1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = blk_time_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = blk_time_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 #if defined(CONFIG_BLK_DEV_INTEGRITY) 380 rq->nr_integrity_segments = 0; 381 #endif 382 rq->end_io = NULL; 383 rq->end_io_data = NULL; 384 385 blk_crypto_rq_set_defaults(rq); 386 INIT_LIST_HEAD(&rq->queuelist); 387 /* tag was already set */ 388 WRITE_ONCE(rq->deadline, 0); 389 req_ref_set(rq, 1); 390 391 if (rq->rq_flags & RQF_USE_SCHED) { 392 struct elevator_queue *e = data->q->elevator; 393 394 INIT_HLIST_NODE(&rq->hash); 395 RB_CLEAR_NODE(&rq->rb_node); 396 397 if (e->type->ops.prepare_request) 398 e->type->ops.prepare_request(rq); 399 } 400 401 return rq; 402 } 403 404 static inline struct request * 405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 406 { 407 unsigned int tag, tag_offset; 408 struct blk_mq_tags *tags; 409 struct request *rq; 410 unsigned long tag_mask; 411 int i, nr = 0; 412 413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 414 if (unlikely(!tag_mask)) 415 return NULL; 416 417 tags = blk_mq_tags_from_data(data); 418 for (i = 0; tag_mask; i++) { 419 if (!(tag_mask & (1UL << i))) 420 continue; 421 tag = tag_offset + i; 422 prefetch(tags->static_rqs[tag]); 423 tag_mask &= ~(1UL << i); 424 rq = blk_mq_rq_ctx_init(data, tags, tag); 425 rq_list_add(data->cached_rq, rq); 426 nr++; 427 } 428 if (!(data->rq_flags & RQF_SCHED_TAGS)) 429 blk_mq_add_active_requests(data->hctx, nr); 430 /* caller already holds a reference, add for remainder */ 431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 432 data->nr_tags -= nr; 433 434 return rq_list_pop(data->cached_rq); 435 } 436 437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 438 { 439 struct request_queue *q = data->q; 440 u64 alloc_time_ns = 0; 441 struct request *rq; 442 unsigned int tag; 443 444 /* alloc_time includes depth and tag waits */ 445 if (blk_queue_rq_alloc_time(q)) 446 alloc_time_ns = blk_time_get_ns(); 447 448 if (data->cmd_flags & REQ_NOWAIT) 449 data->flags |= BLK_MQ_REQ_NOWAIT; 450 451 retry: 452 data->ctx = blk_mq_get_ctx(q); 453 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 454 455 if (q->elevator) { 456 /* 457 * All requests use scheduler tags when an I/O scheduler is 458 * enabled for the queue. 459 */ 460 data->rq_flags |= RQF_SCHED_TAGS; 461 462 /* 463 * Flush/passthrough requests are special and go directly to the 464 * dispatch list. 465 */ 466 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 467 !blk_op_is_passthrough(data->cmd_flags)) { 468 struct elevator_mq_ops *ops = &q->elevator->type->ops; 469 470 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 471 472 data->rq_flags |= RQF_USE_SCHED; 473 if (ops->limit_depth) 474 ops->limit_depth(data->cmd_flags, data); 475 } 476 } else { 477 blk_mq_tag_busy(data->hctx); 478 } 479 480 if (data->flags & BLK_MQ_REQ_RESERVED) 481 data->rq_flags |= RQF_RESV; 482 483 /* 484 * Try batched alloc if we want more than 1 tag. 485 */ 486 if (data->nr_tags > 1) { 487 rq = __blk_mq_alloc_requests_batch(data); 488 if (rq) { 489 blk_mq_rq_time_init(rq, alloc_time_ns); 490 return rq; 491 } 492 data->nr_tags = 1; 493 } 494 495 /* 496 * Waiting allocations only fail because of an inactive hctx. In that 497 * case just retry the hctx assignment and tag allocation as CPU hotplug 498 * should have migrated us to an online CPU by now. 499 */ 500 tag = blk_mq_get_tag(data); 501 if (tag == BLK_MQ_NO_TAG) { 502 if (data->flags & BLK_MQ_REQ_NOWAIT) 503 return NULL; 504 /* 505 * Give up the CPU and sleep for a random short time to 506 * ensure that thread using a realtime scheduling class 507 * are migrated off the CPU, and thus off the hctx that 508 * is going away. 509 */ 510 msleep(3); 511 goto retry; 512 } 513 514 if (!(data->rq_flags & RQF_SCHED_TAGS)) 515 blk_mq_inc_active_requests(data->hctx); 516 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 517 blk_mq_rq_time_init(rq, alloc_time_ns); 518 return rq; 519 } 520 521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 522 struct blk_plug *plug, 523 blk_opf_t opf, 524 blk_mq_req_flags_t flags) 525 { 526 struct blk_mq_alloc_data data = { 527 .q = q, 528 .flags = flags, 529 .cmd_flags = opf, 530 .nr_tags = plug->nr_ios, 531 .cached_rq = &plug->cached_rq, 532 }; 533 struct request *rq; 534 535 if (blk_queue_enter(q, flags)) 536 return NULL; 537 538 plug->nr_ios = 1; 539 540 rq = __blk_mq_alloc_requests(&data); 541 if (unlikely(!rq)) 542 blk_queue_exit(q); 543 return rq; 544 } 545 546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 547 blk_opf_t opf, 548 blk_mq_req_flags_t flags) 549 { 550 struct blk_plug *plug = current->plug; 551 struct request *rq; 552 553 if (!plug) 554 return NULL; 555 556 if (rq_list_empty(plug->cached_rq)) { 557 if (plug->nr_ios == 1) 558 return NULL; 559 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 560 if (!rq) 561 return NULL; 562 } else { 563 rq = rq_list_peek(&plug->cached_rq); 564 if (!rq || rq->q != q) 565 return NULL; 566 567 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 568 return NULL; 569 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 570 return NULL; 571 572 plug->cached_rq = rq_list_next(rq); 573 blk_mq_rq_time_init(rq, 0); 574 } 575 576 rq->cmd_flags = opf; 577 INIT_LIST_HEAD(&rq->queuelist); 578 return rq; 579 } 580 581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 582 blk_mq_req_flags_t flags) 583 { 584 struct request *rq; 585 586 rq = blk_mq_alloc_cached_request(q, opf, flags); 587 if (!rq) { 588 struct blk_mq_alloc_data data = { 589 .q = q, 590 .flags = flags, 591 .cmd_flags = opf, 592 .nr_tags = 1, 593 }; 594 int ret; 595 596 ret = blk_queue_enter(q, flags); 597 if (ret) 598 return ERR_PTR(ret); 599 600 rq = __blk_mq_alloc_requests(&data); 601 if (!rq) 602 goto out_queue_exit; 603 } 604 rq->__data_len = 0; 605 rq->__sector = (sector_t) -1; 606 rq->bio = rq->biotail = NULL; 607 return rq; 608 out_queue_exit: 609 blk_queue_exit(q); 610 return ERR_PTR(-EWOULDBLOCK); 611 } 612 EXPORT_SYMBOL(blk_mq_alloc_request); 613 614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 615 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 616 { 617 struct blk_mq_alloc_data data = { 618 .q = q, 619 .flags = flags, 620 .cmd_flags = opf, 621 .nr_tags = 1, 622 }; 623 u64 alloc_time_ns = 0; 624 struct request *rq; 625 unsigned int cpu; 626 unsigned int tag; 627 int ret; 628 629 /* alloc_time includes depth and tag waits */ 630 if (blk_queue_rq_alloc_time(q)) 631 alloc_time_ns = blk_time_get_ns(); 632 633 /* 634 * If the tag allocator sleeps we could get an allocation for a 635 * different hardware context. No need to complicate the low level 636 * allocator for this for the rare use case of a command tied to 637 * a specific queue. 638 */ 639 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 640 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 641 return ERR_PTR(-EINVAL); 642 643 if (hctx_idx >= q->nr_hw_queues) 644 return ERR_PTR(-EIO); 645 646 ret = blk_queue_enter(q, flags); 647 if (ret) 648 return ERR_PTR(ret); 649 650 /* 651 * Check if the hardware context is actually mapped to anything. 652 * If not tell the caller that it should skip this queue. 653 */ 654 ret = -EXDEV; 655 data.hctx = xa_load(&q->hctx_table, hctx_idx); 656 if (!blk_mq_hw_queue_mapped(data.hctx)) 657 goto out_queue_exit; 658 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 659 if (cpu >= nr_cpu_ids) 660 goto out_queue_exit; 661 data.ctx = __blk_mq_get_ctx(q, cpu); 662 663 if (q->elevator) 664 data.rq_flags |= RQF_SCHED_TAGS; 665 else 666 blk_mq_tag_busy(data.hctx); 667 668 if (flags & BLK_MQ_REQ_RESERVED) 669 data.rq_flags |= RQF_RESV; 670 671 ret = -EWOULDBLOCK; 672 tag = blk_mq_get_tag(&data); 673 if (tag == BLK_MQ_NO_TAG) 674 goto out_queue_exit; 675 if (!(data.rq_flags & RQF_SCHED_TAGS)) 676 blk_mq_inc_active_requests(data.hctx); 677 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 678 blk_mq_rq_time_init(rq, alloc_time_ns); 679 rq->__data_len = 0; 680 rq->__sector = (sector_t) -1; 681 rq->bio = rq->biotail = NULL; 682 return rq; 683 684 out_queue_exit: 685 blk_queue_exit(q); 686 return ERR_PTR(ret); 687 } 688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 689 690 static void blk_mq_finish_request(struct request *rq) 691 { 692 struct request_queue *q = rq->q; 693 694 blk_zone_finish_request(rq); 695 696 if (rq->rq_flags & RQF_USE_SCHED) { 697 q->elevator->type->ops.finish_request(rq); 698 /* 699 * For postflush request that may need to be 700 * completed twice, we should clear this flag 701 * to avoid double finish_request() on the rq. 702 */ 703 rq->rq_flags &= ~RQF_USE_SCHED; 704 } 705 } 706 707 static void __blk_mq_free_request(struct request *rq) 708 { 709 struct request_queue *q = rq->q; 710 struct blk_mq_ctx *ctx = rq->mq_ctx; 711 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 712 const int sched_tag = rq->internal_tag; 713 714 blk_crypto_free_request(rq); 715 blk_pm_mark_last_busy(rq); 716 rq->mq_hctx = NULL; 717 718 if (rq->tag != BLK_MQ_NO_TAG) { 719 blk_mq_dec_active_requests(hctx); 720 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 721 } 722 if (sched_tag != BLK_MQ_NO_TAG) 723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 724 blk_mq_sched_restart(hctx); 725 blk_queue_exit(q); 726 } 727 728 void blk_mq_free_request(struct request *rq) 729 { 730 struct request_queue *q = rq->q; 731 732 blk_mq_finish_request(rq); 733 734 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 735 laptop_io_completion(q->disk->bdi); 736 737 rq_qos_done(q, rq); 738 739 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 740 if (req_ref_put_and_test(rq)) 741 __blk_mq_free_request(rq); 742 } 743 EXPORT_SYMBOL_GPL(blk_mq_free_request); 744 745 void blk_mq_free_plug_rqs(struct blk_plug *plug) 746 { 747 struct request *rq; 748 749 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 750 blk_mq_free_request(rq); 751 } 752 753 void blk_dump_rq_flags(struct request *rq, char *msg) 754 { 755 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 756 rq->q->disk ? rq->q->disk->disk_name : "?", 757 (__force unsigned long long) rq->cmd_flags); 758 759 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 760 (unsigned long long)blk_rq_pos(rq), 761 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 762 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 763 rq->bio, rq->biotail, blk_rq_bytes(rq)); 764 } 765 EXPORT_SYMBOL(blk_dump_rq_flags); 766 767 static void blk_account_io_completion(struct request *req, unsigned int bytes) 768 { 769 if (req->part && blk_do_io_stat(req)) { 770 const int sgrp = op_stat_group(req_op(req)); 771 772 part_stat_lock(); 773 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 774 part_stat_unlock(); 775 } 776 } 777 778 static void blk_print_req_error(struct request *req, blk_status_t status) 779 { 780 printk_ratelimited(KERN_ERR 781 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 782 "phys_seg %u prio class %u\n", 783 blk_status_to_str(status), 784 req->q->disk ? req->q->disk->disk_name : "?", 785 blk_rq_pos(req), (__force u32)req_op(req), 786 blk_op_str(req_op(req)), 787 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 788 req->nr_phys_segments, 789 IOPRIO_PRIO_CLASS(req->ioprio)); 790 } 791 792 /* 793 * Fully end IO on a request. Does not support partial completions, or 794 * errors. 795 */ 796 static void blk_complete_request(struct request *req) 797 { 798 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 799 int total_bytes = blk_rq_bytes(req); 800 struct bio *bio = req->bio; 801 802 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 803 804 if (!bio) 805 return; 806 807 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 808 blk_integrity_complete(req, total_bytes); 809 810 /* 811 * Upper layers may call blk_crypto_evict_key() anytime after the last 812 * bio_endio(). Therefore, the keyslot must be released before that. 813 */ 814 blk_crypto_rq_put_keyslot(req); 815 816 blk_account_io_completion(req, total_bytes); 817 818 do { 819 struct bio *next = bio->bi_next; 820 821 /* Completion has already been traced */ 822 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 823 824 blk_zone_update_request_bio(req, bio); 825 826 if (!is_flush) 827 bio_endio(bio); 828 bio = next; 829 } while (bio); 830 831 /* 832 * Reset counters so that the request stacking driver 833 * can find how many bytes remain in the request 834 * later. 835 */ 836 if (!req->end_io) { 837 req->bio = NULL; 838 req->__data_len = 0; 839 } 840 } 841 842 /** 843 * blk_update_request - Complete multiple bytes without completing the request 844 * @req: the request being processed 845 * @error: block status code 846 * @nr_bytes: number of bytes to complete for @req 847 * 848 * Description: 849 * Ends I/O on a number of bytes attached to @req, but doesn't complete 850 * the request structure even if @req doesn't have leftover. 851 * If @req has leftover, sets it up for the next range of segments. 852 * 853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 854 * %false return from this function. 855 * 856 * Note: 857 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 858 * except in the consistency check at the end of this function. 859 * 860 * Return: 861 * %false - this request doesn't have any more data 862 * %true - this request has more data 863 **/ 864 bool blk_update_request(struct request *req, blk_status_t error, 865 unsigned int nr_bytes) 866 { 867 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 868 bool quiet = req->rq_flags & RQF_QUIET; 869 int total_bytes; 870 871 trace_block_rq_complete(req, error, nr_bytes); 872 873 if (!req->bio) 874 return false; 875 876 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 877 error == BLK_STS_OK) 878 blk_integrity_complete(req, nr_bytes); 879 880 /* 881 * Upper layers may call blk_crypto_evict_key() anytime after the last 882 * bio_endio(). Therefore, the keyslot must be released before that. 883 */ 884 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 885 __blk_crypto_rq_put_keyslot(req); 886 887 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 888 !test_bit(GD_DEAD, &req->q->disk->state)) { 889 blk_print_req_error(req, error); 890 trace_block_rq_error(req, error, nr_bytes); 891 } 892 893 blk_account_io_completion(req, nr_bytes); 894 895 total_bytes = 0; 896 while (req->bio) { 897 struct bio *bio = req->bio; 898 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 899 900 if (unlikely(error)) 901 bio->bi_status = error; 902 903 if (bio_bytes == bio->bi_iter.bi_size) { 904 req->bio = bio->bi_next; 905 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 906 /* 907 * Partial zone append completions cannot be supported 908 * as the BIO fragments may end up not being written 909 * sequentially. 910 */ 911 bio->bi_status = BLK_STS_IOERR; 912 } 913 914 /* Completion has already been traced */ 915 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 916 if (unlikely(quiet)) 917 bio_set_flag(bio, BIO_QUIET); 918 919 bio_advance(bio, bio_bytes); 920 921 /* Don't actually finish bio if it's part of flush sequence */ 922 if (!bio->bi_iter.bi_size) { 923 blk_zone_update_request_bio(req, bio); 924 if (!is_flush) 925 bio_endio(bio); 926 } 927 928 total_bytes += bio_bytes; 929 nr_bytes -= bio_bytes; 930 931 if (!nr_bytes) 932 break; 933 } 934 935 /* 936 * completely done 937 */ 938 if (!req->bio) { 939 /* 940 * Reset counters so that the request stacking driver 941 * can find how many bytes remain in the request 942 * later. 943 */ 944 req->__data_len = 0; 945 return false; 946 } 947 948 req->__data_len -= total_bytes; 949 950 /* update sector only for requests with clear definition of sector */ 951 if (!blk_rq_is_passthrough(req)) 952 req->__sector += total_bytes >> 9; 953 954 /* mixed attributes always follow the first bio */ 955 if (req->rq_flags & RQF_MIXED_MERGE) { 956 req->cmd_flags &= ~REQ_FAILFAST_MASK; 957 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 958 } 959 960 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 961 /* 962 * If total number of sectors is less than the first segment 963 * size, something has gone terribly wrong. 