1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/suspend.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 #include <linux/sched/isolation.h> 33 34 #include <trace/events/block.h> 35 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-pm.h" 41 #include "blk-stat.h" 42 #include "blk-mq-sched.h" 43 #include "blk-rq-qos.h" 44 45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 47 static DEFINE_MUTEX(blk_mq_cpuhp_lock); 48 49 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 50 static void blk_mq_request_bypass_insert(struct request *rq, 51 blk_insert_t flags); 52 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 53 struct list_head *list); 54 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 55 struct io_comp_batch *iob, unsigned int flags); 56 57 /* 58 * Check if any of the ctx, dispatch list or elevator 59 * have pending work in this hardware queue. 60 */ 61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 62 { 63 return !list_empty_careful(&hctx->dispatch) || 64 sbitmap_any_bit_set(&hctx->ctx_map) || 65 blk_mq_sched_has_work(hctx); 66 } 67 68 /* 69 * Mark this ctx as having pending work in this hardware queue 70 */ 71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 72 struct blk_mq_ctx *ctx) 73 { 74 const int bit = ctx->index_hw[hctx->type]; 75 76 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 77 sbitmap_set_bit(&hctx->ctx_map, bit); 78 } 79 80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 sbitmap_clear_bit(&hctx->ctx_map, bit); 86 } 87 88 struct mq_inflight { 89 struct block_device *part; 90 unsigned int inflight[2]; 91 }; 92 93 static bool blk_mq_check_in_driver(struct request *rq, void *priv) 94 { 95 struct mq_inflight *mi = priv; 96 97 if (rq->rq_flags & RQF_IO_STAT && 98 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 99 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 100 mi->inflight[rq_data_dir(rq)]++; 101 102 return true; 103 } 104 105 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2]) 106 { 107 struct mq_inflight mi = { .part = part }; 108 109 blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver, 110 &mi); 111 inflight[READ] = mi.inflight[READ]; 112 inflight[WRITE] = mi.inflight[WRITE]; 113 } 114 115 #ifdef CONFIG_LOCKDEP 116 static bool blk_freeze_set_owner(struct request_queue *q, 117 struct task_struct *owner) 118 { 119 if (!owner) 120 return false; 121 122 if (!q->mq_freeze_depth) { 123 q->mq_freeze_owner = owner; 124 q->mq_freeze_owner_depth = 1; 125 q->mq_freeze_disk_dead = !q->disk || 126 test_bit(GD_DEAD, &q->disk->state) || 127 !blk_queue_registered(q); 128 q->mq_freeze_queue_dying = blk_queue_dying(q); 129 return true; 130 } 131 132 if (owner == q->mq_freeze_owner) 133 q->mq_freeze_owner_depth += 1; 134 return false; 135 } 136 137 /* verify the last unfreeze in owner context */ 138 static bool blk_unfreeze_check_owner(struct request_queue *q) 139 { 140 if (q->mq_freeze_owner != current) 141 return false; 142 if (--q->mq_freeze_owner_depth == 0) { 143 q->mq_freeze_owner = NULL; 144 return true; 145 } 146 return false; 147 } 148 149 #else 150 151 static bool blk_freeze_set_owner(struct request_queue *q, 152 struct task_struct *owner) 153 { 154 return false; 155 } 156 157 static bool blk_unfreeze_check_owner(struct request_queue *q) 158 { 159 return false; 160 } 161 #endif 162 163 bool __blk_freeze_queue_start(struct request_queue *q, 164 struct task_struct *owner) 165 { 166 bool freeze; 167 168 mutex_lock(&q->mq_freeze_lock); 169 freeze = blk_freeze_set_owner(q, owner); 170 if (++q->mq_freeze_depth == 1) { 171 percpu_ref_kill(&q->q_usage_counter); 172 mutex_unlock(&q->mq_freeze_lock); 173 if (queue_is_mq(q)) 174 blk_mq_run_hw_queues(q, false); 175 } else { 176 mutex_unlock(&q->mq_freeze_lock); 177 } 178 179 return freeze; 180 } 181 182 void blk_freeze_queue_start(struct request_queue *q) 183 { 184 if (__blk_freeze_queue_start(q, current)) 185 blk_freeze_acquire_lock(q); 186 } 187 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 188 189 void blk_mq_freeze_queue_wait(struct request_queue *q) 190 { 191 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 192 } 193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 194 195 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 196 unsigned long timeout) 197 { 198 return wait_event_timeout(q->mq_freeze_wq, 199 percpu_ref_is_zero(&q->q_usage_counter), 200 timeout); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 203 204 void blk_mq_freeze_queue_nomemsave(struct request_queue *q) 205 { 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave); 210 211 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 212 { 213 bool unfreeze; 214 215 mutex_lock(&q->mq_freeze_lock); 216 if (force_atomic) 217 q->q_usage_counter.data->force_atomic = true; 218 q->mq_freeze_depth--; 219 WARN_ON_ONCE(q->mq_freeze_depth < 0); 220 if (!q->mq_freeze_depth) { 221 percpu_ref_resurrect(&q->q_usage_counter); 222 wake_up_all(&q->mq_freeze_wq); 223 } 224 unfreeze = blk_unfreeze_check_owner(q); 225 mutex_unlock(&q->mq_freeze_lock); 226 227 return unfreeze; 228 } 229 230 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q) 231 { 232 if (__blk_mq_unfreeze_queue(q, false)) 233 blk_unfreeze_release_lock(q); 234 } 235 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore); 236 237 /* 238 * non_owner variant of blk_freeze_queue_start 239 * 240 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 241 * by the same task. This is fragile and should not be used if at all 242 * possible. 243 */ 244 void blk_freeze_queue_start_non_owner(struct request_queue *q) 245 { 246 __blk_freeze_queue_start(q, NULL); 247 } 248 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 249 250 /* non_owner variant of blk_mq_unfreeze_queue */ 251 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 252 { 253 __blk_mq_unfreeze_queue(q, false); 254 } 255 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 256 257 /* 258 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 259 * mpt3sas driver such that this function can be removed. 260 */ 261 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 262 { 263 unsigned long flags; 264 265 spin_lock_irqsave(&q->queue_lock, flags); 266 if (!q->quiesce_depth++) 267 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 268 spin_unlock_irqrestore(&q->queue_lock, flags); 269 } 270 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 271 272 /** 273 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 274 * @set: tag_set to wait on 275 * 276 * Note: it is driver's responsibility for making sure that quiesce has 277 * been started on or more of the request_queues of the tag_set. This 278 * function only waits for the quiesce on those request_queues that had 279 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 280 */ 281 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 282 { 283 if (set->flags & BLK_MQ_F_BLOCKING) 284 synchronize_srcu(set->srcu); 285 else 286 synchronize_rcu(); 287 } 288 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 289 290 /** 291 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 292 * @q: request queue. 293 * 294 * Note: this function does not prevent that the struct request end_io() 295 * callback function is invoked. Once this function is returned, we make 296 * sure no dispatch can happen until the queue is unquiesced via 297 * blk_mq_unquiesce_queue(). 298 */ 299 void blk_mq_quiesce_queue(struct request_queue *q) 300 { 301 blk_mq_quiesce_queue_nowait(q); 302 /* nothing to wait for non-mq queues */ 303 if (queue_is_mq(q)) 304 blk_mq_wait_quiesce_done(q->tag_set); 305 } 306 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 307 308 /* 309 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 310 * @q: request queue. 311 * 312 * This function recovers queue into the state before quiescing 313 * which is done by blk_mq_quiesce_queue. 314 */ 315 void blk_mq_unquiesce_queue(struct request_queue *q) 316 { 317 unsigned long flags; 318 bool run_queue = false; 319 320 spin_lock_irqsave(&q->queue_lock, flags); 321 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 322 ; 323 } else if (!--q->quiesce_depth) { 324 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 325 run_queue = true; 326 } 327 spin_unlock_irqrestore(&q->queue_lock, flags); 328 329 /* dispatch requests which are inserted during quiescing */ 330 if (run_queue) 331 blk_mq_run_hw_queues(q, true); 332 } 333 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 334 335 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 336 { 337 struct request_queue *q; 338 339 rcu_read_lock(); 340 list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) { 341 if (!blk_queue_skip_tagset_quiesce(q)) 342 blk_mq_quiesce_queue_nowait(q); 343 } 344 rcu_read_unlock(); 345 346 blk_mq_wait_quiesce_done(set); 347 } 348 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 349 350 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 351 { 352 struct request_queue *q; 353 354 rcu_read_lock(); 355 list_for_each_entry_rcu(q, &set->tag_list, tag_set_list) { 356 if (!blk_queue_skip_tagset_quiesce(q)) 357 blk_mq_unquiesce_queue(q); 358 } 359 rcu_read_unlock(); 360 } 361 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 362 363 void blk_mq_wake_waiters(struct request_queue *q) 364 { 365 struct blk_mq_hw_ctx *hctx; 366 unsigned long i; 367 368 queue_for_each_hw_ctx(q, hctx, i) 369 if (blk_mq_hw_queue_mapped(hctx)) 370 blk_mq_tag_wakeup_all(hctx->tags, true); 371 } 372 373 void blk_rq_init(struct request_queue *q, struct request *rq) 374 { 375 memset(rq, 0, sizeof(*rq)); 376 377 INIT_LIST_HEAD(&rq->queuelist); 378 rq->q = q; 379 rq->__sector = (sector_t) -1; 380 rq->phys_gap_bit = 0; 381 INIT_HLIST_NODE(&rq->hash); 382 RB_CLEAR_NODE(&rq->rb_node); 383 rq->tag = BLK_MQ_NO_TAG; 384 rq->internal_tag = BLK_MQ_NO_TAG; 385 rq->start_time_ns = blk_time_get_ns(); 386 blk_crypto_rq_set_defaults(rq); 387 } 388 EXPORT_SYMBOL(blk_rq_init); 389 390 /* Set start and alloc time when the allocated request is actually used */ 391 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 392 { 393 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 394 if (blk_queue_rq_alloc_time(rq->q)) 395 rq->alloc_time_ns = alloc_time_ns; 396 else 397 rq->alloc_time_ns = 0; 398 #endif 399 } 400 401 static inline void blk_mq_bio_issue_init(struct request_queue *q, 402 struct bio *bio) 403 { 404 #ifdef CONFIG_BLK_CGROUP 405 if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags)) 406 bio->issue_time_ns = blk_time_get_ns(); 407 #endif 408 } 409 410 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 411 struct blk_mq_tags *tags, unsigned int tag) 412 { 413 struct blk_mq_ctx *ctx = data->ctx; 414 struct blk_mq_hw_ctx *hctx = data->hctx; 415 struct request_queue *q = data->q; 416 struct request *rq = tags->static_rqs[tag]; 417 418 rq->q = q; 419 rq->mq_ctx = ctx; 420 rq->mq_hctx = hctx; 421 rq->cmd_flags = data->cmd_flags; 422 423 if (data->flags & BLK_MQ_REQ_PM) 424 data->rq_flags |= RQF_PM; 425 rq->rq_flags = data->rq_flags; 426 427 if (data->rq_flags & RQF_SCHED_TAGS) { 428 rq->tag = BLK_MQ_NO_TAG; 429 rq->internal_tag = tag; 430 } else { 431 rq->tag = tag; 432 rq->internal_tag = BLK_MQ_NO_TAG; 433 } 434 rq->timeout = 0; 435 436 rq->part = NULL; 437 rq->io_start_time_ns = 0; 438 rq->stats_sectors = 0; 439 rq->nr_phys_segments = 0; 440 rq->nr_integrity_segments = 0; 441 rq->end_io = NULL; 442 rq->end_io_data = NULL; 443 444 blk_crypto_rq_set_defaults(rq); 445 INIT_LIST_HEAD(&rq->queuelist); 446 /* tag was already set */ 447 WRITE_ONCE(rq->deadline, 0); 448 req_ref_set(rq, 1); 449 450 if (rq->rq_flags & RQF_USE_SCHED) { 451 struct elevator_queue *e = data->q->elevator; 452 453 INIT_HLIST_NODE(&rq->hash); 454 RB_CLEAR_NODE(&rq->rb_node); 455 456 if (e->type->ops.prepare_request) 457 e->type->ops.prepare_request(rq); 458 } 459 460 return rq; 461 } 462 463 static inline struct request * 464 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 465 { 466 unsigned int tag, tag_offset; 467 struct blk_mq_tags *tags; 468 struct request *rq; 469 unsigned long tag_mask; 470 int i, nr = 0; 471 472 do { 473 tag_mask = blk_mq_get_tags(data, data->nr_tags - nr, &tag_offset); 474 if (unlikely(!tag_mask)) { 475 if (nr == 0) 476 return NULL; 477 break; 478 } 479 tags = blk_mq_tags_from_data(data); 480 for (i = 0; tag_mask; i++) { 481 if (!(tag_mask & (1UL << i))) 482 continue; 483 tag = tag_offset + i; 484 prefetch(tags->static_rqs[tag]); 485 tag_mask &= ~(1UL << i); 486 rq = blk_mq_rq_ctx_init(data, tags, tag); 487 rq_list_add_head(data->cached_rqs, rq); 488 nr++; 489 } 490 } while (data->nr_tags > nr); 491 492 if (!(data->rq_flags & RQF_SCHED_TAGS)) 493 blk_mq_add_active_requests(data->hctx, nr); 494 /* caller already holds a reference, add for remainder */ 495 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 496 data->nr_tags -= nr; 497 498 return rq_list_pop(data->cached_rqs); 499 } 500 501 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 502 { 503 struct request_queue *q = data->q; 504 u64 alloc_time_ns = 0; 505 struct request *rq; 506 unsigned int tag; 507 508 /* alloc_time includes depth and tag waits */ 509 if (blk_queue_rq_alloc_time(q)) 510 alloc_time_ns = blk_time_get_ns(); 511 512 if (data->cmd_flags & REQ_NOWAIT) 513 data->flags |= BLK_MQ_REQ_NOWAIT; 514 515 retry: 516 data->ctx = blk_mq_get_ctx(q); 517 data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx); 518 519 if (q->elevator) { 520 /* 521 * All requests use scheduler tags when an I/O scheduler is 522 * enabled for the queue. 523 */ 524 data->rq_flags |= RQF_SCHED_TAGS; 525 526 /* 527 * Flush/passthrough requests are special and go directly to the 528 * dispatch list. 529 */ 530 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 531 !blk_op_is_passthrough(data->cmd_flags)) { 532 struct elevator_mq_ops *ops = &q->elevator->type->ops; 533 534 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 535 536 data->rq_flags |= RQF_USE_SCHED; 537 if (ops->limit_depth) 538 ops->limit_depth(data->cmd_flags, data); 539 } 540 } else { 541 blk_mq_tag_busy(data->hctx); 542 } 543 544 if (data->flags & BLK_MQ_REQ_RESERVED) 545 data->rq_flags |= RQF_RESV; 546 547 /* 548 * Try batched alloc if we want more than 1 tag. 549 */ 550 if (data->nr_tags > 1) { 551 rq = __blk_mq_alloc_requests_batch(data); 552 if (rq) { 553 blk_mq_rq_time_init(rq, alloc_time_ns); 554 return rq; 555 } 556 data->nr_tags = 1; 557 } 558 559 /* 560 * Waiting allocations only fail because of an inactive hctx. In that 561 * case just retry the hctx assignment and tag allocation as CPU hotplug 562 * should have migrated us to an online CPU by now. 563 */ 564 tag = blk_mq_get_tag(data); 565 if (tag == BLK_MQ_NO_TAG) { 566 if (data->flags & BLK_MQ_REQ_NOWAIT) 567 return NULL; 568 /* 569 * Give up the CPU and sleep for a random short time to 570 * ensure that thread using a realtime scheduling class 571 * are migrated off the CPU, and thus off the hctx that 572 * is going away. 573 */ 574 msleep(3); 575 goto retry; 576 } 577 578 if (!(data->rq_flags & RQF_SCHED_TAGS)) 579 blk_mq_inc_active_requests(data->hctx); 580 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 581 blk_mq_rq_time_init(rq, alloc_time_ns); 582 return rq; 583 } 584 585 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 586 struct blk_plug *plug, 587 blk_opf_t opf, 588 blk_mq_req_flags_t flags) 589 { 590 struct blk_mq_alloc_data data = { 591 .q = q, 592 .flags = flags, 593 .shallow_depth = 0, 594 .cmd_flags = opf, 595 .rq_flags = 0, 596 .nr_tags = plug->nr_ios, 597 .cached_rqs = &plug->cached_rqs, 598 .ctx = NULL, 599 .hctx = NULL 600 }; 601 struct request *rq; 602 603 if (blk_queue_enter(q, flags)) 604 return NULL; 605 606 plug->nr_ios = 1; 607 608 rq = __blk_mq_alloc_requests(&data); 609 if (unlikely(!rq)) 610 blk_queue_exit(q); 611 return rq; 612 } 613 614 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 615 blk_opf_t opf, 616 blk_mq_req_flags_t flags) 617 { 618 struct blk_plug *plug = current->plug; 619 struct request *rq; 620 621 if (!plug) 622 return NULL; 623 624 if (rq_list_empty(&plug->cached_rqs)) { 625 if (plug->nr_ios == 1) 626 return NULL; 627 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 628 if (!rq) 629 return NULL; 630 } else { 631 rq = rq_list_peek(&plug->cached_rqs); 632 if (!rq || rq->q != q) 633 return NULL; 634 635 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 636 return NULL; 637 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 638 return NULL; 639 640 rq_list_pop(&plug->cached_rqs); 641 blk_mq_rq_time_init(rq, blk_time_get_ns()); 642 } 643 644 rq->cmd_flags = opf; 645 INIT_LIST_HEAD(&rq->queuelist); 646 return rq; 647 } 648 649 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 650 blk_mq_req_flags_t flags) 651 { 652 struct request *rq; 653 654 rq = blk_mq_alloc_cached_request(q, opf, flags); 655 if (!rq) { 656 struct blk_mq_alloc_data data = { 657 .q = q, 658 .flags = flags, 659 .shallow_depth = 0, 660 .cmd_flags = opf, 661 .rq_flags = 0, 662 .nr_tags = 1, 663 .cached_rqs = NULL, 664 .ctx = NULL, 665 .hctx = NULL 666 }; 667 int ret; 668 669 ret = blk_queue_enter(q, flags); 670 if (ret) 671 return ERR_PTR(ret); 672 673 rq = __blk_mq_alloc_requests(&data); 674 if (!rq) 675 goto out_queue_exit; 676 } 677 rq->__data_len = 0; 678 rq->phys_gap_bit = 0; 679 rq->__sector = (sector_t) -1; 680 rq->bio = rq->biotail = NULL; 681 return rq; 682 out_queue_exit: 683 blk_queue_exit(q); 684 return ERR_PTR(-EWOULDBLOCK); 685 } 686 EXPORT_SYMBOL(blk_mq_alloc_request); 687 688 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 689 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 690 { 691 struct blk_mq_alloc_data data = { 692 .q = q, 693 .flags = flags, 694 .shallow_depth = 0, 695 .cmd_flags = opf, 696 .rq_flags = 0, 697 .nr_tags = 1, 698 .cached_rqs = NULL, 699 .ctx = NULL, 700 .hctx = NULL 701 }; 702 u64 alloc_time_ns = 0; 703 struct request *rq; 704 unsigned int cpu; 705 unsigned int tag; 706 int ret; 707 708 /* alloc_time includes depth and tag waits */ 709 if (blk_queue_rq_alloc_time(q)) 710 alloc_time_ns = blk_time_get_ns(); 711 712 /* 713 * If the tag allocator sleeps we could get an allocation for a 714 * different hardware context. No need to complicate the low level 715 * allocator for this for the rare use case of a command tied to 716 * a specific queue. 717 */ 718 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 719 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 720 return ERR_PTR(-EINVAL); 721 722 if (hctx_idx >= q->nr_hw_queues) 723 return ERR_PTR(-EIO); 724 725 ret = blk_queue_enter(q, flags); 726 if (ret) 727 return ERR_PTR(ret); 728 729 /* 730 * Check if the hardware context is actually mapped to anything. 