xref: /linux/block/blk-mq.c (revision 640e922501103aaf2e0abb4cf4de5d49fa8342f7)
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17 
18 #include <trace/events/block.h>
19 
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24 
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27 
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29 
30 DEFINE_PER_CPU(struct llist_head, ipi_lists);
31 
32 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
33 					   unsigned int cpu)
34 {
35 	return per_cpu_ptr(q->queue_ctx, cpu);
36 }
37 
38 /*
39  * This assumes per-cpu software queueing queues. They could be per-node
40  * as well, for instance. For now this is hardcoded as-is. Note that we don't
41  * care about preemption, since we know the ctx's are persistent. This does
42  * mean that we can't rely on ctx always matching the currently running CPU.
43  */
44 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
45 {
46 	return __blk_mq_get_ctx(q, get_cpu());
47 }
48 
49 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
50 {
51 	put_cpu();
52 }
53 
54 /*
55  * Check if any of the ctx's have pending work in this hardware queue
56  */
57 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
58 {
59 	unsigned int i;
60 
61 	for (i = 0; i < hctx->nr_ctx_map; i++)
62 		if (hctx->ctx_map[i])
63 			return true;
64 
65 	return false;
66 }
67 
68 /*
69  * Mark this ctx as having pending work in this hardware queue
70  */
71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 				     struct blk_mq_ctx *ctx)
73 {
74 	if (!test_bit(ctx->index_hw, hctx->ctx_map))
75 		set_bit(ctx->index_hw, hctx->ctx_map);
76 }
77 
78 static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
79 				       bool reserved)
80 {
81 	struct request *rq;
82 	unsigned int tag;
83 
84 	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
85 	if (tag != BLK_MQ_TAG_FAIL) {
86 		rq = hctx->rqs[tag];
87 		rq->tag = tag;
88 
89 		return rq;
90 	}
91 
92 	return NULL;
93 }
94 
95 static int blk_mq_queue_enter(struct request_queue *q)
96 {
97 	int ret;
98 
99 	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 	smp_wmb();
101 	/* we have problems to freeze the queue if it's initializing */
102 	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 		return 0;
104 
105 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106 
107 	spin_lock_irq(q->queue_lock);
108 	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
109 		!blk_queue_bypass(q), *q->queue_lock);
110 	/* inc usage with lock hold to avoid freeze_queue runs here */
111 	if (!ret)
112 		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 	spin_unlock_irq(q->queue_lock);
114 
115 	return ret;
116 }
117 
118 static void blk_mq_queue_exit(struct request_queue *q)
119 {
120 	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
121 }
122 
123 /*
124  * Guarantee no request is in use, so we can change any data structure of
125  * the queue afterward.
126  */
127 static void blk_mq_freeze_queue(struct request_queue *q)
128 {
129 	bool drain;
130 
131 	spin_lock_irq(q->queue_lock);
132 	drain = !q->bypass_depth++;
133 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
134 	spin_unlock_irq(q->queue_lock);
135 
136 	if (!drain)
137 		return;
138 
139 	while (true) {
140 		s64 count;
141 
142 		spin_lock_irq(q->queue_lock);
143 		count = percpu_counter_sum(&q->mq_usage_counter);
144 		spin_unlock_irq(q->queue_lock);
145 
146 		if (count == 0)
147 			break;
148 		blk_mq_run_queues(q, false);
149 		msleep(10);
150 	}
151 }
152 
153 static void blk_mq_unfreeze_queue(struct request_queue *q)
154 {
155 	bool wake = false;
156 
157 	spin_lock_irq(q->queue_lock);
158 	if (!--q->bypass_depth) {
159 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
160 		wake = true;
161 	}
162 	WARN_ON_ONCE(q->bypass_depth < 0);
163 	spin_unlock_irq(q->queue_lock);
164 	if (wake)
165 		wake_up_all(&q->mq_freeze_wq);
166 }
167 
168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
169 {
170 	return blk_mq_has_free_tags(hctx->tags);
171 }
172 EXPORT_SYMBOL(blk_mq_can_queue);
173 
174 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
175 			       struct request *rq, unsigned int rw_flags)
176 {
177 	if (blk_queue_io_stat(q))
178 		rw_flags |= REQ_IO_STAT;
179 
180 	rq->mq_ctx = ctx;
181 	rq->cmd_flags = rw_flags;
182 	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
183 }
184 
185 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
186 					      gfp_t gfp, bool reserved)
187 {
188 	return blk_mq_alloc_rq(hctx, gfp, reserved);
189 }
190 
191 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
192 						   int rw, gfp_t gfp,
193 						   bool reserved)
194 {
195 	struct request *rq;
196 
197 	do {
198 		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
199 		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
200 
201 		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
202 		if (rq) {
203 			blk_mq_rq_ctx_init(q, ctx, rq, rw);
204 			break;
205 		} else if (!(gfp & __GFP_WAIT))
206 			break;
207 
208 		blk_mq_put_ctx(ctx);
209 		__blk_mq_run_hw_queue(hctx);
210 		blk_mq_wait_for_tags(hctx->tags);
211 	} while (1);
212 
213 	return rq;
214 }
215 
216 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
217 		gfp_t gfp, bool reserved)
218 {
219 	struct request *rq;
220 
221 	if (blk_mq_queue_enter(q))
222 		return NULL;
223 
224 	rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
225 	blk_mq_put_ctx(rq->mq_ctx);
226 	return rq;