964 */ 965 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 966 blk_dump_rq_flags(req, "request botched"); 967 req->__data_len = blk_rq_cur_bytes(req); 968 } 969 970 /* recalculate the number of segments */ 971 req->nr_phys_segments = blk_recalc_rq_segments(req); 972 } 973 974 return true; 975 } 976 EXPORT_SYMBOL_GPL(blk_update_request); 977 978 static inline void blk_account_io_done(struct request *req, u64 now) 979 { 980 trace_block_io_done(req); 981 982 /* 983 * Account IO completion. flush_rq isn't accounted as a 984 * normal IO on queueing nor completion. Accounting the 985 * containing request is enough. 986 */ 987 if (blk_do_io_stat(req) && req->part && 988 !(req->rq_flags & RQF_FLUSH_SEQ)) { 989 const int sgrp = op_stat_group(req_op(req)); 990 991 part_stat_lock(); 992 update_io_ticks(req->part, jiffies, true); 993 part_stat_inc(req->part, ios[sgrp]); 994 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 995 part_stat_local_dec(req->part, 996 in_flight[op_is_write(req_op(req))]); 997 part_stat_unlock(); 998 } 999 } 1000 1001 static inline void blk_account_io_start(struct request *req) 1002 { 1003 trace_block_io_start(req); 1004 1005 if (blk_do_io_stat(req)) { 1006 /* 1007 * All non-passthrough requests are created from a bio with one 1008 * exception: when a flush command that is part of a flush sequence 1009 * generated by the state machine in blk-flush.c is cloned onto the 1010 * lower device by dm-multipath we can get here without a bio. 1011 */ 1012 if (req->bio) 1013 req->part = req->bio->bi_bdev; 1014 else 1015 req->part = req->q->disk->part0; 1016 1017 part_stat_lock(); 1018 update_io_ticks(req->part, jiffies, false); 1019 part_stat_local_inc(req->part, 1020 in_flight[op_is_write(req_op(req))]); 1021 part_stat_unlock(); 1022 } 1023 } 1024 1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1026 { 1027 if (rq->rq_flags & RQF_STATS) 1028 blk_stat_add(rq, now); 1029 1030 blk_mq_sched_completed_request(rq, now); 1031 blk_account_io_done(rq, now); 1032 } 1033 1034 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1035 { 1036 if (blk_mq_need_time_stamp(rq)) 1037 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1038 1039 blk_mq_finish_request(rq); 1040 1041 if (rq->end_io) { 1042 rq_qos_done(rq->q, rq); 1043 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1044 blk_mq_free_request(rq); 1045 } else { 1046 blk_mq_free_request(rq); 1047 } 1048 } 1049 EXPORT_SYMBOL(__blk_mq_end_request); 1050 1051 void blk_mq_end_request(struct request *rq, blk_status_t error) 1052 { 1053 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1054 BUG(); 1055 __blk_mq_end_request(rq, error); 1056 } 1057 EXPORT_SYMBOL(blk_mq_end_request); 1058 1059 #define TAG_COMP_BATCH 32 1060 1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1062 int *tag_array, int nr_tags) 1063 { 1064 struct request_queue *q = hctx->queue; 1065 1066 blk_mq_sub_active_requests(hctx, nr_tags); 1067 1068 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1069 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1070 } 1071 1072 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1073 { 1074 int tags[TAG_COMP_BATCH], nr_tags = 0; 1075 struct blk_mq_hw_ctx *cur_hctx = NULL; 1076 struct request *rq; 1077 u64 now = 0; 1078 1079 if (iob->need_ts) 1080 now = blk_time_get_ns(); 1081 1082 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1083 prefetch(rq->bio); 1084 prefetch(rq->rq_next); 1085 1086 blk_complete_request(rq); 1087 if (iob->need_ts) 1088 __blk_mq_end_request_acct(rq, now); 1089 1090 blk_mq_finish_request(rq); 1091 1092 rq_qos_done(rq->q, rq); 1093 1094 /* 1095 * If end_io handler returns NONE, then it still has 1096 * ownership of the request. 1097 */ 1098 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1099 continue; 1100 1101 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1102 if (!req_ref_put_and_test(rq)) 1103 continue; 1104 1105 blk_crypto_free_request(rq); 1106 blk_pm_mark_last_busy(rq); 1107 1108 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1109 if (cur_hctx) 1110 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1111 nr_tags = 0; 1112 cur_hctx = rq->mq_hctx; 1113 } 1114 tags[nr_tags++] = rq->tag; 1115 } 1116 1117 if (nr_tags) 1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1119 } 1120 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1121 1122 static void blk_complete_reqs(struct llist_head *list) 1123 { 1124 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1125 struct request *rq, *next; 1126 1127 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1128 rq->q->mq_ops->complete(rq); 1129 } 1130 1131 static __latent_entropy void blk_done_softirq(void) 1132 { 1133 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1134 } 1135 1136 static int blk_softirq_cpu_dead(unsigned int cpu) 1137 { 1138 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1139 return 0; 1140 } 1141 1142 static void __blk_mq_complete_request_remote(void *data) 1143 { 1144 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1145 } 1146 1147 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1148 { 1149 int cpu = raw_smp_processor_id(); 1150 1151 if (!IS_ENABLED(CONFIG_SMP) || 1152 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1153 return false; 1154 /* 1155 * With force threaded interrupts enabled, raising softirq from an SMP 1156 * function call will always result in waking the ksoftirqd thread. 1157 * This is probably worse than completing the request on a different 1158 * cache domain. 1159 */ 1160 if (force_irqthreads()) 1161 return false; 1162 1163 /* same CPU or cache domain and capacity? Complete locally */ 1164 if (cpu == rq->mq_ctx->cpu || 1165 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1166 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1167 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1168 return false; 1169 1170 /* don't try to IPI to an offline CPU */ 1171 return cpu_online(rq->mq_ctx->cpu); 1172 } 1173 1174 static void blk_mq_complete_send_ipi(struct request *rq) 1175 { 1176 unsigned int cpu; 1177 1178 cpu = rq->mq_ctx->cpu; 1179 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1180 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1181 } 1182 1183 static void blk_mq_raise_softirq(struct request *rq) 1184 { 1185 struct llist_head *list; 1186 1187 preempt_disable(); 1188 list = this_cpu_ptr(&blk_cpu_done); 1189 if (llist_add(&rq->ipi_list, list)) 1190 raise_softirq(BLOCK_SOFTIRQ); 1191 preempt_enable(); 1192 } 1193 1194 bool blk_mq_complete_request_remote(struct request *rq) 1195 { 1196 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1197 1198 /* 1199 * For request which hctx has only one ctx mapping, 1200 * or a polled request, always complete locally, 1201 * it's pointless to redirect the completion. 1202 */ 1203 if ((rq->mq_hctx->nr_ctx == 1 && 1204 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1205 rq->cmd_flags & REQ_POLLED) 1206 return false; 1207 1208 if (blk_mq_complete_need_ipi(rq)) { 1209 blk_mq_complete_send_ipi(rq); 1210 return true; 1211 } 1212 1213 if (rq->q->nr_hw_queues == 1) { 1214 blk_mq_raise_softirq(rq); 1215 return true; 1216 } 1217 return false; 1218 } 1219 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1220 1221 /** 1222 * blk_mq_complete_request - end I/O on a request 1223 * @rq: the request being processed 1224 * 1225 * Description: 1226 * Complete a request by scheduling the ->complete_rq operation. 1227 **/ 1228 void blk_mq_complete_request(struct request *rq) 1229 { 1230 if (!blk_mq_complete_request_remote(rq)) 1231 rq->q->mq_ops->complete(rq); 1232 } 1233 EXPORT_SYMBOL(blk_mq_complete_request); 1234 1235 /** 1236 * blk_mq_start_request - Start processing a request 1237 * @rq: Pointer to request to be started 1238 * 1239 * Function used by device drivers to notify the block layer that a request 1240 * is going to be processed now, so blk layer can do proper initializations 1241 * such as starting the timeout timer. 1242 */ 1243 void blk_mq_start_request(struct request *rq) 1244 { 1245 struct request_queue *q = rq->q; 1246 1247 trace_block_rq_issue(rq); 1248 1249 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1250 !blk_rq_is_passthrough(rq)) { 1251 rq->io_start_time_ns = blk_time_get_ns(); 1252 rq->stats_sectors = blk_rq_sectors(rq); 1253 rq->rq_flags |= RQF_STATS; 1254 rq_qos_issue(q, rq); 1255 } 1256 1257 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1258 1259 blk_add_timer(rq); 1260 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1261 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1262 1263 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1264 blk_integrity_prepare(rq); 1265 1266 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1267 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1268 } 1269 EXPORT_SYMBOL(blk_mq_start_request); 1270 1271 /* 1272 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1273 * queues. This is important for md arrays to benefit from merging 1274 * requests. 1275 */ 1276 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1277 { 1278 if (plug->multiple_queues) 1279 return BLK_MAX_REQUEST_COUNT * 2; 1280 return BLK_MAX_REQUEST_COUNT; 1281 } 1282 1283 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1284 { 1285 struct request *last = rq_list_peek(&plug->mq_list); 1286 1287 if (!plug->rq_count) { 1288 trace_block_plug(rq->q); 1289 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1290 (!blk_queue_nomerges(rq->q) && 1291 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1292 blk_mq_flush_plug_list(plug, false); 1293 last = NULL; 1294 trace_block_plug(rq->q); 1295 } 1296 1297 if (!plug->multiple_queues && last && last->q != rq->q) 1298 plug->multiple_queues = true; 1299 /* 1300 * Any request allocated from sched tags can't be issued to 1301 * ->queue_rqs() directly 1302 */ 1303 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1304 plug->has_elevator = true; 1305 rq->rq_next = NULL; 1306 rq_list_add(&plug->mq_list, rq); 1307 plug->rq_count++; 1308 } 1309 1310 /** 1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1312 * @rq: request to insert 1313 * @at_head: insert request at head or tail of queue 1314 * 1315 * Description: 1316 * Insert a fully prepared request at the back of the I/O scheduler queue 1317 * for execution. Don't wait for completion. 1318 * 1319 * Note: 1320 * This function will invoke @done directly if the queue is dead. 1321 */ 1322 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1323 { 1324 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1325 1326 WARN_ON(irqs_disabled()); 1327 WARN_ON(!blk_rq_is_passthrough(rq)); 1328 1329 blk_account_io_start(rq); 1330 1331 if (current->plug && !at_head) { 1332 blk_add_rq_to_plug(current->plug, rq); 1333 return; 1334 } 1335 1336 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1337 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1338 } 1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1340 1341 struct blk_rq_wait { 1342 struct completion done; 1343 blk_status_t ret; 1344 }; 1345 1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1347 { 1348 struct blk_rq_wait *wait = rq->end_io_data; 1349 1350 wait->ret = ret; 1351 complete(&wait->done); 1352 return RQ_END_IO_NONE; 1353 } 1354 1355 bool blk_rq_is_poll(struct request *rq) 1356 { 1357 if (!rq->mq_hctx) 1358 return false; 1359 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1360 return false; 1361 return true; 1362 } 1363 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1364 1365 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1366 { 1367 do { 1368 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1369 cond_resched(); 1370 } while (!completion_done(wait)); 1371 } 1372 1373 /** 1374 * blk_execute_rq - insert a request into queue for execution 1375 * @rq: request to insert 1376 * @at_head: insert request at head or tail of queue 1377 * 1378 * Description: 1379 * Insert a fully prepared request at the back of the I/O scheduler queue 1380 * for execution and wait for completion. 1381 * Return: The blk_status_t result provided to blk_mq_end_request(). 1382 */ 1383 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1384 { 1385 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1386 struct blk_rq_wait wait = { 1387 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1388 }; 1389 1390 WARN_ON(irqs_disabled()); 1391 WARN_ON(!blk_rq_is_passthrough(rq)); 1392 1393 rq->end_io_data = &wait; 1394 rq->end_io = blk_end_sync_rq; 1395 1396 blk_account_io_start(rq); 1397 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1398 blk_mq_run_hw_queue(hctx, false); 1399 1400 if (blk_rq_is_poll(rq)) 1401 blk_rq_poll_completion(rq, &wait.done); 1402 else 1403 blk_wait_io(&wait.done); 1404 1405 return wait.ret; 1406 } 1407 EXPORT_SYMBOL(blk_execute_rq); 1408 1409 static void __blk_mq_requeue_request(struct request *rq) 1410 { 1411 struct request_queue *q = rq->q; 1412 1413 blk_mq_put_driver_tag(rq); 1414 1415 trace_block_rq_requeue(rq); 1416 rq_qos_requeue(q, rq); 1417 1418 if (blk_mq_request_started(rq)) { 1419 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1420 rq->rq_flags &= ~RQF_TIMED_OUT; 1421 } 1422 } 1423 1424 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1425 { 1426 struct request_queue *q = rq->q; 1427 unsigned long flags; 1428 1429 __blk_mq_requeue_request(rq); 1430 1431 /* this request will be re-inserted to io scheduler queue */ 1432 blk_mq_sched_requeue_request(rq); 1433 1434 spin_lock_irqsave(&q->requeue_lock, flags); 1435 list_add_tail(&rq->queuelist, &q->requeue_list); 1436 spin_unlock_irqrestore(&q->requeue_lock, flags); 1437 1438 if (kick_requeue_list) 1439 blk_mq_kick_requeue_list(q); 1440 } 1441 EXPORT_SYMBOL(blk_mq_requeue_request); 1442 1443 static void blk_mq_requeue_work(struct work_struct *work) 1444 { 1445 struct request_queue *q = 1446 container_of(work, struct request_queue, requeue_work.work); 1447 LIST_HEAD(rq_list); 1448 LIST_HEAD(flush_list); 1449 struct request *rq; 1450 1451 spin_lock_irq(&q->requeue_lock); 1452 list_splice_init(&q->requeue_list, &rq_list); 1453 list_splice_init(&q->flush_list, &flush_list); 1454 spin_unlock_irq(&q->requeue_lock); 1455 1456 while (!list_empty(&rq_list)) { 1457 rq = list_entry(rq_list.next, struct request, queuelist); 1458 /* 1459 * If RQF_DONTPREP ist set, the request has been started by the 1460 * driver already and might have driver-specific data allocated 1461 * already. Insert it into the hctx dispatch list to avoid 1462 * block layer merges for the request. 1463 */ 1464 if (rq->rq_flags & RQF_DONTPREP) { 1465 list_del_init(&rq->queuelist); 1466 blk_mq_request_bypass_insert(rq, 0); 1467 } else { 1468 list_del_init(&rq->queuelist); 1469 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1470 } 1471 } 1472 1473 while (!list_empty(&flush_list)) { 1474 rq = list_entry(flush_list.next, struct request, queuelist); 1475 list_del_init(&rq->queuelist); 1476 blk_mq_insert_request(rq, 0); 1477 } 1478 1479 blk_mq_run_hw_queues(q, false); 1480 } 1481 1482 void blk_mq_kick_requeue_list(struct request_queue *q) 1483 { 1484 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1485 } 1486 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1487 1488 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1489 unsigned long msecs) 1490 { 1491 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1492 msecs_to_jiffies(msecs)); 1493 } 1494 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1495 1496 static bool blk_is_flush_data_rq(struct request *rq) 1497 { 1498 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1499 } 1500 1501 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1502 { 1503 /* 1504 * If we find a request that isn't idle we know the queue is busy 1505 * as it's checked in the iter. 1506 * Return false to stop the iteration. 