731 * If not tell the caller that it should skip this queue. 732 */ 733 ret = -EXDEV; 734 data.hctx = q->queue_hw_ctx[hctx_idx]; 735 if (!blk_mq_hw_queue_mapped(data.hctx)) 736 goto out_queue_exit; 737 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 738 if (cpu >= nr_cpu_ids) 739 goto out_queue_exit; 740 data.ctx = __blk_mq_get_ctx(q, cpu); 741 742 if (q->elevator) 743 data.rq_flags |= RQF_SCHED_TAGS; 744 else 745 blk_mq_tag_busy(data.hctx); 746 747 if (flags & BLK_MQ_REQ_RESERVED) 748 data.rq_flags |= RQF_RESV; 749 750 ret = -EWOULDBLOCK; 751 tag = blk_mq_get_tag(&data); 752 if (tag == BLK_MQ_NO_TAG) 753 goto out_queue_exit; 754 if (!(data.rq_flags & RQF_SCHED_TAGS)) 755 blk_mq_inc_active_requests(data.hctx); 756 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 757 blk_mq_rq_time_init(rq, alloc_time_ns); 758 rq->__data_len = 0; 759 rq->phys_gap_bit = 0; 760 rq->__sector = (sector_t) -1; 761 rq->bio = rq->biotail = NULL; 762 return rq; 763 764 out_queue_exit: 765 blk_queue_exit(q); 766 return ERR_PTR(ret); 767 } 768 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 769 770 static void blk_mq_finish_request(struct request *rq) 771 { 772 struct request_queue *q = rq->q; 773 774 blk_zone_finish_request(rq); 775 776 if (rq->rq_flags & RQF_USE_SCHED) { 777 q->elevator->type->ops.finish_request(rq); 778 /* 779 * For postflush request that may need to be 780 * completed twice, we should clear this flag 781 * to avoid double finish_request() on the rq. 782 */ 783 rq->rq_flags &= ~RQF_USE_SCHED; 784 } 785 } 786 787 static void __blk_mq_free_request(struct request *rq) 788 { 789 struct request_queue *q = rq->q; 790 struct blk_mq_ctx *ctx = rq->mq_ctx; 791 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 792 const int sched_tag = rq->internal_tag; 793 794 blk_crypto_free_request(rq); 795 blk_pm_mark_last_busy(rq); 796 rq->mq_hctx = NULL; 797 798 if (rq->tag != BLK_MQ_NO_TAG) { 799 blk_mq_dec_active_requests(hctx); 800 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 801 } 802 if (sched_tag != BLK_MQ_NO_TAG) 803 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 804 blk_mq_sched_restart(hctx); 805 blk_queue_exit(q); 806 } 807 808 void blk_mq_free_request(struct request *rq) 809 { 810 struct request_queue *q = rq->q; 811 812 blk_mq_finish_request(rq); 813 814 rq_qos_done(q, rq); 815 816 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 817 if (req_ref_put_and_test(rq)) 818 __blk_mq_free_request(rq); 819 } 820 EXPORT_SYMBOL_GPL(blk_mq_free_request); 821 822 void blk_mq_free_plug_rqs(struct blk_plug *plug) 823 { 824 struct request *rq; 825 826 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 827 blk_mq_free_request(rq); 828 } 829 830 void blk_dump_rq_flags(struct request *rq, char *msg) 831 { 832 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 833 rq->q->disk ? rq->q->disk->disk_name : "?", 834 (__force unsigned long long) rq->cmd_flags); 835 836 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 837 (unsigned long long)blk_rq_pos(rq), 838 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 839 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 840 rq->bio, rq->biotail, blk_rq_bytes(rq)); 841 } 842 EXPORT_SYMBOL(blk_dump_rq_flags); 843 844 static void blk_account_io_completion(struct request *req, unsigned int bytes) 845 { 846 if (req->rq_flags & RQF_IO_STAT) { 847 const int sgrp = op_stat_group(req_op(req)); 848 849 part_stat_lock(); 850 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 851 part_stat_unlock(); 852 } 853 } 854 855 static void blk_print_req_error(struct request *req, blk_status_t status) 856 { 857 printk_ratelimited(KERN_ERR 858 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 859 "phys_seg %u prio class %u\n", 860 blk_status_to_str(status), 861 req->q->disk ? req->q->disk->disk_name : "?", 862 blk_rq_pos(req), (__force u32)req_op(req), 863 blk_op_str(req_op(req)), 864 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 865 req->nr_phys_segments, 866 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 867 } 868 869 /* 870 * Fully end IO on a request. Does not support partial completions, or 871 * errors. 872 */ 873 static void blk_complete_request(struct request *req) 874 { 875 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 876 int total_bytes = blk_rq_bytes(req); 877 struct bio *bio = req->bio; 878 879 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 880 881 if (!bio) 882 return; 883 884 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 885 blk_integrity_complete(req, total_bytes); 886 887 /* 888 * Upper layers may call blk_crypto_evict_key() anytime after the last 889 * bio_endio(). Therefore, the keyslot must be released before that. 890 */ 891 blk_crypto_rq_put_keyslot(req); 892 893 blk_account_io_completion(req, total_bytes); 894 895 do { 896 struct bio *next = bio->bi_next; 897 898 /* Completion has already been traced */ 899 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 900 901 if (blk_req_bio_is_zone_append(req, bio)) 902 blk_zone_append_update_request_bio(req, bio); 903 904 if (!is_flush) 905 bio_endio(bio); 906 bio = next; 907 } while (bio); 908 909 /* 910 * Reset counters so that the request stacking driver 911 * can find how many bytes remain in the request 912 * later. 913 */ 914 if (!req->end_io) { 915 req->bio = NULL; 916 req->__data_len = 0; 917 } 918 } 919 920 /** 921 * blk_update_request - Complete multiple bytes without completing the request 922 * @req: the request being processed 923 * @error: block status code 924 * @nr_bytes: number of bytes to complete for @req 925 * 926 * Description: 927 * Ends I/O on a number of bytes attached to @req, but doesn't complete 928 * the request structure even if @req doesn't have leftover. 929 * If @req has leftover, sets it up for the next range of segments. 930 * 931 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 932 * %false return from this function. 933 * 934 * Note: 935 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 936 * except in the consistency check at the end of this function. 937 * 938 * Return: 939 * %false - this request doesn't have any more data 940 * %true - this request has more data 941 **/ 942 bool blk_update_request(struct request *req, blk_status_t error, 943 unsigned int nr_bytes) 944 { 945 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 946 bool quiet = req->rq_flags & RQF_QUIET; 947 int total_bytes; 948 949 trace_block_rq_complete(req, error, nr_bytes); 950 951 if (!req->bio) 952 return false; 953 954 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 955 error == BLK_STS_OK) 956 blk_integrity_complete(req, nr_bytes); 957 958 /* 959 * Upper layers may call blk_crypto_evict_key() anytime after the last 960 * bio_endio(). Therefore, the keyslot must be released before that. 961 */ 962 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 963 __blk_crypto_rq_put_keyslot(req); 964 965 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 966 !test_bit(GD_DEAD, &req->q->disk->state)) { 967 blk_print_req_error(req, error); 968 trace_block_rq_error(req, error, nr_bytes); 969 } 970 971 blk_account_io_completion(req, nr_bytes); 972 973 total_bytes = 0; 974 while (req->bio) { 975 struct bio *bio = req->bio; 976 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 977 978 if (unlikely(error)) 979 bio->bi_status = error; 980 981 if (bio_bytes == bio->bi_iter.bi_size) { 982 req->bio = bio->bi_next; 983 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 984 /* 985 * Partial zone append completions cannot be supported 986 * as the BIO fragments may end up not being written 987 * sequentially. 988 */ 989 bio->bi_status = BLK_STS_IOERR; 990 } 991 992 /* Completion has already been traced */ 993 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 994 if (unlikely(quiet)) 995 bio_set_flag(bio, BIO_QUIET); 996 997 bio_advance(bio, bio_bytes); 998 999 /* Don't actually finish bio if it's part of flush sequence */ 1000 if (!bio->bi_iter.bi_size) { 1001 if (blk_req_bio_is_zone_append(req, bio)) 1002 blk_zone_append_update_request_bio(req, bio); 1003 if (!is_flush) 1004 bio_endio(bio); 1005 } 1006 1007 total_bytes += bio_bytes; 1008 nr_bytes -= bio_bytes; 1009 1010 if (!nr_bytes) 1011 break; 1012 } 1013 1014 /* 1015 * completely done 1016 */ 1017 if (!req->bio) { 1018 /* 1019 * Reset counters so that the request stacking driver 1020 * can find how many bytes remain in the request 1021 * later. 1022 */ 1023 req->__data_len = 0; 1024 return false; 1025 } 1026 1027 req->__data_len -= total_bytes; 1028 1029 /* update sector only for requests with clear definition of sector */ 1030 if (!blk_rq_is_passthrough(req)) 1031 req->__sector += total_bytes >> 9; 1032 1033 /* mixed attributes always follow the first bio */ 1034 if (req->rq_flags & RQF_MIXED_MERGE) { 1035 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1036 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1037 } 1038 1039 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1040 /* 1041 * If total number of sectors is less than the first segment 1042 * size, something has gone terribly wrong. 1043 */ 1044 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1045 blk_dump_rq_flags(req, "request botched"); 1046 req->__data_len = blk_rq_cur_bytes(req); 1047 } 1048 1049 /* recalculate the number of segments */ 1050 req->nr_phys_segments = blk_recalc_rq_segments(req); 1051 } 1052 1053 return true; 1054 } 1055 EXPORT_SYMBOL_GPL(blk_update_request); 1056 1057 static inline void blk_account_io_done(struct request *req, u64 now) 1058 { 1059 trace_block_io_done(req); 1060 1061 /* 1062 * Account IO completion. flush_rq isn't accounted as a 1063 * normal IO on queueing nor completion. Accounting the 1064 * containing request is enough. 1065 */ 1066 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1067 const int sgrp = op_stat_group(req_op(req)); 1068 1069 part_stat_lock(); 1070 update_io_ticks(req->part, jiffies, true); 1071 part_stat_inc(req->part, ios[sgrp]); 1072 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1073 part_stat_local_dec(req->part, 1074 in_flight[op_is_write(req_op(req))]); 1075 part_stat_unlock(); 1076 } 1077 } 1078 1079 static inline bool blk_rq_passthrough_stats(struct request *req) 1080 { 1081 struct bio *bio = req->bio; 1082 1083 if (!blk_queue_passthrough_stat(req->q)) 1084 return false; 1085 1086 /* Requests without a bio do not transfer data. */ 1087 if (!bio) 1088 return false; 1089 1090 /* 1091 * Stats are accumulated in the bdev, so must have one attached to a 1092 * bio to track stats. Most drivers do not set the bdev for passthrough 1093 * requests, but nvme is one that will set it. 1094 */ 1095 if (!bio->bi_bdev) 1096 return false; 1097 1098 /* 1099 * We don't know what a passthrough command does, but we know the 1100 * payload size and data direction. Ensuring the size is aligned to the 1101 * block size filters out most commands with payloads that don't 1102 * represent sector access. 1103 */ 1104 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1105 return false; 1106 return true; 1107 } 1108 1109 static inline void blk_account_io_start(struct request *req) 1110 { 1111 trace_block_io_start(req); 1112 1113 if (!blk_queue_io_stat(req->q)) 1114 return; 1115 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1116 return; 1117 1118 req->rq_flags |= RQF_IO_STAT; 1119 req->start_time_ns = blk_time_get_ns(); 1120 1121 /* 1122 * All non-passthrough requests are created from a bio with one 1123 * exception: when a flush command that is part of a flush sequence 1124 * generated by the state machine in blk-flush.c is cloned onto the 1125 * lower device by dm-multipath we can get here without a bio. 1126 */ 1127 if (req->bio) 1128 req->part = req->bio->bi_bdev; 1129 else 1130 req->part = req->q->disk->part0; 1131 1132 part_stat_lock(); 1133 update_io_ticks(req->part, jiffies, false); 1134 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1135 part_stat_unlock(); 1136 } 1137 1138 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1139 { 1140 if (rq->rq_flags & RQF_STATS) 1141 blk_stat_add(rq, now); 1142 1143 blk_mq_sched_completed_request(rq, now); 1144 blk_account_io_done(rq, now); 1145 } 1146 1147 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1148 { 1149 if (blk_mq_need_time_stamp(rq)) 1150 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1151 1152 blk_mq_finish_request(rq); 1153 1154 if (rq->end_io) { 1155 rq_qos_done(rq->q, rq); 1156 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1157 blk_mq_free_request(rq); 1158 } else { 1159 blk_mq_free_request(rq); 1160 } 1161 } 1162 EXPORT_SYMBOL(__blk_mq_end_request); 1163 1164 void blk_mq_end_request(struct request *rq, blk_status_t error) 1165 { 1166 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1167 BUG(); 1168 __blk_mq_end_request(rq, error); 1169 } 1170 EXPORT_SYMBOL(blk_mq_end_request); 1171 1172 #define TAG_COMP_BATCH 32 1173 1174 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1175 int *tag_array, int nr_tags) 1176 { 1177 struct request_queue *q = hctx->queue; 1178 1179 blk_mq_sub_active_requests(hctx, nr_tags); 1180 1181 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1182 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1183 } 1184 1185 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1186 { 1187 int tags[TAG_COMP_BATCH], nr_tags = 0; 1188 struct blk_mq_hw_ctx *cur_hctx = NULL; 1189 struct request *rq; 1190 u64 now = 0; 1191 1192 if (iob->need_ts) 1193 now = blk_time_get_ns(); 1194 1195 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1196 prefetch(rq->bio); 1197 prefetch(rq->rq_next); 1198 1199 blk_complete_request(rq); 1200 if (iob->need_ts) 1201 __blk_mq_end_request_acct(rq, now); 1202 1203 blk_mq_finish_request(rq); 1204 1205 rq_qos_done(rq->q, rq); 1206 1207 /* 1208 * If end_io handler returns NONE, then it still has 1209 * ownership of the request. 1210 */ 1211 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1212 continue; 1213 1214 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1215 if (!req_ref_put_and_test(rq)) 1216 continue; 1217 1218 blk_crypto_free_request(rq); 1219 blk_pm_mark_last_busy(rq); 1220 1221 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1222 if (cur_hctx) 1223 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1224 nr_tags = 0; 1225 cur_hctx = rq->mq_hctx; 1226 } 1227 tags[nr_tags++] = rq->tag; 1228 } 1229 1230 if (nr_tags) 1231 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1232 } 1233 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1234 1235 static void blk_complete_reqs(struct llist_head *list) 1236 { 1237 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1238 struct request *rq, *next; 1239 1240 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1241 rq->q->mq_ops->complete(rq); 1242 } 1243 1244 static __latent_entropy void blk_done_softirq(void) 1245 { 1246 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1247 } 1248 1249 static int blk_softirq_cpu_dead(unsigned int cpu) 1250 { 1251 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1252 return 0; 1253 } 1254 1255 static void __blk_mq_complete_request_remote(void *data) 1256 { 1257 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1258 } 1259 1260 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1261 { 1262 int cpu = raw_smp_processor_id(); 1263 1264 if (!IS_ENABLED(CONFIG_SMP) || 1265 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1266 return false; 1267 /* 1268 * With force threaded interrupts enabled, raising softirq from an SMP 1269 * function call will always result in waking the ksoftirqd thread. 1270 * This is probably worse than completing the request on a different 1271 * cache domain. 1272 */ 1273 if (force_irqthreads()) 1274 return false; 1275 1276 /* same CPU or cache domain and capacity? Complete locally */ 1277 if (cpu == rq->mq_ctx->cpu || 1278 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1279 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1280 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1281 return false; 1282 1283 /* don't try to IPI to an offline CPU */ 1284 return cpu_online(rq->mq_ctx->cpu); 1285 } 1286 1287 static void blk_mq_complete_send_ipi(struct request *rq) 1288 { 1289 unsigned int cpu; 1290 1291 cpu = rq->mq_ctx->cpu; 1292 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1293 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1294 } 1295 1296 static void blk_mq_raise_softirq(struct request *rq) 1297 { 1298 struct llist_head *list; 1299 1300 preempt_disable(); 1301 list = this_cpu_ptr(&blk_cpu_done); 1302 if (llist_add(&rq->ipi_list, list)) 1303 raise_softirq(BLOCK_SOFTIRQ); 1304 preempt_enable(); 1305 } 1306 1307 bool blk_mq_complete_request_remote(struct request *rq) 1308 { 1309 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1310 1311 /* 1312 * For request which hctx has only one ctx mapping, 1313 * or a polled request, always complete locally, 1314 * it's pointless to redirect the completion. 1315 */ 1316 if ((rq->mq_hctx->nr_ctx == 1 && 1317 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1318 rq->cmd_flags & REQ_POLLED) 1319 return false; 1320 1321 if (blk_mq_complete_need_ipi(rq)) { 1322 blk_mq_complete_send_ipi(rq); 1323 return true; 1324 } 1325 1326 if (rq->q->nr_hw_queues == 1) { 1327 blk_mq_raise_softirq(rq); 1328 return true; 1329 } 1330 return false; 1331 } 1332 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1333 1334 /** 1335 * blk_mq_complete_request - end I/O on a request 1336 * @rq: the request being processed 1337 * 1338 * Description: 1339 * Complete a request by scheduling the ->complete_rq operation. 1340 **/ 1341 void blk_mq_complete_request(struct request *rq) 1342 { 1343 if (!blk_mq_complete_request_remote(rq)) 1344 rq->q->mq_ops->complete(rq); 1345 } 1346 EXPORT_SYMBOL(blk_mq_complete_request); 1347 1348 /** 1349 * blk_mq_start_request - Start processing a request 1350 * @rq: Pointer to request to be started 1351 * 1352 * Function used by device drivers to notify the block layer that a request 1353 * is going to be processed now, so blk layer can do proper initializations 1354 * such as starting the timeout timer. 1355 */ 1356 void blk_mq_start_request(struct request *rq) 1357 { 1358 struct request_queue *q = rq->q; 1359 1360 trace_block_rq_issue(rq); 1361 1362 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1363 !blk_rq_is_passthrough(rq)) { 1364 rq->io_start_time_ns = blk_time_get_ns(); 1365 rq->stats_sectors = blk_rq_sectors(rq); 1366 rq->rq_flags |= RQF_STATS; 1367 rq_qos_issue(q, rq); 1368 } 1369 1370 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1371 1372 blk_add_timer(rq); 1373 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1374 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1375 1376 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1377 blk_integrity_prepare(rq); 1378 1379 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1380 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1381 } 1382 EXPORT_SYMBOL(blk_mq_start_request); 1383 1384 /* 1385 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1386 * queues. This is important for md arrays to benefit from merging 1387 * requests. 