xref: /linux/block/blk-mq.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = blk_time_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = blk_time_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	if (!(data->rq_flags & RQF_SCHED_TAGS))
429 		blk_mq_add_active_requests(data->hctx, nr);
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = blk_time_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 	if (q->elevator) {
452 		/*
453 		 * All requests use scheduler tags when an I/O scheduler is
454 		 * enabled for the queue.
455 		 */
456 		data->rq_flags |= RQF_SCHED_TAGS;
457 
458 		/*
459 		 * Flush/passthrough requests are special and go directly to the
460 		 * dispatch list.
461 		 */
462 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463 		    !blk_op_is_passthrough(data->cmd_flags)) {
464 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
465 
466 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
467 
468 			data->rq_flags |= RQF_USE_SCHED;
469 			if (ops->limit_depth)
470 				ops->limit_depth(data->cmd_flags, data);
471 		}
472 	}
473 
474 retry:
475 	data->ctx = blk_mq_get_ctx(q);
476 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477 	if (!(data->rq_flags & RQF_SCHED_TAGS))
478 		blk_mq_tag_busy(data->hctx);
479 
480 	if (data->flags & BLK_MQ_REQ_RESERVED)
481 		data->rq_flags |= RQF_RESV;
482 
483 	/*
484 	 * Try batched alloc if we want more than 1 tag.
485 	 */
486 	if (data->nr_tags > 1) {
487 		rq = __blk_mq_alloc_requests_batch(data);
488 		if (rq) {
489 			blk_mq_rq_time_init(rq, alloc_time_ns);
490 			return rq;
491 		}
492 		data->nr_tags = 1;
493 	}
494 
495 	/*
496 	 * Waiting allocations only fail because of an inactive hctx.  In that
497 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 	 * should have migrated us to an online CPU by now.
499 	 */
500 	tag = blk_mq_get_tag(data);
501 	if (tag == BLK_MQ_NO_TAG) {
502 		if (data->flags & BLK_MQ_REQ_NOWAIT)
503 			return NULL;
504 		/*
505 		 * Give up the CPU and sleep for a random short time to
506 		 * ensure that thread using a realtime scheduling class
507 		 * are migrated off the CPU, and thus off the hctx that
508 		 * is going away.
509 		 */
510 		msleep(3);
511 		goto retry;
512 	}
513 
514 	if (!(data->rq_flags & RQF_SCHED_TAGS))
515 		blk_mq_inc_active_requests(data->hctx);
516 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517 	blk_mq_rq_time_init(rq, alloc_time_ns);
518 	return rq;
519 }
520 
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522 					    struct blk_plug *plug,
523 					    blk_opf_t opf,
524 					    blk_mq_req_flags_t flags)
525 {
526 	struct blk_mq_alloc_data data = {
527 		.q		= q,
528 		.flags		= flags,
529 		.cmd_flags	= opf,
530 		.nr_tags	= plug->nr_ios,
531 		.cached_rq	= &plug->cached_rq,
532 	};
533 	struct request *rq;
534 
535 	if (blk_queue_enter(q, flags))
536 		return NULL;
537 
538 	plug->nr_ios = 1;
539 
540 	rq = __blk_mq_alloc_requests(&data);
541 	if (unlikely(!rq))
542 		blk_queue_exit(q);
543 	return rq;
544 }
545 
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547 						   blk_opf_t opf,
548 						   blk_mq_req_flags_t flags)
549 {
550 	struct blk_plug *plug = current->plug;
551 	struct request *rq;
552 
553 	if (!plug)
554 		return NULL;
555 
556 	if (rq_list_empty(plug->cached_rq)) {
557 		if (plug->nr_ios == 1)
558 			return NULL;
559 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560 		if (!rq)
561 			return NULL;
562 	} else {
563 		rq = rq_list_peek(&plug->cached_rq);
564 		if (!rq || rq->q != q)
565 			return NULL;
566 
567 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568 			return NULL;
569 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570 			return NULL;
571 
572 		plug->cached_rq = rq_list_next(rq);
573 		blk_mq_rq_time_init(rq, 0);
574 	}
575 
576 	rq->cmd_flags = opf;
577 	INIT_LIST_HEAD(&rq->queuelist);
578 	return rq;
579 }
580 
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582 		blk_mq_req_flags_t flags)
583 {
584 	struct request *rq;
585 
586 	rq = blk_mq_alloc_cached_request(q, opf, flags);
587 	if (!rq) {
588 		struct blk_mq_alloc_data data = {
589 			.q		= q,
590 			.flags		= flags,
591 			.cmd_flags	= opf,
592 			.nr_tags	= 1,
593 		};
594 		int ret;
595 
596 		ret = blk_queue_enter(q, flags);
597 		if (ret)
598 			return ERR_PTR(ret);
599 
600 		rq = __blk_mq_alloc_requests(&data);
601 		if (!rq)
602 			goto out_queue_exit;
603 	}
604 	rq->__data_len = 0;
605 	rq->__sector = (sector_t) -1;
606 	rq->bio = rq->biotail = NULL;
607 	return rq;
608 out_queue_exit:
609 	blk_queue_exit(q);
610 	return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613 
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617 	struct blk_mq_alloc_data data = {
618 		.q		= q,
619 		.flags		= flags,
620 		.cmd_flags	= opf,
621 		.nr_tags	= 1,
622 	};
623 	u64 alloc_time_ns = 0;
624 	struct request *rq;
625 	unsigned int cpu;
626 	unsigned int tag;
627 	int ret;
628 
629 	/* alloc_time includes depth and tag waits */
630 	if (blk_queue_rq_alloc_time(q))
631 		alloc_time_ns = blk_time_get_ns();
632 
633 	/*
634 	 * If the tag allocator sleeps we could get an allocation for a
635 	 * different hardware context.  No need to complicate the low level
636 	 * allocator for this for the rare use case of a command tied to
637 	 * a specific queue.
638 	 */
639 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641 		return ERR_PTR(-EINVAL);
642 
643 	if (hctx_idx >= q->nr_hw_queues)
644 		return ERR_PTR(-EIO);
645 
646 	ret = blk_queue_enter(q, flags);
647 	if (ret)
648 		return ERR_PTR(ret);
649 
650 	/*
651 	 * Check if the hardware context is actually mapped to anything.
652 	 * If not tell the caller that it should skip this queue.
653 	 */
654 	ret = -EXDEV;
655 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
656 	if (!blk_mq_hw_queue_mapped(data.hctx))
657 		goto out_queue_exit;
658 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659 	if (cpu >= nr_cpu_ids)
660 		goto out_queue_exit;
661 	data.ctx = __blk_mq_get_ctx(q, cpu);
662 
663 	if (q->elevator)
664 		data.rq_flags |= RQF_SCHED_TAGS;
665 	else
666 		blk_mq_tag_busy(data.hctx);
667 
668 	if (flags & BLK_MQ_REQ_RESERVED)
669 		data.rq_flags |= RQF_RESV;
670 
671 	ret = -EWOULDBLOCK;
672 	tag = blk_mq_get_tag(&data);
673 	if (tag == BLK_MQ_NO_TAG)
674 		goto out_queue_exit;
675 	if (!(data.rq_flags & RQF_SCHED_TAGS))
676 		blk_mq_inc_active_requests(data.hctx);
677 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678 	blk_mq_rq_time_init(rq, alloc_time_ns);
679 	rq->__data_len = 0;
680 	rq->__sector = (sector_t) -1;
681 	rq->bio = rq->biotail = NULL;
682 	return rq;
683 
684 out_queue_exit:
685 	blk_queue_exit(q);
686 	return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689 
690 static void blk_mq_finish_request(struct request *rq)
691 {
692 	struct request_queue *q = rq->q;
693 
694 	blk_zone_finish_request(rq);
695 
696 	if (rq->rq_flags & RQF_USE_SCHED) {
697 		q->elevator->type->ops.finish_request(rq);
698 		/*
699 		 * For postflush request that may need to be
700 		 * completed twice, we should clear this flag
701 		 * to avoid double finish_request() on the rq.
702 		 */
703 		rq->rq_flags &= ~RQF_USE_SCHED;
704 	}
705 }
706 
707 static void __blk_mq_free_request(struct request *rq)
708 {
709 	struct request_queue *q = rq->q;
710 	struct blk_mq_ctx *ctx = rq->mq_ctx;
711 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
712 	const int sched_tag = rq->internal_tag;
713 
714 	blk_crypto_free_request(rq);
715 	blk_pm_mark_last_busy(rq);
716 	rq->mq_hctx = NULL;
717 
718 	if (rq->tag != BLK_MQ_NO_TAG) {
719 		blk_mq_dec_active_requests(hctx);
720 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721 	}
722 	if (sched_tag != BLK_MQ_NO_TAG)
723 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 	blk_mq_sched_restart(hctx);
725 	blk_queue_exit(q);
726 }
727 
728 void blk_mq_free_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 
732 	blk_mq_finish_request(rq);
733 
734 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
735 		laptop_io_completion(q->disk->bdi);
736 
737 	rq_qos_done(q, rq);
738 
739 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
740 	if (req_ref_put_and_test(rq))
741 		__blk_mq_free_request(rq);
742 }
743 EXPORT_SYMBOL_GPL(blk_mq_free_request);
744 
745 void blk_mq_free_plug_rqs(struct blk_plug *plug)
746 {
747 	struct request *rq;
748 
749 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
750 		blk_mq_free_request(rq);
751 }
752 
753 void blk_dump_rq_flags(struct request *rq, char *msg)
754 {
755 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
756 		rq->q->disk ? rq->q->disk->disk_name : "?",
757 		(__force unsigned long long) rq->cmd_flags);
758 
759 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
760 	       (unsigned long long)blk_rq_pos(rq),
761 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
763 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
764 }
765 EXPORT_SYMBOL(blk_dump_rq_flags);
766 
767 static void blk_account_io_completion(struct request *req, unsigned int bytes)
768 {
769 	if (req->part && blk_do_io_stat(req)) {
770 		const int sgrp = op_stat_group(req_op(req));
771 
772 		part_stat_lock();
773 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
774 		part_stat_unlock();
775 	}
776 }
777 
778 static void blk_print_req_error(struct request *req, blk_status_t status)
779 {
780 	printk_ratelimited(KERN_ERR
781 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
782 		"phys_seg %u prio class %u\n",
783 		blk_status_to_str(status),
784 		req->q->disk ? req->q->disk->disk_name : "?",
785 		blk_rq_pos(req), (__force u32)req_op(req),
786 		blk_op_str(req_op(req)),
787 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
788 		req->nr_phys_segments,
789 		IOPRIO_PRIO_CLASS(req->ioprio));
790 }
791 
792 /*
793  * Fully end IO on a request. Does not support partial completions, or
794  * errors.
795  */
796 static void blk_complete_request(struct request *req)
797 {
798 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
799 	int total_bytes = blk_rq_bytes(req);
800 	struct bio *bio = req->bio;
801 
802 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
803 
804 	if (!bio)
805 		return;
806 
807 #ifdef CONFIG_BLK_DEV_INTEGRITY
808 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
809 		req->q->integrity.profile->complete_fn(req, total_bytes);
810 #endif
811 
812 	/*
813 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
814 	 * bio_endio().  Therefore, the keyslot must be released before that.
815 	 */
816 	blk_crypto_rq_put_keyslot(req);
817 
818 	blk_account_io_completion(req, total_bytes);
819 
820 	do {
821 		struct bio *next = bio->bi_next;
822 
823 		/* Completion has already been traced */
824 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
825 
826 		blk_zone_update_request_bio(req, bio);
827 
828 		if (!is_flush)
829 			bio_endio(bio);
830 		bio = next;
831 	} while (bio);
832 
833 	/*
834 	 * Reset counters so that the request stacking driver
835 	 * can find how many bytes remain in the request
836 	 * later.
837 	 */
838 	if (!req->end_io) {
839 		req->bio = NULL;
840 		req->__data_len = 0;
841 	}
842 }
843 
844 /**
845  * blk_update_request - Complete multiple bytes without completing the request
846  * @req:      the request being processed
847  * @error:    block status code
848  * @nr_bytes: number of bytes to complete for @req
849  *
850  * Description:
851  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
852  *     the request structure even if @req doesn't have leftover.
853  *     If @req has leftover, sets it up for the next range of segments.
854  *
855  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
856  *     %false return from this function.
857  *
858  * Note:
859  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
860  *      except in the consistency check at the end of this function.
861  *
862  * Return:
863  *     %false - this request doesn't have any more data
864  *     %true  - this request has more data
865  **/
866 bool blk_update_request(struct request *req, blk_status_t error,
867 		unsigned int nr_bytes)
868 {
869 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
870 	bool quiet = req->rq_flags & RQF_QUIET;
871 	int total_bytes;
872 
873 	trace_block_rq_complete(req, error, nr_bytes);
874 
875 	if (!req->bio)
876 		return false;
877 
878 #ifdef CONFIG_BLK_DEV_INTEGRITY
879 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
880 	    error == BLK_STS_OK)
881 		req->q->integrity.profile->complete_fn(req, nr_bytes);
882 #endif
883 
884 	/*
885 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
886 	 * bio_endio().  Therefore, the keyslot must be released before that.
887 	 */
888 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
889 		__blk_crypto_rq_put_keyslot(req);
890 
891 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
892 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
893 		blk_print_req_error(req, error);
894 		trace_block_rq_error(req, error, nr_bytes);
895 	}
896 
897 	blk_account_io_completion(req, nr_bytes);
898 
899 	total_bytes = 0;
900 	while (req->bio) {
901 		struct bio *bio = req->bio;
902 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
903 
904 		if (unlikely(error))
905 			bio->bi_status = error;
906 
907 		if (bio_bytes == bio->bi_iter.bi_size) {
908 			req->bio = bio->bi_next;
909 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
910 			/*
911 			 * Partial zone append completions cannot be supported
912 			 * as the BIO fragments may end up not being written
913 			 * sequentially.
914 			 */
915 			bio->bi_status = BLK_STS_IOERR;
916 		}
917 
918 		/* Completion has already been traced */
919 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
920 		if (unlikely(quiet))
921 			bio_set_flag(bio, BIO_QUIET);
922 
923 		bio_advance(bio, bio_bytes);
924 
925 		/* Don't actually finish bio if it's part of flush sequence */
926 		if (!bio->bi_iter.bi_size) {
927 			blk_zone_update_request_bio(req, bio);
928 			if (!is_flush)
929 				bio_endio(bio);
930 		}
931 
932 		total_bytes += bio_bytes;
933 		nr_bytes -= bio_bytes;
934 
935 		if (!nr_bytes)
936 			break;
937 	}
938 
939 	/*
940 	 * completely done
941 	 */
942 	if (!req->bio) {
943 		/*
944 		 * Reset counters so that the request stacking driver
945 		 * can find how many bytes remain in the request
946 		 * later.
947 		 */
948 		req->__data_len = 0;
949 		return false;
950 	}
951 
952 	req->__data_len -= total_bytes;
953 
954 	/* update sector only for requests with clear definition of sector */
955 	if (!blk_rq_is_passthrough(req))
956 		req->__sector += total_bytes >> 9;
957 
958 	/* mixed attributes always follow the first bio */
959 	if (req->rq_flags & RQF_MIXED_MERGE) {
960 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
961 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
962 	}
963 
964 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
965 		/*
966 		 * If total number of sectors is less than the first segment
967 		 * size, something has gone terribly wrong.
968 		 */
969 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
970 			blk_dump_rq_flags(req, "request botched");
971 			req->__data_len = blk_rq_cur_bytes(req);
972 		}
973 
974 		/* recalculate the number of segments */
975 		req->nr_phys_segments = blk_recalc_rq_segments(req);
976 	}
977 
978 	return true;
979 }
980 EXPORT_SYMBOL_GPL(blk_update_request);
981 
982 static inline void blk_account_io_done(struct request *req, u64 now)
983 {
984 	trace_block_io_done(req);
985 
986 	/*
987 	 * Account IO completion.  flush_rq isn't accounted as a
988 	 * normal IO on queueing nor completion.  Accounting the
989 	 * containing request is enough.
990 	 */
991 	if (blk_do_io_stat(req) && req->part &&
992 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
993 		const int sgrp = op_stat_group(req_op(req));
994 
995 		part_stat_lock();
996 		update_io_ticks(req->part, jiffies, true);
997 		part_stat_inc(req->part, ios[sgrp]);
998 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
999 		part_stat_local_dec(req->part,
1000 				    in_flight[op_is_write(req_op(req))]);
1001 		part_stat_unlock();
1002 	}
1003 }
1004 
1005 static inline void blk_account_io_start(struct request *req)
1006 {
1007 	trace_block_io_start(req);
1008 
1009 	if (blk_do_io_stat(req)) {
1010 		/*
1011 		 * All non-passthrough requests are created from a bio with one
1012 		 * exception: when a flush command that is part of a flush sequence
1013 		 * generated by the state machine in blk-flush.c is cloned onto the
1014 		 * lower device by dm-multipath we can get here without a bio.