1507 * 1508 * In case of queue quiesce, if one flush data request is completed, 1509 * don't count it as inflight given the flush sequence is suspended, 1510 * and the original flush data request is invisible to driver, just 1511 * like other pending requests because of quiesce 1512 */ 1513 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1514 blk_is_flush_data_rq(rq) && 1515 blk_mq_request_completed(rq))) { 1516 bool *busy = priv; 1517 1518 *busy = true; 1519 return false; 1520 } 1521 1522 return true; 1523 } 1524 1525 bool blk_mq_queue_inflight(struct request_queue *q) 1526 { 1527 bool busy = false; 1528 1529 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1530 return busy; 1531 } 1532 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1533 1534 static void blk_mq_rq_timed_out(struct request *req) 1535 { 1536 req->rq_flags |= RQF_TIMED_OUT; 1537 if (req->q->mq_ops->timeout) { 1538 enum blk_eh_timer_return ret; 1539 1540 ret = req->q->mq_ops->timeout(req); 1541 if (ret == BLK_EH_DONE) 1542 return; 1543 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1544 } 1545 1546 blk_add_timer(req); 1547 } 1548 1549 struct blk_expired_data { 1550 bool has_timedout_rq; 1551 unsigned long next; 1552 unsigned long timeout_start; 1553 }; 1554 1555 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1556 { 1557 unsigned long deadline; 1558 1559 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1560 return false; 1561 if (rq->rq_flags & RQF_TIMED_OUT) 1562 return false; 1563 1564 deadline = READ_ONCE(rq->deadline); 1565 if (time_after_eq(expired->timeout_start, deadline)) 1566 return true; 1567 1568 if (expired->next == 0) 1569 expired->next = deadline; 1570 else if (time_after(expired->next, deadline)) 1571 expired->next = deadline; 1572 return false; 1573 } 1574 1575 void blk_mq_put_rq_ref(struct request *rq) 1576 { 1577 if (is_flush_rq(rq)) { 1578 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1579 blk_mq_free_request(rq); 1580 } else if (req_ref_put_and_test(rq)) { 1581 __blk_mq_free_request(rq); 1582 } 1583 } 1584 1585 static bool blk_mq_check_expired(struct request *rq, void *priv) 1586 { 1587 struct blk_expired_data *expired = priv; 1588 1589 /* 1590 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1591 * be reallocated underneath the timeout handler's processing, then 1592 * the expire check is reliable. If the request is not expired, then 1593 * it was completed and reallocated as a new request after returning 1594 * from blk_mq_check_expired(). 1595 */ 1596 if (blk_mq_req_expired(rq, expired)) { 1597 expired->has_timedout_rq = true; 1598 return false; 1599 } 1600 return true; 1601 } 1602 1603 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1604 { 1605 struct blk_expired_data *expired = priv; 1606 1607 if (blk_mq_req_expired(rq, expired)) 1608 blk_mq_rq_timed_out(rq); 1609 return true; 1610 } 1611 1612 static void blk_mq_timeout_work(struct work_struct *work) 1613 { 1614 struct request_queue *q = 1615 container_of(work, struct request_queue, timeout_work); 1616 struct blk_expired_data expired = { 1617 .timeout_start = jiffies, 1618 }; 1619 struct blk_mq_hw_ctx *hctx; 1620 unsigned long i; 1621 1622 /* A deadlock might occur if a request is stuck requiring a 1623 * timeout at the same time a queue freeze is waiting 1624 * completion, since the timeout code would not be able to 1625 * acquire the queue reference here. 1626 * 1627 * That's why we don't use blk_queue_enter here; instead, we use 1628 * percpu_ref_tryget directly, because we need to be able to 1629 * obtain a reference even in the short window between the queue 1630 * starting to freeze, by dropping the first reference in 1631 * blk_freeze_queue_start, and the moment the last request is 1632 * consumed, marked by the instant q_usage_counter reaches 1633 * zero. 1634 */ 1635 if (!percpu_ref_tryget(&q->q_usage_counter)) 1636 return; 1637 1638 /* check if there is any timed-out request */ 1639 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1640 if (expired.has_timedout_rq) { 1641 /* 1642 * Before walking tags, we must ensure any submit started 1643 * before the current time has finished. Since the submit 1644 * uses srcu or rcu, wait for a synchronization point to 1645 * ensure all running submits have finished 1646 */ 1647 blk_mq_wait_quiesce_done(q->tag_set); 1648 1649 expired.next = 0; 1650 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1651 } 1652 1653 if (expired.next != 0) { 1654 mod_timer(&q->timeout, expired.next); 1655 } else { 1656 /* 1657 * Request timeouts are handled as a forward rolling timer. If 1658 * we end up here it means that no requests are pending and 1659 * also that no request has been pending for a while. Mark 1660 * each hctx as idle. 1661 */ 1662 queue_for_each_hw_ctx(q, hctx, i) { 1663 /* the hctx may be unmapped, so check it here */ 1664 if (blk_mq_hw_queue_mapped(hctx)) 1665 blk_mq_tag_idle(hctx); 1666 } 1667 } 1668 blk_queue_exit(q); 1669 } 1670 1671 struct flush_busy_ctx_data { 1672 struct blk_mq_hw_ctx *hctx; 1673 struct list_head *list; 1674 }; 1675 1676 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1677 { 1678 struct flush_busy_ctx_data *flush_data = data; 1679 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1680 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1681 enum hctx_type type = hctx->type; 1682 1683 spin_lock(&ctx->lock); 1684 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1685 sbitmap_clear_bit(sb, bitnr); 1686 spin_unlock(&ctx->lock); 1687 return true; 1688 } 1689 1690 /* 1691 * Process software queues that have been marked busy, splicing them 1692 * to the for-dispatch 1693 */ 1694 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1695 { 1696 struct flush_busy_ctx_data data = { 1697 .hctx = hctx, 1698 .list = list, 1699 }; 1700 1701 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1702 } 1703 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1704 1705 struct dispatch_rq_data { 1706 struct blk_mq_hw_ctx *hctx; 1707 struct request *rq; 1708 }; 1709 1710 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1711 void *data) 1712 { 1713 struct dispatch_rq_data *dispatch_data = data; 1714 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1715 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1716 enum hctx_type type = hctx->type; 1717 1718 spin_lock(&ctx->lock); 1719 if (!list_empty(&ctx->rq_lists[type])) { 1720 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1721 list_del_init(&dispatch_data->rq->queuelist); 1722 if (list_empty(&ctx->rq_lists[type])) 1723 sbitmap_clear_bit(sb, bitnr); 1724 } 1725 spin_unlock(&ctx->lock); 1726 1727 return !dispatch_data->rq; 1728 } 1729 1730 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1731 struct blk_mq_ctx *start) 1732 { 1733 unsigned off = start ? start->index_hw[hctx->type] : 0; 1734 struct dispatch_rq_data data = { 1735 .hctx = hctx, 1736 .rq = NULL, 1737 }; 1738 1739 __sbitmap_for_each_set(&hctx->ctx_map, off, 1740 dispatch_rq_from_ctx, &data); 1741 1742 return data.rq; 1743 } 1744 1745 bool __blk_mq_alloc_driver_tag(struct request *rq) 1746 { 1747 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1748 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1749 int tag; 1750 1751 blk_mq_tag_busy(rq->mq_hctx); 1752 1753 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1754 bt = &rq->mq_hctx->tags->breserved_tags; 1755 tag_offset = 0; 1756 } else { 1757 if (!hctx_may_queue(rq->mq_hctx, bt)) 1758 return false; 1759 } 1760 1761 tag = __sbitmap_queue_get(bt); 1762 if (tag == BLK_MQ_NO_TAG) 1763 return false; 1764 1765 rq->tag = tag + tag_offset; 1766 blk_mq_inc_active_requests(rq->mq_hctx); 1767 return true; 1768 } 1769 1770 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1771 int flags, void *key) 1772 { 1773 struct blk_mq_hw_ctx *hctx; 1774 1775 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1776 1777 spin_lock(&hctx->dispatch_wait_lock); 1778 if (!list_empty(&wait->entry)) { 1779 struct sbitmap_queue *sbq; 1780 1781 list_del_init(&wait->entry); 1782 sbq = &hctx->tags->bitmap_tags; 1783 atomic_dec(&sbq->ws_active); 1784 } 1785 spin_unlock(&hctx->dispatch_wait_lock); 1786 1787 blk_mq_run_hw_queue(hctx, true); 1788 return 1; 1789 } 1790 1791 /* 1792 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1793 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1794 * restart. For both cases, take care to check the condition again after 1795 * marking us as waiting. 1796 */ 1797 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1798 struct request *rq) 1799 { 1800 struct sbitmap_queue *sbq; 1801 struct wait_queue_head *wq; 1802 wait_queue_entry_t *wait; 1803 bool ret; 1804 1805 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1806 !(blk_mq_is_shared_tags(hctx->flags))) { 1807 blk_mq_sched_mark_restart_hctx(hctx); 1808 1809 /* 1810 * It's possible that a tag was freed in the window between the 1811 * allocation failure and adding the hardware queue to the wait 1812 * queue. 1813 * 1814 * Don't clear RESTART here, someone else could have set it. 1815 * At most this will cost an extra queue run. 1816 */ 1817 return blk_mq_get_driver_tag(rq); 1818 } 1819 1820 wait = &hctx->dispatch_wait; 1821 if (!list_empty_careful(&wait->entry)) 1822 return false; 1823 1824 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1825 sbq = &hctx->tags->breserved_tags; 1826 else 1827 sbq = &hctx->tags->bitmap_tags; 1828 wq = &bt_wait_ptr(sbq, hctx)->wait; 1829 1830 spin_lock_irq(&wq->lock); 1831 spin_lock(&hctx->dispatch_wait_lock); 1832 if (!list_empty(&wait->entry)) { 1833 spin_unlock(&hctx->dispatch_wait_lock); 1834 spin_unlock_irq(&wq->lock); 1835 return false; 1836 } 1837 1838 atomic_inc(&sbq->ws_active); 1839 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1840 __add_wait_queue(wq, wait); 1841 1842 /* 1843 * Add one explicit barrier since blk_mq_get_driver_tag() may 1844 * not imply barrier in case of failure. 1845 * 1846 * Order adding us to wait queue and allocating driver tag. 1847 * 1848 * The pair is the one implied in sbitmap_queue_wake_up() which 1849 * orders clearing sbitmap tag bits and waitqueue_active() in 1850 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1851 * 1852 * Otherwise, re-order of adding wait queue and getting driver tag 1853 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1854 * the waitqueue_active() may not observe us in wait queue. 1855 */ 1856 smp_mb(); 1857 1858 /* 1859 * It's possible that a tag was freed in the window between the 1860 * allocation failure and adding the hardware queue to the wait 1861 * queue. 1862 */ 1863 ret = blk_mq_get_driver_tag(rq); 1864 if (!ret) { 1865 spin_unlock(&hctx->dispatch_wait_lock); 1866 spin_unlock_irq(&wq->lock); 1867 return false; 1868 } 1869 1870 /* 1871 * We got a tag, remove ourselves from the wait queue to ensure 1872 * someone else gets the wakeup. 1873 */ 1874 list_del_init(&wait->entry); 1875 atomic_dec(&sbq->ws_active); 1876 spin_unlock(&hctx->dispatch_wait_lock); 1877 spin_unlock_irq(&wq->lock); 1878 1879 return true; 1880 } 1881 1882 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1883 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1884 /* 1885 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1886 * - EWMA is one simple way to compute running average value 1887 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1888 * - take 4 as factor for avoiding to get too small(0) result, and this 1889 * factor doesn't matter because EWMA decreases exponentially 1890 */ 1891 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1892 { 1893 unsigned int ewma; 1894 1895 ewma = hctx->dispatch_busy; 1896 1897 if (!ewma && !busy) 1898 return; 1899 1900 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1901 if (busy) 1902 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1903 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1904 1905 hctx->dispatch_busy = ewma; 1906 } 1907 1908 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1909 1910 static void blk_mq_handle_dev_resource(struct request *rq, 1911 struct list_head *list) 1912 { 1913 list_add(&rq->queuelist, list); 1914 __blk_mq_requeue_request(rq); 1915 } 1916 1917 enum prep_dispatch { 1918 PREP_DISPATCH_OK, 1919 PREP_DISPATCH_NO_TAG, 1920 PREP_DISPATCH_NO_BUDGET, 1921 }; 1922 1923 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1924 bool need_budget) 1925 { 1926 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1927 int budget_token = -1; 1928 1929 if (need_budget) { 1930 budget_token = blk_mq_get_dispatch_budget(rq->q); 1931 if (budget_token < 0) { 1932 blk_mq_put_driver_tag(rq); 1933 return PREP_DISPATCH_NO_BUDGET; 1934 } 1935 blk_mq_set_rq_budget_token(rq, budget_token); 1936 } 1937 1938 if (!blk_mq_get_driver_tag(rq)) { 1939 /* 1940 * The initial allocation attempt failed, so we need to 1941 * rerun the hardware queue when a tag is freed. The 1942 * waitqueue takes care of that. If the queue is run 1943 * before we add this entry back on the dispatch list, 1944 * we'll re-run it below. 1945 */ 1946 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1947 /* 1948 * All budgets not got from this function will be put 1949 * together during handling partial dispatch 1950 */ 1951 if (need_budget) 1952 blk_mq_put_dispatch_budget(rq->q, budget_token); 1953 return PREP_DISPATCH_NO_TAG; 1954 } 1955 } 1956 1957 return PREP_DISPATCH_OK; 1958 } 1959 1960 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1961 static void blk_mq_release_budgets(struct request_queue *q, 1962 struct list_head *list) 1963 { 1964 struct request *rq; 1965 1966 list_for_each_entry(rq, list, queuelist) { 1967 int budget_token = blk_mq_get_rq_budget_token(rq); 1968 1969 if (budget_token >= 0) 1970 blk_mq_put_dispatch_budget(q, budget_token); 1971 } 1972 } 1973 1974 /* 1975 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1976 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1977 * details) 1978 * Attention, we should explicitly call this in unusual cases: 1979 * 1) did not queue everything initially scheduled to queue 1980 * 2) the last attempt to queue a request failed 1981 */ 1982 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1983 bool from_schedule) 1984 { 1985 if (hctx->queue->mq_ops->commit_rqs && queued) { 1986 trace_block_unplug(hctx->queue, queued, !from_schedule); 1987 hctx->queue->mq_ops->commit_rqs(hctx); 1988 } 1989 } 1990 1991 /* 1992 * Returns true if we did some work AND can potentially do more. 1993 */ 1994 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1995 unsigned int nr_budgets) 1996 { 1997 enum prep_dispatch prep; 1998 struct request_queue *q = hctx->queue; 1999 struct request *rq; 2000 int queued; 2001 blk_status_t ret = BLK_STS_OK; 2002 bool needs_resource = false; 2003 2004 if (list_empty(list)) 2005 return false; 2006 2007 /* 2008 * Now process all the entries, sending them to the driver. 2009 */ 2010 queued = 0; 2011 do { 2012 struct blk_mq_queue_data bd; 2013 2014 rq = list_first_entry(list, struct request, queuelist); 2015 2016 WARN_ON_ONCE(hctx != rq->mq_hctx); 2017 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2018 if (prep != PREP_DISPATCH_OK) 2019 break; 2020 2021 list_del_init(&rq->queuelist); 2022 2023 bd.rq = rq; 2024 bd.last = list_empty(list); 2025 2026 /* 2027 * once the request is queued to lld, no need to cover the 2028 * budget any more 2029 */ 2030 if (nr_budgets) 2031 nr_budgets--; 2032 ret = q->mq_ops->queue_rq(hctx, &bd); 2033 switch (ret) { 2034 case BLK_STS_OK: 2035 queued++; 2036 break; 2037 case BLK_STS_RESOURCE: 2038 needs_resource = true; 2039 fallthrough; 2040 case BLK_STS_DEV_RESOURCE: 2041 blk_mq_handle_dev_resource(rq, list); 2042 goto out; 2043 default: 2044 blk_mq_end_request(rq, ret); 2045 } 2046 } while (!list_empty(list)); 2047 out: 2048 /* If we didn't flush the entire list, we could have told the driver 2049 * there was more coming, but that turned out to be a lie. 2050 */ 2051 if (!list_empty(list) || ret != BLK_STS_OK) 2052 blk_mq_commit_rqs(hctx, queued, false); 2053 2054 /* 2055 * Any items that need requeuing? Stuff them into hctx->dispatch, 2056 * that is where we will continue on next queue run. 2057 */ 2058 if (!list_empty(list)) { 2059 bool needs_restart; 2060 /* For non-shared tags, the RESTART check will suffice */ 2061 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2062 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2063 blk_mq_is_shared_tags(hctx->flags)); 2064 2065 if (nr_budgets) 2066 blk_mq_release_budgets(q, list); 2067 2068 spin_lock(&hctx->lock); 2069 list_splice_tail_init(list, &hctx->dispatch); 2070 spin_unlock(&hctx->lock); 2071 2072 /* 2073 * Order adding requests to hctx->dispatch and checking 2074 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2075 * in blk_mq_sched_restart(). Avoid restart code path to 2076 * miss the new added requests to hctx->dispatch, meantime 2077 * SCHED_RESTART is observed here. 2078 */ 2079 smp_mb(); 2080 2081 /* 2082 * If SCHED_RESTART was set by the caller of this function and 2083 * it is no longer set that means that it was cleared by another 2084 * thread and hence that a queue rerun is needed. 