1388 */ 1389 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1390 { 1391 if (plug->multiple_queues) 1392 return BLK_MAX_REQUEST_COUNT * 2; 1393 return BLK_MAX_REQUEST_COUNT; 1394 } 1395 1396 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1397 { 1398 struct request *last = rq_list_peek(&plug->mq_list); 1399 1400 if (!plug->rq_count) { 1401 trace_block_plug(rq->q); 1402 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1403 (!blk_queue_nomerges(rq->q) && 1404 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1405 blk_mq_flush_plug_list(plug, false); 1406 last = NULL; 1407 trace_block_plug(rq->q); 1408 } 1409 1410 if (!plug->multiple_queues && last && last->q != rq->q) 1411 plug->multiple_queues = true; 1412 /* 1413 * Any request allocated from sched tags can't be issued to 1414 * ->queue_rqs() directly 1415 */ 1416 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1417 plug->has_elevator = true; 1418 rq_list_add_tail(&plug->mq_list, rq); 1419 plug->rq_count++; 1420 } 1421 1422 /** 1423 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1424 * @rq: request to insert 1425 * @at_head: insert request at head or tail of queue 1426 * 1427 * Description: 1428 * Insert a fully prepared request at the back of the I/O scheduler queue 1429 * for execution. Don't wait for completion. 1430 * 1431 * Note: 1432 * This function will invoke @done directly if the queue is dead. 1433 */ 1434 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1435 { 1436 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1437 1438 WARN_ON(irqs_disabled()); 1439 WARN_ON(!blk_rq_is_passthrough(rq)); 1440 1441 blk_account_io_start(rq); 1442 1443 if (current->plug && !at_head) { 1444 blk_add_rq_to_plug(current->plug, rq); 1445 return; 1446 } 1447 1448 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1449 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1450 } 1451 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1452 1453 struct blk_rq_wait { 1454 struct completion done; 1455 blk_status_t ret; 1456 }; 1457 1458 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1459 { 1460 struct blk_rq_wait *wait = rq->end_io_data; 1461 1462 wait->ret = ret; 1463 complete(&wait->done); 1464 return RQ_END_IO_NONE; 1465 } 1466 1467 bool blk_rq_is_poll(struct request *rq) 1468 { 1469 if (!rq->mq_hctx) 1470 return false; 1471 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1472 return false; 1473 return true; 1474 } 1475 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1476 1477 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1478 { 1479 do { 1480 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1481 cond_resched(); 1482 } while (!completion_done(wait)); 1483 } 1484 1485 /** 1486 * blk_execute_rq - insert a request into queue for execution 1487 * @rq: request to insert 1488 * @at_head: insert request at head or tail of queue 1489 * 1490 * Description: 1491 * Insert a fully prepared request at the back of the I/O scheduler queue 1492 * for execution and wait for completion. 1493 * Return: The blk_status_t result provided to blk_mq_end_request(). 1494 */ 1495 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1496 { 1497 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1498 struct blk_rq_wait wait = { 1499 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1500 }; 1501 1502 WARN_ON(irqs_disabled()); 1503 WARN_ON(!blk_rq_is_passthrough(rq)); 1504 1505 rq->end_io_data = &wait; 1506 rq->end_io = blk_end_sync_rq; 1507 1508 blk_account_io_start(rq); 1509 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1510 blk_mq_run_hw_queue(hctx, false); 1511 1512 if (blk_rq_is_poll(rq)) 1513 blk_rq_poll_completion(rq, &wait.done); 1514 else 1515 blk_wait_io(&wait.done); 1516 1517 return wait.ret; 1518 } 1519 EXPORT_SYMBOL(blk_execute_rq); 1520 1521 static void __blk_mq_requeue_request(struct request *rq) 1522 { 1523 struct request_queue *q = rq->q; 1524 1525 blk_mq_put_driver_tag(rq); 1526 1527 trace_block_rq_requeue(rq); 1528 rq_qos_requeue(q, rq); 1529 1530 if (blk_mq_request_started(rq)) { 1531 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1532 rq->rq_flags &= ~RQF_TIMED_OUT; 1533 } 1534 } 1535 1536 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1537 { 1538 struct request_queue *q = rq->q; 1539 unsigned long flags; 1540 1541 __blk_mq_requeue_request(rq); 1542 1543 /* this request will be re-inserted to io scheduler queue */ 1544 blk_mq_sched_requeue_request(rq); 1545 1546 spin_lock_irqsave(&q->requeue_lock, flags); 1547 list_add_tail(&rq->queuelist, &q->requeue_list); 1548 spin_unlock_irqrestore(&q->requeue_lock, flags); 1549 1550 if (kick_requeue_list) 1551 blk_mq_kick_requeue_list(q); 1552 } 1553 EXPORT_SYMBOL(blk_mq_requeue_request); 1554 1555 static void blk_mq_requeue_work(struct work_struct *work) 1556 { 1557 struct request_queue *q = 1558 container_of(work, struct request_queue, requeue_work.work); 1559 LIST_HEAD(rq_list); 1560 LIST_HEAD(flush_list); 1561 struct request *rq; 1562 1563 spin_lock_irq(&q->requeue_lock); 1564 list_splice_init(&q->requeue_list, &rq_list); 1565 list_splice_init(&q->flush_list, &flush_list); 1566 spin_unlock_irq(&q->requeue_lock); 1567 1568 while (!list_empty(&rq_list)) { 1569 rq = list_entry(rq_list.next, struct request, queuelist); 1570 list_del_init(&rq->queuelist); 1571 /* 1572 * If RQF_DONTPREP is set, the request has been started by the 1573 * driver already and might have driver-specific data allocated 1574 * already. Insert it into the hctx dispatch list to avoid 1575 * block layer merges for the request. 1576 */ 1577 if (rq->rq_flags & RQF_DONTPREP) 1578 blk_mq_request_bypass_insert(rq, 0); 1579 else 1580 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1581 } 1582 1583 while (!list_empty(&flush_list)) { 1584 rq = list_entry(flush_list.next, struct request, queuelist); 1585 list_del_init(&rq->queuelist); 1586 blk_mq_insert_request(rq, 0); 1587 } 1588 1589 blk_mq_run_hw_queues(q, false); 1590 } 1591 1592 void blk_mq_kick_requeue_list(struct request_queue *q) 1593 { 1594 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1595 } 1596 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1597 1598 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1599 unsigned long msecs) 1600 { 1601 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1602 msecs_to_jiffies(msecs)); 1603 } 1604 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1605 1606 static bool blk_is_flush_data_rq(struct request *rq) 1607 { 1608 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1609 } 1610 1611 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1612 { 1613 /* 1614 * If we find a request that isn't idle we know the queue is busy 1615 * as it's checked in the iter. 1616 * Return false to stop the iteration. 1617 * 1618 * In case of queue quiesce, if one flush data request is completed, 1619 * don't count it as inflight given the flush sequence is suspended, 1620 * and the original flush data request is invisible to driver, just 1621 * like other pending requests because of quiesce 1622 */ 1623 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1624 blk_is_flush_data_rq(rq) && 1625 blk_mq_request_completed(rq))) { 1626 bool *busy = priv; 1627 1628 *busy = true; 1629 return false; 1630 } 1631 1632 return true; 1633 } 1634 1635 bool blk_mq_queue_inflight(struct request_queue *q) 1636 { 1637 bool busy = false; 1638 1639 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1640 return busy; 1641 } 1642 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1643 1644 static void blk_mq_rq_timed_out(struct request *req) 1645 { 1646 req->rq_flags |= RQF_TIMED_OUT; 1647 if (req->q->mq_ops->timeout) { 1648 enum blk_eh_timer_return ret; 1649 1650 ret = req->q->mq_ops->timeout(req); 1651 if (ret == BLK_EH_DONE) 1652 return; 1653 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1654 } 1655 1656 blk_add_timer(req); 1657 } 1658 1659 struct blk_expired_data { 1660 bool has_timedout_rq; 1661 unsigned long next; 1662 unsigned long timeout_start; 1663 }; 1664 1665 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1666 { 1667 unsigned long deadline; 1668 1669 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1670 return false; 1671 if (rq->rq_flags & RQF_TIMED_OUT) 1672 return false; 1673 1674 deadline = READ_ONCE(rq->deadline); 1675 if (time_after_eq(expired->timeout_start, deadline)) 1676 return true; 1677 1678 if (expired->next == 0) 1679 expired->next = deadline; 1680 else if (time_after(expired->next, deadline)) 1681 expired->next = deadline; 1682 return false; 1683 } 1684 1685 void blk_mq_put_rq_ref(struct request *rq) 1686 { 1687 if (is_flush_rq(rq)) { 1688 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1689 blk_mq_free_request(rq); 1690 } else if (req_ref_put_and_test(rq)) { 1691 __blk_mq_free_request(rq); 1692 } 1693 } 1694 1695 static bool blk_mq_check_expired(struct request *rq, void *priv) 1696 { 1697 struct blk_expired_data *expired = priv; 1698 1699 /* 1700 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1701 * be reallocated underneath the timeout handler's processing, then 1702 * the expire check is reliable. If the request is not expired, then 1703 * it was completed and reallocated as a new request after returning 1704 * from blk_mq_check_expired(). 1705 */ 1706 if (blk_mq_req_expired(rq, expired)) { 1707 expired->has_timedout_rq = true; 1708 return false; 1709 } 1710 return true; 1711 } 1712 1713 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1714 { 1715 struct blk_expired_data *expired = priv; 1716 1717 if (blk_mq_req_expired(rq, expired)) 1718 blk_mq_rq_timed_out(rq); 1719 return true; 1720 } 1721 1722 static void blk_mq_timeout_work(struct work_struct *work) 1723 { 1724 struct request_queue *q = 1725 container_of(work, struct request_queue, timeout_work); 1726 struct blk_expired_data expired = { 1727 .timeout_start = jiffies, 1728 }; 1729 struct blk_mq_hw_ctx *hctx; 1730 unsigned long i; 1731 1732 /* A deadlock might occur if a request is stuck requiring a 1733 * timeout at the same time a queue freeze is waiting 1734 * completion, since the timeout code would not be able to 1735 * acquire the queue reference here. 1736 * 1737 * That's why we don't use blk_queue_enter here; instead, we use 1738 * percpu_ref_tryget directly, because we need to be able to 1739 * obtain a reference even in the short window between the queue 1740 * starting to freeze, by dropping the first reference in 1741 * blk_freeze_queue_start, and the moment the last request is 1742 * consumed, marked by the instant q_usage_counter reaches 1743 * zero. 1744 */ 1745 if (!percpu_ref_tryget(&q->q_usage_counter)) 1746 return; 1747 1748 /* check if there is any timed-out request */ 1749 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1750 if (expired.has_timedout_rq) { 1751 /* 1752 * Before walking tags, we must ensure any submit started 1753 * before the current time has finished. Since the submit 1754 * uses srcu or rcu, wait for a synchronization point to 1755 * ensure all running submits have finished 1756 */ 1757 blk_mq_wait_quiesce_done(q->tag_set); 1758 1759 expired.next = 0; 1760 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1761 } 1762 1763 if (expired.next != 0) { 1764 mod_timer(&q->timeout, expired.next); 1765 } else { 1766 /* 1767 * Request timeouts are handled as a forward rolling timer. If 1768 * we end up here it means that no requests are pending and 1769 * also that no request has been pending for a while. Mark 1770 * each hctx as idle. 1771 */ 1772 queue_for_each_hw_ctx(q, hctx, i) { 1773 /* the hctx may be unmapped, so check it here */ 1774 if (blk_mq_hw_queue_mapped(hctx)) 1775 blk_mq_tag_idle(hctx); 1776 } 1777 } 1778 blk_queue_exit(q); 1779 } 1780 1781 struct flush_busy_ctx_data { 1782 struct blk_mq_hw_ctx *hctx; 1783 struct list_head *list; 1784 }; 1785 1786 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1787 { 1788 struct flush_busy_ctx_data *flush_data = data; 1789 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1790 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1791 enum hctx_type type = hctx->type; 1792 1793 spin_lock(&ctx->lock); 1794 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1795 sbitmap_clear_bit(sb, bitnr); 1796 spin_unlock(&ctx->lock); 1797 return true; 1798 } 1799 1800 /* 1801 * Process software queues that have been marked busy, splicing them 1802 * to the for-dispatch 1803 */ 1804 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1805 { 1806 struct flush_busy_ctx_data data = { 1807 .hctx = hctx, 1808 .list = list, 1809 }; 1810 1811 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1812 } 1813 1814 struct dispatch_rq_data { 1815 struct blk_mq_hw_ctx *hctx; 1816 struct request *rq; 1817 }; 1818 1819 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1820 void *data) 1821 { 1822 struct dispatch_rq_data *dispatch_data = data; 1823 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1824 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1825 enum hctx_type type = hctx->type; 1826 1827 spin_lock(&ctx->lock); 1828 if (!list_empty(&ctx->rq_lists[type])) { 1829 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1830 list_del_init(&dispatch_data->rq->queuelist); 1831 if (list_empty(&ctx->rq_lists[type])) 1832 sbitmap_clear_bit(sb, bitnr); 1833 } 1834 spin_unlock(&ctx->lock); 1835 1836 return !dispatch_data->rq; 1837 } 1838 1839 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1840 struct blk_mq_ctx *start) 1841 { 1842 unsigned off = start ? start->index_hw[hctx->type] : 0; 1843 struct dispatch_rq_data data = { 1844 .hctx = hctx, 1845 .rq = NULL, 1846 }; 1847 1848 __sbitmap_for_each_set(&hctx->ctx_map, off, 1849 dispatch_rq_from_ctx, &data); 1850 1851 return data.rq; 1852 } 1853 1854 bool __blk_mq_alloc_driver_tag(struct request *rq) 1855 { 1856 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1857 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1858 int tag; 1859 1860 blk_mq_tag_busy(rq->mq_hctx); 1861 1862 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1863 bt = &rq->mq_hctx->tags->breserved_tags; 1864 tag_offset = 0; 1865 } else { 1866 if (!hctx_may_queue(rq->mq_hctx, bt)) 1867 return false; 1868 } 1869 1870 tag = __sbitmap_queue_get(bt); 1871 if (tag == BLK_MQ_NO_TAG) 1872 return false; 1873 1874 rq->tag = tag + tag_offset; 1875 blk_mq_inc_active_requests(rq->mq_hctx); 1876 return true; 1877 } 1878 1879 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1880 int flags, void *key) 1881 { 1882 struct blk_mq_hw_ctx *hctx; 1883 1884 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1885 1886 spin_lock(&hctx->dispatch_wait_lock); 1887 if (!list_empty(&wait->entry)) { 1888 struct sbitmap_queue *sbq; 1889 1890 list_del_init(&wait->entry); 1891 sbq = &hctx->tags->bitmap_tags; 1892 atomic_dec(&sbq->ws_active); 1893 } 1894 spin_unlock(&hctx->dispatch_wait_lock); 1895 1896 blk_mq_run_hw_queue(hctx, true); 1897 return 1; 1898 } 1899 1900 /* 1901 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1902 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1903 * restart. For both cases, take care to check the condition again after 1904 * marking us as waiting. 1905 */ 1906 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1907 struct request *rq) 1908 { 1909 struct sbitmap_queue *sbq; 1910 struct wait_queue_head *wq; 1911 wait_queue_entry_t *wait; 1912 bool ret; 1913 1914 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1915 !(blk_mq_is_shared_tags(hctx->flags))) { 1916 blk_mq_sched_mark_restart_hctx(hctx); 1917 1918 /* 1919 * It's possible that a tag was freed in the window between the 1920 * allocation failure and adding the hardware queue to the wait 1921 * queue. 1922 * 1923 * Don't clear RESTART here, someone else could have set it. 1924 * At most this will cost an extra queue run. 1925 */ 1926 return blk_mq_get_driver_tag(rq); 1927 } 1928 1929 wait = &hctx->dispatch_wait; 1930 if (!list_empty_careful(&wait->entry)) 1931 return false; 1932 1933 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1934 sbq = &hctx->tags->breserved_tags; 1935 else 1936 sbq = &hctx->tags->bitmap_tags; 1937 wq = &bt_wait_ptr(sbq, hctx)->wait; 1938 1939 spin_lock_irq(&wq->lock); 1940 spin_lock(&hctx->dispatch_wait_lock); 1941 if (!list_empty(&wait->entry)) { 1942 spin_unlock(&hctx->dispatch_wait_lock); 1943 spin_unlock_irq(&wq->lock); 1944 return false; 1945 } 1946 1947 atomic_inc(&sbq->ws_active); 1948 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1949 __add_wait_queue(wq, wait); 1950 1951 /* 1952 * Add one explicit barrier since blk_mq_get_driver_tag() may 1953 * not imply barrier in case of failure. 1954 * 1955 * Order adding us to wait queue and allocating driver tag. 1956 * 1957 * The pair is the one implied in sbitmap_queue_wake_up() which 1958 * orders clearing sbitmap tag bits and waitqueue_active() in 1959 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1960 * 1961 * Otherwise, re-order of adding wait queue and getting driver tag 1962 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1963 * the waitqueue_active() may not observe us in wait queue. 1964 */ 1965 smp_mb(); 1966 1967 /* 1968 * It's possible that a tag was freed in the window between the 1969 * allocation failure and adding the hardware queue to the wait 1970 * queue. 1971 */ 1972 ret = blk_mq_get_driver_tag(rq); 1973 if (!ret) { 1974 spin_unlock(&hctx->dispatch_wait_lock); 1975 spin_unlock_irq(&wq->lock); 1976 return false; 1977 } 1978 1979 /* 1980 * We got a tag, remove ourselves from the wait queue to ensure 1981 * someone else gets the wakeup. 