1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 47 48 static void blk_mq_poll_stats_start(struct request_queue *q); 49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 50 51 static int blk_mq_poll_stats_bkt(const struct request *rq) 52 { 53 int ddir, sectors, bucket; 54 55 ddir = rq_data_dir(rq); 56 sectors = blk_rq_stats_sectors(rq); 57 58 bucket = ddir + 2 * ilog2(sectors); 59 60 if (bucket < 0) 61 return -1; 62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 64 65 return bucket; 66 } 67 68 #define BLK_QC_T_SHIFT 16 69 #define BLK_QC_T_INTERNAL (1U << 31) 70 71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 72 blk_qc_t qc) 73 { 74 return xa_load(&q->hctx_table, 75 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 76 } 77 78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 79 blk_qc_t qc) 80 { 81 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 82 83 if (qc & BLK_QC_T_INTERNAL) 84 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 85 return blk_mq_tag_to_rq(hctx->tags, tag); 86 } 87 88 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 89 { 90 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 91 (rq->tag != -1 ? 92 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 93 } 94 95 /* 96 * Check if any of the ctx, dispatch list or elevator 97 * have pending work in this hardware queue. 98 */ 99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 100 { 101 return !list_empty_careful(&hctx->dispatch) || 102 sbitmap_any_bit_set(&hctx->ctx_map) || 103 blk_mq_sched_has_work(hctx); 104 } 105 106 /* 107 * Mark this ctx as having pending work in this hardware queue 108 */ 109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 110 struct blk_mq_ctx *ctx) 111 { 112 const int bit = ctx->index_hw[hctx->type]; 113 114 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 115 sbitmap_set_bit(&hctx->ctx_map, bit); 116 } 117 118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 119 struct blk_mq_ctx *ctx) 120 { 121 const int bit = ctx->index_hw[hctx->type]; 122 123 sbitmap_clear_bit(&hctx->ctx_map, bit); 124 } 125 126 struct mq_inflight { 127 struct block_device *part; 128 unsigned int inflight[2]; 129 }; 130 131 static bool blk_mq_check_inflight(struct request *rq, void *priv, 132 bool reserved) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @q: request queue. 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started. 261 */ 262 void blk_mq_wait_quiesce_done(struct request_queue *q) 263 { 264 if (blk_queue_has_srcu(q)) 265 synchronize_srcu(q->srcu); 266 else 267 synchronize_rcu(); 268 } 269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 270 271 /** 272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 273 * @q: request queue. 274 * 275 * Note: this function does not prevent that the struct request end_io() 276 * callback function is invoked. Once this function is returned, we make 277 * sure no dispatch can happen until the queue is unquiesced via 278 * blk_mq_unquiesce_queue(). 279 */ 280 void blk_mq_quiesce_queue(struct request_queue *q) 281 { 282 blk_mq_quiesce_queue_nowait(q); 283 blk_mq_wait_quiesce_done(q); 284 } 285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 286 287 /* 288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 289 * @q: request queue. 290 * 291 * This function recovers queue into the state before quiescing 292 * which is done by blk_mq_quiesce_queue. 293 */ 294 void blk_mq_unquiesce_queue(struct request_queue *q) 295 { 296 unsigned long flags; 297 bool run_queue = false; 298 299 spin_lock_irqsave(&q->queue_lock, flags); 300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 301 ; 302 } else if (!--q->quiesce_depth) { 303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 304 run_queue = true; 305 } 306 spin_unlock_irqrestore(&q->queue_lock, flags); 307 308 /* dispatch requests which are inserted during quiescing */ 309 if (run_queue) 310 blk_mq_run_hw_queues(q, true); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 313 314 void blk_mq_wake_waiters(struct request_queue *q) 315 { 316 struct blk_mq_hw_ctx *hctx; 317 unsigned long i; 318 319 queue_for_each_hw_ctx(q, hctx, i) 320 if (blk_mq_hw_queue_mapped(hctx)) 321 blk_mq_tag_wakeup_all(hctx->tags, true); 322 } 323 324 void blk_rq_init(struct request_queue *q, struct request *rq) 325 { 326 memset(rq, 0, sizeof(*rq)); 327 328 INIT_LIST_HEAD(&rq->queuelist); 329 rq->q = q; 330 rq->__sector = (sector_t) -1; 331 INIT_HLIST_NODE(&rq->hash); 332 RB_CLEAR_NODE(&rq->rb_node); 333 rq->tag = BLK_MQ_NO_TAG; 334 rq->internal_tag = BLK_MQ_NO_TAG; 335 rq->start_time_ns = ktime_get_ns(); 336 rq->part = NULL; 337 blk_crypto_rq_set_defaults(rq); 338 } 339 EXPORT_SYMBOL(blk_rq_init); 340 341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 343 { 344 struct blk_mq_ctx *ctx = data->ctx; 345 struct blk_mq_hw_ctx *hctx = data->hctx; 346 struct request_queue *q = data->q; 347 struct request *rq = tags->static_rqs[tag]; 348 349 rq->q = q; 350 rq->mq_ctx = ctx; 351 rq->mq_hctx = hctx; 352 rq->cmd_flags = data->cmd_flags; 353 354 if (data->flags & BLK_MQ_REQ_PM) 355 data->rq_flags |= RQF_PM; 356 if (blk_queue_io_stat(q)) 357 data->rq_flags |= RQF_IO_STAT; 358 rq->rq_flags = data->rq_flags; 359 360 if (!(data->rq_flags & RQF_ELV)) { 361 rq->tag = tag; 362 rq->internal_tag = BLK_MQ_NO_TAG; 363 } else { 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = tag; 366 } 367 rq->timeout = 0; 368 369 if (blk_mq_need_time_stamp(rq)) 370 rq->start_time_ns = ktime_get_ns(); 371 else 372 rq->start_time_ns = 0; 373 rq->part = NULL; 374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 375 rq->alloc_time_ns = alloc_time_ns; 376 #endif 377 rq->io_start_time_ns = 0; 378 rq->stats_sectors = 0; 379 rq->nr_phys_segments = 0; 380 #if defined(CONFIG_BLK_DEV_INTEGRITY) 381 rq->nr_integrity_segments = 0; 382 #endif 383 rq->end_io = NULL; 384 rq->end_io_data = NULL; 385 386 blk_crypto_rq_set_defaults(rq); 387 INIT_LIST_HEAD(&rq->queuelist); 388 /* tag was already set */ 389 WRITE_ONCE(rq->deadline, 0); 390 req_ref_set(rq, 1); 391 392 if (rq->rq_flags & RQF_ELV) { 393 struct elevator_queue *e = data->q->elevator; 394 395 INIT_HLIST_NODE(&rq->hash); 396 RB_CLEAR_NODE(&rq->rb_node); 397 398 if (!op_is_flush(data->cmd_flags) && 399 e->type->ops.prepare_request) { 400 e->type->ops.prepare_request(rq); 401 rq->rq_flags |= RQF_ELVPRIV; 402 } 403 } 404 405 return rq; 406 } 407 408 static inline struct request * 409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 410 u64 alloc_time_ns) 411 { 412 unsigned int tag, tag_offset; 413 struct blk_mq_tags *tags; 414 struct request *rq; 415 unsigned long tag_mask; 416 int i, nr = 0; 417 418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 419 if (unlikely(!tag_mask)) 420 return NULL; 421 422 tags = blk_mq_tags_from_data(data); 423 for (i = 0; tag_mask; i++) { 424 if (!(tag_mask & (1UL << i))) 425 continue; 426 tag = tag_offset + i; 427 prefetch(tags->static_rqs[tag]); 428 tag_mask &= ~(1UL << i); 429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 430 rq_list_add(data->cached_rq, rq); 431 nr++; 432 } 433 /* caller already holds a reference, add for remainder */ 434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 435 data->nr_tags -= nr; 436 437 return rq_list_pop(data->cached_rq); 438 } 439 440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 441 { 442 struct request_queue *q = data->q; 443 u64 alloc_time_ns = 0; 444 struct request *rq; 445 unsigned int tag; 446 447 /* alloc_time includes depth and tag waits */ 448 if (blk_queue_rq_alloc_time(q)) 449 alloc_time_ns = ktime_get_ns(); 450 451 if (data->cmd_flags & REQ_NOWAIT) 452 data->flags |= BLK_MQ_REQ_NOWAIT; 453 454 if (q->elevator) { 455 struct elevator_queue *e = q->elevator; 456 457 data->rq_flags |= RQF_ELV; 458 459 /* 460 * Flush/passthrough requests are special and go directly to the 461 * dispatch list. Don't include reserved tags in the 462 * limiting, as it isn't useful. 463 */ 464 if (!op_is_flush(data->cmd_flags) && 465 !blk_op_is_passthrough(data->cmd_flags) && 466 e->type->ops.limit_depth && 467 !(data->flags & BLK_MQ_REQ_RESERVED)) 468 e->type->ops.limit_depth(data->cmd_flags, data); 469 } 470 471 retry: 472 data->ctx = blk_mq_get_ctx(q); 473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 474 if (!(data->rq_flags & RQF_ELV)) 475 blk_mq_tag_busy(data->hctx); 476 477 /* 478 * Try batched alloc if we want more than 1 tag. 479 */ 480 if (data->nr_tags > 1) { 481 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 482 if (rq) 483 return rq; 484 data->nr_tags = 1; 485 } 486 487 /* 488 * Waiting allocations only fail because of an inactive hctx. In that 489 * case just retry the hctx assignment and tag allocation as CPU hotplug 490 * should have migrated us to an online CPU by now. 491 */ 492 tag = blk_mq_get_tag(data); 493 if (tag == BLK_MQ_NO_TAG) { 494 if (data->flags & BLK_MQ_REQ_NOWAIT) 495 return NULL; 496 /* 497 * Give up the CPU and sleep for a random short time to 498 * ensure that thread using a realtime scheduling class 499 * are migrated off the CPU, and thus off the hctx that 500 * is going away. 501 */ 502 msleep(3); 503 goto retry; 504 } 505 506 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 507 alloc_time_ns); 508 } 509 510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 511 blk_mq_req_flags_t flags) 512 { 513 struct blk_mq_alloc_data data = { 514 .q = q, 515 .flags = flags, 516 .cmd_flags = op, 517 .nr_tags = 1, 518 }; 519 struct request *rq; 520 int ret; 521 522 ret = blk_queue_enter(q, flags); 523 if (ret) 524 return ERR_PTR(ret); 525 526 rq = __blk_mq_alloc_requests(&data); 527 if (!rq) 528 goto out_queue_exit; 529 rq->__data_len = 0; 530 rq->__sector = (sector_t) -1; 531 rq->bio = rq->biotail = NULL; 532 return rq; 533 out_queue_exit: 534 blk_queue_exit(q); 535 return ERR_PTR(-EWOULDBLOCK); 536 } 537 EXPORT_SYMBOL(blk_mq_alloc_request); 538 539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 540 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 541 { 542 struct blk_mq_alloc_data data = { 543 .q = q, 544 .flags = flags, 545 .cmd_flags = op, 546 .nr_tags = 1, 547 }; 548 u64 alloc_time_ns = 0; 549 unsigned int cpu; 550 unsigned int tag; 551 int ret; 552 553 /* alloc_time includes depth and tag waits */ 554 if (blk_queue_rq_alloc_time(q)) 555 alloc_time_ns = ktime_get_ns(); 556 557 /* 558 * If the tag allocator sleeps we could get an allocation for a 559 * different hardware context. No need to complicate the low level 560 * allocator for this for the rare use case of a command tied to 561 * a specific queue. 562 */ 563 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 564 return ERR_PTR(-EINVAL); 565 566 if (hctx_idx >= q->nr_hw_queues) 567 return ERR_PTR(-EIO); 568 569 ret = blk_queue_enter(q, flags); 570 if (ret) 571 return ERR_PTR(ret); 572 573 /* 574 * Check if the hardware context is actually mapped to anything. 575 * If not tell the caller that it should skip this queue. 576 */ 577 ret = -EXDEV; 578 data.hctx = xa_load(&q->hctx_table, hctx_idx); 579 if (!blk_mq_hw_queue_mapped(data.hctx)) 580 goto out_queue_exit; 581 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 582 if (cpu >= nr_cpu_ids) 583 goto out_queue_exit; 584 data.ctx = __blk_mq_get_ctx(q, cpu); 585 586 if (!q->elevator) 587 blk_mq_tag_busy(data.hctx); 588 else 589 data.rq_flags |= RQF_ELV; 590 591 ret = -EWOULDBLOCK; 592 tag = blk_mq_get_tag(&data); 593 if (tag == BLK_MQ_NO_TAG) 594 goto out_queue_exit; 595 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 596 alloc_time_ns); 597 598 out_queue_exit: 599 blk_queue_exit(q); 600 return ERR_PTR(ret); 601 } 602 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 603 604 static void __blk_mq_free_request(struct request *rq) 605 { 606 struct request_queue *q = rq->q; 607 struct blk_mq_ctx *ctx = rq->mq_ctx; 608 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 609 const int sched_tag = rq->internal_tag; 610 611 blk_crypto_free_request(rq); 612 blk_pm_mark_last_busy(rq); 613 rq->mq_hctx = NULL; 614 if (rq->tag != BLK_MQ_NO_TAG) 615 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 616 if (sched_tag != BLK_MQ_NO_TAG) 617 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 618 blk_mq_sched_restart(hctx); 619 blk_queue_exit(q); 620 } 621 622 void blk_mq_free_request(struct request *rq) 623 { 624 struct request_queue *q = rq->q; 625 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 626 627 if ((rq->rq_flags & RQF_ELVPRIV) && 628 q->elevator->type->ops.finish_request) 629 q->elevator->type->ops.finish_request(rq); 630 631 if (rq->rq_flags & RQF_MQ_INFLIGHT) 632 __blk_mq_dec_active_requests(hctx); 633 634 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 635 laptop_io_completion(q->disk->bdi); 636 637 rq_qos_done(q, rq); 638 639 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 640 if (req_ref_put_and_test(rq)) 641 __blk_mq_free_request(rq); 642 } 643 EXPORT_SYMBOL_GPL(blk_mq_free_request); 644 645 void blk_mq_free_plug_rqs(struct blk_plug *plug) 646 { 647 struct request *rq; 648 649 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 650 blk_mq_free_request(rq); 651 } 652 653 void blk_dump_rq_flags(struct request *rq, char *msg) 654 { 655 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 656 rq->q->disk ? rq->q->disk->disk_name : "?", 657 (unsigned long long) rq->cmd_flags); 658 659 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 660 (unsigned long long)blk_rq_pos(rq), 661 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 662 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 663 rq->bio, rq->biotail, blk_rq_bytes(rq)); 664 } 665 EXPORT_SYMBOL(blk_dump_rq_flags); 666 667 static void req_bio_endio(struct request *rq, struct bio *bio, 668 unsigned int nbytes, blk_status_t error) 669 { 670 if (unlikely(error)) { 671 bio->bi_status = error; 672 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 673 /* 674 * Partial zone append completions cannot be supported as the 675 * BIO fragments may end up not being written sequentially. 676 */ 677 if (bio->bi_iter.bi_size != nbytes) 678 bio->bi_status = BLK_STS_IOERR; 679 else 680 bio->bi_iter.bi_sector = rq->__sector; 681 } 682 683 bio_advance(bio, nbytes); 684 685 if (unlikely(rq->rq_flags & RQF_QUIET)) 686 bio_set_flag(bio, BIO_QUIET); 687 /* don't actually finish bio if it's part of flush sequence */ 688 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 689 bio_endio(bio); 690 } 691 692 static void blk_account_io_completion(struct request *req, unsigned int bytes) 693 { 694 if (req->part && blk_do_io_stat(req)) { 695 const int sgrp = op_stat_group(req_op(req)); 696 697 part_stat_lock(); 698 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 699 part_stat_unlock(); 700 } 701 } 702 703 static void blk_print_req_error(struct request *req, blk_status_t status) 704 { 705 printk_ratelimited(KERN_ERR 706 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 707 "phys_seg %u prio class %u\n", 708 blk_status_to_str(status), 709 req->q->disk ? req->q->disk->disk_name : "?", 710 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 711 req->cmd_flags & ~REQ_OP_MASK, 712 req->nr_phys_segments, 713 IOPRIO_PRIO_CLASS(req->ioprio)); 714 } 715 716 /* 717 * Fully end IO on a request. Does not support partial completions, or 718 * errors. 719 */ 720 static void blk_complete_request(struct request *req) 721 { 722 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 723 int total_bytes = blk_rq_bytes(req); 724 struct bio *bio = req->bio; 725 726 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 727 728 if (!bio) 729 return; 730 731 #ifdef CONFIG_BLK_DEV_INTEGRITY 732 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 733 req->q->integrity.profile->complete_fn(req, total_bytes); 734 #endif 735 736 blk_account_io_completion(req, total_bytes); 737 738 do { 739 struct bio *next = bio->bi_next; 740 741 /* Completion has already been traced */ 742 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 743 744 if (req_op(req) == REQ_OP_ZONE_APPEND) 745 bio->bi_iter.bi_sector = req->__sector; 746 747 if (!is_flush) 748 bio_endio(bio); 749 bio = next; 750 } while (bio); 751 752 /* 753 * Reset counters so that the request stacking driver 754 * can find how many bytes remain in the request 755 * later. 