2085 * 2086 * If 'no_tag' is set, that means that we failed getting 2087 * a driver tag with an I/O scheduler attached. If our dispatch 2088 * waitqueue is no longer active, ensure that we run the queue 2089 * AFTER adding our entries back to the list. 2090 * 2091 * If no I/O scheduler has been configured it is possible that 2092 * the hardware queue got stopped and restarted before requests 2093 * were pushed back onto the dispatch list. Rerun the queue to 2094 * avoid starvation. Notes: 2095 * - blk_mq_run_hw_queue() checks whether or not a queue has 2096 * been stopped before rerunning a queue. 2097 * - Some but not all block drivers stop a queue before 2098 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2099 * and dm-rq. 2100 * 2101 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2102 * bit is set, run queue after a delay to avoid IO stalls 2103 * that could otherwise occur if the queue is idle. We'll do 2104 * similar if we couldn't get budget or couldn't lock a zone 2105 * and SCHED_RESTART is set. 2106 */ 2107 needs_restart = blk_mq_sched_needs_restart(hctx); 2108 if (prep == PREP_DISPATCH_NO_BUDGET) 2109 needs_resource = true; 2110 if (!needs_restart || 2111 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2112 blk_mq_run_hw_queue(hctx, true); 2113 else if (needs_resource) 2114 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2115 2116 blk_mq_update_dispatch_busy(hctx, true); 2117 return false; 2118 } 2119 2120 blk_mq_update_dispatch_busy(hctx, false); 2121 return true; 2122 } 2123 2124 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2125 { 2126 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2127 2128 if (cpu >= nr_cpu_ids) 2129 cpu = cpumask_first(hctx->cpumask); 2130 return cpu; 2131 } 2132 2133 /* 2134 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2135 * it for speeding up the check 2136 */ 2137 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2138 { 2139 return hctx->next_cpu >= nr_cpu_ids; 2140 } 2141 2142 /* 2143 * It'd be great if the workqueue API had a way to pass 2144 * in a mask and had some smarts for more clever placement. 2145 * For now we just round-robin here, switching for every 2146 * BLK_MQ_CPU_WORK_BATCH queued items. 2147 */ 2148 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2149 { 2150 bool tried = false; 2151 int next_cpu = hctx->next_cpu; 2152 2153 /* Switch to unbound if no allowable CPUs in this hctx */ 2154 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2155 return WORK_CPU_UNBOUND; 2156 2157 if (--hctx->next_cpu_batch <= 0) { 2158 select_cpu: 2159 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2160 cpu_online_mask); 2161 if (next_cpu >= nr_cpu_ids) 2162 next_cpu = blk_mq_first_mapped_cpu(hctx); 2163 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2164 } 2165 2166 /* 2167 * Do unbound schedule if we can't find a online CPU for this hctx, 2168 * and it should only happen in the path of handling CPU DEAD. 2169 */ 2170 if (!cpu_online(next_cpu)) { 2171 if (!tried) { 2172 tried = true; 2173 goto select_cpu; 2174 } 2175 2176 /* 2177 * Make sure to re-select CPU next time once after CPUs 2178 * in hctx->cpumask become online again. 2179 */ 2180 hctx->next_cpu = next_cpu; 2181 hctx->next_cpu_batch = 1; 2182 return WORK_CPU_UNBOUND; 2183 } 2184 2185 hctx->next_cpu = next_cpu; 2186 return next_cpu; 2187 } 2188 2189 /** 2190 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2191 * @hctx: Pointer to the hardware queue to run. 2192 * @msecs: Milliseconds of delay to wait before running the queue. 2193 * 2194 * Run a hardware queue asynchronously with a delay of @msecs. 2195 */ 2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2197 { 2198 if (unlikely(blk_mq_hctx_stopped(hctx))) 2199 return; 2200 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2201 msecs_to_jiffies(msecs)); 2202 } 2203 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2204 2205 /** 2206 * blk_mq_run_hw_queue - Start to run a hardware queue. 2207 * @hctx: Pointer to the hardware queue to run. 2208 * @async: If we want to run the queue asynchronously. 2209 * 2210 * Check if the request queue is not in a quiesced state and if there are 2211 * pending requests to be sent. If this is true, run the queue to send requests 2212 * to hardware. 2213 */ 2214 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2215 { 2216 bool need_run; 2217 2218 /* 2219 * We can't run the queue inline with interrupts disabled. 2220 */ 2221 WARN_ON_ONCE(!async && in_interrupt()); 2222 2223 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2224 2225 /* 2226 * When queue is quiesced, we may be switching io scheduler, or 2227 * updating nr_hw_queues, or other things, and we can't run queue 2228 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2229 * 2230 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2231 * quiesced. 2232 */ 2233 __blk_mq_run_dispatch_ops(hctx->queue, false, 2234 need_run = !blk_queue_quiesced(hctx->queue) && 2235 blk_mq_hctx_has_pending(hctx)); 2236 2237 if (!need_run) 2238 return; 2239 2240 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2241 blk_mq_delay_run_hw_queue(hctx, 0); 2242 return; 2243 } 2244 2245 blk_mq_run_dispatch_ops(hctx->queue, 2246 blk_mq_sched_dispatch_requests(hctx)); 2247 } 2248 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2249 2250 /* 2251 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2252 * scheduler. 2253 */ 2254 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2255 { 2256 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2257 /* 2258 * If the IO scheduler does not respect hardware queues when 2259 * dispatching, we just don't bother with multiple HW queues and 2260 * dispatch from hctx for the current CPU since running multiple queues 2261 * just causes lock contention inside the scheduler and pointless cache 2262 * bouncing. 2263 */ 2264 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2265 2266 if (!blk_mq_hctx_stopped(hctx)) 2267 return hctx; 2268 return NULL; 2269 } 2270 2271 /** 2272 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2273 * @q: Pointer to the request queue to run. 2274 * @async: If we want to run the queue asynchronously. 2275 */ 2276 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2277 { 2278 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2279 unsigned long i; 2280 2281 sq_hctx = NULL; 2282 if (blk_queue_sq_sched(q)) 2283 sq_hctx = blk_mq_get_sq_hctx(q); 2284 queue_for_each_hw_ctx(q, hctx, i) { 2285 if (blk_mq_hctx_stopped(hctx)) 2286 continue; 2287 /* 2288 * Dispatch from this hctx either if there's no hctx preferred 2289 * by IO scheduler or if it has requests that bypass the 2290 * scheduler. 2291 */ 2292 if (!sq_hctx || sq_hctx == hctx || 2293 !list_empty_careful(&hctx->dispatch)) 2294 blk_mq_run_hw_queue(hctx, async); 2295 } 2296 } 2297 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2298 2299 /** 2300 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2301 * @q: Pointer to the request queue to run. 2302 * @msecs: Milliseconds of delay to wait before running the queues. 2303 */ 2304 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2305 { 2306 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2307 unsigned long i; 2308 2309 sq_hctx = NULL; 2310 if (blk_queue_sq_sched(q)) 2311 sq_hctx = blk_mq_get_sq_hctx(q); 2312 queue_for_each_hw_ctx(q, hctx, i) { 2313 if (blk_mq_hctx_stopped(hctx)) 2314 continue; 2315 /* 2316 * If there is already a run_work pending, leave the 2317 * pending delay untouched. Otherwise, a hctx can stall 2318 * if another hctx is re-delaying the other's work 2319 * before the work executes. 2320 */ 2321 if (delayed_work_pending(&hctx->run_work)) 2322 continue; 2323 /* 2324 * Dispatch from this hctx either if there's no hctx preferred 2325 * by IO scheduler or if it has requests that bypass the 2326 * scheduler. 2327 */ 2328 if (!sq_hctx || sq_hctx == hctx || 2329 !list_empty_careful(&hctx->dispatch)) 2330 blk_mq_delay_run_hw_queue(hctx, msecs); 2331 } 2332 } 2333 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2334 2335 /* 2336 * This function is often used for pausing .queue_rq() by driver when 2337 * there isn't enough resource or some conditions aren't satisfied, and 2338 * BLK_STS_RESOURCE is usually returned. 2339 * 2340 * We do not guarantee that dispatch can be drained or blocked 2341 * after blk_mq_stop_hw_queue() returns. Please use 2342 * blk_mq_quiesce_queue() for that requirement. 2343 */ 2344 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2345 { 2346 cancel_delayed_work(&hctx->run_work); 2347 2348 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2349 } 2350 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2351 2352 /* 2353 * This function is often used for pausing .queue_rq() by driver when 2354 * there isn't enough resource or some conditions aren't satisfied, and 2355 * BLK_STS_RESOURCE is usually returned. 2356 * 2357 * We do not guarantee that dispatch can be drained or blocked 2358 * after blk_mq_stop_hw_queues() returns. Please use 2359 * blk_mq_quiesce_queue() for that requirement. 2360 */ 2361 void blk_mq_stop_hw_queues(struct request_queue *q) 2362 { 2363 struct blk_mq_hw_ctx *hctx; 2364 unsigned long i; 2365 2366 queue_for_each_hw_ctx(q, hctx, i) 2367 blk_mq_stop_hw_queue(hctx); 2368 } 2369 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2370 2371 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2372 { 2373 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2374 2375 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2376 } 2377 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2378 2379 void blk_mq_start_hw_queues(struct request_queue *q) 2380 { 2381 struct blk_mq_hw_ctx *hctx; 2382 unsigned long i; 2383 2384 queue_for_each_hw_ctx(q, hctx, i) 2385 blk_mq_start_hw_queue(hctx); 2386 } 2387 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2388 2389 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2390 { 2391 if (!blk_mq_hctx_stopped(hctx)) 2392 return; 2393 2394 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2395 blk_mq_run_hw_queue(hctx, async); 2396 } 2397 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2398 2399 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2400 { 2401 struct blk_mq_hw_ctx *hctx; 2402 unsigned long i; 2403 2404 queue_for_each_hw_ctx(q, hctx, i) 2405 blk_mq_start_stopped_hw_queue(hctx, async || 2406 (hctx->flags & BLK_MQ_F_BLOCKING)); 2407 } 2408 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2409 2410 static void blk_mq_run_work_fn(struct work_struct *work) 2411 { 2412 struct blk_mq_hw_ctx *hctx = 2413 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2414 2415 blk_mq_run_dispatch_ops(hctx->queue, 2416 blk_mq_sched_dispatch_requests(hctx)); 2417 } 2418 2419 /** 2420 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2421 * @rq: Pointer to request to be inserted. 2422 * @flags: BLK_MQ_INSERT_* 2423 * 2424 * Should only be used carefully, when the caller knows we want to 2425 * bypass a potential IO scheduler on the target device. 2426 */ 2427 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2428 { 2429 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2430 2431 spin_lock(&hctx->lock); 2432 if (flags & BLK_MQ_INSERT_AT_HEAD) 2433 list_add(&rq->queuelist, &hctx->dispatch); 2434 else 2435 list_add_tail(&rq->queuelist, &hctx->dispatch); 2436 spin_unlock(&hctx->lock); 2437 } 2438 2439 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2440 struct blk_mq_ctx *ctx, struct list_head *list, 2441 bool run_queue_async) 2442 { 2443 struct request *rq; 2444 enum hctx_type type = hctx->type; 2445 2446 /* 2447 * Try to issue requests directly if the hw queue isn't busy to save an 2448 * extra enqueue & dequeue to the sw queue. 2449 */ 2450 if (!hctx->dispatch_busy && !run_queue_async) { 2451 blk_mq_run_dispatch_ops(hctx->queue, 2452 blk_mq_try_issue_list_directly(hctx, list)); 2453 if (list_empty(list)) 2454 goto out; 2455 } 2456 2457 /* 2458 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2459 * offline now 2460 */ 2461 list_for_each_entry(rq, list, queuelist) { 2462 BUG_ON(rq->mq_ctx != ctx); 2463 trace_block_rq_insert(rq); 2464 if (rq->cmd_flags & REQ_NOWAIT) 2465 run_queue_async = true; 2466 } 2467 2468 spin_lock(&ctx->lock); 2469 list_splice_tail_init(list, &ctx->rq_lists[type]); 2470 blk_mq_hctx_mark_pending(hctx, ctx); 2471 spin_unlock(&ctx->lock); 2472 out: 2473 blk_mq_run_hw_queue(hctx, run_queue_async); 2474 } 2475 2476 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2477 { 2478 struct request_queue *q = rq->q; 2479 struct blk_mq_ctx *ctx = rq->mq_ctx; 2480 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2481 2482 if (blk_rq_is_passthrough(rq)) { 2483 /* 2484 * Passthrough request have to be added to hctx->dispatch 2485 * directly. The device may be in a situation where it can't 2486 * handle FS request, and always returns BLK_STS_RESOURCE for 2487 * them, which gets them added to hctx->dispatch. 2488 * 2489 * If a passthrough request is required to unblock the queues, 2490 * and it is added to the scheduler queue, there is no chance to 2491 * dispatch it given we prioritize requests in hctx->dispatch. 2492 */ 2493 blk_mq_request_bypass_insert(rq, flags); 2494 } else if (req_op(rq) == REQ_OP_FLUSH) { 2495 /* 2496 * Firstly normal IO request is inserted to scheduler queue or 2497 * sw queue, meantime we add flush request to dispatch queue( 2498 * hctx->dispatch) directly and there is at most one in-flight 2499 * flush request for each hw queue, so it doesn't matter to add 2500 * flush request to tail or front of the dispatch queue. 2501 * 2502 * Secondly in case of NCQ, flush request belongs to non-NCQ 2503 * command, and queueing it will fail when there is any 2504 * in-flight normal IO request(NCQ command). When adding flush 2505 * rq to the front of hctx->dispatch, it is easier to introduce 2506 * extra time to flush rq's latency because of S_SCHED_RESTART 2507 * compared with adding to the tail of dispatch queue, then 2508 * chance of flush merge is increased, and less flush requests 2509 * will be issued to controller. It is observed that ~10% time 2510 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2511 * drive when adding flush rq to the front of hctx->dispatch. 2512 * 2513 * Simply queue flush rq to the front of hctx->dispatch so that 2514 * intensive flush workloads can benefit in case of NCQ HW. 2515 */ 2516 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2517 } else if (q->elevator) { 2518 LIST_HEAD(list); 2519 2520 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2521 2522 list_add(&rq->queuelist, &list); 2523 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2524 } else { 2525 trace_block_rq_insert(rq); 2526 2527 spin_lock(&ctx->lock); 2528 if (flags & BLK_MQ_INSERT_AT_HEAD) 2529 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2530 else 2531 list_add_tail(&rq->queuelist, 2532 &ctx->rq_lists[hctx->type]); 2533 blk_mq_hctx_mark_pending(hctx, ctx); 2534 spin_unlock(&ctx->lock); 2535 } 2536 } 2537 2538 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2539 unsigned int nr_segs) 2540 { 2541 int err; 2542 2543 if (bio->bi_opf & REQ_RAHEAD) 2544 rq->cmd_flags |= REQ_FAILFAST_MASK; 2545 2546 rq->__sector = bio->bi_iter.bi_sector; 2547 rq->write_hint = bio->bi_write_hint; 2548 blk_rq_bio_prep(rq, bio, nr_segs); 2549 2550 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2551 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2552 WARN_ON_ONCE(err); 2553 2554 blk_account_io_start(rq); 2555 } 2556 2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2558 struct request *rq, bool last) 2559 { 2560 struct request_queue *q = rq->q; 2561 struct blk_mq_queue_data bd = { 2562 .rq = rq, 2563 .last = last, 2564 }; 2565 blk_status_t ret; 2566 2567 /* 2568 * For OK queue, we are done. For error, caller may kill it. 2569 * Any other error (busy), just add it to our list as we 2570 * previously would have done. 2571 */ 2572 ret = q->mq_ops->queue_rq(hctx, &bd); 2573 switch (ret) { 2574 case BLK_STS_OK: 2575 blk_mq_update_dispatch_busy(hctx, false); 2576 break; 2577 case BLK_STS_RESOURCE: 2578 case BLK_STS_DEV_RESOURCE: 2579 blk_mq_update_dispatch_busy(hctx, true); 2580 __blk_mq_requeue_request(rq); 2581 break; 2582 default: 2583 blk_mq_update_dispatch_busy(hctx, false); 2584 break; 2585 } 2586 2587 return ret; 2588 } 2589 2590 static bool blk_mq_get_budget_and_tag(struct request *rq) 2591 { 2592 int budget_token; 2593 2594 budget_token = blk_mq_get_dispatch_budget(rq->q); 2595 if (budget_token < 0) 2596 return false; 2597 blk_mq_set_rq_budget_token(rq, budget_token); 2598 if (!blk_mq_get_driver_tag(rq)) { 2599 blk_mq_put_dispatch_budget(rq->q, budget_token); 2600 return false; 2601 } 2602 return true; 2603 } 2604 2605 /** 2606 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2607 * @hctx: Pointer of the associated hardware queue. 