1982 */ 1983 list_del_init(&wait->entry); 1984 atomic_dec(&sbq->ws_active); 1985 spin_unlock(&hctx->dispatch_wait_lock); 1986 spin_unlock_irq(&wq->lock); 1987 1988 return true; 1989 } 1990 1991 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1992 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1993 /* 1994 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1995 * - EWMA is one simple way to compute running average value 1996 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1997 * - take 4 as factor for avoiding to get too small(0) result, and this 1998 * factor doesn't matter because EWMA decreases exponentially 1999 */ 2000 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 2001 { 2002 unsigned int ewma; 2003 2004 ewma = hctx->dispatch_busy; 2005 2006 if (!ewma && !busy) 2007 return; 2008 2009 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 2010 if (busy) 2011 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 2012 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 2013 2014 hctx->dispatch_busy = ewma; 2015 } 2016 2017 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 2018 2019 static void blk_mq_handle_dev_resource(struct request *rq, 2020 struct list_head *list) 2021 { 2022 list_add(&rq->queuelist, list); 2023 __blk_mq_requeue_request(rq); 2024 } 2025 2026 enum prep_dispatch { 2027 PREP_DISPATCH_OK, 2028 PREP_DISPATCH_NO_TAG, 2029 PREP_DISPATCH_NO_BUDGET, 2030 }; 2031 2032 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2033 bool need_budget) 2034 { 2035 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2036 int budget_token = -1; 2037 2038 if (need_budget) { 2039 budget_token = blk_mq_get_dispatch_budget(rq->q); 2040 if (budget_token < 0) { 2041 blk_mq_put_driver_tag(rq); 2042 return PREP_DISPATCH_NO_BUDGET; 2043 } 2044 blk_mq_set_rq_budget_token(rq, budget_token); 2045 } 2046 2047 if (!blk_mq_get_driver_tag(rq)) { 2048 /* 2049 * The initial allocation attempt failed, so we need to 2050 * rerun the hardware queue when a tag is freed. The 2051 * waitqueue takes care of that. If the queue is run 2052 * before we add this entry back on the dispatch list, 2053 * we'll re-run it below. 2054 */ 2055 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2056 /* 2057 * All budgets not got from this function will be put 2058 * together during handling partial dispatch 2059 */ 2060 if (need_budget) 2061 blk_mq_put_dispatch_budget(rq->q, budget_token); 2062 return PREP_DISPATCH_NO_TAG; 2063 } 2064 } 2065 2066 return PREP_DISPATCH_OK; 2067 } 2068 2069 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2070 static void blk_mq_release_budgets(struct request_queue *q, 2071 struct list_head *list) 2072 { 2073 struct request *rq; 2074 2075 list_for_each_entry(rq, list, queuelist) { 2076 int budget_token = blk_mq_get_rq_budget_token(rq); 2077 2078 if (budget_token >= 0) 2079 blk_mq_put_dispatch_budget(q, budget_token); 2080 } 2081 } 2082 2083 /* 2084 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2085 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2086 * details) 2087 * Attention, we should explicitly call this in unusual cases: 2088 * 1) did not queue everything initially scheduled to queue 2089 * 2) the last attempt to queue a request failed 2090 */ 2091 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2092 bool from_schedule) 2093 { 2094 if (hctx->queue->mq_ops->commit_rqs && queued) { 2095 trace_block_unplug(hctx->queue, queued, !from_schedule); 2096 hctx->queue->mq_ops->commit_rqs(hctx); 2097 } 2098 } 2099 2100 /* 2101 * Returns true if we did some work AND can potentially do more. 2102 */ 2103 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2104 bool get_budget) 2105 { 2106 enum prep_dispatch prep; 2107 struct request_queue *q = hctx->queue; 2108 struct request *rq; 2109 int queued; 2110 blk_status_t ret = BLK_STS_OK; 2111 bool needs_resource = false; 2112 2113 if (list_empty(list)) 2114 return false; 2115 2116 /* 2117 * Now process all the entries, sending them to the driver. 2118 */ 2119 queued = 0; 2120 do { 2121 struct blk_mq_queue_data bd; 2122 2123 rq = list_first_entry(list, struct request, queuelist); 2124 2125 WARN_ON_ONCE(hctx != rq->mq_hctx); 2126 prep = blk_mq_prep_dispatch_rq(rq, get_budget); 2127 if (prep != PREP_DISPATCH_OK) 2128 break; 2129 2130 list_del_init(&rq->queuelist); 2131 2132 bd.rq = rq; 2133 bd.last = list_empty(list); 2134 2135 ret = q->mq_ops->queue_rq(hctx, &bd); 2136 switch (ret) { 2137 case BLK_STS_OK: 2138 queued++; 2139 break; 2140 case BLK_STS_RESOURCE: 2141 needs_resource = true; 2142 fallthrough; 2143 case BLK_STS_DEV_RESOURCE: 2144 blk_mq_handle_dev_resource(rq, list); 2145 goto out; 2146 default: 2147 blk_mq_end_request(rq, ret); 2148 } 2149 } while (!list_empty(list)); 2150 out: 2151 /* If we didn't flush the entire list, we could have told the driver 2152 * there was more coming, but that turned out to be a lie. 2153 */ 2154 if (!list_empty(list) || ret != BLK_STS_OK) 2155 blk_mq_commit_rqs(hctx, queued, false); 2156 2157 /* 2158 * Any items that need requeuing? Stuff them into hctx->dispatch, 2159 * that is where we will continue on next queue run. 2160 */ 2161 if (!list_empty(list)) { 2162 bool needs_restart; 2163 /* For non-shared tags, the RESTART check will suffice */ 2164 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2165 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2166 blk_mq_is_shared_tags(hctx->flags)); 2167 2168 /* 2169 * If the caller allocated budgets, free the budgets of the 2170 * requests that have not yet been passed to the block driver. 2171 */ 2172 if (!get_budget) 2173 blk_mq_release_budgets(q, list); 2174 2175 spin_lock(&hctx->lock); 2176 list_splice_tail_init(list, &hctx->dispatch); 2177 spin_unlock(&hctx->lock); 2178 2179 /* 2180 * Order adding requests to hctx->dispatch and checking 2181 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2182 * in blk_mq_sched_restart(). Avoid restart code path to 2183 * miss the new added requests to hctx->dispatch, meantime 2184 * SCHED_RESTART is observed here. 2185 */ 2186 smp_mb(); 2187 2188 /* 2189 * If SCHED_RESTART was set by the caller of this function and 2190 * it is no longer set that means that it was cleared by another 2191 * thread and hence that a queue rerun is needed. 2192 * 2193 * If 'no_tag' is set, that means that we failed getting 2194 * a driver tag with an I/O scheduler attached. If our dispatch 2195 * waitqueue is no longer active, ensure that we run the queue 2196 * AFTER adding our entries back to the list. 2197 * 2198 * If no I/O scheduler has been configured it is possible that 2199 * the hardware queue got stopped and restarted before requests 2200 * were pushed back onto the dispatch list. Rerun the queue to 2201 * avoid starvation. Notes: 2202 * - blk_mq_run_hw_queue() checks whether or not a queue has 2203 * been stopped before rerunning a queue. 2204 * - Some but not all block drivers stop a queue before 2205 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2206 * and dm-rq. 2207 * 2208 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2209 * bit is set, run queue after a delay to avoid IO stalls 2210 * that could otherwise occur if the queue is idle. We'll do 2211 * similar if we couldn't get budget or couldn't lock a zone 2212 * and SCHED_RESTART is set. 2213 */ 2214 needs_restart = blk_mq_sched_needs_restart(hctx); 2215 if (prep == PREP_DISPATCH_NO_BUDGET) 2216 needs_resource = true; 2217 if (!needs_restart || 2218 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2219 blk_mq_run_hw_queue(hctx, true); 2220 else if (needs_resource) 2221 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2222 2223 blk_mq_update_dispatch_busy(hctx, true); 2224 return false; 2225 } 2226 2227 blk_mq_update_dispatch_busy(hctx, false); 2228 return true; 2229 } 2230 2231 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2232 { 2233 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2234 2235 if (cpu >= nr_cpu_ids) 2236 cpu = cpumask_first(hctx->cpumask); 2237 return cpu; 2238 } 2239 2240 /* 2241 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2242 * it for speeding up the check 2243 */ 2244 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2245 { 2246 return hctx->next_cpu >= nr_cpu_ids; 2247 } 2248 2249 /* 2250 * It'd be great if the workqueue API had a way to pass 2251 * in a mask and had some smarts for more clever placement. 2252 * For now we just round-robin here, switching for every 2253 * BLK_MQ_CPU_WORK_BATCH queued items. 2254 */ 2255 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2256 { 2257 bool tried = false; 2258 int next_cpu = hctx->next_cpu; 2259 2260 /* Switch to unbound if no allowable CPUs in this hctx */ 2261 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2262 return WORK_CPU_UNBOUND; 2263 2264 if (--hctx->next_cpu_batch <= 0) { 2265 select_cpu: 2266 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2267 cpu_online_mask); 2268 if (next_cpu >= nr_cpu_ids) 2269 next_cpu = blk_mq_first_mapped_cpu(hctx); 2270 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2271 } 2272 2273 /* 2274 * Do unbound schedule if we can't find a online CPU for this hctx, 2275 * and it should only happen in the path of handling CPU DEAD. 2276 */ 2277 if (!cpu_online(next_cpu)) { 2278 if (!tried) { 2279 tried = true; 2280 goto select_cpu; 2281 } 2282 2283 /* 2284 * Make sure to re-select CPU next time once after CPUs 2285 * in hctx->cpumask become online again. 2286 */ 2287 hctx->next_cpu = next_cpu; 2288 hctx->next_cpu_batch = 1; 2289 return WORK_CPU_UNBOUND; 2290 } 2291 2292 hctx->next_cpu = next_cpu; 2293 return next_cpu; 2294 } 2295 2296 /** 2297 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2298 * @hctx: Pointer to the hardware queue to run. 2299 * @msecs: Milliseconds of delay to wait before running the queue. 2300 * 2301 * Run a hardware queue asynchronously with a delay of @msecs. 2302 */ 2303 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2304 { 2305 if (unlikely(blk_mq_hctx_stopped(hctx))) 2306 return; 2307 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2308 msecs_to_jiffies(msecs)); 2309 } 2310 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2311 2312 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2313 { 2314 bool need_run; 2315 2316 /* 2317 * When queue is quiesced, we may be switching io scheduler, or 2318 * updating nr_hw_queues, or other things, and we can't run queue 2319 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2320 * 2321 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2322 * quiesced. 2323 */ 2324 __blk_mq_run_dispatch_ops(hctx->queue, false, 2325 need_run = !blk_queue_quiesced(hctx->queue) && 2326 blk_mq_hctx_has_pending(hctx)); 2327 return need_run; 2328 } 2329 2330 /** 2331 * blk_mq_run_hw_queue - Start to run a hardware queue. 2332 * @hctx: Pointer to the hardware queue to run. 2333 * @async: If we want to run the queue asynchronously. 2334 * 2335 * Check if the request queue is not in a quiesced state and if there are 2336 * pending requests to be sent. If this is true, run the queue to send requests 2337 * to hardware. 2338 */ 2339 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2340 { 2341 bool need_run; 2342 2343 /* 2344 * We can't run the queue inline with interrupts disabled. 2345 */ 2346 WARN_ON_ONCE(!async && in_interrupt()); 2347 2348 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2349 2350 need_run = blk_mq_hw_queue_need_run(hctx); 2351 if (!need_run) { 2352 unsigned long flags; 2353 2354 /* 2355 * Synchronize with blk_mq_unquiesce_queue(), because we check 2356 * if hw queue is quiesced locklessly above, we need the use 2357 * ->queue_lock to make sure we see the up-to-date status to 2358 * not miss rerunning the hw queue. 2359 */ 2360 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2361 need_run = blk_mq_hw_queue_need_run(hctx); 2362 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2363 2364 if (!need_run) 2365 return; 2366 } 2367 2368 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2369 blk_mq_delay_run_hw_queue(hctx, 0); 2370 return; 2371 } 2372 2373 blk_mq_run_dispatch_ops(hctx->queue, 2374 blk_mq_sched_dispatch_requests(hctx)); 2375 } 2376 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2377 2378 /* 2379 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2380 * scheduler. 2381 */ 2382 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2383 { 2384 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2385 /* 2386 * If the IO scheduler does not respect hardware queues when 2387 * dispatching, we just don't bother with multiple HW queues and 2388 * dispatch from hctx for the current CPU since running multiple queues 2389 * just causes lock contention inside the scheduler and pointless cache 2390 * bouncing. 2391 */ 2392 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2393 2394 if (!blk_mq_hctx_stopped(hctx)) 2395 return hctx; 2396 return NULL; 2397 } 2398 2399 /** 2400 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2401 * @q: Pointer to the request queue to run. 2402 * @async: If we want to run the queue asynchronously. 2403 */ 2404 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2405 { 2406 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2407 unsigned long i; 2408 2409 sq_hctx = NULL; 2410 if (blk_queue_sq_sched(q)) 2411 sq_hctx = blk_mq_get_sq_hctx(q); 2412 queue_for_each_hw_ctx(q, hctx, i) { 2413 if (blk_mq_hctx_stopped(hctx)) 2414 continue; 2415 /* 2416 * Dispatch from this hctx either if there's no hctx preferred 2417 * by IO scheduler or if it has requests that bypass the 2418 * scheduler. 2419 */ 2420 if (!sq_hctx || sq_hctx == hctx || 2421 !list_empty_careful(&hctx->dispatch)) 2422 blk_mq_run_hw_queue(hctx, async); 2423 } 2424 } 2425 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2426 2427 /** 2428 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2429 * @q: Pointer to the request queue to run. 2430 * @msecs: Milliseconds of delay to wait before running the queues. 2431 */ 2432 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2433 { 2434 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2435 unsigned long i; 2436 2437 sq_hctx = NULL; 2438 if (blk_queue_sq_sched(q)) 2439 sq_hctx = blk_mq_get_sq_hctx(q); 2440 queue_for_each_hw_ctx(q, hctx, i) { 2441 if (blk_mq_hctx_stopped(hctx)) 2442 continue; 2443 /* 2444 * If there is already a run_work pending, leave the 2445 * pending delay untouched. Otherwise, a hctx can stall 2446 * if another hctx is re-delaying the other's work 2447 * before the work executes. 2448 */ 2449 if (delayed_work_pending(&hctx->run_work)) 2450 continue; 2451 /* 2452 * Dispatch from this hctx either if there's no hctx preferred 2453 * by IO scheduler or if it has requests that bypass the 2454 * scheduler. 2455 */ 2456 if (!sq_hctx || sq_hctx == hctx || 2457 !list_empty_careful(&hctx->dispatch)) 2458 blk_mq_delay_run_hw_queue(hctx, msecs); 2459 } 2460 } 2461 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2462 2463 /* 2464 * This function is often used for pausing .queue_rq() by driver when 2465 * there isn't enough resource or some conditions aren't satisfied, and 2466 * BLK_STS_RESOURCE is usually returned. 2467 * 2468 * We do not guarantee that dispatch can be drained or blocked 2469 * after blk_mq_stop_hw_queue() returns. Please use 2470 * blk_mq_quiesce_queue() for that requirement. 2471 */ 2472 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2473 { 2474 cancel_delayed_work(&hctx->run_work); 2475 2476 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2477 } 2478 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2479 2480 /* 2481 * This function is often used for pausing .queue_rq() by driver when 2482 * there isn't enough resource or some conditions aren't satisfied, and 2483 * BLK_STS_RESOURCE is usually returned. 2484 * 2485 * We do not guarantee that dispatch can be drained or blocked 2486 * after blk_mq_stop_hw_queues() returns. Please use 2487 * blk_mq_quiesce_queue() for that requirement. 2488 */ 2489 void blk_mq_stop_hw_queues(struct request_queue *q) 2490 { 2491 struct blk_mq_hw_ctx *hctx; 2492 unsigned long i; 2493 2494 queue_for_each_hw_ctx(q, hctx, i) 2495 blk_mq_stop_hw_queue(hctx); 2496 } 2497 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2498 2499 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2500 { 2501 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2502 2503 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2504 } 2505 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2506 2507 void blk_mq_start_hw_queues(struct request_queue *q) 2508 { 2509 struct blk_mq_hw_ctx *hctx; 2510 unsigned long i; 2511 2512 queue_for_each_hw_ctx(q, hctx, i) 2513 blk_mq_start_hw_queue(hctx); 2514 } 2515 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2516 2517 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2518 { 2519 if (!blk_mq_hctx_stopped(hctx)) 2520 return; 2521 2522 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2523 /* 2524 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2525 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2526 * list in the subsequent routine. 2527 */ 2528 smp_mb__after_atomic(); 2529 blk_mq_run_hw_queue(hctx, async); 2530 } 2531 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2532 2533 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2534 { 2535 struct blk_mq_hw_ctx *hctx; 2536 unsigned long i; 2537 2538 queue_for_each_hw_ctx(q, hctx, i) 2539 blk_mq_start_stopped_hw_queue(hctx, async || 2540 (hctx->flags & BLK_MQ_F_BLOCKING)); 2541 } 2542 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2543 2544 static void blk_mq_run_work_fn(struct work_struct *work) 2545 { 2546 struct blk_mq_hw_ctx *hctx = 2547 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2548 2549 blk_mq_run_dispatch_ops(hctx->queue, 2550 blk_mq_sched_dispatch_requests(hctx)); 2551 } 2552 2553 /** 2554 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2555 * @rq: Pointer to request to be inserted. 2556 * @flags: BLK_MQ_INSERT_* 2557 * 2558 * Should only be used carefully, when the caller knows we want to 2559 * bypass a potential IO scheduler on the target device. 2560 */ 2561 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2562 { 2563 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2564 2565 spin_lock(&hctx->lock); 2566 if (flags & BLK_MQ_INSERT_AT_HEAD) 2567 list_add(&rq->queuelist, &hctx->dispatch); 2568 else 2569 list_add_tail(&rq->queuelist, &hctx->dispatch); 2570 spin_unlock(&hctx->lock); 2571 } 2572 2573 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2574 struct blk_mq_ctx *ctx, struct list_head *list, 2575 bool run_queue_async) 2576 { 2577 struct request *rq; 2578 enum hctx_type type = hctx->type; 2579 2580 /* 2581 * Try to issue requests directly if the hw queue isn't busy to save an 2582 * extra enqueue & dequeue to the sw queue. 