1015 		 */
1016 		if (req->bio)
1017 			req->part = req->bio->bi_bdev;
1018 		else
1019 			req->part = req->q->disk->part0;
1020 
1021 		part_stat_lock();
1022 		update_io_ticks(req->part, jiffies, false);
1023 		part_stat_local_inc(req->part,
1024 				    in_flight[op_is_write(req_op(req))]);
1025 		part_stat_unlock();
1026 	}
1027 }
1028 
1029 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1030 {
1031 	if (rq->rq_flags & RQF_STATS)
1032 		blk_stat_add(rq, now);
1033 
1034 	blk_mq_sched_completed_request(rq, now);
1035 	blk_account_io_done(rq, now);
1036 }
1037 
1038 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1039 {
1040 	if (blk_mq_need_time_stamp(rq))
1041 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1042 
1043 	blk_mq_finish_request(rq);
1044 
1045 	if (rq->end_io) {
1046 		rq_qos_done(rq->q, rq);
1047 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1048 			blk_mq_free_request(rq);
1049 	} else {
1050 		blk_mq_free_request(rq);
1051 	}
1052 }
1053 EXPORT_SYMBOL(__blk_mq_end_request);
1054 
1055 void blk_mq_end_request(struct request *rq, blk_status_t error)
1056 {
1057 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1058 		BUG();
1059 	__blk_mq_end_request(rq, error);
1060 }
1061 EXPORT_SYMBOL(blk_mq_end_request);
1062 
1063 #define TAG_COMP_BATCH		32
1064 
1065 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1066 					  int *tag_array, int nr_tags)
1067 {
1068 	struct request_queue *q = hctx->queue;
1069 
1070 	blk_mq_sub_active_requests(hctx, nr_tags);
1071 
1072 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1073 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1074 }
1075 
1076 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1077 {
1078 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1079 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1080 	struct request *rq;
1081 	u64 now = 0;
1082 
1083 	if (iob->need_ts)
1084 		now = blk_time_get_ns();
1085 
1086 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1087 		prefetch(rq->bio);
1088 		prefetch(rq->rq_next);
1089 
1090 		blk_complete_request(rq);
1091 		if (iob->need_ts)
1092 			__blk_mq_end_request_acct(rq, now);
1093 
1094 		blk_mq_finish_request(rq);
1095 
1096 		rq_qos_done(rq->q, rq);
1097 
1098 		/*
1099 		 * If end_io handler returns NONE, then it still has
1100 		 * ownership of the request.
1101 		 */
1102 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103 			continue;
1104 
1105 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106 		if (!req_ref_put_and_test(rq))
1107 			continue;
1108 
1109 		blk_crypto_free_request(rq);
1110 		blk_pm_mark_last_busy(rq);
1111 
1112 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113 			if (cur_hctx)
1114 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115 			nr_tags = 0;
1116 			cur_hctx = rq->mq_hctx;
1117 		}
1118 		tags[nr_tags++] = rq->tag;
1119 	}
1120 
1121 	if (nr_tags)
1122 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125 
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129 	struct request *rq, *next;
1130 
1131 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132 		rq->q->mq_ops->complete(rq);
1133 }
1134 
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139 
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143 	return 0;
1144 }
1145 
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150 
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153 	int cpu = raw_smp_processor_id();
1154 
1155 	if (!IS_ENABLED(CONFIG_SMP) ||
1156 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157 		return false;
1158 	/*
1159 	 * With force threaded interrupts enabled, raising softirq from an SMP
1160 	 * function call will always result in waking the ksoftirqd thread.
1161 	 * This is probably worse than completing the request on a different
1162 	 * cache domain.
1163 	 */
1164 	if (force_irqthreads())
1165 		return false;
1166 
1167 	/* same CPU or cache domain and capacity?  Complete locally */
1168 	if (cpu == rq->mq_ctx->cpu ||
1169 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1171 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1172 		return false;
1173 
1174 	/* don't try to IPI to an offline CPU */
1175 	return cpu_online(rq->mq_ctx->cpu);
1176 }
1177 
1178 static void blk_mq_complete_send_ipi(struct request *rq)
1179 {
1180 	unsigned int cpu;
1181 
1182 	cpu = rq->mq_ctx->cpu;
1183 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1184 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1185 }
1186 
1187 static void blk_mq_raise_softirq(struct request *rq)
1188 {
1189 	struct llist_head *list;
1190 
1191 	preempt_disable();
1192 	list = this_cpu_ptr(&blk_cpu_done);
1193 	if (llist_add(&rq->ipi_list, list))
1194 		raise_softirq(BLOCK_SOFTIRQ);
1195 	preempt_enable();
1196 }
1197 
1198 bool blk_mq_complete_request_remote(struct request *rq)
1199 {
1200 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1201 
1202 	/*
1203 	 * For request which hctx has only one ctx mapping,
1204 	 * or a polled request, always complete locally,
1205 	 * it's pointless to redirect the completion.
1206 	 */
1207 	if ((rq->mq_hctx->nr_ctx == 1 &&
1208 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1209 	     rq->cmd_flags & REQ_POLLED)
1210 		return false;
1211 
1212 	if (blk_mq_complete_need_ipi(rq)) {
1213 		blk_mq_complete_send_ipi(rq);
1214 		return true;
1215 	}
1216 
1217 	if (rq->q->nr_hw_queues == 1) {
1218 		blk_mq_raise_softirq(rq);
1219 		return true;
1220 	}
1221 	return false;
1222 }
1223 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1224 
1225 /**
1226  * blk_mq_complete_request - end I/O on a request
1227  * @rq:		the request being processed
1228  *
1229  * Description:
1230  *	Complete a request by scheduling the ->complete_rq operation.
1231  **/
1232 void blk_mq_complete_request(struct request *rq)
1233 {
1234 	if (!blk_mq_complete_request_remote(rq))
1235 		rq->q->mq_ops->complete(rq);
1236 }
1237 EXPORT_SYMBOL(blk_mq_complete_request);
1238 
1239 /**
1240  * blk_mq_start_request - Start processing a request
1241  * @rq: Pointer to request to be started
1242  *
1243  * Function used by device drivers to notify the block layer that a request
1244  * is going to be processed now, so blk layer can do proper initializations
1245  * such as starting the timeout timer.
1246  */
1247 void blk_mq_start_request(struct request *rq)
1248 {
1249 	struct request_queue *q = rq->q;
1250 
1251 	trace_block_rq_issue(rq);
1252 
1253 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1254 	    !blk_rq_is_passthrough(rq)) {
1255 		rq->io_start_time_ns = blk_time_get_ns();
1256 		rq->stats_sectors = blk_rq_sectors(rq);
1257 		rq->rq_flags |= RQF_STATS;
1258 		rq_qos_issue(q, rq);
1259 	}
1260 
1261 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262 
1263 	blk_add_timer(rq);
1264 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1265 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	/*
1305 	 * Any request allocated from sched tags can't be issued to
1306 	 * ->queue_rqs() directly
1307 	 */
1308 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1309 		plug->has_elevator = true;
1310 	rq->rq_next = NULL;
1311 	rq_list_add(&plug->mq_list, rq);
1312 	plug->rq_count++;
1313 }
1314 
1315 /**
1316  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1317  * @rq:		request to insert
1318  * @at_head:    insert request at head or tail of queue
1319  *
1320  * Description:
1321  *    Insert a fully prepared request at the back of the I/O scheduler queue
1322  *    for execution.  Don't wait for completion.
1323  *
1324  * Note:
1325  *    This function will invoke @done directly if the queue is dead.
1326  */
1327 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1328 {
1329 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1330 
1331 	WARN_ON(irqs_disabled());
1332 	WARN_ON(!blk_rq_is_passthrough(rq));
1333 
1334 	blk_account_io_start(rq);
1335 
1336 	if (current->plug && !at_head) {
1337 		blk_add_rq_to_plug(current->plug, rq);
1338 		return;
1339 	}
1340 
1341 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1342 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1343 }
1344 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1345 
1346 struct blk_rq_wait {
1347 	struct completion done;
1348 	blk_status_t ret;
1349 };
1350 
1351 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1352 {
1353 	struct blk_rq_wait *wait = rq->end_io_data;
1354 
1355 	wait->ret = ret;
1356 	complete(&wait->done);
1357 	return RQ_END_IO_NONE;
1358 }
1359 
1360 bool blk_rq_is_poll(struct request *rq)
1361 {
1362 	if (!rq->mq_hctx)
1363 		return false;
1364 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1365 		return false;
1366 	return true;
1367 }
1368 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1369 
1370 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1371 {
1372 	do {
1373 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1374 		cond_resched();
1375 	} while (!completion_done(wait));
1376 }
1377 
1378 /**
1379  * blk_execute_rq - insert a request into queue for execution
1380  * @rq:		request to insert
1381  * @at_head:    insert request at head or tail of queue
1382  *
1383  * Description:
1384  *    Insert a fully prepared request at the back of the I/O scheduler queue
1385  *    for execution and wait for completion.
1386  * Return: The blk_status_t result provided to blk_mq_end_request().
1387  */
1388 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1389 {
1390 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1391 	struct blk_rq_wait wait = {
1392 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1393 	};
1394 
1395 	WARN_ON(irqs_disabled());
1396 	WARN_ON(!blk_rq_is_passthrough(rq));
1397 
1398 	rq->end_io_data = &wait;
1399 	rq->end_io = blk_end_sync_rq;
1400 
1401 	blk_account_io_start(rq);
1402 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1403 	blk_mq_run_hw_queue(hctx, false);
1404 
1405 	if (blk_rq_is_poll(rq))
1406 		blk_rq_poll_completion(rq, &wait.done);
1407 	else
1408 		blk_wait_io(&wait.done);
1409 
1410 	return wait.ret;
1411 }
1412 EXPORT_SYMBOL(blk_execute_rq);
1413 
1414 static void __blk_mq_requeue_request(struct request *rq)
1415 {
1416 	struct request_queue *q = rq->q;
1417 
1418 	blk_mq_put_driver_tag(rq);
1419 
1420 	trace_block_rq_requeue(rq);
1421 	rq_qos_requeue(q, rq);
1422 
1423 	if (blk_mq_request_started(rq)) {
1424 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1425 		rq->rq_flags &= ~RQF_TIMED_OUT;
1426 	}
1427 }
1428 
1429 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1430 {
1431 	struct request_queue *q = rq->q;
1432 	unsigned long flags;
1433 
1434 	__blk_mq_requeue_request(rq);
1435 
1436 	/* this request will be re-inserted to io scheduler queue */
1437 	blk_mq_sched_requeue_request(rq);
1438 
1439 	spin_lock_irqsave(&q->requeue_lock, flags);
1440 	list_add_tail(&rq->queuelist, &q->requeue_list);
1441 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1442 
1443 	if (kick_requeue_list)
1444 		blk_mq_kick_requeue_list(q);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447 
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450 	struct request_queue *q =
1451 		container_of(work, struct request_queue, requeue_work.work);
1452 	LIST_HEAD(rq_list);
1453 	LIST_HEAD(flush_list);
1454 	struct request *rq;
1455 
1456 	spin_lock_irq(&q->requeue_lock);
1457 	list_splice_init(&q->requeue_list, &rq_list);
1458 	list_splice_init(&q->flush_list, &flush_list);
1459 	spin_unlock_irq(&q->requeue_lock);
1460 
1461 	while (!list_empty(&rq_list)) {
1462 		rq = list_entry(rq_list.next, struct request, queuelist);
1463 		/*
1464 		 * If RQF_DONTPREP ist set, the request has been started by the
1465 		 * driver already and might have driver-specific data allocated
1466 		 * already.  Insert it into the hctx dispatch list to avoid
1467 		 * block layer merges for the request.
1468 		 */
1469 		if (rq->rq_flags & RQF_DONTPREP) {
1470 			list_del_init(&rq->queuelist);
1471 			blk_mq_request_bypass_insert(rq, 0);
1472 		} else {
1473 			list_del_init(&rq->queuelist);
1474 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1475 		}
1476 	}
1477 
1478 	while (!list_empty(&flush_list)) {
1479 		rq = list_entry(flush_list.next, struct request, queuelist);
1480 		list_del_init(&rq->queuelist);
1481 		blk_mq_insert_request(rq, 0);
1482 	}
1483 
1484 	blk_mq_run_hw_queues(q, false);
1485 }
1486 
1487 void blk_mq_kick_requeue_list(struct request_queue *q)
1488 {
1489 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1490 }
1491 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1492 
1493 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1494 				    unsigned long msecs)
1495 {
1496 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1497 				    msecs_to_jiffies(msecs));
1498 }
1499 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1500 
1501 static bool blk_is_flush_data_rq(struct request *rq)
1502 {
1503 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1504 }
1505 
1506 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1507 {
1508 	/*
1509 	 * If we find a request that isn't idle we know the queue is busy
1510 	 * as it's checked in the iter.
1511 	 * Return false to stop the iteration.
1512 	 *
1513 	 * In case of queue quiesce, if one flush data request is completed,
1514 	 * don't count it as inflight given the flush sequence is suspended,
1515 	 * and the original flush data request is invisible to driver, just
1516 	 * like other pending requests because of quiesce
1517 	 */
1518 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1519 				blk_is_flush_data_rq(rq) &&
1520 				blk_mq_request_completed(rq))) {
1521 		bool *busy = priv;
1522 
1523 		*busy = true;
1524 		return false;
1525 	}
1526 
1527 	return true;
1528 }
1529 
1530 bool blk_mq_queue_inflight(struct request_queue *q)
1531 {
1532 	bool busy = false;
1533 
1534 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1535 	return busy;
1536 }
1537 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1538 
1539 static void blk_mq_rq_timed_out(struct request *req)
1540 {
1541 	req->rq_flags |= RQF_TIMED_OUT;
1542 	if (req->q->mq_ops->timeout) {
1543 		enum blk_eh_timer_return ret;
1544 
1545 		ret = req->q->mq_ops->timeout(req);
1546 		if (ret == BLK_EH_DONE)
1547 			return;
1548 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1549 	}
1550 
1551 	blk_add_timer(req);
1552 }
1553 
1554 struct blk_expired_data {
1555 	bool has_timedout_rq;
1556 	unsigned long next;
1557 	unsigned long timeout_start;
1558 };
1559 
1560 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1561 {
1562 	unsigned long deadline;
1563 
1564 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1565 		return false;
1566 	if (rq->rq_flags & RQF_TIMED_OUT)
1567 		return false;
1568 
1569 	deadline = READ_ONCE(rq->deadline);
1570 	if (time_after_eq(expired->timeout_start, deadline))
1571 		return true;
1572 
1573 	if (expired->next == 0)
1574 		expired->next = deadline;
1575 	else if (time_after(expired->next, deadline))
1576 		expired->next = deadline;
1577 	return false;
1578 }
1579 
1580 void blk_mq_put_rq_ref(struct request *rq)
1581 {
1582 	if (is_flush_rq(rq)) {
1583 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1584 			blk_mq_free_request(rq);
1585 	} else if (req_ref_put_and_test(rq)) {
1586 		__blk_mq_free_request(rq);
1587 	}
1588 }
1589 
1590 static bool blk_mq_check_expired(struct request *rq, void *priv)
1591 {
1592 	struct blk_expired_data *expired = priv;
1593 
1594 	/*
1595 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1596 	 * be reallocated underneath the timeout handler's processing, then
1597 	 * the expire check is reliable. If the request is not expired, then
1598 	 * it was completed and reallocated as a new request after returning
1599 	 * from blk_mq_check_expired().
1600 	 */
1601 	if (blk_mq_req_expired(rq, expired)) {
1602 		expired->has_timedout_rq = true;
1603 		return false;
1604 	}
1605 	return true;
1606 }
1607 
1608 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1609 {
1610 	struct blk_expired_data *expired = priv;
1611 
1612 	if (blk_mq_req_expired(rq, expired))
1613 		blk_mq_rq_timed_out(rq);
1614 	return true;
1615 }
1616 
1617 static void blk_mq_timeout_work(struct work_struct *work)
1618 {
1619 	struct request_queue *q =
1620 		container_of(work, struct request_queue, timeout_work);
1621 	struct blk_expired_data expired = {
1622 		.timeout_start = jiffies,
1623 	};
1624 	struct blk_mq_hw_ctx *hctx;
1625 	unsigned long i;
1626 
1627 	/* A deadlock might occur if a request is stuck requiring a
1628 	 * timeout at the same time a queue freeze is waiting
1629 	 * completion, since the timeout code would not be able to
1630 	 * acquire the queue reference here.