227 }
228 
229 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
230 					      gfp_t gfp)
231 {
232 	struct request *rq;
233 
234 	if (blk_mq_queue_enter(q))
235 		return NULL;
236 
237 	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
238 	blk_mq_put_ctx(rq->mq_ctx);
239 	return rq;
240 }
241 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
242 
243 /*
244  * Re-init and set pdu, if we have it
245  */
246 static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
247 {
248 	blk_rq_init(hctx->queue, rq);
249 
250 	if (hctx->cmd_size)
251 		rq->special = blk_mq_rq_to_pdu(rq);
252 }
253 
254 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
255 				  struct blk_mq_ctx *ctx, struct request *rq)
256 {
257 	const int tag = rq->tag;
258 	struct request_queue *q = rq->q;
259 
260 	blk_mq_rq_init(hctx, rq);
261 	blk_mq_put_tag(hctx->tags, tag);
262 
263 	blk_mq_queue_exit(q);
264 }
265 
266 void blk_mq_free_request(struct request *rq)
267 {
268 	struct blk_mq_ctx *ctx = rq->mq_ctx;
269 	struct blk_mq_hw_ctx *hctx;
270 	struct request_queue *q = rq->q;
271 
272 	ctx->rq_completed[rq_is_sync(rq)]++;
273 
274 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 	__blk_mq_free_request(hctx, ctx, rq);
276 }
277 
278 static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
279 {
280 	if (error)
281 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
283 		error = -EIO;
284 
285 	if (unlikely(rq->cmd_flags & REQ_QUIET))
286 		set_bit(BIO_QUIET, &bio->bi_flags);
287 
288 	/* don't actually finish bio if it's part of flush sequence */
289 	if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
290 		bio_endio(bio, error);
291 }
292 
293 void blk_mq_complete_request(struct request *rq, int error)
294 {
295 	struct bio *bio = rq->bio;
296 	unsigned int bytes = 0;
297 
298 	trace_block_rq_complete(rq->q, rq);
299 
300 	while (bio) {
301 		struct bio *next = bio->bi_next;
302 
303 		bio->bi_next = NULL;
304 		bytes += bio->bi_size;
305 		blk_mq_bio_endio(rq, bio, error);
306 		bio = next;
307 	}
308 
309 	blk_account_io_completion(rq, bytes);
310 
311 	if (rq->end_io)
312 		rq->end_io(rq, error);
313 	else
314 		blk_mq_free_request(rq);
315 
316 	blk_account_io_done(rq);
317 }
318 
319 void __blk_mq_end_io(struct request *rq, int error)
320 {
321 	if (!blk_mark_rq_complete(rq))
322 		blk_mq_complete_request(rq, error);
323 }
324 
325 #if defined(CONFIG_SMP)
326 
327 /*
328  * Called with interrupts disabled.
329  */
330 static void ipi_end_io(void *data)
331 {
332 	struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
333 	struct llist_node *entry, *next;
334 	struct request *rq;
335 
336 	entry = llist_del_all(list);
337 
338 	while (entry) {
339 		next = entry->next;
340 		rq = llist_entry(entry, struct request, ll_list);
341 		__blk_mq_end_io(rq, rq->errors);
342 		entry = next;
343 	}
344 }
345 
346 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
347 			  struct request *rq, const int error)
348 {
349 	struct call_single_data *data = &rq->csd;
350 
351 	rq->errors = error;
352 	rq->ll_list.next = NULL;
353 
354 	/*
355 	 * If the list is non-empty, an existing IPI must already
356 	 * be "in flight". If that is the case, we need not schedule
357 	 * a new one.
358 	 */
359 	if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
360 		data->func = ipi_end_io;
361 		data->flags = 0;
362 		__smp_call_function_single(ctx->cpu, data, 0);
363 	}
364 
365 	return true;
366 }
367 #else /* CONFIG_SMP */
368 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
369 			  struct request *rq, const int error)
370 {
371 	return false;
372 }
373 #endif
374 
375 /*
376  * End IO on this request on a multiqueue enabled driver. We'll either do
377  * it directly inline, or punt to a local IPI handler on the matching
378  * remote CPU.
379  */
380 void blk_mq_end_io(struct request *rq, int error)
381 {
382 	struct blk_mq_ctx *ctx = rq->mq_ctx;
383 	int cpu;
384 
385 	if (!ctx->ipi_redirect)
386 		return __blk_mq_end_io(rq, error);
387 
388 	cpu = get_cpu();
389 
390 	if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
391 	    !ipi_remote_cpu(ctx, cpu, rq, error))
392 		__blk_mq_end_io(rq, error);
393 
394 	put_cpu();
395 }
396 EXPORT_SYMBOL(blk_mq_end_io);
397 
398 static void blk_mq_start_request(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 
402 	trace_block_rq_issue(q, rq);
403 
404 	/*
405 	 * Just mark start time and set the started bit. Due to memory
406 	 * ordering, we know we'll see the correct deadline as long as
407 	 * REQ_ATOMIC_STARTED is seen.
408 	 */
409 	rq->deadline = jiffies + q->rq_timeout;
410 	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 }
412 
413 static void blk_mq_requeue_request(struct request *rq)
414 {
415 	struct request_queue *q = rq->q;
416 
417 	trace_block_rq_requeue(q, rq);
418 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
419 }
420 
421 struct blk_mq_timeout_data {
422 	struct blk_mq_hw_ctx *hctx;
423 	unsigned long *next;
424 	unsigned int *next_set;
425 };
426 
427 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
428 {
429 	struct blk_mq_timeout_data *data = __data;
430 	struct blk_mq_hw_ctx *hctx = data->hctx;
431 	unsigned int tag;
432 
433 	 /* It may not be in flight yet (this is where
434 	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
435 	 * statically allocated, so we know it's always safe to access the
436 	 * memory associated with a bit offset into ->rqs[].
