & RQF_QUIET)) &&
916 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
917 		blk_print_req_error(req, error);
918 		trace_block_rq_error(req, error, nr_bytes);
919 	}
920 
921 	blk_account_io_completion(req, nr_bytes);
922 
923 	total_bytes = 0;
924 	while (req->bio) {
925 		struct bio *bio = req->bio;
926 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927 
928 		if (bio_bytes == bio->bi_iter.bi_size)
929 			req->bio = bio->bi_next;
930 
931 		/* Completion has already been traced */
932 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933 		req_bio_endio(req, bio, bio_bytes, error);
934 
935 		total_bytes += bio_bytes;
936 		nr_bytes -= bio_bytes;
937 
938 		if (!nr_bytes)
939 			break;
940 	}
941 
942 	/*
943 	 * completely done
944 	 */
945 	if (!req->bio) {
946 		/*
947 		 * Reset counters so that the request stacking driver
948 		 * can find how many bytes remain in the request
949 		 * later.
950 		 */
951 		req->__data_len = 0;
952 		return false;
953 	}
954 
955 	req->__data_len -= total_bytes;
956 
957 	/* update sector only for requests with clear definition of sector */
958 	if (!blk_rq_is_passthrough(req))
959 		req->__sector += total_bytes >> 9;
960 
961 	/* mixed attributes always follow the first bio */
962 	if (req->rq_flags & RQF_MIXED_MERGE) {
963 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
964 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965 	}
966 
967 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968 		/*
969 		 * If total number of sectors is less than the first segment
970 		 * size, something has gone terribly wrong.
971 		 */
972 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973 			blk_dump_rq_flags(req, "request botched");
974 			req->__data_len = blk_rq_cur_bytes(req);
975 		}
976 
977 		/* recalculate the number of segments */
978 		req->nr_phys_segments = blk_recalc_rq_segments(req);
979 	}
980 
981 	return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984 
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987 	trace_block_io_done(req);
988 
989 	/*
990 	 * Account IO completion.  flush_rq isn't accounted as a
991 	 * normal IO on queueing nor completion.  Accounting the
992 	 * containing request is enough.
993 	 */
994 	if (blk_do_io_stat(req) && req->part &&
995 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
996 		const int sgrp = op_stat_group(req_op(req));
997 
998 		part_stat_lock();
999 		update_io_ticks(req->part, jiffies, true);
1000 		part_stat_inc(req->part, ios[sgrp]);
1001 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002 		part_stat_unlock();
1003 	}
1004 }
1005 
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008 	trace_block_io_start(req);
1009 
1010 	if (blk_do_io_stat(req)) {
1011 		/*
1012 		 * All non-passthrough requests are created from a bio with one
1013 		 * exception: when a flush command that is part of a flush sequence
1014 		 * generated by the state machine in blk-flush.c is cloned onto the
1015 		 * lower device by dm-multipath we can get here without a bio.
1016 		 */
1017 		if (req->bio)
1018 			req->part = req->bio->bi_bdev;
1019 		else
1020 			req->part = req->q->disk->part0;
1021 
1022 		part_stat_lock();
1023 		update_io_ticks(req->part, jiffies, false);
1024 		part_stat_unlock();
1025 	}
1026 }
1027 
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030 	if (rq->rq_flags & RQF_STATS)
1031 		blk_stat_add(rq, now);
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	blk_mq_finish_request(rq);
1043 
1044 	if (rq->end_io) {
1045 		rq_qos_done(rq->q, rq);
1046 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047 			blk_mq_free_request(rq);
1048 	} else {
1049 		blk_mq_free_request(rq);
1050 	}
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053 
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057 		BUG();
1058 	__blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061 
1062 #define TAG_COMP_BATCH		32
1063 
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065 					  int *tag_array, int nr_tags)
1066 {
1067 	struct request_queue *q = hctx->queue;
1068 
1069 	blk_mq_sub_active_requests(hctx, nr_tags);
1070 
1071 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074 
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 	struct request *rq;
1080 	u64 now = 0;
1081 
1082 	if (iob->need_ts)
1083 		now = ktime_get_ns();
1084 
1085 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 		prefetch(rq->bio);
1087 		prefetch(rq->rq_next);
1088 
1089 		blk_complete_request(rq);
1090 		if (iob->need_ts)
1091 			__blk_mq_end_request_acct(rq, now);
1092 
1093 		blk_mq_finish_request(rq);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184 
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 	struct llist_head *list;
1188 
1189 	preempt_disable();
1190 	list = this_cpu_ptr(&blk_cpu_done);
1191 	if (llist_add(&rq->ipi_list, list))
1192 		raise_softirq(BLOCK_SOFTIRQ);
1193 	preempt_enable();
1194 }
1195 
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199 
1200 	/*
1201 	 * For request which hctx has only one ctx mapping,
1202 	 * or a polled request, always complete locally,
1203 	 * it's pointless to redirect the completion.
1204 	 */
1205 	if ((rq->mq_hctx->nr_ctx == 1 &&
1206 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 	     rq->cmd_flags & REQ_POLLED)
1208 		return false;
1209 
1210 	if (blk_mq_complete_need_ipi(rq)) {
1211 		blk_mq_complete_send_ipi(rq);
1212 		return true;
1213 	}
1214 
1215 	if (rq->q->nr_hw_queues == 1) {
1216 		blk_mq_raise_softirq(rq);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222 
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:		the request being processed
1226  *
1227  * Description:
1228  *	Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 	if (!blk_mq_complete_request_remote(rq))
1233 		rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236 
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 	struct request_queue *q = rq->q;
1248 
1249 	trace_block_rq_issue(rq);
1250 
1251 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252 		rq->io_start_time_ns = ktime_get_ns();
1253 		rq->stats_sectors = blk_rq_sectors(rq);
1254 		rq->rq_flags |= RQF_STATS;
1255 		rq_qos_issue(q, rq);
1256 	}
1257 
1258 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259 
1260 	blk_add_timer(rq);
1261 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263 
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266 		q->integrity.profile->prepare_fn(rq);
1267 #endif
1268 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272 
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280 	if (plug->multiple_queues)
1281 		return BLK_MAX_REQUEST_COUNT * 2;
1282 	return BLK_MAX_REQUEST_COUNT;
1283 }
1284 
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287 	struct request *last = rq_list_peek(&plug->mq_list);
1288 
1289 	if (!plug->rq_count) {
1290 		trace_block_plug(rq->q);
1291 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292 		   (!blk_queue_nomerges(rq->q) &&
1293 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294 		blk_mq_flush_plug_list(plug, false);
1295 		last = NULL;
1296 		trace_block_plug(rq->q);
1297 	}
1298 
1299 	if (!plug->multiple_queues && last && last->q != rq->q)
1300 		plug->multiple_queues = true;
1301 	/*
1302 	 * Any request allocated from sched tags can't be issued to
1303 	 * ->queue_rqs() directly
1304 	 */
1305 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306 		plug->has_elevator = true;
1307 	rq->rq_next = NULL;
1308 	rq_list_add(&plug->mq_list, rq);
1309 	plug->rq_count++;
1310 }
1311 
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:		request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327 
1328 	WARN_ON(irqs_disabled());
1329 	WARN_ON(!blk_rq_is_passthrough(rq));
1330 
1331 	blk_account_io_start(rq);
1332 
1333 	/*
1334 	 * As plugging can be enabled for passthrough requests on a zoned
1335 	 * device, directly accessing the plug instead of using blk_mq_plug()
1336 	 * should not have any consequences.
1337 	 */
1338 	if (current->plug && !at_head) {
1339 		blk_add_rq_to_plug(current->plug, rq);
1340 		return;
1341 	}
1342 
1343 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347 
1348 struct blk_rq_wait {
1349 	struct completion done;
1350 	blk_status_t ret;
1351 };
1352 
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355 	struct blk_rq_wait *wait = rq->end_io_data;
1356 
1357 	wait->ret = ret;
1358 	complete(&wait->done);
1359 	return RQ_END_IO_NONE;
1360 }
1361 
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364 	if (!rq->mq_hctx)
1365 		return false;
1366 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367 		return false;
1368 	return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371 
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374 	do {
1375 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376 		cond_resched();
1377 	} while (!completion_done(wait));
1378 }
1379 
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:		request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393 	struct blk_rq_wait wait = {
1394 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395 	};
1396 
1397 	WARN_ON(irqs_disabled());
1398 	WARN_ON(!blk_rq_is_passthrough(rq));
1399 
1400 	rq->end_io_data = &wait;
1401 	rq->end_io = blk_end_sync_rq;
1402 
1403 	blk_account_io_start(rq);
1404 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405 	blk_mq_run_hw_queue(hctx, false);
1406 
1407 	if (blk_rq_is_poll(rq)) {
1408 		blk_rq_poll_completion(rq, &wait.done);
1409 	} else {
1410 		/*
1411 		 * Prevent hang_check timer from firing at us during very long
1412 		 * I/O
1413 		 */
1414 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1415 
1416 		if (hang_check)
1417 			while (!wait_for_completion_io_timeout(&wait.done,
1418 					hang_check * (HZ/2)))
1419 				;
1420 		else
1421 			wait_for_completion_io(&wait.done);
1422 	}
1423 
1424 	return wait.ret;
1425 }
1426 EXPORT_SYMBOL(blk_execute_rq);
1427 
1428 static void __blk_mq_requeue_request(struct request *rq)
1429 {
1430 	struct request_queue *q = rq->q;
1431 
1432 	blk_mq_put_driver_tag(rq);
1433 
1434 	trace_block_rq_requeue(rq);
1435 	rq_qos_requeue(q, rq);
1436 
1437 	if (blk_mq_request_started(rq)) {
1438 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1439 		rq->rq_flags &= ~RQF_TIMED_OUT;
1440 	}
1441 }
1442 
1443 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1444 {
1445 	struct request_queue *q = rq->q;
1446 	unsigned long flags;
1447 
1448 	__blk_mq_requeue_request(rq);
1449 
1450 	/* this request will be re-inserted to io scheduler queue */
1451 	blk_mq_sched_requeue_request(rq);
1452 
1453 	spin_lock_irqsave(&q->requeue_lock, flags);
1454 	list_add_tail(&rq->queuelist, &q->requeue_list);
1455 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1456 
1457 	if (kick_requeue_list)
1458 		blk_mq_kick_requeue_list(q);
1459 }
1460 EXPORT_SYMBOL(blk_mq_requeue_request);
1461 
1462 static void blk_mq_requeue_work(struct work_struct *work)
1463 {
1464 	struct request_queue *q =
1465 		container_of(work, struct request_queue, requeue_work.work);
1466 	LIST_HEAD(rq_list);
1467 	LIST_HEAD(flush_list);
1468 	struct request *rq;
1469 
1470 	spin_lock_irq(&q->requeue_lock);
1471 	list_splice_init(&q->requeue_list, &rq_list);
1472 	list_splice_init(&q->flush_list, &flush_list);
1473 	spin_unlock_irq(&q->requeue_lock);
1474 
1475 	while (!list_empty(&rq_list)) {
1476 		rq = list_entry(rq_list.next, struct request, queuelist);
1477 		/*
1478 		 * If RQF_DONTPREP ist set, the request has been started by the
1479 		 * driver already and might have driver-specific data allocated
1480 		 * already.  Insert it into the hctx dispatch list to avoid
1481 		 * block layer merges for the request.
1482 		 */
1483 		if (rq->rq_flags & RQF_DONTPREP) {
1484 			list_del_init(&rq->queuelist);
1485 			blk_mq_request_bypass_insert(rq, 0);
1486 		} else {
1487 			list_del_init(&rq->queuelist);
1488 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1489 		}
1490 	}
1491 
1492 	while (!list_empty(&flush_list)) {
1493 		rq = list_entry(flush_list.next, struct request, queuelist);
1494 		list_del_init(&rq->queuelist);
1495 		blk_mq_insert_request(rq, 0);
1496 	}
1497 
1498 	blk_mq_run_hw_queues(q, false);
1499 }
1500 
1501 void blk_mq_kick_requeue_list(struct request_queue *q)
1502 {
1503 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1504 }
1505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1506 
1507 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1508 				    unsigned long msecs)
1509 {
1510 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1511 				    msecs_to_jiffies(msecs));
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1514 
1515 static bool blk_is_flush_data_rq(struct request *rq)
1516 {
1517 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1518 }
1519 
1520 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1521 {
1522 	/*
1523 	 * If we find a request that isn't idle we know the queue is busy
1524 	 * as it's checked in the iter.
1525 	 * Return false to stop the iteration.
1526 	 *
1527 	 * In case of queue quiesce, if one flush data request is completed,
1528 	 * don't count it as inflight given the flush sequence is suspended,
1529 	 * and the original flush data request is invisible to driver, just
1530 	 * like other pending requests because of quiesce
1531 	 */
1532 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1533 				blk_is_flush_data_rq(rq) &&
1534 				blk_mq_request_completed(rq))) {
1535 		bool *busy = priv;
1536 
1537 		*busy = true;
1538 		return false;
1539 	}
1540 
1541 	return true;
1542 }
1543 
1544 bool blk_mq_queue_inflight(struct request_queue *q)
1545 {
1546 	bool busy = false;
1547 
1548 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1549 	return busy;
1550 }
1551 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1552 
1553 static void blk_mq_rq_timed_out(struct request *req)
1554 {
1555 	req->rq_flags |= RQF_TIMED_OUT;
1556 	if (req->q->mq_ops->timeout) {
1557 		enum blk_eh_timer_return ret;
1558 
1559 		ret = req->q->mq_ops->timeout(req);
1560 		if (ret == BLK_EH_DONE)
1561 			return;
1562 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1563 	}
1564 
1565 	blk_add_timer(req);
1566 }
1567 
1568 struct blk_expired_data {
1569 	bool has_timedout_rq;
1570 	unsigned long next;
1571 	unsigned long timeout_start;
1572 };
1573 
1574 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1575 {
1576 	unsigned long deadline;
1577 
1578 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1579 		return false;
1580 	if (rq->rq_flags & RQF_TIMED_OUT)
1581 		return false;
1582 
1583 	deadline = READ_ONCE(rq->deadline);
1584 	if (time_after_eq(expired->timeout_start, deadline))
1585 		return true;
1586 
1587 	if (expired->next == 0)
1588 		expired->next = deadline;
1589 	else if (time_after(expired->next, deadline))
1590 		expired->next = deadline;
1591 	return false;
1592 }
1593 
1594 void blk_mq_put_rq_ref(struct request *rq)
1595 {
1596 	if (is_flush_rq(rq)) {
1597 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1598 			blk_mq_free_request(rq);
1599 	} else if (req_ref_put_and_test(rq)) {
1600 		__blk_mq_free_request(rq);
1601 	}
1602 }
1603 
1604 static bool blk_mq_check_expired(struct request *rq, void *priv)
1605 {
1606 	struct blk_expired_data *expired = priv;
1607 
1608 	/*
1609 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1610 	 * be reallocated underneath the timeout handler's processing, then
1611 	 * the expire check is reliable. If the request is not expired, then
1612 	 * it was completed and reallocated as a new request after returning
1613 	 * from blk_mq_check_expired().
