xref: /linux/block/blk-mq.c (revision 680e6ffa15103ab610c0fc1241d2f98c801b13e2)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	const int bit = ctx->index_hw[hctx->type];
78 
79 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 		sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82 
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 				      struct blk_mq_ctx *ctx)
85 {
86 	const int bit = ctx->index_hw[hctx->type];
87 
88 	sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90 
91 struct mq_inflight {
92 	struct hd_struct *part;
93 	unsigned int *inflight;
94 };
95 
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 				  struct request *rq, void *priv,
98 				  bool reserved)
99 {
100 	struct mq_inflight *mi = priv;
101 
102 	/*
103 	 * index[0] counts the specific partition that was asked for.
104 	 */
105 	if (rq->part == mi->part)
106 		mi->inflight[0]++;
107 
108 	return true;
109 }
110 
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 	unsigned inflight[2];
114 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
115 
116 	inflight[0] = inflight[1] = 0;
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 
119 	return inflight[0];
120 }
121 
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 				     struct request *rq, void *priv,
124 				     bool reserved)
125 {
126 	struct mq_inflight *mi = priv;
127 
128 	if (rq->part == mi->part)
129 		mi->inflight[rq_data_dir(rq)]++;
130 
131 	return true;
132 }
133 
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 			 unsigned int inflight[2])
136 {
137 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
138 
139 	inflight[0] = inflight[1] = 0;
140 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142 
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 	int freeze_depth;
146 
147 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 	if (freeze_depth == 1) {
149 		percpu_ref_kill(&q->q_usage_counter);
150 		if (queue_is_mq(q))
151 			blk_mq_run_hw_queues(q, false);
152 	}
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155 
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161 
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 				     unsigned long timeout)
164 {
165 	return wait_event_timeout(q->mq_freeze_wq,
166 					percpu_ref_is_zero(&q->q_usage_counter),
167 					timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170 
171 /*
172  * Guarantee no request is in use, so we can change any data structure of
173  * the queue afterward.
174  */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 	/*
178 	 * In the !blk_mq case we are only calling this to kill the
179 	 * q_usage_counter, otherwise this increases the freeze depth
180 	 * and waits for it to return to zero.  For this reason there is
181 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 	 * exported to drivers as the only user for unfreeze is blk_mq.
183 	 */
184 	blk_freeze_queue_start(q);
185 	blk_mq_freeze_queue_wait(q);
186 }
187 
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 	/*
191 	 * ...just an alias to keep freeze and unfreeze actions balanced
192 	 * in the blk_mq_* namespace
193 	 */
194 	blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197 
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 	int freeze_depth;
201 
202 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 	WARN_ON_ONCE(freeze_depth < 0);
204 	if (!freeze_depth) {
205 		percpu_ref_resurrect(&q->q_usage_counter);
206 		wake_up_all(&q->mq_freeze_wq);
207 	}
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 	return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280 
281 /*
282  * Only need start/end time stamping if we have stats enabled, or using
283  * an IO scheduler.
284  */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289 
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 		unsigned int tag, unsigned int op)
292 {
293 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 	struct request *rq = tags->static_rqs[tag];
295 	req_flags_t rq_flags = 0;
296 
297 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 		rq->tag = -1;
299 		rq->internal_tag = tag;
300 	} else {
301 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 			rq_flags = RQF_MQ_INFLIGHT;
303 			atomic_inc(&data->hctx->nr_active);
304 		}
305 		rq->tag = tag;
306 		rq->internal_tag = -1;
307 		data->hctx->tags->rqs[rq->tag] = rq;
308 	}
309 
310 	/* csd/requeue_work/fifo_time is initialized before use */
311 	rq->q = data->q;
312 	rq->mq_ctx = data->ctx;
313 	rq->mq_hctx = data->hctx;
314 	rq->rq_flags = rq_flags;
315 	rq->cmd_flags = op;
316 	if (data->flags & BLK_MQ_REQ_PREEMPT)
317 		rq->rq_flags |= RQF_PREEMPT;
318 	if (blk_queue_io_stat(data->q))
319 		rq->rq_flags |= RQF_IO_STAT;
320 	INIT_LIST_HEAD(&rq->queuelist);
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->rq_disk = NULL;
324 	rq->part = NULL;
325 	if (blk_mq_need_time_stamp(rq))
326 		rq->start_time_ns = ktime_get_ns();
327 	else
328 		rq->start_time_ns = 0;
329 	rq->io_start_time_ns = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	/* tag was already set */
335 	rq->extra_len = 0;
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(op)]++;
344 	refcount_set(&rq->ref, 1);
345 	return rq;
346 }
347 
348 static struct request *blk_mq_get_request(struct request_queue *q,
349 					  struct bio *bio,
350 					  struct blk_mq_alloc_data *data)
351 {
352 	struct elevator_queue *e = q->elevator;
353 	struct request *rq;
354 	unsigned int tag;
355 	bool put_ctx_on_error = false;
356 
357 	blk_queue_enter_live(q);
358 	data->q = q;
359 	if (likely(!data->ctx)) {
360 		data->ctx = blk_mq_get_ctx(q);
361 		put_ctx_on_error = true;
362 	}
363 	if (likely(!data->hctx))
364 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
365 						data->ctx);
366 	if (data->cmd_flags & REQ_NOWAIT)
367 		data->flags |= BLK_MQ_REQ_NOWAIT;
368 
369 	if (e) {
370 		data->flags |= BLK_MQ_REQ_INTERNAL;
371 
372 		/*
373 		 * Flush requests are special and go directly to the
374 		 * dispatch list. Don't include reserved tags in the
375 		 * limiting, as it isn't useful.
376 		 */
377 		if (!op_is_flush(data->cmd_flags) &&
378 		    e->type->ops.limit_depth &&
379 		    !(data->flags & BLK_MQ_REQ_RESERVED))
380 			e->type->ops.limit_depth(data->cmd_flags, data);
381 	} else {
382 		blk_mq_tag_busy(data->hctx);
383 	}
384 
385 	tag = blk_mq_get_tag(data);
386 	if (tag == BLK_MQ_TAG_FAIL) {
387 		if (put_ctx_on_error) {
388 			blk_mq_put_ctx(data->ctx);
389 			data->ctx = NULL;
390 		}
391 		blk_queue_exit(q);
392 		return NULL;
393 	}
394 
395 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
396 	if (!op_is_flush(data->cmd_flags)) {
397 		rq->elv.icq = NULL;
398 		if (e && e->type->ops.prepare_request) {
399 			if (e->type->icq_cache)
400 				blk_mq_sched_assign_ioc(rq);
401 
402 			e->type->ops.prepare_request(rq, bio);
403 			rq->rq_flags |= RQF_ELVPRIV;
404 		}
405 	}
406 	data->hctx->queued++;
407 	return rq;
408 }
409 
410 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
411 		blk_mq_req_flags_t flags)
412 {
413 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
414 	struct request *rq;
415 	int ret;
416 
417 	ret = blk_queue_enter(q, flags);
418 	if (ret)
419 		return ERR_PTR(ret);
420 
421 	rq = blk_mq_get_request(q, NULL, &alloc_data);
422 	blk_queue_exit(q);
423 
424 	if (!rq)
425 		return ERR_PTR(-EWOULDBLOCK);
426 
427 	blk_mq_put_ctx(alloc_data.ctx);
428 
429 	rq->__data_len = 0;
430 	rq->__sector = (sector_t) -1;
431 	rq->bio = rq->biotail = NULL;
432 	return rq;
433 }
434 EXPORT_SYMBOL(blk_mq_alloc_request);
435 
436 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
437 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
438 {
439 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
440 	struct request *rq;
441 	unsigned int cpu;
442 	int ret;
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
465 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
466 		blk_queue_exit(q);
467 		return ERR_PTR(-EXDEV);
468 	}
469 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
470 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
471 
472 	rq = blk_mq_get_request(q, NULL, &alloc_data);
473 	blk_queue_exit(q);
474 
475 	if (!rq)
476 		return ERR_PTR(-EWOULDBLOCK);
477 
478 	return rq;
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
481 
482 static void __blk_mq_free_request(struct request *rq)
483 {
484 	struct request_queue *q = rq->q;
485 	struct blk_mq_ctx *ctx = rq->mq_ctx;
486 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
487 	const int sched_tag = rq->internal_tag;
488 
489 	blk_pm_mark_last_busy(rq);
490 	rq->mq_hctx = NULL;
491 	if (rq->tag != -1)
492 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
493 	if (sched_tag != -1)
494 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
495 	blk_mq_sched_restart(hctx);
496 	blk_queue_exit(q);
497 }
498 
499 void blk_mq_free_request(struct request *rq)
500 {
501 	struct request_queue *q = rq->q;
502 	struct elevator_queue *e = q->elevator;
503 	struct blk_mq_ctx *ctx = rq->mq_ctx;
504 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
505 
506 	if (rq->rq_flags & RQF_ELVPRIV) {
507 		if (e && e->type->ops.finish_request)
508 			e->type->ops.finish_request(rq);
509 		if (rq->elv.icq) {
510 			put_io_context(rq->elv.icq->ioc);
511 			rq->elv.icq = NULL;
512 		}
513 	}
514 
515 	ctx->rq_completed[rq_is_sync(rq)]++;
516 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
517 		atomic_dec(&hctx->nr_active);
518 
519 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
520 		laptop_io_completion(q->backing_dev_info);
521 
522 	rq_qos_done(q, rq);
523 
524 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
525 	if (refcount_dec_and_test(&rq->ref))
526 		__blk_mq_free_request(rq);
527 }
528 EXPORT_SYMBOL_GPL(blk_mq_free_request);
529 
530 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
531 {
532 	u64 now = 0;
533 
534 	if (blk_mq_need_time_stamp(rq))
535 		now = ktime_get_ns();
536 
537 	if (rq->rq_flags & RQF_STATS) {
538 		blk_mq_poll_stats_start(rq->q);
539 		blk_stat_add(rq, now);
540 	}
541 
542 	if (rq->internal_tag != -1)
543 		blk_mq_sched_completed_request(rq, now);
544 
545 	blk_account_io_done(rq, now);
546 
547 	if (rq->end_io) {
548 		rq_qos_done(rq->q, rq);
549 		rq->end_io(rq, error);
550 	} else {
551 		blk_mq_free_request(rq);
552 	}
553 }
554 EXPORT_SYMBOL(__blk_mq_end_request);
555 
556 void blk_mq_end_request(struct request *rq, blk_status_t error)
557 {
558 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
559 		BUG();
560 	__blk_mq_end_request(rq, error);
561 }
562 EXPORT_SYMBOL(blk_mq_end_request);
563 
564 static void __blk_mq_complete_request_remote(void *data)
565 {
566 	struct request *rq = data;
567 	struct request_queue *q = rq->q;
568 
569 	q->mq_ops->complete(rq);
570 }
571 
572 static void __blk_mq_complete_request(struct request *rq)
573 {
574 	struct blk_mq_ctx *ctx = rq->mq_ctx;
575 	struct request_queue *q = rq->q;
576 	bool shared = false;
577 	int cpu;
578 
579 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
580 	/*
581 	 * Most of single queue controllers, there is only one irq vector
582 	 * for handling IO completion, and the only irq's affinity is set
583 	 * as all possible CPUs. On most of ARCHs, this affinity means the
584 	 * irq is handled on one specific CPU.
585 	 *
586 	 * So complete IO reqeust in softirq context in case of single queue
587 	 * for not degrading IO performance by irqsoff latency.
588 	 */
589 	if (q->nr_hw_queues == 1) {
590 		__blk_complete_request(rq);
591 		return;
592 	}
593 
594 	/*
595 	 * For a polled request, always complete locallly, it's pointless
596 	 * to redirect the completion.
597 	 */
598 	if ((rq->cmd_flags & REQ_HIPRI) ||
599 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
600 		q->mq_ops->complete(rq);
601 		return;
602 	}
603 
604 	cpu = get_cpu();
605 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
606 		shared = cpus_share_cache(cpu, ctx->cpu);
607 
608 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
609 		rq->csd.func = __blk_mq_complete_request_remote;
610 		rq->csd.info = rq;
611 		rq->csd.flags = 0;
612 		smp_call_function_single_async(ctx->cpu, &rq->csd);
613 	} else {
614 		q->mq_ops->complete(rq);
615 	}
616 	put_cpu();
617 }
618 
619 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
620 	__releases(hctx->srcu)
621 {
622 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
623 		rcu_read_unlock();
624 	else
625 		srcu_read_unlock(hctx->srcu, srcu_idx);
626 }
627 
628 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
629 	__acquires(hctx->srcu)
630 {
631 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
632 		/* shut up gcc false positive */
633 		*srcu_idx = 0;
634 		rcu_read_lock();
635 	} else
636 		*srcu_idx = srcu_read_lock(hctx->srcu);
637 }
638 
639 /**
640  * blk_mq_complete_request - end I/O on a request
641  * @rq:		the request being processed
642  *
643  * Description:
644  *	Ends all I/O on a request. It does not handle partial completions.