437 	 */
438 	tag = 0;
439 	do {
440 		struct request *rq;
441 
442 		tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
443 		if (tag >= hctx->queue_depth)
444 			break;
445 
446 		rq = hctx->rqs[tag++];
447 
448 		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
449 			continue;
450 
451 		blk_rq_check_expired(rq, data->next, data->next_set);
452 	} while (1);
453 }
454 
455 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
456 					unsigned long *next,
457 					unsigned int *next_set)
458 {
459 	struct blk_mq_timeout_data data = {
460 		.hctx		= hctx,
461 		.next		= next,
462 		.next_set	= next_set,
463 	};
464 
465 	/*
466 	 * Ask the tagging code to iterate busy requests, so we can
467 	 * check them for timeout.
468 	 */
469 	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
470 }
471 
472 static void blk_mq_rq_timer(unsigned long data)
473 {
474 	struct request_queue *q = (struct request_queue *) data;
475 	struct blk_mq_hw_ctx *hctx;
476 	unsigned long next = 0;
477 	int i, next_set = 0;
478 
479 	queue_for_each_hw_ctx(q, hctx, i)
480 		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
481 
482 	if (next_set)
483 		mod_timer(&q->timeout, round_jiffies_up(next));
484 }
485 
486 /*
487  * Reverse check our software queue for entries that we could potentially
488  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
489  * too much time checking for merges.
490  */
491 static bool blk_mq_attempt_merge(struct request_queue *q,
492 				 struct blk_mq_ctx *ctx, struct bio *bio)
493 {
494 	struct request *rq;
495 	int checked = 8;
496 
497 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
498 		int el_ret;
499 
500 		if (!checked--)
501 			break;
502 
503 		if (!blk_rq_merge_ok(rq, bio))
504 			continue;
505 
506 		el_ret = blk_try_merge(rq, bio);
507 		if (el_ret == ELEVATOR_BACK_MERGE) {
508 			if (bio_attempt_back_merge(q, rq, bio)) {
509 				ctx->rq_merged++;
510 				return true;
511 			}
512 			break;
513 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
514 			if (bio_attempt_front_merge(q, rq, bio)) {
515 				ctx->rq_merged++;
516 				return true;
517 			}
518 			break;
519 		}
520 	}
521 
522 	return false;
523 }
524 
525 void blk_mq_add_timer(struct request *rq)
526 {
527 	__blk_add_timer(rq, NULL);
528 }
529 
530 /*
531  * Run this hardware queue, pulling any software queues mapped to it in.
532  * Note that this function currently has various problems around ordering
533  * of IO. In particular, we'd like FIFO behaviour on handling existing
534  * items on the hctx->dispatch list. Ignore that for now.
535  */
536 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
537 {
538 	struct request_queue *q = hctx->queue;
539 	struct blk_mq_ctx *ctx;
540 	struct request *rq;
541 	LIST_HEAD(rq_list);
542 	int bit, queued;
543 
544 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
545 		return;
546 
547 	hctx->run++;
548 
549 	/*
550 	 * Touch any software queue that has pending entries.
551 	 */
552 	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
553 		clear_bit(bit, hctx->ctx_map);
554 		ctx = hctx->ctxs[bit];
555 		BUG_ON(bit != ctx->index_hw);
556 
557 		spin_lock(&ctx->lock);
558 		list_splice_tail_init(&ctx->rq_list, &rq_list);
559 		spin_unlock(&ctx->lock);
560 	}
561 
562 	/*
563 	 * If we have previous entries on our dispatch list, grab them
564 	 * and stuff them at the front for more fair dispatch.
565 	 */
566 	if (!list_empty_careful(&hctx->dispatch)) {
567 		spin_lock(&hctx->lock);
568 		if (!list_empty(&hctx->dispatch))
569 			list_splice_init(&hctx->dispatch, &rq_list);
570 		spin_unlock(&hctx->lock);
571 	}
572 
573 	/*
574 	 * Delete and return all entries from our dispatch list
575 	 */
576 	queued = 0;
577 
578 	/*
579 	 * Now process all the entries, sending them to the driver.
580 	 */
581 	while (!list_empty(&rq_list)) {
582 		int ret;
583 
584 		rq = list_first_entry(&rq_list, struct request, queuelist);
585 		list_del_init(&rq->queuelist);
586 		blk_mq_start_request(rq);
587 
588 		/*
589 		 * Last request in the series. Flag it as such, this
590 		 * enables drivers to know when IO should be kicked off,
591 		 * if they don't do it on a per-request basis.
592 		 *
593 		 * Note: the flag isn't the only condition drivers
594 		 * should do kick off. If drive is busy, the last
595 		 * request might not have the bit set.
596 		 */
597 		if (list_empty(&rq_list))
598 			rq->cmd_flags |= REQ_END;
599 
600 		ret = q->mq_ops->queue_rq(hctx, rq);
601 		switch (ret) {
602 		case BLK_MQ_RQ_QUEUE_OK:
603 			queued++;
604 			continue;
605 		case BLK_MQ_RQ_QUEUE_BUSY:
606 			/*
607 			 * FIXME: we should have a mechanism to stop the queue
608 			 * like blk_stop_queue, otherwise we will waste cpu
609 			 * time
610 			 */
611 			list_add(&rq->queuelist, &rq_list);
612 			blk_mq_requeue_request(rq);
613 			break;
614 		default:
615 			pr_err("blk-mq: bad return on queue: %d\n", ret);
616 			rq->errors = -EIO;
617 		case BLK_MQ_RQ_QUEUE_ERROR:
618 			blk_mq_end_io(rq, rq->errors);
619 			break;
620 		}
621 
622 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
623 			break;
624 	}
625 
626 	if (!queued)
627 		hctx->dispatched[0]++;
628 	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
629 		hctx->dispatched[ilog2(queued) + 1]++;
630 
631 	/*
632 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
633 	 * that is where we will continue on next queue run.