2608 * @rq: Pointer to request to be sent. 2609 * 2610 * If the device has enough resources to accept a new request now, send the 2611 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2612 * we can try send it another time in the future. Requests inserted at this 2613 * queue have higher priority. 2614 */ 2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2616 struct request *rq) 2617 { 2618 blk_status_t ret; 2619 2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2621 blk_mq_insert_request(rq, 0); 2622 return; 2623 } 2624 2625 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2626 blk_mq_insert_request(rq, 0); 2627 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2628 return; 2629 } 2630 2631 ret = __blk_mq_issue_directly(hctx, rq, true); 2632 switch (ret) { 2633 case BLK_STS_OK: 2634 break; 2635 case BLK_STS_RESOURCE: 2636 case BLK_STS_DEV_RESOURCE: 2637 blk_mq_request_bypass_insert(rq, 0); 2638 blk_mq_run_hw_queue(hctx, false); 2639 break; 2640 default: 2641 blk_mq_end_request(rq, ret); 2642 break; 2643 } 2644 } 2645 2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2647 { 2648 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2649 2650 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2651 blk_mq_insert_request(rq, 0); 2652 return BLK_STS_OK; 2653 } 2654 2655 if (!blk_mq_get_budget_and_tag(rq)) 2656 return BLK_STS_RESOURCE; 2657 return __blk_mq_issue_directly(hctx, rq, last); 2658 } 2659 2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2661 { 2662 struct blk_mq_hw_ctx *hctx = NULL; 2663 struct request *rq; 2664 int queued = 0; 2665 blk_status_t ret = BLK_STS_OK; 2666 2667 while ((rq = rq_list_pop(&plug->mq_list))) { 2668 bool last = rq_list_empty(plug->mq_list); 2669 2670 if (hctx != rq->mq_hctx) { 2671 if (hctx) { 2672 blk_mq_commit_rqs(hctx, queued, false); 2673 queued = 0; 2674 } 2675 hctx = rq->mq_hctx; 2676 } 2677 2678 ret = blk_mq_request_issue_directly(rq, last); 2679 switch (ret) { 2680 case BLK_STS_OK: 2681 queued++; 2682 break; 2683 case BLK_STS_RESOURCE: 2684 case BLK_STS_DEV_RESOURCE: 2685 blk_mq_request_bypass_insert(rq, 0); 2686 blk_mq_run_hw_queue(hctx, false); 2687 goto out; 2688 default: 2689 blk_mq_end_request(rq, ret); 2690 break; 2691 } 2692 } 2693 2694 out: 2695 if (ret != BLK_STS_OK) 2696 blk_mq_commit_rqs(hctx, queued, false); 2697 } 2698 2699 static void __blk_mq_flush_plug_list(struct request_queue *q, 2700 struct blk_plug *plug) 2701 { 2702 if (blk_queue_quiesced(q)) 2703 return; 2704 q->mq_ops->queue_rqs(&plug->mq_list); 2705 } 2706 2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2708 { 2709 struct blk_mq_hw_ctx *this_hctx = NULL; 2710 struct blk_mq_ctx *this_ctx = NULL; 2711 struct request *requeue_list = NULL; 2712 struct request **requeue_lastp = &requeue_list; 2713 unsigned int depth = 0; 2714 bool is_passthrough = false; 2715 LIST_HEAD(list); 2716 2717 do { 2718 struct request *rq = rq_list_pop(&plug->mq_list); 2719 2720 if (!this_hctx) { 2721 this_hctx = rq->mq_hctx; 2722 this_ctx = rq->mq_ctx; 2723 is_passthrough = blk_rq_is_passthrough(rq); 2724 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2725 is_passthrough != blk_rq_is_passthrough(rq)) { 2726 rq_list_add_tail(&requeue_lastp, rq); 2727 continue; 2728 } 2729 list_add(&rq->queuelist, &list); 2730 depth++; 2731 } while (!rq_list_empty(plug->mq_list)); 2732 2733 plug->mq_list = requeue_list; 2734 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2735 2736 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2737 /* passthrough requests should never be issued to the I/O scheduler */ 2738 if (is_passthrough) { 2739 spin_lock(&this_hctx->lock); 2740 list_splice_tail_init(&list, &this_hctx->dispatch); 2741 spin_unlock(&this_hctx->lock); 2742 blk_mq_run_hw_queue(this_hctx, from_sched); 2743 } else if (this_hctx->queue->elevator) { 2744 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2745 &list, 0); 2746 blk_mq_run_hw_queue(this_hctx, from_sched); 2747 } else { 2748 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2749 } 2750 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2751 } 2752 2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2754 { 2755 struct request *rq; 2756 unsigned int depth; 2757 2758 /* 2759 * We may have been called recursively midway through handling 2760 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2761 * To avoid mq_list changing under our feet, clear rq_count early and 2762 * bail out specifically if rq_count is 0 rather than checking 2763 * whether the mq_list is empty. 2764 */ 2765 if (plug->rq_count == 0) 2766 return; 2767 depth = plug->rq_count; 2768 plug->rq_count = 0; 2769 2770 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2771 struct request_queue *q; 2772 2773 rq = rq_list_peek(&plug->mq_list); 2774 q = rq->q; 2775 trace_block_unplug(q, depth, true); 2776 2777 /* 2778 * Peek first request and see if we have a ->queue_rqs() hook. 2779 * If we do, we can dispatch the whole plug list in one go. We 2780 * already know at this point that all requests belong to the 2781 * same queue, caller must ensure that's the case. 2782 */ 2783 if (q->mq_ops->queue_rqs) { 2784 blk_mq_run_dispatch_ops(q, 2785 __blk_mq_flush_plug_list(q, plug)); 2786 if (rq_list_empty(plug->mq_list)) 2787 return; 2788 } 2789 2790 blk_mq_run_dispatch_ops(q, 2791 blk_mq_plug_issue_direct(plug)); 2792 if (rq_list_empty(plug->mq_list)) 2793 return; 2794 } 2795 2796 do { 2797 blk_mq_dispatch_plug_list(plug, from_schedule); 2798 } while (!rq_list_empty(plug->mq_list)); 2799 } 2800 2801 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2802 struct list_head *list) 2803 { 2804 int queued = 0; 2805 blk_status_t ret = BLK_STS_OK; 2806 2807 while (!list_empty(list)) { 2808 struct request *rq = list_first_entry(list, struct request, 2809 queuelist); 2810 2811 list_del_init(&rq->queuelist); 2812 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2813 switch (ret) { 2814 case BLK_STS_OK: 2815 queued++; 2816 break; 2817 case BLK_STS_RESOURCE: 2818 case BLK_STS_DEV_RESOURCE: 2819 blk_mq_request_bypass_insert(rq, 0); 2820 if (list_empty(list)) 2821 blk_mq_run_hw_queue(hctx, false); 2822 goto out; 2823 default: 2824 blk_mq_end_request(rq, ret); 2825 break; 2826 } 2827 } 2828 2829 out: 2830 if (ret != BLK_STS_OK) 2831 blk_mq_commit_rqs(hctx, queued, false); 2832 } 2833 2834 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2835 struct bio *bio, unsigned int nr_segs) 2836 { 2837 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2838 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2839 return true; 2840 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2841 return true; 2842 } 2843 return false; 2844 } 2845 2846 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2847 struct blk_plug *plug, 2848 struct bio *bio, 2849 unsigned int nsegs) 2850 { 2851 struct blk_mq_alloc_data data = { 2852 .q = q, 2853 .nr_tags = 1, 2854 .cmd_flags = bio->bi_opf, 2855 }; 2856 struct request *rq; 2857 2858 rq_qos_throttle(q, bio); 2859 2860 if (plug) { 2861 data.nr_tags = plug->nr_ios; 2862 plug->nr_ios = 1; 2863 data.cached_rq = &plug->cached_rq; 2864 } 2865 2866 rq = __blk_mq_alloc_requests(&data); 2867 if (rq) 2868 return rq; 2869 rq_qos_cleanup(q, bio); 2870 if (bio->bi_opf & REQ_NOWAIT) 2871 bio_wouldblock_error(bio); 2872 return NULL; 2873 } 2874 2875 /* 2876 * Check if there is a suitable cached request and return it. 2877 */ 2878 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2879 struct request_queue *q, blk_opf_t opf) 2880 { 2881 enum hctx_type type = blk_mq_get_hctx_type(opf); 2882 struct request *rq; 2883 2884 if (!plug) 2885 return NULL; 2886 rq = rq_list_peek(&plug->cached_rq); 2887 if (!rq || rq->q != q) 2888 return NULL; 2889 if (type != rq->mq_hctx->type && 2890 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 2891 return NULL; 2892 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 2893 return NULL; 2894 return rq; 2895 } 2896 2897 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2898 struct bio *bio) 2899 { 2900 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2901 2902 /* 2903 * If any qos ->throttle() end up blocking, we will have flushed the 2904 * plug and hence killed the cached_rq list as well. Pop this entry 2905 * before we throttle. 2906 */ 2907 plug->cached_rq = rq_list_next(rq); 2908 rq_qos_throttle(rq->q, bio); 2909 2910 blk_mq_rq_time_init(rq, 0); 2911 rq->cmd_flags = bio->bi_opf; 2912 INIT_LIST_HEAD(&rq->queuelist); 2913 } 2914 2915 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 2916 { 2917 unsigned int bs_mask = queue_logical_block_size(q) - 1; 2918 2919 /* .bi_sector of any zero sized bio need to be initialized */ 2920 if ((bio->bi_iter.bi_size & bs_mask) || 2921 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 2922 return true; 2923 return false; 2924 } 2925 2926 /** 2927 * blk_mq_submit_bio - Create and send a request to block device. 2928 * @bio: Bio pointer. 2929 * 2930 * Builds up a request structure from @q and @bio and send to the device. The 2931 * request may not be queued directly to hardware if: 2932 * * This request can be merged with another one 2933 * * We want to place request at plug queue for possible future merging 2934 * * There is an IO scheduler active at this queue 2935 * 2936 * It will not queue the request if there is an error with the bio, or at the 2937 * request creation. 2938 */ 2939 void blk_mq_submit_bio(struct bio *bio) 2940 { 2941 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2942 struct blk_plug *plug = current->plug; 2943 const int is_sync = op_is_sync(bio->bi_opf); 2944 struct blk_mq_hw_ctx *hctx; 2945 unsigned int nr_segs; 2946 struct request *rq; 2947 blk_status_t ret; 2948 2949 /* 2950 * If the plug has a cached request for this queue, try to use it. 2951 */ 2952 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 2953 2954 /* 2955 * A BIO that was released from a zone write plug has already been 2956 * through the preparation in this function, already holds a reference 2957 * on the queue usage counter, and is the only write BIO in-flight for 2958 * the target zone. Go straight to preparing a request for it. 2959 */ 2960 if (bio_zone_write_plugging(bio)) { 2961 nr_segs = bio->__bi_nr_segments; 2962 if (rq) 2963 blk_queue_exit(q); 2964 goto new_request; 2965 } 2966 2967 bio = blk_queue_bounce(bio, q); 2968 2969 /* 2970 * The cached request already holds a q_usage_counter reference and we 2971 * don't have to acquire a new one if we use it. 2972 */ 2973 if (!rq) { 2974 if (unlikely(bio_queue_enter(bio))) 2975 return; 2976 } 2977 2978 /* 2979 * Device reconfiguration may change logical block size, so alignment 2980 * check has to be done with queue usage counter held 2981 */ 2982 if (unlikely(bio_unaligned(bio, q))) { 2983 bio_io_error(bio); 2984 goto queue_exit; 2985 } 2986 2987 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2988 if (!bio) 2989 goto queue_exit; 2990 2991 if (!bio_integrity_prep(bio)) 2992 goto queue_exit; 2993 2994 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2995 goto queue_exit; 2996 2997 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 2998 goto queue_exit; 2999 3000 new_request: 3001 if (!rq) { 3002 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3003 if (unlikely(!rq)) 3004 goto queue_exit; 3005 } else { 3006 blk_mq_use_cached_rq(rq, plug, bio); 3007 } 3008 3009 trace_block_getrq(bio); 3010 3011 rq_qos_track(q, rq, bio); 3012 3013 blk_mq_bio_to_request(rq, bio, nr_segs); 3014 3015 ret = blk_crypto_rq_get_keyslot(rq); 3016 if (ret != BLK_STS_OK) { 3017 bio->bi_status = ret; 3018 bio_endio(bio); 3019 blk_mq_free_request(rq); 3020 return; 3021 } 3022 3023 if (bio_zone_write_plugging(bio)) 3024 blk_zone_write_plug_init_request(rq); 3025 3026 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3027 return; 3028 3029 if (plug) { 3030 blk_add_rq_to_plug(plug, rq); 3031 return; 3032 } 3033 3034 hctx = rq->mq_hctx; 3035 if ((rq->rq_flags & RQF_USE_SCHED) || 3036 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3037 blk_mq_insert_request(rq, 0); 3038 blk_mq_run_hw_queue(hctx, true); 3039 } else { 3040 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3041 } 3042 return; 3043 3044 queue_exit: 3045 /* 3046 * Don't drop the queue reference if we were trying to use a cached 3047 * request and thus didn't acquire one. 3048 */ 3049 if (!rq) 3050 blk_queue_exit(q); 3051 } 3052 3053 #ifdef CONFIG_BLK_MQ_STACKING 3054 /** 3055 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3056 * @rq: the request being queued 3057 */ 3058 blk_status_t blk_insert_cloned_request(struct request *rq) 3059 { 3060 struct request_queue *q = rq->q; 3061 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3062 unsigned int max_segments = blk_rq_get_max_segments(rq); 3063 blk_status_t ret; 3064 3065 if (blk_rq_sectors(rq) > max_sectors) { 3066 /* 3067 * SCSI device does not have a good way to return if 3068 * Write Same/Zero is actually supported. If a device rejects 3069 * a non-read/write command (discard, write same,etc.) the 3070 * low-level device driver will set the relevant queue limit to 3071 * 0 to prevent blk-lib from issuing more of the offending 3072 * operations. Commands queued prior to the queue limit being 3073 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3074 * errors being propagated to upper layers. 3075 */ 3076 if (max_sectors == 0) 3077 return BLK_STS_NOTSUPP; 3078 3079 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3080 __func__, blk_rq_sectors(rq), max_sectors); 3081 return BLK_STS_IOERR; 3082 } 3083 3084 /* 3085 * The queue settings related to segment counting may differ from the 3086 * original queue. 3087 */ 3088 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3089 if (rq->nr_phys_segments > max_segments) { 3090 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3091 __func__, rq->nr_phys_segments, max_segments); 3092 return BLK_STS_IOERR; 3093 } 3094 3095 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3096 return BLK_STS_IOERR; 3097 3098 ret = blk_crypto_rq_get_keyslot(rq); 3099 if (ret != BLK_STS_OK) 3100 return ret; 3101 3102 blk_account_io_start(rq); 3103 3104 /* 3105 * Since we have a scheduler attached on the top device, 3106 * bypass a potential scheduler on the bottom device for 3107 * insert. 3108 */ 3109 blk_mq_run_dispatch_ops(q, 3110 ret = blk_mq_request_issue_directly(rq, true)); 3111 if (ret) 3112 blk_account_io_done(rq, blk_time_get_ns()); 3113 return ret; 3114 } 3115 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3116 3117 /** 3118 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3119 * @rq: the clone request to be cleaned up 3120 * 3121 * Description: 3122 * Free all bios in @rq for a cloned request. 3123 */ 3124 void blk_rq_unprep_clone(struct request *rq) 3125 { 3126 struct bio *bio; 3127 3128 while ((bio = rq->bio) != NULL) { 3129 rq->bio = bio->bi_next; 3130 3131 bio_put(bio); 3132 } 3133 } 3134 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3135 3136 /** 3137 * blk_rq_prep_clone - Helper function to setup clone request 3138 * @rq: the request to be setup 3139 * @rq_src: original request to be cloned 3140 * @bs: bio_set that bios for clone are allocated from 3141 * @gfp_mask: memory allocation mask for bio 3142 * @bio_ctr: setup function to be called for each clone bio. 3143 * Returns %0 for success, non %0 for failure. 3144 * @data: private data to be passed to @bio_ctr 3145 * 3146 * Description: 3147 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3148 * Also, pages which the original bios are pointing to are not copied 3149 * and the cloned bios just point same pages. 