645  *	The actual completion happens out-of-order, through a IPI handler.
646  **/
647 bool blk_mq_complete_request(struct request *rq)
648 {
649 	if (unlikely(blk_should_fake_timeout(rq->q)))
650 		return false;
651 	__blk_mq_complete_request(rq);
652 	return true;
653 }
654 EXPORT_SYMBOL(blk_mq_complete_request);
655 
656 int blk_mq_request_started(struct request *rq)
657 {
658 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_request_started);
661 
662 void blk_mq_start_request(struct request *rq)
663 {
664 	struct request_queue *q = rq->q;
665 
666 	blk_mq_sched_started_request(rq);
667 
668 	trace_block_rq_issue(q, rq);
669 
670 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
671 		rq->io_start_time_ns = ktime_get_ns();
672 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
673 		rq->throtl_size = blk_rq_sectors(rq);
674 #endif
675 		rq->rq_flags |= RQF_STATS;
676 		rq_qos_issue(q, rq);
677 	}
678 
679 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
680 
681 	blk_add_timer(rq);
682 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
683 
684 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
685 		/*
686 		 * Make sure space for the drain appears.  We know we can do
687 		 * this because max_hw_segments has been adjusted to be one
688 		 * fewer than the device can handle.
689 		 */
690 		rq->nr_phys_segments++;
691 	}
692 }
693 EXPORT_SYMBOL(blk_mq_start_request);
694 
695 static void __blk_mq_requeue_request(struct request *rq)
696 {
697 	struct request_queue *q = rq->q;
698 
699 	blk_mq_put_driver_tag(rq);
700 
701 	trace_block_rq_requeue(q, rq);
702 	rq_qos_requeue(q, rq);
703 
704 	if (blk_mq_request_started(rq)) {
705 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
706 		rq->rq_flags &= ~RQF_TIMED_OUT;
707 		if (q->dma_drain_size && blk_rq_bytes(rq))
708 			rq->nr_phys_segments--;
709 	}
710 }
711 
712 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
713 {
714 	__blk_mq_requeue_request(rq);
715 
716 	/* this request will be re-inserted to io scheduler queue */
717 	blk_mq_sched_requeue_request(rq);
718 
719 	BUG_ON(!list_empty(&rq->queuelist));
720 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
721 }
722 EXPORT_SYMBOL(blk_mq_requeue_request);
723 
724 static void blk_mq_requeue_work(struct work_struct *work)
725 {
726 	struct request_queue *q =
727 		container_of(work, struct request_queue, requeue_work.work);
728 	LIST_HEAD(rq_list);
729 	struct request *rq, *next;
730 
731 	spin_lock_irq(&q->requeue_lock);
732 	list_splice_init(&q->requeue_list, &rq_list);
733 	spin_unlock_irq(&q->requeue_lock);
734 
735 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
736 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
737 			continue;
738 
739 		rq->rq_flags &= ~RQF_SOFTBARRIER;
740 		list_del_init(&rq->queuelist);
741 		/*
742 		 * If RQF_DONTPREP, rq has contained some driver specific
743 		 * data, so insert it to hctx dispatch list to avoid any
744 		 * merge.
745 		 */
746 		if (rq->rq_flags & RQF_DONTPREP)
747 			blk_mq_request_bypass_insert(rq, false);
748 		else
749 			blk_mq_sched_insert_request(rq, true, false, false);
750 	}
751 
752 	while (!list_empty(&rq_list)) {
753 		rq = list_entry(rq_list.next, struct request, queuelist);
754 		list_del_init(&rq->queuelist);
755 		blk_mq_sched_insert_request(rq, false, false, false);
756 	}
757 
758 	blk_mq_run_hw_queues(q, false);
759 }
760 
761 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
762 				bool kick_requeue_list)
763 {
764 	struct request_queue *q = rq->q;
765 	unsigned long flags;
766 
767 	/*
768 	 * We abuse this flag that is otherwise used by the I/O scheduler to
769 	 * request head insertion from the workqueue.
770 	 */
771 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
772 
773 	spin_lock_irqsave(&q->requeue_lock, flags);
774 	if (at_head) {
775 		rq->rq_flags |= RQF_SOFTBARRIER;
776 		list_add(&rq->queuelist, &q->requeue_list);
777 	} else {
778 		list_add_tail(&rq->queuelist, &q->requeue_list);
779 	}
780 	spin_unlock_irqrestore(&q->requeue_lock, flags);
781 
782 	if (kick_requeue_list)
783 		blk_mq_kick_requeue_list(q);
784 }
785 
786 void blk_mq_kick_requeue_list(struct request_queue *q)
787 {
788 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
789 }
790 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
791 
792 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
793 				    unsigned long msecs)
794 {
795 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
796 				    msecs_to_jiffies(msecs));
797 }
798 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
799 
800 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
801 {
802 	if (tag < tags->nr_tags) {
803 		prefetch(tags->rqs[tag]);
804 		return tags->rqs[tag];
805 	}
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(blk_mq_tag_to_rq);
810 
811 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
812 			       void *priv, bool reserved)
813 {
814 	/*
815 	 * If we find a request that is inflight and the queue matches,
816 	 * we know the queue is busy. Return false to stop the iteration.
817 	 */
818 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
819 		bool *busy = priv;
820 
821 		*busy = true;
822 		return false;
823 	}
824 
825 	return true;
826 }
827 
828 bool blk_mq_queue_inflight(struct request_queue *q)
829 {
830 	bool busy = false;
831 
832 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
833 	return busy;
834 }
835 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
836 
837 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
838 {
839 	req->rq_flags |= RQF_TIMED_OUT;
840 	if (req->q->mq_ops->timeout) {
841 		enum blk_eh_timer_return ret;
842 
843 		ret = req->q->mq_ops->timeout(req, reserved);
844 		if (ret == BLK_EH_DONE)
845 			return;
846 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
847 	}
848 
849 	blk_add_timer(req);
850 }
851 
852 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
853 {
854 	unsigned long deadline;
855 
856 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
857 		return false;
858 	if (rq->rq_flags & RQF_TIMED_OUT)
859 		return false;
860 
861 	deadline = READ_ONCE(rq->deadline);
862 	if (time_after_eq(jiffies, deadline))
863 		return true;
864 
865 	if (*next == 0)
866 		*next = deadline;
867 	else if (time_after(*next, deadline))
868 		*next = deadline;
869 	return false;
870 }
871 
872 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
873 		struct request *rq, void *priv, bool reserved)
874 {
875 	unsigned long *next = priv;
876 
877 	/*
878 	 * Just do a quick check if it is expired before locking the request in
879 	 * so we're not unnecessarilly synchronizing across CPUs.
880 	 */
881 	if (!blk_mq_req_expired(rq, next))
882 		return true;
883 
884 	/*
885 	 * We have reason to believe the request may be expired. Take a
886 	 * reference on the request to lock this request lifetime into its
887 	 * currently allocated context to prevent it from being reallocated in
888 	 * the event the completion by-passes this timeout handler.
889 	 *
890 	 * If the reference was already released, then the driver beat the
891 	 * timeout handler to posting a natural completion.
892 	 */
893 	if (!refcount_inc_not_zero(&rq->ref))
894 		return true;
895 
896 	/*
897 	 * The request is now locked and cannot be reallocated underneath the
898 	 * timeout handler's processing. Re-verify this exact request is truly
899 	 * expired; if it is not expired, then the request was completed and
900 	 * reallocated as a new request.
901 	 */
902 	if (blk_mq_req_expired(rq, next))
903 		blk_mq_rq_timed_out(rq, reserved);
904 	if (refcount_dec_and_test(&rq->ref))
905 		__blk_mq_free_request(rq);
906 
907 	return true;
908 }
909 
910 static void blk_mq_timeout_work(struct work_struct *work)
911 {
912 	struct request_queue *q =
913 		container_of(work, struct request_queue, timeout_work);
914 	unsigned long next = 0;
915 	struct blk_mq_hw_ctx *hctx;
916 	int i;
917 
918 	/* A deadlock might occur if a request is stuck requiring a
919 	 * timeout at the same time a queue freeze is waiting
920 	 * completion, since the timeout code would not be able to
921 	 * acquire the queue reference here.
922 	 *
923 	 * That's why we don't use blk_queue_enter here; instead, we use
924 	 * percpu_ref_tryget directly, because we need to be able to
925 	 * obtain a reference even in the short window between the queue
926 	 * starting to freeze, by dropping the first reference in
927 	 * blk_freeze_queue_start, and the moment the last request is
928 	 * consumed, marked by the instant q_usage_counter reaches
929 	 * zero.
930 	 */
931 	if (!percpu_ref_tryget(&q->q_usage_counter))
932 		return;
933 
934 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
935 
936 	if (next != 0) {
937 		mod_timer(&q->timeout, next);
938 	} else {
939 		/*
940 		 * Request timeouts are handled as a forward rolling timer. If
941 		 * we end up here it means that no requests are pending and
942 		 * also that no request has been pending for a while. Mark
943 		 * each hctx as idle.
944 		 */
945 		queue_for_each_hw_ctx(q, hctx, i) {
946 			/* the hctx may be unmapped, so check it here */
947 			if (blk_mq_hw_queue_mapped(hctx))
948 				blk_mq_tag_idle(hctx);
949 		}
950 	}
951 	blk_queue_exit(q);
952 }
953 
954 struct flush_busy_ctx_data {
955 	struct blk_mq_hw_ctx *hctx;
956 	struct list_head *list;
957 };
958 
959 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
960 {
961 	struct flush_busy_ctx_data *flush_data = data;
962 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
963 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
964 	enum hctx_type type = hctx->type;
965 
966 	spin_lock(&ctx->lock);
967 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
968 	sbitmap_clear_bit(sb, bitnr);
969 	spin_unlock(&ctx->lock);
970 	return true;
971 }
972 
973 /*
974  * Process software queues that have been marked busy, splicing them
975  * to the for-dispatch
976  */
977 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
978 {
979 	struct flush_busy_ctx_data data = {
980 		.hctx = hctx,
981 		.list = list,
982 	};
983 
984 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
985 }
986 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
987 
988 struct dispatch_rq_data {
989 	struct blk_mq_hw_ctx *hctx;
990 	struct request *rq;
991 };
992 
993 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
994 		void *data)
995 {
996 	struct dispatch_rq_data *dispatch_data = data;
997 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
998 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
999 	enum hctx_type type = hctx->type;
1000 
1001 	spin_lock(&ctx->lock);
1002 	if (!list_empty(&ctx->rq_lists[type])) {
1003 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1004 		list_del_init(&dispatch_data->rq->queuelist);
1005 		if (list_empty(&ctx->rq_lists[type]))
1006 			sbitmap_clear_bit(sb, bitnr);
1007 	}
1008 	spin_unlock(&ctx->lock);
1009 
1010 	return !dispatch_data->rq;
1011 }
1012 
1013 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1014 					struct blk_mq_ctx *start)
1015 {
1016 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1017 	struct dispatch_rq_data data = {
1018 		.hctx = hctx,
1019 		.rq   = NULL,
1020 	};
1021 
1022 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1023 			       dispatch_rq_from_ctx, &data);
1024 
1025 	return data.rq;
1026 }
1027 
1028 static inline unsigned int queued_to_index(unsigned int queued)
1029 {
1030 	if (!queued)
1031 		return 0;
1032 
1033 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1034 }
1035 
1036 bool blk_mq_get_driver_tag(struct request *rq)
1037 {
1038 	struct blk_mq_alloc_data data = {
1039 		.q = rq->q,
1040 		.hctx = rq->mq_hctx,
1041 		.flags = BLK_MQ_REQ_NOWAIT,
1042 		.cmd_flags = rq->cmd_flags,
1043 	};
1044 	bool shared;
1045 
1046 	if (rq->tag != -1)
1047 		goto done;
1048 
1049 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1050 		data.flags |= BLK_MQ_REQ_RESERVED;
1051 
1052 	shared = blk_mq_tag_busy(data.hctx);
1053 	rq->tag = blk_mq_get_tag(&data);
1054 	if (rq->tag >= 0) {
1055 		if (shared) {
1056 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1057 			atomic_inc(&data.hctx->nr_active);
1058 		}
1059 		data.hctx->tags->rqs[rq->tag] = rq;
1060 	}
1061 
1062 done:
1063 	return rq->tag != -1;
1064 }
1065 
1066 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1067 				int flags, void *key)
1068 {
1069 	struct blk_mq_hw_ctx *hctx;
1070 
1071 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1072 
1073 	spin_lock(&hctx->dispatch_wait_lock);
1074 	list_del_init(&wait->entry);
1075 	spin_unlock(&hctx->dispatch_wait_lock);
1076 
1077 	blk_mq_run_hw_queue(hctx, true);
1078 	return 1;
1079 }
1080 
1081 /*
1082  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1083  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1084  * restart. For both cases, take care to check the condition again after
1085  * marking us as waiting.