1614 	 */
1615 	if (blk_mq_req_expired(rq, expired)) {
1616 		expired->has_timedout_rq = true;
1617 		return false;
1618 	}
1619 	return true;
1620 }
1621 
1622 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1623 {
1624 	struct blk_expired_data *expired = priv;
1625 
1626 	if (blk_mq_req_expired(rq, expired))
1627 		blk_mq_rq_timed_out(rq);
1628 	return true;
1629 }
1630 
1631 static void blk_mq_timeout_work(struct work_struct *work)
1632 {
1633 	struct request_queue *q =
1634 		container_of(work, struct request_queue, timeout_work);
1635 	struct blk_expired_data expired = {
1636 		.timeout_start = jiffies,
1637 	};
1638 	struct blk_mq_hw_ctx *hctx;
1639 	unsigned long i;
1640 
1641 	/* A deadlock might occur if a request is stuck requiring a
1642 	 * timeout at the same time a queue freeze is waiting
1643 	 * completion, since the timeout code would not be able to
1644 	 * acquire the queue reference here.
1645 	 *
1646 	 * That's why we don't use blk_queue_enter here; instead, we use
1647 	 * percpu_ref_tryget directly, because we need to be able to
1648 	 * obtain a reference even in the short window between the queue
1649 	 * starting to freeze, by dropping the first reference in
1650 	 * blk_freeze_queue_start, and the moment the last request is
1651 	 * consumed, marked by the instant q_usage_counter reaches
1652 	 * zero.
1653 	 */
1654 	if (!percpu_ref_tryget(&q->q_usage_counter))
1655 		return;
1656 
1657 	/* check if there is any timed-out request */
1658 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1659 	if (expired.has_timedout_rq) {
1660 		/*
1661 		 * Before walking tags, we must ensure any submit started
1662 		 * before the current time has finished. Since the submit
1663 		 * uses srcu or rcu, wait for a synchronization point to
1664 		 * ensure all running submits have finished
1665 		 */
1666 		blk_mq_wait_quiesce_done(q->tag_set);
1667 
1668 		expired.next = 0;
1669 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1670 	}
1671 
1672 	if (expired.next != 0) {
1673 		mod_timer(&q->timeout, expired.next);
1674 	} else {
1675 		/*
1676 		 * Request timeouts are handled as a forward rolling timer. If
1677 		 * we end up here it means that no requests are pending and
1678 		 * also that no request has been pending for a while. Mark
1679 		 * each hctx as idle.
1680 		 */
1681 		queue_for_each_hw_ctx(q, hctx, i) {
1682 			/* the hctx may be unmapped, so check it here */
1683 			if (blk_mq_hw_queue_mapped(hctx))
1684 				blk_mq_tag_idle(hctx);
1685 		}
1686 	}
1687 	blk_queue_exit(q);
1688 }
1689 
1690 struct flush_busy_ctx_data {
1691 	struct blk_mq_hw_ctx *hctx;
1692 	struct list_head *list;
1693 };
1694 
1695 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1696 {
1697 	struct flush_busy_ctx_data *flush_data = data;
1698 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1699 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1700 	enum hctx_type type = hctx->type;
1701 
1702 	spin_lock(&ctx->lock);
1703 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1704 	sbitmap_clear_bit(sb, bitnr);
1705 	spin_unlock(&ctx->lock);
1706 	return true;
1707 }
1708 
1709 /*
1710  * Process software queues that have been marked busy, splicing them
1711  * to the for-dispatch
1712  */
1713 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1714 {
1715 	struct flush_busy_ctx_data data = {
1716 		.hctx = hctx,
1717 		.list = list,
1718 	};
1719 
1720 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1721 }
1722 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1723 
1724 struct dispatch_rq_data {
1725 	struct blk_mq_hw_ctx *hctx;
1726 	struct request *rq;
1727 };
1728 
1729 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1730 		void *data)
1731 {
1732 	struct dispatch_rq_data *dispatch_data = data;
1733 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1734 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1735 	enum hctx_type type = hctx->type;
1736 
1737 	spin_lock(&ctx->lock);
1738 	if (!list_empty(&ctx->rq_lists[type])) {
1739 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1740 		list_del_init(&dispatch_data->rq->queuelist);
1741 		if (list_empty(&ctx->rq_lists[type]))
1742 			sbitmap_clear_bit(sb, bitnr);
1743 	}
1744 	spin_unlock(&ctx->lock);
1745 
1746 	return !dispatch_data->rq;
1747 }
1748 
1749 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1750 					struct blk_mq_ctx *start)
1751 {
1752 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1753 	struct dispatch_rq_data data = {
1754 		.hctx = hctx,
1755 		.rq   = NULL,
1756 	};
1757 
1758 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1759 			       dispatch_rq_from_ctx, &data);
1760 
1761 	return data.rq;
1762 }
1763 
1764 bool __blk_mq_alloc_driver_tag(struct request *rq)
1765 {
1766 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1767 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1768 	int tag;
1769 
1770 	blk_mq_tag_busy(rq->mq_hctx);
1771 
1772 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1773 		bt = &rq->mq_hctx->tags->breserved_tags;
1774 		tag_offset = 0;
1775 	} else {
1776 		if (!hctx_may_queue(rq->mq_hctx, bt))
1777 			return false;
1778 	}
1779 
1780 	tag = __sbitmap_queue_get(bt);
1781 	if (tag == BLK_MQ_NO_TAG)
1782 		return false;
1783 
1784 	rq->tag = tag + tag_offset;
1785 	blk_mq_inc_active_requests(rq->mq_hctx);
1786 	return true;
1787 }
1788 
1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1790 				int flags, void *key)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 
1794 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1795 
1796 	spin_lock(&hctx->dispatch_wait_lock);
1797 	if (!list_empty(&wait->entry)) {
1798 		struct sbitmap_queue *sbq;
1799 
1800 		list_del_init(&wait->entry);
1801 		sbq = &hctx->tags->bitmap_tags;
1802 		atomic_dec(&sbq->ws_active);
1803 	}
1804 	spin_unlock(&hctx->dispatch_wait_lock);
1805 
1806 	blk_mq_run_hw_queue(hctx, true);
1807 	return 1;
1808 }
1809 
1810 /*
1811  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1812  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1813  * restart. For both cases, take care to check the condition again after
1814  * marking us as waiting.
1815  */
1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1817 				 struct request *rq)
1818 {
1819 	struct sbitmap_queue *sbq;
1820 	struct wait_queue_head *wq;
1821 	wait_queue_entry_t *wait;
1822 	bool ret;
1823 
1824 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1825 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1826 		blk_mq_sched_mark_restart_hctx(hctx);
1827 
1828 		/*
1829 		 * It's possible that a tag was freed in the window between the
1830 		 * allocation failure and adding the hardware queue to the wait
1831 		 * queue.
1832 		 *
1833 		 * Don't clear RESTART here, someone else could have set it.
1834 		 * At most this will cost an extra queue run.
1835 		 */
1836 		return blk_mq_get_driver_tag(rq);
1837 	}
1838 
1839 	wait = &hctx->dispatch_wait;
1840 	if (!list_empty_careful(&wait->entry))
1841 		return false;
1842 
1843 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1844 		sbq = &hctx->tags->breserved_tags;
1845 	else
1846 		sbq = &hctx->tags->bitmap_tags;
1847 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1848 
1849 	spin_lock_irq(&wq->lock);
1850 	spin_lock(&hctx->dispatch_wait_lock);
1851 	if (!list_empty(&wait->entry)) {
1852 		spin_unlock(&hctx->dispatch_wait_lock);
1853 		spin_unlock_irq(&wq->lock);
1854 		return false;
1855 	}
1856 
1857 	atomic_inc(&sbq->ws_active);
1858 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1859 	__add_wait_queue(wq, wait);
1860 
1861 	/*
1862 	 * It's possible that a tag was freed in the window between the
1863 	 * allocation failure and adding the hardware queue to the wait
1864 	 * queue.
1865 	 */
1866 	ret = blk_mq_get_driver_tag(rq);
1867 	if (!ret) {
1868 		spin_unlock(&hctx->dispatch_wait_lock);
1869 		spin_unlock_irq(&wq->lock);
1870 		return false;
1871 	}
1872 
1873 	/*
1874 	 * We got a tag, remove ourselves from the wait queue to ensure
1875 	 * someone else gets the wakeup.
1876 	 */
1877 	list_del_init(&wait->entry);
1878 	atomic_dec(&sbq->ws_active);
1879 	spin_unlock(&hctx->dispatch_wait_lock);
1880 	spin_unlock_irq(&wq->lock);
1881 
1882 	return true;
1883 }
1884 
1885 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1887 /*
1888  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1889  * - EWMA is one simple way to compute running average value
1890  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1891  * - take 4 as factor for avoiding to get too small(0) result, and this
1892  *   factor doesn't matter because EWMA decreases exponentially
1893  */
1894 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1895 {
1896 	unsigned int ewma;
1897 
1898 	ewma = hctx->dispatch_busy;
1899 
1900 	if (!ewma && !busy)
1901 		return;
1902 
1903 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1904 	if (busy)
1905 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1906 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1907 
1908 	hctx->dispatch_busy = ewma;
1909 }
1910 
1911 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1912 
1913 static void blk_mq_handle_dev_resource(struct request *rq,
1914 				       struct list_head *list)
1915 {
1916 	list_add(&rq->queuelist, list);
1917 	__blk_mq_requeue_request(rq);
1918 }
1919 
1920 static void blk_mq_handle_zone_resource(struct request *rq,
1921 					struct list_head *zone_list)
1922 {
1923 	/*
1924 	 * If we end up here it is because we cannot dispatch a request to a
1925 	 * specific zone due to LLD level zone-write locking or other zone
1926 	 * related resource not being available. In this case, set the request
1927 	 * aside in zone_list for retrying it later.
1928 	 */
1929 	list_add(&rq->queuelist, zone_list);
1930 	__blk_mq_requeue_request(rq);
1931 }
1932 
1933 enum prep_dispatch {
1934 	PREP_DISPATCH_OK,
1935 	PREP_DISPATCH_NO_TAG,
1936 	PREP_DISPATCH_NO_BUDGET,
1937 };
1938 
1939 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1940 						  bool need_budget)
1941 {
1942 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1943 	int budget_token = -1;
1944 
1945 	if (need_budget) {
1946 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1947 		if (budget_token < 0) {
1948 			blk_mq_put_driver_tag(rq);
1949 			return PREP_DISPATCH_NO_BUDGET;
1950 		}
1951 		blk_mq_set_rq_budget_token(rq, budget_token);
1952 	}
1953 
1954 	if (!blk_mq_get_driver_tag(rq)) {
1955 		/*
1956 		 * The initial allocation attempt failed, so we need to
1957 		 * rerun the hardware queue when a tag is freed. The
1958 		 * waitqueue takes care of that. If the queue is run
1959 		 * before we add this entry back on the dispatch list,
1960 		 * we'll re-run it below.
1961 		 */
1962 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1963 			/*
1964 			 * All budgets not got from this function will be put
1965 			 * together during handling partial dispatch
1966 			 */
1967 			if (need_budget)
1968 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1969 			return PREP_DISPATCH_NO_TAG;
1970 		}
1971 	}
1972 
1973 	return PREP_DISPATCH_OK;
1974 }
1975 
1976 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1977 static void blk_mq_release_budgets(struct request_queue *q,
1978 		struct list_head *list)
1979 {
1980 	struct request *rq;
1981 
1982 	list_for_each_entry(rq, list, queuelist) {
1983 		int budget_token = blk_mq_get_rq_budget_token(rq);
1984 
1985 		if (budget_token >= 0)
1986 			blk_mq_put_dispatch_budget(q, budget_token);
1987 	}
1988 }
1989 
1990 /*
1991  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1992  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1993  * details)
1994  * Attention, we should explicitly call this in unusual cases:
1995  *  1) did not queue everything initially scheduled to queue
1996  *  2) the last attempt to queue a request failed
1997  */
1998 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1999 			      bool from_schedule)
2000 {
2001 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2002 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2003 		hctx->queue->mq_ops->commit_rqs(hctx);
2004 	}
2005 }
2006 
2007 /*
2008  * Returns true if we did some work AND can potentially do more.
2009  */
2010 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2011 			     unsigned int nr_budgets)
2012 {
2013 	enum prep_dispatch prep;
2014 	struct request_queue *q = hctx->queue;
2015 	struct request *rq;
2016 	int queued;
2017 	blk_status_t ret = BLK_STS_OK;
2018 	LIST_HEAD(zone_list);
2019 	bool needs_resource = false;
2020 
2021 	if (list_empty(list))
2022 		return false;
2023 
2024 	/*
2025 	 * Now process all the entries, sending them to the driver.
2026 	 */
2027 	queued = 0;
2028 	do {
2029 		struct blk_mq_queue_data bd;
2030 
2031 		rq = list_first_entry(list, struct request, queuelist);
2032 
2033 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2034 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2035 		if (prep != PREP_DISPATCH_OK)
2036 			break;
2037 
2038 		list_del_init(&rq->queuelist);
2039 
2040 		bd.rq = rq;
2041 		bd.last = list_empty(list);
2042 
2043 		/*
2044 		 * once the request is queued to lld, no need to cover the
2045 		 * budget any more
2046 		 */
2047 		if (nr_budgets)
2048 			nr_budgets--;
2049 		ret = q->mq_ops->queue_rq(hctx, &bd);
2050 		switch (ret) {
2051 		case BLK_STS_OK:
2052 			queued++;
2053 			break;
2054 		case BLK_STS_RESOURCE:
2055 			needs_resource = true;
2056 			fallthrough;
2057 		case BLK_STS_DEV_RESOURCE:
2058 			blk_mq_handle_dev_resource(rq, list);
2059 			goto out;
2060 		case BLK_STS_ZONE_RESOURCE:
2061 			/*
2062 			 * Move the request to zone_list and keep going through
2063 			 * the dispatch list to find more requests the drive can
2064 			 * accept.