3150 * So cloned bios must be completed before original bios, which means 3151 * the caller must complete @rq before @rq_src. 3152 */ 3153 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3154 struct bio_set *bs, gfp_t gfp_mask, 3155 int (*bio_ctr)(struct bio *, struct bio *, void *), 3156 void *data) 3157 { 3158 struct bio *bio, *bio_src; 3159 3160 if (!bs) 3161 bs = &fs_bio_set; 3162 3163 __rq_for_each_bio(bio_src, rq_src) { 3164 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3165 bs); 3166 if (!bio) 3167 goto free_and_out; 3168 3169 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3170 goto free_and_out; 3171 3172 if (rq->bio) { 3173 rq->biotail->bi_next = bio; 3174 rq->biotail = bio; 3175 } else { 3176 rq->bio = rq->biotail = bio; 3177 } 3178 bio = NULL; 3179 } 3180 3181 /* Copy attributes of the original request to the clone request. */ 3182 rq->__sector = blk_rq_pos(rq_src); 3183 rq->__data_len = blk_rq_bytes(rq_src); 3184 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3185 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3186 rq->special_vec = rq_src->special_vec; 3187 } 3188 rq->nr_phys_segments = rq_src->nr_phys_segments; 3189 rq->ioprio = rq_src->ioprio; 3190 rq->write_hint = rq_src->write_hint; 3191 3192 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3193 goto free_and_out; 3194 3195 return 0; 3196 3197 free_and_out: 3198 if (bio) 3199 bio_put(bio); 3200 blk_rq_unprep_clone(rq); 3201 3202 return -ENOMEM; 3203 } 3204 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3205 #endif /* CONFIG_BLK_MQ_STACKING */ 3206 3207 /* 3208 * Steal bios from a request and add them to a bio list. 3209 * The request must not have been partially completed before. 3210 */ 3211 void blk_steal_bios(struct bio_list *list, struct request *rq) 3212 { 3213 if (rq->bio) { 3214 if (list->tail) 3215 list->tail->bi_next = rq->bio; 3216 else 3217 list->head = rq->bio; 3218 list->tail = rq->biotail; 3219 3220 rq->bio = NULL; 3221 rq->biotail = NULL; 3222 } 3223 3224 rq->__data_len = 0; 3225 } 3226 EXPORT_SYMBOL_GPL(blk_steal_bios); 3227 3228 static size_t order_to_size(unsigned int order) 3229 { 3230 return (size_t)PAGE_SIZE << order; 3231 } 3232 3233 /* called before freeing request pool in @tags */ 3234 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3235 struct blk_mq_tags *tags) 3236 { 3237 struct page *page; 3238 unsigned long flags; 3239 3240 /* 3241 * There is no need to clear mapping if driver tags is not initialized 3242 * or the mapping belongs to the driver tags. 3243 */ 3244 if (!drv_tags || drv_tags == tags) 3245 return; 3246 3247 list_for_each_entry(page, &tags->page_list, lru) { 3248 unsigned long start = (unsigned long)page_address(page); 3249 unsigned long end = start + order_to_size(page->private); 3250 int i; 3251 3252 for (i = 0; i < drv_tags->nr_tags; i++) { 3253 struct request *rq = drv_tags->rqs[i]; 3254 unsigned long rq_addr = (unsigned long)rq; 3255 3256 if (rq_addr >= start && rq_addr < end) { 3257 WARN_ON_ONCE(req_ref_read(rq) != 0); 3258 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3259 } 3260 } 3261 } 3262 3263 /* 3264 * Wait until all pending iteration is done. 3265 * 3266 * Request reference is cleared and it is guaranteed to be observed 3267 * after the ->lock is released. 3268 */ 3269 spin_lock_irqsave(&drv_tags->lock, flags); 3270 spin_unlock_irqrestore(&drv_tags->lock, flags); 3271 } 3272 3273 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3274 unsigned int hctx_idx) 3275 { 3276 struct blk_mq_tags *drv_tags; 3277 struct page *page; 3278 3279 if (list_empty(&tags->page_list)) 3280 return; 3281 3282 if (blk_mq_is_shared_tags(set->flags)) 3283 drv_tags = set->shared_tags; 3284 else 3285 drv_tags = set->tags[hctx_idx]; 3286 3287 if (tags->static_rqs && set->ops->exit_request) { 3288 int i; 3289 3290 for (i = 0; i < tags->nr_tags; i++) { 3291 struct request *rq = tags->static_rqs[i]; 3292 3293 if (!rq) 3294 continue; 3295 set->ops->exit_request(set, rq, hctx_idx); 3296 tags->static_rqs[i] = NULL; 3297 } 3298 } 3299 3300 blk_mq_clear_rq_mapping(drv_tags, tags); 3301 3302 while (!list_empty(&tags->page_list)) { 3303 page = list_first_entry(&tags->page_list, struct page, lru); 3304 list_del_init(&page->lru); 3305 /* 3306 * Remove kmemleak object previously allocated in 3307 * blk_mq_alloc_rqs(). 3308 */ 3309 kmemleak_free(page_address(page)); 3310 __free_pages(page, page->private); 3311 } 3312 } 3313 3314 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3315 { 3316 kfree(tags->rqs); 3317 tags->rqs = NULL; 3318 kfree(tags->static_rqs); 3319 tags->static_rqs = NULL; 3320 3321 blk_mq_free_tags(tags); 3322 } 3323 3324 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3325 unsigned int hctx_idx) 3326 { 3327 int i; 3328 3329 for (i = 0; i < set->nr_maps; i++) { 3330 unsigned int start = set->map[i].queue_offset; 3331 unsigned int end = start + set->map[i].nr_queues; 3332 3333 if (hctx_idx >= start && hctx_idx < end) 3334 break; 3335 } 3336 3337 if (i >= set->nr_maps) 3338 i = HCTX_TYPE_DEFAULT; 3339 3340 return i; 3341 } 3342 3343 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3344 unsigned int hctx_idx) 3345 { 3346 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3347 3348 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3349 } 3350 3351 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3352 unsigned int hctx_idx, 3353 unsigned int nr_tags, 3354 unsigned int reserved_tags) 3355 { 3356 int node = blk_mq_get_hctx_node(set, hctx_idx); 3357 struct blk_mq_tags *tags; 3358 3359 if (node == NUMA_NO_NODE) 3360 node = set->numa_node; 3361 3362 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3363 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3364 if (!tags) 3365 return NULL; 3366 3367 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3368 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3369 node); 3370 if (!tags->rqs) 3371 goto err_free_tags; 3372 3373 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3374 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3375 node); 3376 if (!tags->static_rqs) 3377 goto err_free_rqs; 3378 3379 return tags; 3380 3381 err_free_rqs: 3382 kfree(tags->rqs); 3383 err_free_tags: 3384 blk_mq_free_tags(tags); 3385 return NULL; 3386 } 3387 3388 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3389 unsigned int hctx_idx, int node) 3390 { 3391 int ret; 3392 3393 if (set->ops->init_request) { 3394 ret = set->ops->init_request(set, rq, hctx_idx, node); 3395 if (ret) 3396 return ret; 3397 } 3398 3399 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3400 return 0; 3401 } 3402 3403 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3404 struct blk_mq_tags *tags, 3405 unsigned int hctx_idx, unsigned int depth) 3406 { 3407 unsigned int i, j, entries_per_page, max_order = 4; 3408 int node = blk_mq_get_hctx_node(set, hctx_idx); 3409 size_t rq_size, left; 3410 3411 if (node == NUMA_NO_NODE) 3412 node = set->numa_node; 3413 3414 INIT_LIST_HEAD(&tags->page_list); 3415 3416 /* 3417 * rq_size is the size of the request plus driver payload, rounded 3418 * to the cacheline size 3419 */ 3420 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3421 cache_line_size()); 3422 left = rq_size * depth; 3423 3424 for (i = 0; i < depth; ) { 3425 int this_order = max_order; 3426 struct page *page; 3427 int to_do; 3428 void *p; 3429 3430 while (this_order && left < order_to_size(this_order - 1)) 3431 this_order--; 3432 3433 do { 3434 page = alloc_pages_node(node, 3435 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3436 this_order); 3437 if (page) 3438 break; 3439 if (!this_order--) 3440 break; 3441 if (order_to_size(this_order) < rq_size) 3442 break; 3443 } while (1); 3444 3445 if (!page) 3446 goto fail; 3447 3448 page->private = this_order; 3449 list_add_tail(&page->lru, &tags->page_list); 3450 3451 p = page_address(page); 3452 /* 3453 * Allow kmemleak to scan these pages as they contain pointers 3454 * to additional allocations like via ops->init_request(). 3455 */ 3456 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3457 entries_per_page = order_to_size(this_order) / rq_size; 3458 to_do = min(entries_per_page, depth - i); 3459 left -= to_do * rq_size; 3460 for (j = 0; j < to_do; j++) { 3461 struct request *rq = p; 3462 3463 tags->static_rqs[i] = rq; 3464 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3465 tags->static_rqs[i] = NULL; 3466 goto fail; 3467 } 3468 3469 p += rq_size; 3470 i++; 3471 } 3472 } 3473 return 0; 3474 3475 fail: 3476 blk_mq_free_rqs(set, tags, hctx_idx); 3477 return -ENOMEM; 3478 } 3479 3480 struct rq_iter_data { 3481 struct blk_mq_hw_ctx *hctx; 3482 bool has_rq; 3483 }; 3484 3485 static bool blk_mq_has_request(struct request *rq, void *data) 3486 { 3487 struct rq_iter_data *iter_data = data; 3488 3489 if (rq->mq_hctx != iter_data->hctx) 3490 return true; 3491 iter_data->has_rq = true; 3492 return false; 3493 } 3494 3495 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3496 { 3497 struct blk_mq_tags *tags = hctx->sched_tags ? 3498 hctx->sched_tags : hctx->tags; 3499 struct rq_iter_data data = { 3500 .hctx = hctx, 3501 }; 3502 3503 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3504 return data.has_rq; 3505 } 3506 3507 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3508 unsigned int this_cpu) 3509 { 3510 enum hctx_type type = hctx->type; 3511 int cpu; 3512 3513 /* 3514 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3515 * might submit IOs on these isolated CPUs, so use the queue map to 3516 * check if all CPUs mapped to this hctx are offline 3517 */ 3518 for_each_online_cpu(cpu) { 3519 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3520 type, cpu); 3521 3522 if (h != hctx) 3523 continue; 3524 3525 /* this hctx has at least one online CPU */ 3526 if (this_cpu != cpu) 3527 return true; 3528 } 3529 3530 return false; 3531 } 3532 3533 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3534 { 3535 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3536 struct blk_mq_hw_ctx, cpuhp_online); 3537 3538 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3539 return 0; 3540 3541 /* 3542 * Prevent new request from being allocated on the current hctx. 3543 * 3544 * The smp_mb__after_atomic() Pairs with the implied barrier in 3545 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3546 * seen once we return from the tag allocator. 3547 */ 3548 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3549 smp_mb__after_atomic(); 3550 3551 /* 3552 * Try to grab a reference to the queue and wait for any outstanding 3553 * requests. If we could not grab a reference the queue has been 3554 * frozen and there are no requests. 3555 */ 3556 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3557 while (blk_mq_hctx_has_requests(hctx)) 3558 msleep(5); 3559 percpu_ref_put(&hctx->queue->q_usage_counter); 3560 } 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * Check if one CPU is mapped to the specified hctx 3567 * 3568 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3569 * to be used for scheduling kworker only. For other usage, please call this 3570 * helper for checking if one CPU belongs to the specified hctx 3571 */ 3572 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3573 const struct blk_mq_hw_ctx *hctx) 3574 { 3575 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3576 hctx->type, cpu); 3577 3578 return mapped_hctx == hctx; 3579 } 3580 3581 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3582 { 3583 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3584 struct blk_mq_hw_ctx, cpuhp_online); 3585 3586 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3587 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3588 return 0; 3589 } 3590 3591 /* 3592 * 'cpu' is going away. splice any existing rq_list entries from this 3593 * software queue to the hw queue dispatch list, and ensure that it 3594 * gets run. 3595 */ 3596 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3597 { 3598 struct blk_mq_hw_ctx *hctx; 3599 struct blk_mq_ctx *ctx; 3600 LIST_HEAD(tmp); 3601 enum hctx_type type; 3602 3603 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3604 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3605 return 0; 3606 3607 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3608 type = hctx->type; 3609 3610 spin_lock(&ctx->lock); 3611 if (!list_empty(&ctx->rq_lists[type])) { 3612 list_splice_init(&ctx->rq_lists[type], &tmp); 3613 blk_mq_hctx_clear_pending(hctx, ctx); 3614 } 3615 spin_unlock(&ctx->lock); 3616 3617 if (list_empty(&tmp)) 3618 return 0; 3619 3620 spin_lock(&hctx->lock); 3621 list_splice_tail_init(&tmp, &hctx->dispatch); 3622 spin_unlock(&hctx->lock); 3623 3624 blk_mq_run_hw_queue(hctx, true); 3625 return 0; 3626 } 3627 3628 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3629 { 3630 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3631 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3632 &hctx->cpuhp_online); 3633 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3634 &hctx->cpuhp_dead); 3635 } 3636 3637 /* 3638 * Before freeing hw queue, clearing the flush request reference in 3639 * tags->rqs[] for avoiding potential UAF. 3640 */ 3641 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3642 unsigned int queue_depth, struct request *flush_rq) 3643 { 3644 int i; 3645 unsigned long flags; 3646 3647 /* The hw queue may not be mapped yet */ 3648 if (!tags) 3649 return; 3650 3651 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3652 3653 for (i = 0; i < queue_depth; i++) 3654 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3655 3656 /* 3657 * Wait until all pending iteration is done. 3658 * 3659 * Request reference is cleared and it is guaranteed to be observed 3660 * after the ->lock is released. 3661 */ 3662 spin_lock_irqsave(&tags->lock, flags); 3663 spin_unlock_irqrestore(&tags->lock, flags); 3664 } 3665 3666 /* hctx->ctxs will be freed in queue's release handler */ 3667 static void blk_mq_exit_hctx(struct request_queue *q, 3668 struct blk_mq_tag_set *set, 3669 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3670 { 3671 struct request *flush_rq = hctx->fq->flush_rq; 3672 3673 if (blk_mq_hw_queue_mapped(hctx)) 3674 blk_mq_tag_idle(hctx); 3675 3676 if (blk_queue_init_done(q)) 3677 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3678 set->queue_depth, flush_rq); 3679 if (set->ops->exit_request) 3680 set->ops->exit_request(set, flush_rq, hctx_idx); 3681 3682 if (set->ops->exit_hctx) 3683 set->ops->exit_hctx(hctx, hctx_idx); 3684 3685 blk_mq_remove_cpuhp(hctx); 3686 3687 xa_erase(&q->hctx_table, hctx_idx); 3688 3689 spin_lock(&q->unused_hctx_lock); 3690 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3691 spin_unlock(&q->unused_hctx_lock); 3692 } 3693 3694 static void blk_mq_exit_hw_queues(struct request_queue *q, 3695 struct blk_mq_tag_set *set, int nr_queue) 3696 { 3697 struct blk_mq_hw_ctx *hctx; 3698 unsigned long i; 3699 3700 queue_for_each_hw_ctx(q, hctx, i) { 3701 if (i == nr_queue) 3702 break; 3703 blk_mq_exit_hctx(q, set, hctx, i); 3704 } 3705 } 3706 3707 static int blk_mq_init_hctx(struct request_queue *q, 3708 struct blk_mq_tag_set *set, 3709 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3710 { 3711 hctx->queue_num = hctx_idx; 3712 3713 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3714 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3715 &hctx->cpuhp_online); 3716 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3717 3718 hctx->tags = set->tags[hctx_idx]; 3719 3720 if (set->ops->init_hctx && 3721 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3722 goto unregister_cpu_notifier; 3723 3724 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3725 hctx->numa_node)) 3726 goto exit_hctx; 3727 3728 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3729 goto exit_flush_rq; 3730 3731 return 0; 3732 3733 exit_flush_rq: 3734 if (set->ops->exit_request) 3735 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3736 exit_hctx: 3737 if (set->ops->exit_hctx) 3738 set->ops->exit_hctx(hctx, hctx_idx); 3739 unregister_cpu_notifier: 3740 blk_mq_remove_cpuhp(hctx); 3741 return -1; 3742 } 3743 3744 static struct blk_mq_hw_ctx * 3745 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3746 int node) 3747 { 3748 struct blk_mq_hw_ctx *hctx; 3749 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3750 3751 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3752 