1086  */
1087 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1088 				 struct request *rq)
1089 {
1090 	struct wait_queue_head *wq;
1091 	wait_queue_entry_t *wait;
1092 	bool ret;
1093 
1094 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1095 		blk_mq_sched_mark_restart_hctx(hctx);
1096 
1097 		/*
1098 		 * It's possible that a tag was freed in the window between the
1099 		 * allocation failure and adding the hardware queue to the wait
1100 		 * queue.
1101 		 *
1102 		 * Don't clear RESTART here, someone else could have set it.
1103 		 * At most this will cost an extra queue run.
1104 		 */
1105 		return blk_mq_get_driver_tag(rq);
1106 	}
1107 
1108 	wait = &hctx->dispatch_wait;
1109 	if (!list_empty_careful(&wait->entry))
1110 		return false;
1111 
1112 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1113 
1114 	spin_lock_irq(&wq->lock);
1115 	spin_lock(&hctx->dispatch_wait_lock);
1116 	if (!list_empty(&wait->entry)) {
1117 		spin_unlock(&hctx->dispatch_wait_lock);
1118 		spin_unlock_irq(&wq->lock);
1119 		return false;
1120 	}
1121 
1122 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1123 	__add_wait_queue(wq, wait);
1124 
1125 	/*
1126 	 * It's possible that a tag was freed in the window between the
1127 	 * allocation failure and adding the hardware queue to the wait
1128 	 * queue.
1129 	 */
1130 	ret = blk_mq_get_driver_tag(rq);
1131 	if (!ret) {
1132 		spin_unlock(&hctx->dispatch_wait_lock);
1133 		spin_unlock_irq(&wq->lock);
1134 		return false;
1135 	}
1136 
1137 	/*
1138 	 * We got a tag, remove ourselves from the wait queue to ensure
1139 	 * someone else gets the wakeup.
1140 	 */
1141 	list_del_init(&wait->entry);
1142 	spin_unlock(&hctx->dispatch_wait_lock);
1143 	spin_unlock_irq(&wq->lock);
1144 
1145 	return true;
1146 }
1147 
1148 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1149 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1150 /*
1151  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1152  * - EWMA is one simple way to compute running average value
1153  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1154  * - take 4 as factor for avoiding to get too small(0) result, and this
1155  *   factor doesn't matter because EWMA decreases exponentially
1156  */
1157 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1158 {
1159 	unsigned int ewma;
1160 
1161 	if (hctx->queue->elevator)
1162 		return;
1163 
1164 	ewma = hctx->dispatch_busy;
1165 
1166 	if (!ewma && !busy)
1167 		return;
1168 
1169 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1170 	if (busy)
1171 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1172 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1173 
1174 	hctx->dispatch_busy = ewma;
1175 }
1176 
1177 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1178 
1179 /*
1180  * Returns true if we did some work AND can potentially do more.
1181  */
1182 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1183 			     bool got_budget)
1184 {
1185 	struct blk_mq_hw_ctx *hctx;
1186 	struct request *rq, *nxt;
1187 	bool no_tag = false;
1188 	int errors, queued;
1189 	blk_status_t ret = BLK_STS_OK;
1190 
1191 	if (list_empty(list))
1192 		return false;
1193 
1194 	WARN_ON(!list_is_singular(list) && got_budget);
1195 
1196 	/*
1197 	 * Now process all the entries, sending them to the driver.
1198 	 */
1199 	errors = queued = 0;
1200 	do {
1201 		struct blk_mq_queue_data bd;
1202 
1203 		rq = list_first_entry(list, struct request, queuelist);
1204 
1205 		hctx = rq->mq_hctx;
1206 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1207 			break;
1208 
1209 		if (!blk_mq_get_driver_tag(rq)) {
1210 			/*
1211 			 * The initial allocation attempt failed, so we need to
1212 			 * rerun the hardware queue when a tag is freed. The
1213 			 * waitqueue takes care of that. If the queue is run
1214 			 * before we add this entry back on the dispatch list,
1215 			 * we'll re-run it below.
1216 			 */
1217 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1218 				blk_mq_put_dispatch_budget(hctx);
1219 				/*
1220 				 * For non-shared tags, the RESTART check
1221 				 * will suffice.
1222 				 */
1223 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1224 					no_tag = true;
1225 				break;
1226 			}
1227 		}
1228 
1229 		list_del_init(&rq->queuelist);
1230 
1231 		bd.rq = rq;
1232 
1233 		/*
1234 		 * Flag last if we have no more requests, or if we have more
1235 		 * but can't assign a driver tag to it.
1236 		 */
1237 		if (list_empty(list))
1238 			bd.last = true;
1239 		else {
1240 			nxt = list_first_entry(list, struct request, queuelist);
1241 			bd.last = !blk_mq_get_driver_tag(nxt);
1242 		}
1243 
1244 		ret = q->mq_ops->queue_rq(hctx, &bd);
1245 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1246 			/*
1247 			 * If an I/O scheduler has been configured and we got a
1248 			 * driver tag for the next request already, free it
1249 			 * again.
1250 			 */
1251 			if (!list_empty(list)) {
1252 				nxt = list_first_entry(list, struct request, queuelist);
1253 				blk_mq_put_driver_tag(nxt);
1254 			}
1255 			list_add(&rq->queuelist, list);
1256 			__blk_mq_requeue_request(rq);
1257 			break;
1258 		}
1259 
1260 		if (unlikely(ret != BLK_STS_OK)) {
1261 			errors++;
1262 			blk_mq_end_request(rq, BLK_STS_IOERR);
1263 			continue;
1264 		}
1265 
1266 		queued++;
1267 	} while (!list_empty(list));
1268 
1269 	hctx->dispatched[queued_to_index(queued)]++;
1270 
1271 	/*
1272 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1273 	 * that is where we will continue on next queue run.
1274 	 */
1275 	if (!list_empty(list)) {
1276 		bool needs_restart;
1277 
1278 		/*
1279 		 * If we didn't flush the entire list, we could have told
1280 		 * the driver there was more coming, but that turned out to
1281 		 * be a lie.
1282 		 */
1283 		if (q->mq_ops->commit_rqs)
1284 			q->mq_ops->commit_rqs(hctx);
1285 
1286 		spin_lock(&hctx->lock);
1287 		list_splice_init(list, &hctx->dispatch);
1288 		spin_unlock(&hctx->lock);
1289 
1290 		/*
1291 		 * If SCHED_RESTART was set by the caller of this function and
1292 		 * it is no longer set that means that it was cleared by another
1293 		 * thread and hence that a queue rerun is needed.
1294 		 *
1295 		 * If 'no_tag' is set, that means that we failed getting
1296 		 * a driver tag with an I/O scheduler attached. If our dispatch
1297 		 * waitqueue is no longer active, ensure that we run the queue
1298 		 * AFTER adding our entries back to the list.
1299 		 *
1300 		 * If no I/O scheduler has been configured it is possible that
1301 		 * the hardware queue got stopped and restarted before requests
1302 		 * were pushed back onto the dispatch list. Rerun the queue to
1303 		 * avoid starvation. Notes:
1304 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1305 		 *   been stopped before rerunning a queue.
1306 		 * - Some but not all block drivers stop a queue before
1307 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1308 		 *   and dm-rq.
1309 		 *
1310 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1311 		 * bit is set, run queue after a delay to avoid IO stalls
1312 		 * that could otherwise occur if the queue is idle.
1313 		 */
1314 		needs_restart = blk_mq_sched_needs_restart(hctx);
1315 		if (!needs_restart ||
1316 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1317 			blk_mq_run_hw_queue(hctx, true);
1318 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1319 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1320 
1321 		blk_mq_update_dispatch_busy(hctx, true);
1322 		return false;
1323 	} else
1324 		blk_mq_update_dispatch_busy(hctx, false);
1325 
1326 	/*
1327 	 * If the host/device is unable to accept more work, inform the
1328 	 * caller of that.
1329 	 */
1330 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1331 		return false;
1332 
1333 	return (queued + errors) != 0;
1334 }
1335 
1336 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1337 {
1338 	int srcu_idx;
1339 
1340 	/*
1341 	 * We should be running this queue from one of the CPUs that
1342 	 * are mapped to it.
1343 	 *
1344 	 * There are at least two related races now between setting
1345 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1346 	 * __blk_mq_run_hw_queue():
1347 	 *
1348 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1349 	 *   but later it becomes online, then this warning is harmless
1350 	 *   at all
1351 	 *
1352 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1353 	 *   but later it becomes offline, then the warning can't be
1354 	 *   triggered, and we depend on blk-mq timeout handler to
1355 	 *   handle dispatched requests to this hctx
1356 	 */
1357 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1358 		cpu_online(hctx->next_cpu)) {
1359 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1360 			raw_smp_processor_id(),
1361 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1362 		dump_stack();
1363 	}
1364 
1365 	/*
1366 	 * We can't run the queue inline with ints disabled. Ensure that
1367 	 * we catch bad users of this early.
1368 	 */
1369 	WARN_ON_ONCE(in_interrupt());
1370 
1371 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1372 
1373 	hctx_lock(hctx, &srcu_idx);
1374 	blk_mq_sched_dispatch_requests(hctx);
1375 	hctx_unlock(hctx, srcu_idx);
1376 }
1377 
1378 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1379 {
1380 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1381 
1382 	if (cpu >= nr_cpu_ids)
1383 		cpu = cpumask_first(hctx->cpumask);
1384 	return cpu;
1385 }
1386 
1387 /*
1388  * It'd be great if the workqueue API had a way to pass
1389  * in a mask and had some smarts for more clever placement.
1390  * For now we just round-robin here, switching for every
1391  * BLK_MQ_CPU_WORK_BATCH queued items.
1392  */
1393 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1394 {
1395 	bool tried = false;
1396 	int next_cpu = hctx->next_cpu;
1397 
1398 	if (hctx->queue->nr_hw_queues == 1)
1399 		return WORK_CPU_UNBOUND;
1400 
1401 	if (--hctx->next_cpu_batch <= 0) {
1402 select_cpu:
1403 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1404 				cpu_online_mask);
1405 		if (next_cpu >= nr_cpu_ids)
1406 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1407 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1408 	}
1409 
1410 	/*
1411 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1412 	 * and it should only happen in the path of handling CPU DEAD.
1413 	 */
1414 	if (!cpu_online(next_cpu)) {
1415 		if (!tried) {
1416 			tried = true;
1417 			goto select_cpu;
1418 		}
1419 
1420 		/*
1421 		 * Make sure to re-select CPU next time once after CPUs
1422 		 * in hctx->cpumask become online again.
1423 		 */
1424 		hctx->next_cpu = next_cpu;
1425 		hctx->next_cpu_batch = 1;
1426 		return WORK_CPU_UNBOUND;
1427 	}
1428 
1429 	hctx->next_cpu = next_cpu;
1430 	return next_cpu;
1431 }
1432 
1433 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1434 					unsigned long msecs)
1435 {
1436 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1437 		return;
1438 
1439 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1440 		int cpu = get_cpu();
1441 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1442 			__blk_mq_run_hw_queue(hctx);
1443 			put_cpu();
1444 			return;
1445 		}
1446 
1447 		put_cpu();
1448 	}
1449 
1450 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1451 				    msecs_to_jiffies(msecs));
1452 }
1453 
1454 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1455 {
1456 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1457 }
1458 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1459 
1460 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1461 {
1462 	int srcu_idx;
1463 	bool need_run;
1464 
1465 	/*
1466 	 * When queue is quiesced, we may be switching io scheduler, or
1467 	 * updating nr_hw_queues, or other things, and we can't run queue
1468 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1469 	 *
1470 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1471 	 * quiesced.