1631 	 *
1632 	 * That's why we don't use blk_queue_enter here; instead, we use
1633 	 * percpu_ref_tryget directly, because we need to be able to
1634 	 * obtain a reference even in the short window between the queue
1635 	 * starting to freeze, by dropping the first reference in
1636 	 * blk_freeze_queue_start, and the moment the last request is
1637 	 * consumed, marked by the instant q_usage_counter reaches
1638 	 * zero.
1639 	 */
1640 	if (!percpu_ref_tryget(&q->q_usage_counter))
1641 		return;
1642 
1643 	/* check if there is any timed-out request */
1644 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1645 	if (expired.has_timedout_rq) {
1646 		/*
1647 		 * Before walking tags, we must ensure any submit started
1648 		 * before the current time has finished. Since the submit
1649 		 * uses srcu or rcu, wait for a synchronization point to
1650 		 * ensure all running submits have finished
1651 		 */
1652 		blk_mq_wait_quiesce_done(q->tag_set);
1653 
1654 		expired.next = 0;
1655 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1656 	}
1657 
1658 	if (expired.next != 0) {
1659 		mod_timer(&q->timeout, expired.next);
1660 	} else {
1661 		/*
1662 		 * Request timeouts are handled as a forward rolling timer. If
1663 		 * we end up here it means that no requests are pending and
1664 		 * also that no request has been pending for a while. Mark
1665 		 * each hctx as idle.
1666 		 */
1667 		queue_for_each_hw_ctx(q, hctx, i) {
1668 			/* the hctx may be unmapped, so check it here */
1669 			if (blk_mq_hw_queue_mapped(hctx))
1670 				blk_mq_tag_idle(hctx);
1671 		}
1672 	}
1673 	blk_queue_exit(q);
1674 }
1675 
1676 struct flush_busy_ctx_data {
1677 	struct blk_mq_hw_ctx *hctx;
1678 	struct list_head *list;
1679 };
1680 
1681 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1682 {
1683 	struct flush_busy_ctx_data *flush_data = data;
1684 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1685 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1686 	enum hctx_type type = hctx->type;
1687 
1688 	spin_lock(&ctx->lock);
1689 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1690 	sbitmap_clear_bit(sb, bitnr);
1691 	spin_unlock(&ctx->lock);
1692 	return true;
1693 }
1694 
1695 /*
1696  * Process software queues that have been marked busy, splicing them
1697  * to the for-dispatch
1698  */
1699 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1700 {
1701 	struct flush_busy_ctx_data data = {
1702 		.hctx = hctx,
1703 		.list = list,
1704 	};
1705 
1706 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1707 }
1708 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1709 
1710 struct dispatch_rq_data {
1711 	struct blk_mq_hw_ctx *hctx;
1712 	struct request *rq;
1713 };
1714 
1715 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1716 		void *data)
1717 {
1718 	struct dispatch_rq_data *dispatch_data = data;
1719 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1720 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1721 	enum hctx_type type = hctx->type;
1722 
1723 	spin_lock(&ctx->lock);
1724 	if (!list_empty(&ctx->rq_lists[type])) {
1725 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1726 		list_del_init(&dispatch_data->rq->queuelist);
1727 		if (list_empty(&ctx->rq_lists[type]))
1728 			sbitmap_clear_bit(sb, bitnr);
1729 	}
1730 	spin_unlock(&ctx->lock);
1731 
1732 	return !dispatch_data->rq;
1733 }
1734 
1735 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1736 					struct blk_mq_ctx *start)
1737 {
1738 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1739 	struct dispatch_rq_data data = {
1740 		.hctx = hctx,
1741 		.rq   = NULL,
1742 	};
1743 
1744 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1745 			       dispatch_rq_from_ctx, &data);
1746 
1747 	return data.rq;
1748 }
1749 
1750 bool __blk_mq_alloc_driver_tag(struct request *rq)
1751 {
1752 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1753 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1754 	int tag;
1755 
1756 	blk_mq_tag_busy(rq->mq_hctx);
1757 
1758 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1759 		bt = &rq->mq_hctx->tags->breserved_tags;
1760 		tag_offset = 0;
1761 	} else {
1762 		if (!hctx_may_queue(rq->mq_hctx, bt))
1763 			return false;
1764 	}
1765 
1766 	tag = __sbitmap_queue_get(bt);
1767 	if (tag == BLK_MQ_NO_TAG)
1768 		return false;
1769 
1770 	rq->tag = tag + tag_offset;
1771 	blk_mq_inc_active_requests(rq->mq_hctx);
1772 	return true;
1773 }
1774 
1775 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1776 				int flags, void *key)
1777 {
1778 	struct blk_mq_hw_ctx *hctx;
1779 
1780 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1781 
1782 	spin_lock(&hctx->dispatch_wait_lock);
1783 	if (!list_empty(&wait->entry)) {
1784 		struct sbitmap_queue *sbq;
1785 
1786 		list_del_init(&wait->entry);
1787 		sbq = &hctx->tags->bitmap_tags;
1788 		atomic_dec(&sbq->ws_active);
1789 	}
1790 	spin_unlock(&hctx->dispatch_wait_lock);
1791 
1792 	blk_mq_run_hw_queue(hctx, true);
1793 	return 1;
1794 }
1795 
1796 /*
1797  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1798  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1799  * restart. For both cases, take care to check the condition again after
1800  * marking us as waiting.
1801  */
1802 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1803 				 struct request *rq)
1804 {
1805 	struct sbitmap_queue *sbq;
1806 	struct wait_queue_head *wq;
1807 	wait_queue_entry_t *wait;
1808 	bool ret;
1809 
1810 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1811 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1812 		blk_mq_sched_mark_restart_hctx(hctx);
1813 
1814 		/*
1815 		 * It's possible that a tag was freed in the window between the
1816 		 * allocation failure and adding the hardware queue to the wait
1817 		 * queue.
1818 		 *
1819 		 * Don't clear RESTART here, someone else could have set it.
1820 		 * At most this will cost an extra queue run.
1821 		 */
1822 		return blk_mq_get_driver_tag(rq);
1823 	}
1824 
1825 	wait = &hctx->dispatch_wait;
1826 	if (!list_empty_careful(&wait->entry))
1827 		return false;
1828 
1829 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1830 		sbq = &hctx->tags->breserved_tags;
1831 	else
1832 		sbq = &hctx->tags->bitmap_tags;
1833 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1834 
1835 	spin_lock_irq(&wq->lock);
1836 	spin_lock(&hctx->dispatch_wait_lock);
1837 	if (!list_empty(&wait->entry)) {
1838 		spin_unlock(&hctx->dispatch_wait_lock);
1839 		spin_unlock_irq(&wq->lock);
1840 		return false;
1841 	}
1842 
1843 	atomic_inc(&sbq->ws_active);
1844 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1845 	__add_wait_queue(wq, wait);
1846 
1847 	/*
1848 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1849 	 * not imply barrier in case of failure.
1850 	 *
1851 	 * Order adding us to wait queue and allocating driver tag.
1852 	 *
1853 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1854 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1855 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1856 	 *
1857 	 * Otherwise, re-order of adding wait queue and getting driver tag
1858 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1859 	 * the waitqueue_active() may not observe us in wait queue.
1860 	 */
1861 	smp_mb();
1862 
1863 	/*
1864 	 * It's possible that a tag was freed in the window between the
1865 	 * allocation failure and adding the hardware queue to the wait
1866 	 * queue.
1867 	 */
1868 	ret = blk_mq_get_driver_tag(rq);
1869 	if (!ret) {
1870 		spin_unlock(&hctx->dispatch_wait_lock);
1871 		spin_unlock_irq(&wq->lock);
1872 		return false;
1873 	}
1874 
1875 	/*
1876 	 * We got a tag, remove ourselves from the wait queue to ensure
1877 	 * someone else gets the wakeup.
1878 	 */
1879 	list_del_init(&wait->entry);
1880 	atomic_dec(&sbq->ws_active);
1881 	spin_unlock(&hctx->dispatch_wait_lock);
1882 	spin_unlock_irq(&wq->lock);
1883 
1884 	return true;
1885 }
1886 
1887 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1888 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1889 /*
1890  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1891  * - EWMA is one simple way to compute running average value
1892  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1893  * - take 4 as factor for avoiding to get too small(0) result, and this
1894  *   factor doesn't matter because EWMA decreases exponentially
1895  */
1896 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1897 {
1898 	unsigned int ewma;
1899 
1900 	ewma = hctx->dispatch_busy;
1901 
1902 	if (!ewma && !busy)
1903 		return;
1904 
1905 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1906 	if (busy)
1907 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1908 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1909 
1910 	hctx->dispatch_busy = ewma;
1911 }
1912 
1913 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1914 
1915 static void blk_mq_handle_dev_resource(struct request *rq,
1916 				       struct list_head *list)
1917 {
1918 	list_add(&rq->queuelist, list);
1919 	__blk_mq_requeue_request(rq);
1920 }
1921 
1922 enum prep_dispatch {
1923 	PREP_DISPATCH_OK,
1924 	PREP_DISPATCH_NO_TAG,
1925 	PREP_DISPATCH_NO_BUDGET,
1926 };
1927 
1928 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1929 						  bool need_budget)
1930 {
1931 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1932 	int budget_token = -1;
1933 
1934 	if (need_budget) {
1935 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1936 		if (budget_token < 0) {
1937 			blk_mq_put_driver_tag(rq);
1938 			return PREP_DISPATCH_NO_BUDGET;
1939 		}
1940 		blk_mq_set_rq_budget_token(rq, budget_token);
1941 	}
1942 
1943 	if (!blk_mq_get_driver_tag(rq)) {
1944 		/*
1945 		 * The initial allocation attempt failed, so we need to
1946 		 * rerun the hardware queue when a tag is freed. The
1947 		 * waitqueue takes care of that. If the queue is run
1948 		 * before we add this entry back on the dispatch list,
1949 		 * we'll re-run it below.
1950 		 */
1951 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1952 			/*
1953 			 * All budgets not got from this function will be put
1954 			 * together during handling partial dispatch
1955 			 */
1956 			if (need_budget)
1957 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1958 			return PREP_DISPATCH_NO_TAG;
1959 		}
1960 	}
1961 
1962 	return PREP_DISPATCH_OK;
1963 }
1964 
1965 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1966 static void blk_mq_release_budgets(struct request_queue *q,
1967 		struct list_head *list)
1968 {
1969 	struct request *rq;
1970 
1971 	list_for_each_entry(rq, list, queuelist) {
1972 		int budget_token = blk_mq_get_rq_budget_token(rq);
1973 
1974 		if (budget_token >= 0)
1975 			blk_mq_put_dispatch_budget(q, budget_token);
1976 	}
1977 }
1978 
1979 /*
1980  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1981  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1982  * details)
1983  * Attention, we should explicitly call this in unusual cases:
1984  *  1) did not queue everything initially scheduled to queue
1985  *  2) the last attempt to queue a request failed
1986  */
1987 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1988 			      bool from_schedule)
1989 {
1990 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1991 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1992 		hctx->queue->mq_ops->commit_rqs(hctx);
1993 	}
1994 }
1995 
1996 /*
1997  * Returns true if we did some work AND can potentially do more.
1998  */
1999 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2000 			     unsigned int nr_budgets)
2001 {
2002 	enum prep_dispatch prep;
2003 	struct request_queue *q = hctx->queue;
2004 	struct request *rq;
2005 	int queued;
2006 	blk_status_t ret = BLK_STS_OK;
2007 	bool needs_resource = false;
2008 
2009 	if (list_empty(list))
2010 		return false;
2011 
2012 	/*
2013 	 * Now process all the entries, sending them to the driver.
2014 	 */
2015 	queued = 0;
2016 	do {
2017 		struct blk_mq_queue_data bd;
2018 
2019 		rq = list_first_entry(list, struct request, queuelist);
2020 
2021 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2022 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2023 		if (prep != PREP_DISPATCH_OK)
2024 			break;
2025 
2026 		list_del_init(&rq->queuelist);
2027 
2028 		bd.rq = rq;
2029 		bd.last = list_empty(list);
2030 
2031 		/*
2032 		 * once the request is queued to lld, no need to cover the
2033 		 * budget any more
2034 		 */
2035 		if (nr_budgets)
2036 			nr_budgets--;
2037 		ret = q->mq_ops->queue_rq(hctx, &bd);
2038 		switch (ret) {
2039 		case BLK_STS_OK:
2040 			queued++;
2041 			break;
2042 		case BLK_STS_RESOURCE:
2043 			needs_resource = true;
2044 			fallthrough;
2045 		case BLK_STS_DEV_RESOURCE:
2046 			blk_mq_handle_dev_resource(rq, list);
2047 			goto out;
2048 		default:
2049 			blk_mq_end_request(rq, ret);
2050 		}
2051 	} while (!list_empty(list));
2052 out:
2053 	/* If we didn't flush the entire list, we could have told the driver
2054 	 * there was more coming, but that turned out to be a lie.
2055 	 */
2056 	if (!list_empty(list) || ret != BLK_STS_OK)
2057 		blk_mq_commit_rqs(hctx, queued, false);
2058 
2059 	/*
2060 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2061 	 * that is where we will continue on next queue run.
2062 	 */
2063 	if (!list_empty(list)) {
2064 		bool needs_restart;
2065 		/* For non-shared tags, the RESTART check will suffice */
2066 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2067 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2068 			blk_mq_is_shared_tags(hctx->flags));
2069 
2070 		if (nr_budgets)
2071 			blk_mq_release_budgets(q, list);
2072 
2073 		spin_lock(&hctx->lock);
2074 		list_splice_tail_init(list, &hctx->dispatch);
2075 		spin_unlock(&hctx->lock);
2076 
2077 		/*
2078 		 * Order adding requests to hctx->dispatch and checking
2079 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2080 		 * in blk_mq_sched_restart(). Avoid restart code path to
2081 		 * miss the new added requests to hctx->dispatch, meantime
2082 		 * SCHED_RESTART is observed here.
2083 		 */
2084 		smp_mb();
2085 
2086 		/*
2087 		 * If SCHED_RESTART was set by the caller of this function and
2088 		 * it is no longer set that means that it was cleared by another
2089 		 * thread and hence that a queue rerun is needed.
2090 		 *
2091 		 * If 'no_tag' is set, that means that we failed getting
2092 		 * a driver tag with an I/O scheduler attached. If our dispatch
2093 		 * waitqueue is no longer active, ensure that we run the queue
2094 		 * AFTER adding our entries back to the list.
2095 		 *
2096 		 * If no I/O scheduler has been configured it is possible that
2097 		 * the hardware queue got stopped and restarted before requests
2098 		 * were pushed back onto the dispatch list. Rerun the queue to
2099 		 * avoid starvation. Notes:
2100 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2101 		 *   been stopped before rerunning a queue.
2102 		 * - Some but not all block drivers stop a queue before
2103 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2104 		 *   and dm-rq.
2105 		 *
2106 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2107 		 * bit is set, run queue after a delay to avoid IO stalls
2108 		 * that could otherwise occur if the queue is idle.  We'll do
2109 		 * similar if we couldn't get budget or couldn't lock a zone
2110 		 * and SCHED_RESTART is set.
2111 		 */
2112 		needs_restart = blk_mq_sched_needs_restart(hctx);
2113 		if (prep == PREP_DISPATCH_NO_BUDGET)
2114 			needs_resource = true;
2115 		if (!needs_restart ||
2116 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2117 			blk_mq_run_hw_queue(hctx, true);
2118 		else if (needs_resource)
2119 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2120 
2121 		blk_mq_update_dispatch_busy(hctx, true);
2122 		return false;
2123 	}
2124 
2125 	blk_mq_update_dispatch_busy(hctx, false);
2126 	return true;
2127 }
2128 
2129 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2130 {
2131 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2132 
2133 	if (cpu >= nr_cpu_ids)
2134 		cpu = cpumask_first(hctx->cpumask);
2135 	return cpu;
2136 }
2137 
2138 /*
2139  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2140  * it for speeding up the check
2141  */
2142 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2143 {
2144         return hctx->next_cpu >= nr_cpu_ids;
2145 }
2146 
2147 /*
2148  * It'd be great if the workqueue API had a way to pass
2149  * in a mask and had some smarts for more clever placement.
2150  * For now we just round-robin here, switching for every
2151  * BLK_MQ_CPU_WORK_BATCH queued items.
2152  */
2153 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155 	bool tried = false;
2156 	int next_cpu = hctx->next_cpu;
2157 
2158 	/* Switch to unbound if no allowable CPUs in this hctx */
2159 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2160 		return WORK_CPU_UNBOUND;
2161 
2162 	if (--hctx->next_cpu_batch <= 0) {
2163 select_cpu:
2164 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2165 				cpu_online_mask);
2166 		if (next_cpu >= nr_cpu_ids)
2167 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2168 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2169 	}
2170 
2171 	/*
2172 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2173 	 * and it should only happen in the path of handling CPU DEAD.