756 */ 757 req->bio = NULL; 758 req->__data_len = 0; 759 } 760 761 /** 762 * blk_update_request - Complete multiple bytes without completing the request 763 * @req: the request being processed 764 * @error: block status code 765 * @nr_bytes: number of bytes to complete for @req 766 * 767 * Description: 768 * Ends I/O on a number of bytes attached to @req, but doesn't complete 769 * the request structure even if @req doesn't have leftover. 770 * If @req has leftover, sets it up for the next range of segments. 771 * 772 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 773 * %false return from this function. 774 * 775 * Note: 776 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 777 * except in the consistency check at the end of this function. 778 * 779 * Return: 780 * %false - this request doesn't have any more data 781 * %true - this request has more data 782 **/ 783 bool blk_update_request(struct request *req, blk_status_t error, 784 unsigned int nr_bytes) 785 { 786 int total_bytes; 787 788 trace_block_rq_complete(req, error, nr_bytes); 789 790 if (!req->bio) 791 return false; 792 793 #ifdef CONFIG_BLK_DEV_INTEGRITY 794 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 795 error == BLK_STS_OK) 796 req->q->integrity.profile->complete_fn(req, nr_bytes); 797 #endif 798 799 if (unlikely(error && !blk_rq_is_passthrough(req) && 800 !(req->rq_flags & RQF_QUIET)) && 801 !test_bit(GD_DEAD, &req->q->disk->state)) { 802 blk_print_req_error(req, error); 803 trace_block_rq_error(req, error, nr_bytes); 804 } 805 806 blk_account_io_completion(req, nr_bytes); 807 808 total_bytes = 0; 809 while (req->bio) { 810 struct bio *bio = req->bio; 811 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 812 813 if (bio_bytes == bio->bi_iter.bi_size) 814 req->bio = bio->bi_next; 815 816 /* Completion has already been traced */ 817 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 818 req_bio_endio(req, bio, bio_bytes, error); 819 820 total_bytes += bio_bytes; 821 nr_bytes -= bio_bytes; 822 823 if (!nr_bytes) 824 break; 825 } 826 827 /* 828 * completely done 829 */ 830 if (!req->bio) { 831 /* 832 * Reset counters so that the request stacking driver 833 * can find how many bytes remain in the request 834 * later. 835 */ 836 req->__data_len = 0; 837 return false; 838 } 839 840 req->__data_len -= total_bytes; 841 842 /* update sector only for requests with clear definition of sector */ 843 if (!blk_rq_is_passthrough(req)) 844 req->__sector += total_bytes >> 9; 845 846 /* mixed attributes always follow the first bio */ 847 if (req->rq_flags & RQF_MIXED_MERGE) { 848 req->cmd_flags &= ~REQ_FAILFAST_MASK; 849 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 850 } 851 852 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 853 /* 854 * If total number of sectors is less than the first segment 855 * size, something has gone terribly wrong. 856 */ 857 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 858 blk_dump_rq_flags(req, "request botched"); 859 req->__data_len = blk_rq_cur_bytes(req); 860 } 861 862 /* recalculate the number of segments */ 863 req->nr_phys_segments = blk_recalc_rq_segments(req); 864 } 865 866 return true; 867 } 868 EXPORT_SYMBOL_GPL(blk_update_request); 869 870 static void __blk_account_io_done(struct request *req, u64 now) 871 { 872 const int sgrp = op_stat_group(req_op(req)); 873 874 part_stat_lock(); 875 update_io_ticks(req->part, jiffies, true); 876 part_stat_inc(req->part, ios[sgrp]); 877 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 878 part_stat_unlock(); 879 } 880 881 static inline void blk_account_io_done(struct request *req, u64 now) 882 { 883 /* 884 * Account IO completion. flush_rq isn't accounted as a 885 * normal IO on queueing nor completion. Accounting the 886 * containing request is enough. 887 */ 888 if (blk_do_io_stat(req) && req->part && 889 !(req->rq_flags & RQF_FLUSH_SEQ)) 890 __blk_account_io_done(req, now); 891 } 892 893 static void __blk_account_io_start(struct request *rq) 894 { 895 /* 896 * All non-passthrough requests are created from a bio with one 897 * exception: when a flush command that is part of a flush sequence 898 * generated by the state machine in blk-flush.c is cloned onto the 899 * lower device by dm-multipath we can get here without a bio. 900 */ 901 if (rq->bio) 902 rq->part = rq->bio->bi_bdev; 903 else 904 rq->part = rq->q->disk->part0; 905 906 part_stat_lock(); 907 update_io_ticks(rq->part, jiffies, false); 908 part_stat_unlock(); 909 } 910 911 static inline void blk_account_io_start(struct request *req) 912 { 913 if (blk_do_io_stat(req)) 914 __blk_account_io_start(req); 915 } 916 917 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 918 { 919 if (rq->rq_flags & RQF_STATS) { 920 blk_mq_poll_stats_start(rq->q); 921 blk_stat_add(rq, now); 922 } 923 924 blk_mq_sched_completed_request(rq, now); 925 blk_account_io_done(rq, now); 926 } 927 928 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 929 { 930 if (blk_mq_need_time_stamp(rq)) 931 __blk_mq_end_request_acct(rq, ktime_get_ns()); 932 933 if (rq->end_io) { 934 rq_qos_done(rq->q, rq); 935 rq->end_io(rq, error); 936 } else { 937 blk_mq_free_request(rq); 938 } 939 } 940 EXPORT_SYMBOL(__blk_mq_end_request); 941 942 void blk_mq_end_request(struct request *rq, blk_status_t error) 943 { 944 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 945 BUG(); 946 __blk_mq_end_request(rq, error); 947 } 948 EXPORT_SYMBOL(blk_mq_end_request); 949 950 #define TAG_COMP_BATCH 32 951 952 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 953 int *tag_array, int nr_tags) 954 { 955 struct request_queue *q = hctx->queue; 956 957 /* 958 * All requests should have been marked as RQF_MQ_INFLIGHT, so 959 * update hctx->nr_active in batch 960 */ 961 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 962 __blk_mq_sub_active_requests(hctx, nr_tags); 963 964 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 965 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 966 } 967 968 void blk_mq_end_request_batch(struct io_comp_batch *iob) 969 { 970 int tags[TAG_COMP_BATCH], nr_tags = 0; 971 struct blk_mq_hw_ctx *cur_hctx = NULL; 972 struct request *rq; 973 u64 now = 0; 974 975 if (iob->need_ts) 976 now = ktime_get_ns(); 977 978 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 979 prefetch(rq->bio); 980 prefetch(rq->rq_next); 981 982 blk_complete_request(rq); 983 if (iob->need_ts) 984 __blk_mq_end_request_acct(rq, now); 985 986 rq_qos_done(rq->q, rq); 987 988 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 989 if (!req_ref_put_and_test(rq)) 990 continue; 991 992 blk_crypto_free_request(rq); 993 blk_pm_mark_last_busy(rq); 994 995 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 996 if (cur_hctx) 997 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 998 nr_tags = 0; 999 cur_hctx = rq->mq_hctx; 1000 } 1001 tags[nr_tags++] = rq->tag; 1002 } 1003 1004 if (nr_tags) 1005 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1006 } 1007 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1008 1009 static void blk_complete_reqs(struct llist_head *list) 1010 { 1011 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1012 struct request *rq, *next; 1013 1014 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1015 rq->q->mq_ops->complete(rq); 1016 } 1017 1018 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1019 { 1020 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1021 } 1022 1023 static int blk_softirq_cpu_dead(unsigned int cpu) 1024 { 1025 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1026 return 0; 1027 } 1028 1029 static void __blk_mq_complete_request_remote(void *data) 1030 { 1031 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1032 } 1033 1034 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1035 { 1036 int cpu = raw_smp_processor_id(); 1037 1038 if (!IS_ENABLED(CONFIG_SMP) || 1039 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1040 return false; 1041 /* 1042 * With force threaded interrupts enabled, raising softirq from an SMP 1043 * function call will always result in waking the ksoftirqd thread. 1044 * This is probably worse than completing the request on a different 1045 * cache domain. 1046 */ 1047 if (force_irqthreads()) 1048 return false; 1049 1050 /* same CPU or cache domain? Complete locally */ 1051 if (cpu == rq->mq_ctx->cpu || 1052 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1053 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1054 return false; 1055 1056 /* don't try to IPI to an offline CPU */ 1057 return cpu_online(rq->mq_ctx->cpu); 1058 } 1059 1060 static void blk_mq_complete_send_ipi(struct request *rq) 1061 { 1062 struct llist_head *list; 1063 unsigned int cpu; 1064 1065 cpu = rq->mq_ctx->cpu; 1066 list = &per_cpu(blk_cpu_done, cpu); 1067 if (llist_add(&rq->ipi_list, list)) { 1068 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1069 smp_call_function_single_async(cpu, &rq->csd); 1070 } 1071 } 1072 1073 static void blk_mq_raise_softirq(struct request *rq) 1074 { 1075 struct llist_head *list; 1076 1077 preempt_disable(); 1078 list = this_cpu_ptr(&blk_cpu_done); 1079 if (llist_add(&rq->ipi_list, list)) 1080 raise_softirq(BLOCK_SOFTIRQ); 1081 preempt_enable(); 1082 } 1083 1084 bool blk_mq_complete_request_remote(struct request *rq) 1085 { 1086 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1087 1088 /* 1089 * For a polled request, always complete locally, it's pointless 1090 * to redirect the completion. 1091 */ 1092 if (rq->cmd_flags & REQ_POLLED) 1093 return false; 1094 1095 if (blk_mq_complete_need_ipi(rq)) { 1096 blk_mq_complete_send_ipi(rq); 1097 return true; 1098 } 1099 1100 if (rq->q->nr_hw_queues == 1) { 1101 blk_mq_raise_softirq(rq); 1102 return true; 1103 } 1104 return false; 1105 } 1106 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1107 1108 /** 1109 * blk_mq_complete_request - end I/O on a request 1110 * @rq: the request being processed 1111 * 1112 * Description: 1113 * Complete a request by scheduling the ->complete_rq operation. 1114 **/ 1115 void blk_mq_complete_request(struct request *rq) 1116 { 1117 if (!blk_mq_complete_request_remote(rq)) 1118 rq->q->mq_ops->complete(rq); 1119 } 1120 EXPORT_SYMBOL(blk_mq_complete_request); 1121 1122 /** 1123 * blk_mq_start_request - Start processing a request 1124 * @rq: Pointer to request to be started 1125 * 1126 * Function used by device drivers to notify the block layer that a request 1127 * is going to be processed now, so blk layer can do proper initializations 1128 * such as starting the timeout timer. 1129 */ 1130 void blk_mq_start_request(struct request *rq) 1131 { 1132 struct request_queue *q = rq->q; 1133 1134 trace_block_rq_issue(rq); 1135 1136 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1137 rq->io_start_time_ns = ktime_get_ns(); 1138 rq->stats_sectors = blk_rq_sectors(rq); 1139 rq->rq_flags |= RQF_STATS; 1140 rq_qos_issue(q, rq); 1141 } 1142 1143 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1144 1145 blk_add_timer(rq); 1146 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1147 1148 #ifdef CONFIG_BLK_DEV_INTEGRITY 1149 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1150 q->integrity.profile->prepare_fn(rq); 1151 #endif 1152 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1153 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1154 } 1155 EXPORT_SYMBOL(blk_mq_start_request); 1156 1157 /* 1158 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1159 * queues. This is important for md arrays to benefit from merging 1160 * requests. 1161 */ 1162 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1163 { 1164 if (plug->multiple_queues) 1165 return BLK_MAX_REQUEST_COUNT * 2; 1166 return BLK_MAX_REQUEST_COUNT; 1167 } 1168 1169 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1170 { 1171 struct request *last = rq_list_peek(&plug->mq_list); 1172 1173 if (!plug->rq_count) { 1174 trace_block_plug(rq->q); 1175 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1176 (!blk_queue_nomerges(rq->q) && 1177 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1178 blk_mq_flush_plug_list(plug, false); 1179 trace_block_plug(rq->q); 1180 } 1181 1182 if (!plug->multiple_queues && last && last->q != rq->q) 1183 plug->multiple_queues = true; 1184 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1185 plug->has_elevator = true; 1186 rq->rq_next = NULL; 1187 rq_list_add(&plug->mq_list, rq); 1188 plug->rq_count++; 1189 } 1190 1191 /** 1192 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1193 * @rq: request to insert 1194 * @at_head: insert request at head or tail of queue 1195 * 1196 * Description: 1197 * Insert a fully prepared request at the back of the I/O scheduler queue 1198 * for execution. Don't wait for completion. 1199 * 1200 * Note: 1201 * This function will invoke @done directly if the queue is dead. 1202 */ 1203 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1204 { 1205 WARN_ON(irqs_disabled()); 1206 WARN_ON(!blk_rq_is_passthrough(rq)); 1207 1208 blk_account_io_start(rq); 1209 if (current->plug) 1210 blk_add_rq_to_plug(current->plug, rq); 1211 else 1212 blk_mq_sched_insert_request(rq, at_head, true, false); 1213 } 1214 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1215 1216 struct blk_rq_wait { 1217 struct completion done; 1218 blk_status_t ret; 1219 }; 1220 1221 static void blk_end_sync_rq(struct request *rq, blk_status_t ret) 1222 { 1223 struct blk_rq_wait *wait = rq->end_io_data; 1224 1225 wait->ret = ret; 1226 complete(&wait->done); 1227 } 1228 1229 static bool blk_rq_is_poll(struct request *rq) 1230 { 1231 if (!rq->mq_hctx) 1232 return false; 1233 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1234 return false; 1235 if (WARN_ON_ONCE(!rq->bio)) 1236 return false; 1237 return true; 1238 } 1239 1240 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1241 { 1242 do { 1243 bio_poll(rq->bio, NULL, 0); 1244 cond_resched(); 1245 } while (!completion_done(wait)); 1246 } 1247 1248 /** 1249 * blk_execute_rq - insert a request into queue for execution 1250 * @rq: request to insert 1251 * @at_head: insert request at head or tail of queue 1252 * 1253 * Description: 1254 * Insert a fully prepared request at the back of the I/O scheduler queue 1255 * for execution and wait for completion. 1256 * Return: The blk_status_t result provided to blk_mq_end_request(). 