634 	 */
635 	if (!list_empty(&rq_list)) {
636 		spin_lock(&hctx->lock);
637 		list_splice(&rq_list, &hctx->dispatch);
638 		spin_unlock(&hctx->lock);
639 	}
640 }
641 
642 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
643 {
644 	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
645 		return;
646 
647 	if (!async)
648 		__blk_mq_run_hw_queue(hctx);
649 	else {
650 		struct request_queue *q = hctx->queue;
651 
652 		kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
653 	}
654 }
655 
656 void blk_mq_run_queues(struct request_queue *q, bool async)
657 {
658 	struct blk_mq_hw_ctx *hctx;
659 	int i;
660 
661 	queue_for_each_hw_ctx(q, hctx, i) {
662 		if ((!blk_mq_hctx_has_pending(hctx) &&
663 		    list_empty_careful(&hctx->dispatch)) ||
664 		    test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
665 			continue;
666 
667 		blk_mq_run_hw_queue(hctx, async);
668 	}
669 }
670 EXPORT_SYMBOL(blk_mq_run_queues);
671 
672 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
673 {
674 	cancel_delayed_work(&hctx->delayed_work);
675 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
676 }
677 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
678 
679 void blk_mq_stop_hw_queues(struct request_queue *q)
680 {
681 	struct blk_mq_hw_ctx *hctx;
682 	int i;
683 
684 	queue_for_each_hw_ctx(q, hctx, i)
685 		blk_mq_stop_hw_queue(hctx);
686 }
687 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
688 
689 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
690 {
691 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
692 	__blk_mq_run_hw_queue(hctx);
693 }
694 EXPORT_SYMBOL(blk_mq_start_hw_queue);
695 
696 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
697 {
698 	struct blk_mq_hw_ctx *hctx;
699 	int i;
700 
701 	queue_for_each_hw_ctx(q, hctx, i) {
702 		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
703 			continue;
704 
705 		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
706 		blk_mq_run_hw_queue(hctx, true);
707 	}
708 }
709 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
710 
711 static void blk_mq_work_fn(struct work_struct *work)
712 {
713 	struct blk_mq_hw_ctx *hctx;
714 
715 	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
716 	__blk_mq_run_hw_queue(hctx);
717 }
718 
719 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
720 				    struct request *rq)
721 {
722 	struct blk_mq_ctx *ctx = rq->mq_ctx;
723 
724 	trace_block_rq_insert(hctx->queue, rq);
725 
726 	list_add_tail(&rq->queuelist, &ctx->rq_list);
727 	blk_mq_hctx_mark_pending(hctx, ctx);
728 
729 	/*
730 	 * We do this early, to ensure we are on the right CPU.
731 	 */
732 	blk_mq_add_timer(rq);
733 }
734 
735 void blk_mq_insert_request(struct request_queue *q, struct request *rq,
736 			   bool run_queue)
737 {
738 	struct blk_mq_hw_ctx *hctx;
739 	struct blk_mq_ctx *ctx, *current_ctx;
740 
741 	ctx = rq->mq_ctx;
742 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
743 
744 	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
745 		blk_insert_flush(rq);
746 	} else {
747 		current_ctx = blk_mq_get_ctx(q);
748 
749 		if (!cpu_online(ctx->cpu)) {
750 			ctx = current_ctx;
751 			hctx = q->mq_ops->map_queue(q, ctx->cpu);
752 			rq->mq_ctx = ctx;
753 		}
754 		spin_lock(&ctx->lock);
755 		__blk_mq_insert_request(hctx, rq);
756 		spin_unlock(&ctx->lock);
757 
758 		blk_mq_put_ctx(current_ctx);
759 	}
760 
761 	if (run_queue)
762 		__blk_mq_run_hw_queue(hctx);
763 }
764 EXPORT_SYMBOL(blk_mq_insert_request);
765 
766 /*
767  * This is a special version of blk_mq_insert_request to bypass FLUSH request
768  * check. Should only be used internally.