2065 			 */
2066 			blk_mq_handle_zone_resource(rq, &zone_list);
2067 			needs_resource = true;
2068 			break;
2069 		default:
2070 			blk_mq_end_request(rq, ret);
2071 		}
2072 	} while (!list_empty(list));
2073 out:
2074 	if (!list_empty(&zone_list))
2075 		list_splice_tail_init(&zone_list, list);
2076 
2077 	/* If we didn't flush the entire list, we could have told the driver
2078 	 * there was more coming, but that turned out to be a lie.
2079 	 */
2080 	if (!list_empty(list) || ret != BLK_STS_OK)
2081 		blk_mq_commit_rqs(hctx, queued, false);
2082 
2083 	/*
2084 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2085 	 * that is where we will continue on next queue run.
2086 	 */
2087 	if (!list_empty(list)) {
2088 		bool needs_restart;
2089 		/* For non-shared tags, the RESTART check will suffice */
2090 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2091 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2092 			blk_mq_is_shared_tags(hctx->flags));
2093 
2094 		if (nr_budgets)
2095 			blk_mq_release_budgets(q, list);
2096 
2097 		spin_lock(&hctx->lock);
2098 		list_splice_tail_init(list, &hctx->dispatch);
2099 		spin_unlock(&hctx->lock);
2100 
2101 		/*
2102 		 * Order adding requests to hctx->dispatch and checking
2103 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2104 		 * in blk_mq_sched_restart(). Avoid restart code path to
2105 		 * miss the new added requests to hctx->dispatch, meantime
2106 		 * SCHED_RESTART is observed here.
2107 		 */
2108 		smp_mb();
2109 
2110 		/*
2111 		 * If SCHED_RESTART was set by the caller of this function and
2112 		 * it is no longer set that means that it was cleared by another
2113 		 * thread and hence that a queue rerun is needed.
2114 		 *
2115 		 * If 'no_tag' is set, that means that we failed getting
2116 		 * a driver tag with an I/O scheduler attached. If our dispatch
2117 		 * waitqueue is no longer active, ensure that we run the queue
2118 		 * AFTER adding our entries back to the list.
2119 		 *
2120 		 * If no I/O scheduler has been configured it is possible that
2121 		 * the hardware queue got stopped and restarted before requests
2122 		 * were pushed back onto the dispatch list. Rerun the queue to
2123 		 * avoid starvation. Notes:
2124 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2125 		 *   been stopped before rerunning a queue.
2126 		 * - Some but not all block drivers stop a queue before
2127 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2128 		 *   and dm-rq.
2129 		 *
2130 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2131 		 * bit is set, run queue after a delay to avoid IO stalls
2132 		 * that could otherwise occur if the queue is idle.  We'll do
2133 		 * similar if we couldn't get budget or couldn't lock a zone
2134 		 * and SCHED_RESTART is set.
2135 		 */
2136 		needs_restart = blk_mq_sched_needs_restart(hctx);
2137 		if (prep == PREP_DISPATCH_NO_BUDGET)
2138 			needs_resource = true;
2139 		if (!needs_restart ||
2140 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2141 			blk_mq_run_hw_queue(hctx, true);
2142 		else if (needs_resource)
2143 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2144 
2145 		blk_mq_update_dispatch_busy(hctx, true);
2146 		return false;
2147 	}
2148 
2149 	blk_mq_update_dispatch_busy(hctx, false);
2150 	return true;
2151 }
2152 
2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2156 
2157 	if (cpu >= nr_cpu_ids)
2158 		cpu = cpumask_first(hctx->cpumask);
2159 	return cpu;
2160 }
2161 
2162 /*
2163  * It'd be great if the workqueue API had a way to pass
2164  * in a mask and had some smarts for more clever placement.
2165  * For now we just round-robin here, switching for every
2166  * BLK_MQ_CPU_WORK_BATCH queued items.
2167  */
2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2169 {
2170 	bool tried = false;
2171 	int next_cpu = hctx->next_cpu;
2172 
2173 	if (hctx->queue->nr_hw_queues == 1)
2174 		return WORK_CPU_UNBOUND;
2175 
2176 	if (--hctx->next_cpu_batch <= 0) {
2177 select_cpu:
2178 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2179 				cpu_online_mask);
2180 		if (next_cpu >= nr_cpu_ids)
2181 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2182 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2183 	}
2184 
2185 	/*
2186 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2187 	 * and it should only happen in the path of handling CPU DEAD.
2188 	 */
2189 	if (!cpu_online(next_cpu)) {
2190 		if (!tried) {
2191 			tried = true;
2192 			goto select_cpu;
2193 		}
2194 
2195 		/*
2196 		 * Make sure to re-select CPU next time once after CPUs
2197 		 * in hctx->cpumask become online again.
2198 		 */
2199 		hctx->next_cpu = next_cpu;
2200 		hctx->next_cpu_batch = 1;
2201 		return WORK_CPU_UNBOUND;
2202 	}
2203 
2204 	hctx->next_cpu = next_cpu;
2205 	return next_cpu;
2206 }
2207 
2208 /**
2209  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2210  * @hctx: Pointer to the hardware queue to run.
2211  * @msecs: Milliseconds of delay to wait before running the queue.
2212  *
2213  * Run a hardware queue asynchronously with a delay of @msecs.
2214  */
2215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2216 {
2217 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2218 		return;
2219 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2220 				    msecs_to_jiffies(msecs));
2221 }
2222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2223 
2224 /**
2225  * blk_mq_run_hw_queue - Start to run a hardware queue.
2226  * @hctx: Pointer to the hardware queue to run.
2227  * @async: If we want to run the queue asynchronously.
2228  *
2229  * Check if the request queue is not in a quiesced state and if there are
2230  * pending requests to be sent. If this is true, run the queue to send requests
2231  * to hardware.
2232  */
2233 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2234 {
2235 	bool need_run;
2236 
2237 	/*
2238 	 * We can't run the queue inline with interrupts disabled.
2239 	 */
2240 	WARN_ON_ONCE(!async && in_interrupt());
2241 
2242 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2243 
2244 	/*
2245 	 * When queue is quiesced, we may be switching io scheduler, or
2246 	 * updating nr_hw_queues, or other things, and we can't run queue
2247 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2248 	 *
2249 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2250 	 * quiesced.
2251 	 */
2252 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2253 		need_run = !blk_queue_quiesced(hctx->queue) &&
2254 		blk_mq_hctx_has_pending(hctx));
2255 
2256 	if (!need_run)
2257 		return;
2258 
2259 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2260 		blk_mq_delay_run_hw_queue(hctx, 0);
2261 		return;
2262 	}
2263 
2264 	blk_mq_run_dispatch_ops(hctx->queue,
2265 				blk_mq_sched_dispatch_requests(hctx));
2266 }
2267 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2268 
2269 /*
2270  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2271  * scheduler.
2272  */
2273 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2274 {
2275 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2276 	/*
2277 	 * If the IO scheduler does not respect hardware queues when
2278 	 * dispatching, we just don't bother with multiple HW queues and
2279 	 * dispatch from hctx for the current CPU since running multiple queues
2280 	 * just causes lock contention inside the scheduler and pointless cache
2281 	 * bouncing.
2282 	 */
2283 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2284 
2285 	if (!blk_mq_hctx_stopped(hctx))
2286 		return hctx;
2287 	return NULL;
2288 }
2289 
2290 /**
2291  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2292  * @q: Pointer to the request queue to run.
2293  * @async: If we want to run the queue asynchronously.
2294  */
2295 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2296 {
2297 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2298 	unsigned long i;
2299 
2300 	sq_hctx = NULL;
2301 	if (blk_queue_sq_sched(q))
2302 		sq_hctx = blk_mq_get_sq_hctx(q);
2303 	queue_for_each_hw_ctx(q, hctx, i) {
2304 		if (blk_mq_hctx_stopped(hctx))
2305 			continue;
2306 		/*
2307 		 * Dispatch from this hctx either if there's no hctx preferred
2308 		 * by IO scheduler or if it has requests that bypass the
2309 		 * scheduler.
2310 		 */
2311 		if (!sq_hctx || sq_hctx == hctx ||
2312 		    !list_empty_careful(&hctx->dispatch))
2313 			blk_mq_run_hw_queue(hctx, async);
2314 	}
2315 }
2316 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2317 
2318 /**
2319  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2320  * @q: Pointer to the request queue to run.
2321  * @msecs: Milliseconds of delay to wait before running the queues.
2322  */
2323 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2324 {
2325 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2326 	unsigned long i;
2327 
2328 	sq_hctx = NULL;
2329 	if (blk_queue_sq_sched(q))
2330 		sq_hctx = blk_mq_get_sq_hctx(q);
2331 	queue_for_each_hw_ctx(q, hctx, i) {
2332 		if (blk_mq_hctx_stopped(hctx))
2333 			continue;
2334 		/*
2335 		 * If there is already a run_work pending, leave the
2336 		 * pending delay untouched. Otherwise, a hctx can stall
2337 		 * if another hctx is re-delaying the other's work
2338 		 * before the work executes.
2339 		 */
2340 		if (delayed_work_pending(&hctx->run_work))
2341 			continue;
2342 		/*
2343 		 * Dispatch from this hctx either if there's no hctx preferred
2344 		 * by IO scheduler or if it has requests that bypass the
2345 		 * scheduler.
2346 		 */
2347 		if (!sq_hctx || sq_hctx == hctx ||
2348 		    !list_empty_careful(&hctx->dispatch))
2349 			blk_mq_delay_run_hw_queue(hctx, msecs);
2350 	}
2351 }
2352 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2353 
2354 /*
2355  * This function is often used for pausing .queue_rq() by driver when
2356  * there isn't enough resource or some conditions aren't satisfied, and
2357  * BLK_STS_RESOURCE is usually returned.
2358  *
2359  * We do not guarantee that dispatch can be drained or blocked
2360  * after blk_mq_stop_hw_queue() returns. Please use
2361  * blk_mq_quiesce_queue() for that requirement.
2362  */
2363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365 	cancel_delayed_work(&hctx->run_work);
2366 
2367 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2370 
2371 /*
2372  * This function is often used for pausing .queue_rq() by driver when
2373  * there isn't enough resource or some conditions aren't satisfied, and
2374  * BLK_STS_RESOURCE is usually returned.
2375  *
2376  * We do not guarantee that dispatch can be drained or blocked
2377  * after blk_mq_stop_hw_queues() returns. Please use
2378  * blk_mq_quiesce_queue() for that requirement.
2379  */
2380 void blk_mq_stop_hw_queues(struct request_queue *q)
2381 {
2382 	struct blk_mq_hw_ctx *hctx;
2383 	unsigned long i;
2384 
2385 	queue_for_each_hw_ctx(q, hctx, i)
2386 		blk_mq_stop_hw_queue(hctx);
2387 }
2388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2389 
2390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2391 {
2392 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393 
2394 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2395 }
2396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2397 
2398 void blk_mq_start_hw_queues(struct request_queue *q)
2399 {
2400 	struct blk_mq_hw_ctx *hctx;
2401 	unsigned long i;
2402 
2403 	queue_for_each_hw_ctx(q, hctx, i)
2404 		blk_mq_start_hw_queue(hctx);
2405 }
2406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2407 
2408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2409 {
2410 	if (!blk_mq_hctx_stopped(hctx))
2411 		return;
2412 
2413 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414 	blk_mq_run_hw_queue(hctx, async);
2415 }
2416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2417 
2418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2419 {
2420 	struct blk_mq_hw_ctx *hctx;
2421 	unsigned long i;
2422 
2423 	queue_for_each_hw_ctx(q, hctx, i)
2424 		blk_mq_start_stopped_hw_queue(hctx, async ||
2425 					(hctx->flags & BLK_MQ_F_BLOCKING));
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2428 
2429 static void blk_mq_run_work_fn(struct work_struct *work)
2430 {
2431 	struct blk_mq_hw_ctx *hctx =
2432 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2433 
2434 	blk_mq_run_dispatch_ops(hctx->queue,
2435 				blk_mq_sched_dispatch_requests(hctx));
2436 }
2437 
2438 /**
2439  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2440  * @rq: Pointer to request to be inserted.
2441  * @flags: BLK_MQ_INSERT_*
2442  *
2443  * Should only be used carefully, when the caller knows we want to
2444  * bypass a potential IO scheduler on the target device.
2445  */
2446 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2447 {
2448 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2449 
2450 	spin_lock(&hctx->lock);
2451 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2452 		list_add(&rq->queuelist, &hctx->dispatch);
2453 	else
2454 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2455 	spin_unlock(&hctx->lock);
2456 }
2457 
2458 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2459 		struct blk_mq_ctx *ctx, struct list_head *list,
2460 		bool run_queue_async)
2461 {
2462 	struct request *rq;
2463 	enum hctx_type type = hctx->type;
2464 
2465 	/*
2466 	 * Try to issue requests directly if the hw queue isn't busy to save an
2467 	 * extra enqueue & dequeue to the sw queue.
2468 	 */
2469 	if (!hctx->dispatch_busy && !run_queue_async) {
2470 		blk_mq_run_dispatch_ops(hctx->queue,
2471 			blk_mq_try_issue_list_directly(hctx, list));
2472 		if (list_empty(list))
2473 			goto out;
2474 	}
2475 
2476 	/*
2477 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2478 	 * offline now
2479 	 */
2480 	list_for_each_entry(rq, list, queuelist) {
2481 		BUG_ON(rq->mq_ctx != ctx);
2482 		trace_block_rq_insert(rq);
2483 		if (rq->cmd_flags & REQ_NOWAIT)
2484 			run_queue_async = true;
2485 	}
2486 
2487 	spin_lock(&ctx->lock);
2488 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2489 	blk_mq_hctx_mark_pending(hctx, ctx);
2490 	spin_unlock(&ctx->lock);
2491 out:
2492 	blk_mq_run_hw_queue(hctx, run_queue_async);
2493 }
2494 
2495 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2496 {
2497 	struct request_queue *q = rq->q;
2498 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2499 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2500 
2501 	if (blk_rq_is_passthrough(rq)) {
2502 		/*
2503 		 * Passthrough request have to be added to hctx->dispatch
2504 		 * directly.  The device may be in a situation where it can't
2505 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2506 		 * them, which gets them added to hctx->dispatch.