1257 */ 1258 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1259 { 1260 struct blk_rq_wait wait = { 1261 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1262 }; 1263 1264 WARN_ON(irqs_disabled()); 1265 WARN_ON(!blk_rq_is_passthrough(rq)); 1266 1267 rq->end_io_data = &wait; 1268 rq->end_io = blk_end_sync_rq; 1269 1270 blk_account_io_start(rq); 1271 blk_mq_sched_insert_request(rq, at_head, true, false); 1272 1273 if (blk_rq_is_poll(rq)) { 1274 blk_rq_poll_completion(rq, &wait.done); 1275 } else { 1276 /* 1277 * Prevent hang_check timer from firing at us during very long 1278 * I/O 1279 */ 1280 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1281 1282 if (hang_check) 1283 while (!wait_for_completion_io_timeout(&wait.done, 1284 hang_check * (HZ/2))) 1285 ; 1286 else 1287 wait_for_completion_io(&wait.done); 1288 } 1289 1290 return wait.ret; 1291 } 1292 EXPORT_SYMBOL(blk_execute_rq); 1293 1294 static void __blk_mq_requeue_request(struct request *rq) 1295 { 1296 struct request_queue *q = rq->q; 1297 1298 blk_mq_put_driver_tag(rq); 1299 1300 trace_block_rq_requeue(rq); 1301 rq_qos_requeue(q, rq); 1302 1303 if (blk_mq_request_started(rq)) { 1304 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1305 rq->rq_flags &= ~RQF_TIMED_OUT; 1306 } 1307 } 1308 1309 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1310 { 1311 __blk_mq_requeue_request(rq); 1312 1313 /* this request will be re-inserted to io scheduler queue */ 1314 blk_mq_sched_requeue_request(rq); 1315 1316 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1317 } 1318 EXPORT_SYMBOL(blk_mq_requeue_request); 1319 1320 static void blk_mq_requeue_work(struct work_struct *work) 1321 { 1322 struct request_queue *q = 1323 container_of(work, struct request_queue, requeue_work.work); 1324 LIST_HEAD(rq_list); 1325 struct request *rq, *next; 1326 1327 spin_lock_irq(&q->requeue_lock); 1328 list_splice_init(&q->requeue_list, &rq_list); 1329 spin_unlock_irq(&q->requeue_lock); 1330 1331 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1332 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1333 continue; 1334 1335 rq->rq_flags &= ~RQF_SOFTBARRIER; 1336 list_del_init(&rq->queuelist); 1337 /* 1338 * If RQF_DONTPREP, rq has contained some driver specific 1339 * data, so insert it to hctx dispatch list to avoid any 1340 * merge. 1341 */ 1342 if (rq->rq_flags & RQF_DONTPREP) 1343 blk_mq_request_bypass_insert(rq, false, false); 1344 else 1345 blk_mq_sched_insert_request(rq, true, false, false); 1346 } 1347 1348 while (!list_empty(&rq_list)) { 1349 rq = list_entry(rq_list.next, struct request, queuelist); 1350 list_del_init(&rq->queuelist); 1351 blk_mq_sched_insert_request(rq, false, false, false); 1352 } 1353 1354 blk_mq_run_hw_queues(q, false); 1355 } 1356 1357 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1358 bool kick_requeue_list) 1359 { 1360 struct request_queue *q = rq->q; 1361 unsigned long flags; 1362 1363 /* 1364 * We abuse this flag that is otherwise used by the I/O scheduler to 1365 * request head insertion from the workqueue. 1366 */ 1367 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1368 1369 spin_lock_irqsave(&q->requeue_lock, flags); 1370 if (at_head) { 1371 rq->rq_flags |= RQF_SOFTBARRIER; 1372 list_add(&rq->queuelist, &q->requeue_list); 1373 } else { 1374 list_add_tail(&rq->queuelist, &q->requeue_list); 1375 } 1376 spin_unlock_irqrestore(&q->requeue_lock, flags); 1377 1378 if (kick_requeue_list) 1379 blk_mq_kick_requeue_list(q); 1380 } 1381 1382 void blk_mq_kick_requeue_list(struct request_queue *q) 1383 { 1384 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1385 } 1386 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1387 1388 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1389 unsigned long msecs) 1390 { 1391 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1392 msecs_to_jiffies(msecs)); 1393 } 1394 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1395 1396 static bool blk_mq_rq_inflight(struct request *rq, void *priv, 1397 bool reserved) 1398 { 1399 /* 1400 * If we find a request that isn't idle we know the queue is busy 1401 * as it's checked in the iter. 1402 * Return false to stop the iteration. 1403 */ 1404 if (blk_mq_request_started(rq)) { 1405 bool *busy = priv; 1406 1407 *busy = true; 1408 return false; 1409 } 1410 1411 return true; 1412 } 1413 1414 bool blk_mq_queue_inflight(struct request_queue *q) 1415 { 1416 bool busy = false; 1417 1418 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1419 return busy; 1420 } 1421 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1422 1423 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 1424 { 1425 req->rq_flags |= RQF_TIMED_OUT; 1426 if (req->q->mq_ops->timeout) { 1427 enum blk_eh_timer_return ret; 1428 1429 ret = req->q->mq_ops->timeout(req, reserved); 1430 if (ret == BLK_EH_DONE) 1431 return; 1432 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1433 } 1434 1435 blk_add_timer(req); 1436 } 1437 1438 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 1439 { 1440 unsigned long deadline; 1441 1442 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1443 return false; 1444 if (rq->rq_flags & RQF_TIMED_OUT) 1445 return false; 1446 1447 deadline = READ_ONCE(rq->deadline); 1448 if (time_after_eq(jiffies, deadline)) 1449 return true; 1450 1451 if (*next == 0) 1452 *next = deadline; 1453 else if (time_after(*next, deadline)) 1454 *next = deadline; 1455 return false; 1456 } 1457 1458 void blk_mq_put_rq_ref(struct request *rq) 1459 { 1460 if (is_flush_rq(rq)) 1461 rq->end_io(rq, 0); 1462 else if (req_ref_put_and_test(rq)) 1463 __blk_mq_free_request(rq); 1464 } 1465 1466 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved) 1467 { 1468 unsigned long *next = priv; 1469 1470 /* 1471 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1472 * be reallocated underneath the timeout handler's processing, then 1473 * the expire check is reliable. If the request is not expired, then 1474 * it was completed and reallocated as a new request after returning 1475 * from blk_mq_check_expired(). 1476 */ 1477 if (blk_mq_req_expired(rq, next)) 1478 blk_mq_rq_timed_out(rq, reserved); 1479 return true; 1480 } 1481 1482 static void blk_mq_timeout_work(struct work_struct *work) 1483 { 1484 struct request_queue *q = 1485 container_of(work, struct request_queue, timeout_work); 1486 unsigned long next = 0; 1487 struct blk_mq_hw_ctx *hctx; 1488 unsigned long i; 1489 1490 /* A deadlock might occur if a request is stuck requiring a 1491 * timeout at the same time a queue freeze is waiting 1492 * completion, since the timeout code would not be able to 1493 * acquire the queue reference here. 1494 * 1495 * That's why we don't use blk_queue_enter here; instead, we use 1496 * percpu_ref_tryget directly, because we need to be able to 1497 * obtain a reference even in the short window between the queue 1498 * starting to freeze, by dropping the first reference in 1499 * blk_freeze_queue_start, and the moment the last request is 1500 * consumed, marked by the instant q_usage_counter reaches 1501 * zero. 1502 */ 1503 if (!percpu_ref_tryget(&q->q_usage_counter)) 1504 return; 1505 1506 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 1507 1508 if (next != 0) { 1509 mod_timer(&q->timeout, next); 1510 } else { 1511 /* 1512 * Request timeouts are handled as a forward rolling timer. If 1513 * we end up here it means that no requests are pending and 1514 * also that no request has been pending for a while. Mark 1515 * each hctx as idle. 1516 */ 1517 queue_for_each_hw_ctx(q, hctx, i) { 1518 /* the hctx may be unmapped, so check it here */ 1519 if (blk_mq_hw_queue_mapped(hctx)) 1520 blk_mq_tag_idle(hctx); 1521 } 1522 } 1523 blk_queue_exit(q); 1524 } 1525 1526 struct flush_busy_ctx_data { 1527 struct blk_mq_hw_ctx *hctx; 1528 struct list_head *list; 1529 }; 1530 1531 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1532 { 1533 struct flush_busy_ctx_data *flush_data = data; 1534 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1535 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1536 enum hctx_type type = hctx->type; 1537 1538 spin_lock(&ctx->lock); 1539 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1540 sbitmap_clear_bit(sb, bitnr); 1541 spin_unlock(&ctx->lock); 1542 return true; 1543 } 1544 1545 /* 1546 * Process software queues that have been marked busy, splicing them 1547 * to the for-dispatch 1548 */ 1549 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1550 { 1551 struct flush_busy_ctx_data data = { 1552 .hctx = hctx, 1553 .list = list, 1554 }; 1555 1556 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1557 } 1558 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1559 1560 struct dispatch_rq_data { 1561 struct blk_mq_hw_ctx *hctx; 1562 struct request *rq; 1563 }; 1564 1565 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1566 void *data) 1567 { 1568 struct dispatch_rq_data *dispatch_data = data; 1569 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1570 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1571 enum hctx_type type = hctx->type; 1572 1573 spin_lock(&ctx->lock); 1574 if (!list_empty(&ctx->rq_lists[type])) { 1575 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1576 list_del_init(&dispatch_data->rq->queuelist); 1577 if (list_empty(&ctx->rq_lists[type])) 1578 sbitmap_clear_bit(sb, bitnr); 1579 } 1580 spin_unlock(&ctx->lock); 1581 1582 return !dispatch_data->rq; 1583 } 1584 1585 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1586 struct blk_mq_ctx *start) 1587 { 1588 unsigned off = start ? start->index_hw[hctx->type] : 0; 1589 struct dispatch_rq_data data = { 1590 .hctx = hctx, 1591 .rq = NULL, 1592 }; 1593 1594 __sbitmap_for_each_set(&hctx->ctx_map, off, 1595 dispatch_rq_from_ctx, &data); 1596 1597 return data.rq; 1598 } 1599 1600 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1601 { 1602 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1603 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1604 int tag; 1605 1606 blk_mq_tag_busy(rq->mq_hctx); 1607 1608 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1609 bt = &rq->mq_hctx->tags->breserved_tags; 1610 tag_offset = 0; 1611 } else { 1612 if (!hctx_may_queue(rq->mq_hctx, bt)) 1613 return false; 1614 } 1615 1616 tag = __sbitmap_queue_get(bt); 1617 if (tag == BLK_MQ_NO_TAG) 1618 return false; 1619 1620 rq->tag = tag + tag_offset; 1621 return true; 1622 } 1623 1624 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1625 { 1626 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1627 return false; 1628 1629 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1630 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1631 rq->rq_flags |= RQF_MQ_INFLIGHT; 1632 __blk_mq_inc_active_requests(hctx); 1633 } 1634 hctx->tags->rqs[rq->tag] = rq; 1635 return true; 1636 } 1637 1638 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1639 int flags, void *key) 1640 { 1641 struct blk_mq_hw_ctx *hctx; 1642 1643 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1644 1645 spin_lock(&hctx->dispatch_wait_lock); 1646 if (!list_empty(&wait->entry)) { 1647 struct sbitmap_queue *sbq; 1648 1649 list_del_init(&wait->entry); 1650 sbq = &hctx->tags->bitmap_tags; 1651 atomic_dec(&sbq->ws_active); 1652 } 1653 spin_unlock(&hctx->dispatch_wait_lock); 1654 1655 blk_mq_run_hw_queue(hctx, true); 1656 return 1; 1657 } 1658 1659 /* 1660 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1661 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1662 * restart. For both cases, take care to check the condition again after 1663 * marking us as waiting. 1664 */ 1665 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1666 struct request *rq) 1667 { 1668 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1669 struct wait_queue_head *wq; 1670 wait_queue_entry_t *wait; 1671 bool ret; 1672 1673 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1674 blk_mq_sched_mark_restart_hctx(hctx); 1675 1676 /* 1677 * It's possible that a tag was freed in the window between the 1678 * allocation failure and adding the hardware queue to the wait 1679 * queue. 1680 * 1681 * Don't clear RESTART here, someone else could have set it. 1682 * At most this will cost an extra queue run. 1683 */ 1684 return blk_mq_get_driver_tag(rq); 1685 } 1686 1687 wait = &hctx->dispatch_wait; 1688 if (!list_empty_careful(&wait->entry)) 1689 return false; 1690 1691 wq = &bt_wait_ptr(sbq, hctx)->wait; 1692 1693 spin_lock_irq(&wq->lock); 1694 spin_lock(&hctx->dispatch_wait_lock); 1695 if (!list_empty(&wait->entry)) { 1696 spin_unlock(&hctx->dispatch_wait_lock); 1697 spin_unlock_irq(&wq->lock); 1698 return false; 1699 } 1700 1701 atomic_inc(&sbq->ws_active); 1702 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1703 __add_wait_queue(wq, wait); 1704 1705 /* 1706 * It's possible that a tag was freed in the window between the 1707 * allocation failure and adding the hardware queue to the wait 1708 * queue. 1709 */ 1710 ret = blk_mq_get_driver_tag(rq); 1711 if (!ret) { 1712 spin_unlock(&hctx->dispatch_wait_lock); 1713 spin_unlock_irq(&wq->lock); 1714 return false; 1715 } 1716 1717 /* 1718 * We got a tag, remove ourselves from the wait queue to ensure 1719 * someone else gets the wakeup. 1720 */ 1721 list_del_init(&wait->entry); 1722 atomic_dec(&sbq->ws_active); 1723 spin_unlock(&hctx->dispatch_wait_lock); 1724 spin_unlock_irq(&wq->lock); 1725 1726 return true; 1727 } 1728 1729 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1730 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1731 /* 1732 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1733 * - EWMA is one simple way to compute running average value 1734 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1735 * - take 4 as factor for avoiding to get too small(0) result, and this 1736 * factor doesn't matter because EWMA decreases exponentially 1737 */ 1738 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1739 { 1740 unsigned int ewma; 1741 1742 ewma = hctx->dispatch_busy; 1743 1744 if (!ewma && !busy) 1745 return; 1746 1747 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1748 if (busy) 1749 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1750 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1751 1752 hctx->dispatch_busy = ewma; 1753 } 1754 1755 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1756 1757 static void blk_mq_handle_dev_resource(struct request *rq, 1758 struct list_head *list) 1759 { 1760 struct request *next = 1761 list_first_entry_or_null(list, struct request, queuelist); 1762 1763 /* 1764 * If an I/O scheduler has been configured and we got a driver tag for 1765 * the next request already, free it. 1766 */ 1767 if (next) 1768 blk_mq_put_driver_tag(next); 1769 1770 list_add(&rq->queuelist, list); 1771 __blk_mq_requeue_request(rq); 1772 } 1773 1774 static void blk_mq_handle_zone_resource(struct request *rq, 1775 struct list_head *zone_list) 1776 { 1777 /* 1778 * If we end up here it is because we cannot dispatch a request to a 1779 * specific zone due to LLD level zone-write locking or other zone 1780 * related resource not being available. In this case, set the request 1781 * aside in zone_list for retrying it later. 1782 */ 1783 list_add(&rq->queuelist, zone_list); 1784 __blk_mq_requeue_request(rq); 1785 } 1786 1787 enum prep_dispatch { 1788 PREP_DISPATCH_OK, 1789 PREP_DISPATCH_NO_TAG, 1790 PREP_DISPATCH_NO_BUDGET, 1791 }; 1792 1793 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1794 bool need_budget) 1795 { 1796 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1797 int budget_token = -1; 1798 1799 if (need_budget) { 1800 budget_token = blk_mq_get_dispatch_budget(rq->q); 1801 if (budget_token < 0) { 1802 blk_mq_put_driver_tag(rq); 1803 return PREP_DISPATCH_NO_BUDGET; 1804 } 1805 blk_mq_set_rq_budget_token(rq, budget_token); 1806 } 1807 1808 if (!blk_mq_get_driver_tag(rq)) { 1809 /* 1810 * The initial allocation attempt failed, so we need to 1811 * rerun the hardware queue when a tag is freed. The 1812 * waitqueue takes care of that. If the queue is run 1813 * before we add this entry back on the dispatch list, 1814 * we'll re-run it below. 1815 */ 1816 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1817 /* 1818 * All budgets not got from this function will be put 1819 * together during handling partial dispatch 1820 */ 1821 if (need_budget) 1822 blk_mq_put_dispatch_budget(rq->q, budget_token); 1823 return PREP_DISPATCH_NO_TAG; 1824 } 1825 } 1826 1827 return PREP_DISPATCH_OK; 1828 } 1829 1830 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1831 static void blk_mq_release_budgets(struct request_queue *q, 1832 struct list_head *list) 1833 { 1834 struct request *rq; 1835 1836 list_for_each_entry(rq, list, queuelist) { 1837 int budget_token = blk_mq_get_rq_budget_token(rq); 1838 1839 if (budget_token >= 0) 1840 blk_mq_put_dispatch_budget(q, budget_token); 1841 } 1842 } 1843 1844 /* 1845 * Returns true if we did some work AND can potentially do more. 1846 */ 1847 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1848 unsigned int nr_budgets) 1849 { 1850 enum prep_dispatch prep; 1851 struct request_queue *q = hctx->queue; 1852 struct request *rq, *nxt; 1853 int errors, queued; 1854 blk_status_t ret = BLK_STS_OK; 1855 LIST_HEAD(zone_list); 1856 bool needs_resource = false; 1857 1858 if (list_empty(list)) 1859 return false; 1860 1861 /* 1862 * Now process all the entries, sending them to the driver. 