769  */
770 void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
771 {
772 	struct request_queue *q = rq->q;
773 	struct blk_mq_hw_ctx *hctx;
774 	struct blk_mq_ctx *ctx, *current_ctx;
775 
776 	current_ctx = blk_mq_get_ctx(q);
777 
778 	ctx = rq->mq_ctx;
779 	if (!cpu_online(ctx->cpu)) {
780 		ctx = current_ctx;
781 		rq->mq_ctx = ctx;
782 	}
783 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
784 
785 	/* ctx->cpu might be offline */
786 	spin_lock(&ctx->lock);
787 	__blk_mq_insert_request(hctx, rq);
788 	spin_unlock(&ctx->lock);
789 
790 	blk_mq_put_ctx(current_ctx);
791 
792 	if (run_queue)
793 		blk_mq_run_hw_queue(hctx, async);
794 }
795 
796 static void blk_mq_insert_requests(struct request_queue *q,
797 				     struct blk_mq_ctx *ctx,
798 				     struct list_head *list,
799 				     int depth,
800 				     bool from_schedule)
801 
802 {
803 	struct blk_mq_hw_ctx *hctx;
804 	struct blk_mq_ctx *current_ctx;
805 
806 	trace_block_unplug(q, depth, !from_schedule);
807 
808 	current_ctx = blk_mq_get_ctx(q);
809 
810 	if (!cpu_online(ctx->cpu))
811 		ctx = current_ctx;
812 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
813 
814 	/*
815 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
816 	 * offline now
817 	 */
818 	spin_lock(&ctx->lock);
819 	while (!list_empty(list)) {
820 		struct request *rq;
821 
822 		rq = list_first_entry(list, struct request, queuelist);
823 		list_del_init(&rq->queuelist);
824 		rq->mq_ctx = ctx;
825 		__blk_mq_insert_request(hctx, rq);
826 	}
827 	spin_unlock(&ctx->lock);
828 
829 	blk_mq_put_ctx(current_ctx);
830 
831 	blk_mq_run_hw_queue(hctx, from_schedule);
832 }
833 
834 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
835 {
836 	struct request *rqa = container_of(a, struct request, queuelist);
837 	struct request *rqb = container_of(b, struct request, queuelist);
838 
839 	return !(rqa->mq_ctx < rqb->mq_ctx ||
840 		 (rqa->mq_ctx == rqb->mq_ctx &&
841 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
842 }
843 
844 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
845 {
846 	struct blk_mq_ctx *this_ctx;
847 	struct request_queue *this_q;
848 	struct request *rq;
849 	LIST_HEAD(list);
850 	LIST_HEAD(ctx_list);
851 	unsigned int depth;
852 
853 	list_splice_init(&plug->mq_list, &list);
854 
855 	list_sort(NULL, &list, plug_ctx_cmp);
856 
857 	this_q = NULL;
858 	this_ctx = NULL;
859 	depth = 0;
860 
861 	while (!list_empty(&list)) {
862 		rq = list_entry_rq(list.next);
863 		list_del_init(&rq->queuelist);
864 		BUG_ON(!rq->q);
865 		if (rq->mq_ctx != this_ctx) {
866 			if (this_ctx) {
867 				blk_mq_insert_requests(this_q, this_ctx,
868 							&ctx_list, depth,
869 							from_schedule);
870 			}
871 
872 			this_ctx = rq->mq_ctx;
873 			this_q = rq->q;
874 			depth = 0;
875 		}
876 
877 		depth++;
878 		list_add_tail(&rq->queuelist, &ctx_list);
879 	}
880 
881 	/*
882 	 * If 'this_ctx' is set, we know we have entries to complete
883 	 * on 'ctx_list'. Do those.
884 	 */
885 	if (this_ctx) {
886 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
887 				       from_schedule);
888 	}
889 }
890 
891 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
892 {
893 	init_request_from_bio(rq, bio);
894 	blk_account_io_start(rq, 1);
895 }
896 
897 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
898 {
899 	struct blk_mq_hw_ctx *hctx;
900 	struct blk_mq_ctx *ctx;
901 	const int is_sync = rw_is_sync(bio->bi_rw);
902 	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
903 	int rw = bio_data_dir(bio);
904 	struct request *rq;
905 	unsigned int use_plug, request_count = 0;
906 
907 	/*
908 	 * If we have multiple hardware queues, just go directly to
909 	 * one of those for sync IO.
910 	 */
911 	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
912 
913 	blk_queue_bounce(q, &bio);
914 
915 	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
916 		return;
917 
918 	if (blk_mq_queue_enter(q)) {
919 		bio_endio(bio, -EIO);
920 		return;
921 	}
922 
923 	ctx = blk_mq_get_ctx(q);
924 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
925 
926 	trace_block_getrq(q, bio, rw);
927 	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
928 	if (likely(rq))
929 		blk_mq_rq_ctx_init(q, ctx, rq, rw);
930 	else {
931 		blk_mq_put_ctx(ctx);
932 		trace_block_sleeprq(q, bio, rw);
933 		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
934 							false);
935 		ctx = rq->mq_ctx;
936 		hctx = q->mq_ops->map_queue(q, ctx->cpu);
937 	}
938 
939 	hctx->queued++;
940 
941 	if (unlikely(is_flush_fua)) {
942 		blk_mq_bio_to_request(rq, bio);
943 		blk_mq_put_ctx(ctx);
944 		blk_insert_flush(rq);
945 		goto run_queue;
946 	}
947 
948 	/*
949 	 * A task plug currently exists. Since this is completely lockless,
950 	 * utilize that to temporarily store requests until the task is
951 	 * either done or scheduled away.
952 	 */
953 	if (use_plug) {
954 		struct blk_plug *plug = current->plug;
955 
956 		if (plug) {
957 			blk_mq_bio_to_request(rq, bio);
958 			if (list_empty(&plug->mq_list))
959 				trace_block_plug(q);
960 			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
961 				blk_flush_plug_list(plug, false);
962 				trace_block_plug(q);
963 			}
964 			list_add_tail(&rq->queuelist, &plug->mq_list);
965 			blk_mq_put_ctx(ctx);
966 			return;
967 		}
968 	}
969 
970 	spin_lock(&ctx->lock);
971 
972 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
973 	    blk_mq_attempt_merge(q, ctx, bio))
974 		__blk_mq_free_request(hctx, ctx, rq);
975 	else {
976 		blk_mq_bio_to_request(rq, bio);
977 		__blk_mq_insert_request(hctx, rq);
978 	}
979 
980 	spin_unlock(&ctx->lock);
981 	blk_mq_put_ctx(ctx);
982 
983 	/*
984 	 * For a SYNC request, send it to the hardware immediately. For an
985 	 * ASYNC request, just ensure that we run it later on. The latter
986 	 * allows for merging opportunities and more efficient dispatching.