1472 	 */
1473 	hctx_lock(hctx, &srcu_idx);
1474 	need_run = !blk_queue_quiesced(hctx->queue) &&
1475 		blk_mq_hctx_has_pending(hctx);
1476 	hctx_unlock(hctx, srcu_idx);
1477 
1478 	if (need_run) {
1479 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1480 		return true;
1481 	}
1482 
1483 	return false;
1484 }
1485 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1486 
1487 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1488 {
1489 	struct blk_mq_hw_ctx *hctx;
1490 	int i;
1491 
1492 	queue_for_each_hw_ctx(q, hctx, i) {
1493 		if (blk_mq_hctx_stopped(hctx))
1494 			continue;
1495 
1496 		blk_mq_run_hw_queue(hctx, async);
1497 	}
1498 }
1499 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1500 
1501 /**
1502  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1503  * @q: request queue.
1504  *
1505  * The caller is responsible for serializing this function against
1506  * blk_mq_{start,stop}_hw_queue().
1507  */
1508 bool blk_mq_queue_stopped(struct request_queue *q)
1509 {
1510 	struct blk_mq_hw_ctx *hctx;
1511 	int i;
1512 
1513 	queue_for_each_hw_ctx(q, hctx, i)
1514 		if (blk_mq_hctx_stopped(hctx))
1515 			return true;
1516 
1517 	return false;
1518 }
1519 EXPORT_SYMBOL(blk_mq_queue_stopped);
1520 
1521 /*
1522  * This function is often used for pausing .queue_rq() by driver when
1523  * there isn't enough resource or some conditions aren't satisfied, and
1524  * BLK_STS_RESOURCE is usually returned.
1525  *
1526  * We do not guarantee that dispatch can be drained or blocked
1527  * after blk_mq_stop_hw_queue() returns. Please use
1528  * blk_mq_quiesce_queue() for that requirement.
1529  */
1530 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1531 {
1532 	cancel_delayed_work(&hctx->run_work);
1533 
1534 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1535 }
1536 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1537 
1538 /*
1539  * This function is often used for pausing .queue_rq() by driver when
1540  * there isn't enough resource or some conditions aren't satisfied, and
1541  * BLK_STS_RESOURCE is usually returned.
1542  *
1543  * We do not guarantee that dispatch can be drained or blocked
1544  * after blk_mq_stop_hw_queues() returns. Please use
1545  * blk_mq_quiesce_queue() for that requirement.
1546  */
1547 void blk_mq_stop_hw_queues(struct request_queue *q)
1548 {
1549 	struct blk_mq_hw_ctx *hctx;
1550 	int i;
1551 
1552 	queue_for_each_hw_ctx(q, hctx, i)
1553 		blk_mq_stop_hw_queue(hctx);
1554 }
1555 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1556 
1557 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1558 {
1559 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1560 
1561 	blk_mq_run_hw_queue(hctx, false);
1562 }
1563 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1564 
1565 void blk_mq_start_hw_queues(struct request_queue *q)
1566 {
1567 	struct blk_mq_hw_ctx *hctx;
1568 	int i;
1569 
1570 	queue_for_each_hw_ctx(q, hctx, i)
1571 		blk_mq_start_hw_queue(hctx);
1572 }
1573 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1574 
1575 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1576 {
1577 	if (!blk_mq_hctx_stopped(hctx))
1578 		return;
1579 
1580 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1581 	blk_mq_run_hw_queue(hctx, async);
1582 }
1583 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1584 
1585 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1586 {
1587 	struct blk_mq_hw_ctx *hctx;
1588 	int i;
1589 
1590 	queue_for_each_hw_ctx(q, hctx, i)
1591 		blk_mq_start_stopped_hw_queue(hctx, async);
1592 }
1593 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1594 
1595 static void blk_mq_run_work_fn(struct work_struct *work)
1596 {
1597 	struct blk_mq_hw_ctx *hctx;
1598 
1599 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1600 
1601 	/*
1602 	 * If we are stopped, don't run the queue.
1603 	 */
1604 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1605 		return;
1606 
1607 	__blk_mq_run_hw_queue(hctx);
1608 }
1609 
1610 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1611 					    struct request *rq,
1612 					    bool at_head)
1613 {
1614 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1615 	enum hctx_type type = hctx->type;
1616 
1617 	lockdep_assert_held(&ctx->lock);
1618 
1619 	trace_block_rq_insert(hctx->queue, rq);
1620 
1621 	if (at_head)
1622 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1623 	else
1624 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1625 }
1626 
1627 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1628 			     bool at_head)
1629 {
1630 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1631 
1632 	lockdep_assert_held(&ctx->lock);
1633 
1634 	__blk_mq_insert_req_list(hctx, rq, at_head);
1635 	blk_mq_hctx_mark_pending(hctx, ctx);
1636 }
1637 
1638 /*
1639  * Should only be used carefully, when the caller knows we want to
1640  * bypass a potential IO scheduler on the target device.
1641  */
1642 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1643 {
1644 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1645 
1646 	spin_lock(&hctx->lock);
1647 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1648 	spin_unlock(&hctx->lock);
1649 
1650 	if (run_queue)
1651 		blk_mq_run_hw_queue(hctx, false);
1652 }
1653 
1654 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1655 			    struct list_head *list)
1656 
1657 {
1658 	struct request *rq;
1659 	enum hctx_type type = hctx->type;
1660 
1661 	/*
1662 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1663 	 * offline now
1664 	 */
1665 	list_for_each_entry(rq, list, queuelist) {
1666 		BUG_ON(rq->mq_ctx != ctx);
1667 		trace_block_rq_insert(hctx->queue, rq);
1668 	}
1669 
1670 	spin_lock(&ctx->lock);
1671 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1672 	blk_mq_hctx_mark_pending(hctx, ctx);
1673 	spin_unlock(&ctx->lock);
1674 }
1675 
1676 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1677 {
1678 	struct request *rqa = container_of(a, struct request, queuelist);
1679 	struct request *rqb = container_of(b, struct request, queuelist);
1680 
1681 	if (rqa->mq_ctx < rqb->mq_ctx)
1682 		return -1;
1683 	else if (rqa->mq_ctx > rqb->mq_ctx)
1684 		return 1;
1685 	else if (rqa->mq_hctx < rqb->mq_hctx)
1686 		return -1;
1687 	else if (rqa->mq_hctx > rqb->mq_hctx)
1688 		return 1;
1689 
1690 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1691 }
1692 
1693 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1694 {
1695 	struct blk_mq_hw_ctx *this_hctx;
1696 	struct blk_mq_ctx *this_ctx;
1697 	struct request_queue *this_q;
1698 	struct request *rq;
1699 	LIST_HEAD(list);
1700 	LIST_HEAD(rq_list);
1701 	unsigned int depth;
1702 
1703 	list_splice_init(&plug->mq_list, &list);
1704 	plug->rq_count = 0;
1705 
1706 	if (plug->rq_count > 2 && plug->multiple_queues)
1707 		list_sort(NULL, &list, plug_rq_cmp);
1708 
1709 	this_q = NULL;
1710 	this_hctx = NULL;
1711 	this_ctx = NULL;
1712 	depth = 0;
1713 
1714 	while (!list_empty(&list)) {
1715 		rq = list_entry_rq(list.next);
1716 		list_del_init(&rq->queuelist);
1717 		BUG_ON(!rq->q);
1718 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1719 			if (this_hctx) {
1720 				trace_block_unplug(this_q, depth, !from_schedule);
1721 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1722 								&rq_list,
1723 								from_schedule);
1724 			}
1725 
1726 			this_q = rq->q;
1727 			this_ctx = rq->mq_ctx;
1728 			this_hctx = rq->mq_hctx;
1729 			depth = 0;
1730 		}
1731 
1732 		depth++;
1733 		list_add_tail(&rq->queuelist, &rq_list);
1734 	}
1735 
1736 	/*
1737 	 * If 'this_hctx' is set, we know we have entries to complete
1738 	 * on 'rq_list'. Do those.
1739 	 */
1740 	if (this_hctx) {
1741 		trace_block_unplug(this_q, depth, !from_schedule);
1742 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1743 						from_schedule);
1744 	}
1745 }
1746 
1747 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1748 {
1749 	blk_init_request_from_bio(rq, bio);
1750 
1751 	blk_account_io_start(rq, true);
1752 }
1753 
1754 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1755 					    struct request *rq,
1756 					    blk_qc_t *cookie, bool last)
1757 {
1758 	struct request_queue *q = rq->q;
1759 	struct blk_mq_queue_data bd = {
1760 		.rq = rq,
1761 		.last = last,
1762 	};
1763 	blk_qc_t new_cookie;
1764 	blk_status_t ret;
1765 
1766 	new_cookie = request_to_qc_t(hctx, rq);
1767 
1768 	/*
1769 	 * For OK queue, we are done. For error, caller may kill it.
1770 	 * Any other error (busy), just add it to our list as we
1771 	 * previously would have done.
1772 	 */
1773 	ret = q->mq_ops->queue_rq(hctx, &bd);
1774 	switch (ret) {
1775 	case BLK_STS_OK:
1776 		blk_mq_update_dispatch_busy(hctx, false);
1777 		*cookie = new_cookie;
1778 		break;
1779 	case BLK_STS_RESOURCE:
1780 	case BLK_STS_DEV_RESOURCE:
1781 		blk_mq_update_dispatch_busy(hctx, true);
1782 		__blk_mq_requeue_request(rq);
1783 		break;
1784 	default:
1785 		blk_mq_update_dispatch_busy(hctx, false);
1786 		*cookie = BLK_QC_T_NONE;
1787 		break;
1788 	}
1789 
1790 	return ret;
1791 }
1792 
1793 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1794 						struct request *rq,
1795 						blk_qc_t *cookie,
1796 						bool bypass, bool last)
1797 {
1798 	struct request_queue *q = rq->q;
1799 	bool run_queue = true;
1800 	blk_status_t ret = BLK_STS_RESOURCE;
1801 	int srcu_idx;
1802 	bool force = false;
1803 
1804 	hctx_lock(hctx, &srcu_idx);
1805 	/*
1806 	 * hctx_lock is needed before checking quiesced flag.
1807 	 *
1808 	 * When queue is stopped or quiesced, ignore 'bypass', insert
1809 	 * and return BLK_STS_OK to caller, and avoid driver to try to
1810 	 * dispatch again.
1811 	 */
1812 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1813 		run_queue = false;
1814 		bypass = false;
1815 		goto out_unlock;
1816 	}
1817 
1818 	if (unlikely(q->elevator && !bypass))
1819 		goto out_unlock;
1820 
1821 	if (!blk_mq_get_dispatch_budget(hctx))
1822 		goto out_unlock;
1823 
1824 	if (!blk_mq_get_driver_tag(rq)) {
1825 		blk_mq_put_dispatch_budget(hctx);
1826 		goto out_unlock;
1827 	}
1828 
1829 	/*
1830 	 * Always add a request that has been through
1831 	 *.queue_rq() to the hardware dispatch list.
1832 	 */
1833 	force = true;
1834 	ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1835 out_unlock:
1836 	hctx_unlock(hctx, srcu_idx);
1837 	switch (ret) {
1838 	case BLK_STS_OK:
1839 		break;
1840 	case BLK_STS_DEV_RESOURCE:
1841 	case BLK_STS_RESOURCE:
1842 		if (force) {
1843 			blk_mq_request_bypass_insert(rq, run_queue);
1844 			/*
1845 			 * We have to return BLK_STS_OK for the DM
1846 			 * to avoid livelock. Otherwise, we return
1847 			 * the real result to indicate whether the
1848 			 * request is direct-issued successfully.