2507 		 *
2508 		 * If a passthrough request is required to unblock the queues,
2509 		 * and it is added to the scheduler queue, there is no chance to
2510 		 * dispatch it given we prioritize requests in hctx->dispatch.
2511 		 */
2512 		blk_mq_request_bypass_insert(rq, flags);
2513 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2514 		/*
2515 		 * Firstly normal IO request is inserted to scheduler queue or
2516 		 * sw queue, meantime we add flush request to dispatch queue(
2517 		 * hctx->dispatch) directly and there is at most one in-flight
2518 		 * flush request for each hw queue, so it doesn't matter to add
2519 		 * flush request to tail or front of the dispatch queue.
2520 		 *
2521 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2522 		 * command, and queueing it will fail when there is any
2523 		 * in-flight normal IO request(NCQ command). When adding flush
2524 		 * rq to the front of hctx->dispatch, it is easier to introduce
2525 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2526 		 * compared with adding to the tail of dispatch queue, then
2527 		 * chance of flush merge is increased, and less flush requests
2528 		 * will be issued to controller. It is observed that ~10% time
2529 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2530 		 * drive when adding flush rq to the front of hctx->dispatch.
2531 		 *
2532 		 * Simply queue flush rq to the front of hctx->dispatch so that
2533 		 * intensive flush workloads can benefit in case of NCQ HW.
2534 		 */
2535 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2536 	} else if (q->elevator) {
2537 		LIST_HEAD(list);
2538 
2539 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2540 
2541 		list_add(&rq->queuelist, &list);
2542 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2543 	} else {
2544 		trace_block_rq_insert(rq);
2545 
2546 		spin_lock(&ctx->lock);
2547 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2549 		else
2550 			list_add_tail(&rq->queuelist,
2551 				      &ctx->rq_lists[hctx->type]);
2552 		blk_mq_hctx_mark_pending(hctx, ctx);
2553 		spin_unlock(&ctx->lock);
2554 	}
2555 }
2556 
2557 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2558 		unsigned int nr_segs)
2559 {
2560 	int err;
2561 
2562 	if (bio->bi_opf & REQ_RAHEAD)
2563 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2564 
2565 	rq->__sector = bio->bi_iter.bi_sector;
2566 	blk_rq_bio_prep(rq, bio, nr_segs);
2567 
2568 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2569 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2570 	WARN_ON_ONCE(err);
2571 
2572 	blk_account_io_start(rq);
2573 }
2574 
2575 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2576 					    struct request *rq, bool last)
2577 {
2578 	struct request_queue *q = rq->q;
2579 	struct blk_mq_queue_data bd = {
2580 		.rq = rq,
2581 		.last = last,
2582 	};
2583 	blk_status_t ret;
2584 
2585 	/*
2586 	 * For OK queue, we are done. For error, caller may kill it.
2587 	 * Any other error (busy), just add it to our list as we
2588 	 * previously would have done.
2589 	 */
2590 	ret = q->mq_ops->queue_rq(hctx, &bd);
2591 	switch (ret) {
2592 	case BLK_STS_OK:
2593 		blk_mq_update_dispatch_busy(hctx, false);
2594 		break;
2595 	case BLK_STS_RESOURCE:
2596 	case BLK_STS_DEV_RESOURCE:
2597 		blk_mq_update_dispatch_busy(hctx, true);
2598 		__blk_mq_requeue_request(rq);
2599 		break;
2600 	default:
2601 		blk_mq_update_dispatch_busy(hctx, false);
2602 		break;
2603 	}
2604 
2605 	return ret;
2606 }
2607 
2608 static bool blk_mq_get_budget_and_tag(struct request *rq)
2609 {
2610 	int budget_token;
2611 
2612 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2613 	if (budget_token < 0)
2614 		return false;
2615 	blk_mq_set_rq_budget_token(rq, budget_token);
2616 	if (!blk_mq_get_driver_tag(rq)) {
2617 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2618 		return false;
2619 	}
2620 	return true;
2621 }
2622 
2623 /**
2624  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2625  * @hctx: Pointer of the associated hardware queue.
2626  * @rq: Pointer to request to be sent.
2627  *
2628  * If the device has enough resources to accept a new request now, send the
2629  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2630  * we can try send it another time in the future. Requests inserted at this
2631  * queue have higher priority.
2632  */
2633 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2634 		struct request *rq)
2635 {
2636 	blk_status_t ret;
2637 
2638 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639 		blk_mq_insert_request(rq, 0);
2640 		return;
2641 	}
2642 
2643 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2644 		blk_mq_insert_request(rq, 0);
2645 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2646 		return;
2647 	}
2648 
2649 	ret = __blk_mq_issue_directly(hctx, rq, true);
2650 	switch (ret) {
2651 	case BLK_STS_OK:
2652 		break;
2653 	case BLK_STS_RESOURCE:
2654 	case BLK_STS_DEV_RESOURCE:
2655 		blk_mq_request_bypass_insert(rq, 0);
2656 		blk_mq_run_hw_queue(hctx, false);
2657 		break;
2658 	default:
2659 		blk_mq_end_request(rq, ret);
2660 		break;
2661 	}
2662 }
2663 
2664 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2665 {
2666 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2667 
2668 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2669 		blk_mq_insert_request(rq, 0);
2670 		return BLK_STS_OK;
2671 	}
2672 
2673 	if (!blk_mq_get_budget_and_tag(rq))
2674 		return BLK_STS_RESOURCE;
2675 	return __blk_mq_issue_directly(hctx, rq, last);
2676 }
2677 
2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2679 {
2680 	struct blk_mq_hw_ctx *hctx = NULL;
2681 	struct request *rq;
2682 	int queued = 0;
2683 	blk_status_t ret = BLK_STS_OK;
2684 
2685 	while ((rq = rq_list_pop(&plug->mq_list))) {
2686 		bool last = rq_list_empty(plug->mq_list);
2687 
2688 		if (hctx != rq->mq_hctx) {
2689 			if (hctx) {
2690 				blk_mq_commit_rqs(hctx, queued, false);
2691 				queued = 0;
2692 			}
2693 			hctx = rq->mq_hctx;
2694 		}
2695 
2696 		ret = blk_mq_request_issue_directly(rq, last);
2697 		switch (ret) {
2698 		case BLK_STS_OK:
2699 			queued++;
2700 			break;
2701 		case BLK_STS_RESOURCE:
2702 		case BLK_STS_DEV_RESOURCE:
2703 			blk_mq_request_bypass_insert(rq, 0);
2704 			blk_mq_run_hw_queue(hctx, false);
2705 			goto out;
2706 		default:
2707 			blk_mq_end_request(rq, ret);
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	if (ret != BLK_STS_OK)
2714 		blk_mq_commit_rqs(hctx, queued, false);
2715 }
2716 
2717 static void __blk_mq_flush_plug_list(struct request_queue *q,
2718 				     struct blk_plug *plug)
2719 {
2720 	if (blk_queue_quiesced(q))
2721 		return;
2722 	q->mq_ops->queue_rqs(&plug->mq_list);
2723 }
2724 
2725 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2726 {
2727 	struct blk_mq_hw_ctx *this_hctx = NULL;
2728 	struct blk_mq_ctx *this_ctx = NULL;
2729 	struct request *requeue_list = NULL;
2730 	struct request **requeue_lastp = &requeue_list;
2731 	unsigned int depth = 0;
2732 	bool is_passthrough = false;
2733 	LIST_HEAD(list);
2734 
2735 	do {
2736 		struct request *rq = rq_list_pop(&plug->mq_list);
2737 
2738 		if (!this_hctx) {
2739 			this_hctx = rq->mq_hctx;
2740 			this_ctx = rq->mq_ctx;
2741 			is_passthrough = blk_rq_is_passthrough(rq);
2742 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2743 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2744 			rq_list_add_tail(&requeue_lastp, rq);
2745 			continue;
2746 		}
2747 		list_add(&rq->queuelist, &list);
2748 		depth++;
2749 	} while (!rq_list_empty(plug->mq_list));
2750 
2751 	plug->mq_list = requeue_list;
2752 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2753 
2754 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2755 	/* passthrough requests should never be issued to the I/O scheduler */
2756 	if (is_passthrough) {
2757 		spin_lock(&this_hctx->lock);
2758 		list_splice_tail_init(&list, &this_hctx->dispatch);
2759 		spin_unlock(&this_hctx->lock);
2760 		blk_mq_run_hw_queue(this_hctx, from_sched);
2761 	} else if (this_hctx->queue->elevator) {
2762 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2763 				&list, 0);
2764 		blk_mq_run_hw_queue(this_hctx, from_sched);
2765 	} else {
2766 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2767 	}
2768 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2769 }
2770 
2771 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2772 {
2773 	struct request *rq;
2774 
2775 	/*
2776 	 * We may have been called recursively midway through handling
2777 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2778 	 * To avoid mq_list changing under our feet, clear rq_count early and
2779 	 * bail out specifically if rq_count is 0 rather than checking
2780 	 * whether the mq_list is empty.
2781 	 */
2782 	if (plug->rq_count == 0)
2783 		return;
2784 	plug->rq_count = 0;
2785 
2786 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2787 		struct request_queue *q;
2788 
2789 		rq = rq_list_peek(&plug->mq_list);
2790 		q = rq->q;
2791 
2792 		/*
2793 		 * Peek first request and see if we have a ->queue_rqs() hook.
2794 		 * If we do, we can dispatch the whole plug list in one go. We
2795 		 * already know at this point that all requests belong to the
2796 		 * same queue, caller must ensure that's the case.
2797 		 */
2798 		if (q->mq_ops->queue_rqs) {
2799 			blk_mq_run_dispatch_ops(q,
2800 				__blk_mq_flush_plug_list(q, plug));
2801 			if (rq_list_empty(plug->mq_list))
2802 				return;
2803 		}
2804 
2805 		blk_mq_run_dispatch_ops(q,
2806 				blk_mq_plug_issue_direct(plug));
2807 		if (rq_list_empty(plug->mq_list))
2808 			return;
2809 	}
2810 
2811 	do {
2812 		blk_mq_dispatch_plug_list(plug, from_schedule);
2813 	} while (!rq_list_empty(plug->mq_list));
2814 }
2815 
2816 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2817 		struct list_head *list)
2818 {
2819 	int queued = 0;
2820 	blk_status_t ret = BLK_STS_OK;
2821 
2822 	while (!list_empty(list)) {
2823 		struct request *rq = list_first_entry(list, struct request,
2824 				queuelist);
2825 
2826 		list_del_init(&rq->queuelist);
2827 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2828 		switch (ret) {
2829 		case BLK_STS_OK:
2830 			queued++;
2831 			break;
2832 		case BLK_STS_RESOURCE:
2833 		case BLK_STS_DEV_RESOURCE:
2834 			blk_mq_request_bypass_insert(rq, 0);
2835 			if (list_empty(list))
2836 				blk_mq_run_hw_queue(hctx, false);
2837 			goto out;
2838 		default:
2839 			blk_mq_end_request(rq, ret);
2840 			break;
2841 		}
2842 	}
2843 
2844 out:
2845 	if (ret != BLK_STS_OK)
2846 		blk_mq_commit_rqs(hctx, queued, false);
2847 }
2848 
2849 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2850 				     struct bio *bio, unsigned int nr_segs)
2851 {
2852 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2853 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2854 			return true;
2855 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2856 			return true;
2857 	}
2858 	return false;
2859 }
2860 
2861 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2862 					       struct blk_plug *plug,
2863 					       struct bio *bio,
2864 					       unsigned int nsegs)
2865 {
2866 	struct blk_mq_alloc_data data = {
2867 		.q		= q,
2868 		.nr_tags	= 1,
2869 		.cmd_flags	= bio->bi_opf,
2870 	};
2871 	struct request *rq;
2872 
2873 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2874 		return NULL;
2875 
2876 	rq_qos_throttle(q, bio);
2877 
2878 	if (plug) {
2879 		data.nr_tags = plug->nr_ios;
2880 		plug->nr_ios = 1;
2881 		data.cached_rq = &plug->cached_rq;
2882 	}
2883 
2884 	rq = __blk_mq_alloc_requests(&data);
2885 	if (rq)
2886 		return rq;
2887 	rq_qos_cleanup(q, bio);
2888 	if (bio->bi_opf & REQ_NOWAIT)
2889 		bio_wouldblock_error(bio);
2890 	return NULL;
2891 }
2892 
2893 /* return true if this @rq can be used for @bio */
2894 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2895 		struct bio *bio)
2896 {
2897 	enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2898 	enum hctx_type hctx_type = rq->mq_hctx->type;
2899 
2900 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2901 
2902 	if (type != hctx_type &&
2903 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2904 		return false;
2905 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2906 		return false;
2907 
2908 	/*
2909 	 * If any qos ->throttle() end up blocking, we will have flushed the
2910 	 * plug and hence killed the cached_rq list as well. Pop this entry
2911 	 * before we throttle.
2912 	 */
2913 	plug->cached_rq = rq_list_next(rq);
2914 	rq_qos_throttle(rq->q, bio);
2915 
2916 	blk_mq_rq_time_init(rq, 0);
2917 	rq->cmd_flags = bio->bi_opf;
2918 	INIT_LIST_HEAD(&rq->queuelist);
2919 	return true;
2920 }
2921 
2922 static void bio_set_ioprio(struct bio *bio)
2923 {
2924 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2925 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2926 		bio->bi_ioprio = get_current_ioprio();
2927 	blkcg_set_ioprio(bio);
2928 }
2929 
2930 /**
2931  * blk_mq_submit_bio - Create and send a request to block device.
2932  * @bio: Bio pointer.
2933  *
2934  * Builds up a request structure from @q and @bio and send to the device. The
2935  * request may not be queued directly to hardware if:
2936  * * This request can be merged with another one
2937  * * We want to place request at plug queue for possible future merging
2938  * * There is an IO scheduler active at this queue
2939  *
2940  * It will not queue the request if there is an error with the bio, or at the
2941  * request creation.