2174 	 */
2175 	if (!cpu_online(next_cpu)) {
2176 		if (!tried) {
2177 			tried = true;
2178 			goto select_cpu;
2179 		}
2180 
2181 		/*
2182 		 * Make sure to re-select CPU next time once after CPUs
2183 		 * in hctx->cpumask become online again.
2184 		 */
2185 		hctx->next_cpu = next_cpu;
2186 		hctx->next_cpu_batch = 1;
2187 		return WORK_CPU_UNBOUND;
2188 	}
2189 
2190 	hctx->next_cpu = next_cpu;
2191 	return next_cpu;
2192 }
2193 
2194 /**
2195  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2196  * @hctx: Pointer to the hardware queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queue.
2198  *
2199  * Run a hardware queue asynchronously with a delay of @msecs.
2200  */
2201 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2202 {
2203 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2204 		return;
2205 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2206 				    msecs_to_jiffies(msecs));
2207 }
2208 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2209 
2210 /**
2211  * blk_mq_run_hw_queue - Start to run a hardware queue.
2212  * @hctx: Pointer to the hardware queue to run.
2213  * @async: If we want to run the queue asynchronously.
2214  *
2215  * Check if the request queue is not in a quiesced state and if there are
2216  * pending requests to be sent. If this is true, run the queue to send requests
2217  * to hardware.
2218  */
2219 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2220 {
2221 	bool need_run;
2222 
2223 	/*
2224 	 * We can't run the queue inline with interrupts disabled.
2225 	 */
2226 	WARN_ON_ONCE(!async && in_interrupt());
2227 
2228 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2229 
2230 	/*
2231 	 * When queue is quiesced, we may be switching io scheduler, or
2232 	 * updating nr_hw_queues, or other things, and we can't run queue
2233 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2234 	 *
2235 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2236 	 * quiesced.
2237 	 */
2238 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2239 		need_run = !blk_queue_quiesced(hctx->queue) &&
2240 		blk_mq_hctx_has_pending(hctx));
2241 
2242 	if (!need_run)
2243 		return;
2244 
2245 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2246 		blk_mq_delay_run_hw_queue(hctx, 0);
2247 		return;
2248 	}
2249 
2250 	blk_mq_run_dispatch_ops(hctx->queue,
2251 				blk_mq_sched_dispatch_requests(hctx));
2252 }
2253 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2254 
2255 /*
2256  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2257  * scheduler.
2258  */
2259 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2260 {
2261 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2262 	/*
2263 	 * If the IO scheduler does not respect hardware queues when
2264 	 * dispatching, we just don't bother with multiple HW queues and
2265 	 * dispatch from hctx for the current CPU since running multiple queues
2266 	 * just causes lock contention inside the scheduler and pointless cache
2267 	 * bouncing.
2268 	 */
2269 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2270 
2271 	if (!blk_mq_hctx_stopped(hctx))
2272 		return hctx;
2273 	return NULL;
2274 }
2275 
2276 /**
2277  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2278  * @q: Pointer to the request queue to run.
2279  * @async: If we want to run the queue asynchronously.
2280  */
2281 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2282 {
2283 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2284 	unsigned long i;
2285 
2286 	sq_hctx = NULL;
2287 	if (blk_queue_sq_sched(q))
2288 		sq_hctx = blk_mq_get_sq_hctx(q);
2289 	queue_for_each_hw_ctx(q, hctx, i) {
2290 		if (blk_mq_hctx_stopped(hctx))
2291 			continue;
2292 		/*
2293 		 * Dispatch from this hctx either if there's no hctx preferred
2294 		 * by IO scheduler or if it has requests that bypass the
2295 		 * scheduler.
2296 		 */
2297 		if (!sq_hctx || sq_hctx == hctx ||
2298 		    !list_empty_careful(&hctx->dispatch))
2299 			blk_mq_run_hw_queue(hctx, async);
2300 	}
2301 }
2302 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2303 
2304 /**
2305  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2306  * @q: Pointer to the request queue to run.
2307  * @msecs: Milliseconds of delay to wait before running the queues.
2308  */
2309 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2310 {
2311 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2312 	unsigned long i;
2313 
2314 	sq_hctx = NULL;
2315 	if (blk_queue_sq_sched(q))
2316 		sq_hctx = blk_mq_get_sq_hctx(q);
2317 	queue_for_each_hw_ctx(q, hctx, i) {
2318 		if (blk_mq_hctx_stopped(hctx))
2319 			continue;
2320 		/*
2321 		 * If there is already a run_work pending, leave the
2322 		 * pending delay untouched. Otherwise, a hctx can stall
2323 		 * if another hctx is re-delaying the other's work
2324 		 * before the work executes.
2325 		 */
2326 		if (delayed_work_pending(&hctx->run_work))
2327 			continue;
2328 		/*
2329 		 * Dispatch from this hctx either if there's no hctx preferred
2330 		 * by IO scheduler or if it has requests that bypass the
2331 		 * scheduler.
2332 		 */
2333 		if (!sq_hctx || sq_hctx == hctx ||
2334 		    !list_empty_careful(&hctx->dispatch))
2335 			blk_mq_delay_run_hw_queue(hctx, msecs);
2336 	}
2337 }
2338 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2339 
2340 /*
2341  * This function is often used for pausing .queue_rq() by driver when
2342  * there isn't enough resource or some conditions aren't satisfied, and
2343  * BLK_STS_RESOURCE is usually returned.
2344  *
2345  * We do not guarantee that dispatch can be drained or blocked
2346  * after blk_mq_stop_hw_queue() returns. Please use
2347  * blk_mq_quiesce_queue() for that requirement.
2348  */
2349 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2350 {
2351 	cancel_delayed_work(&hctx->run_work);
2352 
2353 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2354 }
2355 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2356 
2357 /*
2358  * This function is often used for pausing .queue_rq() by driver when
2359  * there isn't enough resource or some conditions aren't satisfied, and
2360  * BLK_STS_RESOURCE is usually returned.
2361  *
2362  * We do not guarantee that dispatch can be drained or blocked
2363  * after blk_mq_stop_hw_queues() returns. Please use
2364  * blk_mq_quiesce_queue() for that requirement.
2365  */
2366 void blk_mq_stop_hw_queues(struct request_queue *q)
2367 {
2368 	struct blk_mq_hw_ctx *hctx;
2369 	unsigned long i;
2370 
2371 	queue_for_each_hw_ctx(q, hctx, i)
2372 		blk_mq_stop_hw_queue(hctx);
2373 }
2374 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2375 
2376 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2377 {
2378 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2379 
2380 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2381 }
2382 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2383 
2384 void blk_mq_start_hw_queues(struct request_queue *q)
2385 {
2386 	struct blk_mq_hw_ctx *hctx;
2387 	unsigned long i;
2388 
2389 	queue_for_each_hw_ctx(q, hctx, i)
2390 		blk_mq_start_hw_queue(hctx);
2391 }
2392 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2393 
2394 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2395 {
2396 	if (!blk_mq_hctx_stopped(hctx))
2397 		return;
2398 
2399 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2400 	blk_mq_run_hw_queue(hctx, async);
2401 }
2402 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2403 
2404 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2405 {
2406 	struct blk_mq_hw_ctx *hctx;
2407 	unsigned long i;
2408 
2409 	queue_for_each_hw_ctx(q, hctx, i)
2410 		blk_mq_start_stopped_hw_queue(hctx, async ||
2411 					(hctx->flags & BLK_MQ_F_BLOCKING));
2412 }
2413 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2414 
2415 static void blk_mq_run_work_fn(struct work_struct *work)
2416 {
2417 	struct blk_mq_hw_ctx *hctx =
2418 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2419 
2420 	blk_mq_run_dispatch_ops(hctx->queue,
2421 				blk_mq_sched_dispatch_requests(hctx));
2422 }
2423 
2424 /**
2425  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2426  * @rq: Pointer to request to be inserted.
2427  * @flags: BLK_MQ_INSERT_*
2428  *
2429  * Should only be used carefully, when the caller knows we want to
2430  * bypass a potential IO scheduler on the target device.
2431  */
2432 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2433 {
2434 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2435 
2436 	spin_lock(&hctx->lock);
2437 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2438 		list_add(&rq->queuelist, &hctx->dispatch);
2439 	else
2440 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2441 	spin_unlock(&hctx->lock);
2442 }
2443 
2444 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2445 		struct blk_mq_ctx *ctx, struct list_head *list,
2446 		bool run_queue_async)
2447 {
2448 	struct request *rq;
2449 	enum hctx_type type = hctx->type;
2450 
2451 	/*
2452 	 * Try to issue requests directly if the hw queue isn't busy to save an
2453 	 * extra enqueue & dequeue to the sw queue.
2454 	 */
2455 	if (!hctx->dispatch_busy && !run_queue_async) {
2456 		blk_mq_run_dispatch_ops(hctx->queue,
2457 			blk_mq_try_issue_list_directly(hctx, list));
2458 		if (list_empty(list))
2459 			goto out;
2460 	}
2461 
2462 	/*
2463 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2464 	 * offline now
2465 	 */
2466 	list_for_each_entry(rq, list, queuelist) {
2467 		BUG_ON(rq->mq_ctx != ctx);
2468 		trace_block_rq_insert(rq);
2469 		if (rq->cmd_flags & REQ_NOWAIT)
2470 			run_queue_async = true;
2471 	}
2472 
2473 	spin_lock(&ctx->lock);
2474 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2475 	blk_mq_hctx_mark_pending(hctx, ctx);
2476 	spin_unlock(&ctx->lock);
2477 out:
2478 	blk_mq_run_hw_queue(hctx, run_queue_async);
2479 }
2480 
2481 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2482 {
2483 	struct request_queue *q = rq->q;
2484 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2485 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2486 
2487 	if (blk_rq_is_passthrough(rq)) {
2488 		/*
2489 		 * Passthrough request have to be added to hctx->dispatch
2490 		 * directly.  The device may be in a situation where it can't
2491 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2492 		 * them, which gets them added to hctx->dispatch.
2493 		 *
2494 		 * If a passthrough request is required to unblock the queues,
2495 		 * and it is added to the scheduler queue, there is no chance to
2496 		 * dispatch it given we prioritize requests in hctx->dispatch.
2497 		 */
2498 		blk_mq_request_bypass_insert(rq, flags);
2499 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2500 		/*
2501 		 * Firstly normal IO request is inserted to scheduler queue or
2502 		 * sw queue, meantime we add flush request to dispatch queue(
2503 		 * hctx->dispatch) directly and there is at most one in-flight
2504 		 * flush request for each hw queue, so it doesn't matter to add
2505 		 * flush request to tail or front of the dispatch queue.
2506 		 *
2507 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2508 		 * command, and queueing it will fail when there is any
2509 		 * in-flight normal IO request(NCQ command). When adding flush
2510 		 * rq to the front of hctx->dispatch, it is easier to introduce
2511 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2512 		 * compared with adding to the tail of dispatch queue, then
2513 		 * chance of flush merge is increased, and less flush requests
2514 		 * will be issued to controller. It is observed that ~10% time
2515 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2516 		 * drive when adding flush rq to the front of hctx->dispatch.
2517 		 *
2518 		 * Simply queue flush rq to the front of hctx->dispatch so that
2519 		 * intensive flush workloads can benefit in case of NCQ HW.
2520 		 */
2521 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2522 	} else if (q->elevator) {
2523 		LIST_HEAD(list);
2524 
2525 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2526 
2527 		list_add(&rq->queuelist, &list);
2528 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2529 	} else {
2530 		trace_block_rq_insert(rq);
2531 
2532 		spin_lock(&ctx->lock);
2533 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2534 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2535 		else
2536 			list_add_tail(&rq->queuelist,
2537 				      &ctx->rq_lists[hctx->type]);
2538 		blk_mq_hctx_mark_pending(hctx, ctx);
2539 		spin_unlock(&ctx->lock);
2540 	}
2541 }
2542 
2543 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2544 		unsigned int nr_segs)
2545 {
2546 	int err;
2547 
2548 	if (bio->bi_opf & REQ_RAHEAD)
2549 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2550 
2551 	rq->__sector = bio->bi_iter.bi_sector;
2552 	rq->write_hint = bio->bi_write_hint;
2553 	blk_rq_bio_prep(rq, bio, nr_segs);
2554 
2555 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2556 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2557 	WARN_ON_ONCE(err);
2558 
2559 	blk_account_io_start(rq);
2560 }
2561 
2562 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2563 					    struct request *rq, bool last)
2564 {
2565 	struct request_queue *q = rq->q;
2566 	struct blk_mq_queue_data bd = {
2567 		.rq = rq,
2568 		.last = last,
2569 	};
2570 	blk_status_t ret;
2571 
2572 	/*
2573 	 * For OK queue, we are done. For error, caller may kill it.
2574 	 * Any other error (busy), just add it to our list as we
2575 	 * previously would have done.
2576 	 */
2577 	ret = q->mq_ops->queue_rq(hctx, &bd);
2578 	switch (ret) {
2579 	case BLK_STS_OK:
2580 		blk_mq_update_dispatch_busy(hctx, false);
2581 		break;
2582 	case BLK_STS_RESOURCE:
2583 	case BLK_STS_DEV_RESOURCE:
2584 		blk_mq_update_dispatch_busy(hctx, true);
2585 		__blk_mq_requeue_request(rq);
2586 		break;
2587 	default:
2588 		blk_mq_update_dispatch_busy(hctx, false);
2589 		break;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 static bool blk_mq_get_budget_and_tag(struct request *rq)
2596 {
2597 	int budget_token;
2598 
2599 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2600 	if (budget_token < 0)
2601 		return false;
2602 	blk_mq_set_rq_budget_token(rq, budget_token);
2603 	if (!blk_mq_get_driver_tag(rq)) {
2604 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2605 		return false;
2606 	}
2607 	return true;
2608 }
2609 
2610 /**
2611  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2612  * @hctx: Pointer of the associated hardware queue.
2613  * @rq: Pointer to request to be sent.
2614  *
2615  * If the device has enough resources to accept a new request now, send the
2616  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2617  * we can try send it another time in the future. Requests inserted at this
2618  * queue have higher priority.
2619  */
2620 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2621 		struct request *rq)
2622 {
2623 	blk_status_t ret;
2624 
2625 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2626 		blk_mq_insert_request(rq, 0);
2627 		return;
2628 	}
2629 
2630 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2631 		blk_mq_insert_request(rq, 0);
2632 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2633 		return;
2634 	}
2635 
2636 	ret = __blk_mq_issue_directly(hctx, rq, true);
2637 	switch (ret) {
2638 	case BLK_STS_OK:
2639 		break;
2640 	case BLK_STS_RESOURCE:
2641 	case BLK_STS_DEV_RESOURCE:
2642 		blk_mq_request_bypass_insert(rq, 0);
2643 		blk_mq_run_hw_queue(hctx, false);
2644 		break;
2645 	default:
2646 		blk_mq_end_request(rq, ret);
2647 		break;
2648 	}
2649 }
2650 
2651 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2652 {
2653 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2654 
2655 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2656 		blk_mq_insert_request(rq, 0);
2657 		return BLK_STS_OK;
2658 	}
2659 
2660 	if (!blk_mq_get_budget_and_tag(rq))
2661 		return BLK_STS_RESOURCE;
2662 	return __blk_mq_issue_directly(hctx, rq, last);
2663 }
2664 
2665 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2666 {
2667 	struct blk_mq_hw_ctx *hctx = NULL;
2668 	struct request *rq;
2669 	int queued = 0;
2670 	blk_status_t ret = BLK_STS_OK;
2671 
2672 	while ((rq = rq_list_pop(&plug->mq_list))) {
2673 		bool last = rq_list_empty(plug->mq_list);
2674 
2675 		if (hctx != rq->mq_hctx) {
2676 			if (hctx) {
2677 				blk_mq_commit_rqs(hctx, queued, false);
2678 				queued = 0;
2679 			}
2680 			hctx = rq->mq_hctx;
2681 		}
2682 
2683 		ret = blk_mq_request_issue_directly(rq, last);
2684 		switch (ret) {
2685 		case BLK_STS_OK:
2686 			queued++;
2687 			break;
2688 		case BLK_STS_RESOURCE:
2689 		case BLK_STS_DEV_RESOURCE:
2690 			blk_mq_request_bypass_insert(rq, 0);
2691 			blk_mq_run_hw_queue(hctx, false);
2692 			goto out;
2693 		default:
2694 			blk_mq_end_request(rq, ret);
2695 			break;
2696 		}
2697 	}
2698 
2699 out:
2700 	if (ret != BLK_STS_OK)
2701 		blk_mq_commit_rqs(hctx, queued, false);
2702 }
2703 
2704 static void __blk_mq_flush_plug_list(struct request_queue *q,
2705 				     struct blk_plug *plug)
2706 {
2707 	if (blk_queue_quiesced(q))
2708 		return;
2709 	q->mq_ops->queue_rqs(&plug->mq_list);
2710 }
2711 
2712 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2713 {
2714 	struct blk_mq_hw_ctx *this_hctx = NULL;
2715 	struct blk_mq_ctx *this_ctx = NULL;
2716 	struct request *requeue_list = NULL;
2717 	struct request **requeue_lastp = &requeue_list;
2718 	unsigned int depth = 0;
2719 	bool is_passthrough = false;
2720 	LIST_HEAD(list);
2721 
2722 	do {
2723 		struct request *rq = rq_list_pop(&plug->mq_list);
2724 
2725 		if (!this_hctx) {
2726 			this_hctx = rq->mq_hctx;
2727 			this_ctx = rq->mq_ctx;
2728 			is_passthrough = blk_rq_is_passthrough(rq);
2729 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2730 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2731 			rq_list_add_tail(&requeue_lastp, rq);
2732 			continue;
2733 		}
2734 		list_add(&rq->queuelist, &list);
2735 		depth++;
2736 	} while (!rq_list_empty(plug->mq_list));
2737 
2738 	plug->mq_list = requeue_list;
2739 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2740 
2741 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2742 	/* passthrough requests should never be issued to the I/O scheduler */
2743 	if (is_passthrough) {
2744 		spin_lock(&this_hctx->lock);
2745 		list_splice_tail_init(&list, &this_hctx->dispatch);
2746 		spin_unlock(&this_hctx->lock);
2747 		blk_mq_run_hw_queue(this_hctx, from_sched);
2748 	} else if (this_hctx->queue->elevator) {
2749 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2750 				&list, 0);
2751 		blk_mq_run_hw_queue(this_hctx, from_sched);
2752 	} else {
2753 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2754 	}
2755 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2756 }
2757 
2758 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2759 {
2760 	struct request *rq;
2761 
2762 	/*
2763 	 * We may have been called recursively midway through handling
2764 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2765 	 * To avoid mq_list changing under our feet, clear rq_count early and
2766 	 * bail out specifically if rq_count is 0 rather than checking
2767 	 * whether the mq_list is empty.