if (!hctx) 3753 goto fail_alloc_hctx; 3754 3755 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3756 goto free_hctx; 3757 3758 atomic_set(&hctx->nr_active, 0); 3759 if (node == NUMA_NO_NODE) 3760 node = set->numa_node; 3761 hctx->numa_node = node; 3762 3763 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3764 spin_lock_init(&hctx->lock); 3765 INIT_LIST_HEAD(&hctx->dispatch); 3766 hctx->queue = q; 3767 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3768 3769 INIT_LIST_HEAD(&hctx->hctx_list); 3770 3771 /* 3772 * Allocate space for all possible cpus to avoid allocation at 3773 * runtime 3774 */ 3775 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3776 gfp, node); 3777 if (!hctx->ctxs) 3778 goto free_cpumask; 3779 3780 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3781 gfp, node, false, false)) 3782 goto free_ctxs; 3783 hctx->nr_ctx = 0; 3784 3785 spin_lock_init(&hctx->dispatch_wait_lock); 3786 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3787 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3788 3789 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3790 if (!hctx->fq) 3791 goto free_bitmap; 3792 3793 blk_mq_hctx_kobj_init(hctx); 3794 3795 return hctx; 3796 3797 free_bitmap: 3798 sbitmap_free(&hctx->ctx_map); 3799 free_ctxs: 3800 kfree(hctx->ctxs); 3801 free_cpumask: 3802 free_cpumask_var(hctx->cpumask); 3803 free_hctx: 3804 kfree(hctx); 3805 fail_alloc_hctx: 3806 return NULL; 3807 } 3808 3809 static void blk_mq_init_cpu_queues(struct request_queue *q, 3810 unsigned int nr_hw_queues) 3811 { 3812 struct blk_mq_tag_set *set = q->tag_set; 3813 unsigned int i, j; 3814 3815 for_each_possible_cpu(i) { 3816 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3817 struct blk_mq_hw_ctx *hctx; 3818 int k; 3819 3820 __ctx->cpu = i; 3821 spin_lock_init(&__ctx->lock); 3822 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3823 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3824 3825 __ctx->queue = q; 3826 3827 /* 3828 * Set local node, IFF we have more than one hw queue. If 3829 * not, we remain on the home node of the device 3830 */ 3831 for (j = 0; j < set->nr_maps; j++) { 3832 hctx = blk_mq_map_queue_type(q, j, i); 3833 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3834 hctx->numa_node = cpu_to_node(i); 3835 } 3836 } 3837 } 3838 3839 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3840 unsigned int hctx_idx, 3841 unsigned int depth) 3842 { 3843 struct blk_mq_tags *tags; 3844 int ret; 3845 3846 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3847 if (!tags) 3848 return NULL; 3849 3850 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3851 if (ret) { 3852 blk_mq_free_rq_map(tags); 3853 return NULL; 3854 } 3855 3856 return tags; 3857 } 3858 3859 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3860 int hctx_idx) 3861 { 3862 if (blk_mq_is_shared_tags(set->flags)) { 3863 set->tags[hctx_idx] = set->shared_tags; 3864 3865 return true; 3866 } 3867 3868 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3869 set->queue_depth); 3870 3871 return set->tags[hctx_idx]; 3872 } 3873 3874 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3875 struct blk_mq_tags *tags, 3876 unsigned int hctx_idx) 3877 { 3878 if (tags) { 3879 blk_mq_free_rqs(set, tags, hctx_idx); 3880 blk_mq_free_rq_map(tags); 3881 } 3882 } 3883 3884 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3885 unsigned int hctx_idx) 3886 { 3887 if (!blk_mq_is_shared_tags(set->flags)) 3888 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3889 3890 set->tags[hctx_idx] = NULL; 3891 } 3892 3893 static void blk_mq_map_swqueue(struct request_queue *q) 3894 { 3895 unsigned int j, hctx_idx; 3896 unsigned long i; 3897 struct blk_mq_hw_ctx *hctx; 3898 struct blk_mq_ctx *ctx; 3899 struct blk_mq_tag_set *set = q->tag_set; 3900 3901 queue_for_each_hw_ctx(q, hctx, i) { 3902 cpumask_clear(hctx->cpumask); 3903 hctx->nr_ctx = 0; 3904 hctx->dispatch_from = NULL; 3905 } 3906 3907 /* 3908 * Map software to hardware queues. 3909 * 3910 * If the cpu isn't present, the cpu is mapped to first hctx. 3911 */ 3912 for_each_possible_cpu(i) { 3913 3914 ctx = per_cpu_ptr(q->queue_ctx, i); 3915 for (j = 0; j < set->nr_maps; j++) { 3916 if (!set->map[j].nr_queues) { 3917 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3918 HCTX_TYPE_DEFAULT, i); 3919 continue; 3920 } 3921 hctx_idx = set->map[j].mq_map[i]; 3922 /* unmapped hw queue can be remapped after CPU topo changed */ 3923 if (!set->tags[hctx_idx] && 3924 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3925 /* 3926 * If tags initialization fail for some hctx, 3927 * that hctx won't be brought online. In this 3928 * case, remap the current ctx to hctx[0] which 3929 * is guaranteed to always have tags allocated 3930 */ 3931 set->map[j].mq_map[i] = 0; 3932 } 3933 3934 hctx = blk_mq_map_queue_type(q, j, i); 3935 ctx->hctxs[j] = hctx; 3936 /* 3937 * If the CPU is already set in the mask, then we've 3938 * mapped this one already. This can happen if 3939 * devices share queues across queue maps. 3940 */ 3941 if (cpumask_test_cpu(i, hctx->cpumask)) 3942 continue; 3943 3944 cpumask_set_cpu(i, hctx->cpumask); 3945 hctx->type = j; 3946 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3947 hctx->ctxs[hctx->nr_ctx++] = ctx; 3948 3949 /* 3950 * If the nr_ctx type overflows, we have exceeded the 3951 * amount of sw queues we can support. 3952 */ 3953 BUG_ON(!hctx->nr_ctx); 3954 } 3955 3956 for (; j < HCTX_MAX_TYPES; j++) 3957 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3958 HCTX_TYPE_DEFAULT, i); 3959 } 3960 3961 queue_for_each_hw_ctx(q, hctx, i) { 3962 int cpu; 3963 3964 /* 3965 * If no software queues are mapped to this hardware queue, 3966 * disable it and free the request entries. 3967 */ 3968 if (!hctx->nr_ctx) { 3969 /* Never unmap queue 0. We need it as a 3970 * fallback in case of a new remap fails 3971 * allocation 3972 */ 3973 if (i) 3974 __blk_mq_free_map_and_rqs(set, i); 3975 3976 hctx->tags = NULL; 3977 continue; 3978 } 3979 3980 hctx->tags = set->tags[i]; 3981 WARN_ON(!hctx->tags); 3982 3983 /* 3984 * Set the map size to the number of mapped software queues. 3985 * This is more accurate and more efficient than looping 3986 * over all possibly mapped software queues. 3987 */ 3988 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3989 3990 /* 3991 * Rule out isolated CPUs from hctx->cpumask to avoid 3992 * running block kworker on isolated CPUs 3993 */ 3994 for_each_cpu(cpu, hctx->cpumask) { 3995 if (cpu_is_isolated(cpu)) 3996 cpumask_clear_cpu(cpu, hctx->cpumask); 3997 } 3998 3999 /* 4000 * Initialize batch roundrobin counts 4001 */ 4002 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4003 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4004 } 4005 } 4006 4007 /* 4008 * Caller needs to ensure that we're either frozen/quiesced, or that 4009 * the queue isn't live yet. 4010 */ 4011 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4012 { 4013 struct blk_mq_hw_ctx *hctx; 4014 unsigned long i; 4015 4016 queue_for_each_hw_ctx(q, hctx, i) { 4017 if (shared) { 4018 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4019 } else { 4020 blk_mq_tag_idle(hctx); 4021 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4022 } 4023 } 4024 } 4025 4026 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4027 bool shared) 4028 { 4029 struct request_queue *q; 4030 4031 lockdep_assert_held(&set->tag_list_lock); 4032 4033 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4034 blk_mq_freeze_queue(q); 4035 queue_set_hctx_shared(q, shared); 4036 blk_mq_unfreeze_queue(q); 4037 } 4038 } 4039 4040 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4041 { 4042 struct blk_mq_tag_set *set = q->tag_set; 4043 4044 mutex_lock(&set->tag_list_lock); 4045 list_del(&q->tag_set_list); 4046 if (list_is_singular(&set->tag_list)) { 4047 /* just transitioned to unshared */ 4048 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4049 /* update existing queue */ 4050 blk_mq_update_tag_set_shared(set, false); 4051 } 4052 mutex_unlock(&set->tag_list_lock); 4053 INIT_LIST_HEAD(&q->tag_set_list); 4054 } 4055 4056 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4057 struct request_queue *q) 4058 { 4059 mutex_lock(&set->tag_list_lock); 4060 4061 /* 4062 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4063 */ 4064 if (!list_empty(&set->tag_list) && 4065 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4066 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4067 /* update existing queue */ 4068 blk_mq_update_tag_set_shared(set, true); 4069 } 4070 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4071 queue_set_hctx_shared(q, true); 4072 list_add_tail(&q->tag_set_list, &set->tag_list); 4073 4074 mutex_unlock(&set->tag_list_lock); 4075 } 4076 4077 /* All allocations will be freed in release handler of q->mq_kobj */ 4078 static int blk_mq_alloc_ctxs(struct request_queue *q) 4079 { 4080 struct blk_mq_ctxs *ctxs; 4081 int cpu; 4082 4083 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4084 if (!ctxs) 4085 return -ENOMEM; 4086 4087 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4088 if (!ctxs->queue_ctx) 4089 goto fail; 4090 4091 for_each_possible_cpu(cpu) { 4092 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4093 ctx->ctxs = ctxs; 4094 } 4095 4096 q->mq_kobj = &ctxs->kobj; 4097 q->queue_ctx = ctxs->queue_ctx; 4098 4099 return 0; 4100 fail: 4101 kfree(ctxs); 4102 return -ENOMEM; 4103 } 4104 4105 /* 4106 * It is the actual release handler for mq, but we do it from 4107 * request queue's release handler for avoiding use-after-free 4108 * and headache because q->mq_kobj shouldn't have been introduced, 4109 * but we can't group ctx/kctx kobj without it. 4110 */ 4111 void blk_mq_release(struct request_queue *q) 4112 { 4113 struct blk_mq_hw_ctx *hctx, *next; 4114 unsigned long i; 4115 4116 queue_for_each_hw_ctx(q, hctx, i) 4117 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4118 4119 /* all hctx are in .unused_hctx_list now */ 4120 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4121 list_del_init(&hctx->hctx_list); 4122 kobject_put(&hctx->kobj); 4123 } 4124 4125 xa_destroy(&q->hctx_table); 4126 4127 /* 4128 * release .mq_kobj and sw queue's kobject now because 4129 * both share lifetime with request queue. 4130 */ 4131 blk_mq_sysfs_deinit(q); 4132 } 4133 4134 static bool blk_mq_can_poll(struct blk_mq_tag_set *set) 4135 { 4136 return set->nr_maps > HCTX_TYPE_POLL && 4137 set->map[HCTX_TYPE_POLL].nr_queues; 4138 } 4139 4140 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4141 struct queue_limits *lim, void *queuedata) 4142 { 4143 struct queue_limits default_lim = { }; 4144 struct request_queue *q; 4145 int ret; 4146 4147 if (!lim) 4148 lim = &default_lim; 4149 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4150 if (blk_mq_can_poll(set)) 4151 lim->features |= BLK_FEAT_POLL; 4152 4153 q = blk_alloc_queue(lim, set->numa_node); 4154 if (IS_ERR(q)) 4155 return q; 4156 q->queuedata = queuedata; 4157 ret = blk_mq_init_allocated_queue(set, q); 4158 if (ret) { 4159 blk_put_queue(q); 4160 return ERR_PTR(ret); 4161 } 4162 return q; 4163 } 4164 EXPORT_SYMBOL(blk_mq_alloc_queue); 4165 4166 /** 4167 * blk_mq_destroy_queue - shutdown a request queue 4168 * @q: request queue to shutdown 4169 * 4170 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4171 * requests will be failed with -ENODEV. The caller is responsible for dropping 4172 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4173 * 4174 * Context: can sleep 4175 */ 4176 void blk_mq_destroy_queue(struct request_queue *q) 4177 { 4178 WARN_ON_ONCE(!queue_is_mq(q)); 4179 WARN_ON_ONCE(blk_queue_registered(q)); 4180 4181 might_sleep(); 4182 4183 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4184 blk_queue_start_drain(q); 4185 blk_mq_freeze_queue_wait(q); 4186 4187 blk_sync_queue(q); 4188 blk_mq_cancel_work_sync(q); 4189 blk_mq_exit_queue(q); 4190 } 4191 EXPORT_SYMBOL(blk_mq_destroy_queue); 4192 4193 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4194 struct queue_limits *lim, void *queuedata, 4195 struct lock_class_key *lkclass) 4196 { 4197 struct request_queue *q; 4198 struct gendisk *disk; 4199 4200 q = blk_mq_alloc_queue(set, lim, queuedata); 4201 if (IS_ERR(q)) 4202 return ERR_CAST(q); 4203 4204 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4205 if (!disk) { 4206 blk_mq_destroy_queue(q); 4207 blk_put_queue(q); 4208 return ERR_PTR(-ENOMEM); 4209 } 4210 set_bit(GD_OWNS_QUEUE, &disk->state); 4211 return disk; 4212 } 4213 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4214 4215 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4216 struct lock_class_key *lkclass) 4217 { 4218 struct gendisk *disk; 4219 4220 if (!blk_get_queue(q)) 4221 return NULL; 4222 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4223 if (!disk) 4224 blk_put_queue(q); 4225 return disk; 4226 } 4227 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4228 4229 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4230 struct blk_mq_tag_set *set, struct request_queue *q, 4231 int hctx_idx, int node) 4232 { 4233 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4234 4235 /* reuse dead hctx first */ 4236 spin_lock(&q->unused_hctx_lock); 4237 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4238 if (tmp->numa_node == node) { 4239 hctx = tmp; 4240 break; 4241 } 4242 } 4243 if (hctx) 4244 list_del_init(&hctx->hctx_list); 4245 spin_unlock(&q->unused_hctx_lock); 4246 4247 if (!hctx) 4248 hctx = blk_mq_alloc_hctx(q, set, node); 4249 if (!hctx) 4250 goto fail; 4251 4252 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4253 goto free_hctx; 4254 4255 return hctx; 4256 4257 free_hctx: 4258 kobject_put(&hctx->kobj); 4259 fail: 4260 return NULL; 4261 } 4262 4263 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4264 struct request_queue *q) 4265 { 4266 struct blk_mq_hw_ctx *hctx; 4267 unsigned long i, j; 4268 4269 /* protect against switching io scheduler */ 4270 mutex_lock(&q->sysfs_lock); 4271 for (i = 0; i < set->nr_hw_queues; i++) { 4272 int old_node; 4273 int node = blk_mq_get_hctx_node(set, i); 4274 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4275 4276 if (old_hctx) { 4277 old_node = old_hctx->numa_node; 4278 blk_mq_exit_hctx(q, set, old_hctx, i); 4279 } 4280 4281 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4282 if (!old_hctx) 4283 break; 4284 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4285 node, old_node); 4286 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4287 WARN_ON_ONCE(!hctx); 4288 } 4289 } 4290 /* 4291 * Increasing nr_hw_queues fails. Free the newly allocated 4292 * hctxs and keep the previous q->nr_hw_queues. 4293 */ 4294 if (i != set->nr_hw_queues) { 4295 j = q->nr_hw_queues; 4296 } else { 4297 j = i; 4298 q->nr_hw_queues = set->nr_hw_queues; 4299 } 4300 4301 xa_for_each_start(&q->hctx_table, j, hctx, j) 4302 blk_mq_exit_hctx(q, set, hctx, j); 4303 mutex_unlock(&q->sysfs_lock); 4304 } 4305 4306 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4307 struct request_queue *q) 4308 { 4309 /* mark the queue as mq asap */ 4310 q->mq_ops = set->ops; 4311 4312 if (blk_mq_alloc_ctxs(q)) 4313 goto err_exit; 4314 4315 /* init q->mq_kobj and sw queues' kobjects */ 4316 blk_mq_sysfs_init(q); 4317 4318 INIT_LIST_HEAD(&q->unused_hctx_list); 4319 spin_lock_init(&q->unused_hctx_lock); 4320 4321 xa_init(&q->hctx_table); 4322 4323 blk_mq_realloc_hw_ctxs(set, q); 4324 if (!q->nr_hw_queues) 4325 goto err_hctxs; 4326 4327 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4328 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4329 4330 q->tag_set = set; 4331 4332 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4333 4334 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4335 INIT_LIST_HEAD(&q->flush_list); 4336 INIT_LIST_HEAD(&q->requeue_list); 4337 spin_lock_init(&q->requeue_lock); 4338 4339 q->nr_requests = set->queue_depth; 4340 4341 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4342 blk_mq_add_queue_tag_set(set, q); 4343 blk_mq_map_swqueue(q); 4344 return 0; 4345 4346 err_hctxs: 4347 blk_mq_release(q); 4348 err_exit: 4349 q->mq_ops = NULL; 4350 return -ENOMEM; 4351 } 4352 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4353 4354 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4355 void blk_mq_exit_queue(struct request_queue *q) 4356 { 4357 struct blk_mq_tag_set *set = q->tag_set; 4358 4359 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4360 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4361 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4362 blk_mq_del_queue_tag_set(q); 4363 } 4364 4365 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4366 { 4367 int i; 4368 4369 if (blk_mq_is_shared_tags(set->flags)) { 4370 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4371 BLK_MQ_NO_HCTX_IDX, 4372 set->queue_depth); 4373 if (!set->shared_tags) 4374 return -ENOMEM; 4375 } 4376 4377 for (i = 0; i < set->nr_hw_queues; i++) { 4378 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4379 goto out_unwind; 4380 cond_resched(); 4381 } 4382 4383 return 0; 4384 4385 out_unwind: 4386 while (--i >= 0) 4387 __blk_mq_free_map_and_rqs(set, i); 4388 4389 if (blk_mq_is_shared_tags(set->flags)) { 4390 blk_mq_free_map_and_rqs(set, set->shared_tags, 4391 BLK_MQ_NO_HCTX_IDX); 4392 } 4393 4394 return -ENOMEM; 4395 } 4396 4397 /* 4398 * Allocate the request maps associated with this tag_set. Note that this 4399 * may reduce the depth asked for, if memory is tight. set->queue_depth 4400 * will be updated to reflect the allocated depth. 