2583 */ 2584 if (!hctx->dispatch_busy && !run_queue_async) { 2585 blk_mq_run_dispatch_ops(hctx->queue, 2586 blk_mq_try_issue_list_directly(hctx, list)); 2587 if (list_empty(list)) 2588 goto out; 2589 } 2590 2591 /* 2592 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2593 * offline now 2594 */ 2595 list_for_each_entry(rq, list, queuelist) { 2596 BUG_ON(rq->mq_ctx != ctx); 2597 trace_block_rq_insert(rq); 2598 if (rq->cmd_flags & REQ_NOWAIT) 2599 run_queue_async = true; 2600 } 2601 2602 spin_lock(&ctx->lock); 2603 list_splice_tail_init(list, &ctx->rq_lists[type]); 2604 blk_mq_hctx_mark_pending(hctx, ctx); 2605 spin_unlock(&ctx->lock); 2606 out: 2607 blk_mq_run_hw_queue(hctx, run_queue_async); 2608 } 2609 2610 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2611 { 2612 struct request_queue *q = rq->q; 2613 struct blk_mq_ctx *ctx = rq->mq_ctx; 2614 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2615 2616 if (blk_rq_is_passthrough(rq)) { 2617 /* 2618 * Passthrough request have to be added to hctx->dispatch 2619 * directly. The device may be in a situation where it can't 2620 * handle FS request, and always returns BLK_STS_RESOURCE for 2621 * them, which gets them added to hctx->dispatch. 2622 * 2623 * If a passthrough request is required to unblock the queues, 2624 * and it is added to the scheduler queue, there is no chance to 2625 * dispatch it given we prioritize requests in hctx->dispatch. 2626 */ 2627 blk_mq_request_bypass_insert(rq, flags); 2628 } else if (req_op(rq) == REQ_OP_FLUSH) { 2629 /* 2630 * Firstly normal IO request is inserted to scheduler queue or 2631 * sw queue, meantime we add flush request to dispatch queue( 2632 * hctx->dispatch) directly and there is at most one in-flight 2633 * flush request for each hw queue, so it doesn't matter to add 2634 * flush request to tail or front of the dispatch queue. 2635 * 2636 * Secondly in case of NCQ, flush request belongs to non-NCQ 2637 * command, and queueing it will fail when there is any 2638 * in-flight normal IO request(NCQ command). When adding flush 2639 * rq to the front of hctx->dispatch, it is easier to introduce 2640 * extra time to flush rq's latency because of S_SCHED_RESTART 2641 * compared with adding to the tail of dispatch queue, then 2642 * chance of flush merge is increased, and less flush requests 2643 * will be issued to controller. It is observed that ~10% time 2644 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2645 * drive when adding flush rq to the front of hctx->dispatch. 2646 * 2647 * Simply queue flush rq to the front of hctx->dispatch so that 2648 * intensive flush workloads can benefit in case of NCQ HW. 2649 */ 2650 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2651 } else if (q->elevator) { 2652 LIST_HEAD(list); 2653 2654 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2655 2656 list_add(&rq->queuelist, &list); 2657 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2658 } else { 2659 trace_block_rq_insert(rq); 2660 2661 spin_lock(&ctx->lock); 2662 if (flags & BLK_MQ_INSERT_AT_HEAD) 2663 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2664 else 2665 list_add_tail(&rq->queuelist, 2666 &ctx->rq_lists[hctx->type]); 2667 blk_mq_hctx_mark_pending(hctx, ctx); 2668 spin_unlock(&ctx->lock); 2669 } 2670 } 2671 2672 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2673 unsigned int nr_segs) 2674 { 2675 int err; 2676 2677 if (bio->bi_opf & REQ_RAHEAD) 2678 rq->cmd_flags |= REQ_FAILFAST_MASK; 2679 2680 rq->bio = rq->biotail = bio; 2681 rq->__sector = bio->bi_iter.bi_sector; 2682 rq->__data_len = bio->bi_iter.bi_size; 2683 rq->phys_gap_bit = bio->bi_bvec_gap_bit; 2684 2685 rq->nr_phys_segments = nr_segs; 2686 if (bio_integrity(bio)) 2687 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2688 bio); 2689 2690 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2691 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2692 WARN_ON_ONCE(err); 2693 2694 blk_account_io_start(rq); 2695 } 2696 2697 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2698 struct request *rq, bool last) 2699 { 2700 struct request_queue *q = rq->q; 2701 struct blk_mq_queue_data bd = { 2702 .rq = rq, 2703 .last = last, 2704 }; 2705 blk_status_t ret; 2706 2707 /* 2708 * For OK queue, we are done. For error, caller may kill it. 2709 * Any other error (busy), just add it to our list as we 2710 * previously would have done. 2711 */ 2712 ret = q->mq_ops->queue_rq(hctx, &bd); 2713 switch (ret) { 2714 case BLK_STS_OK: 2715 blk_mq_update_dispatch_busy(hctx, false); 2716 break; 2717 case BLK_STS_RESOURCE: 2718 case BLK_STS_DEV_RESOURCE: 2719 blk_mq_update_dispatch_busy(hctx, true); 2720 __blk_mq_requeue_request(rq); 2721 break; 2722 default: 2723 blk_mq_update_dispatch_busy(hctx, false); 2724 break; 2725 } 2726 2727 return ret; 2728 } 2729 2730 static bool blk_mq_get_budget_and_tag(struct request *rq) 2731 { 2732 int budget_token; 2733 2734 budget_token = blk_mq_get_dispatch_budget(rq->q); 2735 if (budget_token < 0) 2736 return false; 2737 blk_mq_set_rq_budget_token(rq, budget_token); 2738 if (!blk_mq_get_driver_tag(rq)) { 2739 blk_mq_put_dispatch_budget(rq->q, budget_token); 2740 return false; 2741 } 2742 return true; 2743 } 2744 2745 /** 2746 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2747 * @hctx: Pointer of the associated hardware queue. 2748 * @rq: Pointer to request to be sent. 2749 * 2750 * If the device has enough resources to accept a new request now, send the 2751 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2752 * we can try send it another time in the future. Requests inserted at this 2753 * queue have higher priority. 2754 */ 2755 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2756 struct request *rq) 2757 { 2758 blk_status_t ret; 2759 2760 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2761 blk_mq_insert_request(rq, 0); 2762 blk_mq_run_hw_queue(hctx, false); 2763 return; 2764 } 2765 2766 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2767 blk_mq_insert_request(rq, 0); 2768 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2769 return; 2770 } 2771 2772 ret = __blk_mq_issue_directly(hctx, rq, true); 2773 switch (ret) { 2774 case BLK_STS_OK: 2775 break; 2776 case BLK_STS_RESOURCE: 2777 case BLK_STS_DEV_RESOURCE: 2778 blk_mq_request_bypass_insert(rq, 0); 2779 blk_mq_run_hw_queue(hctx, false); 2780 break; 2781 default: 2782 blk_mq_end_request(rq, ret); 2783 break; 2784 } 2785 } 2786 2787 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2788 { 2789 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2790 2791 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2792 blk_mq_insert_request(rq, 0); 2793 blk_mq_run_hw_queue(hctx, false); 2794 return BLK_STS_OK; 2795 } 2796 2797 if (!blk_mq_get_budget_and_tag(rq)) 2798 return BLK_STS_RESOURCE; 2799 return __blk_mq_issue_directly(hctx, rq, last); 2800 } 2801 2802 static void blk_mq_issue_direct(struct rq_list *rqs) 2803 { 2804 struct blk_mq_hw_ctx *hctx = NULL; 2805 struct request *rq; 2806 int queued = 0; 2807 blk_status_t ret = BLK_STS_OK; 2808 2809 while ((rq = rq_list_pop(rqs))) { 2810 bool last = rq_list_empty(rqs); 2811 2812 if (hctx != rq->mq_hctx) { 2813 if (hctx) { 2814 blk_mq_commit_rqs(hctx, queued, false); 2815 queued = 0; 2816 } 2817 hctx = rq->mq_hctx; 2818 } 2819 2820 ret = blk_mq_request_issue_directly(rq, last); 2821 switch (ret) { 2822 case BLK_STS_OK: 2823 queued++; 2824 break; 2825 case BLK_STS_RESOURCE: 2826 case BLK_STS_DEV_RESOURCE: 2827 blk_mq_request_bypass_insert(rq, 0); 2828 blk_mq_run_hw_queue(hctx, false); 2829 goto out; 2830 default: 2831 blk_mq_end_request(rq, ret); 2832 break; 2833 } 2834 } 2835 2836 out: 2837 if (ret != BLK_STS_OK) 2838 blk_mq_commit_rqs(hctx, queued, false); 2839 } 2840 2841 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs) 2842 { 2843 if (blk_queue_quiesced(q)) 2844 return; 2845 q->mq_ops->queue_rqs(rqs); 2846 } 2847 2848 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs, 2849 struct rq_list *queue_rqs) 2850 { 2851 struct request *rq = rq_list_pop(rqs); 2852 struct request_queue *this_q = rq->q; 2853 struct request **prev = &rqs->head; 2854 struct rq_list matched_rqs = {}; 2855 struct request *last = NULL; 2856 unsigned depth = 1; 2857 2858 rq_list_add_tail(&matched_rqs, rq); 2859 while ((rq = *prev)) { 2860 if (rq->q == this_q) { 2861 /* move rq from rqs to matched_rqs */ 2862 *prev = rq->rq_next; 2863 rq_list_add_tail(&matched_rqs, rq); 2864 depth++; 2865 } else { 2866 /* leave rq in rqs */ 2867 prev = &rq->rq_next; 2868 last = rq; 2869 } 2870 } 2871 2872 rqs->tail = last; 2873 *queue_rqs = matched_rqs; 2874 return depth; 2875 } 2876 2877 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth) 2878 { 2879 struct request_queue *q = rq_list_peek(rqs)->q; 2880 2881 trace_block_unplug(q, depth, true); 2882 2883 /* 2884 * Peek first request and see if we have a ->queue_rqs() hook. 2885 * If we do, we can dispatch the whole list in one go. 2886 * We already know at this point that all requests belong to the 2887 * same queue, caller must ensure that's the case. 2888 */ 2889 if (q->mq_ops->queue_rqs) { 2890 blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs)); 2891 if (rq_list_empty(rqs)) 2892 return; 2893 } 2894 2895 blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs)); 2896 } 2897 2898 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched) 2899 { 2900 struct blk_mq_hw_ctx *this_hctx = NULL; 2901 struct blk_mq_ctx *this_ctx = NULL; 2902 struct rq_list requeue_list = {}; 2903 unsigned int depth = 0; 2904 bool is_passthrough = false; 2905 LIST_HEAD(list); 2906 2907 do { 2908 struct request *rq = rq_list_pop(rqs); 2909 2910 if (!this_hctx) { 2911 this_hctx = rq->mq_hctx; 2912 this_ctx = rq->mq_ctx; 2913 is_passthrough = blk_rq_is_passthrough(rq); 2914 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2915 is_passthrough != blk_rq_is_passthrough(rq)) { 2916 rq_list_add_tail(&requeue_list, rq); 2917 continue; 2918 } 2919 list_add_tail(&rq->queuelist, &list); 2920 depth++; 2921 } while (!rq_list_empty(rqs)); 2922 2923 *rqs = requeue_list; 2924 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2925 2926 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2927 /* passthrough requests should never be issued to the I/O scheduler */ 2928 if (is_passthrough) { 2929 spin_lock(&this_hctx->lock); 2930 list_splice_tail_init(&list, &this_hctx->dispatch); 2931 spin_unlock(&this_hctx->lock); 2932 blk_mq_run_hw_queue(this_hctx, from_sched); 2933 } else if (this_hctx->queue->elevator) { 2934 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2935 &list, 0); 2936 blk_mq_run_hw_queue(this_hctx, from_sched); 2937 } else { 2938 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2939 } 2940 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2941 } 2942 2943 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs) 2944 { 2945 do { 2946 struct rq_list queue_rqs; 2947 unsigned depth; 2948 2949 depth = blk_mq_extract_queue_requests(rqs, &queue_rqs); 2950 blk_mq_dispatch_queue_requests(&queue_rqs, depth); 2951 while (!rq_list_empty(&queue_rqs)) 2952 blk_mq_dispatch_list(&queue_rqs, false); 2953 } while (!rq_list_empty(rqs)); 2954 } 2955 2956 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2957 { 2958 unsigned int depth; 2959 2960 /* 2961 * We may have been called recursively midway through handling 2962 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2963 * To avoid mq_list changing under our feet, clear rq_count early and 2964 * bail out specifically if rq_count is 0 rather than checking 2965 * whether the mq_list is empty. 2966 */ 2967 if (plug->rq_count == 0) 2968 return; 2969 depth = plug->rq_count; 2970 plug->rq_count = 0; 2971 2972 if (!plug->has_elevator && !from_schedule) { 2973 if (plug->multiple_queues) { 2974 blk_mq_dispatch_multiple_queue_requests(&plug->mq_list); 2975 return; 2976 } 2977 2978 blk_mq_dispatch_queue_requests(&plug->mq_list, depth); 2979 if (rq_list_empty(&plug->mq_list)) 2980 return; 2981 } 2982 2983 do { 2984 blk_mq_dispatch_list(&plug->mq_list, from_schedule); 2985 } while (!rq_list_empty(&plug->mq_list)); 2986 } 2987 2988 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2989 struct list_head *list) 2990 { 2991 int queued = 0; 2992 blk_status_t ret = BLK_STS_OK; 2993 2994 while (!list_empty(list)) { 2995 struct request *rq = list_first_entry(list, struct request, 2996 queuelist); 2997 2998 list_del_init(&rq->queuelist); 2999 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 3000 switch (ret) { 3001 case BLK_STS_OK: 3002 queued++; 3003 break; 3004 case BLK_STS_RESOURCE: 3005 case BLK_STS_DEV_RESOURCE: 3006 blk_mq_request_bypass_insert(rq, 0); 3007 if (list_empty(list)) 3008 blk_mq_run_hw_queue(hctx, false); 3009 goto out; 3010 default: 3011 blk_mq_end_request(rq, ret); 3012 break; 3013 } 3014 } 3015 3016 out: 3017 if (ret != BLK_STS_OK) 3018 blk_mq_commit_rqs(hctx, queued, false); 3019 } 3020 3021 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 3022 struct bio *bio, unsigned int nr_segs) 3023 { 3024 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 3025 if (blk_attempt_plug_merge(q, bio, nr_segs)) 3026 return true; 3027 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 3028 return true; 3029 } 3030 return false; 3031 } 3032 3033 static struct request *blk_mq_get_new_requests(struct request_queue *q, 3034 struct blk_plug *plug, 3035 struct bio *bio) 3036 { 3037 struct blk_mq_alloc_data data = { 3038 .q = q, 3039 .flags = 0, 3040 .shallow_depth = 0, 3041 .cmd_flags = bio->bi_opf, 3042 .rq_flags = 0, 3043 .nr_tags = 1, 3044 .cached_rqs = NULL, 3045 .ctx = NULL, 3046 .hctx = NULL 3047 }; 3048 struct request *rq; 3049 3050 rq_qos_throttle(q, bio); 3051 3052 if (plug) { 3053 data.nr_tags = plug->nr_ios; 3054 plug->nr_ios = 1; 3055 data.cached_rqs = &plug->cached_rqs; 3056 } 3057 3058 rq = __blk_mq_alloc_requests(&data); 3059 if (unlikely(!rq)) 3060 rq_qos_cleanup(q, bio); 3061 return rq; 3062 } 3063 3064 /* 3065 * Check if there is a suitable cached request and return it. 3066 */ 3067 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 3068 struct request_queue *q, blk_opf_t opf) 3069 { 3070 enum hctx_type type = blk_mq_get_hctx_type(opf); 3071 struct request *rq; 3072 3073 if (!plug) 3074 return NULL; 3075 rq = rq_list_peek(&plug->cached_rqs); 3076 if (!rq || rq->q != q) 3077 return NULL; 3078 if (type != rq->mq_hctx->type && 3079 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3080 return NULL; 3081 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3082 return NULL; 3083 return rq; 3084 } 3085 3086 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3087 struct bio *bio) 3088 { 3089 if (rq_list_pop(&plug->cached_rqs) != rq) 3090 WARN_ON_ONCE(1); 3091 3092 /* 3093 * If any qos ->throttle() end up blocking, we will have flushed the 3094 * plug and hence killed the cached_rq list as well. Pop this entry 3095 * before we throttle. 3096 */ 3097 rq_qos_throttle(rq->q, bio); 3098 3099 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3100 rq->cmd_flags = bio->bi_opf; 3101 INIT_LIST_HEAD(&rq->queuelist); 3102 } 3103 3104 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3105 { 3106 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3107 3108 /* .bi_sector of any zero sized bio need to be initialized */ 3109 if ((bio->bi_iter.bi_size & bs_mask) || 3110 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3111 return true; 3112 return false; 3113 } 3114 3115 /** 3116 * blk_mq_submit_bio - Create and send a request to block device. 3117 * @bio: Bio pointer. 3118 * 3119 * Builds up a request structure from @q and @bio and send to the device. The 3120 * request may not be queued directly to hardware if: 3121 * * This request can be merged with another one 3122 * * We want to place request at plug queue for possible future merging 3123 * * There is an IO scheduler active at this queue 3124 * 3125 * It will not queue the request if there is an error with the bio, or at the 3126 * request creation. 3127 */ 3128 void blk_mq_submit_bio(struct bio *bio) 3129 { 3130 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3131 struct blk_plug *plug = current->plug; 3132 const int is_sync = op_is_sync(bio->bi_opf); 3133 struct blk_mq_hw_ctx *hctx; 3134 unsigned int nr_segs; 3135 struct request *rq; 3136 blk_status_t ret; 3137 3138 /* 3139 * If the plug has a cached request for this queue, try to use it. 3140 */ 3141 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3142 3143 /* 3144 * A BIO that was released from a zone write plug has already been 3145 * through the preparation in this function, already holds a reference 3146 * on the queue usage counter, and is the only write BIO in-flight for 3147 * the target zone. Go straight to preparing a request for it. 3148 */ 3149 if (bio_zone_write_plugging(bio)) { 3150 nr_segs = bio->__bi_nr_segments; 3151 if (rq) 3152 blk_queue_exit(q); 3153 goto new_request; 3154 } 3155 3156 /* 3157 * The cached request already holds a q_usage_counter reference and we 3158 * don't have to acquire a new one if we use it. 3159 */ 3160 if (!rq) { 3161 if (unlikely(bio_queue_enter(bio))) 3162 return; 3163 } 3164 3165 /* 3166 * Device reconfiguration may change logical block size or reduce the 3167 * number of poll queues, so the checks for alignment and poll support 3168 * have to be done with queue usage counter held. 3169 */ 3170 if (unlikely(bio_unaligned(bio, q))) { 3171 bio_io_error(bio); 3172 goto queue_exit; 3173 } 3174 3175 if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) { 3176 bio->bi_status = BLK_STS_NOTSUPP; 3177 bio_endio(bio); 3178 goto queue_exit; 3179 } 3180 3181 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3182 if (!bio) 3183 goto queue_exit; 3184 3185 if (!bio_integrity_prep(bio)) 3186 goto queue_exit; 3187 3188 blk_mq_bio_issue_init(q, bio); 3189 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3190 goto queue_exit; 3191 3192 if (bio_needs_zone_write_plugging(bio)) { 3193 if (blk_zone_plug_bio(bio, nr_segs)) 3194 goto queue_exit; 3195 } 3196 3197 new_request: 3198 if (rq) { 3199 blk_mq_use_cached_rq(rq, plug, bio); 3200 } else { 3201 rq = blk_mq_get_new_requests(q, plug, bio); 3202 if (unlikely(!rq)) { 3203 if (bio->bi_opf & REQ_NOWAIT) 3204 bio_wouldblock_error(bio); 3205 goto queue_exit; 3206 } 3207 } 3208 3209 trace_block_getrq(bio); 3210 3211 rq_qos_track(q, rq, bio); 3212 3213 blk_mq_bio_to_request(rq, bio, nr_segs); 3214 3215 ret = blk_crypto_rq_get_keyslot(rq); 3216 if (ret != BLK_STS_OK) { 3217 bio->bi_status = ret; 3218 bio_endio(bio); 3219 blk_mq_free_request(rq); 3220 return; 3221 } 3222 3223 if (bio_zone_write_plugging(bio)) 3224 blk_zone_write_plug_init_request(rq); 3225 3226 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3227 return; 3228 3229 if (plug) { 3230 blk_add_rq_to_plug(plug, rq); 3231 return; 3232 } 3233 3234 hctx = rq->mq_hctx; 3235 if ((rq->rq_flags & RQF_USE_SCHED) || 3236 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3237 blk_mq_insert_request(rq, 0); 3238 blk_mq_run_hw_queue(hctx, true); 3239 } else { 3240 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3241 } 3242 return; 3243 3244 queue_exit: 3245 /* 3246 * Don't drop the queue reference if we were trying to use a cached 3247 * request and thus didn't acquire one. 3248 */ 3249 if (!rq) 3250 blk_queue_exit(q); 3251 } 3252 3253 #ifdef CONFIG_BLK_MQ_STACKING 3254 /** 3255 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3256 * @rq: the request being queued 3257 */ 3258 blk_status_t blk_insert_cloned_request(struct request *rq) 3259 { 3260 struct request_queue *q = rq->q; 3261 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3262 unsigned int max_segments = blk_rq_get_max_segments(rq); 3263 blk_status_t ret; 3264 3265 if (blk_rq_sectors(rq) > max_sectors) { 3266 /* 3267 * SCSI device does not have a good way to return if 3268 * Write Same/Zero is actually supported. If a device rejects 3269 * a non-read/write command (discard, write same,etc.) the 3270 * low-level device driver will set the relevant queue limit to 3271 * 0 to prevent blk-lib from issuing more of the offending 3272 * operations. Commands queued prior to the queue limit being 3273 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3274 * errors being propagated to upper layers. 