1849 			 */
1850 			ret = bypass ? BLK_STS_OK : ret;
1851 		} else if (!bypass) {
1852 			blk_mq_sched_insert_request(rq, false,
1853 						    run_queue, false);
1854 		}
1855 		break;
1856 	default:
1857 		if (!bypass)
1858 			blk_mq_end_request(rq, ret);
1859 		break;
1860 	}
1861 
1862 	return ret;
1863 }
1864 
1865 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1866 		struct list_head *list)
1867 {
1868 	blk_qc_t unused;
1869 	blk_status_t ret = BLK_STS_OK;
1870 
1871 	while (!list_empty(list)) {
1872 		struct request *rq = list_first_entry(list, struct request,
1873 				queuelist);
1874 
1875 		list_del_init(&rq->queuelist);
1876 		if (ret == BLK_STS_OK)
1877 			ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1878 							false,
1879 							list_empty(list));
1880 		else
1881 			blk_mq_sched_insert_request(rq, false, true, false);
1882 	}
1883 
1884 	/*
1885 	 * If we didn't flush the entire list, we could have told
1886 	 * the driver there was more coming, but that turned out to
1887 	 * be a lie.
1888 	 */
1889 	if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1890 		hctx->queue->mq_ops->commit_rqs(hctx);
1891 }
1892 
1893 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1894 {
1895 	list_add_tail(&rq->queuelist, &plug->mq_list);
1896 	plug->rq_count++;
1897 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1898 		struct request *tmp;
1899 
1900 		tmp = list_first_entry(&plug->mq_list, struct request,
1901 						queuelist);
1902 		if (tmp->q != rq->q)
1903 			plug->multiple_queues = true;
1904 	}
1905 }
1906 
1907 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1908 {
1909 	const int is_sync = op_is_sync(bio->bi_opf);
1910 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1911 	struct blk_mq_alloc_data data = { .flags = 0};
1912 	struct request *rq;
1913 	struct blk_plug *plug;
1914 	struct request *same_queue_rq = NULL;
1915 	blk_qc_t cookie;
1916 
1917 	blk_queue_bounce(q, &bio);
1918 
1919 	blk_queue_split(q, &bio);
1920 
1921 	if (!bio_integrity_prep(bio))
1922 		return BLK_QC_T_NONE;
1923 
1924 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1925 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1926 		return BLK_QC_T_NONE;
1927 
1928 	if (blk_mq_sched_bio_merge(q, bio))
1929 		return BLK_QC_T_NONE;
1930 
1931 	rq_qos_throttle(q, bio);
1932 
1933 	data.cmd_flags = bio->bi_opf;
1934 	rq = blk_mq_get_request(q, bio, &data);
1935 	if (unlikely(!rq)) {
1936 		rq_qos_cleanup(q, bio);
1937 		if (bio->bi_opf & REQ_NOWAIT)
1938 			bio_wouldblock_error(bio);
1939 		return BLK_QC_T_NONE;
1940 	}
1941 
1942 	trace_block_getrq(q, bio, bio->bi_opf);
1943 
1944 	rq_qos_track(q, rq, bio);
1945 
1946 	cookie = request_to_qc_t(data.hctx, rq);
1947 
1948 	plug = current->plug;
1949 	if (unlikely(is_flush_fua)) {
1950 		blk_mq_put_ctx(data.ctx);
1951 		blk_mq_bio_to_request(rq, bio);
1952 
1953 		/* bypass scheduler for flush rq */
1954 		blk_insert_flush(rq);
1955 		blk_mq_run_hw_queue(data.hctx, true);
1956 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1957 		/*
1958 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1959 		 * we know the driver uses bd->last in a smart fashion.
1960 		 */
1961 		unsigned int request_count = plug->rq_count;
1962 		struct request *last = NULL;
1963 
1964 		blk_mq_put_ctx(data.ctx);
1965 		blk_mq_bio_to_request(rq, bio);
1966 
1967 		if (!request_count)
1968 			trace_block_plug(q);
1969 		else
1970 			last = list_entry_rq(plug->mq_list.prev);
1971 
1972 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1973 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1974 			blk_flush_plug_list(plug, false);
1975 			trace_block_plug(q);
1976 		}
1977 
1978 		blk_add_rq_to_plug(plug, rq);
1979 	} else if (plug && !blk_queue_nomerges(q)) {
1980 		blk_mq_bio_to_request(rq, bio);
1981 
1982 		/*
1983 		 * We do limited plugging. If the bio can be merged, do that.
1984 		 * Otherwise the existing request in the plug list will be
1985 		 * issued. So the plug list will have one request at most
1986 		 * The plug list might get flushed before this. If that happens,
1987 		 * the plug list is empty, and same_queue_rq is invalid.
1988 		 */
1989 		if (list_empty(&plug->mq_list))
1990 			same_queue_rq = NULL;
1991 		if (same_queue_rq) {
1992 			list_del_init(&same_queue_rq->queuelist);
1993 			plug->rq_count--;
1994 		}
1995 		blk_add_rq_to_plug(plug, rq);
1996 
1997 		blk_mq_put_ctx(data.ctx);
1998 
1999 		if (same_queue_rq) {
2000 			data.hctx = same_queue_rq->mq_hctx;
2001 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2002 					&cookie, false, true);
2003 		}
2004 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2005 			!data.hctx->dispatch_busy)) {
2006 		blk_mq_put_ctx(data.ctx);
2007 		blk_mq_bio_to_request(rq, bio);
2008 		blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2009 	} else {
2010 		blk_mq_put_ctx(data.ctx);
2011 		blk_mq_bio_to_request(rq, bio);
2012 		blk_mq_sched_insert_request(rq, false, true, true);
2013 	}
2014 
2015 	return cookie;
2016 }
2017 
2018 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2019 		     unsigned int hctx_idx)
2020 {
2021 	struct page *page;
2022 
2023 	if (tags->rqs && set->ops->exit_request) {
2024 		int i;
2025 
2026 		for (i = 0; i < tags->nr_tags; i++) {
2027 			struct request *rq = tags->static_rqs[i];
2028 
2029 			if (!rq)
2030 				continue;
2031 			set->ops->exit_request(set, rq, hctx_idx);
2032 			tags->static_rqs[i] = NULL;
2033 		}
2034 	}
2035 
2036 	while (!list_empty(&tags->page_list)) {
2037 		page = list_first_entry(&tags->page_list, struct page, lru);
2038 		list_del_init(&page->lru);
2039 		/*
2040 		 * Remove kmemleak object previously allocated in
2041 		 * blk_mq_init_rq_map().
2042 		 */
2043 		kmemleak_free(page_address(page));
2044 		__free_pages(page, page->private);
2045 	}
2046 }
2047 
2048 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2049 {
2050 	kfree(tags->rqs);
2051 	tags->rqs = NULL;
2052 	kfree(tags->static_rqs);
2053 	tags->static_rqs = NULL;
2054 
2055 	blk_mq_free_tags(tags);
2056 }
2057 
2058 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2059 					unsigned int hctx_idx,
2060 					unsigned int nr_tags,
2061 					unsigned int reserved_tags)
2062 {
2063 	struct blk_mq_tags *tags;
2064 	int node;
2065 
2066 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2067 	if (node == NUMA_NO_NODE)
2068 		node = set->numa_node;
2069 
2070 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2071 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2072 	if (!tags)
2073 		return NULL;
2074 
2075 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2076 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2077 				 node);
2078 	if (!tags->rqs) {
2079 		blk_mq_free_tags(tags);
2080 		return NULL;
2081 	}
2082 
2083 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2084 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2085 					node);
2086 	if (!tags->static_rqs) {
2087 		kfree(tags->rqs);
2088 		blk_mq_free_tags(tags);
2089 		return NULL;
2090 	}
2091 
2092 	return tags;
2093 }
2094 
2095 static size_t order_to_size(unsigned int order)
2096 {
2097 	return (size_t)PAGE_SIZE << order;
2098 }
2099 
2100 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2101 			       unsigned int hctx_idx, int node)
2102 {
2103 	int ret;
2104 
2105 	if (set->ops->init_request) {
2106 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2107 		if (ret)
2108 			return ret;
2109 	}
2110 
2111 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2112 	return 0;
2113 }
2114 
2115 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2116 		     unsigned int hctx_idx, unsigned int depth)
2117 {
2118 	unsigned int i, j, entries_per_page, max_order = 4;
2119 	size_t rq_size, left;
2120 	int node;
2121 
2122 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2123 	if (node == NUMA_NO_NODE)
2124 		node = set->numa_node;
2125 
2126 	INIT_LIST_HEAD(&tags->page_list);
2127 
2128 	/*
2129 	 * rq_size is the size of the request plus driver payload, rounded
2130 	 * to the cacheline size
2131 	 */
2132 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2133 				cache_line_size());
2134 	left = rq_size * depth;
2135 
2136 	for (i = 0; i < depth; ) {
2137 		int this_order = max_order;
2138 		struct page *page;
2139 		int to_do;
2140 		void *p;
2141 
2142 		while (this_order && left < order_to_size(this_order - 1))
2143 			this_order--;
2144 
2145 		do {
2146 			page = alloc_pages_node(node,
2147 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2148 				this_order);
2149 			if (page)
2150 				break;
2151 			if (!this_order--)
2152 				break;
2153 			if (order_to_size(this_order) < rq_size)
2154 				break;
2155 		} while (1);
2156 
2157 		if (!page)
2158 			goto fail;
2159 
2160 		page->private = this_order;
2161 		list_add_tail(&page->lru, &tags->page_list);
2162 
2163 		p = page_address(page);
2164 		/*
2165 		 * Allow kmemleak to scan these pages as they contain pointers
2166 		 * to additional allocations like via ops->init_request().
2167 		 */
2168 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2169 		entries_per_page = order_to_size(this_order) / rq_size;
2170 		to_do = min(entries_per_page, depth - i);
2171 		left -= to_do * rq_size;
2172 		for (j = 0; j < to_do; j++) {
2173 			struct request *rq = p;
2174 
2175 			tags->static_rqs[i] = rq;
2176 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2177 				tags->static_rqs[i] = NULL;
2178 				goto fail;
2179 			}
2180 
2181 			p += rq_size;
2182 			i++;
2183 		}
2184 	}
2185 	return 0;
2186 
2187 fail:
2188 	blk_mq_free_rqs(set, tags, hctx_idx);
2189 	return -ENOMEM;
2190 }
2191 
2192 /*
2193  * 'cpu' is going away. splice any existing rq_list entries from this
2194  * software queue to the hw queue dispatch list, and ensure that it
2195  * gets run.