987 	 */
988 run_queue:
989 	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
990 }
991 
992 /*
993  * Default mapping to a software queue, since we use one per CPU.
994  */
995 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
996 {
997 	return q->queue_hw_ctx[q->mq_map[cpu]];
998 }
999 EXPORT_SYMBOL(blk_mq_map_queue);
1000 
1001 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1002 						   unsigned int hctx_index)
1003 {
1004 	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1005 				GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1006 }
1007 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1008 
1009 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1010 				 unsigned int hctx_index)
1011 {
1012 	kfree(hctx);
1013 }
1014 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1015 
1016 static void blk_mq_hctx_notify(void *data, unsigned long action,
1017 			       unsigned int cpu)
1018 {
1019 	struct blk_mq_hw_ctx *hctx = data;
1020 	struct blk_mq_ctx *ctx;
1021 	LIST_HEAD(tmp);
1022 
1023 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1024 		return;
1025 
1026 	/*
1027 	 * Move ctx entries to new CPU, if this one is going away.
1028 	 */
1029 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1030 
1031 	spin_lock(&ctx->lock);
1032 	if (!list_empty(&ctx->rq_list)) {
1033 		list_splice_init(&ctx->rq_list, &tmp);
1034 		clear_bit(ctx->index_hw, hctx->ctx_map);
1035 	}
1036 	spin_unlock(&ctx->lock);
1037 
1038 	if (list_empty(&tmp))
1039 		return;
1040 
1041 	ctx = blk_mq_get_ctx(hctx->queue);
1042 	spin_lock(&ctx->lock);
1043 
1044 	while (!list_empty(&tmp)) {
1045 		struct request *rq;
1046 
1047 		rq = list_first_entry(&tmp, struct request, queuelist);
1048 		rq->mq_ctx = ctx;
1049 		list_move_tail(&rq->queuelist, &ctx->rq_list);
1050 	}
1051 
1052 	blk_mq_hctx_mark_pending(hctx, ctx);
1053 
1054 	spin_unlock(&ctx->lock);
1055 	blk_mq_put_ctx(ctx);
1056 }
1057 
1058 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1059 				    void (*init)(void *, struct blk_mq_hw_ctx *,
1060 					struct request *, unsigned int),
1061 				    void *data)
1062 {
1063 	unsigned int i;
1064 
1065 	for (i = 0; i < hctx->queue_depth; i++) {
1066 		struct request *rq = hctx->rqs[i];
1067 
1068 		init(data, hctx, rq, i);
1069 	}
1070 }
1071 
1072 void blk_mq_init_commands(struct request_queue *q,
1073 			  void (*init)(void *, struct blk_mq_hw_ctx *,
1074 					struct request *, unsigned int),
1075 			  void *data)
1076 {
1077 	struct blk_mq_hw_ctx *hctx;
1078 	unsigned int i;
1079 
1080 	queue_for_each_hw_ctx(q, hctx, i)
1081 		blk_mq_init_hw_commands(hctx, init, data);
1082 }
1083 EXPORT_SYMBOL(blk_mq_init_commands);
1084 
1085 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1086 {
1087 	struct page *page;
1088 
1089 	while (!list_empty(&hctx->page_list)) {
1090 		page = list_first_entry(&hctx->page_list, struct page, list);
1091 		list_del_init(&page->list);
1092 		__free_pages(page, page->private);
1093 	}
1094 
1095 	kfree(hctx->rqs);
1096 
1097 	if (hctx->tags)
1098 		blk_mq_free_tags(hctx->tags);
1099 }
1100 
1101 static size_t order_to_size(unsigned int order)
1102 {
1103 	size_t ret = PAGE_SIZE;
1104 
1105 	while (order--)
1106 		ret *= 2;
1107 
1108 	return ret;
1109 }
1110 
1111 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1112 			      unsigned int reserved_tags, int node)
1113 {
1114 	unsigned int i, j, entries_per_page, max_order = 4;
1115 	size_t rq_size, left;
1116 
1117 	INIT_LIST_HEAD(&hctx->page_list);
1118 
1119 	hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1120 					GFP_KERNEL, node);
1121 	if (!hctx->rqs)
1122 		return -ENOMEM;
1123 
1124 	/*
1125 	 * rq_size is the size of the request plus driver payload, rounded
1126 	 * to the cacheline size
1127 	 */
1128 	rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1129 				cache_line_size());
1130 	left = rq_size * hctx->queue_depth;
1131 
1132 	for (i = 0; i < hctx->queue_depth;) {
1133 		int this_order = max_order;
1134 		struct page *page;
1135 		int to_do;
1136 		void *p;
1137 
1138 		while (left < order_to_size(this_order - 1) && this_order)
1139 			this_order--;
1140 
1141 		do {
1142 			page = alloc_pages_node(node, GFP_KERNEL, this_order);
1143 			if (page)
1144 				break;
1145 			if (!this_order--)
1146 				break;
1147 			if (order_to_size(this_order) < rq_size)
1148 				break;
1149 		} while (1);
1150 
1151 		if (!page)
1152 			break;
1153 
1154 		page->private = this_order;
1155 		list_add_tail(&page->list, &hctx->page_list);
1156 
1157 		p = page_address(page);
1158 		entries_per_page = order_to_size(this_order) / rq_size;
1159 		to_do = min(entries_per_page, hctx->queue_depth - i);
1160 		left -= to_do * rq_size;
1161 		for (j = 0; j < to_do; j++) {
1162 			hctx->rqs[i] = p;
1163 			blk_mq_rq_init(hctx, hctx->rqs[i]);