2942  */
2943 void blk_mq_submit_bio(struct bio *bio)
2944 {
2945 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2946 	struct blk_plug *plug = blk_mq_plug(bio);
2947 	const int is_sync = op_is_sync(bio->bi_opf);
2948 	struct blk_mq_hw_ctx *hctx;
2949 	struct request *rq = NULL;
2950 	unsigned int nr_segs = 1;
2951 	blk_status_t ret;
2952 
2953 	bio = blk_queue_bounce(bio, q);
2954 	if (bio_may_exceed_limits(bio, &q->limits)) {
2955 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2956 		if (!bio)
2957 			return;
2958 	}
2959 
2960 	bio_set_ioprio(bio);
2961 
2962 	if (plug) {
2963 		rq = rq_list_peek(&plug->cached_rq);
2964 		if (rq && rq->q != q)
2965 			rq = NULL;
2966 	}
2967 	if (rq) {
2968 		if (!bio_integrity_prep(bio))
2969 			return;
2970 		if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2971 			return;
2972 		if (blk_mq_can_use_cached_rq(rq, plug, bio))
2973 			goto done;
2974 		percpu_ref_get(&q->q_usage_counter);
2975 	} else {
2976 		if (unlikely(bio_queue_enter(bio)))
2977 			return;
2978 		if (!bio_integrity_prep(bio))
2979 			goto fail;
2980 	}
2981 
2982 	rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2983 	if (unlikely(!rq)) {
2984 fail:
2985 		blk_queue_exit(q);
2986 		return;
2987 	}
2988 
2989 done:
2990 	trace_block_getrq(bio);
2991 
2992 	rq_qos_track(q, rq, bio);
2993 
2994 	blk_mq_bio_to_request(rq, bio, nr_segs);
2995 
2996 	ret = blk_crypto_rq_get_keyslot(rq);
2997 	if (ret != BLK_STS_OK) {
2998 		bio->bi_status = ret;
2999 		bio_endio(bio);
3000 		blk_mq_free_request(rq);
3001 		return;
3002 	}
3003 
3004 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3005 		return;
3006 
3007 	if (plug) {
3008 		blk_add_rq_to_plug(plug, rq);
3009 		return;
3010 	}
3011 
3012 	hctx = rq->mq_hctx;
3013 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3014 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3015 		blk_mq_insert_request(rq, 0);
3016 		blk_mq_run_hw_queue(hctx, true);
3017 	} else {
3018 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3019 	}
3020 }
3021 
3022 #ifdef CONFIG_BLK_MQ_STACKING
3023 /**
3024  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3025  * @rq: the request being queued
3026  */
3027 blk_status_t blk_insert_cloned_request(struct request *rq)
3028 {
3029 	struct request_queue *q = rq->q;
3030 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3031 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3032 	blk_status_t ret;
3033 
3034 	if (blk_rq_sectors(rq) > max_sectors) {
3035 		/*
3036 		 * SCSI device does not have a good way to return if
3037 		 * Write Same/Zero is actually supported. If a device rejects
3038 		 * a non-read/write command (discard, write same,etc.) the
3039 		 * low-level device driver will set the relevant queue limit to
3040 		 * 0 to prevent blk-lib from issuing more of the offending
3041 		 * operations. Commands queued prior to the queue limit being
3042 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3043 		 * errors being propagated to upper layers.
3044 		 */
3045 		if (max_sectors == 0)
3046 			return BLK_STS_NOTSUPP;
3047 
3048 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3049 			__func__, blk_rq_sectors(rq), max_sectors);
3050 		return BLK_STS_IOERR;
3051 	}
3052 
3053 	/*
3054 	 * The queue settings related to segment counting may differ from the
3055 	 * original queue.
3056 	 */
3057 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3058 	if (rq->nr_phys_segments > max_segments) {
3059 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3060 			__func__, rq->nr_phys_segments, max_segments);
3061 		return BLK_STS_IOERR;
3062 	}
3063 
3064 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3065 		return BLK_STS_IOERR;
3066 
3067 	ret = blk_crypto_rq_get_keyslot(rq);
3068 	if (ret != BLK_STS_OK)
3069 		return ret;
3070 
3071 	blk_account_io_start(rq);
3072 
3073 	/*
3074 	 * Since we have a scheduler attached on the top device,
3075 	 * bypass a potential scheduler on the bottom device for
3076 	 * insert.
3077 	 */
3078 	blk_mq_run_dispatch_ops(q,
3079 			ret = blk_mq_request_issue_directly(rq, true));
3080 	if (ret)
3081 		blk_account_io_done(rq, ktime_get_ns());
3082 	return ret;
3083 }
3084 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3085 
3086 /**
3087  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3088  * @rq: the clone request to be cleaned up
3089  *
3090  * Description:
3091  *     Free all bios in @rq for a cloned request.
3092  */
3093 void blk_rq_unprep_clone(struct request *rq)
3094 {
3095 	struct bio *bio;
3096 
3097 	while ((bio = rq->bio) != NULL) {
3098 		rq->bio = bio->bi_next;
3099 
3100 		bio_put(bio);
3101 	}
3102 }
3103 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3104 
3105 /**
3106  * blk_rq_prep_clone - Helper function to setup clone request
3107  * @rq: the request to be setup
3108  * @rq_src: original request to be cloned
3109  * @bs: bio_set that bios for clone are allocated from
3110  * @gfp_mask: memory allocation mask for bio
3111  * @bio_ctr: setup function to be called for each clone bio.
3112  *           Returns %0 for success, non %0 for failure.
3113  * @data: private data to be passed to @bio_ctr
3114  *
3115  * Description:
3116  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3117  *     Also, pages which the original bios are pointing to are not copied
3118  *     and the cloned bios just point same pages.
3119  *     So cloned bios must be completed before original bios, which means
3120  *     the caller must complete @rq before @rq_src.
3121  */
3122 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3123 		      struct bio_set *bs, gfp_t gfp_mask,
3124 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3125 		      void *data)
3126 {
3127 	struct bio *bio, *bio_src;
3128 
3129 	if (!bs)
3130 		bs = &fs_bio_set;
3131 
3132 	__rq_for_each_bio(bio_src, rq_src) {
3133 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3134 				      bs);
3135 		if (!bio)
3136 			goto free_and_out;
3137 
3138 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3139 			goto free_and_out;
3140 
3141 		if (rq->bio) {
3142 			rq->biotail->bi_next = bio;
3143 			rq->biotail = bio;
3144 		} else {
3145 			rq->bio = rq->biotail = bio;
3146 		}
3147 		bio = NULL;
3148 	}
3149 
3150 	/* Copy attributes of the original request to the clone request. */
3151 	rq->__sector = blk_rq_pos(rq_src);
3152 	rq->__data_len = blk_rq_bytes(rq_src);
3153 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3154 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3155 		rq->special_vec = rq_src->special_vec;
3156 	}
3157 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3158 	rq->ioprio = rq_src->ioprio;
3159 
3160 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3161 		goto free_and_out;
3162 
3163 	return 0;
3164 
3165 free_and_out:
3166 	if (bio)
3167 		bio_put(bio);
3168 	blk_rq_unprep_clone(rq);
3169 
3170 	return -ENOMEM;
3171 }
3172 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3173 #endif /* CONFIG_BLK_MQ_STACKING */
3174 
3175 /*
3176  * Steal bios from a request and add them to a bio list.
3177  * The request must not have been partially completed before.
3178  */
3179 void blk_steal_bios(struct bio_list *list, struct request *rq)
3180 {
3181 	if (rq->bio) {
3182 		if (list->tail)
3183 			list->tail->bi_next = rq->bio;
3184 		else
3185 			list->head = rq->bio;
3186 		list->tail = rq->biotail;
3187 
3188 		rq->bio = NULL;
3189 		rq->biotail = NULL;
3190 	}
3191 
3192 	rq->__data_len = 0;
3193 }
3194 EXPORT_SYMBOL_GPL(blk_steal_bios);
3195 
3196 static size_t order_to_size(unsigned int order)
3197 {
3198 	return (size_t)PAGE_SIZE << order;
3199 }
3200 
3201 /* called before freeing request pool in @tags */
3202 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3203 				    struct blk_mq_tags *tags)
3204 {
3205 	struct page *page;
3206 	unsigned long flags;
3207 
3208 	/*
3209 	 * There is no need to clear mapping if driver tags is not initialized
3210 	 * or the mapping belongs to the driver tags.
3211 	 */
3212 	if (!drv_tags || drv_tags == tags)
3213 		return;
3214 
3215 	list_for_each_entry(page, &tags->page_list, lru) {
3216 		unsigned long start = (unsigned long)page_address(page);
3217 		unsigned long end = start + order_to_size(page->private);
3218 		int i;
3219 
3220 		for (i = 0; i < drv_tags->nr_tags; i++) {
3221 			struct request *rq = drv_tags->rqs[i];
3222 			unsigned long rq_addr = (unsigned long)rq;
3223 
3224 			if (rq_addr >= start && rq_addr < end) {
3225 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3226 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3227 			}
3228 		}
3229 	}
3230 
3231 	/*
3232 	 * Wait until all pending iteration is done.
3233 	 *
3234 	 * Request reference is cleared and it is guaranteed to be observed
3235 	 * after the ->lock is released.
3236 	 */
3237 	spin_lock_irqsave(&drv_tags->lock, flags);
3238 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3239 }
3240 
3241 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3242 		     unsigned int hctx_idx)
3243 {
3244 	struct blk_mq_tags *drv_tags;
3245 	struct page *page;
3246 
3247 	if (list_empty(&tags->page_list))
3248 		return;
3249 
3250 	if (blk_mq_is_shared_tags(set->flags))
3251 		drv_tags = set->shared_tags;
3252 	else
3253 		drv_tags = set->tags[hctx_idx];
3254 
3255 	if (tags->static_rqs && set->ops->exit_request) {
3256 		int i;
3257 
3258 		for (i = 0; i < tags->nr_tags; i++) {
3259 			struct request *rq = tags->static_rqs[i];
3260 
3261 			if (!rq)
3262 				continue;
3263 			set->ops->exit_request(set, rq, hctx_idx);
3264 			tags->static_rqs[i] = NULL;
3265 		}
3266 	}
3267 
3268 	blk_mq_clear_rq_mapping(drv_tags, tags);
3269 
3270 	while (!list_empty(&tags->page_list)) {
3271 		page = list_first_entry(&tags->page_list, struct page, lru);
3272 		list_del_init(&page->lru);
3273 		/*
3274 		 * Remove kmemleak object previously allocated in
3275 		 * blk_mq_alloc_rqs().
3276 		 */
3277 		kmemleak_free(page_address(page));
3278 		__free_pages(page, page->private);
3279 	}
3280 }
3281 
3282 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3283 {
3284 	kfree(tags->rqs);
3285 	tags->rqs = NULL;
3286 	kfree(tags->static_rqs);
3287 	tags->static_rqs = NULL;
3288 
3289 	blk_mq_free_tags(tags);
3290 }
3291 
3292 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3293 		unsigned int hctx_idx)
3294 {
3295 	int i;
3296 
3297 	for (i = 0; i < set->nr_maps; i++) {
3298 		unsigned int start = set->map[i].queue_offset;
3299 		unsigned int end = start + set->map[i].nr_queues;
3300 
3301 		if (hctx_idx >= start && hctx_idx < end)
3302 			break;
3303 	}
3304 
3305 	if (i >= set->nr_maps)
3306 		i = HCTX_TYPE_DEFAULT;
3307 
3308 	return i;
3309 }
3310 
3311 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3312 		unsigned int hctx_idx)
3313 {
3314 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3315 
3316 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3317 }
3318 
3319 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3320 					       unsigned int hctx_idx,
3321 					       unsigned int nr_tags,
3322 					       unsigned int reserved_tags)
3323 {
3324 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3325 	struct blk_mq_tags *tags;
3326 
3327 	if (node == NUMA_NO_NODE)
3328 		node = set->numa_node;
3329 
3330 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3331 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3332 	if (!tags)
3333 		return NULL;
3334 
3335 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3336 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3337 				 node);
3338 	if (!tags->rqs)
3339 		goto err_free_tags;
3340 
3341 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3342 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3343 					node);
3344 	if (!tags->static_rqs)
3345 		goto err_free_rqs;
3346 
3347 	return tags;
3348 
3349 err_free_rqs:
3350 	kfree(tags->rqs);
3351 err_free_tags:
3352 	blk_mq_free_tags(tags);
3353 	return NULL;
3354 }
3355 
3356 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3357 			       unsigned int hctx_idx, int node)
3358 {
3359 	int ret;
3360 
3361 	if (set->ops->init_request) {
3362 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3363 		if (ret)
3364 			return ret;
3365 	}
3366 
3367 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3368 	return 0;
3369 }
3370 
3371 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3372 			    struct blk_mq_tags *tags,
3373 			    unsigned int hctx_idx, unsigned int depth)
3374 {
3375 	unsigned int i, j, entries_per_page, max_order = 4;
3376 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3377 	size_t rq_size, left;
3378 
3379 	if (node == NUMA_NO_NODE)
3380 		node = set->numa_node;
3381 
3382 	INIT_LIST_HEAD(&tags->page_list);
3383 
3384 	/*
3385 	 * rq_size is the size of the request plus driver payload, rounded
3386 	 * to the cacheline size
3387 	 */
3388 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3389 				cache_line_size());
3390 	left = rq_size * depth;
3391 
3392 	for (i = 0; i < depth; ) {
3393 		int this_order = max_order;
3394 		struct page *page;
3395 		int to_do;
3396 		void *p;
3397 
3398 		while (this_order && left < order_to_size(this_order - 1))
3399 			this_order--;
3400 
3401 		do {
3402 			page = alloc_pages_node(node,
3403 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3404 				this_order);
3405 			if (page)
3406 				break;
3407 			if (!this_order--)
3408 				break;
3409 			if (order_to_size(this_order) < rq_size)
3410 				break;
3411 		} while (1);
3412 
3413 		if (!page)
3414 			goto fail;
3415 
3416 		page->private = this_order;
3417 		list_add_tail(&page->lru, &tags->page_list);
3418 
3419 		p = page_address(page);
3420 		/*
3421 		 * Allow kmemleak to scan these pages as they contain pointers
3422 		 * to additional allocations like via ops->init_request().