2196  */
2197 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2198 {
2199 	struct blk_mq_hw_ctx *hctx;
2200 	struct blk_mq_ctx *ctx;
2201 	LIST_HEAD(tmp);
2202 	enum hctx_type type;
2203 
2204 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2205 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2206 	type = hctx->type;
2207 
2208 	spin_lock(&ctx->lock);
2209 	if (!list_empty(&ctx->rq_lists[type])) {
2210 		list_splice_init(&ctx->rq_lists[type], &tmp);
2211 		blk_mq_hctx_clear_pending(hctx, ctx);
2212 	}
2213 	spin_unlock(&ctx->lock);
2214 
2215 	if (list_empty(&tmp))
2216 		return 0;
2217 
2218 	spin_lock(&hctx->lock);
2219 	list_splice_tail_init(&tmp, &hctx->dispatch);
2220 	spin_unlock(&hctx->lock);
2221 
2222 	blk_mq_run_hw_queue(hctx, true);
2223 	return 0;
2224 }
2225 
2226 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2227 {
2228 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2229 					    &hctx->cpuhp_dead);
2230 }
2231 
2232 /* hctx->ctxs will be freed in queue's release handler */
2233 static void blk_mq_exit_hctx(struct request_queue *q,
2234 		struct blk_mq_tag_set *set,
2235 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2236 {
2237 	if (blk_mq_hw_queue_mapped(hctx))
2238 		blk_mq_tag_idle(hctx);
2239 
2240 	if (set->ops->exit_request)
2241 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2242 
2243 	if (set->ops->exit_hctx)
2244 		set->ops->exit_hctx(hctx, hctx_idx);
2245 
2246 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2247 		cleanup_srcu_struct(hctx->srcu);
2248 
2249 	blk_mq_remove_cpuhp(hctx);
2250 	blk_free_flush_queue(hctx->fq);
2251 	sbitmap_free(&hctx->ctx_map);
2252 }
2253 
2254 static void blk_mq_exit_hw_queues(struct request_queue *q,
2255 		struct blk_mq_tag_set *set, int nr_queue)
2256 {
2257 	struct blk_mq_hw_ctx *hctx;
2258 	unsigned int i;
2259 
2260 	queue_for_each_hw_ctx(q, hctx, i) {
2261 		if (i == nr_queue)
2262 			break;
2263 		blk_mq_debugfs_unregister_hctx(hctx);
2264 		blk_mq_exit_hctx(q, set, hctx, i);
2265 	}
2266 }
2267 
2268 static int blk_mq_init_hctx(struct request_queue *q,
2269 		struct blk_mq_tag_set *set,
2270 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2271 {
2272 	int node;
2273 
2274 	node = hctx->numa_node;
2275 	if (node == NUMA_NO_NODE)
2276 		node = hctx->numa_node = set->numa_node;
2277 
2278 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2279 	spin_lock_init(&hctx->lock);
2280 	INIT_LIST_HEAD(&hctx->dispatch);
2281 	hctx->queue = q;
2282 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2283 
2284 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2285 
2286 	hctx->tags = set->tags[hctx_idx];
2287 
2288 	/*
2289 	 * Allocate space for all possible cpus to avoid allocation at
2290 	 * runtime
2291 	 */
2292 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2293 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2294 	if (!hctx->ctxs)
2295 		goto unregister_cpu_notifier;
2296 
2297 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2298 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2299 		goto free_ctxs;
2300 
2301 	hctx->nr_ctx = 0;
2302 
2303 	spin_lock_init(&hctx->dispatch_wait_lock);
2304 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2305 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2306 
2307 	if (set->ops->init_hctx &&
2308 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2309 		goto free_bitmap;
2310 
2311 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2312 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2313 	if (!hctx->fq)
2314 		goto exit_hctx;
2315 
2316 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2317 		goto free_fq;
2318 
2319 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2320 		init_srcu_struct(hctx->srcu);
2321 
2322 	return 0;
2323 
2324  free_fq:
2325 	kfree(hctx->fq);
2326  exit_hctx:
2327 	if (set->ops->exit_hctx)
2328 		set->ops->exit_hctx(hctx, hctx_idx);
2329  free_bitmap:
2330 	sbitmap_free(&hctx->ctx_map);
2331  free_ctxs:
2332 	kfree(hctx->ctxs);
2333  unregister_cpu_notifier:
2334 	blk_mq_remove_cpuhp(hctx);
2335 	return -1;
2336 }
2337 
2338 static void blk_mq_init_cpu_queues(struct request_queue *q,
2339 				   unsigned int nr_hw_queues)
2340 {
2341 	struct blk_mq_tag_set *set = q->tag_set;
2342 	unsigned int i, j;
2343 
2344 	for_each_possible_cpu(i) {
2345 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2346 		struct blk_mq_hw_ctx *hctx;
2347 		int k;
2348 
2349 		__ctx->cpu = i;
2350 		spin_lock_init(&__ctx->lock);
2351 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2352 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2353 
2354 		__ctx->queue = q;
2355 
2356 		/*
2357 		 * Set local node, IFF we have more than one hw queue. If
2358 		 * not, we remain on the home node of the device
2359 		 */
2360 		for (j = 0; j < set->nr_maps; j++) {
2361 			hctx = blk_mq_map_queue_type(q, j, i);
2362 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2363 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2364 		}
2365 	}
2366 }
2367 
2368 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2369 {
2370 	int ret = 0;
2371 
2372 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2373 					set->queue_depth, set->reserved_tags);
2374 	if (!set->tags[hctx_idx])
2375 		return false;
2376 
2377 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2378 				set->queue_depth);
2379 	if (!ret)
2380 		return true;
2381 
2382 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2383 	set->tags[hctx_idx] = NULL;
2384 	return false;
2385 }
2386 
2387 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2388 					 unsigned int hctx_idx)
2389 {
2390 	if (set->tags && set->tags[hctx_idx]) {
2391 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2392 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2393 		set->tags[hctx_idx] = NULL;
2394 	}
2395 }
2396 
2397 static void blk_mq_map_swqueue(struct request_queue *q)
2398 {
2399 	unsigned int i, j, hctx_idx;
2400 	struct blk_mq_hw_ctx *hctx;
2401 	struct blk_mq_ctx *ctx;
2402 	struct blk_mq_tag_set *set = q->tag_set;
2403 
2404 	/*
2405 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2406 	 */
2407 	mutex_lock(&q->sysfs_lock);
2408 
2409 	queue_for_each_hw_ctx(q, hctx, i) {
2410 		cpumask_clear(hctx->cpumask);
2411 		hctx->nr_ctx = 0;
2412 		hctx->dispatch_from = NULL;
2413 	}
2414 
2415 	/*
2416 	 * Map software to hardware queues.
2417 	 *
2418 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2419 	 */
2420 	for_each_possible_cpu(i) {
2421 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2422 		/* unmapped hw queue can be remapped after CPU topo changed */
2423 		if (!set->tags[hctx_idx] &&
2424 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2425 			/*
2426 			 * If tags initialization fail for some hctx,
2427 			 * that hctx won't be brought online.  In this
2428 			 * case, remap the current ctx to hctx[0] which
2429 			 * is guaranteed to always have tags allocated
2430 			 */
2431 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2432 		}
2433 
2434 		ctx = per_cpu_ptr(q->queue_ctx, i);
2435 		for (j = 0; j < set->nr_maps; j++) {
2436 			if (!set->map[j].nr_queues) {
2437 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2438 						HCTX_TYPE_DEFAULT, i);
2439 				continue;
2440 			}
2441 
2442 			hctx = blk_mq_map_queue_type(q, j, i);
2443 			ctx->hctxs[j] = hctx;
2444 			/*
2445 			 * If the CPU is already set in the mask, then we've
2446 			 * mapped this one already. This can happen if
2447 			 * devices share queues across queue maps.
2448 			 */
2449 			if (cpumask_test_cpu(i, hctx->cpumask))
2450 				continue;
2451 
2452 			cpumask_set_cpu(i, hctx->cpumask);
2453 			hctx->type = j;
2454 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2455 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2456 
2457 			/*
2458 			 * If the nr_ctx type overflows, we have exceeded the
2459 			 * amount of sw queues we can support.
2460 			 */
2461 			BUG_ON(!hctx->nr_ctx);
2462 		}
2463 
2464 		for (; j < HCTX_MAX_TYPES; j++)
2465 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2466 					HCTX_TYPE_DEFAULT, i);
2467 	}
2468 
2469 	mutex_unlock(&q->sysfs_lock);
2470 
2471 	queue_for_each_hw_ctx(q, hctx, i) {
2472 		/*
2473 		 * If no software queues are mapped to this hardware queue,
2474 		 * disable it and free the request entries.
2475 		 */
2476 		if (!hctx->nr_ctx) {
2477 			/* Never unmap queue 0.  We need it as a
2478 			 * fallback in case of a new remap fails
2479 			 * allocation
2480 			 */
2481 			if (i && set->tags[i])
2482 				blk_mq_free_map_and_requests(set, i);
2483 
2484 			hctx->tags = NULL;
2485 			continue;
2486 		}
2487 
2488 		hctx->tags = set->tags[i];
2489 		WARN_ON(!hctx->tags);
2490 
2491 		/*
2492 		 * Set the map size to the number of mapped software queues.
2493 		 * This is more accurate and more efficient than looping
2494 		 * over all possibly mapped software queues.
2495 		 */
2496 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2497 
2498 		/*
2499 		 * Initialize batch roundrobin counts
2500 		 */
2501 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2502 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2503 	}
2504 }
2505 
2506 /*
2507  * Caller needs to ensure that we're either frozen/quiesced, or that
2508  * the queue isn't live yet.
2509  */
2510 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2511 {
2512 	struct blk_mq_hw_ctx *hctx;
2513 	int i;
2514 
2515 	queue_for_each_hw_ctx(q, hctx, i) {
2516 		if (shared)
2517 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2518 		else
2519 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2520 	}
2521 }
2522 
2523 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2524 					bool shared)
2525 {
2526 	struct request_queue *q;
2527 
2528 	lockdep_assert_held(&set->tag_list_lock);
2529 
2530 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2531 		blk_mq_freeze_queue(q);
2532 		queue_set_hctx_shared(q, shared);
2533 		blk_mq_unfreeze_queue(q);
2534 	}
2535 }
2536 
2537 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2538 {
2539 	struct blk_mq_tag_set *set = q->tag_set;
2540 
2541 	mutex_lock(&set->tag_list_lock);
2542 	list_del_rcu(&q->tag_set_list);
2543 	if (list_is_singular(&set->tag_list)) {
2544 		/* just transitioned to unshared */
2545 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2546 		/* update existing queue */
2547 		blk_mq_update_tag_set_depth(set, false);
2548 	}
2549 	mutex_unlock(&set->tag_list_lock);
2550 	INIT_LIST_HEAD(&q->tag_set_list);
2551 }
2552 
2553 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2554 				     struct request_queue *q)
2555 {
2556 	mutex_lock(&set->tag_list_lock);
2557 
2558 	/*
2559 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2560 	 */
2561 	if (!list_empty(&set->tag_list) &&
2562 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2563 		set->flags |= BLK_MQ_F_TAG_SHARED;
2564 		/* update existing queue */
2565 		blk_mq_update_tag_set_depth(set, true);
2566 	}
2567 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2568 		queue_set_hctx_shared(q, true);
2569 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2570 
2571 	mutex_unlock(&set->tag_list_lock);
2572 }
2573 
2574 /* All allocations will be freed in release handler of q->mq_kobj */
2575 static int blk_mq_alloc_ctxs(struct request_queue *q)
2576 {
2577 	struct blk_mq_ctxs *ctxs;
2578 	int cpu;
2579 
2580 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2581 	if (!ctxs)
2582 		return -ENOMEM;
2583 
2584 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2585 	if (!ctxs->queue_ctx)
2586 		goto fail;
2587 
2588 	for_each_possible_cpu(cpu) {
2589 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2590 		ctx->ctxs = ctxs;
2591 	}
2592 
2593 	q->mq_kobj = &ctxs->kobj;
2594 	q->queue_ctx = ctxs->queue_ctx;
2595 
2596 	return 0;
2597  fail:
2598 	kfree(ctxs);
2599 	return -ENOMEM;
2600 }
2601 
2602 /*
2603  * It is the actual release handler for mq, but we do it from
2604  * request queue's release handler for avoiding use-after-free
2605  * and headache because q->mq_kobj shouldn't have been introduced,
2606  * but we can't group ctx/kctx kobj without it.
2607  */
2608 void blk_mq_release(struct request_queue *q)
2609 {
2610 	struct blk_mq_hw_ctx *hctx;
2611 	unsigned int i;
2612 
2613 	/* hctx kobj stays in hctx */
2614 	queue_for_each_hw_ctx(q, hctx, i) {
2615 		if (!hctx)
2616 			continue;
2617 		kobject_put(&hctx->kobj);
2618 	}
2619 
2620 	kfree(q->queue_hw_ctx);
2621 
2622 	/*
2623 	 * release .mq_kobj and sw queue's kobject now because
2624 	 * both share lifetime with request queue.
2625 	 */
2626 	blk_mq_sysfs_deinit(q);
2627 }
2628 
2629 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2630 {
2631 	struct request_queue *uninit_q, *q;
2632 
2633 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2634 	if (!uninit_q)
2635 		return ERR_PTR(-ENOMEM);
2636 
2637 	q = blk_mq_init_allocated_queue(set, uninit_q);
2638 	if (IS_ERR(q))
2639 		blk_cleanup_queue(uninit_q);
2640 
2641 	return q;
2642 }
2643 EXPORT_SYMBOL(blk_mq_init_queue);
2644 
2645 /*
2646  * Helper for setting up a queue with mq ops, given queue depth, and
2647  * the passed in mq ops flags.