1164 			p += rq_size;
1165 			i++;
1166 		}
1167 	}
1168 
1169 	if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1170 		goto err_rq_map;
1171 	else if (i != hctx->queue_depth) {
1172 		hctx->queue_depth = i;
1173 		pr_warn("%s: queue depth set to %u because of low memory\n",
1174 					__func__, i);
1175 	}
1176 
1177 	hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1178 	if (!hctx->tags) {
1179 err_rq_map:
1180 		blk_mq_free_rq_map(hctx);
1181 		return -ENOMEM;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int blk_mq_init_hw_queues(struct request_queue *q,
1188 				 struct blk_mq_reg *reg, void *driver_data)
1189 {
1190 	struct blk_mq_hw_ctx *hctx;
1191 	unsigned int i, j;
1192 
1193 	/*
1194 	 * Initialize hardware queues
1195 	 */
1196 	queue_for_each_hw_ctx(q, hctx, i) {
1197 		unsigned int num_maps;
1198 		int node;
1199 
1200 		node = hctx->numa_node;
1201 		if (node == NUMA_NO_NODE)
1202 			node = hctx->numa_node = reg->numa_node;
1203 
1204 		INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1205 		spin_lock_init(&hctx->lock);
1206 		INIT_LIST_HEAD(&hctx->dispatch);
1207 		hctx->queue = q;
1208 		hctx->queue_num = i;
1209 		hctx->flags = reg->flags;
1210 		hctx->queue_depth = reg->queue_depth;
1211 		hctx->cmd_size = reg->cmd_size;
1212 
1213 		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1214 						blk_mq_hctx_notify, hctx);
1215 		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1216 
1217 		if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1218 			break;
1219 
1220 		/*
1221 		 * Allocate space for all possible cpus to avoid allocation in
1222 		 * runtime
1223 		 */
1224 		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1225 						GFP_KERNEL, node);
1226 		if (!hctx->ctxs)
1227 			break;
1228 
1229 		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1230 		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1231 						GFP_KERNEL, node);
1232 		if (!hctx->ctx_map)
1233 			break;
1234 
1235 		hctx->nr_ctx_map = num_maps;
1236 		hctx->nr_ctx = 0;
1237 
1238 		if (reg->ops->init_hctx &&
1239 		    reg->ops->init_hctx(hctx, driver_data, i))
1240 			break;
1241 	}
1242 
1243 	if (i == q->nr_hw_queues)
1244 		return 0;
1245 
1246 	/*
1247 	 * Init failed
1248 	 */
1249 	queue_for_each_hw_ctx(q, hctx, j) {
1250 		if (i == j)
1251 			break;
1252 
1253 		if (reg->ops->exit_hctx)
1254 			reg->ops->exit_hctx(hctx, j);
1255 
1256 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1257 		blk_mq_free_rq_map(hctx);
1258 		kfree(hctx->ctxs);
1259 	}
1260 
1261 	return 1;
1262 }
1263 
1264 static void blk_mq_init_cpu_queues(struct request_queue *q,
1265 				   unsigned int nr_hw_queues)
1266 {
1267 	unsigned int i;
1268 
1269 	for_each_possible_cpu(i) {
1270 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1271 		struct blk_mq_hw_ctx *hctx;
1272 
1273 		memset(__ctx, 0, sizeof(*__ctx));
1274 		__ctx->cpu = i;
1275 		spin_lock_init(&__ctx->lock);
1276 		INIT_LIST_HEAD(&__ctx->rq_list);
1277 		__ctx->queue = q;
1278 
1279 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1280 		hctx = q->mq_ops->map_queue(q, i);
1281 		hctx->nr_ctx++;
1282 
1283 		if (!cpu_online(i))
1284 			continue;
1285 
1286 		/*
1287 		 * Set local node, IFF we have more than one hw queue. If
1288 		 * not, we remain on the home node of the device
1289 		 */
1290 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1291 			hctx->numa_node = cpu_to_node(i);
1292 	}
1293 }
1294 
1295 static void blk_mq_map_swqueue(struct request_queue *q)
1296 {
1297 	unsigned int i;
1298 	struct blk_mq_hw_ctx *hctx;
1299 	struct blk_mq_ctx *ctx;
1300 
1301 	queue_for_each_hw_ctx(q, hctx, i) {
1302 		hctx->nr_ctx = 0;
1303 	}
1304 
1305 	/*
1306 	 * Map software to hardware queues
1307 	 */
1308 	queue_for_each_ctx(q, ctx, i) {
1309 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1310 		hctx = q->mq_ops->map_queue(q, i);
1311 		ctx->index_hw = hctx->nr_ctx;
1312 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1313 	}
1314 }
1315 
1316 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1317 					void *driver_data)
1318 {
1319 	struct blk_mq_hw_ctx **hctxs;
1320 	struct blk_mq_ctx *ctx;
1321 	struct request_queue *q;
1322 	int i;
1323 
1324 	if (!reg->nr_hw_queues ||
1325 	    !reg->ops->queue_rq || !reg->ops->map_queue ||
1326 	    !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1327 		return ERR_PTR(-EINVAL);
1328 
1329 	if (!reg->queue_depth)
1330 		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1331 	else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1332 		pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1333 		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1334 	}
1335 
1336 	/*
1337 	 * Set aside a tag for flush requests.  It will only be used while
1338 	 * another flush request is in progress but outside the driver.