2768 	 */
2769 	if (plug->rq_count == 0)
2770 		return;
2771 	plug->rq_count = 0;
2772 
2773 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2774 		struct request_queue *q;
2775 
2776 		rq = rq_list_peek(&plug->mq_list);
2777 		q = rq->q;
2778 
2779 		/*
2780 		 * Peek first request and see if we have a ->queue_rqs() hook.
2781 		 * If we do, we can dispatch the whole plug list in one go. We
2782 		 * already know at this point that all requests belong to the
2783 		 * same queue, caller must ensure that's the case.
2784 		 */
2785 		if (q->mq_ops->queue_rqs) {
2786 			blk_mq_run_dispatch_ops(q,
2787 				__blk_mq_flush_plug_list(q, plug));
2788 			if (rq_list_empty(plug->mq_list))
2789 				return;
2790 		}
2791 
2792 		blk_mq_run_dispatch_ops(q,
2793 				blk_mq_plug_issue_direct(plug));
2794 		if (rq_list_empty(plug->mq_list))
2795 			return;
2796 	}
2797 
2798 	do {
2799 		blk_mq_dispatch_plug_list(plug, from_schedule);
2800 	} while (!rq_list_empty(plug->mq_list));
2801 }
2802 
2803 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2804 		struct list_head *list)
2805 {
2806 	int queued = 0;
2807 	blk_status_t ret = BLK_STS_OK;
2808 
2809 	while (!list_empty(list)) {
2810 		struct request *rq = list_first_entry(list, struct request,
2811 				queuelist);
2812 
2813 		list_del_init(&rq->queuelist);
2814 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2815 		switch (ret) {
2816 		case BLK_STS_OK:
2817 			queued++;
2818 			break;
2819 		case BLK_STS_RESOURCE:
2820 		case BLK_STS_DEV_RESOURCE:
2821 			blk_mq_request_bypass_insert(rq, 0);
2822 			if (list_empty(list))
2823 				blk_mq_run_hw_queue(hctx, false);
2824 			goto out;
2825 		default:
2826 			blk_mq_end_request(rq, ret);
2827 			break;
2828 		}
2829 	}
2830 
2831 out:
2832 	if (ret != BLK_STS_OK)
2833 		blk_mq_commit_rqs(hctx, queued, false);
2834 }
2835 
2836 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2837 				     struct bio *bio, unsigned int nr_segs)
2838 {
2839 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2840 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2841 			return true;
2842 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2843 			return true;
2844 	}
2845 	return false;
2846 }
2847 
2848 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2849 					       struct blk_plug *plug,
2850 					       struct bio *bio,
2851 					       unsigned int nsegs)
2852 {
2853 	struct blk_mq_alloc_data data = {
2854 		.q		= q,
2855 		.nr_tags	= 1,
2856 		.cmd_flags	= bio->bi_opf,
2857 	};
2858 	struct request *rq;
2859 
2860 	rq_qos_throttle(q, bio);
2861 
2862 	if (plug) {
2863 		data.nr_tags = plug->nr_ios;
2864 		plug->nr_ios = 1;
2865 		data.cached_rq = &plug->cached_rq;
2866 	}
2867 
2868 	rq = __blk_mq_alloc_requests(&data);
2869 	if (rq)
2870 		return rq;
2871 	rq_qos_cleanup(q, bio);
2872 	if (bio->bi_opf & REQ_NOWAIT)
2873 		bio_wouldblock_error(bio);
2874 	return NULL;
2875 }
2876 
2877 /*
2878  * Check if there is a suitable cached request and return it.
2879  */
2880 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2881 		struct request_queue *q, blk_opf_t opf)
2882 {
2883 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2884 	struct request *rq;
2885 
2886 	if (!plug)
2887 		return NULL;
2888 	rq = rq_list_peek(&plug->cached_rq);
2889 	if (!rq || rq->q != q)
2890 		return NULL;
2891 	if (type != rq->mq_hctx->type &&
2892 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2893 		return NULL;
2894 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2895 		return NULL;
2896 	return rq;
2897 }
2898 
2899 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2900 		struct bio *bio)
2901 {
2902 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2903 
2904 	/*
2905 	 * If any qos ->throttle() end up blocking, we will have flushed the
2906 	 * plug and hence killed the cached_rq list as well. Pop this entry
2907 	 * before we throttle.
2908 	 */
2909 	plug->cached_rq = rq_list_next(rq);
2910 	rq_qos_throttle(rq->q, bio);
2911 
2912 	blk_mq_rq_time_init(rq, 0);
2913 	rq->cmd_flags = bio->bi_opf;
2914 	INIT_LIST_HEAD(&rq->queuelist);
2915 }
2916 
2917 /**
2918  * blk_mq_submit_bio - Create and send a request to block device.
2919  * @bio: Bio pointer.
2920  *
2921  * Builds up a request structure from @q and @bio and send to the device. The
2922  * request may not be queued directly to hardware if:
2923  * * This request can be merged with another one
2924  * * We want to place request at plug queue for possible future merging
2925  * * There is an IO scheduler active at this queue
2926  *
2927  * It will not queue the request if there is an error with the bio, or at the
2928  * request creation.
2929  */
2930 void blk_mq_submit_bio(struct bio *bio)
2931 {
2932 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2933 	struct blk_plug *plug = current->plug;
2934 	const int is_sync = op_is_sync(bio->bi_opf);
2935 	struct blk_mq_hw_ctx *hctx;
2936 	unsigned int nr_segs = 1;
2937 	struct request *rq;
2938 	blk_status_t ret;
2939 
2940 	/*
2941 	 * If the plug has a cached request for this queue, try to use it.
2942 	 */
2943 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2944 
2945 	/*
2946 	 * A BIO that was released from a zone write plug has already been
2947 	 * through the preparation in this function, already holds a reference
2948 	 * on the queue usage counter, and is the only write BIO in-flight for
2949 	 * the target zone. Go straight to preparing a request for it.
2950 	 */
2951 	if (bio_zone_write_plugging(bio)) {
2952 		nr_segs = bio->__bi_nr_segments;
2953 		if (rq)
2954 			blk_queue_exit(q);
2955 		goto new_request;
2956 	}
2957 
2958 	bio = blk_queue_bounce(bio, q);
2959 
2960 	/*
2961 	 * The cached request already holds a q_usage_counter reference and we
2962 	 * don't have to acquire a new one if we use it.
2963 	 */
2964 	if (!rq) {
2965 		if (unlikely(bio_queue_enter(bio)))
2966 			return;
2967 	}
2968 
2969 	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2970 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2971 		if (!bio)
2972 			goto queue_exit;
2973 	}
2974 	if (!bio_integrity_prep(bio))
2975 		goto queue_exit;
2976 
2977 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2978 		goto queue_exit;
2979 
2980 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2981 		goto queue_exit;
2982 
2983 new_request:
2984 	if (!rq) {
2985 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2986 		if (unlikely(!rq))
2987 			goto queue_exit;
2988 	} else {
2989 		blk_mq_use_cached_rq(rq, plug, bio);
2990 	}
2991 
2992 	trace_block_getrq(bio);
2993 
2994 	rq_qos_track(q, rq, bio);
2995 
2996 	blk_mq_bio_to_request(rq, bio, nr_segs);
2997 
2998 	ret = blk_crypto_rq_get_keyslot(rq);
2999 	if (ret != BLK_STS_OK) {
3000 		bio->bi_status = ret;
3001 		bio_endio(bio);
3002 		blk_mq_free_request(rq);
3003 		return;
3004 	}
3005 
3006 	if (bio_zone_write_plugging(bio))
3007 		blk_zone_write_plug_init_request(rq);
3008 
3009 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3010 		return;
3011 
3012 	if (plug) {
3013 		blk_add_rq_to_plug(plug, rq);
3014 		return;
3015 	}
3016 
3017 	hctx = rq->mq_hctx;
3018 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3019 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3020 		blk_mq_insert_request(rq, 0);
3021 		blk_mq_run_hw_queue(hctx, true);
3022 	} else {
3023 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3024 	}
3025 	return;
3026 
3027 queue_exit:
3028 	/*
3029 	 * Don't drop the queue reference if we were trying to use a cached
3030 	 * request and thus didn't acquire one.
3031 	 */
3032 	if (!rq)
3033 		blk_queue_exit(q);
3034 }
3035 
3036 #ifdef CONFIG_BLK_MQ_STACKING
3037 /**
3038  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3039  * @rq: the request being queued
3040  */
3041 blk_status_t blk_insert_cloned_request(struct request *rq)
3042 {
3043 	struct request_queue *q = rq->q;
3044 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3045 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3046 	blk_status_t ret;
3047 
3048 	if (blk_rq_sectors(rq) > max_sectors) {
3049 		/*
3050 		 * SCSI device does not have a good way to return if
3051 		 * Write Same/Zero is actually supported. If a device rejects
3052 		 * a non-read/write command (discard, write same,etc.) the
3053 		 * low-level device driver will set the relevant queue limit to
3054 		 * 0 to prevent blk-lib from issuing more of the offending
3055 		 * operations. Commands queued prior to the queue limit being
3056 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3057 		 * errors being propagated to upper layers.
3058 		 */
3059 		if (max_sectors == 0)
3060 			return BLK_STS_NOTSUPP;
3061 
3062 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3063 			__func__, blk_rq_sectors(rq), max_sectors);
3064 		return BLK_STS_IOERR;
3065 	}
3066 
3067 	/*
3068 	 * The queue settings related to segment counting may differ from the
3069 	 * original queue.
3070 	 */
3071 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3072 	if (rq->nr_phys_segments > max_segments) {
3073 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3074 			__func__, rq->nr_phys_segments, max_segments);
3075 		return BLK_STS_IOERR;
3076 	}
3077 
3078 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3079 		return BLK_STS_IOERR;
3080 
3081 	ret = blk_crypto_rq_get_keyslot(rq);
3082 	if (ret != BLK_STS_OK)
3083 		return ret;
3084 
3085 	blk_account_io_start(rq);
3086 
3087 	/*
3088 	 * Since we have a scheduler attached on the top device,
3089 	 * bypass a potential scheduler on the bottom device for
3090 	 * insert.
3091 	 */
3092 	blk_mq_run_dispatch_ops(q,
3093 			ret = blk_mq_request_issue_directly(rq, true));
3094 	if (ret)
3095 		blk_account_io_done(rq, blk_time_get_ns());
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3099 
3100 /**
3101  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3102  * @rq: the clone request to be cleaned up
3103  *
3104  * Description:
3105  *     Free all bios in @rq for a cloned request.
3106  */
3107 void blk_rq_unprep_clone(struct request *rq)
3108 {
3109 	struct bio *bio;
3110 
3111 	while ((bio = rq->bio) != NULL) {
3112 		rq->bio = bio->bi_next;
3113 
3114 		bio_put(bio);
3115 	}
3116 }
3117 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3118 
3119 /**
3120  * blk_rq_prep_clone - Helper function to setup clone request
3121  * @rq: the request to be setup
3122  * @rq_src: original request to be cloned
3123  * @bs: bio_set that bios for clone are allocated from
3124  * @gfp_mask: memory allocation mask for bio
3125  * @bio_ctr: setup function to be called for each clone bio.
3126  *           Returns %0 for success, non %0 for failure.
3127  * @data: private data to be passed to @bio_ctr
3128  *
3129  * Description:
3130  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3131  *     Also, pages which the original bios are pointing to are not copied
3132  *     and the cloned bios just point same pages.
3133  *     So cloned bios must be completed before original bios, which means
3134  *     the caller must complete @rq before @rq_src.
3135  */
3136 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3137 		      struct bio_set *bs, gfp_t gfp_mask,
3138 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3139 		      void *data)
3140 {
3141 	struct bio *bio, *bio_src;
3142 
3143 	if (!bs)
3144 		bs = &fs_bio_set;
3145 
3146 	__rq_for_each_bio(bio_src, rq_src) {
3147 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3148 				      bs);
3149 		if (!bio)
3150 			goto free_and_out;
3151 
3152 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3153 			goto free_and_out;
3154 
3155 		if (rq->bio) {
3156 			rq->biotail->bi_next = bio;
3157 			rq->biotail = bio;
3158 		} else {
3159 			rq->bio = rq->biotail = bio;
3160 		}
3161 		bio = NULL;
3162 	}
3163 
3164 	/* Copy attributes of the original request to the clone request. */
3165 	rq->__sector = blk_rq_pos(rq_src);
3166 	rq->__data_len = blk_rq_bytes(rq_src);
3167 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3168 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3169 		rq->special_vec = rq_src->special_vec;
3170 	}
3171 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3172 	rq->ioprio = rq_src->ioprio;
3173 	rq->write_hint = rq_src->write_hint;
3174 
3175 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3176 		goto free_and_out;
3177 
3178 	return 0;
3179 
3180 free_and_out:
3181 	if (bio)
3182 		bio_put(bio);
3183 	blk_rq_unprep_clone(rq);
3184 
3185 	return -ENOMEM;
3186 }
3187 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3188 #endif /* CONFIG_BLK_MQ_STACKING */
3189 
3190 /*
3191  * Steal bios from a request and add them to a bio list.
3192  * The request must not have been partially completed before.
3193  */
3194 void blk_steal_bios(struct bio_list *list, struct request *rq)
3195 {
3196 	if (rq->bio) {
3197 		if (list->tail)
3198 			list->tail->bi_next = rq->bio;
3199 		else
3200 			list->head = rq->bio;
3201 		list->tail = rq->biotail;
3202 
3203 		rq->bio = NULL;
3204 		rq->biotail = NULL;
3205 	}
3206 
3207 	rq->__data_len = 0;
3208 }
3209 EXPORT_SYMBOL_GPL(blk_steal_bios);
3210 
3211 static size_t order_to_size(unsigned int order)
3212 {
3213 	return (size_t)PAGE_SIZE << order;
3214 }
3215 
3216 /* called before freeing request pool in @tags */
3217 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3218 				    struct blk_mq_tags *tags)
3219 {
3220 	struct page *page;
3221 	unsigned long flags;
3222 
3223 	/*
3224 	 * There is no need to clear mapping if driver tags is not initialized
3225 	 * or the mapping belongs to the driver tags.
3226 	 */
3227 	if (!drv_tags || drv_tags == tags)
3228 		return;
3229 
3230 	list_for_each_entry(page, &tags->page_list, lru) {
3231 		unsigned long start = (unsigned long)page_address(page);
3232 		unsigned long end = start + order_to_size(page->private);
3233 		int i;
3234 
3235 		for (i = 0; i < drv_tags->nr_tags; i++) {
3236 			struct request *rq = drv_tags->rqs[i];
3237 			unsigned long rq_addr = (unsigned long)rq;
3238 
3239 			if (rq_addr >= start && rq_addr < end) {
3240 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3241 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3242 			}
3243 		}
3244 	}
3245 
3246 	/*
3247 	 * Wait until all pending iteration is done.