2648  */
2649 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2650 					   const struct blk_mq_ops *ops,
2651 					   unsigned int queue_depth,
2652 					   unsigned int set_flags)
2653 {
2654 	struct request_queue *q;
2655 	int ret;
2656 
2657 	memset(set, 0, sizeof(*set));
2658 	set->ops = ops;
2659 	set->nr_hw_queues = 1;
2660 	set->nr_maps = 1;
2661 	set->queue_depth = queue_depth;
2662 	set->numa_node = NUMA_NO_NODE;
2663 	set->flags = set_flags;
2664 
2665 	ret = blk_mq_alloc_tag_set(set);
2666 	if (ret)
2667 		return ERR_PTR(ret);
2668 
2669 	q = blk_mq_init_queue(set);
2670 	if (IS_ERR(q)) {
2671 		blk_mq_free_tag_set(set);
2672 		return q;
2673 	}
2674 
2675 	return q;
2676 }
2677 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2678 
2679 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2680 {
2681 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2682 
2683 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2684 			   __alignof__(struct blk_mq_hw_ctx)) !=
2685 		     sizeof(struct blk_mq_hw_ctx));
2686 
2687 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2688 		hw_ctx_size += sizeof(struct srcu_struct);
2689 
2690 	return hw_ctx_size;
2691 }
2692 
2693 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2694 		struct blk_mq_tag_set *set, struct request_queue *q,
2695 		int hctx_idx, int node)
2696 {
2697 	struct blk_mq_hw_ctx *hctx;
2698 
2699 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2700 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2701 			node);
2702 	if (!hctx)
2703 		return NULL;
2704 
2705 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2706 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2707 				node)) {
2708 		kfree(hctx);
2709 		return NULL;
2710 	}
2711 
2712 	atomic_set(&hctx->nr_active, 0);
2713 	hctx->numa_node = node;
2714 	hctx->queue_num = hctx_idx;
2715 
2716 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2717 		free_cpumask_var(hctx->cpumask);
2718 		kfree(hctx);
2719 		return NULL;
2720 	}
2721 	blk_mq_hctx_kobj_init(hctx);
2722 
2723 	return hctx;
2724 }
2725 
2726 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2727 						struct request_queue *q)
2728 {
2729 	int i, j, end;
2730 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2731 
2732 	/* protect against switching io scheduler  */
2733 	mutex_lock(&q->sysfs_lock);
2734 	for (i = 0; i < set->nr_hw_queues; i++) {
2735 		int node;
2736 		struct blk_mq_hw_ctx *hctx;
2737 
2738 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2739 		/*
2740 		 * If the hw queue has been mapped to another numa node,
2741 		 * we need to realloc the hctx. If allocation fails, fallback
2742 		 * to use the previous one.
2743 		 */
2744 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2745 			continue;
2746 
2747 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2748 		if (hctx) {
2749 			if (hctxs[i]) {
2750 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2751 				kobject_put(&hctxs[i]->kobj);
2752 			}
2753 			hctxs[i] = hctx;
2754 		} else {
2755 			if (hctxs[i])
2756 				pr_warn("Allocate new hctx on node %d fails,\
2757 						fallback to previous one on node %d\n",
2758 						node, hctxs[i]->numa_node);
2759 			else
2760 				break;
2761 		}
2762 	}
2763 	/*
2764 	 * Increasing nr_hw_queues fails. Free the newly allocated
2765 	 * hctxs and keep the previous q->nr_hw_queues.
2766 	 */
2767 	if (i != set->nr_hw_queues) {
2768 		j = q->nr_hw_queues;
2769 		end = i;
2770 	} else {
2771 		j = i;
2772 		end = q->nr_hw_queues;
2773 		q->nr_hw_queues = set->nr_hw_queues;
2774 	}
2775 
2776 	for (; j < end; j++) {
2777 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2778 
2779 		if (hctx) {
2780 			if (hctx->tags)
2781 				blk_mq_free_map_and_requests(set, j);
2782 			blk_mq_exit_hctx(q, set, hctx, j);
2783 			kobject_put(&hctx->kobj);
2784 			hctxs[j] = NULL;
2785 
2786 		}
2787 	}
2788 	mutex_unlock(&q->sysfs_lock);
2789 }
2790 
2791 /*
2792  * Maximum number of hardware queues we support. For single sets, we'll never
2793  * have more than the CPUs (software queues). For multiple sets, the tag_set
2794  * user may have set ->nr_hw_queues larger.
2795  */
2796 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2797 {
2798 	if (set->nr_maps == 1)
2799 		return nr_cpu_ids;
2800 
2801 	return max(set->nr_hw_queues, nr_cpu_ids);
2802 }
2803 
2804 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2805 						  struct request_queue *q)
2806 {
2807 	/* mark the queue as mq asap */
2808 	q->mq_ops = set->ops;
2809 
2810 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2811 					     blk_mq_poll_stats_bkt,
2812 					     BLK_MQ_POLL_STATS_BKTS, q);
2813 	if (!q->poll_cb)
2814 		goto err_exit;
2815 
2816 	if (blk_mq_alloc_ctxs(q))
2817 		goto err_exit;
2818 
2819 	/* init q->mq_kobj and sw queues' kobjects */
2820 	blk_mq_sysfs_init(q);
2821 
2822 	q->nr_queues = nr_hw_queues(set);
2823 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2824 						GFP_KERNEL, set->numa_node);
2825 	if (!q->queue_hw_ctx)
2826 		goto err_sys_init;
2827 
2828 	blk_mq_realloc_hw_ctxs(set, q);
2829 	if (!q->nr_hw_queues)
2830 		goto err_hctxs;
2831 
2832 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2833 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2834 
2835 	q->tag_set = set;
2836 
2837 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2838 	if (set->nr_maps > HCTX_TYPE_POLL &&
2839 	    set->map[HCTX_TYPE_POLL].nr_queues)
2840 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2841 
2842 	q->sg_reserved_size = INT_MAX;
2843 
2844 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2845 	INIT_LIST_HEAD(&q->requeue_list);
2846 	spin_lock_init(&q->requeue_lock);
2847 
2848 	blk_queue_make_request(q, blk_mq_make_request);
2849 
2850 	/*
2851 	 * Do this after blk_queue_make_request() overrides it...
2852 	 */
2853 	q->nr_requests = set->queue_depth;
2854 
2855 	/*
2856 	 * Default to classic polling
2857 	 */
2858 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2859 
2860 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2861 	blk_mq_add_queue_tag_set(set, q);
2862 	blk_mq_map_swqueue(q);
2863 
2864 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2865 		int ret;
2866 
2867 		ret = elevator_init_mq(q);
2868 		if (ret)
2869 			return ERR_PTR(ret);
2870 	}
2871 
2872 	return q;
2873 
2874 err_hctxs:
2875 	kfree(q->queue_hw_ctx);
2876 err_sys_init:
2877 	blk_mq_sysfs_deinit(q);
2878 err_exit:
2879 	q->mq_ops = NULL;
2880 	return ERR_PTR(-ENOMEM);
2881 }
2882 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2883 
2884 void blk_mq_free_queue(struct request_queue *q)
2885 {
2886 	struct blk_mq_tag_set	*set = q->tag_set;
2887 
2888 	blk_mq_del_queue_tag_set(q);
2889 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2890 }
2891 
2892 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2893 {
2894 	int i;
2895 
2896 	for (i = 0; i < set->nr_hw_queues; i++)
2897 		if (!__blk_mq_alloc_rq_map(set, i))
2898 			goto out_unwind;
2899 
2900 	return 0;
2901 
2902 out_unwind:
2903 	while (--i >= 0)
2904 		blk_mq_free_rq_map(set->tags[i]);
2905 
2906 	return -ENOMEM;
2907 }
2908 
2909 /*
2910  * Allocate the request maps associated with this tag_set. Note that this
2911  * may reduce the depth asked for, if memory is tight. set->queue_depth
2912  * will be updated to reflect the allocated depth.
2913  */
2914 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2915 {
2916 	unsigned int depth;
2917 	int err;
2918 
2919 	depth = set->queue_depth;
2920 	do {
2921 		err = __blk_mq_alloc_rq_maps(set);
2922 		if (!err)
2923 			break;
2924 
2925 		set->queue_depth >>= 1;
2926 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2927 			err = -ENOMEM;
2928 			break;
2929 		}
2930 	} while (set->queue_depth);
2931 
2932 	if (!set->queue_depth || err) {
2933 		pr_err("blk-mq: failed to allocate request map\n");
2934 		return -ENOMEM;
2935 	}
2936 
2937 	if (depth != set->queue_depth)
2938 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2939 						depth, set->queue_depth);
2940 
2941 	return 0;
2942 }
2943 
2944 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2945 {
2946 	if (set->ops->map_queues && !is_kdump_kernel()) {
2947 		int i;
2948 
2949 		/*
2950 		 * transport .map_queues is usually done in the following
2951 		 * way:
2952 		 *
2953 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2954 		 * 	mask = get_cpu_mask(queue)
2955 		 * 	for_each_cpu(cpu, mask)
2956 		 * 		set->map[x].mq_map[cpu] = queue;
2957 		 * }
2958 		 *
2959 		 * When we need to remap, the table has to be cleared for
2960 		 * killing stale mapping since one CPU may not be mapped
2961 		 * to any hw queue.
2962 		 */
2963 		for (i = 0; i < set->nr_maps; i++)
2964 			blk_mq_clear_mq_map(&set->map[i]);
2965 
2966 		return set->ops->map_queues(set);
2967 	} else {
2968 		BUG_ON(set->nr_maps > 1);
2969 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2970 	}
2971 }
2972 
2973 /*
2974  * Alloc a tag set to be associated with one or more request queues.
2975  * May fail with EINVAL for various error conditions. May adjust the
2976  * requested depth down, if it's too large. In that case, the set
2977  * value will be stored in set->queue_depth.
2978  */
2979 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2980 {
2981 	int i, ret;
2982 
2983 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2984 
2985 	if (!set->nr_hw_queues)
2986 		return -EINVAL;
2987 	if (!set->queue_depth)
2988 		return -EINVAL;
2989 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2990 		return -EINVAL;
2991 
2992 	if (!set->ops->queue_rq)
2993 		return -EINVAL;
2994 
2995 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2996 		return -EINVAL;
2997 
2998 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2999 		pr_info("blk-mq: reduced tag depth to %u\n",
3000 			BLK_MQ_MAX_DEPTH);
3001 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3002 	}
3003 
3004 	if (!set->nr_maps)
3005 		set->nr_maps = 1;
3006 	else if (set->nr_maps > HCTX_MAX_TYPES)
3007 		return -EINVAL;
3008 
3009 	/*
3010 	 * If a crashdump is active, then we are potentially in a very
3011 	 * memory constrained environment. Limit us to 1 queue and
3012 	 * 64 tags to prevent using too much memory.
3013 	 */
3014 	if (is_kdump_kernel()) {
3015 		set->nr_hw_queues = 1;
3016 		set->nr_maps = 1;
3017 		set->queue_depth = min(64U, set->queue_depth);
3018 	}
3019 	/*
3020 	 * There is no use for more h/w queues than cpus if we just have
3021 	 * a single map
3022 	 */
3023 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3024 		set->nr_hw_queues = nr_cpu_ids;
3025 
3026 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3027 				 GFP_KERNEL, set->numa_node);
3028 	if (!set->tags)
3029 		return -ENOMEM;
3030 
3031 	ret = -ENOMEM;
3032 	for (i = 0; i < set->nr_maps; i++) {
3033 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3034 						  sizeof(set->map[i].mq_map[0]),
3035 						  GFP_KERNEL, set->numa_node);
3036 		if (!set->map[i].mq_map)
3037 			goto out_free_mq_map;
3038 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3039 	}
3040 
3041 	ret = blk_mq_update_queue_map(set);
3042 	if (ret)
3043 		goto out_free_mq_map;
3044 
3045 	ret = blk_mq_alloc_rq_maps(set);
3046 	if (ret)
3047 		goto out_free_mq_map;
3048 
3049 	mutex_init(&set->tag_list_lock);
3050 	INIT_LIST_HEAD(&set->tag_list);
3051 
3052 	return 0;
3053 
3054 out_free_mq_map:
3055 	for (i = 0; i < set->nr_maps; i++) {
3056 		kfree(set->map[i].mq_map);
3057 		set->map[i].mq_map = NULL;
3058 	}
3059 	kfree(set->tags);
3060 	set->tags = NULL;
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3064 
3065 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3066 {
3067 	int i, j;
3068 
3069 	for (i = 0; i < nr_hw_queues(set); i++)
3070 		blk_mq_free_map_and_requests(set, i);
3071 
3072 	for (j = 0; j < set->nr_maps; j++) {
3073 		kfree(set->map[j].mq_map);
3074 		set->map[j].mq_map = NULL;
3075 	}
3076 
3077 	kfree(set->tags);
3078 	set->tags = NULL;
3079 }
3080 EXPORT_SYMBOL(blk_mq_free_tag_set);
3081 
3082 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3083 {
3084 	struct blk_mq_tag_set *set = q->tag_set;
3085 	struct blk_mq_hw_ctx *hctx;
3086 	int i, ret;
3087 
3088 	if (!set)
3089 		return -EINVAL;
3090 
3091 	if (q->nr_requests == nr)
3092 		return 0;
3093 
3094 	blk_mq_freeze_queue(q);
3095 	blk_mq_quiesce_queue(q);
3096 
3097 	ret = 0;
3098 	queue_for_each_hw_ctx(q, hctx, i) {
3099 		if (!hctx->tags)
3100 			continue;
3101 		/*
3102 		 * If we're using an MQ scheduler, just update the scheduler
3103 		 * queue depth. This is similar to what the old code would do.