1339 	 *
1340 	 * TODO: only allocate if flushes are supported
1341 	 */
1342 	reg->queue_depth++;
1343 	reg->reserved_tags++;
1344 
1345 	if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1346 		return ERR_PTR(-EINVAL);
1347 
1348 	ctx = alloc_percpu(struct blk_mq_ctx);
1349 	if (!ctx)
1350 		return ERR_PTR(-ENOMEM);
1351 
1352 	hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1353 			reg->numa_node);
1354 
1355 	if (!hctxs)
1356 		goto err_percpu;
1357 
1358 	for (i = 0; i < reg->nr_hw_queues; i++) {
1359 		hctxs[i] = reg->ops->alloc_hctx(reg, i);
1360 		if (!hctxs[i])
1361 			goto err_hctxs;
1362 
1363 		hctxs[i]->numa_node = NUMA_NO_NODE;
1364 		hctxs[i]->queue_num = i;
1365 	}
1366 
1367 	q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1368 	if (!q)
1369 		goto err_hctxs;
1370 
1371 	q->mq_map = blk_mq_make_queue_map(reg);
1372 	if (!q->mq_map)
1373 		goto err_map;
1374 
1375 	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1376 	blk_queue_rq_timeout(q, 30000);
1377 
1378 	q->nr_queues = nr_cpu_ids;
1379 	q->nr_hw_queues = reg->nr_hw_queues;
1380 
1381 	q->queue_ctx = ctx;
1382 	q->queue_hw_ctx = hctxs;
1383 
1384 	q->mq_ops = reg->ops;
1385 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1386 
1387 	blk_queue_make_request(q, blk_mq_make_request);
1388 	blk_queue_rq_timed_out(q, reg->ops->timeout);
1389 	if (reg->timeout)
1390 		blk_queue_rq_timeout(q, reg->timeout);
1391 
1392 	blk_mq_init_flush(q);
1393 	blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1394 
1395 	if (blk_mq_init_hw_queues(q, reg, driver_data))
1396 		goto err_hw;
1397 
1398 	blk_mq_map_swqueue(q);
1399 
1400 	mutex_lock(&all_q_mutex);
1401 	list_add_tail(&q->all_q_node, &all_q_list);
1402 	mutex_unlock(&all_q_mutex);
1403 
1404 	return q;
1405 err_hw:
1406 	kfree(q->mq_map);
1407 err_map:
1408 	blk_cleanup_queue(q);
1409 err_hctxs:
1410 	for (i = 0; i < reg->nr_hw_queues; i++) {
1411 		if (!hctxs[i])
1412 			break;
1413 		reg->ops->free_hctx(hctxs[i], i);
1414 	}
1415 	kfree(hctxs);
1416 err_percpu:
1417 	free_percpu(ctx);
1418 	return ERR_PTR(-ENOMEM);
1419 }
1420 EXPORT_SYMBOL(blk_mq_init_queue);
1421 
1422 void blk_mq_free_queue(struct request_queue *q)
1423 {
1424 	struct blk_mq_hw_ctx *hctx;
1425 	int i;
1426 
1427 	queue_for_each_hw_ctx(q, hctx, i) {
1428 		cancel_delayed_work_sync(&hctx->delayed_work);
1429 		kfree(hctx->ctx_map);
1430 		kfree(hctx->ctxs);
1431 		blk_mq_free_rq_map(hctx);
1432 		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1433 		if (q->mq_ops->exit_hctx)
1434 			q->mq_ops->exit_hctx(hctx, i);
1435 		q->mq_ops->free_hctx(hctx, i);
1436 	}
1437 
1438 	free_percpu(q->queue_ctx);
1439 	kfree(q->queue_hw_ctx);
1440 	kfree(q->mq_map);
1441 
1442 	q->queue_ctx = NULL;
1443 	q->queue_hw_ctx = NULL;
1444 	q->mq_map = NULL;
1445 
1446 	mutex_lock(&all_q_mutex);
1447 	list_del_init(&q->all_q_node);
1448 	mutex_unlock(&all_q_mutex);
1449 }
1450 EXPORT_SYMBOL(blk_mq_free_queue);
1451 
1452 /* Basically redo blk_mq_init_queue with queue frozen */
1453 static void blk_mq_queue_reinit(struct request_queue *q)
1454 {
1455 	blk_mq_freeze_queue(q);
1456 
1457 	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1458 
1459 	/*
1460 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1461 	 * we should change hctx numa_node according to new topology (this
1462 	 * involves free and re-allocate memory, worthy doing?)
1463 	 */
1464 
1465 	blk_mq_map_swqueue(q);
1466 
1467 	blk_mq_unfreeze_queue(q);
1468 }
1469 
1470 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1471 				      unsigned long action, void *hcpu)
1472 {
1473 	struct request_queue *q;
1474 
1475 	/*
1476 	 * Before new mapping is established, hotadded cpu might already start
1477 	 * handling requests. This doesn't break anything as we map offline
1478 	 * CPUs to first hardware queue. We will re-init queue below to get
1479 	 * optimal settings.
1480 	 */
1481 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1482 	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1483 		return NOTIFY_OK;
1484 
1485 	mutex_lock(&all_q_mutex);
1486 	list_for_each_entry(q, &all_q_list, all_q_node)
1487 		blk_mq_queue_reinit(q);
1488 	mutex_unlock(&all_q_mutex);
1489 	return NOTIFY_OK;
1490 }
1491 
1492 static int __init blk_mq_init(void)
1493 {
1494 	unsigned int i;
1495 
1496 	for_each_possible_cpu(i)
1497 		init_llist_head(&per_cpu(ipi_lists, i));
1498 
1499 	blk_mq_cpu_init();
1500 
1501 	/* Must be called after percpu_counter_hotcpu_callback() */
1502 	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1503 
1504 	return 0;
1505 }
1506 subsys_initcall(blk_mq_init);
1507