3248 	 *
3249 	 * Request reference is cleared and it is guaranteed to be observed
3250 	 * after the ->lock is released.
3251 	 */
3252 	spin_lock_irqsave(&drv_tags->lock, flags);
3253 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3254 }
3255 
3256 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3257 		     unsigned int hctx_idx)
3258 {
3259 	struct blk_mq_tags *drv_tags;
3260 	struct page *page;
3261 
3262 	if (list_empty(&tags->page_list))
3263 		return;
3264 
3265 	if (blk_mq_is_shared_tags(set->flags))
3266 		drv_tags = set->shared_tags;
3267 	else
3268 		drv_tags = set->tags[hctx_idx];
3269 
3270 	if (tags->static_rqs && set->ops->exit_request) {
3271 		int i;
3272 
3273 		for (i = 0; i < tags->nr_tags; i++) {
3274 			struct request *rq = tags->static_rqs[i];
3275 
3276 			if (!rq)
3277 				continue;
3278 			set->ops->exit_request(set, rq, hctx_idx);
3279 			tags->static_rqs[i] = NULL;
3280 		}
3281 	}
3282 
3283 	blk_mq_clear_rq_mapping(drv_tags, tags);
3284 
3285 	while (!list_empty(&tags->page_list)) {
3286 		page = list_first_entry(&tags->page_list, struct page, lru);
3287 		list_del_init(&page->lru);
3288 		/*
3289 		 * Remove kmemleak object previously allocated in
3290 		 * blk_mq_alloc_rqs().
3291 		 */
3292 		kmemleak_free(page_address(page));
3293 		__free_pages(page, page->private);
3294 	}
3295 }
3296 
3297 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3298 {
3299 	kfree(tags->rqs);
3300 	tags->rqs = NULL;
3301 	kfree(tags->static_rqs);
3302 	tags->static_rqs = NULL;
3303 
3304 	blk_mq_free_tags(tags);
3305 }
3306 
3307 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3308 		unsigned int hctx_idx)
3309 {
3310 	int i;
3311 
3312 	for (i = 0; i < set->nr_maps; i++) {
3313 		unsigned int start = set->map[i].queue_offset;
3314 		unsigned int end = start + set->map[i].nr_queues;
3315 
3316 		if (hctx_idx >= start && hctx_idx < end)
3317 			break;
3318 	}
3319 
3320 	if (i >= set->nr_maps)
3321 		i = HCTX_TYPE_DEFAULT;
3322 
3323 	return i;
3324 }
3325 
3326 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3327 		unsigned int hctx_idx)
3328 {
3329 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3330 
3331 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3332 }
3333 
3334 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3335 					       unsigned int hctx_idx,
3336 					       unsigned int nr_tags,
3337 					       unsigned int reserved_tags)
3338 {
3339 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3340 	struct blk_mq_tags *tags;
3341 
3342 	if (node == NUMA_NO_NODE)
3343 		node = set->numa_node;
3344 
3345 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3346 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3347 	if (!tags)
3348 		return NULL;
3349 
3350 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3351 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3352 				 node);
3353 	if (!tags->rqs)
3354 		goto err_free_tags;
3355 
3356 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3357 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3358 					node);
3359 	if (!tags->static_rqs)
3360 		goto err_free_rqs;
3361 
3362 	return tags;
3363 
3364 err_free_rqs:
3365 	kfree(tags->rqs);
3366 err_free_tags:
3367 	blk_mq_free_tags(tags);
3368 	return NULL;
3369 }
3370 
3371 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3372 			       unsigned int hctx_idx, int node)
3373 {
3374 	int ret;
3375 
3376 	if (set->ops->init_request) {
3377 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3378 		if (ret)
3379 			return ret;
3380 	}
3381 
3382 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3383 	return 0;
3384 }
3385 
3386 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3387 			    struct blk_mq_tags *tags,
3388 			    unsigned int hctx_idx, unsigned int depth)
3389 {
3390 	unsigned int i, j, entries_per_page, max_order = 4;
3391 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3392 	size_t rq_size, left;
3393 
3394 	if (node == NUMA_NO_NODE)
3395 		node = set->numa_node;
3396 
3397 	INIT_LIST_HEAD(&tags->page_list);
3398 
3399 	/*
3400 	 * rq_size is the size of the request plus driver payload, rounded
3401 	 * to the cacheline size
3402 	 */
3403 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3404 				cache_line_size());
3405 	left = rq_size * depth;
3406 
3407 	for (i = 0; i < depth; ) {
3408 		int this_order = max_order;
3409 		struct page *page;
3410 		int to_do;
3411 		void *p;
3412 
3413 		while (this_order && left < order_to_size(this_order - 1))
3414 			this_order--;
3415 
3416 		do {
3417 			page = alloc_pages_node(node,
3418 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3419 				this_order);
3420 			if (page)
3421 				break;
3422 			if (!this_order--)
3423 				break;
3424 			if (order_to_size(this_order) < rq_size)
3425 				break;
3426 		} while (1);
3427 
3428 		if (!page)
3429 			goto fail;
3430 
3431 		page->private = this_order;
3432 		list_add_tail(&page->lru, &tags->page_list);
3433 
3434 		p = page_address(page);
3435 		/*
3436 		 * Allow kmemleak to scan these pages as they contain pointers
3437 		 * to additional allocations like via ops->init_request().
3438 		 */
3439 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3440 		entries_per_page = order_to_size(this_order) / rq_size;
3441 		to_do = min(entries_per_page, depth - i);
3442 		left -= to_do * rq_size;
3443 		for (j = 0; j < to_do; j++) {
3444 			struct request *rq = p;
3445 
3446 			tags->static_rqs[i] = rq;
3447 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3448 				tags->static_rqs[i] = NULL;
3449 				goto fail;
3450 			}
3451 
3452 			p += rq_size;
3453 			i++;
3454 		}
3455 	}
3456 	return 0;
3457 
3458 fail:
3459 	blk_mq_free_rqs(set, tags, hctx_idx);
3460 	return -ENOMEM;
3461 }
3462 
3463 struct rq_iter_data {
3464 	struct blk_mq_hw_ctx *hctx;
3465 	bool has_rq;
3466 };
3467 
3468 static bool blk_mq_has_request(struct request *rq, void *data)
3469 {
3470 	struct rq_iter_data *iter_data = data;
3471 
3472 	if (rq->mq_hctx != iter_data->hctx)
3473 		return true;
3474 	iter_data->has_rq = true;
3475 	return false;
3476 }
3477 
3478 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3479 {
3480 	struct blk_mq_tags *tags = hctx->sched_tags ?
3481 			hctx->sched_tags : hctx->tags;
3482 	struct rq_iter_data data = {
3483 		.hctx	= hctx,
3484 	};
3485 
3486 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3487 	return data.has_rq;
3488 }
3489 
3490 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3491 		unsigned int this_cpu)
3492 {
3493 	enum hctx_type type = hctx->type;
3494 	int cpu;
3495 
3496 	/*
3497 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3498 	 * might submit IOs on these isolated CPUs, so use the queue map to
3499 	 * check if all CPUs mapped to this hctx are offline
3500 	 */
3501 	for_each_online_cpu(cpu) {
3502 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3503 				type, cpu);
3504 
3505 		if (h != hctx)
3506 			continue;
3507 
3508 		/* this hctx has at least one online CPU */
3509 		if (this_cpu != cpu)
3510 			return true;
3511 	}
3512 
3513 	return false;
3514 }
3515 
3516 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3517 {
3518 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3519 			struct blk_mq_hw_ctx, cpuhp_online);
3520 
3521 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3522 		return 0;
3523 
3524 	/*
3525 	 * Prevent new request from being allocated on the current hctx.
3526 	 *
3527 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3528 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3529 	 * seen once we return from the tag allocator.
3530 	 */
3531 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3532 	smp_mb__after_atomic();
3533 
3534 	/*
3535 	 * Try to grab a reference to the queue and wait for any outstanding
3536 	 * requests.  If we could not grab a reference the queue has been
3537 	 * frozen and there are no requests.
3538 	 */
3539 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3540 		while (blk_mq_hctx_has_requests(hctx))
3541 			msleep(5);
3542 		percpu_ref_put(&hctx->queue->q_usage_counter);
3543 	}
3544 
3545 	return 0;
3546 }
3547 
3548 /*
3549  * Check if one CPU is mapped to the specified hctx
3550  *
3551  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3552  * to be used for scheduling kworker only. For other usage, please call this
3553  * helper for checking if one CPU belongs to the specified hctx
3554  */
3555 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3556 		const struct blk_mq_hw_ctx *hctx)
3557 {
3558 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3559 			hctx->type, cpu);
3560 
3561 	return mapped_hctx == hctx;
3562 }
3563 
3564 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3565 {
3566 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3567 			struct blk_mq_hw_ctx, cpuhp_online);
3568 
3569 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3570 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3571 	return 0;
3572 }
3573 
3574 /*
3575  * 'cpu' is going away. splice any existing rq_list entries from this
3576  * software queue to the hw queue dispatch list, and ensure that it
3577  * gets run.
3578  */
3579 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3580 {
3581 	struct blk_mq_hw_ctx *hctx;
3582 	struct blk_mq_ctx *ctx;
3583 	LIST_HEAD(tmp);
3584 	enum hctx_type type;
3585 
3586 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3587 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3588 		return 0;
3589 
3590 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3591 	type = hctx->type;
3592 
3593 	spin_lock(&ctx->lock);
3594 	if (!list_empty(&ctx->rq_lists[type])) {
3595 		list_splice_init(&ctx->rq_lists[type], &tmp);
3596 		blk_mq_hctx_clear_pending(hctx, ctx);
3597 	}
3598 	spin_unlock(&ctx->lock);
3599 
3600 	if (list_empty(&tmp))
3601 		return 0;
3602 
3603 	spin_lock(&hctx->lock);
3604 	list_splice_tail_init(&tmp, &hctx->dispatch);
3605 	spin_unlock(&hctx->lock);
3606 
3607 	blk_mq_run_hw_queue(hctx, true);
3608 	return 0;
3609 }
3610 
3611 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3612 {
3613 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3614 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3615 						    &hctx->cpuhp_online);
3616 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3617 					    &hctx->cpuhp_dead);
3618 }
3619 
3620 /*
3621  * Before freeing hw queue, clearing the flush request reference in
3622  * tags->rqs[] for avoiding potential UAF.
3623  */
3624 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3625 		unsigned int queue_depth, struct request *flush_rq)
3626 {
3627 	int i;
3628 	unsigned long flags;
3629 
3630 	/* The hw queue may not be mapped yet */
3631 	if (!tags)
3632 		return;
3633 
3634 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3635 
3636 	for (i = 0; i < queue_depth; i++)
3637 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3638 
3639 	/*
3640 	 * Wait until all pending iteration is done.
3641 	 *
3642 	 * Request reference is cleared and it is guaranteed to be observed
3643 	 * after the ->lock is released.
3644 	 */
3645 	spin_lock_irqsave(&tags->lock, flags);
3646 	spin_unlock_irqrestore(&tags->lock, flags);
3647 }
3648 
3649 /* hctx->ctxs will be freed in queue's release handler */
3650 static void blk_mq_exit_hctx(struct request_queue *q,
3651 		struct blk_mq_tag_set *set,
3652 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3653 {
3654 	struct request *flush_rq = hctx->fq->flush_rq;
3655 
3656 	if (blk_mq_hw_queue_mapped(hctx))
3657 		blk_mq_tag_idle(hctx);
3658 
3659 	if (blk_queue_init_done(q))
3660 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3661 				set->queue_depth, flush_rq);
3662 	if (set->ops->exit_request)
3663 		set->ops->exit_request(set, flush_rq, hctx_idx);
3664 
3665 	if (set->ops->exit_hctx)
3666 		set->ops->exit_hctx(hctx, hctx_idx);
3667 
3668 	blk_mq_remove_cpuhp(hctx);
3669 
3670 	xa_erase(&q->hctx_table, hctx_idx);
3671 
3672 	spin_lock(&q->unused_hctx_lock);
3673 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3674 	spin_unlock(&q->unused_hctx_lock);
3675 }
3676 
3677 static void blk_mq_exit_hw_queues(struct request_queue *q,
3678 		struct blk_mq_tag_set *set, int nr_queue)
3679 {
3680 	struct blk_mq_hw_ctx *hctx;
3681 	unsigned long i;
3682 
3683 	queue_for_each_hw_ctx(q, hctx, i) {
3684 		if (i == nr_queue)
3685 			break;
3686 		blk_mq_exit_hctx(q, set, hctx, i);
3687 	}
3688 }
3689 
3690 static int blk_mq_init_hctx(struct request_queue *q,
3691 		struct blk_mq_tag_set *set,
3692 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3693 {
3694 	hctx->queue_num = hctx_idx;
3695 
3696 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3697 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3698 				&hctx->cpuhp_online);
3699 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3700 
3701 	hctx->tags = set->tags[hctx_idx];
3702 
3703 	if (set->ops->init_hctx &&
3704 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3705 		goto unregister_cpu_notifier;
3706 
3707 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3708 				hctx->numa_node))
3709 		goto exit_hctx;
3710 
3711 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3712 		goto exit_flush_rq;
3713 
3714 	return 0;
3715 
3716  exit_flush_rq:
3717 	if (set->ops->exit_request)
3718 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3719  exit_hctx:
3720 	if (set->ops->exit_hctx)
3721 		set->ops->exit_hctx(hctx, hctx_idx);
3722  unregister_cpu_notifier:
3723 	blk_mq_remove_cpuhp(hctx);
3724 	return -1;
3725 }
3726 
3727 static struct blk_mq_hw_ctx *
3728 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3729 		int node)
3730 {
3731 	struct blk_mq_hw_ctx *hctx;
3732 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3733 
3734 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3735 	if (!hctx)
3736 		goto fail_alloc_hctx;
3737 
3738 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3739 		goto free_hctx;
3740 
3741 	atomic_set(&hctx->nr_active, 0);
3742 	if (node == NUMA_NO_NODE)
3743 		node = set->numa_node;
3744 	hctx->numa_node = node;
3745 
3746 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3747 	spin_lock_init(&hctx->lock);
3748 	INIT_LIST_HEAD(&hctx->dispatch);
3749 	hctx->queue = q;
3750 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3751 
3752 	INIT_LIST_HEAD(&hctx->hctx_list);
3753 
3754 	/*
3755 	 * Allocate space for all possible cpus to avoid allocation at
3756 	 * runtime
3757 	 */
3758 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3759 			gfp, node);
3760 	if (!hctx->ctxs)
3761 		goto free_cpumask;
3762 
3763 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3764 				gfp, node, false, false))
3765 		goto free_ctxs;
3766 	hctx->nr_ctx = 0;
3767 
3768 	spin_lock_init(&hctx->dispatch_wait_lock);
3769 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3770 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3771 
3772 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3773 	if (!hctx->fq)
3774 		goto free_bitmap;
3775 
3776 	blk_mq_hctx_kobj_init(hctx);
3777 
3778 	return hctx;
3779 
3780  free_bitmap:
3781 	sbitmap_free(&hctx->ctx_map);
3782  free_ctxs:
3783 	kfree(hctx->ctxs);
3784  free_cpumask:
3785 	free_cpumask_var(hctx->cpumask);
3786  free_hctx:
3787 	kfree(hctx);
3788  fail_alloc_hctx:
3789 	return NULL;
3790 }
3791 
3792 static void blk_mq_init_cpu_queues(struct request_queue *q,
3793 				   unsigned int nr_hw_queues)
3794 {
3795 	struct blk_mq_tag_set *set = q->tag_set;
3796 	unsigned int i, j;
3797 
3798 	for_each_possible_cpu(i) {
3799 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3800 		struct blk_mq_hw_ctx *hctx;
3801 		int k;
3802 
3803 		__ctx->cpu = i;
3804 		spin_lock_init(&__ctx->lock);
3805 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3806 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3807 
3808 		__ctx->queue = q;
3809 
3810 		/*
3811 		 * Set local node, IFF we have more than one hw queue. If
3812 		 * not, we remain on the home node of the device
3813 		 */
3814 		for (j = 0; j < set->nr_maps; j++) {
3815 			hctx = blk_mq_map_queue_type(q, j, i);
3816 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3817 				hctx->numa_node = cpu_to_node(i);
3818 		}
3819 	}
3820 }
3821 
3822 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3823 					     unsigned int hctx_idx,
3824 					     unsigned int depth)
3825 {
3826 	struct blk_mq_tags *tags;
3827 	int ret;
3828 
3829 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3830 	if (!tags)
3831 		return NULL;
3832 
3833 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3834 	if (ret) {
3835 		blk_mq_free_rq_map(tags);
3836 		return NULL;
3837 	}
3838 
3839 	return tags;
3840 }
3841 
3842 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3843 				       int hctx_idx)
3844 {
3845 	if (blk_mq_is_shared_tags(set->flags)) {
3846 		set->tags[hctx_idx] = set->shared_tags;
3847 
3848 		return true;
3849 	}
3850 
3851 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3852 						       set->queue_depth);
3853 
3854 	return set->tags[hctx_idx];
3855 }
3856 
3857 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3858 			     struct blk_mq_tags *tags,
3859 			     unsigned int hctx_idx)
3860 {
3861 	if (tags) {
3862 		blk_mq_free_rqs(set, tags, hctx_idx);
3863 		blk_mq_free_rq_map(tags);
3864 	}
3865 }
3866 
3867 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3868 				      unsigned int hctx_idx)
3869 {
3870 	if (!blk_mq_is_shared_tags(set->flags))
3871 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3872 
3873 	set->tags[hctx_idx] = NULL;
3874 }
3875 
3876 static void blk_mq_map_swqueue(struct request_queue *q)
3877 {
3878 	unsigned int j, hctx_idx;
3879 	unsigned long i;
3880 	struct blk_mq_hw_ctx *hctx;
3881 	struct blk_mq_ctx *ctx;
3882 	struct blk_mq_tag_set *set = q->tag_set;
3883 
3884 	queue_for_each_hw_ctx(q, hctx, i) {
3885 		cpumask_clear(hctx->cpumask);
3886 		hctx->nr_ctx = 0;
3887 		hctx->dispatch_from = NULL;
3888 	}
3889 
3890 	/*
3891 	 * Map software to hardware queues.