1863 */ 1864 errors = queued = 0; 1865 do { 1866 struct blk_mq_queue_data bd; 1867 1868 rq = list_first_entry(list, struct request, queuelist); 1869 1870 WARN_ON_ONCE(hctx != rq->mq_hctx); 1871 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1872 if (prep != PREP_DISPATCH_OK) 1873 break; 1874 1875 list_del_init(&rq->queuelist); 1876 1877 bd.rq = rq; 1878 1879 /* 1880 * Flag last if we have no more requests, or if we have more 1881 * but can't assign a driver tag to it. 1882 */ 1883 if (list_empty(list)) 1884 bd.last = true; 1885 else { 1886 nxt = list_first_entry(list, struct request, queuelist); 1887 bd.last = !blk_mq_get_driver_tag(nxt); 1888 } 1889 1890 /* 1891 * once the request is queued to lld, no need to cover the 1892 * budget any more 1893 */ 1894 if (nr_budgets) 1895 nr_budgets--; 1896 ret = q->mq_ops->queue_rq(hctx, &bd); 1897 switch (ret) { 1898 case BLK_STS_OK: 1899 queued++; 1900 break; 1901 case BLK_STS_RESOURCE: 1902 needs_resource = true; 1903 fallthrough; 1904 case BLK_STS_DEV_RESOURCE: 1905 blk_mq_handle_dev_resource(rq, list); 1906 goto out; 1907 case BLK_STS_ZONE_RESOURCE: 1908 /* 1909 * Move the request to zone_list and keep going through 1910 * the dispatch list to find more requests the drive can 1911 * accept. 1912 */ 1913 blk_mq_handle_zone_resource(rq, &zone_list); 1914 needs_resource = true; 1915 break; 1916 default: 1917 errors++; 1918 blk_mq_end_request(rq, ret); 1919 } 1920 } while (!list_empty(list)); 1921 out: 1922 if (!list_empty(&zone_list)) 1923 list_splice_tail_init(&zone_list, list); 1924 1925 /* If we didn't flush the entire list, we could have told the driver 1926 * there was more coming, but that turned out to be a lie. 1927 */ 1928 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1929 q->mq_ops->commit_rqs(hctx); 1930 /* 1931 * Any items that need requeuing? Stuff them into hctx->dispatch, 1932 * that is where we will continue on next queue run. 1933 */ 1934 if (!list_empty(list)) { 1935 bool needs_restart; 1936 /* For non-shared tags, the RESTART check will suffice */ 1937 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1938 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1939 1940 if (nr_budgets) 1941 blk_mq_release_budgets(q, list); 1942 1943 spin_lock(&hctx->lock); 1944 list_splice_tail_init(list, &hctx->dispatch); 1945 spin_unlock(&hctx->lock); 1946 1947 /* 1948 * Order adding requests to hctx->dispatch and checking 1949 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1950 * in blk_mq_sched_restart(). Avoid restart code path to 1951 * miss the new added requests to hctx->dispatch, meantime 1952 * SCHED_RESTART is observed here. 1953 */ 1954 smp_mb(); 1955 1956 /* 1957 * If SCHED_RESTART was set by the caller of this function and 1958 * it is no longer set that means that it was cleared by another 1959 * thread and hence that a queue rerun is needed. 1960 * 1961 * If 'no_tag' is set, that means that we failed getting 1962 * a driver tag with an I/O scheduler attached. If our dispatch 1963 * waitqueue is no longer active, ensure that we run the queue 1964 * AFTER adding our entries back to the list. 1965 * 1966 * If no I/O scheduler has been configured it is possible that 1967 * the hardware queue got stopped and restarted before requests 1968 * were pushed back onto the dispatch list. Rerun the queue to 1969 * avoid starvation. Notes: 1970 * - blk_mq_run_hw_queue() checks whether or not a queue has 1971 * been stopped before rerunning a queue. 1972 * - Some but not all block drivers stop a queue before 1973 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1974 * and dm-rq. 1975 * 1976 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1977 * bit is set, run queue after a delay to avoid IO stalls 1978 * that could otherwise occur if the queue is idle. We'll do 1979 * similar if we couldn't get budget or couldn't lock a zone 1980 * and SCHED_RESTART is set. 1981 */ 1982 needs_restart = blk_mq_sched_needs_restart(hctx); 1983 if (prep == PREP_DISPATCH_NO_BUDGET) 1984 needs_resource = true; 1985 if (!needs_restart || 1986 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1987 blk_mq_run_hw_queue(hctx, true); 1988 else if (needs_restart && needs_resource) 1989 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1990 1991 blk_mq_update_dispatch_busy(hctx, true); 1992 return false; 1993 } else 1994 blk_mq_update_dispatch_busy(hctx, false); 1995 1996 return (queued + errors) != 0; 1997 } 1998 1999 /** 2000 * __blk_mq_run_hw_queue - Run a hardware queue. 2001 * @hctx: Pointer to the hardware queue to run. 2002 * 2003 * Send pending requests to the hardware. 2004 */ 2005 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2006 { 2007 /* 2008 * We can't run the queue inline with ints disabled. Ensure that 2009 * we catch bad users of this early. 2010 */ 2011 WARN_ON_ONCE(in_interrupt()); 2012 2013 blk_mq_run_dispatch_ops(hctx->queue, 2014 blk_mq_sched_dispatch_requests(hctx)); 2015 } 2016 2017 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2018 { 2019 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2020 2021 if (cpu >= nr_cpu_ids) 2022 cpu = cpumask_first(hctx->cpumask); 2023 return cpu; 2024 } 2025 2026 /* 2027 * It'd be great if the workqueue API had a way to pass 2028 * in a mask and had some smarts for more clever placement. 2029 * For now we just round-robin here, switching for every 2030 * BLK_MQ_CPU_WORK_BATCH queued items. 2031 */ 2032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2033 { 2034 bool tried = false; 2035 int next_cpu = hctx->next_cpu; 2036 2037 if (hctx->queue->nr_hw_queues == 1) 2038 return WORK_CPU_UNBOUND; 2039 2040 if (--hctx->next_cpu_batch <= 0) { 2041 select_cpu: 2042 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2043 cpu_online_mask); 2044 if (next_cpu >= nr_cpu_ids) 2045 next_cpu = blk_mq_first_mapped_cpu(hctx); 2046 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2047 } 2048 2049 /* 2050 * Do unbound schedule if we can't find a online CPU for this hctx, 2051 * and it should only happen in the path of handling CPU DEAD. 2052 */ 2053 if (!cpu_online(next_cpu)) { 2054 if (!tried) { 2055 tried = true; 2056 goto select_cpu; 2057 } 2058 2059 /* 2060 * Make sure to re-select CPU next time once after CPUs 2061 * in hctx->cpumask become online again. 2062 */ 2063 hctx->next_cpu = next_cpu; 2064 hctx->next_cpu_batch = 1; 2065 return WORK_CPU_UNBOUND; 2066 } 2067 2068 hctx->next_cpu = next_cpu; 2069 return next_cpu; 2070 } 2071 2072 /** 2073 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2074 * @hctx: Pointer to the hardware queue to run. 2075 * @async: If we want to run the queue asynchronously. 2076 * @msecs: Milliseconds of delay to wait before running the queue. 2077 * 2078 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2079 * with a delay of @msecs. 2080 */ 2081 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2082 unsigned long msecs) 2083 { 2084 if (unlikely(blk_mq_hctx_stopped(hctx))) 2085 return; 2086 2087 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2088 int cpu = get_cpu(); 2089 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 2090 __blk_mq_run_hw_queue(hctx); 2091 put_cpu(); 2092 return; 2093 } 2094 2095 put_cpu(); 2096 } 2097 2098 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2099 msecs_to_jiffies(msecs)); 2100 } 2101 2102 /** 2103 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2104 * @hctx: Pointer to the hardware queue to run. 2105 * @msecs: Milliseconds of delay to wait before running the queue. 2106 * 2107 * Run a hardware queue asynchronously with a delay of @msecs. 2108 */ 2109 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2110 { 2111 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2112 } 2113 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2114 2115 /** 2116 * blk_mq_run_hw_queue - Start to run a hardware queue. 2117 * @hctx: Pointer to the hardware queue to run. 2118 * @async: If we want to run the queue asynchronously. 2119 * 2120 * Check if the request queue is not in a quiesced state and if there are 2121 * pending requests to be sent. If this is true, run the queue to send requests 2122 * to hardware. 2123 */ 2124 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2125 { 2126 bool need_run; 2127 2128 /* 2129 * When queue is quiesced, we may be switching io scheduler, or 2130 * updating nr_hw_queues, or other things, and we can't run queue 2131 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2132 * 2133 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2134 * quiesced. 2135 */ 2136 __blk_mq_run_dispatch_ops(hctx->queue, false, 2137 need_run = !blk_queue_quiesced(hctx->queue) && 2138 blk_mq_hctx_has_pending(hctx)); 2139 2140 if (need_run) 2141 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2142 } 2143 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2144 2145 /* 2146 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2147 * scheduler. 2148 */ 2149 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2150 { 2151 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2152 /* 2153 * If the IO scheduler does not respect hardware queues when 2154 * dispatching, we just don't bother with multiple HW queues and 2155 * dispatch from hctx for the current CPU since running multiple queues 2156 * just causes lock contention inside the scheduler and pointless cache 2157 * bouncing. 2158 */ 2159 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx); 2160 2161 if (!blk_mq_hctx_stopped(hctx)) 2162 return hctx; 2163 return NULL; 2164 } 2165 2166 /** 2167 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2168 * @q: Pointer to the request queue to run. 2169 * @async: If we want to run the queue asynchronously. 2170 */ 2171 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2172 { 2173 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2174 unsigned long i; 2175 2176 sq_hctx = NULL; 2177 if (blk_queue_sq_sched(q)) 2178 sq_hctx = blk_mq_get_sq_hctx(q); 2179 queue_for_each_hw_ctx(q, hctx, i) { 2180 if (blk_mq_hctx_stopped(hctx)) 2181 continue; 2182 /* 2183 * Dispatch from this hctx either if there's no hctx preferred 2184 * by IO scheduler or if it has requests that bypass the 2185 * scheduler. 2186 */ 2187 if (!sq_hctx || sq_hctx == hctx || 2188 !list_empty_careful(&hctx->dispatch)) 2189 blk_mq_run_hw_queue(hctx, async); 2190 } 2191 } 2192 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2193 2194 /** 2195 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2196 * @q: Pointer to the request queue to run. 2197 * @msecs: Milliseconds of delay to wait before running the queues. 2198 */ 2199 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2200 { 2201 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2202 unsigned long i; 2203 2204 sq_hctx = NULL; 2205 if (blk_queue_sq_sched(q)) 2206 sq_hctx = blk_mq_get_sq_hctx(q); 2207 queue_for_each_hw_ctx(q, hctx, i) { 2208 if (blk_mq_hctx_stopped(hctx)) 2209 continue; 2210 /* 2211 * If there is already a run_work pending, leave the 2212 * pending delay untouched. Otherwise, a hctx can stall 2213 * if another hctx is re-delaying the other's work 2214 * before the work executes. 2215 */ 2216 if (delayed_work_pending(&hctx->run_work)) 2217 continue; 2218 /* 2219 * Dispatch from this hctx either if there's no hctx preferred 2220 * by IO scheduler or if it has requests that bypass the 2221 * scheduler. 2222 */ 2223 if (!sq_hctx || sq_hctx == hctx || 2224 !list_empty_careful(&hctx->dispatch)) 2225 blk_mq_delay_run_hw_queue(hctx, msecs); 2226 } 2227 } 2228 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2229 2230 /** 2231 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 2232 * @q: request queue. 2233 * 2234 * The caller is responsible for serializing this function against 2235 * blk_mq_{start,stop}_hw_queue(). 2236 */ 2237 bool blk_mq_queue_stopped(struct request_queue *q) 2238 { 2239 struct blk_mq_hw_ctx *hctx; 2240 unsigned long i; 2241 2242 queue_for_each_hw_ctx(q, hctx, i) 2243 if (blk_mq_hctx_stopped(hctx)) 2244 return true; 2245 2246 return false; 2247 } 2248 EXPORT_SYMBOL(blk_mq_queue_stopped); 2249 2250 /* 2251 * This function is often used for pausing .queue_rq() by driver when 2252 * there isn't enough resource or some conditions aren't satisfied, and 2253 * BLK_STS_RESOURCE is usually returned. 2254 * 2255 * We do not guarantee that dispatch can be drained or blocked 2256 * after blk_mq_stop_hw_queue() returns. Please use 2257 * blk_mq_quiesce_queue() for that requirement. 2258 */ 2259 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2260 { 2261 cancel_delayed_work(&hctx->run_work); 2262 2263 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2264 } 2265 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2266 2267 /* 2268 * This function is often used for pausing .queue_rq() by driver when 2269 * there isn't enough resource or some conditions aren't satisfied, and 2270 * BLK_STS_RESOURCE is usually returned. 2271 * 2272 * We do not guarantee that dispatch can be drained or blocked 2273 * after blk_mq_stop_hw_queues() returns. Please use 2274 * blk_mq_quiesce_queue() for that requirement. 2275 */ 2276 void blk_mq_stop_hw_queues(struct request_queue *q) 2277 { 2278 struct blk_mq_hw_ctx *hctx; 2279 unsigned long i; 2280 2281 queue_for_each_hw_ctx(q, hctx, i) 2282 blk_mq_stop_hw_queue(hctx); 2283 } 2284 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2285 2286 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2287 { 2288 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2289 2290 blk_mq_run_hw_queue(hctx, false); 2291 } 2292 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2293 2294 void blk_mq_start_hw_queues(struct request_queue *q) 2295 { 2296 struct blk_mq_hw_ctx *hctx; 2297 unsigned long i; 2298 2299 queue_for_each_hw_ctx(q, hctx, i) 2300 blk_mq_start_hw_queue(hctx); 2301 } 2302 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2303 2304 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2305 { 2306 if (!blk_mq_hctx_stopped(hctx)) 2307 return; 2308 2309 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2310 blk_mq_run_hw_queue(hctx, async); 2311 } 2312 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2313 2314 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2315 { 2316 struct blk_mq_hw_ctx *hctx; 2317 unsigned long i; 2318 2319 queue_for_each_hw_ctx(q, hctx, i) 2320 blk_mq_start_stopped_hw_queue(hctx, async); 2321 } 2322 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2323 2324 static void blk_mq_run_work_fn(struct work_struct *work) 2325 { 2326 struct blk_mq_hw_ctx *hctx; 2327 2328 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2329 2330 /* 2331 * If we are stopped, don't run the queue. 2332 */ 2333 if (blk_mq_hctx_stopped(hctx)) 2334 return; 2335 2336 __blk_mq_run_hw_queue(hctx); 2337 } 2338 2339 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2340 struct request *rq, 2341 bool at_head) 2342 { 2343 struct blk_mq_ctx *ctx = rq->mq_ctx; 2344 enum hctx_type type = hctx->type; 2345 2346 lockdep_assert_held(&ctx->lock); 2347 2348 trace_block_rq_insert(rq); 2349 2350 if (at_head) 2351 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2352 else 2353 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2354 } 2355 2356 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2357 bool at_head) 2358 { 2359 struct blk_mq_ctx *ctx = rq->mq_ctx; 2360 2361 lockdep_assert_held(&ctx->lock); 2362 2363 __blk_mq_insert_req_list(hctx, rq, at_head); 2364 blk_mq_hctx_mark_pending(hctx, ctx); 2365 } 2366 2367 /** 2368 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2369 * @rq: Pointer to request to be inserted. 