3423 		 */
3424 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3425 		entries_per_page = order_to_size(this_order) / rq_size;
3426 		to_do = min(entries_per_page, depth - i);
3427 		left -= to_do * rq_size;
3428 		for (j = 0; j < to_do; j++) {
3429 			struct request *rq = p;
3430 
3431 			tags->static_rqs[i] = rq;
3432 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3433 				tags->static_rqs[i] = NULL;
3434 				goto fail;
3435 			}
3436 
3437 			p += rq_size;
3438 			i++;
3439 		}
3440 	}
3441 	return 0;
3442 
3443 fail:
3444 	blk_mq_free_rqs(set, tags, hctx_idx);
3445 	return -ENOMEM;
3446 }
3447 
3448 struct rq_iter_data {
3449 	struct blk_mq_hw_ctx *hctx;
3450 	bool has_rq;
3451 };
3452 
3453 static bool blk_mq_has_request(struct request *rq, void *data)
3454 {
3455 	struct rq_iter_data *iter_data = data;
3456 
3457 	if (rq->mq_hctx != iter_data->hctx)
3458 		return true;
3459 	iter_data->has_rq = true;
3460 	return false;
3461 }
3462 
3463 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3464 {
3465 	struct blk_mq_tags *tags = hctx->sched_tags ?
3466 			hctx->sched_tags : hctx->tags;
3467 	struct rq_iter_data data = {
3468 		.hctx	= hctx,
3469 	};
3470 
3471 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3472 	return data.has_rq;
3473 }
3474 
3475 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3476 		struct blk_mq_hw_ctx *hctx)
3477 {
3478 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3479 		return false;
3480 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3481 		return false;
3482 	return true;
3483 }
3484 
3485 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3486 {
3487 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3488 			struct blk_mq_hw_ctx, cpuhp_online);
3489 
3490 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3491 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3492 		return 0;
3493 
3494 	/*
3495 	 * Prevent new request from being allocated on the current hctx.
3496 	 *
3497 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3498 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3499 	 * seen once we return from the tag allocator.
3500 	 */
3501 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3502 	smp_mb__after_atomic();
3503 
3504 	/*
3505 	 * Try to grab a reference to the queue and wait for any outstanding
3506 	 * requests.  If we could not grab a reference the queue has been
3507 	 * frozen and there are no requests.
3508 	 */
3509 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3510 		while (blk_mq_hctx_has_requests(hctx))
3511 			msleep(5);
3512 		percpu_ref_put(&hctx->queue->q_usage_counter);
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3519 {
3520 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3521 			struct blk_mq_hw_ctx, cpuhp_online);
3522 
3523 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3524 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3525 	return 0;
3526 }
3527 
3528 /*
3529  * 'cpu' is going away. splice any existing rq_list entries from this
3530  * software queue to the hw queue dispatch list, and ensure that it
3531  * gets run.
3532  */
3533 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3534 {
3535 	struct blk_mq_hw_ctx *hctx;
3536 	struct blk_mq_ctx *ctx;
3537 	LIST_HEAD(tmp);
3538 	enum hctx_type type;
3539 
3540 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3541 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3542 		return 0;
3543 
3544 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3545 	type = hctx->type;
3546 
3547 	spin_lock(&ctx->lock);
3548 	if (!list_empty(&ctx->rq_lists[type])) {
3549 		list_splice_init(&ctx->rq_lists[type], &tmp);
3550 		blk_mq_hctx_clear_pending(hctx, ctx);
3551 	}
3552 	spin_unlock(&ctx->lock);
3553 
3554 	if (list_empty(&tmp))
3555 		return 0;
3556 
3557 	spin_lock(&hctx->lock);
3558 	list_splice_tail_init(&tmp, &hctx->dispatch);
3559 	spin_unlock(&hctx->lock);
3560 
3561 	blk_mq_run_hw_queue(hctx, true);
3562 	return 0;
3563 }
3564 
3565 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3566 {
3567 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3568 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3569 						    &hctx->cpuhp_online);
3570 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3571 					    &hctx->cpuhp_dead);
3572 }
3573 
3574 /*
3575  * Before freeing hw queue, clearing the flush request reference in
3576  * tags->rqs[] for avoiding potential UAF.
3577  */
3578 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3579 		unsigned int queue_depth, struct request *flush_rq)
3580 {
3581 	int i;
3582 	unsigned long flags;
3583 
3584 	/* The hw queue may not be mapped yet */
3585 	if (!tags)
3586 		return;
3587 
3588 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3589 
3590 	for (i = 0; i < queue_depth; i++)
3591 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3592 
3593 	/*
3594 	 * Wait until all pending iteration is done.
3595 	 *
3596 	 * Request reference is cleared and it is guaranteed to be observed
3597 	 * after the ->lock is released.
3598 	 */
3599 	spin_lock_irqsave(&tags->lock, flags);
3600 	spin_unlock_irqrestore(&tags->lock, flags);
3601 }
3602 
3603 /* hctx->ctxs will be freed in queue's release handler */
3604 static void blk_mq_exit_hctx(struct request_queue *q,
3605 		struct blk_mq_tag_set *set,
3606 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3607 {
3608 	struct request *flush_rq = hctx->fq->flush_rq;
3609 
3610 	if (blk_mq_hw_queue_mapped(hctx))
3611 		blk_mq_tag_idle(hctx);
3612 
3613 	if (blk_queue_init_done(q))
3614 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3615 				set->queue_depth, flush_rq);
3616 	if (set->ops->exit_request)
3617 		set->ops->exit_request(set, flush_rq, hctx_idx);
3618 
3619 	if (set->ops->exit_hctx)
3620 		set->ops->exit_hctx(hctx, hctx_idx);
3621 
3622 	blk_mq_remove_cpuhp(hctx);
3623 
3624 	xa_erase(&q->hctx_table, hctx_idx);
3625 
3626 	spin_lock(&q->unused_hctx_lock);
3627 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3628 	spin_unlock(&q->unused_hctx_lock);
3629 }
3630 
3631 static void blk_mq_exit_hw_queues(struct request_queue *q,
3632 		struct blk_mq_tag_set *set, int nr_queue)
3633 {
3634 	struct blk_mq_hw_ctx *hctx;
3635 	unsigned long i;
3636 
3637 	queue_for_each_hw_ctx(q, hctx, i) {
3638 		if (i == nr_queue)
3639 			break;
3640 		blk_mq_exit_hctx(q, set, hctx, i);
3641 	}
3642 }
3643 
3644 static int blk_mq_init_hctx(struct request_queue *q,
3645 		struct blk_mq_tag_set *set,
3646 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3647 {
3648 	hctx->queue_num = hctx_idx;
3649 
3650 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3651 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3652 				&hctx->cpuhp_online);
3653 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3654 
3655 	hctx->tags = set->tags[hctx_idx];
3656 
3657 	if (set->ops->init_hctx &&
3658 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3659 		goto unregister_cpu_notifier;
3660 
3661 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3662 				hctx->numa_node))
3663 		goto exit_hctx;
3664 
3665 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3666 		goto exit_flush_rq;
3667 
3668 	return 0;
3669 
3670  exit_flush_rq:
3671 	if (set->ops->exit_request)
3672 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3673  exit_hctx:
3674 	if (set->ops->exit_hctx)
3675 		set->ops->exit_hctx(hctx, hctx_idx);
3676  unregister_cpu_notifier:
3677 	blk_mq_remove_cpuhp(hctx);
3678 	return -1;
3679 }
3680 
3681 static struct blk_mq_hw_ctx *
3682 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3683 		int node)
3684 {
3685 	struct blk_mq_hw_ctx *hctx;
3686 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3687 
3688 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3689 	if (!hctx)
3690 		goto fail_alloc_hctx;
3691 
3692 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3693 		goto free_hctx;
3694 
3695 	atomic_set(&hctx->nr_active, 0);
3696 	if (node == NUMA_NO_NODE)
3697 		node = set->numa_node;
3698 	hctx->numa_node = node;
3699 
3700 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3701 	spin_lock_init(&hctx->lock);
3702 	INIT_LIST_HEAD(&hctx->dispatch);
3703 	hctx->queue = q;
3704 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3705 
3706 	INIT_LIST_HEAD(&hctx->hctx_list);
3707 
3708 	/*
3709 	 * Allocate space for all possible cpus to avoid allocation at
3710 	 * runtime
3711 	 */
3712 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3713 			gfp, node);
3714 	if (!hctx->ctxs)
3715 		goto free_cpumask;
3716 
3717 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3718 				gfp, node, false, false))
3719 		goto free_ctxs;
3720 	hctx->nr_ctx = 0;
3721 
3722 	spin_lock_init(&hctx->dispatch_wait_lock);
3723 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3724 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3725 
3726 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3727 	if (!hctx->fq)
3728 		goto free_bitmap;
3729 
3730 	blk_mq_hctx_kobj_init(hctx);
3731 
3732 	return hctx;
3733 
3734  free_bitmap:
3735 	sbitmap_free(&hctx->ctx_map);
3736  free_ctxs:
3737 	kfree(hctx->ctxs);
3738  free_cpumask:
3739 	free_cpumask_var(hctx->cpumask);
3740  free_hctx:
3741 	kfree(hctx);
3742  fail_alloc_hctx:
3743 	return NULL;
3744 }
3745 
3746 static void blk_mq_init_cpu_queues(struct request_queue *q,
3747 				   unsigned int nr_hw_queues)
3748 {
3749 	struct blk_mq_tag_set *set = q->tag_set;
3750 	unsigned int i, j;
3751 
3752 	for_each_possible_cpu(i) {
3753 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3754 		struct blk_mq_hw_ctx *hctx;
3755 		int k;
3756 
3757 		__ctx->cpu = i;
3758 		spin_lock_init(&__ctx->lock);
3759 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3760 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3761 
3762 		__ctx->queue = q;
3763 
3764 		/*
3765 		 * Set local node, IFF we have more than one hw queue. If
3766 		 * not, we remain on the home node of the device
3767 		 */
3768 		for (j = 0; j < set->nr_maps; j++) {
3769 			hctx = blk_mq_map_queue_type(q, j, i);
3770 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3771 				hctx->numa_node = cpu_to_node(i);
3772 		}
3773 	}
3774 }
3775 
3776 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3777 					     unsigned int hctx_idx,
3778 					     unsigned int depth)
3779 {
3780 	struct blk_mq_tags *tags;
3781 	int ret;
3782 
3783 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3784 	if (!tags)
3785 		return NULL;
3786 
3787 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3788 	if (ret) {
3789 		blk_mq_free_rq_map(tags);
3790 		return NULL;
3791 	}
3792 
3793 	return tags;
3794 }
3795 
3796 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3797 				       int hctx_idx)
3798 {
3799 	if (blk_mq_is_shared_tags(set->flags)) {
3800 		set->tags[hctx_idx] = set->shared_tags;
3801 
3802 		return true;
3803 	}
3804 
3805 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3806 						       set->queue_depth);
3807 
3808 	return set->tags[hctx_idx];
3809 }
3810 
3811 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3812 			     struct blk_mq_tags *tags,
3813 			     unsigned int hctx_idx)
3814 {
3815 	if (tags) {
3816 		blk_mq_free_rqs(set, tags, hctx_idx);
3817 		blk_mq_free_rq_map(tags);
3818 	}
3819 }
3820 
3821 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3822 				      unsigned int hctx_idx)
3823 {
3824 	if (!blk_mq_is_shared_tags(set->flags))
3825 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3826 
3827 	set->tags[hctx_idx] = NULL;
3828 }
3829 
3830 static void blk_mq_map_swqueue(struct request_queue *q)
3831 {
3832 	unsigned int j, hctx_idx;
3833 	unsigned long i;
3834 	struct blk_mq_hw_ctx *hctx;
3835 	struct blk_mq_ctx *ctx;
3836 	struct blk_mq_tag_set *set = q->tag_set;
3837 
3838 	queue_for_each_hw_ctx(q, hctx, i) {
3839 		cpumask_clear(hctx->cpumask);
3840 		hctx->nr_ctx = 0;
3841 		hctx->dispatch_from = NULL;
3842 	}
3843 
3844 	/*
3845 	 * Map software to hardware queues.
3846 	 *
3847 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3848 	 */
3849 	for_each_possible_cpu(i) {
3850 
3851 		ctx = per_cpu_ptr(q->queue_ctx, i);
3852 		for (j = 0; j < set->nr_maps; j++) {
3853 			if (!set->map[j].nr_queues) {
3854 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3855 						HCTX_TYPE_DEFAULT, i);
3856 				continue;
3857 			}
3858 			hctx_idx = set->map[j].mq_map[i];
3859 			/* unmapped hw queue can be remapped after CPU topo changed */
3860 			if (!set->tags[hctx_idx] &&
3861 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3862 				/*
3863 				 * If tags initialization fail for some hctx,
3864 				 * that hctx won't be brought online.  In this
3865 				 * case, remap the current ctx to hctx[0] which
3866 				 * is guaranteed to always have tags allocated
3867 				 */
3868 				set->map[j].mq_map[i] = 0;
3869 			}
3870 
3871 			hctx = blk_mq_map_queue_type(q, j, i);
3872 			ctx->hctxs[j] = hctx;
3873 			/*
3874 			 * If the CPU is already set in the mask, then we've
3875 			 * mapped this one already. This can happen if
3876 			 * devices share queues across queue maps.
3877 			 */
3878 			if (cpumask_test_cpu(i, hctx->cpumask))
3879 				continue;
3880 
3881 			cpumask_set_cpu(i, hctx->cpumask);
3882 			hctx->type = j;
3883 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3884 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3885 
3886 			/*
3887 			 * If the nr_ctx type overflows, we have exceeded the
3888 			 * amount of sw queues we can support.
3889 			 */
3890 			BUG_ON(!hctx->nr_ctx);
3891 		}
3892 
3893 		for (; j < HCTX_MAX_TYPES; j++)
3894 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3895 					HCTX_TYPE_DEFAULT, i);
3896 	}
3897 
3898 	queue_for_each_hw_ctx(q, hctx, i) {
3899 		/*
3900 		 * If no software queues are mapped to this hardware queue,
3901 		 * disable it and free the request entries.
3902 		 */
3903 		if (!hctx->nr_ctx) {
3904 			/* Never unmap queue 0.  We need it as a
3905 			 * fallback in case of a new remap fails
3906 			 * allocation
3907 			 */
3908 			if (i)
3909 				__blk_mq_free_map_and_rqs(set, i);
3910 
3911 			hctx->tags = NULL;
3912 			continue;
3913 		}
3914 
3915 		hctx->tags = set->tags[i];
3916 		WARN_ON(!hctx->tags);
3917 
3918 		/*
3919 		 * Set the map size to the number of mapped software queues.
3920 		 * This is more accurate and more efficient than looping
3921 		 * over all possibly mapped software queues.
3922 		 */
3923 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3924 
3925 		/*
3926 		 * Initialize batch roundrobin counts
3927 		 */
3928 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3929 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3930 	}
3931 }
3932 
3933 /*
3934  * Caller needs to ensure that we're either frozen/quiesced, or that
3935  * the queue isn't live yet.