4401 */ 4402 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4403 { 4404 unsigned int depth; 4405 int err; 4406 4407 depth = set->queue_depth; 4408 do { 4409 err = __blk_mq_alloc_rq_maps(set); 4410 if (!err) 4411 break; 4412 4413 set->queue_depth >>= 1; 4414 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4415 err = -ENOMEM; 4416 break; 4417 } 4418 } while (set->queue_depth); 4419 4420 if (!set->queue_depth || err) { 4421 pr_err("blk-mq: failed to allocate request map\n"); 4422 return -ENOMEM; 4423 } 4424 4425 if (depth != set->queue_depth) 4426 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4427 depth, set->queue_depth); 4428 4429 return 0; 4430 } 4431 4432 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4433 { 4434 /* 4435 * blk_mq_map_queues() and multiple .map_queues() implementations 4436 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4437 * number of hardware queues. 4438 */ 4439 if (set->nr_maps == 1) 4440 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4441 4442 if (set->ops->map_queues) { 4443 int i; 4444 4445 /* 4446 * transport .map_queues is usually done in the following 4447 * way: 4448 * 4449 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4450 * mask = get_cpu_mask(queue) 4451 * for_each_cpu(cpu, mask) 4452 * set->map[x].mq_map[cpu] = queue; 4453 * } 4454 * 4455 * When we need to remap, the table has to be cleared for 4456 * killing stale mapping since one CPU may not be mapped 4457 * to any hw queue. 4458 */ 4459 for (i = 0; i < set->nr_maps; i++) 4460 blk_mq_clear_mq_map(&set->map[i]); 4461 4462 set->ops->map_queues(set); 4463 } else { 4464 BUG_ON(set->nr_maps > 1); 4465 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4466 } 4467 } 4468 4469 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4470 int new_nr_hw_queues) 4471 { 4472 struct blk_mq_tags **new_tags; 4473 int i; 4474 4475 if (set->nr_hw_queues >= new_nr_hw_queues) 4476 goto done; 4477 4478 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4479 GFP_KERNEL, set->numa_node); 4480 if (!new_tags) 4481 return -ENOMEM; 4482 4483 if (set->tags) 4484 memcpy(new_tags, set->tags, set->nr_hw_queues * 4485 sizeof(*set->tags)); 4486 kfree(set->tags); 4487 set->tags = new_tags; 4488 4489 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4490 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4491 while (--i >= set->nr_hw_queues) 4492 __blk_mq_free_map_and_rqs(set, i); 4493 return -ENOMEM; 4494 } 4495 cond_resched(); 4496 } 4497 4498 done: 4499 set->nr_hw_queues = new_nr_hw_queues; 4500 return 0; 4501 } 4502 4503 /* 4504 * Alloc a tag set to be associated with one or more request queues. 4505 * May fail with EINVAL for various error conditions. May adjust the 4506 * requested depth down, if it's too large. In that case, the set 4507 * value will be stored in set->queue_depth. 4508 */ 4509 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4510 { 4511 int i, ret; 4512 4513 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4514 4515 if (!set->nr_hw_queues) 4516 return -EINVAL; 4517 if (!set->queue_depth) 4518 return -EINVAL; 4519 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4520 return -EINVAL; 4521 4522 if (!set->ops->queue_rq) 4523 return -EINVAL; 4524 4525 if (!set->ops->get_budget ^ !set->ops->put_budget) 4526 return -EINVAL; 4527 4528 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4529 pr_info("blk-mq: reduced tag depth to %u\n", 4530 BLK_MQ_MAX_DEPTH); 4531 set->queue_depth = BLK_MQ_MAX_DEPTH; 4532 } 4533 4534 if (!set->nr_maps) 4535 set->nr_maps = 1; 4536 else if (set->nr_maps > HCTX_MAX_TYPES) 4537 return -EINVAL; 4538 4539 /* 4540 * If a crashdump is active, then we are potentially in a very 4541 * memory constrained environment. Limit us to 64 tags to prevent 4542 * using too much memory. 4543 */ 4544 if (is_kdump_kernel()) 4545 set->queue_depth = min(64U, set->queue_depth); 4546 4547 /* 4548 * There is no use for more h/w queues than cpus if we just have 4549 * a single map 4550 */ 4551 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4552 set->nr_hw_queues = nr_cpu_ids; 4553 4554 if (set->flags & BLK_MQ_F_BLOCKING) { 4555 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4556 if (!set->srcu) 4557 return -ENOMEM; 4558 ret = init_srcu_struct(set->srcu); 4559 if (ret) 4560 goto out_free_srcu; 4561 } 4562 4563 ret = -ENOMEM; 4564 set->tags = kcalloc_node(set->nr_hw_queues, 4565 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4566 set->numa_node); 4567 if (!set->tags) 4568 goto out_cleanup_srcu; 4569 4570 for (i = 0; i < set->nr_maps; i++) { 4571 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4572 sizeof(set->map[i].mq_map[0]), 4573 GFP_KERNEL, set->numa_node); 4574 if (!set->map[i].mq_map) 4575 goto out_free_mq_map; 4576 set->map[i].nr_queues = set->nr_hw_queues; 4577 } 4578 4579 blk_mq_update_queue_map(set); 4580 4581 ret = blk_mq_alloc_set_map_and_rqs(set); 4582 if (ret) 4583 goto out_free_mq_map; 4584 4585 mutex_init(&set->tag_list_lock); 4586 INIT_LIST_HEAD(&set->tag_list); 4587 4588 return 0; 4589 4590 out_free_mq_map: 4591 for (i = 0; i < set->nr_maps; i++) { 4592 kfree(set->map[i].mq_map); 4593 set->map[i].mq_map = NULL; 4594 } 4595 kfree(set->tags); 4596 set->tags = NULL; 4597 out_cleanup_srcu: 4598 if (set->flags & BLK_MQ_F_BLOCKING) 4599 cleanup_srcu_struct(set->srcu); 4600 out_free_srcu: 4601 if (set->flags & BLK_MQ_F_BLOCKING) 4602 kfree(set->srcu); 4603 return ret; 4604 } 4605 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4606 4607 /* allocate and initialize a tagset for a simple single-queue device */ 4608 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4609 const struct blk_mq_ops *ops, unsigned int queue_depth, 4610 unsigned int set_flags) 4611 { 4612 memset(set, 0, sizeof(*set)); 4613 set->ops = ops; 4614 set->nr_hw_queues = 1; 4615 set->nr_maps = 1; 4616 set->queue_depth = queue_depth; 4617 set->numa_node = NUMA_NO_NODE; 4618 set->flags = set_flags; 4619 return blk_mq_alloc_tag_set(set); 4620 } 4621 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4622 4623 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4624 { 4625 int i, j; 4626 4627 for (i = 0; i < set->nr_hw_queues; i++) 4628 __blk_mq_free_map_and_rqs(set, i); 4629 4630 if (blk_mq_is_shared_tags(set->flags)) { 4631 blk_mq_free_map_and_rqs(set, set->shared_tags, 4632 BLK_MQ_NO_HCTX_IDX); 4633 } 4634 4635 for (j = 0; j < set->nr_maps; j++) { 4636 kfree(set->map[j].mq_map); 4637 set->map[j].mq_map = NULL; 4638 } 4639 4640 kfree(set->tags); 4641 set->tags = NULL; 4642 if (set->flags & BLK_MQ_F_BLOCKING) { 4643 cleanup_srcu_struct(set->srcu); 4644 kfree(set->srcu); 4645 } 4646 } 4647 EXPORT_SYMBOL(blk_mq_free_tag_set); 4648 4649 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4650 { 4651 struct blk_mq_tag_set *set = q->tag_set; 4652 struct blk_mq_hw_ctx *hctx; 4653 int ret; 4654 unsigned long i; 4655 4656 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4657 return -EINVAL; 4658 4659 if (!set) 4660 return -EINVAL; 4661 4662 if (q->nr_requests == nr) 4663 return 0; 4664 4665 blk_mq_quiesce_queue(q); 4666 4667 ret = 0; 4668 queue_for_each_hw_ctx(q, hctx, i) { 4669 if (!hctx->tags) 4670 continue; 4671 /* 4672 * If we're using an MQ scheduler, just update the scheduler 4673 * queue depth. This is similar to what the old code would do. 4674 */ 4675 if (hctx->sched_tags) { 4676 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4677 nr, true); 4678 } else { 4679 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4680 false); 4681 } 4682 if (ret) 4683 break; 4684 if (q->elevator && q->elevator->type->ops.depth_updated) 4685 q->elevator->type->ops.depth_updated(hctx); 4686 } 4687 if (!ret) { 4688 q->nr_requests = nr; 4689 if (blk_mq_is_shared_tags(set->flags)) { 4690 if (q->elevator) 4691 blk_mq_tag_update_sched_shared_tags(q); 4692 else 4693 blk_mq_tag_resize_shared_tags(set, nr); 4694 } 4695 } 4696 4697 blk_mq_unquiesce_queue(q); 4698 4699 return ret; 4700 } 4701 4702 /* 4703 * request_queue and elevator_type pair. 4704 * It is just used by __blk_mq_update_nr_hw_queues to cache 4705 * the elevator_type associated with a request_queue. 4706 */ 4707 struct blk_mq_qe_pair { 4708 struct list_head node; 4709 struct request_queue *q; 4710 struct elevator_type *type; 4711 }; 4712 4713 /* 4714 * Cache the elevator_type in qe pair list and switch the 4715 * io scheduler to 'none' 4716 */ 4717 static bool blk_mq_elv_switch_none(struct list_head *head, 4718 struct request_queue *q) 4719 { 4720 struct blk_mq_qe_pair *qe; 4721 4722 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4723 if (!qe) 4724 return false; 4725 4726 /* q->elevator needs protection from ->sysfs_lock */ 4727 mutex_lock(&q->sysfs_lock); 4728 4729 /* the check has to be done with holding sysfs_lock */ 4730 if (!q->elevator) { 4731 kfree(qe); 4732 goto unlock; 4733 } 4734 4735 INIT_LIST_HEAD(&qe->node); 4736 qe->q = q; 4737 qe->type = q->elevator->type; 4738 /* keep a reference to the elevator module as we'll switch back */ 4739 __elevator_get(qe->type); 4740 list_add(&qe->node, head); 4741 elevator_disable(q); 4742 unlock: 4743 mutex_unlock(&q->sysfs_lock); 4744 4745 return true; 4746 } 4747 4748 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4749 struct request_queue *q) 4750 { 4751 struct blk_mq_qe_pair *qe; 4752 4753 list_for_each_entry(qe, head, node) 4754 if (qe->q == q) 4755 return qe; 4756 4757 return NULL; 4758 } 4759 4760 static void blk_mq_elv_switch_back(struct list_head *head, 4761 struct request_queue *q) 4762 { 4763 struct blk_mq_qe_pair *qe; 4764 struct elevator_type *t; 4765 4766 qe = blk_lookup_qe_pair(head, q); 4767 if (!qe) 4768 return; 4769 t = qe->type; 4770 list_del(&qe->node); 4771 kfree(qe); 4772 4773 mutex_lock(&q->sysfs_lock); 4774 elevator_switch(q, t); 4775 /* drop the reference acquired in blk_mq_elv_switch_none */ 4776 elevator_put(t); 4777 mutex_unlock(&q->sysfs_lock); 4778 } 4779 4780 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4781 int nr_hw_queues) 4782 { 4783 struct request_queue *q; 4784 LIST_HEAD(head); 4785 int prev_nr_hw_queues = set->nr_hw_queues; 4786 int i; 4787 4788 lockdep_assert_held(&set->tag_list_lock); 4789 4790 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4791 nr_hw_queues = nr_cpu_ids; 4792 if (nr_hw_queues < 1) 4793 return; 4794 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4795 return; 4796 4797 list_for_each_entry(q, &set->tag_list, tag_set_list) 4798 blk_mq_freeze_queue(q); 4799 /* 4800 * Switch IO scheduler to 'none', cleaning up the data associated 4801 * with the previous scheduler. We will switch back once we are done 4802 * updating the new sw to hw queue mappings. 4803 */ 4804 list_for_each_entry(q, &set->tag_list, tag_set_list) 4805 if (!blk_mq_elv_switch_none(&head, q)) 4806 goto switch_back; 4807 4808 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4809 blk_mq_debugfs_unregister_hctxs(q); 4810 blk_mq_sysfs_unregister_hctxs(q); 4811 } 4812 4813 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4814 goto reregister; 4815 4816 fallback: 4817 blk_mq_update_queue_map(set); 4818 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4819 struct queue_limits lim; 4820 4821 blk_mq_realloc_hw_ctxs(set, q); 4822 4823 if (q->nr_hw_queues != set->nr_hw_queues) { 4824 int i = prev_nr_hw_queues; 4825 4826 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4827 nr_hw_queues, prev_nr_hw_queues); 4828 for (; i < set->nr_hw_queues; i++) 4829 __blk_mq_free_map_and_rqs(set, i); 4830 4831 set->nr_hw_queues = prev_nr_hw_queues; 4832 goto fallback; 4833 } 4834 lim = queue_limits_start_update(q); 4835 if (blk_mq_can_poll(set)) 4836 lim.features |= BLK_FEAT_POLL; 4837 else 4838 lim.features &= ~BLK_FEAT_POLL; 4839 if (queue_limits_commit_update(q, &lim) < 0) 4840 pr_warn("updating the poll flag failed\n"); 4841 blk_mq_map_swqueue(q); 4842 } 4843 4844 reregister: 4845 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4846 blk_mq_sysfs_register_hctxs(q); 4847 blk_mq_debugfs_register_hctxs(q); 4848 } 4849 4850 switch_back: 4851 list_for_each_entry(q, &set->tag_list, tag_set_list) 4852 blk_mq_elv_switch_back(&head, q); 4853 4854 list_for_each_entry(q, &set->tag_list, tag_set_list) 4855 blk_mq_unfreeze_queue(q); 4856 4857 /* Free the excess tags when nr_hw_queues shrink. */ 4858 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4859 __blk_mq_free_map_and_rqs(set, i); 4860 } 4861 4862 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4863 { 4864 mutex_lock(&set->tag_list_lock); 4865 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4866 mutex_unlock(&set->tag_list_lock); 4867 } 4868 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4869 4870 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4871 struct io_comp_batch *iob, unsigned int flags) 4872 { 4873 long state = get_current_state(); 4874 int ret; 4875 4876 do { 4877 ret = q->mq_ops->poll(hctx, iob); 4878 if (ret > 0) { 4879 __set_current_state(TASK_RUNNING); 4880 return ret; 4881 } 4882 4883 if (signal_pending_state(state, current)) 4884 __set_current_state(TASK_RUNNING); 4885 if (task_is_running(current)) 4886 return 1; 4887 4888 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4889 break; 4890 cpu_relax(); 4891 } while (!need_resched()); 4892 4893 __set_current_state(TASK_RUNNING); 4894 return 0; 4895 } 4896 4897 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4898 struct io_comp_batch *iob, unsigned int flags) 4899 { 4900 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4901 4902 return blk_hctx_poll(q, hctx, iob, flags); 4903 } 4904 4905 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4906 unsigned int poll_flags) 4907 { 4908 struct request_queue *q = rq->q; 4909 int ret; 4910 4911 if (!blk_rq_is_poll(rq)) 4912 return 0; 4913 if (!percpu_ref_tryget(&q->q_usage_counter)) 4914 return 0; 4915 4916 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4917 blk_queue_exit(q); 4918 4919 return ret; 4920 } 4921 EXPORT_SYMBOL_GPL(blk_rq_poll); 4922 4923 unsigned int blk_mq_rq_cpu(struct request *rq) 4924 { 4925 return rq->mq_ctx->cpu; 4926 } 4927 EXPORT_SYMBOL(blk_mq_rq_cpu); 4928 4929 void blk_mq_cancel_work_sync(struct request_queue *q) 4930 { 4931 struct blk_mq_hw_ctx *hctx; 4932 unsigned long i; 4933 4934 cancel_delayed_work_sync(&q->requeue_work); 4935 4936 queue_for_each_hw_ctx(q, hctx, i) 4937 cancel_delayed_work_sync(&hctx->run_work); 4938 } 4939 4940 static int __init blk_mq_init(void) 4941 { 4942 int i; 4943 4944 for_each_possible_cpu(i) 4945 init_llist_head(&per_cpu(blk_cpu_done, i)); 4946 for_each_possible_cpu(i) 4947 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4948 __blk_mq_complete_request_remote, NULL); 4949 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4950 4951 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4952 "block/softirq:dead", NULL, 4953 blk_softirq_cpu_dead); 4954 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4955 blk_mq_hctx_notify_dead); 4956 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4957 blk_mq_hctx_notify_online, 4958 blk_mq_hctx_notify_offline); 4959 return 0; 4960 } 4961 subsys_initcall(blk_mq_init); 4962