2370 * @at_head: true if the request should be inserted at the head of the list. 2371 * @run_queue: If we should run the hardware queue after inserting the request. 2372 * 2373 * Should only be used carefully, when the caller knows we want to 2374 * bypass a potential IO scheduler on the target device. 2375 */ 2376 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2377 bool run_queue) 2378 { 2379 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2380 2381 spin_lock(&hctx->lock); 2382 if (at_head) 2383 list_add(&rq->queuelist, &hctx->dispatch); 2384 else 2385 list_add_tail(&rq->queuelist, &hctx->dispatch); 2386 spin_unlock(&hctx->lock); 2387 2388 if (run_queue) 2389 blk_mq_run_hw_queue(hctx, false); 2390 } 2391 2392 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2393 struct list_head *list) 2394 2395 { 2396 struct request *rq; 2397 enum hctx_type type = hctx->type; 2398 2399 /* 2400 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2401 * offline now 2402 */ 2403 list_for_each_entry(rq, list, queuelist) { 2404 BUG_ON(rq->mq_ctx != ctx); 2405 trace_block_rq_insert(rq); 2406 } 2407 2408 spin_lock(&ctx->lock); 2409 list_splice_tail_init(list, &ctx->rq_lists[type]); 2410 blk_mq_hctx_mark_pending(hctx, ctx); 2411 spin_unlock(&ctx->lock); 2412 } 2413 2414 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued, 2415 bool from_schedule) 2416 { 2417 if (hctx->queue->mq_ops->commit_rqs) { 2418 trace_block_unplug(hctx->queue, *queued, !from_schedule); 2419 hctx->queue->mq_ops->commit_rqs(hctx); 2420 } 2421 *queued = 0; 2422 } 2423 2424 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2425 unsigned int nr_segs) 2426 { 2427 int err; 2428 2429 if (bio->bi_opf & REQ_RAHEAD) 2430 rq->cmd_flags |= REQ_FAILFAST_MASK; 2431 2432 rq->__sector = bio->bi_iter.bi_sector; 2433 blk_rq_bio_prep(rq, bio, nr_segs); 2434 2435 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2436 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2437 WARN_ON_ONCE(err); 2438 2439 blk_account_io_start(rq); 2440 } 2441 2442 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2443 struct request *rq, bool last) 2444 { 2445 struct request_queue *q = rq->q; 2446 struct blk_mq_queue_data bd = { 2447 .rq = rq, 2448 .last = last, 2449 }; 2450 blk_status_t ret; 2451 2452 /* 2453 * For OK queue, we are done. For error, caller may kill it. 2454 * Any other error (busy), just add it to our list as we 2455 * previously would have done. 2456 */ 2457 ret = q->mq_ops->queue_rq(hctx, &bd); 2458 switch (ret) { 2459 case BLK_STS_OK: 2460 blk_mq_update_dispatch_busy(hctx, false); 2461 break; 2462 case BLK_STS_RESOURCE: 2463 case BLK_STS_DEV_RESOURCE: 2464 blk_mq_update_dispatch_busy(hctx, true); 2465 __blk_mq_requeue_request(rq); 2466 break; 2467 default: 2468 blk_mq_update_dispatch_busy(hctx, false); 2469 break; 2470 } 2471 2472 return ret; 2473 } 2474 2475 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2476 struct request *rq, 2477 bool bypass_insert, bool last) 2478 { 2479 struct request_queue *q = rq->q; 2480 bool run_queue = true; 2481 int budget_token; 2482 2483 /* 2484 * RCU or SRCU read lock is needed before checking quiesced flag. 2485 * 2486 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2487 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2488 * and avoid driver to try to dispatch again. 2489 */ 2490 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2491 run_queue = false; 2492 bypass_insert = false; 2493 goto insert; 2494 } 2495 2496 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2497 goto insert; 2498 2499 budget_token = blk_mq_get_dispatch_budget(q); 2500 if (budget_token < 0) 2501 goto insert; 2502 2503 blk_mq_set_rq_budget_token(rq, budget_token); 2504 2505 if (!blk_mq_get_driver_tag(rq)) { 2506 blk_mq_put_dispatch_budget(q, budget_token); 2507 goto insert; 2508 } 2509 2510 return __blk_mq_issue_directly(hctx, rq, last); 2511 insert: 2512 if (bypass_insert) 2513 return BLK_STS_RESOURCE; 2514 2515 blk_mq_sched_insert_request(rq, false, run_queue, false); 2516 2517 return BLK_STS_OK; 2518 } 2519 2520 /** 2521 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2522 * @hctx: Pointer of the associated hardware queue. 2523 * @rq: Pointer to request to be sent. 2524 * 2525 * If the device has enough resources to accept a new request now, send the 2526 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2527 * we can try send it another time in the future. Requests inserted at this 2528 * queue have higher priority. 2529 */ 2530 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2531 struct request *rq) 2532 { 2533 blk_status_t ret = 2534 __blk_mq_try_issue_directly(hctx, rq, false, true); 2535 2536 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2537 blk_mq_request_bypass_insert(rq, false, true); 2538 else if (ret != BLK_STS_OK) 2539 blk_mq_end_request(rq, ret); 2540 } 2541 2542 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2543 { 2544 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2545 } 2546 2547 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule) 2548 { 2549 struct blk_mq_hw_ctx *hctx = NULL; 2550 struct request *rq; 2551 int queued = 0; 2552 int errors = 0; 2553 2554 while ((rq = rq_list_pop(&plug->mq_list))) { 2555 bool last = rq_list_empty(plug->mq_list); 2556 blk_status_t ret; 2557 2558 if (hctx != rq->mq_hctx) { 2559 if (hctx) 2560 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2561 hctx = rq->mq_hctx; 2562 } 2563 2564 ret = blk_mq_request_issue_directly(rq, last); 2565 switch (ret) { 2566 case BLK_STS_OK: 2567 queued++; 2568 break; 2569 case BLK_STS_RESOURCE: 2570 case BLK_STS_DEV_RESOURCE: 2571 blk_mq_request_bypass_insert(rq, false, last); 2572 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2573 return; 2574 default: 2575 blk_mq_end_request(rq, ret); 2576 errors++; 2577 break; 2578 } 2579 } 2580 2581 /* 2582 * If we didn't flush the entire list, we could have told the driver 2583 * there was more coming, but that turned out to be a lie. 2584 */ 2585 if (errors) 2586 blk_mq_commit_rqs(hctx, &queued, from_schedule); 2587 } 2588 2589 static void __blk_mq_flush_plug_list(struct request_queue *q, 2590 struct blk_plug *plug) 2591 { 2592 if (blk_queue_quiesced(q)) 2593 return; 2594 q->mq_ops->queue_rqs(&plug->mq_list); 2595 } 2596 2597 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2598 { 2599 struct blk_mq_hw_ctx *this_hctx = NULL; 2600 struct blk_mq_ctx *this_ctx = NULL; 2601 struct request *requeue_list = NULL; 2602 unsigned int depth = 0; 2603 LIST_HEAD(list); 2604 2605 do { 2606 struct request *rq = rq_list_pop(&plug->mq_list); 2607 2608 if (!this_hctx) { 2609 this_hctx = rq->mq_hctx; 2610 this_ctx = rq->mq_ctx; 2611 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2612 rq_list_add(&requeue_list, rq); 2613 continue; 2614 } 2615 list_add_tail(&rq->queuelist, &list); 2616 depth++; 2617 } while (!rq_list_empty(plug->mq_list)); 2618 2619 plug->mq_list = requeue_list; 2620 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2621 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2622 } 2623 2624 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2625 { 2626 struct request *rq; 2627 2628 if (rq_list_empty(plug->mq_list)) 2629 return; 2630 plug->rq_count = 0; 2631 2632 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2633 struct request_queue *q; 2634 2635 rq = rq_list_peek(&plug->mq_list); 2636 q = rq->q; 2637 2638 /* 2639 * Peek first request and see if we have a ->queue_rqs() hook. 2640 * If we do, we can dispatch the whole plug list in one go. We 2641 * already know at this point that all requests belong to the 2642 * same queue, caller must ensure that's the case. 2643 * 2644 * Since we pass off the full list to the driver at this point, 2645 * we do not increment the active request count for the queue. 2646 * Bypass shared tags for now because of that. 2647 */ 2648 if (q->mq_ops->queue_rqs && 2649 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2650 blk_mq_run_dispatch_ops(q, 2651 __blk_mq_flush_plug_list(q, plug)); 2652 if (rq_list_empty(plug->mq_list)) 2653 return; 2654 } 2655 2656 blk_mq_run_dispatch_ops(q, 2657 blk_mq_plug_issue_direct(plug, false)); 2658 if (rq_list_empty(plug->mq_list)) 2659 return; 2660 } 2661 2662 do { 2663 blk_mq_dispatch_plug_list(plug, from_schedule); 2664 } while (!rq_list_empty(plug->mq_list)); 2665 } 2666 2667 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2668 struct list_head *list) 2669 { 2670 int queued = 0; 2671 int errors = 0; 2672 2673 while (!list_empty(list)) { 2674 blk_status_t ret; 2675 struct request *rq = list_first_entry(list, struct request, 2676 queuelist); 2677 2678 list_del_init(&rq->queuelist); 2679 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2680 if (ret != BLK_STS_OK) { 2681 if (ret == BLK_STS_RESOURCE || 2682 ret == BLK_STS_DEV_RESOURCE) { 2683 blk_mq_request_bypass_insert(rq, false, 2684 list_empty(list)); 2685 break; 2686 } 2687 blk_mq_end_request(rq, ret); 2688 errors++; 2689 } else 2690 queued++; 2691 } 2692 2693 /* 2694 * If we didn't flush the entire list, we could have told 2695 * the driver there was more coming, but that turned out to 2696 * be a lie. 2697 */ 2698 if ((!list_empty(list) || errors) && 2699 hctx->queue->mq_ops->commit_rqs && queued) 2700 hctx->queue->mq_ops->commit_rqs(hctx); 2701 } 2702 2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2704 struct bio *bio, unsigned int nr_segs) 2705 { 2706 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2707 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2708 return true; 2709 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2710 return true; 2711 } 2712 return false; 2713 } 2714 2715 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2716 struct blk_plug *plug, 2717 struct bio *bio, 2718 unsigned int nsegs) 2719 { 2720 struct blk_mq_alloc_data data = { 2721 .q = q, 2722 .nr_tags = 1, 2723 .cmd_flags = bio->bi_opf, 2724 }; 2725 struct request *rq; 2726 2727 if (unlikely(bio_queue_enter(bio))) 2728 return NULL; 2729 2730 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2731 goto queue_exit; 2732 2733 rq_qos_throttle(q, bio); 2734 2735 if (plug) { 2736 data.nr_tags = plug->nr_ios; 2737 plug->nr_ios = 1; 2738 data.cached_rq = &plug->cached_rq; 2739 } 2740 2741 rq = __blk_mq_alloc_requests(&data); 2742 if (rq) 2743 return rq; 2744 rq_qos_cleanup(q, bio); 2745 if (bio->bi_opf & REQ_NOWAIT) 2746 bio_wouldblock_error(bio); 2747 queue_exit: 2748 blk_queue_exit(q); 2749 return NULL; 2750 } 2751 2752 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2753 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2754 { 2755 struct request *rq; 2756 2757 if (!plug) 2758 return NULL; 2759 rq = rq_list_peek(&plug->cached_rq); 2760 if (!rq || rq->q != q) 2761 return NULL; 2762 2763 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2764 *bio = NULL; 2765 return NULL; 2766 } 2767 2768 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type) 2769 return NULL; 2770 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2771 return NULL; 2772 2773 /* 2774 * If any qos ->throttle() end up blocking, we will have flushed the 2775 * plug and hence killed the cached_rq list as well. Pop this entry 2776 * before we throttle. 2777 */ 2778 plug->cached_rq = rq_list_next(rq); 2779 rq_qos_throttle(q, *bio); 2780 2781 rq->cmd_flags = (*bio)->bi_opf; 2782 INIT_LIST_HEAD(&rq->queuelist); 2783 return rq; 2784 } 2785 2786 /** 2787 * blk_mq_submit_bio - Create and send a request to block device. 2788 * @bio: Bio pointer. 2789 * 2790 * Builds up a request structure from @q and @bio and send to the device. The 2791 * request may not be queued directly to hardware if: 2792 * * This request can be merged with another one 2793 * * We want to place request at plug queue for possible future merging 2794 * * There is an IO scheduler active at this queue 2795 * 2796 * It will not queue the request if there is an error with the bio, or at the 2797 * request creation. 2798 */ 2799 void blk_mq_submit_bio(struct bio *bio) 2800 { 2801 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2802 struct blk_plug *plug = blk_mq_plug(q, bio); 2803 const int is_sync = op_is_sync(bio->bi_opf); 2804 struct request *rq; 2805 unsigned int nr_segs = 1; 2806 blk_status_t ret; 2807 2808 blk_queue_bounce(q, &bio); 2809 if (blk_may_split(q, bio)) 2810 __blk_queue_split(q, &bio, &nr_segs); 2811 2812 if (!bio_integrity_prep(bio)) 2813 return; 2814 2815 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2816 if (!rq) { 2817 if (!bio) 2818 return; 2819 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2820 if (unlikely(!rq)) 2821 return; 2822 } 2823 2824 trace_block_getrq(bio); 2825 2826 rq_qos_track(q, rq, bio); 2827 2828 blk_mq_bio_to_request(rq, bio, nr_segs); 2829 2830 ret = blk_crypto_init_request(rq); 2831 if (ret != BLK_STS_OK) { 2832 bio->bi_status = ret; 2833 bio_endio(bio); 2834 blk_mq_free_request(rq); 2835 return; 2836 } 2837 2838 if (op_is_flush(bio->bi_opf)) { 2839 blk_insert_flush(rq); 2840 return; 2841 } 2842 2843 if (plug) 2844 blk_add_rq_to_plug(plug, rq); 2845 else if ((rq->rq_flags & RQF_ELV) || 2846 (rq->mq_hctx->dispatch_busy && 2847 (q->nr_hw_queues == 1 || !is_sync))) 2848 blk_mq_sched_insert_request(rq, false, true, true); 2849 else 2850 blk_mq_run_dispatch_ops(rq->q, 2851 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2852 } 2853 2854 #ifdef CONFIG_BLK_MQ_STACKING 2855 /** 2856 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2857 * @rq: the request being queued 2858 */ 2859 blk_status_t blk_insert_cloned_request(struct request *rq) 2860 { 2861 struct request_queue *q = rq->q; 2862 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 2863 blk_status_t ret; 2864 2865 if (blk_rq_sectors(rq) > max_sectors) { 2866 /* 2867 * SCSI device does not have a good way to return if 2868 * Write Same/Zero is actually supported. If a device rejects 2869 * a non-read/write command (discard, write same,etc.) the 2870 * low-level device driver will set the relevant queue limit to 2871 * 0 to prevent blk-lib from issuing more of the offending 2872 * operations. Commands queued prior to the queue limit being 2873 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 2874 * errors being propagated to upper layers. 2875 */ 2876 if (max_sectors == 0) 2877 return BLK_STS_NOTSUPP; 2878 2879 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 2880 __func__, blk_rq_sectors(rq), max_sectors); 2881 return BLK_STS_IOERR; 2882 } 2883 2884 /* 2885 * The queue settings related to segment counting may differ from the 2886 * original queue. 2887 */ 2888 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 2889 if (rq->nr_phys_segments > queue_max_segments(q)) { 2890 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 2891 __func__, rq->nr_phys_segments, queue_max_segments(q)); 2892 return BLK_STS_IOERR; 2893 } 2894 2895 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 2896 return BLK_STS_IOERR; 2897 2898 if (blk_crypto_insert_cloned_request(rq)) 2899 return BLK_STS_IOERR; 2900 2901 blk_account_io_start(rq); 2902 2903 /* 2904 * Since we have a scheduler attached on the top device, 2905 * bypass a potential scheduler on the bottom device for 2906 * insert. 2907 */ 2908 blk_mq_run_dispatch_ops(q, 2909 ret = blk_mq_request_issue_directly(rq, true)); 2910 if (ret) 2911 blk_account_io_done(rq, ktime_get_ns()); 2912 return ret; 2913 } 2914 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2915 2916 /** 2917 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2918 * @rq: the clone request to be cleaned up 2919 * 2920 * Description: 2921 * Free all bios in @rq for a cloned request. 