3104 		 */
3105 		if (!hctx->sched_tags) {
3106 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3107 							false);
3108 		} else {
3109 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3110 							nr, true);
3111 		}
3112 		if (ret)
3113 			break;
3114 	}
3115 
3116 	if (!ret)
3117 		q->nr_requests = nr;
3118 
3119 	blk_mq_unquiesce_queue(q);
3120 	blk_mq_unfreeze_queue(q);
3121 
3122 	return ret;
3123 }
3124 
3125 /*
3126  * request_queue and elevator_type pair.
3127  * It is just used by __blk_mq_update_nr_hw_queues to cache
3128  * the elevator_type associated with a request_queue.
3129  */
3130 struct blk_mq_qe_pair {
3131 	struct list_head node;
3132 	struct request_queue *q;
3133 	struct elevator_type *type;
3134 };
3135 
3136 /*
3137  * Cache the elevator_type in qe pair list and switch the
3138  * io scheduler to 'none'
3139  */
3140 static bool blk_mq_elv_switch_none(struct list_head *head,
3141 		struct request_queue *q)
3142 {
3143 	struct blk_mq_qe_pair *qe;
3144 
3145 	if (!q->elevator)
3146 		return true;
3147 
3148 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3149 	if (!qe)
3150 		return false;
3151 
3152 	INIT_LIST_HEAD(&qe->node);
3153 	qe->q = q;
3154 	qe->type = q->elevator->type;
3155 	list_add(&qe->node, head);
3156 
3157 	mutex_lock(&q->sysfs_lock);
3158 	/*
3159 	 * After elevator_switch_mq, the previous elevator_queue will be
3160 	 * released by elevator_release. The reference of the io scheduler
3161 	 * module get by elevator_get will also be put. So we need to get
3162 	 * a reference of the io scheduler module here to prevent it to be
3163 	 * removed.
3164 	 */
3165 	__module_get(qe->type->elevator_owner);
3166 	elevator_switch_mq(q, NULL);
3167 	mutex_unlock(&q->sysfs_lock);
3168 
3169 	return true;
3170 }
3171 
3172 static void blk_mq_elv_switch_back(struct list_head *head,
3173 		struct request_queue *q)
3174 {
3175 	struct blk_mq_qe_pair *qe;
3176 	struct elevator_type *t = NULL;
3177 
3178 	list_for_each_entry(qe, head, node)
3179 		if (qe->q == q) {
3180 			t = qe->type;
3181 			break;
3182 		}
3183 
3184 	if (!t)
3185 		return;
3186 
3187 	list_del(&qe->node);
3188 	kfree(qe);
3189 
3190 	mutex_lock(&q->sysfs_lock);
3191 	elevator_switch_mq(q, t);
3192 	mutex_unlock(&q->sysfs_lock);
3193 }
3194 
3195 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3196 							int nr_hw_queues)
3197 {
3198 	struct request_queue *q;
3199 	LIST_HEAD(head);
3200 	int prev_nr_hw_queues;
3201 
3202 	lockdep_assert_held(&set->tag_list_lock);
3203 
3204 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3205 		nr_hw_queues = nr_cpu_ids;
3206 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3207 		return;
3208 
3209 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3210 		blk_mq_freeze_queue(q);
3211 	/*
3212 	 * Sync with blk_mq_queue_tag_busy_iter.
3213 	 */
3214 	synchronize_rcu();
3215 	/*
3216 	 * Switch IO scheduler to 'none', cleaning up the data associated
3217 	 * with the previous scheduler. We will switch back once we are done
3218 	 * updating the new sw to hw queue mappings.
3219 	 */
3220 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3221 		if (!blk_mq_elv_switch_none(&head, q))
3222 			goto switch_back;
3223 
3224 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3225 		blk_mq_debugfs_unregister_hctxs(q);
3226 		blk_mq_sysfs_unregister(q);
3227 	}
3228 
3229 	prev_nr_hw_queues = set->nr_hw_queues;
3230 	set->nr_hw_queues = nr_hw_queues;
3231 	blk_mq_update_queue_map(set);
3232 fallback:
3233 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3234 		blk_mq_realloc_hw_ctxs(set, q);
3235 		if (q->nr_hw_queues != set->nr_hw_queues) {
3236 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3237 					nr_hw_queues, prev_nr_hw_queues);
3238 			set->nr_hw_queues = prev_nr_hw_queues;
3239 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3240 			goto fallback;
3241 		}
3242 		blk_mq_map_swqueue(q);
3243 	}
3244 
3245 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3246 		blk_mq_sysfs_register(q);
3247 		blk_mq_debugfs_register_hctxs(q);
3248 	}
3249 
3250 switch_back:
3251 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3252 		blk_mq_elv_switch_back(&head, q);
3253 
3254 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3255 		blk_mq_unfreeze_queue(q);
3256 }
3257 
3258 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3259 {
3260 	mutex_lock(&set->tag_list_lock);
3261 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3262 	mutex_unlock(&set->tag_list_lock);
3263 }
3264 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3265 
3266 /* Enable polling stats and return whether they were already enabled. */
3267 static bool blk_poll_stats_enable(struct request_queue *q)
3268 {
3269 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3270 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3271 		return true;
3272 	blk_stat_add_callback(q, q->poll_cb);
3273 	return false;
3274 }
3275 
3276 static void blk_mq_poll_stats_start(struct request_queue *q)
3277 {
3278 	/*
3279 	 * We don't arm the callback if polling stats are not enabled or the
3280 	 * callback is already active.
3281 	 */
3282 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3283 	    blk_stat_is_active(q->poll_cb))
3284 		return;
3285 
3286 	blk_stat_activate_msecs(q->poll_cb, 100);
3287 }
3288 
3289 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3290 {
3291 	struct request_queue *q = cb->data;
3292 	int bucket;
3293 
3294 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3295 		if (cb->stat[bucket].nr_samples)
3296 			q->poll_stat[bucket] = cb->stat[bucket];
3297 	}
3298 }
3299 
3300 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3301 				       struct blk_mq_hw_ctx *hctx,
3302 				       struct request *rq)
3303 {
3304 	unsigned long ret = 0;
3305 	int bucket;
3306 
3307 	/*
3308 	 * If stats collection isn't on, don't sleep but turn it on for
3309 	 * future users
3310 	 */
3311 	if (!blk_poll_stats_enable(q))
3312 		return 0;
3313 
3314 	/*
3315 	 * As an optimistic guess, use half of the mean service time
3316 	 * for this type of request. We can (and should) make this smarter.
3317 	 * For instance, if the completion latencies are tight, we can
3318 	 * get closer than just half the mean. This is especially
3319 	 * important on devices where the completion latencies are longer
3320 	 * than ~10 usec. We do use the stats for the relevant IO size
3321 	 * if available which does lead to better estimates.
3322 	 */
3323 	bucket = blk_mq_poll_stats_bkt(rq);
3324 	if (bucket < 0)
3325 		return ret;
3326 
3327 	if (q->poll_stat[bucket].nr_samples)
3328 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3329 
3330 	return ret;
3331 }
3332 
3333 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3334 				     struct blk_mq_hw_ctx *hctx,
3335 				     struct request *rq)
3336 {
3337 	struct hrtimer_sleeper hs;
3338 	enum hrtimer_mode mode;
3339 	unsigned int nsecs;
3340 	ktime_t kt;
3341 
3342 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3343 		return false;
3344 
3345 	/*
3346 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3347 	 *
3348 	 *  0:	use half of prev avg
3349 	 * >0:	use this specific value
3350 	 */
3351 	if (q->poll_nsec > 0)
3352 		nsecs = q->poll_nsec;
3353 	else
3354 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3355 
3356 	if (!nsecs)
3357 		return false;
3358 
3359 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3360 
3361 	/*
3362 	 * This will be replaced with the stats tracking code, using
3363 	 * 'avg_completion_time / 2' as the pre-sleep target.
3364 	 */
3365 	kt = nsecs;
3366 
3367 	mode = HRTIMER_MODE_REL;
3368 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3369 	hrtimer_set_expires(&hs.timer, kt);
3370 
3371 	hrtimer_init_sleeper(&hs, current);
3372 	do {
3373 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3374 			break;
3375 		set_current_state(TASK_UNINTERRUPTIBLE);
3376 		hrtimer_start_expires(&hs.timer, mode);
3377 		if (hs.task)
3378 			io_schedule();
3379 		hrtimer_cancel(&hs.timer);
3380 		mode = HRTIMER_MODE_ABS;
3381 	} while (hs.task && !signal_pending(current));
3382 
3383 	__set_current_state(TASK_RUNNING);
3384 	destroy_hrtimer_on_stack(&hs.timer);
3385 	return true;
3386 }
3387 
3388 static bool blk_mq_poll_hybrid(struct request_queue *q,
3389 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3390 {
3391 	struct request *rq;
3392 
3393 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3394 		return false;
3395 
3396 	if (!blk_qc_t_is_internal(cookie))
3397 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3398 	else {
3399 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3400 		/*
3401 		 * With scheduling, if the request has completed, we'll
3402 		 * get a NULL return here, as we clear the sched tag when
3403 		 * that happens. The request still remains valid, like always,
3404 		 * so we should be safe with just the NULL check.
3405 		 */
3406 		if (!rq)
3407 			return false;
3408 	}
3409 
3410 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3411 }
3412 
3413 /**
3414  * blk_poll - poll for IO completions
3415  * @q:  the queue
3416  * @cookie: cookie passed back at IO submission time
3417  * @spin: whether to spin for completions
3418  *
3419  * Description:
3420  *    Poll for completions on the passed in queue. Returns number of
3421  *    completed entries found. If @spin is true, then blk_poll will continue
3422  *    looping until at least one completion is found, unless the task is
3423  *    otherwise marked running (or we need to reschedule).
3424  */
3425 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3426 {
3427 	struct blk_mq_hw_ctx *hctx;
3428 	long state;
3429 
3430 	if (!blk_qc_t_valid(cookie) ||
3431 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3432 		return 0;
3433 
3434 	if (current->plug)
3435 		blk_flush_plug_list(current->plug, false);
3436 
3437 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3438 
3439 	/*
3440 	 * If we sleep, have the caller restart the poll loop to reset
3441 	 * the state. Like for the other success return cases, the
3442 	 * caller is responsible for checking if the IO completed. If
3443 	 * the IO isn't complete, we'll get called again and will go
3444 	 * straight to the busy poll loop.
3445 	 */
3446 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3447 		return 1;
3448 
3449 	hctx->poll_considered++;
3450 
3451 	state = current->state;
3452 	do {
3453 		int ret;
3454 
3455 		hctx->poll_invoked++;
3456 
3457 		ret = q->mq_ops->poll(hctx);
3458 		if (ret > 0) {
3459 			hctx->poll_success++;
3460 			__set_current_state(TASK_RUNNING);
3461 			return ret;
3462 		}
3463 
3464 		if (signal_pending_state(state, current))
3465 			__set_current_state(TASK_RUNNING);
3466 
3467 		if (current->state == TASK_RUNNING)
3468 			return 1;
3469 		if (ret < 0 || !spin)
3470 			break;
3471 		cpu_relax();
3472 	} while (!need_resched());
3473 
3474 	__set_current_state(TASK_RUNNING);
3475 	return 0;
3476 }
3477 EXPORT_SYMBOL_GPL(blk_poll);
3478 
3479 unsigned int blk_mq_rq_cpu(struct request *rq)
3480 {
3481 	return rq->mq_ctx->cpu;
3482 }
3483 EXPORT_SYMBOL(blk_mq_rq_cpu);
3484 
3485 static int __init blk_mq_init(void)
3486 {
3487 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3488 				blk_mq_hctx_notify_dead);
3489 	return 0;
3490 }
3491 subsys_initcall(blk_mq_init);
3492