3892 	 *
3893 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3894 	 */
3895 	for_each_possible_cpu(i) {
3896 
3897 		ctx = per_cpu_ptr(q->queue_ctx, i);
3898 		for (j = 0; j < set->nr_maps; j++) {
3899 			if (!set->map[j].nr_queues) {
3900 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3901 						HCTX_TYPE_DEFAULT, i);
3902 				continue;
3903 			}
3904 			hctx_idx = set->map[j].mq_map[i];
3905 			/* unmapped hw queue can be remapped after CPU topo changed */
3906 			if (!set->tags[hctx_idx] &&
3907 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3908 				/*
3909 				 * If tags initialization fail for some hctx,
3910 				 * that hctx won't be brought online.  In this
3911 				 * case, remap the current ctx to hctx[0] which
3912 				 * is guaranteed to always have tags allocated
3913 				 */
3914 				set->map[j].mq_map[i] = 0;
3915 			}
3916 
3917 			hctx = blk_mq_map_queue_type(q, j, i);
3918 			ctx->hctxs[j] = hctx;
3919 			/*
3920 			 * If the CPU is already set in the mask, then we've
3921 			 * mapped this one already. This can happen if
3922 			 * devices share queues across queue maps.
3923 			 */
3924 			if (cpumask_test_cpu(i, hctx->cpumask))
3925 				continue;
3926 
3927 			cpumask_set_cpu(i, hctx->cpumask);
3928 			hctx->type = j;
3929 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3930 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3931 
3932 			/*
3933 			 * If the nr_ctx type overflows, we have exceeded the
3934 			 * amount of sw queues we can support.
3935 			 */
3936 			BUG_ON(!hctx->nr_ctx);
3937 		}
3938 
3939 		for (; j < HCTX_MAX_TYPES; j++)
3940 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3941 					HCTX_TYPE_DEFAULT, i);
3942 	}
3943 
3944 	queue_for_each_hw_ctx(q, hctx, i) {
3945 		int cpu;
3946 
3947 		/*
3948 		 * If no software queues are mapped to this hardware queue,
3949 		 * disable it and free the request entries.
3950 		 */
3951 		if (!hctx->nr_ctx) {
3952 			/* Never unmap queue 0.  We need it as a
3953 			 * fallback in case of a new remap fails
3954 			 * allocation
3955 			 */
3956 			if (i)
3957 				__blk_mq_free_map_and_rqs(set, i);
3958 
3959 			hctx->tags = NULL;
3960 			continue;
3961 		}
3962 
3963 		hctx->tags = set->tags[i];
3964 		WARN_ON(!hctx->tags);
3965 
3966 		/*
3967 		 * Set the map size to the number of mapped software queues.
3968 		 * This is more accurate and more efficient than looping
3969 		 * over all possibly mapped software queues.
3970 		 */
3971 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3972 
3973 		/*
3974 		 * Rule out isolated CPUs from hctx->cpumask to avoid
3975 		 * running block kworker on isolated CPUs
3976 		 */
3977 		for_each_cpu(cpu, hctx->cpumask) {
3978 			if (cpu_is_isolated(cpu))
3979 				cpumask_clear_cpu(cpu, hctx->cpumask);
3980 		}
3981 
3982 		/*
3983 		 * Initialize batch roundrobin counts
3984 		 */
3985 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3986 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3987 	}
3988 }
3989 
3990 /*
3991  * Caller needs to ensure that we're either frozen/quiesced, or that
3992  * the queue isn't live yet.
3993  */
3994 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3995 {
3996 	struct blk_mq_hw_ctx *hctx;
3997 	unsigned long i;
3998 
3999 	queue_for_each_hw_ctx(q, hctx, i) {
4000 		if (shared) {
4001 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4002 		} else {
4003 			blk_mq_tag_idle(hctx);
4004 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4005 		}
4006 	}
4007 }
4008 
4009 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4010 					 bool shared)
4011 {
4012 	struct request_queue *q;
4013 
4014 	lockdep_assert_held(&set->tag_list_lock);
4015 
4016 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4017 		blk_mq_freeze_queue(q);
4018 		queue_set_hctx_shared(q, shared);
4019 		blk_mq_unfreeze_queue(q);
4020 	}
4021 }
4022 
4023 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4024 {
4025 	struct blk_mq_tag_set *set = q->tag_set;
4026 
4027 	mutex_lock(&set->tag_list_lock);
4028 	list_del(&q->tag_set_list);
4029 	if (list_is_singular(&set->tag_list)) {
4030 		/* just transitioned to unshared */
4031 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4032 		/* update existing queue */
4033 		blk_mq_update_tag_set_shared(set, false);
4034 	}
4035 	mutex_unlock(&set->tag_list_lock);
4036 	INIT_LIST_HEAD(&q->tag_set_list);
4037 }
4038 
4039 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4040 				     struct request_queue *q)
4041 {
4042 	mutex_lock(&set->tag_list_lock);
4043 
4044 	/*
4045 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4046 	 */
4047 	if (!list_empty(&set->tag_list) &&
4048 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4049 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4050 		/* update existing queue */
4051 		blk_mq_update_tag_set_shared(set, true);
4052 	}
4053 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4054 		queue_set_hctx_shared(q, true);
4055 	list_add_tail(&q->tag_set_list, &set->tag_list);
4056 
4057 	mutex_unlock(&set->tag_list_lock);
4058 }
4059 
4060 /* All allocations will be freed in release handler of q->mq_kobj */
4061 static int blk_mq_alloc_ctxs(struct request_queue *q)
4062 {
4063 	struct blk_mq_ctxs *ctxs;
4064 	int cpu;
4065 
4066 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4067 	if (!ctxs)
4068 		return -ENOMEM;
4069 
4070 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4071 	if (!ctxs->queue_ctx)
4072 		goto fail;
4073 
4074 	for_each_possible_cpu(cpu) {
4075 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4076 		ctx->ctxs = ctxs;
4077 	}
4078 
4079 	q->mq_kobj = &ctxs->kobj;
4080 	q->queue_ctx = ctxs->queue_ctx;
4081 
4082 	return 0;
4083  fail:
4084 	kfree(ctxs);
4085 	return -ENOMEM;
4086 }
4087 
4088 /*
4089  * It is the actual release handler for mq, but we do it from
4090  * request queue's release handler for avoiding use-after-free
4091  * and headache because q->mq_kobj shouldn't have been introduced,
4092  * but we can't group ctx/kctx kobj without it.
4093  */
4094 void blk_mq_release(struct request_queue *q)
4095 {
4096 	struct blk_mq_hw_ctx *hctx, *next;
4097 	unsigned long i;
4098 
4099 	queue_for_each_hw_ctx(q, hctx, i)
4100 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4101 
4102 	/* all hctx are in .unused_hctx_list now */
4103 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4104 		list_del_init(&hctx->hctx_list);
4105 		kobject_put(&hctx->kobj);
4106 	}
4107 
4108 	xa_destroy(&q->hctx_table);
4109 
4110 	/*
4111 	 * release .mq_kobj and sw queue's kobject now because
4112 	 * both share lifetime with request queue.
4113 	 */
4114 	blk_mq_sysfs_deinit(q);
4115 }
4116 
4117 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4118 		struct queue_limits *lim, void *queuedata)
4119 {
4120 	struct queue_limits default_lim = { };
4121 	struct request_queue *q;
4122 	int ret;
4123 
4124 	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4125 	if (IS_ERR(q))
4126 		return q;
4127 	q->queuedata = queuedata;
4128 	ret = blk_mq_init_allocated_queue(set, q);
4129 	if (ret) {
4130 		blk_put_queue(q);
4131 		return ERR_PTR(ret);
4132 	}
4133 	return q;
4134 }
4135 EXPORT_SYMBOL(blk_mq_alloc_queue);
4136 
4137 /**
4138  * blk_mq_destroy_queue - shutdown a request queue
4139  * @q: request queue to shutdown
4140  *
4141  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4142  * requests will be failed with -ENODEV. The caller is responsible for dropping
4143  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4144  *
4145  * Context: can sleep
4146  */
4147 void blk_mq_destroy_queue(struct request_queue *q)
4148 {
4149 	WARN_ON_ONCE(!queue_is_mq(q));
4150 	WARN_ON_ONCE(blk_queue_registered(q));
4151 
4152 	might_sleep();
4153 
4154 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4155 	blk_queue_start_drain(q);
4156 	blk_mq_freeze_queue_wait(q);
4157 
4158 	blk_sync_queue(q);
4159 	blk_mq_cancel_work_sync(q);
4160 	blk_mq_exit_queue(q);
4161 }
4162 EXPORT_SYMBOL(blk_mq_destroy_queue);
4163 
4164 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4165 		struct queue_limits *lim, void *queuedata,
4166 		struct lock_class_key *lkclass)
4167 {
4168 	struct request_queue *q;
4169 	struct gendisk *disk;
4170 
4171 	q = blk_mq_alloc_queue(set, lim, queuedata);
4172 	if (IS_ERR(q))
4173 		return ERR_CAST(q);
4174 
4175 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4176 	if (!disk) {
4177 		blk_mq_destroy_queue(q);
4178 		blk_put_queue(q);
4179 		return ERR_PTR(-ENOMEM);
4180 	}
4181 	set_bit(GD_OWNS_QUEUE, &disk->state);
4182 	return disk;
4183 }
4184 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4185 
4186 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4187 		struct lock_class_key *lkclass)
4188 {
4189 	struct gendisk *disk;
4190 
4191 	if (!blk_get_queue(q))
4192 		return NULL;
4193 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4194 	if (!disk)
4195 		blk_put_queue(q);
4196 	return disk;
4197 }
4198 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4199 
4200 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4201 		struct blk_mq_tag_set *set, struct request_queue *q,
4202 		int hctx_idx, int node)
4203 {
4204 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4205 
4206 	/* reuse dead hctx first */
4207 	spin_lock(&q->unused_hctx_lock);
4208 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4209 		if (tmp->numa_node == node) {
4210 			hctx = tmp;
4211 			break;
4212 		}
4213 	}
4214 	if (hctx)
4215 		list_del_init(&hctx->hctx_list);
4216 	spin_unlock(&q->unused_hctx_lock);
4217 
4218 	if (!hctx)
4219 		hctx = blk_mq_alloc_hctx(q, set, node);
4220 	if (!hctx)
4221 		goto fail;
4222 
4223 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4224 		goto free_hctx;
4225 
4226 	return hctx;
4227 
4228  free_hctx:
4229 	kobject_put(&hctx->kobj);
4230  fail:
4231 	return NULL;
4232 }
4233 
4234 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4235 						struct request_queue *q)
4236 {
4237 	struct blk_mq_hw_ctx *hctx;
4238 	unsigned long i, j;
4239 
4240 	/* protect against switching io scheduler  */
4241 	mutex_lock(&q->sysfs_lock);
4242 	for (i = 0; i < set->nr_hw_queues; i++) {
4243 		int old_node;
4244 		int node = blk_mq_get_hctx_node(set, i);
4245 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4246 
4247 		if (old_hctx) {
4248 			old_node = old_hctx->numa_node;
4249 			blk_mq_exit_hctx(q, set, old_hctx, i);
4250 		}
4251 
4252 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4253 			if (!old_hctx)
4254 				break;
4255 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4256 					node, old_node);
4257 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4258 			WARN_ON_ONCE(!hctx);
4259 		}
4260 	}
4261 	/*
4262 	 * Increasing nr_hw_queues fails. Free the newly allocated
4263 	 * hctxs and keep the previous q->nr_hw_queues.
4264 	 */
4265 	if (i != set->nr_hw_queues) {
4266 		j = q->nr_hw_queues;
4267 	} else {
4268 		j = i;
4269 		q->nr_hw_queues = set->nr_hw_queues;
4270 	}
4271 
4272 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4273 		blk_mq_exit_hctx(q, set, hctx, j);
4274 	mutex_unlock(&q->sysfs_lock);
4275 }
4276 
4277 static void blk_mq_update_poll_flag(struct request_queue *q)
4278 {
4279 	struct blk_mq_tag_set *set = q->tag_set;
4280 
4281 	if (set->nr_maps > HCTX_TYPE_POLL &&
4282 	    set->map[HCTX_TYPE_POLL].nr_queues)
4283 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4284 	else
4285 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4286 }
4287 
4288 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4289 		struct request_queue *q)
4290 {
4291 	/* mark the queue as mq asap */
4292 	q->mq_ops = set->ops;
4293 
4294 	if (blk_mq_alloc_ctxs(q))
4295 		goto err_exit;
4296 
4297 	/* init q->mq_kobj and sw queues' kobjects */
4298 	blk_mq_sysfs_init(q);
4299 
4300 	INIT_LIST_HEAD(&q->unused_hctx_list);
4301 	spin_lock_init(&q->unused_hctx_lock);
4302 
4303 	xa_init(&q->hctx_table);
4304 
4305 	blk_mq_realloc_hw_ctxs(set, q);
4306 	if (!q->nr_hw_queues)
4307 		goto err_hctxs;
4308 
4309 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4310 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4311 
4312 	q->tag_set = set;
4313 
4314 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4315 	blk_mq_update_poll_flag(q);
4316 
4317 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4318 	INIT_LIST_HEAD(&q->flush_list);
4319 	INIT_LIST_HEAD(&q->requeue_list);
4320 	spin_lock_init(&q->requeue_lock);
4321 
4322 	q->nr_requests = set->queue_depth;
4323 
4324 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4325 	blk_mq_add_queue_tag_set(set, q);
4326 	blk_mq_map_swqueue(q);
4327 	return 0;
4328 
4329 err_hctxs:
4330 	blk_mq_release(q);
4331 err_exit:
4332 	q->mq_ops = NULL;
4333 	return -ENOMEM;
4334 }
4335 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4336 
4337 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4338 void blk_mq_exit_queue(struct request_queue *q)
4339 {
4340 	struct blk_mq_tag_set *set = q->tag_set;
4341 
4342 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4343 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4344 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4345 	blk_mq_del_queue_tag_set(q);
4346 }
4347 
4348 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4349 {
4350 	int i;
4351 
4352 	if (blk_mq_is_shared_tags(set->flags)) {
4353 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4354 						BLK_MQ_NO_HCTX_IDX,
4355 						set->queue_depth);
4356 		if (!set->shared_tags)
4357 			return -ENOMEM;
4358 	}
4359 
4360 	for (i = 0; i < set->nr_hw_queues; i++) {
4361 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4362 			goto out_unwind;
4363 		cond_resched();
4364 	}
4365 
4366 	return 0;
4367 
4368 out_unwind:
4369 	while (--i >= 0)
4370 		__blk_mq_free_map_and_rqs(set, i);
4371 
4372 	if (blk_mq_is_shared_tags(set->flags)) {
4373 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4374 					BLK_MQ_NO_HCTX_IDX);
4375 	}
4376 
4377 	return -ENOMEM;
4378 }
4379 
4380 /*
4381  * Allocate the request maps associated with this tag_set. Note that this
4382  * may reduce the depth asked for, if memory is tight. set->queue_depth
4383  * will be updated to reflect the allocated depth.