2922 */ 2923 void blk_rq_unprep_clone(struct request *rq) 2924 { 2925 struct bio *bio; 2926 2927 while ((bio = rq->bio) != NULL) { 2928 rq->bio = bio->bi_next; 2929 2930 bio_put(bio); 2931 } 2932 } 2933 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2934 2935 /** 2936 * blk_rq_prep_clone - Helper function to setup clone request 2937 * @rq: the request to be setup 2938 * @rq_src: original request to be cloned 2939 * @bs: bio_set that bios for clone are allocated from 2940 * @gfp_mask: memory allocation mask for bio 2941 * @bio_ctr: setup function to be called for each clone bio. 2942 * Returns %0 for success, non %0 for failure. 2943 * @data: private data to be passed to @bio_ctr 2944 * 2945 * Description: 2946 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2947 * Also, pages which the original bios are pointing to are not copied 2948 * and the cloned bios just point same pages. 2949 * So cloned bios must be completed before original bios, which means 2950 * the caller must complete @rq before @rq_src. 2951 */ 2952 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2953 struct bio_set *bs, gfp_t gfp_mask, 2954 int (*bio_ctr)(struct bio *, struct bio *, void *), 2955 void *data) 2956 { 2957 struct bio *bio, *bio_src; 2958 2959 if (!bs) 2960 bs = &fs_bio_set; 2961 2962 __rq_for_each_bio(bio_src, rq_src) { 2963 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 2964 bs); 2965 if (!bio) 2966 goto free_and_out; 2967 2968 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2969 goto free_and_out; 2970 2971 if (rq->bio) { 2972 rq->biotail->bi_next = bio; 2973 rq->biotail = bio; 2974 } else { 2975 rq->bio = rq->biotail = bio; 2976 } 2977 bio = NULL; 2978 } 2979 2980 /* Copy attributes of the original request to the clone request. */ 2981 rq->__sector = blk_rq_pos(rq_src); 2982 rq->__data_len = blk_rq_bytes(rq_src); 2983 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 2984 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 2985 rq->special_vec = rq_src->special_vec; 2986 } 2987 rq->nr_phys_segments = rq_src->nr_phys_segments; 2988 rq->ioprio = rq_src->ioprio; 2989 2990 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 2991 goto free_and_out; 2992 2993 return 0; 2994 2995 free_and_out: 2996 if (bio) 2997 bio_put(bio); 2998 blk_rq_unprep_clone(rq); 2999 3000 return -ENOMEM; 3001 } 3002 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3003 #endif /* CONFIG_BLK_MQ_STACKING */ 3004 3005 /* 3006 * Steal bios from a request and add them to a bio list. 3007 * The request must not have been partially completed before. 3008 */ 3009 void blk_steal_bios(struct bio_list *list, struct request *rq) 3010 { 3011 if (rq->bio) { 3012 if (list->tail) 3013 list->tail->bi_next = rq->bio; 3014 else 3015 list->head = rq->bio; 3016 list->tail = rq->biotail; 3017 3018 rq->bio = NULL; 3019 rq->biotail = NULL; 3020 } 3021 3022 rq->__data_len = 0; 3023 } 3024 EXPORT_SYMBOL_GPL(blk_steal_bios); 3025 3026 static size_t order_to_size(unsigned int order) 3027 { 3028 return (size_t)PAGE_SIZE << order; 3029 } 3030 3031 /* called before freeing request pool in @tags */ 3032 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3033 struct blk_mq_tags *tags) 3034 { 3035 struct page *page; 3036 unsigned long flags; 3037 3038 /* There is no need to clear a driver tags own mapping */ 3039 if (drv_tags == tags) 3040 return; 3041 3042 list_for_each_entry(page, &tags->page_list, lru) { 3043 unsigned long start = (unsigned long)page_address(page); 3044 unsigned long end = start + order_to_size(page->private); 3045 int i; 3046 3047 for (i = 0; i < drv_tags->nr_tags; i++) { 3048 struct request *rq = drv_tags->rqs[i]; 3049 unsigned long rq_addr = (unsigned long)rq; 3050 3051 if (rq_addr >= start && rq_addr < end) { 3052 WARN_ON_ONCE(req_ref_read(rq) != 0); 3053 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3054 } 3055 } 3056 } 3057 3058 /* 3059 * Wait until all pending iteration is done. 3060 * 3061 * Request reference is cleared and it is guaranteed to be observed 3062 * after the ->lock is released. 3063 */ 3064 spin_lock_irqsave(&drv_tags->lock, flags); 3065 spin_unlock_irqrestore(&drv_tags->lock, flags); 3066 } 3067 3068 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3069 unsigned int hctx_idx) 3070 { 3071 struct blk_mq_tags *drv_tags; 3072 struct page *page; 3073 3074 if (list_empty(&tags->page_list)) 3075 return; 3076 3077 if (blk_mq_is_shared_tags(set->flags)) 3078 drv_tags = set->shared_tags; 3079 else 3080 drv_tags = set->tags[hctx_idx]; 3081 3082 if (tags->static_rqs && set->ops->exit_request) { 3083 int i; 3084 3085 for (i = 0; i < tags->nr_tags; i++) { 3086 struct request *rq = tags->static_rqs[i]; 3087 3088 if (!rq) 3089 continue; 3090 set->ops->exit_request(set, rq, hctx_idx); 3091 tags->static_rqs[i] = NULL; 3092 } 3093 } 3094 3095 blk_mq_clear_rq_mapping(drv_tags, tags); 3096 3097 while (!list_empty(&tags->page_list)) { 3098 page = list_first_entry(&tags->page_list, struct page, lru); 3099 list_del_init(&page->lru); 3100 /* 3101 * Remove kmemleak object previously allocated in 3102 * blk_mq_alloc_rqs(). 3103 */ 3104 kmemleak_free(page_address(page)); 3105 __free_pages(page, page->private); 3106 } 3107 } 3108 3109 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3110 { 3111 kfree(tags->rqs); 3112 tags->rqs = NULL; 3113 kfree(tags->static_rqs); 3114 tags->static_rqs = NULL; 3115 3116 blk_mq_free_tags(tags); 3117 } 3118 3119 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3120 unsigned int hctx_idx) 3121 { 3122 int i; 3123 3124 for (i = 0; i < set->nr_maps; i++) { 3125 unsigned int start = set->map[i].queue_offset; 3126 unsigned int end = start + set->map[i].nr_queues; 3127 3128 if (hctx_idx >= start && hctx_idx < end) 3129 break; 3130 } 3131 3132 if (i >= set->nr_maps) 3133 i = HCTX_TYPE_DEFAULT; 3134 3135 return i; 3136 } 3137 3138 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3139 unsigned int hctx_idx) 3140 { 3141 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3142 3143 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3144 } 3145 3146 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3147 unsigned int hctx_idx, 3148 unsigned int nr_tags, 3149 unsigned int reserved_tags) 3150 { 3151 int node = blk_mq_get_hctx_node(set, hctx_idx); 3152 struct blk_mq_tags *tags; 3153 3154 if (node == NUMA_NO_NODE) 3155 node = set->numa_node; 3156 3157 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3158 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3159 if (!tags) 3160 return NULL; 3161 3162 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3163 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3164 node); 3165 if (!tags->rqs) { 3166 blk_mq_free_tags(tags); 3167 return NULL; 3168 } 3169 3170 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3171 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3172 node); 3173 if (!tags->static_rqs) { 3174 kfree(tags->rqs); 3175 blk_mq_free_tags(tags); 3176 return NULL; 3177 } 3178 3179 return tags; 3180 } 3181 3182 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3183 unsigned int hctx_idx, int node) 3184 { 3185 int ret; 3186 3187 if (set->ops->init_request) { 3188 ret = set->ops->init_request(set, rq, hctx_idx, node); 3189 if (ret) 3190 return ret; 3191 } 3192 3193 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3194 return 0; 3195 } 3196 3197 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3198 struct blk_mq_tags *tags, 3199 unsigned int hctx_idx, unsigned int depth) 3200 { 3201 unsigned int i, j, entries_per_page, max_order = 4; 3202 int node = blk_mq_get_hctx_node(set, hctx_idx); 3203 size_t rq_size, left; 3204 3205 if (node == NUMA_NO_NODE) 3206 node = set->numa_node; 3207 3208 INIT_LIST_HEAD(&tags->page_list); 3209 3210 /* 3211 * rq_size is the size of the request plus driver payload, rounded 3212 * to the cacheline size 3213 */ 3214 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3215 cache_line_size()); 3216 left = rq_size * depth; 3217 3218 for (i = 0; i < depth; ) { 3219 int this_order = max_order; 3220 struct page *page; 3221 int to_do; 3222 void *p; 3223 3224 while (this_order && left < order_to_size(this_order - 1)) 3225 this_order--; 3226 3227 do { 3228 page = alloc_pages_node(node, 3229 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3230 this_order); 3231 if (page) 3232 break; 3233 if (!this_order--) 3234 break; 3235 if (order_to_size(this_order) < rq_size) 3236 break; 3237 } while (1); 3238 3239 if (!page) 3240 goto fail; 3241 3242 page->private = this_order; 3243 list_add_tail(&page->lru, &tags->page_list); 3244 3245 p = page_address(page); 3246 /* 3247 * Allow kmemleak to scan these pages as they contain pointers 3248 * to additional allocations like via ops->init_request(). 3249 */ 3250 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3251 entries_per_page = order_to_size(this_order) / rq_size; 3252 to_do = min(entries_per_page, depth - i); 3253 left -= to_do * rq_size; 3254 for (j = 0; j < to_do; j++) { 3255 struct request *rq = p; 3256 3257 tags->static_rqs[i] = rq; 3258 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3259 tags->static_rqs[i] = NULL; 3260 goto fail; 3261 } 3262 3263 p += rq_size; 3264 i++; 3265 } 3266 } 3267 return 0; 3268 3269 fail: 3270 blk_mq_free_rqs(set, tags, hctx_idx); 3271 return -ENOMEM; 3272 } 3273 3274 struct rq_iter_data { 3275 struct blk_mq_hw_ctx *hctx; 3276 bool has_rq; 3277 }; 3278 3279 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 3280 { 3281 struct rq_iter_data *iter_data = data; 3282 3283 if (rq->mq_hctx != iter_data->hctx) 3284 return true; 3285 iter_data->has_rq = true; 3286 return false; 3287 } 3288 3289 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3290 { 3291 struct blk_mq_tags *tags = hctx->sched_tags ? 3292 hctx->sched_tags : hctx->tags; 3293 struct rq_iter_data data = { 3294 .hctx = hctx, 3295 }; 3296 3297 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3298 return data.has_rq; 3299 } 3300 3301 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3302 struct blk_mq_hw_ctx *hctx) 3303 { 3304 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3305 return false; 3306 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3307 return false; 3308 return true; 3309 } 3310 3311 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3312 { 3313 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3314 struct blk_mq_hw_ctx, cpuhp_online); 3315 3316 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3317 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3318 return 0; 3319 3320 /* 3321 * Prevent new request from being allocated on the current hctx. 3322 * 3323 * The smp_mb__after_atomic() Pairs with the implied barrier in 3324 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3325 * seen once we return from the tag allocator. 3326 */ 3327 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3328 smp_mb__after_atomic(); 3329 3330 /* 3331 * Try to grab a reference to the queue and wait for any outstanding 3332 * requests. If we could not grab a reference the queue has been 3333 * frozen and there are no requests. 3334 */ 3335 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3336 while (blk_mq_hctx_has_requests(hctx)) 3337 msleep(5); 3338 percpu_ref_put(&hctx->queue->q_usage_counter); 3339 } 3340 3341 return 0; 3342 } 3343 3344 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3345 { 3346 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3347 struct blk_mq_hw_ctx, cpuhp_online); 3348 3349 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3350 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3351 return 0; 3352 } 3353 3354 /* 3355 * 'cpu' is going away. splice any existing rq_list entries from this 3356 * software queue to the hw queue dispatch list, and ensure that it 3357 * gets run. 3358 */ 3359 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3360 { 3361 struct blk_mq_hw_ctx *hctx; 3362 struct blk_mq_ctx *ctx; 3363 LIST_HEAD(tmp); 3364 enum hctx_type type; 3365 3366 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3367 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3368 return 0; 3369 3370 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3371 type = hctx->type; 3372 3373 spin_lock(&ctx->lock); 3374 if (!list_empty(&ctx->rq_lists[type])) { 3375 list_splice_init(&ctx->rq_lists[type], &tmp); 3376 blk_mq_hctx_clear_pending(hctx, ctx); 3377 } 3378 spin_unlock(&ctx->lock); 3379 3380 if (list_empty(&tmp)) 3381 return 0; 3382 3383 spin_lock(&hctx->lock); 3384 list_splice_tail_init(&tmp, &hctx->dispatch); 3385 spin_unlock(&hctx->lock); 3386 3387 blk_mq_run_hw_queue(hctx, true); 3388 return 0; 3389 } 3390 3391 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3392 { 3393 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3394 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3395 &hctx->cpuhp_online); 3396 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3397 &hctx->cpuhp_dead); 3398 } 3399 3400 /* 3401 * Before freeing hw queue, clearing the flush request reference in 3402 * tags->rqs[] for avoiding potential UAF. 3403 */ 3404 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3405 unsigned int queue_depth, struct request *flush_rq) 3406 { 3407 int i; 3408 unsigned long flags; 3409 3410 /* The hw queue may not be mapped yet */ 3411 if (!tags) 3412 return; 3413 3414 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3415 3416 for (i = 0; i < queue_depth; i++) 3417 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3418 3419 /* 3420 * Wait until all pending iteration is done. 3421 * 3422 * Request reference is cleared and it is guaranteed to be observed 3423 * after the ->lock is released. 