3936  */
3937 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3938 {
3939 	struct blk_mq_hw_ctx *hctx;
3940 	unsigned long i;
3941 
3942 	queue_for_each_hw_ctx(q, hctx, i) {
3943 		if (shared) {
3944 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3945 		} else {
3946 			blk_mq_tag_idle(hctx);
3947 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3948 		}
3949 	}
3950 }
3951 
3952 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3953 					 bool shared)
3954 {
3955 	struct request_queue *q;
3956 
3957 	lockdep_assert_held(&set->tag_list_lock);
3958 
3959 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3960 		blk_mq_freeze_queue(q);
3961 		queue_set_hctx_shared(q, shared);
3962 		blk_mq_unfreeze_queue(q);
3963 	}
3964 }
3965 
3966 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3967 {
3968 	struct blk_mq_tag_set *set = q->tag_set;
3969 
3970 	mutex_lock(&set->tag_list_lock);
3971 	list_del(&q->tag_set_list);
3972 	if (list_is_singular(&set->tag_list)) {
3973 		/* just transitioned to unshared */
3974 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3975 		/* update existing queue */
3976 		blk_mq_update_tag_set_shared(set, false);
3977 	}
3978 	mutex_unlock(&set->tag_list_lock);
3979 	INIT_LIST_HEAD(&q->tag_set_list);
3980 }
3981 
3982 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3983 				     struct request_queue *q)
3984 {
3985 	mutex_lock(&set->tag_list_lock);
3986 
3987 	/*
3988 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3989 	 */
3990 	if (!list_empty(&set->tag_list) &&
3991 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3992 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3993 		/* update existing queue */
3994 		blk_mq_update_tag_set_shared(set, true);
3995 	}
3996 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3997 		queue_set_hctx_shared(q, true);
3998 	list_add_tail(&q->tag_set_list, &set->tag_list);
3999 
4000 	mutex_unlock(&set->tag_list_lock);
4001 }
4002 
4003 /* All allocations will be freed in release handler of q->mq_kobj */
4004 static int blk_mq_alloc_ctxs(struct request_queue *q)
4005 {
4006 	struct blk_mq_ctxs *ctxs;
4007 	int cpu;
4008 
4009 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4010 	if (!ctxs)
4011 		return -ENOMEM;
4012 
4013 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4014 	if (!ctxs->queue_ctx)
4015 		goto fail;
4016 
4017 	for_each_possible_cpu(cpu) {
4018 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4019 		ctx->ctxs = ctxs;
4020 	}
4021 
4022 	q->mq_kobj = &ctxs->kobj;
4023 	q->queue_ctx = ctxs->queue_ctx;
4024 
4025 	return 0;
4026  fail:
4027 	kfree(ctxs);
4028 	return -ENOMEM;
4029 }
4030 
4031 /*
4032  * It is the actual release handler for mq, but we do it from
4033  * request queue's release handler for avoiding use-after-free
4034  * and headache because q->mq_kobj shouldn't have been introduced,
4035  * but we can't group ctx/kctx kobj without it.
4036  */
4037 void blk_mq_release(struct request_queue *q)
4038 {
4039 	struct blk_mq_hw_ctx *hctx, *next;
4040 	unsigned long i;
4041 
4042 	queue_for_each_hw_ctx(q, hctx, i)
4043 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4044 
4045 	/* all hctx are in .unused_hctx_list now */
4046 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4047 		list_del_init(&hctx->hctx_list);
4048 		kobject_put(&hctx->kobj);
4049 	}
4050 
4051 	xa_destroy(&q->hctx_table);
4052 
4053 	/*
4054 	 * release .mq_kobj and sw queue's kobject now because
4055 	 * both share lifetime with request queue.
4056 	 */
4057 	blk_mq_sysfs_deinit(q);
4058 }
4059 
4060 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4061 		void *queuedata)
4062 {
4063 	struct request_queue *q;
4064 	int ret;
4065 
4066 	q = blk_alloc_queue(set->numa_node);
4067 	if (!q)
4068 		return ERR_PTR(-ENOMEM);
4069 	q->queuedata = queuedata;
4070 	ret = blk_mq_init_allocated_queue(set, q);
4071 	if (ret) {
4072 		blk_put_queue(q);
4073 		return ERR_PTR(ret);
4074 	}
4075 	return q;
4076 }
4077 
4078 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4079 {
4080 	return blk_mq_init_queue_data(set, NULL);
4081 }
4082 EXPORT_SYMBOL(blk_mq_init_queue);
4083 
4084 /**
4085  * blk_mq_destroy_queue - shutdown a request queue
4086  * @q: request queue to shutdown
4087  *
4088  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4089  * requests will be failed with -ENODEV. The caller is responsible for dropping
4090  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4091  *
4092  * Context: can sleep
4093  */
4094 void blk_mq_destroy_queue(struct request_queue *q)
4095 {
4096 	WARN_ON_ONCE(!queue_is_mq(q));
4097 	WARN_ON_ONCE(blk_queue_registered(q));
4098 
4099 	might_sleep();
4100 
4101 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4102 	blk_queue_start_drain(q);
4103 	blk_mq_freeze_queue_wait(q);
4104 
4105 	blk_sync_queue(q);
4106 	blk_mq_cancel_work_sync(q);
4107 	blk_mq_exit_queue(q);
4108 }
4109 EXPORT_SYMBOL(blk_mq_destroy_queue);
4110 
4111 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4112 		struct lock_class_key *lkclass)
4113 {
4114 	struct request_queue *q;
4115 	struct gendisk *disk;
4116 
4117 	q = blk_mq_init_queue_data(set, queuedata);
4118 	if (IS_ERR(q))
4119 		return ERR_CAST(q);
4120 
4121 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4122 	if (!disk) {
4123 		blk_mq_destroy_queue(q);
4124 		blk_put_queue(q);
4125 		return ERR_PTR(-ENOMEM);
4126 	}
4127 	set_bit(GD_OWNS_QUEUE, &disk->state);
4128 	return disk;
4129 }
4130 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4131 
4132 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4133 		struct lock_class_key *lkclass)
4134 {
4135 	struct gendisk *disk;
4136 
4137 	if (!blk_get_queue(q))
4138 		return NULL;
4139 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4140 	if (!disk)
4141 		blk_put_queue(q);
4142 	return disk;
4143 }
4144 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4145 
4146 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4147 		struct blk_mq_tag_set *set, struct request_queue *q,
4148 		int hctx_idx, int node)
4149 {
4150 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4151 
4152 	/* reuse dead hctx first */
4153 	spin_lock(&q->unused_hctx_lock);
4154 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4155 		if (tmp->numa_node == node) {
4156 			hctx = tmp;
4157 			break;
4158 		}
4159 	}
4160 	if (hctx)
4161 		list_del_init(&hctx->hctx_list);
4162 	spin_unlock(&q->unused_hctx_lock);
4163 
4164 	if (!hctx)
4165 		hctx = blk_mq_alloc_hctx(q, set, node);
4166 	if (!hctx)
4167 		goto fail;
4168 
4169 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4170 		goto free_hctx;
4171 
4172 	return hctx;
4173 
4174  free_hctx:
4175 	kobject_put(&hctx->kobj);
4176  fail:
4177 	return NULL;
4178 }
4179 
4180 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4181 						struct request_queue *q)
4182 {
4183 	struct blk_mq_hw_ctx *hctx;
4184 	unsigned long i, j;
4185 
4186 	/* protect against switching io scheduler  */
4187 	mutex_lock(&q->sysfs_lock);
4188 	for (i = 0; i < set->nr_hw_queues; i++) {
4189 		int old_node;
4190 		int node = blk_mq_get_hctx_node(set, i);
4191 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4192 
4193 		if (old_hctx) {
4194 			old_node = old_hctx->numa_node;
4195 			blk_mq_exit_hctx(q, set, old_hctx, i);
4196 		}
4197 
4198 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4199 			if (!old_hctx)
4200 				break;
4201 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4202 					node, old_node);
4203 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4204 			WARN_ON_ONCE(!hctx);
4205 		}
4206 	}
4207 	/*
4208 	 * Increasing nr_hw_queues fails. Free the newly allocated
4209 	 * hctxs and keep the previous q->nr_hw_queues.
4210 	 */
4211 	if (i != set->nr_hw_queues) {
4212 		j = q->nr_hw_queues;
4213 	} else {
4214 		j = i;
4215 		q->nr_hw_queues = set->nr_hw_queues;
4216 	}
4217 
4218 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4219 		blk_mq_exit_hctx(q, set, hctx, j);
4220 	mutex_unlock(&q->sysfs_lock);
4221 }
4222 
4223 static void blk_mq_update_poll_flag(struct request_queue *q)
4224 {
4225 	struct blk_mq_tag_set *set = q->tag_set;
4226 
4227 	if (set->nr_maps > HCTX_TYPE_POLL &&
4228 	    set->map[HCTX_TYPE_POLL].nr_queues)
4229 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4230 	else
4231 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4232 }
4233 
4234 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4235 		struct request_queue *q)
4236 {
4237 	/* mark the queue as mq asap */
4238 	q->mq_ops = set->ops;
4239 
4240 	if (blk_mq_alloc_ctxs(q))
4241 		goto err_exit;
4242 
4243 	/* init q->mq_kobj and sw queues' kobjects */
4244 	blk_mq_sysfs_init(q);
4245 
4246 	INIT_LIST_HEAD(&q->unused_hctx_list);
4247 	spin_lock_init(&q->unused_hctx_lock);
4248 
4249 	xa_init(&q->hctx_table);
4250 
4251 	blk_mq_realloc_hw_ctxs(set, q);
4252 	if (!q->nr_hw_queues)
4253 		goto err_hctxs;
4254 
4255 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4256 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4257 
4258 	q->tag_set = set;
4259 
4260 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4261 	blk_mq_update_poll_flag(q);
4262 
4263 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4264 	INIT_LIST_HEAD(&q->flush_list);
4265 	INIT_LIST_HEAD(&q->requeue_list);
4266 	spin_lock_init(&q->requeue_lock);
4267 
4268 	q->nr_requests = set->queue_depth;
4269 
4270 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4271 	blk_mq_add_queue_tag_set(set, q);
4272 	blk_mq_map_swqueue(q);
4273 	return 0;
4274 
4275 err_hctxs:
4276 	blk_mq_release(q);
4277 err_exit:
4278 	q->mq_ops = NULL;
4279 	return -ENOMEM;
4280 }
4281 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4282 
4283 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4284 void blk_mq_exit_queue(struct request_queue *q)
4285 {
4286 	struct blk_mq_tag_set *set = q->tag_set;
4287 
4288 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4289 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4290 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4291 	blk_mq_del_queue_tag_set(q);
4292 }
4293 
4294 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4295 {
4296 	int i;
4297 
4298 	if (blk_mq_is_shared_tags(set->flags)) {
4299 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4300 						BLK_MQ_NO_HCTX_IDX,
4301 						set->queue_depth);
4302 		if (!set->shared_tags)
4303 			return -ENOMEM;
4304 	}
4305 
4306 	for (i = 0; i < set->nr_hw_queues; i++) {
4307 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4308 			goto out_unwind;
4309 		cond_resched();
4310 	}
4311 
4312 	return 0;
4313 
4314 out_unwind:
4315 	while (--i >= 0)
4316 		__blk_mq_free_map_and_rqs(set, i);
4317 
4318 	if (blk_mq_is_shared_tags(set->flags)) {
4319 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4320 					BLK_MQ_NO_HCTX_IDX);
4321 	}
4322 
4323 	return -ENOMEM;
4324 }
4325 
4326 /*
4327  * Allocate the request maps associated with this tag_set. Note that this
4328  * may reduce the depth asked for, if memory is tight. set->queue_depth
4329  * will be updated to reflect the allocated depth.
4330  */
4331 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4332 {
4333 	unsigned int depth;
4334 	int err;
4335 
4336 	depth = set->queue_depth;
4337 	do {
4338 		err = __blk_mq_alloc_rq_maps(set);
4339 		if (!err)
4340 			break;
4341 
4342 		set->queue_depth >>= 1;
4343 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4344 			err = -ENOMEM;
4345 			break;
4346 		}
4347 	} while (set->queue_depth);
4348 
4349 	if (!set->queue_depth || err) {
4350 		pr_err("blk-mq: failed to allocate request map\n");
4351 		return -ENOMEM;
4352 	}
4353 
4354 	if (depth != set->queue_depth)
4355 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4356 						depth, set->queue_depth);
4357 
4358 	return 0;
4359 }
4360 
4361 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4362 {
4363 	/*
4364 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4365 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4366 	 * number of hardware queues.
4367 	 */
4368 	if (set->nr_maps == 1)
4369 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4370 
4371 	if (set->ops->map_queues && !is_kdump_kernel()) {
4372 		int i;
4373 
4374 		/*
4375 		 * transport .map_queues is usually done in the following
4376 		 * way:
4377 		 *
4378 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4379 		 * 	mask = get_cpu_mask(queue)
4380 		 * 	for_each_cpu(cpu, mask)
4381 		 * 		set->map[x].mq_map[cpu] = queue;
4382 		 * }
4383 		 *
4384 		 * When we need to remap, the table has to be cleared for
4385 		 * killing stale mapping since one CPU may not be mapped
4386 		 * to any hw queue.
4387 		 */
4388 		for (i = 0; i < set->nr_maps; i++)
4389 			blk_mq_clear_mq_map(&set->map[i]);
4390 
4391 		set->ops->map_queues(set);
4392 	} else {
4393 		BUG_ON(set->nr_maps > 1);
4394 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4395 	}
4396 }
4397 
4398 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4399 				       int new_nr_hw_queues)
4400 {
4401 	struct blk_mq_tags **new_tags;
4402 	int i;
4403 
4404 	if (set->nr_hw_queues >= new_nr_hw_queues)
4405 		goto done;
4406 
4407 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4408 				GFP_KERNEL, set->numa_node);
4409 	if (!new_tags)
4410 		return -ENOMEM;
4411 
4412 	if (set->tags)
4413 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4414 		       sizeof(*set->tags));
4415 	kfree(set->tags);
4416 	set->tags = new_tags;
4417 
4418 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4419 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4420 			while (--i >= set->nr_hw_queues)
4421 				__blk_mq_free_map_and_rqs(set, i);
4422 			return -ENOMEM;
4423 		}
4424 		cond_resched();
4425 	}
4426 
4427 done:
4428 	set->nr_hw_queues = new_nr_hw_queues;
4429 	return 0;
4430 }
4431 
4432 /*
4433  * Alloc a tag set to be associated with one or more request queues.