3275 */ 3276 if (max_sectors == 0) 3277 return BLK_STS_NOTSUPP; 3278 3279 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3280 __func__, blk_rq_sectors(rq), max_sectors); 3281 return BLK_STS_IOERR; 3282 } 3283 3284 /* 3285 * The queue settings related to segment counting may differ from the 3286 * original queue. 3287 */ 3288 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3289 if (rq->nr_phys_segments > max_segments) { 3290 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3291 __func__, rq->nr_phys_segments, max_segments); 3292 return BLK_STS_IOERR; 3293 } 3294 3295 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3296 return BLK_STS_IOERR; 3297 3298 ret = blk_crypto_rq_get_keyslot(rq); 3299 if (ret != BLK_STS_OK) 3300 return ret; 3301 3302 blk_account_io_start(rq); 3303 3304 /* 3305 * Since we have a scheduler attached on the top device, 3306 * bypass a potential scheduler on the bottom device for 3307 * insert. 3308 */ 3309 blk_mq_run_dispatch_ops(q, 3310 ret = blk_mq_request_issue_directly(rq, true)); 3311 if (ret) 3312 blk_account_io_done(rq, blk_time_get_ns()); 3313 return ret; 3314 } 3315 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3316 3317 /** 3318 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3319 * @rq: the clone request to be cleaned up 3320 * 3321 * Description: 3322 * Free all bios in @rq for a cloned request. 3323 */ 3324 void blk_rq_unprep_clone(struct request *rq) 3325 { 3326 struct bio *bio; 3327 3328 while ((bio = rq->bio) != NULL) { 3329 rq->bio = bio->bi_next; 3330 3331 bio_put(bio); 3332 } 3333 } 3334 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3335 3336 /** 3337 * blk_rq_prep_clone - Helper function to setup clone request 3338 * @rq: the request to be setup 3339 * @rq_src: original request to be cloned 3340 * @bs: bio_set that bios for clone are allocated from 3341 * @gfp_mask: memory allocation mask for bio 3342 * @bio_ctr: setup function to be called for each clone bio. 3343 * Returns %0 for success, non %0 for failure. 3344 * @data: private data to be passed to @bio_ctr 3345 * 3346 * Description: 3347 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3348 * Also, pages which the original bios are pointing to are not copied 3349 * and the cloned bios just point same pages. 3350 * So cloned bios must be completed before original bios, which means 3351 * the caller must complete @rq before @rq_src. 3352 */ 3353 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3354 struct bio_set *bs, gfp_t gfp_mask, 3355 int (*bio_ctr)(struct bio *, struct bio *, void *), 3356 void *data) 3357 { 3358 struct bio *bio_src; 3359 3360 if (!bs) 3361 bs = &fs_bio_set; 3362 3363 __rq_for_each_bio(bio_src, rq_src) { 3364 struct bio *bio = bio_alloc_clone(rq->q->disk->part0, bio_src, 3365 gfp_mask, bs); 3366 if (!bio) 3367 goto free_and_out; 3368 3369 if (bio_ctr && bio_ctr(bio, bio_src, data)) { 3370 bio_put(bio); 3371 goto free_and_out; 3372 } 3373 3374 if (rq->bio) { 3375 rq->biotail->bi_next = bio; 3376 rq->biotail = bio; 3377 } else { 3378 rq->bio = rq->biotail = bio; 3379 } 3380 } 3381 3382 /* Copy attributes of the original request to the clone request. */ 3383 rq->__sector = blk_rq_pos(rq_src); 3384 rq->__data_len = blk_rq_bytes(rq_src); 3385 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3386 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3387 rq->special_vec = rq_src->special_vec; 3388 } 3389 rq->nr_phys_segments = rq_src->nr_phys_segments; 3390 rq->nr_integrity_segments = rq_src->nr_integrity_segments; 3391 rq->phys_gap_bit = rq_src->phys_gap_bit; 3392 3393 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3394 goto free_and_out; 3395 3396 return 0; 3397 3398 free_and_out: 3399 blk_rq_unprep_clone(rq); 3400 3401 return -ENOMEM; 3402 } 3403 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3404 #endif /* CONFIG_BLK_MQ_STACKING */ 3405 3406 /* 3407 * Steal bios from a request and add them to a bio list. 3408 * The request must not have been partially completed before. 3409 */ 3410 void blk_steal_bios(struct bio_list *list, struct request *rq) 3411 { 3412 if (rq->bio) { 3413 if (list->tail) 3414 list->tail->bi_next = rq->bio; 3415 else 3416 list->head = rq->bio; 3417 list->tail = rq->biotail; 3418 3419 rq->bio = NULL; 3420 rq->biotail = NULL; 3421 } 3422 3423 rq->__data_len = 0; 3424 } 3425 EXPORT_SYMBOL_GPL(blk_steal_bios); 3426 3427 static size_t order_to_size(unsigned int order) 3428 { 3429 return (size_t)PAGE_SIZE << order; 3430 } 3431 3432 /* called before freeing request pool in @tags */ 3433 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3434 struct blk_mq_tags *tags) 3435 { 3436 struct page *page; 3437 3438 /* 3439 * There is no need to clear mapping if driver tags is not initialized 3440 * or the mapping belongs to the driver tags. 3441 */ 3442 if (!drv_tags || drv_tags == tags) 3443 return; 3444 3445 list_for_each_entry(page, &tags->page_list, lru) { 3446 unsigned long start = (unsigned long)page_address(page); 3447 unsigned long end = start + order_to_size(page->private); 3448 int i; 3449 3450 for (i = 0; i < drv_tags->nr_tags; i++) { 3451 struct request *rq = drv_tags->rqs[i]; 3452 unsigned long rq_addr = (unsigned long)rq; 3453 3454 if (rq_addr >= start && rq_addr < end) { 3455 WARN_ON_ONCE(req_ref_read(rq) != 0); 3456 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3457 } 3458 } 3459 } 3460 } 3461 3462 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3463 unsigned int hctx_idx) 3464 { 3465 struct blk_mq_tags *drv_tags; 3466 3467 if (list_empty(&tags->page_list)) 3468 return; 3469 3470 if (blk_mq_is_shared_tags(set->flags)) 3471 drv_tags = set->shared_tags; 3472 else 3473 drv_tags = set->tags[hctx_idx]; 3474 3475 if (tags->static_rqs && set->ops->exit_request) { 3476 int i; 3477 3478 for (i = 0; i < tags->nr_tags; i++) { 3479 struct request *rq = tags->static_rqs[i]; 3480 3481 if (!rq) 3482 continue; 3483 set->ops->exit_request(set, rq, hctx_idx); 3484 tags->static_rqs[i] = NULL; 3485 } 3486 } 3487 3488 blk_mq_clear_rq_mapping(drv_tags, tags); 3489 /* 3490 * Free request pages in SRCU callback, which is called from 3491 * blk_mq_free_tags(). 3492 */ 3493 } 3494 3495 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags) 3496 { 3497 kfree(tags->rqs); 3498 tags->rqs = NULL; 3499 kfree(tags->static_rqs); 3500 tags->static_rqs = NULL; 3501 3502 blk_mq_free_tags(set, tags); 3503 } 3504 3505 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3506 unsigned int hctx_idx) 3507 { 3508 int i; 3509 3510 for (i = 0; i < set->nr_maps; i++) { 3511 unsigned int start = set->map[i].queue_offset; 3512 unsigned int end = start + set->map[i].nr_queues; 3513 3514 if (hctx_idx >= start && hctx_idx < end) 3515 break; 3516 } 3517 3518 if (i >= set->nr_maps) 3519 i = HCTX_TYPE_DEFAULT; 3520 3521 return i; 3522 } 3523 3524 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3525 unsigned int hctx_idx) 3526 { 3527 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3528 3529 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3530 } 3531 3532 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3533 unsigned int hctx_idx, 3534 unsigned int nr_tags, 3535 unsigned int reserved_tags) 3536 { 3537 int node = blk_mq_get_hctx_node(set, hctx_idx); 3538 struct blk_mq_tags *tags; 3539 3540 if (node == NUMA_NO_NODE) 3541 node = set->numa_node; 3542 3543 tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node); 3544 if (!tags) 3545 return NULL; 3546 3547 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3548 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3549 node); 3550 if (!tags->rqs) 3551 goto err_free_tags; 3552 3553 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3554 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3555 node); 3556 if (!tags->static_rqs) 3557 goto err_free_rqs; 3558 3559 return tags; 3560 3561 err_free_rqs: 3562 kfree(tags->rqs); 3563 err_free_tags: 3564 blk_mq_free_tags(set, tags); 3565 return NULL; 3566 } 3567 3568 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3569 unsigned int hctx_idx, int node) 3570 { 3571 int ret; 3572 3573 if (set->ops->init_request) { 3574 ret = set->ops->init_request(set, rq, hctx_idx, node); 3575 if (ret) 3576 return ret; 3577 } 3578 3579 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3580 return 0; 3581 } 3582 3583 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3584 struct blk_mq_tags *tags, 3585 unsigned int hctx_idx, unsigned int depth) 3586 { 3587 unsigned int i, j, entries_per_page, max_order = 4; 3588 int node = blk_mq_get_hctx_node(set, hctx_idx); 3589 size_t rq_size, left; 3590 3591 if (node == NUMA_NO_NODE) 3592 node = set->numa_node; 3593 3594 /* 3595 * rq_size is the size of the request plus driver payload, rounded 3596 * to the cacheline size 3597 */ 3598 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3599 cache_line_size()); 3600 left = rq_size * depth; 3601 3602 for (i = 0; i < depth; ) { 3603 int this_order = max_order; 3604 struct page *page; 3605 int to_do; 3606 void *p; 3607 3608 while (this_order && left < order_to_size(this_order - 1)) 3609 this_order--; 3610 3611 do { 3612 page = alloc_pages_node(node, 3613 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3614 this_order); 3615 if (page) 3616 break; 3617 if (!this_order--) 3618 break; 3619 if (order_to_size(this_order) < rq_size) 3620 break; 3621 } while (1); 3622 3623 if (!page) 3624 goto fail; 3625 3626 page->private = this_order; 3627 list_add_tail(&page->lru, &tags->page_list); 3628 3629 p = page_address(page); 3630 /* 3631 * Allow kmemleak to scan these pages as they contain pointers 3632 * to additional allocations like via ops->init_request(). 3633 */ 3634 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3635 entries_per_page = order_to_size(this_order) / rq_size; 3636 to_do = min(entries_per_page, depth - i); 3637 left -= to_do * rq_size; 3638 for (j = 0; j < to_do; j++) { 3639 struct request *rq = p; 3640 3641 tags->static_rqs[i] = rq; 3642 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3643 tags->static_rqs[i] = NULL; 3644 goto fail; 3645 } 3646 3647 p += rq_size; 3648 i++; 3649 } 3650 } 3651 return 0; 3652 3653 fail: 3654 blk_mq_free_rqs(set, tags, hctx_idx); 3655 return -ENOMEM; 3656 } 3657 3658 struct rq_iter_data { 3659 struct blk_mq_hw_ctx *hctx; 3660 bool has_rq; 3661 }; 3662 3663 static bool blk_mq_has_request(struct request *rq, void *data) 3664 { 3665 struct rq_iter_data *iter_data = data; 3666 3667 if (rq->mq_hctx != iter_data->hctx) 3668 return true; 3669 iter_data->has_rq = true; 3670 return false; 3671 } 3672 3673 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3674 { 3675 struct blk_mq_tags *tags = hctx->sched_tags ? 3676 hctx->sched_tags : hctx->tags; 3677 struct rq_iter_data data = { 3678 .hctx = hctx, 3679 }; 3680 int srcu_idx; 3681 3682 srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu); 3683 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3684 srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx); 3685 3686 return data.has_rq; 3687 } 3688 3689 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3690 unsigned int this_cpu) 3691 { 3692 enum hctx_type type = hctx->type; 3693 int cpu; 3694 3695 /* 3696 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3697 * might submit IOs on these isolated CPUs, so use the queue map to 3698 * check if all CPUs mapped to this hctx are offline 3699 */ 3700 for_each_online_cpu(cpu) { 3701 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3702 type, cpu); 3703 3704 if (h != hctx) 3705 continue; 3706 3707 /* this hctx has at least one online CPU */ 3708 if (this_cpu != cpu) 3709 return true; 3710 } 3711 3712 return false; 3713 } 3714 3715 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3716 { 3717 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3718 struct blk_mq_hw_ctx, cpuhp_online); 3719 int ret = 0; 3720 3721 if (!hctx->nr_ctx || blk_mq_hctx_has_online_cpu(hctx, cpu)) 3722 return 0; 3723 3724 /* 3725 * Prevent new request from being allocated on the current hctx. 3726 * 3727 * The smp_mb__after_atomic() Pairs with the implied barrier in 3728 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3729 * seen once we return from the tag allocator. 3730 */ 3731 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3732 smp_mb__after_atomic(); 3733 3734 /* 3735 * Try to grab a reference to the queue and wait for any outstanding 3736 * requests. If we could not grab a reference the queue has been 3737 * frozen and there are no requests. 3738 */ 3739 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3740 while (blk_mq_hctx_has_requests(hctx)) { 3741 /* 3742 * The wakeup capable IRQ handler of block device is 3743 * not called during suspend. Skip the loop by checking 3744 * pm_wakeup_pending to prevent the deadlock and improve 3745 * suspend latency. 3746 */ 3747 if (pm_wakeup_pending()) { 3748 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3749 ret = -EBUSY; 3750 break; 3751 } 3752 msleep(5); 3753 } 3754 percpu_ref_put(&hctx->queue->q_usage_counter); 3755 } 3756 3757 return ret; 3758 } 3759 3760 /* 3761 * Check if one CPU is mapped to the specified hctx 3762 * 3763 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3764 * to be used for scheduling kworker only. For other usage, please call this 3765 * helper for checking if one CPU belongs to the specified hctx 3766 */ 3767 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3768 const struct blk_mq_hw_ctx *hctx) 3769 { 3770 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3771 hctx->type, cpu); 3772 3773 return mapped_hctx == hctx; 3774 } 3775 3776 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3777 { 3778 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3779 struct blk_mq_hw_ctx, cpuhp_online); 3780 3781 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3782 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3783 return 0; 3784 } 3785 3786 /* 3787 * 'cpu' is going away. splice any existing rq_list entries from this 3788 * software queue to the hw queue dispatch list, and ensure that it 3789 * gets run. 3790 */ 3791 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3792 { 3793 struct blk_mq_hw_ctx *hctx; 3794 struct blk_mq_ctx *ctx; 3795 LIST_HEAD(tmp); 3796 enum hctx_type type; 3797 3798 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3799 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3800 return 0; 3801 3802 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3803 type = hctx->type; 3804 3805 spin_lock(&ctx->lock); 3806 if (!list_empty(&ctx->rq_lists[type])) { 3807 list_splice_init(&ctx->rq_lists[type], &tmp); 3808 blk_mq_hctx_clear_pending(hctx, ctx); 3809 } 3810 spin_unlock(&ctx->lock); 3811 3812 if (list_empty(&tmp)) 3813 return 0; 3814 3815 spin_lock(&hctx->lock); 3816 list_splice_tail_init(&tmp, &hctx->dispatch); 3817 spin_unlock(&hctx->lock); 3818 3819 blk_mq_run_hw_queue(hctx, true); 3820 return 0; 3821 } 3822 3823 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3824 { 3825 lockdep_assert_held(&blk_mq_cpuhp_lock); 3826 3827 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3828 !hlist_unhashed(&hctx->cpuhp_online)) { 3829 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3830 &hctx->cpuhp_online); 3831 INIT_HLIST_NODE(&hctx->cpuhp_online); 3832 } 3833 3834 if (!hlist_unhashed(&hctx->cpuhp_dead)) { 3835 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3836 &hctx->cpuhp_dead); 3837 INIT_HLIST_NODE(&hctx->cpuhp_dead); 3838 } 3839 } 3840 3841 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3842 { 3843 mutex_lock(&blk_mq_cpuhp_lock); 3844 __blk_mq_remove_cpuhp(hctx); 3845 mutex_unlock(&blk_mq_cpuhp_lock); 3846 } 3847 3848 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx) 3849 { 3850 lockdep_assert_held(&blk_mq_cpuhp_lock); 3851 3852 if (!