3424 */ 3425 spin_lock_irqsave(&tags->lock, flags); 3426 spin_unlock_irqrestore(&tags->lock, flags); 3427 } 3428 3429 /* hctx->ctxs will be freed in queue's release handler */ 3430 static void blk_mq_exit_hctx(struct request_queue *q, 3431 struct blk_mq_tag_set *set, 3432 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3433 { 3434 struct request *flush_rq = hctx->fq->flush_rq; 3435 3436 if (blk_mq_hw_queue_mapped(hctx)) 3437 blk_mq_tag_idle(hctx); 3438 3439 if (blk_queue_init_done(q)) 3440 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3441 set->queue_depth, flush_rq); 3442 if (set->ops->exit_request) 3443 set->ops->exit_request(set, flush_rq, hctx_idx); 3444 3445 if (set->ops->exit_hctx) 3446 set->ops->exit_hctx(hctx, hctx_idx); 3447 3448 blk_mq_remove_cpuhp(hctx); 3449 3450 xa_erase(&q->hctx_table, hctx_idx); 3451 3452 spin_lock(&q->unused_hctx_lock); 3453 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3454 spin_unlock(&q->unused_hctx_lock); 3455 } 3456 3457 static void blk_mq_exit_hw_queues(struct request_queue *q, 3458 struct blk_mq_tag_set *set, int nr_queue) 3459 { 3460 struct blk_mq_hw_ctx *hctx; 3461 unsigned long i; 3462 3463 queue_for_each_hw_ctx(q, hctx, i) { 3464 if (i == nr_queue) 3465 break; 3466 blk_mq_exit_hctx(q, set, hctx, i); 3467 } 3468 } 3469 3470 static int blk_mq_init_hctx(struct request_queue *q, 3471 struct blk_mq_tag_set *set, 3472 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3473 { 3474 hctx->queue_num = hctx_idx; 3475 3476 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3477 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3478 &hctx->cpuhp_online); 3479 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3480 3481 hctx->tags = set->tags[hctx_idx]; 3482 3483 if (set->ops->init_hctx && 3484 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3485 goto unregister_cpu_notifier; 3486 3487 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3488 hctx->numa_node)) 3489 goto exit_hctx; 3490 3491 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3492 goto exit_flush_rq; 3493 3494 return 0; 3495 3496 exit_flush_rq: 3497 if (set->ops->exit_request) 3498 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3499 exit_hctx: 3500 if (set->ops->exit_hctx) 3501 set->ops->exit_hctx(hctx, hctx_idx); 3502 unregister_cpu_notifier: 3503 blk_mq_remove_cpuhp(hctx); 3504 return -1; 3505 } 3506 3507 static struct blk_mq_hw_ctx * 3508 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3509 int node) 3510 { 3511 struct blk_mq_hw_ctx *hctx; 3512 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3513 3514 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3515 if (!hctx) 3516 goto fail_alloc_hctx; 3517 3518 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3519 goto free_hctx; 3520 3521 atomic_set(&hctx->nr_active, 0); 3522 if (node == NUMA_NO_NODE) 3523 node = set->numa_node; 3524 hctx->numa_node = node; 3525 3526 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3527 spin_lock_init(&hctx->lock); 3528 INIT_LIST_HEAD(&hctx->dispatch); 3529 hctx->queue = q; 3530 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3531 3532 INIT_LIST_HEAD(&hctx->hctx_list); 3533 3534 /* 3535 * Allocate space for all possible cpus to avoid allocation at 3536 * runtime 3537 */ 3538 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3539 gfp, node); 3540 if (!hctx->ctxs) 3541 goto free_cpumask; 3542 3543 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3544 gfp, node, false, false)) 3545 goto free_ctxs; 3546 hctx->nr_ctx = 0; 3547 3548 spin_lock_init(&hctx->dispatch_wait_lock); 3549 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3550 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3551 3552 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3553 if (!hctx->fq) 3554 goto free_bitmap; 3555 3556 blk_mq_hctx_kobj_init(hctx); 3557 3558 return hctx; 3559 3560 free_bitmap: 3561 sbitmap_free(&hctx->ctx_map); 3562 free_ctxs: 3563 kfree(hctx->ctxs); 3564 free_cpumask: 3565 free_cpumask_var(hctx->cpumask); 3566 free_hctx: 3567 kfree(hctx); 3568 fail_alloc_hctx: 3569 return NULL; 3570 } 3571 3572 static void blk_mq_init_cpu_queues(struct request_queue *q, 3573 unsigned int nr_hw_queues) 3574 { 3575 struct blk_mq_tag_set *set = q->tag_set; 3576 unsigned int i, j; 3577 3578 for_each_possible_cpu(i) { 3579 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3580 struct blk_mq_hw_ctx *hctx; 3581 int k; 3582 3583 __ctx->cpu = i; 3584 spin_lock_init(&__ctx->lock); 3585 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3586 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3587 3588 __ctx->queue = q; 3589 3590 /* 3591 * Set local node, IFF we have more than one hw queue. If 3592 * not, we remain on the home node of the device 3593 */ 3594 for (j = 0; j < set->nr_maps; j++) { 3595 hctx = blk_mq_map_queue_type(q, j, i); 3596 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3597 hctx->numa_node = cpu_to_node(i); 3598 } 3599 } 3600 } 3601 3602 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3603 unsigned int hctx_idx, 3604 unsigned int depth) 3605 { 3606 struct blk_mq_tags *tags; 3607 int ret; 3608 3609 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3610 if (!tags) 3611 return NULL; 3612 3613 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3614 if (ret) { 3615 blk_mq_free_rq_map(tags); 3616 return NULL; 3617 } 3618 3619 return tags; 3620 } 3621 3622 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3623 int hctx_idx) 3624 { 3625 if (blk_mq_is_shared_tags(set->flags)) { 3626 set->tags[hctx_idx] = set->shared_tags; 3627 3628 return true; 3629 } 3630 3631 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3632 set->queue_depth); 3633 3634 return set->tags[hctx_idx]; 3635 } 3636 3637 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3638 struct blk_mq_tags *tags, 3639 unsigned int hctx_idx) 3640 { 3641 if (tags) { 3642 blk_mq_free_rqs(set, tags, hctx_idx); 3643 blk_mq_free_rq_map(tags); 3644 } 3645 } 3646 3647 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3648 unsigned int hctx_idx) 3649 { 3650 if (!blk_mq_is_shared_tags(set->flags)) 3651 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3652 3653 set->tags[hctx_idx] = NULL; 3654 } 3655 3656 static void blk_mq_map_swqueue(struct request_queue *q) 3657 { 3658 unsigned int j, hctx_idx; 3659 unsigned long i; 3660 struct blk_mq_hw_ctx *hctx; 3661 struct blk_mq_ctx *ctx; 3662 struct blk_mq_tag_set *set = q->tag_set; 3663 3664 queue_for_each_hw_ctx(q, hctx, i) { 3665 cpumask_clear(hctx->cpumask); 3666 hctx->nr_ctx = 0; 3667 hctx->dispatch_from = NULL; 3668 } 3669 3670 /* 3671 * Map software to hardware queues. 3672 * 3673 * If the cpu isn't present, the cpu is mapped to first hctx. 3674 */ 3675 for_each_possible_cpu(i) { 3676 3677 ctx = per_cpu_ptr(q->queue_ctx, i); 3678 for (j = 0; j < set->nr_maps; j++) { 3679 if (!set->map[j].nr_queues) { 3680 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3681 HCTX_TYPE_DEFAULT, i); 3682 continue; 3683 } 3684 hctx_idx = set->map[j].mq_map[i]; 3685 /* unmapped hw queue can be remapped after CPU topo changed */ 3686 if (!set->tags[hctx_idx] && 3687 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3688 /* 3689 * If tags initialization fail for some hctx, 3690 * that hctx won't be brought online. In this 3691 * case, remap the current ctx to hctx[0] which 3692 * is guaranteed to always have tags allocated 3693 */ 3694 set->map[j].mq_map[i] = 0; 3695 } 3696 3697 hctx = blk_mq_map_queue_type(q, j, i); 3698 ctx->hctxs[j] = hctx; 3699 /* 3700 * If the CPU is already set in the mask, then we've 3701 * mapped this one already. This can happen if 3702 * devices share queues across queue maps. 3703 */ 3704 if (cpumask_test_cpu(i, hctx->cpumask)) 3705 continue; 3706 3707 cpumask_set_cpu(i, hctx->cpumask); 3708 hctx->type = j; 3709 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3710 hctx->ctxs[hctx->nr_ctx++] = ctx; 3711 3712 /* 3713 * If the nr_ctx type overflows, we have exceeded the 3714 * amount of sw queues we can support. 3715 */ 3716 BUG_ON(!hctx->nr_ctx); 3717 } 3718 3719 for (; j < HCTX_MAX_TYPES; j++) 3720 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3721 HCTX_TYPE_DEFAULT, i); 3722 } 3723 3724 queue_for_each_hw_ctx(q, hctx, i) { 3725 /* 3726 * If no software queues are mapped to this hardware queue, 3727 * disable it and free the request entries. 3728 */ 3729 if (!hctx->nr_ctx) { 3730 /* Never unmap queue 0. We need it as a 3731 * fallback in case of a new remap fails 3732 * allocation 3733 */ 3734 if (i) 3735 __blk_mq_free_map_and_rqs(set, i); 3736 3737 hctx->tags = NULL; 3738 continue; 3739 } 3740 3741 hctx->tags = set->tags[i]; 3742 WARN_ON(!hctx->tags); 3743 3744 /* 3745 * Set the map size to the number of mapped software queues. 3746 * This is more accurate and more efficient than looping 3747 * over all possibly mapped software queues. 3748 */ 3749 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3750 3751 /* 3752 * Initialize batch roundrobin counts 3753 */ 3754 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3755 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3756 } 3757 } 3758 3759 /* 3760 * Caller needs to ensure that we're either frozen/quiesced, or that 3761 * the queue isn't live yet. 3762 */ 3763 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3764 { 3765 struct blk_mq_hw_ctx *hctx; 3766 unsigned long i; 3767 3768 queue_for_each_hw_ctx(q, hctx, i) { 3769 if (shared) { 3770 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3771 } else { 3772 blk_mq_tag_idle(hctx); 3773 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3774 } 3775 } 3776 } 3777 3778 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3779 bool shared) 3780 { 3781 struct request_queue *q; 3782 3783 lockdep_assert_held(&set->tag_list_lock); 3784 3785 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3786 blk_mq_freeze_queue(q); 3787 queue_set_hctx_shared(q, shared); 3788 blk_mq_unfreeze_queue(q); 3789 } 3790 } 3791 3792 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3793 { 3794 struct blk_mq_tag_set *set = q->tag_set; 3795 3796 mutex_lock(&set->tag_list_lock); 3797 list_del(&q->tag_set_list); 3798 if (list_is_singular(&set->tag_list)) { 3799 /* just transitioned to unshared */ 3800 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3801 /* update existing queue */ 3802 blk_mq_update_tag_set_shared(set, false); 3803 } 3804 mutex_unlock(&set->tag_list_lock); 3805 INIT_LIST_HEAD(&q->tag_set_list); 3806 } 3807 3808 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3809 struct request_queue *q) 3810 { 3811 mutex_lock(&set->tag_list_lock); 3812 3813 /* 3814 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3815 */ 3816 if (!list_empty(&set->tag_list) && 3817 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3818 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3819 /* update existing queue */ 3820 blk_mq_update_tag_set_shared(set, true); 3821 } 3822 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3823 queue_set_hctx_shared(q, true); 3824 list_add_tail(&q->tag_set_list, &set->tag_list); 3825 3826 mutex_unlock(&set->tag_list_lock); 3827 } 3828 3829 /* All allocations will be freed in release handler of q->mq_kobj */ 3830 static int blk_mq_alloc_ctxs(struct request_queue *q) 3831 { 3832 struct blk_mq_ctxs *ctxs; 3833 int cpu; 3834 3835 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3836 if (!ctxs) 3837 return -ENOMEM; 3838 3839 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3840 if (!ctxs->queue_ctx) 3841 goto fail; 3842 3843 for_each_possible_cpu(cpu) { 3844 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3845 ctx->ctxs = ctxs; 3846 } 3847 3848 q->mq_kobj = &ctxs->kobj; 3849 q->queue_ctx = ctxs->queue_ctx; 3850 3851 return 0; 3852 fail: 3853 kfree(ctxs); 3854 return -ENOMEM; 3855 } 3856 3857 /* 3858 * It is the actual release handler for mq, but we do it from 3859 * request queue's release handler for avoiding use-after-free 3860 * and headache because q->mq_kobj shouldn't have been introduced, 3861 * but we can't group ctx/kctx kobj without it. 3862 */ 3863 void blk_mq_release(struct request_queue *q) 3864 { 3865 struct blk_mq_hw_ctx *hctx, *next; 3866 unsigned long i; 3867 3868 queue_for_each_hw_ctx(q, hctx, i) 3869 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3870 3871 /* all hctx are in .unused_hctx_list now */ 3872 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3873 list_del_init(&hctx->hctx_list); 3874 kobject_put(&hctx->kobj); 3875 } 3876 3877 xa_destroy(&q->hctx_table); 3878 3879 /* 3880 * release .mq_kobj and sw queue's kobject now because 3881 * both share lifetime with request queue. 3882 */ 3883 blk_mq_sysfs_deinit(q); 3884 } 3885 3886 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3887 void *queuedata) 3888 { 3889 struct request_queue *q; 3890 int ret; 3891 3892 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING); 3893 if (!q) 3894 return ERR_PTR(-ENOMEM); 3895 q->queuedata = queuedata; 3896 ret = blk_mq_init_allocated_queue(set, q); 3897 if (ret) { 3898 blk_cleanup_queue(q); 3899 return ERR_PTR(ret); 3900 } 3901 return q; 3902 } 3903 3904 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3905 { 3906 return blk_mq_init_queue_data(set, NULL); 3907 } 3908 EXPORT_SYMBOL(blk_mq_init_queue); 3909 3910 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3911 struct lock_class_key *lkclass) 3912 { 3913 struct request_queue *q; 3914 struct gendisk *disk; 3915 3916 q = blk_mq_init_queue_data(set, queuedata); 3917 if (IS_ERR(q)) 3918 return ERR_CAST(q); 3919 3920 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3921 if (!disk) { 3922 blk_cleanup_queue(q); 3923 return ERR_PTR(-ENOMEM); 3924 } 3925 return disk; 3926 } 3927 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3928 3929 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3930 struct blk_mq_tag_set *set, struct request_queue *q, 3931 int hctx_idx, int node) 3932 { 3933 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3934 3935 /* reuse dead hctx first */ 3936 spin_lock(&q->unused_hctx_lock); 3937 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3938 if (tmp->numa_node == node) { 3939 hctx = tmp; 3940 break; 3941 } 3942 } 3943 if (hctx) 3944 list_del_init(&hctx->hctx_list); 3945 spin_unlock(&q->unused_hctx_lock); 3946 3947 if (!hctx) 3948 hctx = blk_mq_alloc_hctx(q, set, node); 3949 if (!hctx) 3950 goto fail; 3951 3952 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3953 goto free_hctx; 3954 3955 return hctx; 3956 3957 free_hctx: 3958 kobject_put(&hctx->kobj); 3959 fail: 3960 return NULL; 3961 } 3962 3963 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3964 struct request_queue *q) 3965 { 3966 struct blk_mq_hw_ctx *hctx; 3967 unsigned long i, j; 3968 3969 /* protect against switching io scheduler */ 3970 mutex_lock(&q->sysfs_lock); 3971 for (i = 0; i < set->nr_hw_queues; i++) { 3972 int old_node; 3973 int node = blk_mq_get_hctx_node(set, i); 3974 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 3975 3976 if (old_hctx) { 3977 old_node = old_hctx->numa_node; 3978 blk_mq_exit_hctx(q, set, old_hctx, i); 3979 } 3980 3981 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 3982 if (!old_hctx) 3983 break; 3984 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 3985 node, old_node); 3986 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 3987 WARN_ON_ONCE(!hctx); 3988 } 3989 } 3990 /* 3991 * Increasing nr_hw_queues fails. Free the newly allocated 3992 * hctxs and keep the previous q->nr_hw_queues. 3993 */ 3994 if (i != set->nr_hw_queues) { 3995 j = q->nr_hw_queues; 3996 } else { 3997 j = i; 3998 q->nr_hw_queues = set->nr_hw_queues; 3999 } 4000 4001 xa_for_each_start(&q->hctx_table, j, hctx, j) 4002 blk_mq_exit_hctx(q, set, hctx, j); 4003 mutex_unlock(&q->sysfs_lock); 4004 } 4005 4006 static void blk_mq_update_poll_flag(struct request_queue *q) 4007 { 4008 struct blk_mq_tag_set *set = q->tag_set; 4009 4010 if (set->nr_maps > HCTX_TYPE_POLL && 4011 set->map[HCTX_TYPE_POLL].nr_queues) 4012 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4013 else 4014 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4015 } 4016 4017 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4018 struct request_queue *q) 4019 { 4020 WARN_ON_ONCE(blk_queue_has_srcu(q) != 4021 !!(set->flags & BLK_MQ_F_BLOCKING)); 4022 4023 /* mark the queue as mq asap */ 4024 q->mq_ops = set->ops; 4025 4026 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4027 blk_mq_poll_stats_bkt, 4028 BLK_MQ_POLL_STATS_BKTS, q); 4029 if (!q->poll_cb) 4030 goto err_exit; 4031 4032 if (blk_mq_alloc_ctxs(q)) 4033 goto err_poll; 4034 4035 /* init q->mq_kobj and sw queues' kobjects */ 4036 blk_mq_sysfs_init(q); 4037 4038 INIT_LIST_HEAD(&q->unused_hctx_list); 4039 spin_lock_init(&q->unused_hctx_lock); 4040 4041 xa_init(&q->hctx_table); 4042 4043 blk_mq_realloc_hw_ctxs(set, q); 4044 if (!q->nr_hw_queues) 4045 goto err_hctxs; 4046 4047 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4048 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4049 4050 q->tag_set = set; 4051 4052 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4053 blk_mq_update_poll_flag(q); 4054 4055 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4056 INIT_LIST_HEAD(&q->requeue_list); 4057 spin_lock_init(&q->requeue_lock); 4058 4059 q->nr_requests = set->queue_depth; 4060 4061 /* 4062 * Default to classic polling 4063 */ 4064 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4065 4066 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4067 blk_mq_add_queue_tag_set(set, q); 4068 blk_mq_map_swqueue(q); 4069 return 0; 4070 4071 err_hctxs: 4072 xa_destroy(&q->hctx_table); 4073 q->nr_hw_queues = 0; 4074 blk_mq_sysfs_deinit(q); 4075 err_poll: 4076 blk_stat_free_callback(q->poll_cb); 4077 q->poll_cb = NULL; 4078 err_exit: 4079 q->mq_ops = NULL; 4080 return -ENOMEM; 4081 } 4082 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4083 4084 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4085 void blk_mq_exit_queue(struct request_queue *q) 4086 { 4087 struct blk_mq_tag_set *set = q->tag_set; 4088 4089 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4090 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4091 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4092 blk_mq_del_queue_tag_set(q); 4093 } 4094 4095 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4096 { 4097 int i; 4098 4099 if (blk_mq_is_shared_tags(set->flags)) { 4100 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4101 BLK_MQ_NO_HCTX_IDX, 4102 set->queue_depth); 4103 if (!set->shared_tags) 4104 return -ENOMEM; 4105 } 4106 4107 for (i = 0; i < set->nr_hw_queues; i++) { 4108 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4109 goto out_unwind; 4110 cond_resched(); 4111 } 4112 4113 return 0; 4114 4115 out_unwind: 4116 while (--i >= 0) 4117 __blk_mq_free_map_and_rqs(set, i); 4118 4119 if (blk_mq_is_shared_tags(set->flags)) { 4120 blk_mq_free_map_and_rqs(set, set->shared_tags, 4121 BLK_MQ_NO_HCTX_IDX); 4122 } 4123 4124 return -ENOMEM; 4125 } 4126 4127 /* 4128 * Allocate the request maps associated with this tag_set. Note that this 4129 * may reduce the depth asked for, if memory is tight. set->queue_depth 4130 * will be updated to reflect the allocated depth. 