4434  * May fail with EINVAL for various error conditions. May adjust the
4435  * requested depth down, if it's too large. In that case, the set
4436  * value will be stored in set->queue_depth.
4437  */
4438 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4439 {
4440 	int i, ret;
4441 
4442 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4443 
4444 	if (!set->nr_hw_queues)
4445 		return -EINVAL;
4446 	if (!set->queue_depth)
4447 		return -EINVAL;
4448 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4449 		return -EINVAL;
4450 
4451 	if (!set->ops->queue_rq)
4452 		return -EINVAL;
4453 
4454 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4455 		return -EINVAL;
4456 
4457 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4458 		pr_info("blk-mq: reduced tag depth to %u\n",
4459 			BLK_MQ_MAX_DEPTH);
4460 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4461 	}
4462 
4463 	if (!set->nr_maps)
4464 		set->nr_maps = 1;
4465 	else if (set->nr_maps > HCTX_MAX_TYPES)
4466 		return -EINVAL;
4467 
4468 	/*
4469 	 * If a crashdump is active, then we are potentially in a very
4470 	 * memory constrained environment. Limit us to 1 queue and
4471 	 * 64 tags to prevent using too much memory.
4472 	 */
4473 	if (is_kdump_kernel()) {
4474 		set->nr_hw_queues = 1;
4475 		set->nr_maps = 1;
4476 		set->queue_depth = min(64U, set->queue_depth);
4477 	}
4478 	/*
4479 	 * There is no use for more h/w queues than cpus if we just have
4480 	 * a single map
4481 	 */
4482 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4483 		set->nr_hw_queues = nr_cpu_ids;
4484 
4485 	if (set->flags & BLK_MQ_F_BLOCKING) {
4486 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4487 		if (!set->srcu)
4488 			return -ENOMEM;
4489 		ret = init_srcu_struct(set->srcu);
4490 		if (ret)
4491 			goto out_free_srcu;
4492 	}
4493 
4494 	ret = -ENOMEM;
4495 	set->tags = kcalloc_node(set->nr_hw_queues,
4496 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4497 				 set->numa_node);
4498 	if (!set->tags)
4499 		goto out_cleanup_srcu;
4500 
4501 	for (i = 0; i < set->nr_maps; i++) {
4502 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4503 						  sizeof(set->map[i].mq_map[0]),
4504 						  GFP_KERNEL, set->numa_node);
4505 		if (!set->map[i].mq_map)
4506 			goto out_free_mq_map;
4507 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4508 	}
4509 
4510 	blk_mq_update_queue_map(set);
4511 
4512 	ret = blk_mq_alloc_set_map_and_rqs(set);
4513 	if (ret)
4514 		goto out_free_mq_map;
4515 
4516 	mutex_init(&set->tag_list_lock);
4517 	INIT_LIST_HEAD(&set->tag_list);
4518 
4519 	return 0;
4520 
4521 out_free_mq_map:
4522 	for (i = 0; i < set->nr_maps; i++) {
4523 		kfree(set->map[i].mq_map);
4524 		set->map[i].mq_map = NULL;
4525 	}
4526 	kfree(set->tags);
4527 	set->tags = NULL;
4528 out_cleanup_srcu:
4529 	if (set->flags & BLK_MQ_F_BLOCKING)
4530 		cleanup_srcu_struct(set->srcu);
4531 out_free_srcu:
4532 	if (set->flags & BLK_MQ_F_BLOCKING)
4533 		kfree(set->srcu);
4534 	return ret;
4535 }
4536 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4537 
4538 /* allocate and initialize a tagset for a simple single-queue device */
4539 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4540 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4541 		unsigned int set_flags)
4542 {
4543 	memset(set, 0, sizeof(*set));
4544 	set->ops = ops;
4545 	set->nr_hw_queues = 1;
4546 	set->nr_maps = 1;
4547 	set->queue_depth = queue_depth;
4548 	set->numa_node = NUMA_NO_NODE;
4549 	set->flags = set_flags;
4550 	return blk_mq_alloc_tag_set(set);
4551 }
4552 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4553 
4554 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4555 {
4556 	int i, j;
4557 
4558 	for (i = 0; i < set->nr_hw_queues; i++)
4559 		__blk_mq_free_map_and_rqs(set, i);
4560 
4561 	if (blk_mq_is_shared_tags(set->flags)) {
4562 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4563 					BLK_MQ_NO_HCTX_IDX);
4564 	}
4565 
4566 	for (j = 0; j < set->nr_maps; j++) {
4567 		kfree(set->map[j].mq_map);
4568 		set->map[j].mq_map = NULL;
4569 	}
4570 
4571 	kfree(set->tags);
4572 	set->tags = NULL;
4573 	if (set->flags & BLK_MQ_F_BLOCKING) {
4574 		cleanup_srcu_struct(set->srcu);
4575 		kfree(set->srcu);
4576 	}
4577 }
4578 EXPORT_SYMBOL(blk_mq_free_tag_set);
4579 
4580 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4581 {
4582 	struct blk_mq_tag_set *set = q->tag_set;
4583 	struct blk_mq_hw_ctx *hctx;
4584 	int ret;
4585 	unsigned long i;
4586 
4587 	if (!set)
4588 		return -EINVAL;
4589 
4590 	if (q->nr_requests == nr)
4591 		return 0;
4592 
4593 	blk_mq_freeze_queue(q);
4594 	blk_mq_quiesce_queue(q);
4595 
4596 	ret = 0;
4597 	queue_for_each_hw_ctx(q, hctx, i) {
4598 		if (!hctx->tags)
4599 			continue;
4600 		/*
4601 		 * If we're using an MQ scheduler, just update the scheduler
4602 		 * queue depth. This is similar to what the old code would do.
4603 		 */
4604 		if (hctx->sched_tags) {
4605 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4606 						      nr, true);
4607 		} else {
4608 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4609 						      false);
4610 		}
4611 		if (ret)
4612 			break;
4613 		if (q->elevator && q->elevator->type->ops.depth_updated)
4614 			q->elevator->type->ops.depth_updated(hctx);
4615 	}
4616 	if (!ret) {
4617 		q->nr_requests = nr;
4618 		if (blk_mq_is_shared_tags(set->flags)) {
4619 			if (q->elevator)
4620 				blk_mq_tag_update_sched_shared_tags(q);
4621 			else
4622 				blk_mq_tag_resize_shared_tags(set, nr);
4623 		}
4624 	}
4625 
4626 	blk_mq_unquiesce_queue(q);
4627 	blk_mq_unfreeze_queue(q);
4628 
4629 	return ret;
4630 }
4631 
4632 /*
4633  * request_queue and elevator_type pair.
4634  * It is just used by __blk_mq_update_nr_hw_queues to cache
4635  * the elevator_type associated with a request_queue.
4636  */
4637 struct blk_mq_qe_pair {
4638 	struct list_head node;
4639 	struct request_queue *q;
4640 	struct elevator_type *type;
4641 };
4642 
4643 /*
4644  * Cache the elevator_type in qe pair list and switch the
4645  * io scheduler to 'none'
4646  */
4647 static bool blk_mq_elv_switch_none(struct list_head *head,
4648 		struct request_queue *q)
4649 {
4650 	struct blk_mq_qe_pair *qe;
4651 
4652 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4653 	if (!qe)
4654 		return false;
4655 
4656 	/* q->elevator needs protection from ->sysfs_lock */
4657 	mutex_lock(&q->sysfs_lock);
4658 
4659 	/* the check has to be done with holding sysfs_lock */
4660 	if (!q->elevator) {
4661 		kfree(qe);
4662 		goto unlock;
4663 	}
4664 
4665 	INIT_LIST_HEAD(&qe->node);
4666 	qe->q = q;
4667 	qe->type = q->elevator->type;
4668 	/* keep a reference to the elevator module as we'll switch back */
4669 	__elevator_get(qe->type);
4670 	list_add(&qe->node, head);
4671 	elevator_disable(q);
4672 unlock:
4673 	mutex_unlock(&q->sysfs_lock);
4674 
4675 	return true;
4676 }
4677 
4678 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4679 						struct request_queue *q)
4680 {
4681 	struct blk_mq_qe_pair *qe;
4682 
4683 	list_for_each_entry(qe, head, node)
4684 		if (qe->q == q)
4685 			return qe;
4686 
4687 	return NULL;
4688 }
4689 
4690 static void blk_mq_elv_switch_back(struct list_head *head,
4691 				  struct request_queue *q)
4692 {
4693 	struct blk_mq_qe_pair *qe;
4694 	struct elevator_type *t;
4695 
4696 	qe = blk_lookup_qe_pair(head, q);
4697 	if (!qe)
4698 		return;
4699 	t = qe->type;
4700 	list_del(&qe->node);
4701 	kfree(qe);
4702 
4703 	mutex_lock(&q->sysfs_lock);
4704 	elevator_switch(q, t);
4705 	/* drop the reference acquired in blk_mq_elv_switch_none */
4706 	elevator_put(t);
4707 	mutex_unlock(&q->sysfs_lock);
4708 }
4709 
4710 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4711 							int nr_hw_queues)
4712 {
4713 	struct request_queue *q;
4714 	LIST_HEAD(head);
4715 	int prev_nr_hw_queues = set->nr_hw_queues;
4716 	int i;
4717 
4718 	lockdep_assert_held(&set->tag_list_lock);
4719 
4720 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4721 		nr_hw_queues = nr_cpu_ids;
4722 	if (nr_hw_queues < 1)
4723 		return;
4724 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4725 		return;
4726 
4727 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4728 		blk_mq_freeze_queue(q);
4729 	/*
4730 	 * Switch IO scheduler to 'none', cleaning up the data associated
4731 	 * with the previous scheduler. We will switch back once we are done
4732 	 * updating the new sw to hw queue mappings.
4733 	 */
4734 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4735 		if (!blk_mq_elv_switch_none(&head, q))
4736 			goto switch_back;
4737 
4738 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4739 		blk_mq_debugfs_unregister_hctxs(q);
4740 		blk_mq_sysfs_unregister_hctxs(q);
4741 	}
4742 
4743 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4744 		goto reregister;
4745 
4746 fallback:
4747 	blk_mq_update_queue_map(set);
4748 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4749 		blk_mq_realloc_hw_ctxs(set, q);
4750 		blk_mq_update_poll_flag(q);
4751 		if (q->nr_hw_queues != set->nr_hw_queues) {
4752 			int i = prev_nr_hw_queues;
4753 
4754 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4755 					nr_hw_queues, prev_nr_hw_queues);
4756 			for (; i < set->nr_hw_queues; i++)
4757 				__blk_mq_free_map_and_rqs(set, i);
4758 
4759 			set->nr_hw_queues = prev_nr_hw_queues;
4760 			goto fallback;
4761 		}
4762 		blk_mq_map_swqueue(q);
4763 	}
4764 
4765 reregister:
4766 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4767 		blk_mq_sysfs_register_hctxs(q);
4768 		blk_mq_debugfs_register_hctxs(q);
4769 	}
4770 
4771 switch_back:
4772 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4773 		blk_mq_elv_switch_back(&head, q);
4774 
4775 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4776 		blk_mq_unfreeze_queue(q);
4777 
4778 	/* Free the excess tags when nr_hw_queues shrink. */
4779 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4780 		__blk_mq_free_map_and_rqs(set, i);
4781 }
4782 
4783 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4784 {
4785 	mutex_lock(&set->tag_list_lock);
4786 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4787 	mutex_unlock(&set->tag_list_lock);
4788 }
4789 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4790 
4791 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4792 			 struct io_comp_batch *iob, unsigned int flags)
4793 {
4794 	long state = get_current_state();
4795 	int ret;
4796 
4797 	do {
4798 		ret = q->mq_ops->poll(hctx, iob);
4799 		if (ret > 0) {
4800 			__set_current_state(TASK_RUNNING);
4801 			return ret;
4802 		}
4803 
4804 		if (signal_pending_state(state, current))
4805 			__set_current_state(TASK_RUNNING);
4806 		if (task_is_running(current))
4807 			return 1;
4808 
4809 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4810 			break;
4811 		cpu_relax();
4812 	} while (!need_resched());
4813 
4814 	__set_current_state(TASK_RUNNING);
4815 	return 0;
4816 }
4817 
4818 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4819 		struct io_comp_batch *iob, unsigned int flags)
4820 {
4821 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4822 
4823 	return blk_hctx_poll(q, hctx, iob, flags);
4824 }
4825 
4826 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4827 		unsigned int poll_flags)
4828 {
4829 	struct request_queue *q = rq->q;
4830 	int ret;
4831 
4832 	if (!blk_rq_is_poll(rq))
4833 		return 0;
4834 	if (!percpu_ref_tryget(&q->q_usage_counter))
4835 		return 0;
4836 
4837 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4838 	blk_queue_exit(q);
4839 
4840 	return ret;
4841 }
4842 EXPORT_SYMBOL_GPL(blk_rq_poll);
4843 
4844 unsigned int blk_mq_rq_cpu(struct request *rq)
4845 {
4846 	return rq->mq_ctx->cpu;
4847 }
4848 EXPORT_SYMBOL(blk_mq_rq_cpu);
4849 
4850 void blk_mq_cancel_work_sync(struct request_queue *q)
4851 {
4852 	struct blk_mq_hw_ctx *hctx;
4853 	unsigned long i;
4854 
4855 	cancel_delayed_work_sync(&q->requeue_work);
4856 
4857 	queue_for_each_hw_ctx(q, hctx, i)
4858 		cancel_delayed_work_sync(&hctx->run_work);
4859 }
4860 
4861 static int __init blk_mq_init(void)
4862 {
4863 	int i;
4864 
4865 	for_each_possible_cpu(i)
4866 		init_llist_head(&per_cpu(blk_cpu_done, i));
4867 	for_each_possible_cpu(i)
4868 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4869 			 __blk_mq_complete_request_remote, NULL);
4870 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4871 
4872 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4873 				  "block/softirq:dead", NULL,
4874 				  blk_softirq_cpu_dead);
4875 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4876 				blk_mq_hctx_notify_dead);
4877 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4878 				blk_mq_hctx_notify_online,
4879 				blk_mq_hctx_notify_offline);
4880 	return 0;
4881 }
4882 subsys_initcall(blk_mq_init);
4883