(hctx->flags & BLK_MQ_F_STACKING) && 3853 hlist_unhashed(&hctx->cpuhp_online)) 3854 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3855 &hctx->cpuhp_online); 3856 3857 if (hlist_unhashed(&hctx->cpuhp_dead)) 3858 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3859 &hctx->cpuhp_dead); 3860 } 3861 3862 static void __blk_mq_remove_cpuhp_list(struct list_head *head) 3863 { 3864 struct blk_mq_hw_ctx *hctx; 3865 3866 lockdep_assert_held(&blk_mq_cpuhp_lock); 3867 3868 list_for_each_entry(hctx, head, hctx_list) 3869 __blk_mq_remove_cpuhp(hctx); 3870 } 3871 3872 /* 3873 * Unregister cpuhp callbacks from exited hw queues 3874 * 3875 * Safe to call if this `request_queue` is live 3876 */ 3877 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q) 3878 { 3879 LIST_HEAD(hctx_list); 3880 3881 spin_lock(&q->unused_hctx_lock); 3882 list_splice_init(&q->unused_hctx_list, &hctx_list); 3883 spin_unlock(&q->unused_hctx_lock); 3884 3885 mutex_lock(&blk_mq_cpuhp_lock); 3886 __blk_mq_remove_cpuhp_list(&hctx_list); 3887 mutex_unlock(&blk_mq_cpuhp_lock); 3888 3889 spin_lock(&q->unused_hctx_lock); 3890 list_splice(&hctx_list, &q->unused_hctx_list); 3891 spin_unlock(&q->unused_hctx_lock); 3892 } 3893 3894 /* 3895 * Register cpuhp callbacks from all hw queues 3896 * 3897 * Safe to call if this `request_queue` is live 3898 */ 3899 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q) 3900 { 3901 struct blk_mq_hw_ctx *hctx; 3902 unsigned long i; 3903 3904 mutex_lock(&blk_mq_cpuhp_lock); 3905 queue_for_each_hw_ctx(q, hctx, i) 3906 __blk_mq_add_cpuhp(hctx); 3907 mutex_unlock(&blk_mq_cpuhp_lock); 3908 } 3909 3910 /* 3911 * Before freeing hw queue, clearing the flush request reference in 3912 * tags->rqs[] for avoiding potential UAF. 3913 */ 3914 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3915 unsigned int queue_depth, struct request *flush_rq) 3916 { 3917 int i; 3918 3919 /* The hw queue may not be mapped yet */ 3920 if (!tags) 3921 return; 3922 3923 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3924 3925 for (i = 0; i < queue_depth; i++) 3926 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3927 } 3928 3929 static void blk_free_flush_queue_callback(struct rcu_head *head) 3930 { 3931 struct blk_flush_queue *fq = 3932 container_of(head, struct blk_flush_queue, rcu_head); 3933 3934 blk_free_flush_queue(fq); 3935 } 3936 3937 /* hctx->ctxs will be freed in queue's release handler */ 3938 static void blk_mq_exit_hctx(struct request_queue *q, 3939 struct blk_mq_tag_set *set, 3940 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3941 { 3942 struct request *flush_rq = hctx->fq->flush_rq; 3943 3944 if (blk_mq_hw_queue_mapped(hctx)) 3945 blk_mq_tag_idle(hctx); 3946 3947 if (blk_queue_init_done(q)) 3948 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3949 set->queue_depth, flush_rq); 3950 if (set->ops->exit_request) 3951 set->ops->exit_request(set, flush_rq, hctx_idx); 3952 3953 if (set->ops->exit_hctx) 3954 set->ops->exit_hctx(hctx, hctx_idx); 3955 3956 call_srcu(&set->tags_srcu, &hctx->fq->rcu_head, 3957 blk_free_flush_queue_callback); 3958 hctx->fq = NULL; 3959 3960 spin_lock(&q->unused_hctx_lock); 3961 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3962 spin_unlock(&q->unused_hctx_lock); 3963 } 3964 3965 static void blk_mq_exit_hw_queues(struct request_queue *q, 3966 struct blk_mq_tag_set *set, int nr_queue) 3967 { 3968 struct blk_mq_hw_ctx *hctx; 3969 unsigned long i; 3970 3971 queue_for_each_hw_ctx(q, hctx, i) { 3972 if (i == nr_queue) 3973 break; 3974 blk_mq_remove_cpuhp(hctx); 3975 blk_mq_exit_hctx(q, set, hctx, i); 3976 } 3977 } 3978 3979 static int blk_mq_init_hctx(struct request_queue *q, 3980 struct blk_mq_tag_set *set, 3981 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3982 { 3983 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3984 3985 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3986 if (!hctx->fq) 3987 goto fail; 3988 3989 hctx->queue_num = hctx_idx; 3990 3991 hctx->tags = set->tags[hctx_idx]; 3992 3993 if (set->ops->init_hctx && 3994 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3995 goto fail_free_fq; 3996 3997 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3998 hctx->numa_node)) 3999 goto exit_hctx; 4000 4001 return 0; 4002 4003 exit_hctx: 4004 if (set->ops->exit_hctx) 4005 set->ops->exit_hctx(hctx, hctx_idx); 4006 fail_free_fq: 4007 blk_free_flush_queue(hctx->fq); 4008 hctx->fq = NULL; 4009 fail: 4010 return -1; 4011 } 4012 4013 static struct blk_mq_hw_ctx * 4014 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 4015 int node) 4016 { 4017 struct blk_mq_hw_ctx *hctx; 4018 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 4019 4020 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 4021 if (!hctx) 4022 goto fail_alloc_hctx; 4023 4024 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 4025 goto free_hctx; 4026 4027 atomic_set(&hctx->nr_active, 0); 4028 if (node == NUMA_NO_NODE) 4029 node = set->numa_node; 4030 hctx->numa_node = node; 4031 4032 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 4033 spin_lock_init(&hctx->lock); 4034 INIT_LIST_HEAD(&hctx->dispatch); 4035 INIT_HLIST_NODE(&hctx->cpuhp_dead); 4036 INIT_HLIST_NODE(&hctx->cpuhp_online); 4037 hctx->queue = q; 4038 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 4039 4040 INIT_LIST_HEAD(&hctx->hctx_list); 4041 4042 /* 4043 * Allocate space for all possible cpus to avoid allocation at 4044 * runtime 4045 */ 4046 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 4047 gfp, node); 4048 if (!hctx->ctxs) 4049 goto free_cpumask; 4050 4051 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 4052 gfp, node, false, false)) 4053 goto free_ctxs; 4054 hctx->nr_ctx = 0; 4055 4056 spin_lock_init(&hctx->dispatch_wait_lock); 4057 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 4058 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 4059 4060 blk_mq_hctx_kobj_init(hctx); 4061 4062 return hctx; 4063 4064 free_ctxs: 4065 kfree(hctx->ctxs); 4066 free_cpumask: 4067 free_cpumask_var(hctx->cpumask); 4068 free_hctx: 4069 kfree(hctx); 4070 fail_alloc_hctx: 4071 return NULL; 4072 } 4073 4074 static void blk_mq_init_cpu_queues(struct request_queue *q, 4075 unsigned int nr_hw_queues) 4076 { 4077 struct blk_mq_tag_set *set = q->tag_set; 4078 unsigned int i, j; 4079 4080 for_each_possible_cpu(i) { 4081 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 4082 struct blk_mq_hw_ctx *hctx; 4083 int k; 4084 4085 __ctx->cpu = i; 4086 spin_lock_init(&__ctx->lock); 4087 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 4088 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 4089 4090 __ctx->queue = q; 4091 4092 /* 4093 * Set local node, IFF we have more than one hw queue. If 4094 * not, we remain on the home node of the device 4095 */ 4096 for (j = 0; j < set->nr_maps; j++) { 4097 hctx = blk_mq_map_queue_type(q, j, i); 4098 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 4099 hctx->numa_node = cpu_to_node(i); 4100 } 4101 } 4102 } 4103 4104 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4105 unsigned int hctx_idx, 4106 unsigned int depth) 4107 { 4108 struct blk_mq_tags *tags; 4109 int ret; 4110 4111 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 4112 if (!tags) 4113 return NULL; 4114 4115 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 4116 if (ret) { 4117 blk_mq_free_rq_map(set, tags); 4118 return NULL; 4119 } 4120 4121 return tags; 4122 } 4123 4124 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 4125 int hctx_idx) 4126 { 4127 if (blk_mq_is_shared_tags(set->flags)) { 4128 set->tags[hctx_idx] = set->shared_tags; 4129 4130 return true; 4131 } 4132 4133 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 4134 set->queue_depth); 4135 4136 return set->tags[hctx_idx]; 4137 } 4138 4139 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4140 struct blk_mq_tags *tags, 4141 unsigned int hctx_idx) 4142 { 4143 if (tags) { 4144 blk_mq_free_rqs(set, tags, hctx_idx); 4145 blk_mq_free_rq_map(set, tags); 4146 } 4147 } 4148 4149 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4150 unsigned int hctx_idx) 4151 { 4152 if (!blk_mq_is_shared_tags(set->flags)) 4153 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4154 4155 set->tags[hctx_idx] = NULL; 4156 } 4157 4158 static void blk_mq_map_swqueue(struct request_queue *q) 4159 { 4160 unsigned int j, hctx_idx; 4161 unsigned long i; 4162 struct blk_mq_hw_ctx *hctx; 4163 struct blk_mq_ctx *ctx; 4164 struct blk_mq_tag_set *set = q->tag_set; 4165 4166 queue_for_each_hw_ctx(q, hctx, i) { 4167 cpumask_clear(hctx->cpumask); 4168 hctx->nr_ctx = 0; 4169 hctx->dispatch_from = NULL; 4170 } 4171 4172 /* 4173 * Map software to hardware queues. 4174 * 4175 * If the cpu isn't present, the cpu is mapped to first hctx. 4176 */ 4177 for_each_possible_cpu(i) { 4178 4179 ctx = per_cpu_ptr(q->queue_ctx, i); 4180 for (j = 0; j < set->nr_maps; j++) { 4181 if (!set->map[j].nr_queues) { 4182 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4183 HCTX_TYPE_DEFAULT, i); 4184 continue; 4185 } 4186 hctx_idx = set->map[j].mq_map[i]; 4187 /* unmapped hw queue can be remapped after CPU topo changed */ 4188 if (!set->tags[hctx_idx] && 4189 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4190 /* 4191 * If tags initialization fail for some hctx, 4192 * that hctx won't be brought online. In this 4193 * case, remap the current ctx to hctx[0] which 4194 * is guaranteed to always have tags allocated 4195 */ 4196 set->map[j].mq_map[i] = 0; 4197 } 4198 4199 hctx = blk_mq_map_queue_type(q, j, i); 4200 ctx->hctxs[j] = hctx; 4201 /* 4202 * If the CPU is already set in the mask, then we've 4203 * mapped this one already. This can happen if 4204 * devices share queues across queue maps. 4205 */ 4206 if (cpumask_test_cpu(i, hctx->cpumask)) 4207 continue; 4208 4209 cpumask_set_cpu(i, hctx->cpumask); 4210 hctx->type = j; 4211 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4212 hctx->ctxs[hctx->nr_ctx++] = ctx; 4213 4214 /* 4215 * If the nr_ctx type overflows, we have exceeded the 4216 * amount of sw queues we can support. 4217 */ 4218 BUG_ON(!hctx->nr_ctx); 4219 } 4220 4221 for (; j < HCTX_MAX_TYPES; j++) 4222 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4223 HCTX_TYPE_DEFAULT, i); 4224 } 4225 4226 queue_for_each_hw_ctx(q, hctx, i) { 4227 int cpu; 4228 4229 /* 4230 * If no software queues are mapped to this hardware queue, 4231 * disable it and free the request entries. 4232 */ 4233 if (!hctx->nr_ctx) { 4234 /* Never unmap queue 0. We need it as a 4235 * fallback in case of a new remap fails 4236 * allocation 4237 */ 4238 if (i) 4239 __blk_mq_free_map_and_rqs(set, i); 4240 4241 hctx->tags = NULL; 4242 continue; 4243 } 4244 4245 hctx->tags = set->tags[i]; 4246 WARN_ON(!hctx->tags); 4247 4248 /* 4249 * Set the map size to the number of mapped software queues. 4250 * This is more accurate and more efficient than looping 4251 * over all possibly mapped software queues. 4252 */ 4253 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4254 4255 /* 4256 * Rule out isolated CPUs from hctx->cpumask to avoid 4257 * running block kworker on isolated CPUs 4258 */ 4259 for_each_cpu(cpu, hctx->cpumask) { 4260 if (cpu_is_isolated(cpu)) 4261 cpumask_clear_cpu(cpu, hctx->cpumask); 4262 } 4263 4264 /* 4265 * Initialize batch roundrobin counts 4266 */ 4267 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4268 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4269 } 4270 } 4271 4272 /* 4273 * Caller needs to ensure that we're either frozen/quiesced, or that 4274 * the queue isn't live yet. 4275 */ 4276 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4277 { 4278 struct blk_mq_hw_ctx *hctx; 4279 unsigned long i; 4280 4281 queue_for_each_hw_ctx(q, hctx, i) { 4282 if (shared) { 4283 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4284 } else { 4285 blk_mq_tag_idle(hctx); 4286 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4287 } 4288 } 4289 } 4290 4291 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4292 bool shared) 4293 { 4294 struct request_queue *q; 4295 unsigned int memflags; 4296 4297 lockdep_assert_held(&set->tag_list_lock); 4298 4299 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4300 memflags = blk_mq_freeze_queue(q); 4301 queue_set_hctx_shared(q, shared); 4302 blk_mq_unfreeze_queue(q, memflags); 4303 } 4304 } 4305 4306 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4307 { 4308 struct blk_mq_tag_set *set = q->tag_set; 4309 4310 mutex_lock(&set->tag_list_lock); 4311 list_del_rcu(&q->tag_set_list); 4312 if (list_is_singular(&set->tag_list)) { 4313 /* just transitioned to unshared */ 4314 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4315 /* update existing queue */ 4316 blk_mq_update_tag_set_shared(set, false); 4317 } 4318 mutex_unlock(&set->tag_list_lock); 4319 } 4320 4321 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4322 struct request_queue *q) 4323 { 4324 mutex_lock(&set->tag_list_lock); 4325 4326 /* 4327 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4328 */ 4329 if (!list_empty(&set->tag_list) && 4330 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4331 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4332 /* update existing queue */ 4333 blk_mq_update_tag_set_shared(set, true); 4334 } 4335 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4336 queue_set_hctx_shared(q, true); 4337 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 4338 4339 mutex_unlock(&set->tag_list_lock); 4340 } 4341 4342 /* All allocations will be freed in release handler of q->mq_kobj */ 4343 static int blk_mq_alloc_ctxs(struct request_queue *q) 4344 { 4345 struct blk_mq_ctxs *ctxs; 4346 int cpu; 4347 4348 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4349 if (!ctxs) 4350 return -ENOMEM; 4351 4352 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4353 if (!ctxs->queue_ctx) 4354 goto fail; 4355 4356 for_each_possible_cpu(cpu) { 4357 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4358 ctx->ctxs = ctxs; 4359 } 4360 4361 q->mq_kobj = &ctxs->kobj; 4362 q->queue_ctx = ctxs->queue_ctx; 4363 4364 return 0; 4365 fail: 4366 kfree(ctxs); 4367 return -ENOMEM; 4368 } 4369 4370 /* 4371 * It is the actual release handler for mq, but we do it from 4372 * request queue's release handler for avoiding use-after-free 4373 * and headache because q->mq_kobj shouldn't have been introduced, 4374 * but we can't group ctx/kctx kobj without it. 4375 */ 4376 void blk_mq_release(struct request_queue *q) 4377 { 4378 struct blk_mq_hw_ctx *hctx, *next; 4379 unsigned long i; 4380 4381 queue_for_each_hw_ctx(q, hctx, i) 4382 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4383 4384 /* all hctx are in .unused_hctx_list now */ 4385 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4386 list_del_init(&hctx->hctx_list); 4387 kobject_put(&hctx->kobj); 4388 } 4389 4390 kfree(q->queue_hw_ctx); 4391 4392 /* 4393 * release .mq_kobj and sw queue's kobject now because 4394 * both share lifetime with request queue. 4395 */ 4396 blk_mq_sysfs_deinit(q); 4397 } 4398 4399 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4400 struct queue_limits *lim, void *queuedata) 4401 { 4402 struct queue_limits default_lim = { }; 4403 struct request_queue *q; 4404 int ret; 4405 4406 if (!lim) 4407 lim = &default_lim; 4408 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4409 if (set->nr_maps > HCTX_TYPE_POLL) 4410 lim->features |= BLK_FEAT_POLL; 4411 4412 q = blk_alloc_queue(lim, set->numa_node); 4413 if (IS_ERR(q)) 4414 return q; 4415 q->queuedata = queuedata; 4416 ret = blk_mq_init_allocated_queue(set, q); 4417 if (ret) { 4418 blk_put_queue(q); 4419 return ERR_PTR(ret); 4420 } 4421 return q; 4422 } 4423 EXPORT_SYMBOL(blk_mq_alloc_queue); 4424 4425 /** 4426 * blk_mq_destroy_queue - shutdown a request queue 4427 * @q: request queue to shutdown 4428 * 4429 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4430 * requests will be failed with -ENODEV. The caller is responsible for dropping 4431 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4432 * 4433 * Context: can sleep 4434 */ 4435 void blk_mq_destroy_queue(struct request_queue *q) 4436 { 4437 WARN_ON_ONCE(!queue_is_mq(q)); 4438 WARN_ON_ONCE(blk_queue_registered(q)); 4439 4440 might_sleep(); 4441 4442 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4443 blk_queue_start_drain(q); 4444 blk_mq_freeze_queue_wait(q); 4445 4446 blk_sync_queue(q); 4447 blk_mq_cancel_work_sync(q); 4448 blk_mq_exit_queue(q); 4449 } 4450 EXPORT_SYMBOL(blk_mq_destroy_queue); 4451 4452 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4453 struct queue_limits *lim, void *queuedata, 4454 struct lock_class_key *lkclass) 4455 { 4456 struct request_queue *q; 4457 struct gendisk *disk; 4458 4459 q = blk_mq_alloc_queue(set, lim, queuedata); 4460 if (IS_ERR(q)) 4461 return ERR_CAST(q); 4462 4463 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4464 if (!disk) { 4465 blk_mq_destroy_queue(q); 4466 blk_put_queue(q); 4467 return ERR_PTR(-ENOMEM); 4468 } 4469 set_bit(GD_OWNS_QUEUE, &disk->state); 4470 return disk; 4471 } 4472 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4473 4474 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4475 struct lock_class_key *lkclass) 4476 { 4477 struct gendisk *disk; 4478 4479 if (!blk_get_queue(q)) 4480 return NULL; 4481 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4482 if (!disk) 4483 blk_put_queue(q); 4484 return disk; 4485 } 4486 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4487 4488 /* 4489 * Only hctx removed from cpuhp list can be reused 4490 */ 4491 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx) 4492 { 4493 return hlist_unhashed(&hctx->cpuhp_online) && 4494 hlist_unhashed(&hctx->cpuhp_dead); 4495 } 4496 4497 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4498 struct blk_mq_tag_set *set, struct request_queue *q, 4499 int hctx_idx, int node) 4500 { 4501 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4502 4503 /* reuse dead hctx first */ 4504 spin_lock(&q->unused_hctx_lock); 4505 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4506 if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) { 4507 hctx = tmp; 4508 break; 4509 } 4510 } 4511 if (hctx) 4512 list_del_init(&hctx->hctx_list); 4513 spin_unlock(&q->unused_hctx_lock); 4514 4515 if (!hctx) 4516 hctx = blk_mq_alloc_hctx(q, set, node); 4517 if (!hctx) 4518 goto fail; 4519 4520 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4521 goto free_hctx; 4522 4523 return hctx; 4524 4525 free_hctx: 4526 kobject_put(&hctx->kobj); 4527 fail: 4528 return NULL; 4529 } 4530 4531 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4532 struct request_queue *q) 4533 { 4534 int i, j, end; 4535 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 4536 4537 if (q->nr_hw_queues < set->nr_hw_queues) { 4538 struct blk_mq_hw_ctx **new_hctxs; 4539 4540 new_hctxs = kcalloc_node(set->nr_hw_queues, 4541 sizeof(*new_hctxs), GFP_KERNEL, 4542 set->numa_node); 4543 if (!new_hctxs) 4544 return; 4545 if (hctxs) 4546 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 4547 sizeof(*hctxs)); 4548 rcu_assign_pointer(q->queue_hw_ctx, new_hctxs); 4549 /* 4550 * Make sure reading the old queue_hw_ctx from other 4551 * context concurrently won't trigger uaf. 4552 */ 4553 kfree_rcu_mightsleep(hctxs); 4554 hctxs = new_hctxs; 4555 } 4556 4557 for (i = 0; i < set->nr_hw_queues; i++) { 4558 int old_node; 4559 int node = blk_mq_get_hctx_node(set, i); 4560 struct blk_mq_hw_ctx *old_hctx = hctxs[i]; 4561 4562 if (old_hctx) { 4563 old_node = old_hctx->numa_node; 4564 blk_mq_exit_hctx(q, set, old_hctx, i); 4565 } 4566 4567 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, node); 4568 if (!hctxs[i]) { 4569 if (!old_hctx) 4570 break; 4571 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4572 node, old_node); 4573 hctxs[i] = blk_mq_alloc_and_init_hctx(set, q, i, 4574 old_node); 4575 WARN_ON_ONCE(!hctxs[i]); 4576 } 4577 } 4578 /* 4579 * Increasing nr_hw_queues fails. Free the newly allocated 4580 * hctxs and keep the previous q->nr_hw_queues. 