4384  */
4385 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4386 {
4387 	unsigned int depth;
4388 	int err;
4389 
4390 	depth = set->queue_depth;
4391 	do {
4392 		err = __blk_mq_alloc_rq_maps(set);
4393 		if (!err)
4394 			break;
4395 
4396 		set->queue_depth >>= 1;
4397 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4398 			err = -ENOMEM;
4399 			break;
4400 		}
4401 	} while (set->queue_depth);
4402 
4403 	if (!set->queue_depth || err) {
4404 		pr_err("blk-mq: failed to allocate request map\n");
4405 		return -ENOMEM;
4406 	}
4407 
4408 	if (depth != set->queue_depth)
4409 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4410 						depth, set->queue_depth);
4411 
4412 	return 0;
4413 }
4414 
4415 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4416 {
4417 	/*
4418 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4419 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4420 	 * number of hardware queues.
4421 	 */
4422 	if (set->nr_maps == 1)
4423 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4424 
4425 	if (set->ops->map_queues) {
4426 		int i;
4427 
4428 		/*
4429 		 * transport .map_queues is usually done in the following
4430 		 * way:
4431 		 *
4432 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4433 		 * 	mask = get_cpu_mask(queue)
4434 		 * 	for_each_cpu(cpu, mask)
4435 		 * 		set->map[x].mq_map[cpu] = queue;
4436 		 * }
4437 		 *
4438 		 * When we need to remap, the table has to be cleared for
4439 		 * killing stale mapping since one CPU may not be mapped
4440 		 * to any hw queue.
4441 		 */
4442 		for (i = 0; i < set->nr_maps; i++)
4443 			blk_mq_clear_mq_map(&set->map[i]);
4444 
4445 		set->ops->map_queues(set);
4446 	} else {
4447 		BUG_ON(set->nr_maps > 1);
4448 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4449 	}
4450 }
4451 
4452 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4453 				       int new_nr_hw_queues)
4454 {
4455 	struct blk_mq_tags **new_tags;
4456 	int i;
4457 
4458 	if (set->nr_hw_queues >= new_nr_hw_queues)
4459 		goto done;
4460 
4461 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4462 				GFP_KERNEL, set->numa_node);
4463 	if (!new_tags)
4464 		return -ENOMEM;
4465 
4466 	if (set->tags)
4467 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4468 		       sizeof(*set->tags));
4469 	kfree(set->tags);
4470 	set->tags = new_tags;
4471 
4472 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4473 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4474 			while (--i >= set->nr_hw_queues)
4475 				__blk_mq_free_map_and_rqs(set, i);
4476 			return -ENOMEM;
4477 		}
4478 		cond_resched();
4479 	}
4480 
4481 done:
4482 	set->nr_hw_queues = new_nr_hw_queues;
4483 	return 0;
4484 }
4485 
4486 /*
4487  * Alloc a tag set to be associated with one or more request queues.
4488  * May fail with EINVAL for various error conditions. May adjust the
4489  * requested depth down, if it's too large. In that case, the set
4490  * value will be stored in set->queue_depth.
4491  */
4492 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4493 {
4494 	int i, ret;
4495 
4496 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4497 
4498 	if (!set->nr_hw_queues)
4499 		return -EINVAL;
4500 	if (!set->queue_depth)
4501 		return -EINVAL;
4502 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4503 		return -EINVAL;
4504 
4505 	if (!set->ops->queue_rq)
4506 		return -EINVAL;
4507 
4508 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4509 		return -EINVAL;
4510 
4511 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4512 		pr_info("blk-mq: reduced tag depth to %u\n",
4513 			BLK_MQ_MAX_DEPTH);
4514 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4515 	}
4516 
4517 	if (!set->nr_maps)
4518 		set->nr_maps = 1;
4519 	else if (set->nr_maps > HCTX_MAX_TYPES)
4520 		return -EINVAL;
4521 
4522 	/*
4523 	 * If a crashdump is active, then we are potentially in a very
4524 	 * memory constrained environment. Limit us to  64 tags to prevent
4525 	 * using too much memory.
4526 	 */
4527 	if (is_kdump_kernel())
4528 		set->queue_depth = min(64U, set->queue_depth);
4529 
4530 	/*
4531 	 * There is no use for more h/w queues than cpus if we just have
4532 	 * a single map
4533 	 */
4534 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4535 		set->nr_hw_queues = nr_cpu_ids;
4536 
4537 	if (set->flags & BLK_MQ_F_BLOCKING) {
4538 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4539 		if (!set->srcu)
4540 			return -ENOMEM;
4541 		ret = init_srcu_struct(set->srcu);
4542 		if (ret)
4543 			goto out_free_srcu;
4544 	}
4545 
4546 	ret = -ENOMEM;
4547 	set->tags = kcalloc_node(set->nr_hw_queues,
4548 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4549 				 set->numa_node);
4550 	if (!set->tags)
4551 		goto out_cleanup_srcu;
4552 
4553 	for (i = 0; i < set->nr_maps; i++) {
4554 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4555 						  sizeof(set->map[i].mq_map[0]),
4556 						  GFP_KERNEL, set->numa_node);
4557 		if (!set->map[i].mq_map)
4558 			goto out_free_mq_map;
4559 		set->map[i].nr_queues = set->nr_hw_queues;
4560 	}
4561 
4562 	blk_mq_update_queue_map(set);
4563 
4564 	ret = blk_mq_alloc_set_map_and_rqs(set);
4565 	if (ret)
4566 		goto out_free_mq_map;
4567 
4568 	mutex_init(&set->tag_list_lock);
4569 	INIT_LIST_HEAD(&set->tag_list);
4570 
4571 	return 0;
4572 
4573 out_free_mq_map:
4574 	for (i = 0; i < set->nr_maps; i++) {
4575 		kfree(set->map[i].mq_map);
4576 		set->map[i].mq_map = NULL;
4577 	}
4578 	kfree(set->tags);
4579 	set->tags = NULL;
4580 out_cleanup_srcu:
4581 	if (set->flags & BLK_MQ_F_BLOCKING)
4582 		cleanup_srcu_struct(set->srcu);
4583 out_free_srcu:
4584 	if (set->flags & BLK_MQ_F_BLOCKING)
4585 		kfree(set->srcu);
4586 	return ret;
4587 }
4588 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4589 
4590 /* allocate and initialize a tagset for a simple single-queue device */
4591 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4592 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4593 		unsigned int set_flags)
4594 {
4595 	memset(set, 0, sizeof(*set));
4596 	set->ops = ops;
4597 	set->nr_hw_queues = 1;
4598 	set->nr_maps = 1;
4599 	set->queue_depth = queue_depth;
4600 	set->numa_node = NUMA_NO_NODE;
4601 	set->flags = set_flags;
4602 	return blk_mq_alloc_tag_set(set);
4603 }
4604 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4605 
4606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4607 {
4608 	int i, j;
4609 
4610 	for (i = 0; i < set->nr_hw_queues; i++)
4611 		__blk_mq_free_map_and_rqs(set, i);
4612 
4613 	if (blk_mq_is_shared_tags(set->flags)) {
4614 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4615 					BLK_MQ_NO_HCTX_IDX);
4616 	}
4617 
4618 	for (j = 0; j < set->nr_maps; j++) {
4619 		kfree(set->map[j].mq_map);
4620 		set->map[j].mq_map = NULL;
4621 	}
4622 
4623 	kfree(set->tags);
4624 	set->tags = NULL;
4625 	if (set->flags & BLK_MQ_F_BLOCKING) {
4626 		cleanup_srcu_struct(set->srcu);
4627 		kfree(set->srcu);
4628 	}
4629 }
4630 EXPORT_SYMBOL(blk_mq_free_tag_set);
4631 
4632 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4633 {
4634 	struct blk_mq_tag_set *set = q->tag_set;
4635 	struct blk_mq_hw_ctx *hctx;
4636 	int ret;
4637 	unsigned long i;
4638 
4639 	if (!set)
4640 		return -EINVAL;
4641 
4642 	if (q->nr_requests == nr)
4643 		return 0;
4644 
4645 	blk_mq_freeze_queue(q);
4646 	blk_mq_quiesce_queue(q);
4647 
4648 	ret = 0;
4649 	queue_for_each_hw_ctx(q, hctx, i) {
4650 		if (!hctx->tags)
4651 			continue;
4652 		/*
4653 		 * If we're using an MQ scheduler, just update the scheduler
4654 		 * queue depth. This is similar to what the old code would do.
4655 		 */
4656 		if (hctx->sched_tags) {
4657 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4658 						      nr, true);
4659 		} else {
4660 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4661 						      false);
4662 		}
4663 		if (ret)
4664 			break;
4665 		if (q->elevator && q->elevator->type->ops.depth_updated)
4666 			q->elevator->type->ops.depth_updated(hctx);
4667 	}
4668 	if (!ret) {
4669 		q->nr_requests = nr;
4670 		if (blk_mq_is_shared_tags(set->flags)) {
4671 			if (q->elevator)
4672 				blk_mq_tag_update_sched_shared_tags(q);
4673 			else
4674 				blk_mq_tag_resize_shared_tags(set, nr);
4675 		}
4676 	}
4677 
4678 	blk_mq_unquiesce_queue(q);
4679 	blk_mq_unfreeze_queue(q);
4680 
4681 	return ret;
4682 }
4683 
4684 /*
4685  * request_queue and elevator_type pair.
4686  * It is just used by __blk_mq_update_nr_hw_queues to cache
4687  * the elevator_type associated with a request_queue.
4688  */
4689 struct blk_mq_qe_pair {
4690 	struct list_head node;
4691 	struct request_queue *q;
4692 	struct elevator_type *type;
4693 };
4694 
4695 /*
4696  * Cache the elevator_type in qe pair list and switch the
4697  * io scheduler to 'none'
4698  */
4699 static bool blk_mq_elv_switch_none(struct list_head *head,
4700 		struct request_queue *q)
4701 {
4702 	struct blk_mq_qe_pair *qe;
4703 
4704 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4705 	if (!qe)
4706 		return false;
4707 
4708 	/* q->elevator needs protection from ->sysfs_lock */
4709 	mutex_lock(&q->sysfs_lock);
4710 
4711 	/* the check has to be done with holding sysfs_lock */
4712 	if (!q->elevator) {
4713 		kfree(qe);
4714 		goto unlock;
4715 	}
4716 
4717 	INIT_LIST_HEAD(&qe->node);
4718 	qe->q = q;
4719 	qe->type = q->elevator->type;
4720 	/* keep a reference to the elevator module as we'll switch back */
4721 	__elevator_get(qe->type);
4722 	list_add(&qe->node, head);
4723 	elevator_disable(q);
4724 unlock:
4725 	mutex_unlock(&q->sysfs_lock);
4726 
4727 	return true;
4728 }
4729 
4730 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4731 						struct request_queue *q)
4732 {
4733 	struct blk_mq_qe_pair *qe;
4734 
4735 	list_for_each_entry(qe, head, node)
4736 		if (qe->q == q)
4737 			return qe;
4738 
4739 	return NULL;
4740 }
4741 
4742 static void blk_mq_elv_switch_back(struct list_head *head,
4743 				  struct request_queue *q)
4744 {
4745 	struct blk_mq_qe_pair *qe;
4746 	struct elevator_type *t;
4747 
4748 	qe = blk_lookup_qe_pair(head, q);
4749 	if (!qe)
4750 		return;
4751 	t = qe->type;
4752 	list_del(&qe->node);
4753 	kfree(qe);
4754 
4755 	mutex_lock(&q->sysfs_lock);
4756 	elevator_switch(q, t);
4757 	/* drop the reference acquired in blk_mq_elv_switch_none */
4758 	elevator_put(t);
4759 	mutex_unlock(&q->sysfs_lock);
4760 }
4761 
4762 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4763 							int nr_hw_queues)
4764 {
4765 	struct request_queue *q;
4766 	LIST_HEAD(head);
4767 	int prev_nr_hw_queues = set->nr_hw_queues;
4768 	int i;
4769 
4770 	lockdep_assert_held(&set->tag_list_lock);
4771 
4772 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4773 		nr_hw_queues = nr_cpu_ids;
4774 	if (nr_hw_queues < 1)
4775 		return;
4776 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4777 		return;
4778 
4779 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4780 		blk_mq_freeze_queue(q);
4781 	/*
4782 	 * Switch IO scheduler to 'none', cleaning up the data associated
4783 	 * with the previous scheduler. We will switch back once we are done
4784 	 * updating the new sw to hw queue mappings.
4785 	 */
4786 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4787 		if (!blk_mq_elv_switch_none(&head, q))
4788 			goto switch_back;
4789 
4790 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4791 		blk_mq_debugfs_unregister_hctxs(q);
4792 		blk_mq_sysfs_unregister_hctxs(q);
4793 	}
4794 
4795 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4796 		goto reregister;
4797 
4798 fallback:
4799 	blk_mq_update_queue_map(set);
4800 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4801 		blk_mq_realloc_hw_ctxs(set, q);
4802 		blk_mq_update_poll_flag(q);
4803 		if (q->nr_hw_queues != set->nr_hw_queues) {
4804 			int i = prev_nr_hw_queues;
4805 
4806 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4807 					nr_hw_queues, prev_nr_hw_queues);
4808 			for (; i < set->nr_hw_queues; i++)
4809 				__blk_mq_free_map_and_rqs(set, i);
4810 
4811 			set->nr_hw_queues = prev_nr_hw_queues;
4812 			goto fallback;
4813 		}
4814 		blk_mq_map_swqueue(q);
4815 	}
4816 
4817 reregister:
4818 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4819 		blk_mq_sysfs_register_hctxs(q);
4820 		blk_mq_debugfs_register_hctxs(q);
4821 	}
4822 
4823 switch_back:
4824 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4825 		blk_mq_elv_switch_back(&head, q);
4826 
4827 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4828 		blk_mq_unfreeze_queue(q);
4829 
4830 	/* Free the excess tags when nr_hw_queues shrink. */
4831 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4832 		__blk_mq_free_map_and_rqs(set, i);
4833 }
4834 
4835 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4836 {
4837 	mutex_lock(&set->tag_list_lock);
4838 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4839 	mutex_unlock(&set->tag_list_lock);
4840 }
4841 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4842 
4843 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4844 			 struct io_comp_batch *iob, unsigned int flags)
4845 {
4846 	long state = get_current_state();
4847 	int ret;
4848 
4849 	do {
4850 		ret = q->mq_ops->poll(hctx, iob);
4851 		if (ret > 0) {
4852 			__set_current_state(TASK_RUNNING);
4853 			return ret;
4854 		}
4855 
4856 		if (signal_pending_state(state, current))
4857 			__set_current_state(TASK_RUNNING);
4858 		if (task_is_running(current))
4859 			return 1;
4860 
4861 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4862 			break;
4863 		cpu_relax();
4864 	} while (!need_resched());
4865 
4866 	__set_current_state(TASK_RUNNING);
4867 	return 0;
4868 }
4869 
4870 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4871 		struct io_comp_batch *iob, unsigned int flags)
4872 {
4873 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4874 
4875 	return blk_hctx_poll(q, hctx, iob, flags);
4876 }
4877 
4878 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4879 		unsigned int poll_flags)
4880 {
4881 	struct request_queue *q = rq->q;
4882 	int ret;
4883 
4884 	if (!blk_rq_is_poll(rq))
4885 		return 0;
4886 	if (!percpu_ref_tryget(&q->q_usage_counter))
4887 		return 0;
4888 
4889 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4890 	blk_queue_exit(q);
4891 
4892 	return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(blk_rq_poll);
4895 
4896 unsigned int blk_mq_rq_cpu(struct request *rq)
4897 {
4898 	return rq->mq_ctx->cpu;
4899 }
4900 EXPORT_SYMBOL(blk_mq_rq_cpu);
4901 
4902 void blk_mq_cancel_work_sync(struct request_queue *q)
4903 {
4904 	struct blk_mq_hw_ctx *hctx;
4905 	unsigned long i;
4906 
4907 	cancel_delayed_work_sync(&q->requeue_work);
4908 
4909 	queue_for_each_hw_ctx(q, hctx, i)
4910 		cancel_delayed_work_sync(&hctx->run_work);
4911 }
4912 
4913 static int __init blk_mq_init(void)
4914 {
4915 	int i;
4916 
4917 	for_each_possible_cpu(i)
4918 		init_llist_head(&per_cpu(blk_cpu_done, i));
4919 	for_each_possible_cpu(i)
4920 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4921 			 __blk_mq_complete_request_remote, NULL);
4922 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4923 
4924 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4925 				  "block/softirq:dead", NULL,
4926 				  blk_softirq_cpu_dead);
4927 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4928 				blk_mq_hctx_notify_dead);
4929 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4930 				blk_mq_hctx_notify_online,
4931 				blk_mq_hctx_notify_offline);
4932 	return 0;
4933 }
4934 subsys_initcall(blk_mq_init);
4935