4581 */ 4582 if (i != set->nr_hw_queues) { 4583 j = q->nr_hw_queues; 4584 end = i; 4585 } else { 4586 j = i; 4587 end = q->nr_hw_queues; 4588 q->nr_hw_queues = set->nr_hw_queues; 4589 } 4590 4591 for (; j < end; j++) { 4592 struct blk_mq_hw_ctx *hctx = hctxs[j]; 4593 4594 if (hctx) { 4595 blk_mq_exit_hctx(q, set, hctx, j); 4596 hctxs[j] = NULL; 4597 } 4598 } 4599 } 4600 4601 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4602 struct request_queue *q) 4603 { 4604 __blk_mq_realloc_hw_ctxs(set, q); 4605 4606 /* unregister cpuhp callbacks for exited hctxs */ 4607 blk_mq_remove_hw_queues_cpuhp(q); 4608 4609 /* register cpuhp for new initialized hctxs */ 4610 blk_mq_add_hw_queues_cpuhp(q); 4611 } 4612 4613 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4614 struct request_queue *q) 4615 { 4616 /* mark the queue as mq asap */ 4617 q->mq_ops = set->ops; 4618 4619 /* 4620 * ->tag_set has to be setup before initialize hctx, which cpuphp 4621 * handler needs it for checking queue mapping 4622 */ 4623 q->tag_set = set; 4624 4625 if (blk_mq_alloc_ctxs(q)) 4626 goto err_exit; 4627 4628 /* init q->mq_kobj and sw queues' kobjects */ 4629 blk_mq_sysfs_init(q); 4630 4631 INIT_LIST_HEAD(&q->unused_hctx_list); 4632 spin_lock_init(&q->unused_hctx_lock); 4633 4634 blk_mq_realloc_hw_ctxs(set, q); 4635 if (!q->nr_hw_queues) 4636 goto err_hctxs; 4637 4638 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4639 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4640 4641 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4642 4643 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4644 INIT_LIST_HEAD(&q->flush_list); 4645 INIT_LIST_HEAD(&q->requeue_list); 4646 spin_lock_init(&q->requeue_lock); 4647 4648 q->nr_requests = set->queue_depth; 4649 4650 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4651 blk_mq_map_swqueue(q); 4652 blk_mq_add_queue_tag_set(set, q); 4653 return 0; 4654 4655 err_hctxs: 4656 blk_mq_release(q); 4657 err_exit: 4658 q->mq_ops = NULL; 4659 return -ENOMEM; 4660 } 4661 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4662 4663 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4664 void blk_mq_exit_queue(struct request_queue *q) 4665 { 4666 struct blk_mq_tag_set *set = q->tag_set; 4667 4668 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4669 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4670 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4671 blk_mq_del_queue_tag_set(q); 4672 } 4673 4674 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4675 { 4676 int i; 4677 4678 if (blk_mq_is_shared_tags(set->flags)) { 4679 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4680 BLK_MQ_NO_HCTX_IDX, 4681 set->queue_depth); 4682 if (!set->shared_tags) 4683 return -ENOMEM; 4684 } 4685 4686 for (i = 0; i < set->nr_hw_queues; i++) { 4687 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4688 goto out_unwind; 4689 cond_resched(); 4690 } 4691 4692 return 0; 4693 4694 out_unwind: 4695 while (--i >= 0) 4696 __blk_mq_free_map_and_rqs(set, i); 4697 4698 if (blk_mq_is_shared_tags(set->flags)) { 4699 blk_mq_free_map_and_rqs(set, set->shared_tags, 4700 BLK_MQ_NO_HCTX_IDX); 4701 } 4702 4703 return -ENOMEM; 4704 } 4705 4706 /* 4707 * Allocate the request maps associated with this tag_set. Note that this 4708 * may reduce the depth asked for, if memory is tight. set->queue_depth 4709 * will be updated to reflect the allocated depth. 4710 */ 4711 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4712 { 4713 unsigned int depth; 4714 int err; 4715 4716 depth = set->queue_depth; 4717 do { 4718 err = __blk_mq_alloc_rq_maps(set); 4719 if (!err) 4720 break; 4721 4722 set->queue_depth >>= 1; 4723 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4724 err = -ENOMEM; 4725 break; 4726 } 4727 } while (set->queue_depth); 4728 4729 if (!set->queue_depth || err) { 4730 pr_err("blk-mq: failed to allocate request map\n"); 4731 return -ENOMEM; 4732 } 4733 4734 if (depth != set->queue_depth) 4735 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4736 depth, set->queue_depth); 4737 4738 return 0; 4739 } 4740 4741 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4742 { 4743 /* 4744 * blk_mq_map_queues() and multiple .map_queues() implementations 4745 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4746 * number of hardware queues. 4747 */ 4748 if (set->nr_maps == 1) 4749 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4750 4751 if (set->ops->map_queues) { 4752 int i; 4753 4754 /* 4755 * transport .map_queues is usually done in the following 4756 * way: 4757 * 4758 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4759 * mask = get_cpu_mask(queue) 4760 * for_each_cpu(cpu, mask) 4761 * set->map[x].mq_map[cpu] = queue; 4762 * } 4763 * 4764 * When we need to remap, the table has to be cleared for 4765 * killing stale mapping since one CPU may not be mapped 4766 * to any hw queue. 4767 */ 4768 for (i = 0; i < set->nr_maps; i++) 4769 blk_mq_clear_mq_map(&set->map[i]); 4770 4771 set->ops->map_queues(set); 4772 } else { 4773 BUG_ON(set->nr_maps > 1); 4774 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4775 } 4776 } 4777 4778 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4779 int new_nr_hw_queues) 4780 { 4781 struct blk_mq_tags **new_tags; 4782 int i; 4783 4784 if (set->nr_hw_queues >= new_nr_hw_queues) 4785 goto done; 4786 4787 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4788 GFP_KERNEL, set->numa_node); 4789 if (!new_tags) 4790 return -ENOMEM; 4791 4792 if (set->tags) 4793 memcpy(new_tags, set->tags, set->nr_hw_queues * 4794 sizeof(*set->tags)); 4795 kfree(set->tags); 4796 set->tags = new_tags; 4797 4798 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4799 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4800 while (--i >= set->nr_hw_queues) 4801 __blk_mq_free_map_and_rqs(set, i); 4802 return -ENOMEM; 4803 } 4804 cond_resched(); 4805 } 4806 4807 done: 4808 set->nr_hw_queues = new_nr_hw_queues; 4809 return 0; 4810 } 4811 4812 /* 4813 * Alloc a tag set to be associated with one or more request queues. 4814 * May fail with EINVAL for various error conditions. May adjust the 4815 * requested depth down, if it's too large. In that case, the set 4816 * value will be stored in set->queue_depth. 4817 */ 4818 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4819 { 4820 int i, ret; 4821 4822 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4823 4824 if (!set->nr_hw_queues) 4825 return -EINVAL; 4826 if (!set->queue_depth) 4827 return -EINVAL; 4828 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4829 return -EINVAL; 4830 4831 if (!set->ops->queue_rq) 4832 return -EINVAL; 4833 4834 if (!set->ops->get_budget ^ !set->ops->put_budget) 4835 return -EINVAL; 4836 4837 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4838 pr_info("blk-mq: reduced tag depth to %u\n", 4839 BLK_MQ_MAX_DEPTH); 4840 set->queue_depth = BLK_MQ_MAX_DEPTH; 4841 } 4842 4843 if (!set->nr_maps) 4844 set->nr_maps = 1; 4845 else if (set->nr_maps > HCTX_MAX_TYPES) 4846 return -EINVAL; 4847 4848 /* 4849 * If a crashdump is active, then we are potentially in a very 4850 * memory constrained environment. Limit us to 64 tags to prevent 4851 * using too much memory. 4852 */ 4853 if (is_kdump_kernel()) 4854 set->queue_depth = min(64U, set->queue_depth); 4855 4856 /* 4857 * There is no use for more h/w queues than cpus if we just have 4858 * a single map 4859 */ 4860 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4861 set->nr_hw_queues = nr_cpu_ids; 4862 4863 if (set->flags & BLK_MQ_F_BLOCKING) { 4864 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4865 if (!set->srcu) 4866 return -ENOMEM; 4867 ret = init_srcu_struct(set->srcu); 4868 if (ret) 4869 goto out_free_srcu; 4870 } 4871 ret = init_srcu_struct(&set->tags_srcu); 4872 if (ret) 4873 goto out_cleanup_srcu; 4874 4875 init_rwsem(&set->update_nr_hwq_lock); 4876 4877 ret = -ENOMEM; 4878 set->tags = kcalloc_node(set->nr_hw_queues, 4879 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4880 set->numa_node); 4881 if (!set->tags) 4882 goto out_cleanup_tags_srcu; 4883 4884 for (i = 0; i < set->nr_maps; i++) { 4885 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4886 sizeof(set->map[i].mq_map[0]), 4887 GFP_KERNEL, set->numa_node); 4888 if (!set->map[i].mq_map) 4889 goto out_free_mq_map; 4890 set->map[i].nr_queues = set->nr_hw_queues; 4891 } 4892 4893 blk_mq_update_queue_map(set); 4894 4895 ret = blk_mq_alloc_set_map_and_rqs(set); 4896 if (ret) 4897 goto out_free_mq_map; 4898 4899 mutex_init(&set->tag_list_lock); 4900 INIT_LIST_HEAD(&set->tag_list); 4901 4902 return 0; 4903 4904 out_free_mq_map: 4905 for (i = 0; i < set->nr_maps; i++) { 4906 kfree(set->map[i].mq_map); 4907 set->map[i].mq_map = NULL; 4908 } 4909 kfree(set->tags); 4910 set->tags = NULL; 4911 out_cleanup_tags_srcu: 4912 cleanup_srcu_struct(&set->tags_srcu); 4913 out_cleanup_srcu: 4914 if (set->flags & BLK_MQ_F_BLOCKING) 4915 cleanup_srcu_struct(set->srcu); 4916 out_free_srcu: 4917 if (set->flags & BLK_MQ_F_BLOCKING) 4918 kfree(set->srcu); 4919 return ret; 4920 } 4921 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4922 4923 /* allocate and initialize a tagset for a simple single-queue device */ 4924 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4925 const struct blk_mq_ops *ops, unsigned int queue_depth, 4926 unsigned int set_flags) 4927 { 4928 memset(set, 0, sizeof(*set)); 4929 set->ops = ops; 4930 set->nr_hw_queues = 1; 4931 set->nr_maps = 1; 4932 set->queue_depth = queue_depth; 4933 set->numa_node = NUMA_NO_NODE; 4934 set->flags = set_flags; 4935 return blk_mq_alloc_tag_set(set); 4936 } 4937 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4938 4939 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4940 { 4941 int i, j; 4942 4943 for (i = 0; i < set->nr_hw_queues; i++) 4944 __blk_mq_free_map_and_rqs(set, i); 4945 4946 if (blk_mq_is_shared_tags(set->flags)) { 4947 blk_mq_free_map_and_rqs(set, set->shared_tags, 4948 BLK_MQ_NO_HCTX_IDX); 4949 } 4950 4951 for (j = 0; j < set->nr_maps; j++) { 4952 kfree(set->map[j].mq_map); 4953 set->map[j].mq_map = NULL; 4954 } 4955 4956 kfree(set->tags); 4957 set->tags = NULL; 4958 4959 srcu_barrier(&set->tags_srcu); 4960 cleanup_srcu_struct(&set->tags_srcu); 4961 if (set->flags & BLK_MQ_F_BLOCKING) { 4962 cleanup_srcu_struct(set->srcu); 4963 kfree(set->srcu); 4964 } 4965 } 4966 EXPORT_SYMBOL(blk_mq_free_tag_set); 4967 4968 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q, 4969 struct elevator_tags *et, 4970 unsigned int nr) 4971 { 4972 struct blk_mq_tag_set *set = q->tag_set; 4973 struct elevator_tags *old_et = NULL; 4974 struct blk_mq_hw_ctx *hctx; 4975 unsigned long i; 4976 4977 blk_mq_quiesce_queue(q); 4978 4979 if (blk_mq_is_shared_tags(set->flags)) { 4980 /* 4981 * Shared tags, for sched tags, we allocate max initially hence 4982 * tags can't grow, see blk_mq_alloc_sched_tags(). 4983 */ 4984 if (q->elevator) 4985 blk_mq_tag_update_sched_shared_tags(q, nr); 4986 else 4987 blk_mq_tag_resize_shared_tags(set, nr); 4988 } else if (!q->elevator) { 4989 /* 4990 * Non-shared hardware tags, nr is already checked from 4991 * queue_requests_store() and tags can't grow. 4992 */ 4993 queue_for_each_hw_ctx(q, hctx, i) { 4994 if (!hctx->tags) 4995 continue; 4996 sbitmap_queue_resize(&hctx->tags->bitmap_tags, 4997 nr - hctx->tags->nr_reserved_tags); 4998 } 4999 } else if (nr <= q->elevator->et->nr_requests) { 5000 /* Non-shared sched tags, and tags don't grow. */ 5001 queue_for_each_hw_ctx(q, hctx, i) { 5002 if (!hctx->sched_tags) 5003 continue; 5004 sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags, 5005 nr - hctx->sched_tags->nr_reserved_tags); 5006 } 5007 } else { 5008 /* Non-shared sched tags, and tags grow */ 5009 queue_for_each_hw_ctx(q, hctx, i) 5010 hctx->sched_tags = et->tags[i]; 5011 old_et = q->elevator->et; 5012 q->elevator->et = et; 5013 } 5014 5015 q->nr_requests = nr; 5016 if (q->elevator && q->elevator->type->ops.depth_updated) 5017 q->elevator->type->ops.depth_updated(q); 5018 5019 blk_mq_unquiesce_queue(q); 5020 return old_et; 5021 } 5022 5023 /* 5024 * Switch back to the elevator type stored in the xarray. 5025 */ 5026 static void blk_mq_elv_switch_back(struct request_queue *q, 5027 struct xarray *elv_tbl) 5028 { 5029 struct elv_change_ctx *ctx = xa_load(elv_tbl, q->id); 5030 5031 if (WARN_ON_ONCE(!ctx)) 5032 return; 5033 5034 /* The elv_update_nr_hw_queues unfreezes the queue. */ 5035 elv_update_nr_hw_queues(q, ctx); 5036 5037 /* Drop the reference acquired in blk_mq_elv_switch_none. */ 5038 if (ctx->type) 5039 elevator_put(ctx->type); 5040 } 5041 5042 /* 5043 * Stores elevator name and type in ctx and set current elevator to none. 5044 */ 5045 static int blk_mq_elv_switch_none(struct request_queue *q, 5046 struct xarray *elv_tbl) 5047 { 5048 struct elv_change_ctx *ctx; 5049 5050 lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock); 5051 5052 /* 5053 * Accessing q->elevator without holding q->elevator_lock is safe here 5054 * because we're called from nr_hw_queue update which is protected by 5055 * set->update_nr_hwq_lock in the writer context. So, scheduler update/ 5056 * switch code (which acquires the same lock in the reader context) 5057 * can't run concurrently. 5058 */ 5059 if (q->elevator) { 5060 ctx = xa_load(elv_tbl, q->id); 5061 if (WARN_ON_ONCE(!ctx)) 5062 return -ENOENT; 5063 5064 ctx->name = q->elevator->type->elevator_name; 5065 5066 /* 5067 * Before we switch elevator to 'none', take a reference to 5068 * the elevator module so that while nr_hw_queue update is 5069 * running, no one can remove elevator module. We'd put the 5070 * reference to elevator module later when we switch back 5071 * elevator. 5072 */ 5073 __elevator_get(q->elevator->type); 5074 5075 /* 5076 * Store elevator type so that we can release the reference 5077 * taken above later. 5078 */ 5079 ctx->type = q->elevator->type; 5080 elevator_set_none(q); 5081 } 5082 return 0; 5083 } 5084 5085 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 5086 int nr_hw_queues) 5087 { 5088 struct request_queue *q; 5089 int prev_nr_hw_queues = set->nr_hw_queues; 5090 unsigned int memflags; 5091 int i; 5092 struct xarray elv_tbl; 5093 bool queues_frozen = false; 5094 5095 lockdep_assert_held(&set->tag_list_lock); 5096 5097 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 5098 nr_hw_queues = nr_cpu_ids; 5099 if (nr_hw_queues < 1) 5100 return; 5101 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 5102 return; 5103 5104 memflags = memalloc_noio_save(); 5105 5106 xa_init(&elv_tbl); 5107 if (blk_mq_alloc_sched_ctx_batch(&elv_tbl, set) < 0) 5108 goto out_free_ctx; 5109 5110 if (blk_mq_alloc_sched_res_batch(&elv_tbl, set, nr_hw_queues) < 0) 5111 goto out_free_ctx; 5112 5113 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5114 blk_mq_debugfs_unregister_hctxs(q); 5115 blk_mq_sysfs_unregister_hctxs(q); 5116 } 5117 5118 /* 5119 * Switch IO scheduler to 'none', cleaning up the data associated 5120 * with the previous scheduler. We will switch back once we are done 5121 * updating the new sw to hw queue mappings. 5122 */ 5123 list_for_each_entry(q, &set->tag_list, tag_set_list) 5124 if (blk_mq_elv_switch_none(q, &elv_tbl)) 5125 goto switch_back; 5126 5127 list_for_each_entry(q, &set->tag_list, tag_set_list) 5128 blk_mq_freeze_queue_nomemsave(q); 5129 queues_frozen = true; 5130 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 5131 goto switch_back; 5132 5133 fallback: 5134 blk_mq_update_queue_map(set); 5135 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5136 __blk_mq_realloc_hw_ctxs(set, q); 5137 5138 if (q->nr_hw_queues != set->nr_hw_queues) { 5139 int i = prev_nr_hw_queues; 5140 5141 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 5142 nr_hw_queues, prev_nr_hw_queues); 5143 for (; i < set->nr_hw_queues; i++) 5144 __blk_mq_free_map_and_rqs(set, i); 5145 5146 set->nr_hw_queues = prev_nr_hw_queues; 5147 goto fallback; 5148 } 5149 blk_mq_map_swqueue(q); 5150 } 5151 switch_back: 5152 /* The blk_mq_elv_switch_back unfreezes queue for us. */ 5153 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5154 /* switch_back expects queue to be frozen */ 5155 if (!queues_frozen) 5156 blk_mq_freeze_queue_nomemsave(q); 5157 blk_mq_elv_switch_back(q, &elv_tbl); 5158 } 5159 5160 list_for_each_entry(q, &set->tag_list, tag_set_list) { 5161 blk_mq_sysfs_register_hctxs(q); 5162 blk_mq_debugfs_register_hctxs(q); 5163 5164 blk_mq_remove_hw_queues_cpuhp(q); 5165 blk_mq_add_hw_queues_cpuhp(q); 5166 } 5167 5168 out_free_ctx: 5169 blk_mq_free_sched_ctx_batch(&elv_tbl); 5170 xa_destroy(&elv_tbl); 5171 memalloc_noio_restore(memflags); 5172 5173 /* Free the excess tags when nr_hw_queues shrink. */ 5174 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 5175 __blk_mq_free_map_and_rqs(set, i); 5176 } 5177 5178 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 5179 { 5180 down_write(&set->update_nr_hwq_lock); 5181 mutex_lock(&set->tag_list_lock); 5182 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 5183 mutex_unlock(&set->tag_list_lock); 5184 up_write(&set->update_nr_hwq_lock); 5185 } 5186 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 5187 5188 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 5189 struct io_comp_batch *iob, unsigned int flags) 5190 { 5191 int ret; 5192 5193 do { 5194 ret = q->mq_ops->poll(hctx, iob); 5195 if (ret > 0) 5196 return ret; 5197 if (task_sigpending(current)) 5198 return 1; 5199 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5200 break; 5201 cpu_relax(); 5202 } while (!need_resched()); 5203 5204 return 0; 5205 } 5206 5207 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5208 struct io_comp_batch *iob, unsigned int flags) 5209 { 5210 if (!blk_mq_can_poll(q)) 5211 return 0; 5212 return blk_hctx_poll(q, q->queue_hw_ctx[cookie], iob, flags); 5213 } 5214 5215 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5216 unsigned int poll_flags) 5217 { 5218 struct request_queue *q = rq->q; 5219 int ret; 5220 5221 if (!blk_rq_is_poll(rq)) 5222 return 0; 5223 if (!percpu_ref_tryget(&q->q_usage_counter)) 5224 return 0; 5225 5226 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5227 blk_queue_exit(q); 5228 5229 return ret; 5230 } 5231 EXPORT_SYMBOL_GPL(blk_rq_poll); 5232 5233 unsigned int blk_mq_rq_cpu(struct request *rq) 5234 { 5235 return rq->mq_ctx->cpu; 5236 } 5237 EXPORT_SYMBOL(blk_mq_rq_cpu); 5238 5239 void blk_mq_cancel_work_sync(struct request_queue *q) 5240 { 5241 struct blk_mq_hw_ctx *hctx; 5242 unsigned long i; 5243 5244 cancel_delayed_work_sync(&q->requeue_work); 5245 5246 queue_for_each_hw_ctx(q, hctx, i) 5247 cancel_delayed_work_sync(&hctx->run_work); 5248 } 5249 5250 static int __init blk_mq_init(void) 5251 { 5252 int i; 5253 5254 for_each_possible_cpu(i) 5255 init_llist_head(&per_cpu(blk_cpu_done, i)); 5256 for_each_possible_cpu(i) 5257 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5258 __blk_mq_complete_request_remote, NULL); 5259 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5260 5261 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5262 "block/softirq:dead", NULL, 5263 blk_softirq_cpu_dead); 5264 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5265 blk_mq_hctx_notify_dead); 5266 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5267 blk_mq_hctx_notify_online, 5268 blk_mq_hctx_notify_offline); 5269 return 0; 5270 } 5271 subsys_initcall(blk_mq_init); 5272