4131 */ 4132 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4133 { 4134 unsigned int depth; 4135 int err; 4136 4137 depth = set->queue_depth; 4138 do { 4139 err = __blk_mq_alloc_rq_maps(set); 4140 if (!err) 4141 break; 4142 4143 set->queue_depth >>= 1; 4144 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4145 err = -ENOMEM; 4146 break; 4147 } 4148 } while (set->queue_depth); 4149 4150 if (!set->queue_depth || err) { 4151 pr_err("blk-mq: failed to allocate request map\n"); 4152 return -ENOMEM; 4153 } 4154 4155 if (depth != set->queue_depth) 4156 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4157 depth, set->queue_depth); 4158 4159 return 0; 4160 } 4161 4162 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4163 { 4164 /* 4165 * blk_mq_map_queues() and multiple .map_queues() implementations 4166 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4167 * number of hardware queues. 4168 */ 4169 if (set->nr_maps == 1) 4170 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4171 4172 if (set->ops->map_queues && !is_kdump_kernel()) { 4173 int i; 4174 4175 /* 4176 * transport .map_queues is usually done in the following 4177 * way: 4178 * 4179 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4180 * mask = get_cpu_mask(queue) 4181 * for_each_cpu(cpu, mask) 4182 * set->map[x].mq_map[cpu] = queue; 4183 * } 4184 * 4185 * When we need to remap, the table has to be cleared for 4186 * killing stale mapping since one CPU may not be mapped 4187 * to any hw queue. 4188 */ 4189 for (i = 0; i < set->nr_maps; i++) 4190 blk_mq_clear_mq_map(&set->map[i]); 4191 4192 return set->ops->map_queues(set); 4193 } else { 4194 BUG_ON(set->nr_maps > 1); 4195 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4196 } 4197 } 4198 4199 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4200 int cur_nr_hw_queues, int new_nr_hw_queues) 4201 { 4202 struct blk_mq_tags **new_tags; 4203 4204 if (cur_nr_hw_queues >= new_nr_hw_queues) 4205 return 0; 4206 4207 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4208 GFP_KERNEL, set->numa_node); 4209 if (!new_tags) 4210 return -ENOMEM; 4211 4212 if (set->tags) 4213 memcpy(new_tags, set->tags, cur_nr_hw_queues * 4214 sizeof(*set->tags)); 4215 kfree(set->tags); 4216 set->tags = new_tags; 4217 set->nr_hw_queues = new_nr_hw_queues; 4218 4219 return 0; 4220 } 4221 4222 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 4223 int new_nr_hw_queues) 4224 { 4225 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 4226 } 4227 4228 /* 4229 * Alloc a tag set to be associated with one or more request queues. 4230 * May fail with EINVAL for various error conditions. May adjust the 4231 * requested depth down, if it's too large. In that case, the set 4232 * value will be stored in set->queue_depth. 4233 */ 4234 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4235 { 4236 int i, ret; 4237 4238 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4239 4240 if (!set->nr_hw_queues) 4241 return -EINVAL; 4242 if (!set->queue_depth) 4243 return -EINVAL; 4244 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4245 return -EINVAL; 4246 4247 if (!set->ops->queue_rq) 4248 return -EINVAL; 4249 4250 if (!set->ops->get_budget ^ !set->ops->put_budget) 4251 return -EINVAL; 4252 4253 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4254 pr_info("blk-mq: reduced tag depth to %u\n", 4255 BLK_MQ_MAX_DEPTH); 4256 set->queue_depth = BLK_MQ_MAX_DEPTH; 4257 } 4258 4259 if (!set->nr_maps) 4260 set->nr_maps = 1; 4261 else if (set->nr_maps > HCTX_MAX_TYPES) 4262 return -EINVAL; 4263 4264 /* 4265 * If a crashdump is active, then we are potentially in a very 4266 * memory constrained environment. Limit us to 1 queue and 4267 * 64 tags to prevent using too much memory. 4268 */ 4269 if (is_kdump_kernel()) { 4270 set->nr_hw_queues = 1; 4271 set->nr_maps = 1; 4272 set->queue_depth = min(64U, set->queue_depth); 4273 } 4274 /* 4275 * There is no use for more h/w queues than cpus if we just have 4276 * a single map 4277 */ 4278 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4279 set->nr_hw_queues = nr_cpu_ids; 4280 4281 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 4282 return -ENOMEM; 4283 4284 ret = -ENOMEM; 4285 for (i = 0; i < set->nr_maps; i++) { 4286 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4287 sizeof(set->map[i].mq_map[0]), 4288 GFP_KERNEL, set->numa_node); 4289 if (!set->map[i].mq_map) 4290 goto out_free_mq_map; 4291 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4292 } 4293 4294 ret = blk_mq_update_queue_map(set); 4295 if (ret) 4296 goto out_free_mq_map; 4297 4298 ret = blk_mq_alloc_set_map_and_rqs(set); 4299 if (ret) 4300 goto out_free_mq_map; 4301 4302 mutex_init(&set->tag_list_lock); 4303 INIT_LIST_HEAD(&set->tag_list); 4304 4305 return 0; 4306 4307 out_free_mq_map: 4308 for (i = 0; i < set->nr_maps; i++) { 4309 kfree(set->map[i].mq_map); 4310 set->map[i].mq_map = NULL; 4311 } 4312 kfree(set->tags); 4313 set->tags = NULL; 4314 return ret; 4315 } 4316 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4317 4318 /* allocate and initialize a tagset for a simple single-queue device */ 4319 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4320 const struct blk_mq_ops *ops, unsigned int queue_depth, 4321 unsigned int set_flags) 4322 { 4323 memset(set, 0, sizeof(*set)); 4324 set->ops = ops; 4325 set->nr_hw_queues = 1; 4326 set->nr_maps = 1; 4327 set->queue_depth = queue_depth; 4328 set->numa_node = NUMA_NO_NODE; 4329 set->flags = set_flags; 4330 return blk_mq_alloc_tag_set(set); 4331 } 4332 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4333 4334 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4335 { 4336 int i, j; 4337 4338 for (i = 0; i < set->nr_hw_queues; i++) 4339 __blk_mq_free_map_and_rqs(set, i); 4340 4341 if (blk_mq_is_shared_tags(set->flags)) { 4342 blk_mq_free_map_and_rqs(set, set->shared_tags, 4343 BLK_MQ_NO_HCTX_IDX); 4344 } 4345 4346 for (j = 0; j < set->nr_maps; j++) { 4347 kfree(set->map[j].mq_map); 4348 set->map[j].mq_map = NULL; 4349 } 4350 4351 kfree(set->tags); 4352 set->tags = NULL; 4353 } 4354 EXPORT_SYMBOL(blk_mq_free_tag_set); 4355 4356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4357 { 4358 struct blk_mq_tag_set *set = q->tag_set; 4359 struct blk_mq_hw_ctx *hctx; 4360 int ret; 4361 unsigned long i; 4362 4363 if (!set) 4364 return -EINVAL; 4365 4366 if (q->nr_requests == nr) 4367 return 0; 4368 4369 blk_mq_freeze_queue(q); 4370 blk_mq_quiesce_queue(q); 4371 4372 ret = 0; 4373 queue_for_each_hw_ctx(q, hctx, i) { 4374 if (!hctx->tags) 4375 continue; 4376 /* 4377 * If we're using an MQ scheduler, just update the scheduler 4378 * queue depth. This is similar to what the old code would do. 4379 */ 4380 if (hctx->sched_tags) { 4381 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4382 nr, true); 4383 } else { 4384 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4385 false); 4386 } 4387 if (ret) 4388 break; 4389 if (q->elevator && q->elevator->type->ops.depth_updated) 4390 q->elevator->type->ops.depth_updated(hctx); 4391 } 4392 if (!ret) { 4393 q->nr_requests = nr; 4394 if (blk_mq_is_shared_tags(set->flags)) { 4395 if (q->elevator) 4396 blk_mq_tag_update_sched_shared_tags(q); 4397 else 4398 blk_mq_tag_resize_shared_tags(set, nr); 4399 } 4400 } 4401 4402 blk_mq_unquiesce_queue(q); 4403 blk_mq_unfreeze_queue(q); 4404 4405 return ret; 4406 } 4407 4408 /* 4409 * request_queue and elevator_type pair. 4410 * It is just used by __blk_mq_update_nr_hw_queues to cache 4411 * the elevator_type associated with a request_queue. 4412 */ 4413 struct blk_mq_qe_pair { 4414 struct list_head node; 4415 struct request_queue *q; 4416 struct elevator_type *type; 4417 }; 4418 4419 /* 4420 * Cache the elevator_type in qe pair list and switch the 4421 * io scheduler to 'none' 4422 */ 4423 static bool blk_mq_elv_switch_none(struct list_head *head, 4424 struct request_queue *q) 4425 { 4426 struct blk_mq_qe_pair *qe; 4427 4428 if (!q->elevator) 4429 return true; 4430 4431 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4432 if (!qe) 4433 return false; 4434 4435 /* q->elevator needs protection from ->sysfs_lock */ 4436 mutex_lock(&q->sysfs_lock); 4437 4438 INIT_LIST_HEAD(&qe->node); 4439 qe->q = q; 4440 qe->type = q->elevator->type; 4441 list_add(&qe->node, head); 4442 4443 /* 4444 * After elevator_switch_mq, the previous elevator_queue will be 4445 * released by elevator_release. The reference of the io scheduler 4446 * module get by elevator_get will also be put. So we need to get 4447 * a reference of the io scheduler module here to prevent it to be 4448 * removed. 4449 */ 4450 __module_get(qe->type->elevator_owner); 4451 elevator_switch_mq(q, NULL); 4452 mutex_unlock(&q->sysfs_lock); 4453 4454 return true; 4455 } 4456 4457 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4458 struct request_queue *q) 4459 { 4460 struct blk_mq_qe_pair *qe; 4461 4462 list_for_each_entry(qe, head, node) 4463 if (qe->q == q) 4464 return qe; 4465 4466 return NULL; 4467 } 4468 4469 static void blk_mq_elv_switch_back(struct list_head *head, 4470 struct request_queue *q) 4471 { 4472 struct blk_mq_qe_pair *qe; 4473 struct elevator_type *t; 4474 4475 qe = blk_lookup_qe_pair(head, q); 4476 if (!qe) 4477 return; 4478 t = qe->type; 4479 list_del(&qe->node); 4480 kfree(qe); 4481 4482 mutex_lock(&q->sysfs_lock); 4483 elevator_switch_mq(q, t); 4484 mutex_unlock(&q->sysfs_lock); 4485 } 4486 4487 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4488 int nr_hw_queues) 4489 { 4490 struct request_queue *q; 4491 LIST_HEAD(head); 4492 int prev_nr_hw_queues; 4493 4494 lockdep_assert_held(&set->tag_list_lock); 4495 4496 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4497 nr_hw_queues = nr_cpu_ids; 4498 if (nr_hw_queues < 1) 4499 return; 4500 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4501 return; 4502 4503 list_for_each_entry(q, &set->tag_list, tag_set_list) 4504 blk_mq_freeze_queue(q); 4505 /* 4506 * Switch IO scheduler to 'none', cleaning up the data associated 4507 * with the previous scheduler. We will switch back once we are done 4508 * updating the new sw to hw queue mappings. 4509 */ 4510 list_for_each_entry(q, &set->tag_list, tag_set_list) 4511 if (!blk_mq_elv_switch_none(&head, q)) 4512 goto switch_back; 4513 4514 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4515 blk_mq_debugfs_unregister_hctxs(q); 4516 blk_mq_sysfs_unregister(q); 4517 } 4518 4519 prev_nr_hw_queues = set->nr_hw_queues; 4520 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 4521 0) 4522 goto reregister; 4523 4524 set->nr_hw_queues = nr_hw_queues; 4525 fallback: 4526 blk_mq_update_queue_map(set); 4527 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4528 blk_mq_realloc_hw_ctxs(set, q); 4529 blk_mq_update_poll_flag(q); 4530 if (q->nr_hw_queues != set->nr_hw_queues) { 4531 int i = prev_nr_hw_queues; 4532 4533 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4534 nr_hw_queues, prev_nr_hw_queues); 4535 for (; i < set->nr_hw_queues; i++) 4536 __blk_mq_free_map_and_rqs(set, i); 4537 4538 set->nr_hw_queues = prev_nr_hw_queues; 4539 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4540 goto fallback; 4541 } 4542 blk_mq_map_swqueue(q); 4543 } 4544 4545 reregister: 4546 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4547 blk_mq_sysfs_register(q); 4548 blk_mq_debugfs_register_hctxs(q); 4549 } 4550 4551 switch_back: 4552 list_for_each_entry(q, &set->tag_list, tag_set_list) 4553 blk_mq_elv_switch_back(&head, q); 4554 4555 list_for_each_entry(q, &set->tag_list, tag_set_list) 4556 blk_mq_unfreeze_queue(q); 4557 } 4558 4559 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4560 { 4561 mutex_lock(&set->tag_list_lock); 4562 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4563 mutex_unlock(&set->tag_list_lock); 4564 } 4565 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4566 4567 /* Enable polling stats and return whether they were already enabled. */ 4568 static bool blk_poll_stats_enable(struct request_queue *q) 4569 { 4570 if (q->poll_stat) 4571 return true; 4572 4573 return blk_stats_alloc_enable(q); 4574 } 4575 4576 static void blk_mq_poll_stats_start(struct request_queue *q) 4577 { 4578 /* 4579 * We don't arm the callback if polling stats are not enabled or the 4580 * callback is already active. 4581 */ 4582 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4583 return; 4584 4585 blk_stat_activate_msecs(q->poll_cb, 100); 4586 } 4587 4588 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4589 { 4590 struct request_queue *q = cb->data; 4591 int bucket; 4592 4593 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4594 if (cb->stat[bucket].nr_samples) 4595 q->poll_stat[bucket] = cb->stat[bucket]; 4596 } 4597 } 4598 4599 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4600 struct request *rq) 4601 { 4602 unsigned long ret = 0; 4603 int bucket; 4604 4605 /* 4606 * If stats collection isn't on, don't sleep but turn it on for 4607 * future users 4608 */ 4609 if (!blk_poll_stats_enable(q)) 4610 return 0; 4611 4612 /* 4613 * As an optimistic guess, use half of the mean service time 4614 * for this type of request. We can (and should) make this smarter. 4615 * For instance, if the completion latencies are tight, we can 4616 * get closer than just half the mean. This is especially 4617 * important on devices where the completion latencies are longer 4618 * than ~10 usec. We do use the stats for the relevant IO size 4619 * if available which does lead to better estimates. 4620 */ 4621 bucket = blk_mq_poll_stats_bkt(rq); 4622 if (bucket < 0) 4623 return ret; 4624 4625 if (q->poll_stat[bucket].nr_samples) 4626 ret = (q->poll_stat[bucket].mean + 1) / 2; 4627 4628 return ret; 4629 } 4630 4631 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4632 { 4633 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4634 struct request *rq = blk_qc_to_rq(hctx, qc); 4635 struct hrtimer_sleeper hs; 4636 enum hrtimer_mode mode; 4637 unsigned int nsecs; 4638 ktime_t kt; 4639 4640 /* 4641 * If a request has completed on queue that uses an I/O scheduler, we 4642 * won't get back a request from blk_qc_to_rq. 4643 */ 4644 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4645 return false; 4646 4647 /* 4648 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4649 * 4650 * 0: use half of prev avg 4651 * >0: use this specific value 4652 */ 4653 if (q->poll_nsec > 0) 4654 nsecs = q->poll_nsec; 4655 else 4656 nsecs = blk_mq_poll_nsecs(q, rq); 4657 4658 if (!nsecs) 4659 return false; 4660 4661 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4662 4663 /* 4664 * This will be replaced with the stats tracking code, using 4665 * 'avg_completion_time / 2' as the pre-sleep target. 4666 */ 4667 kt = nsecs; 4668 4669 mode = HRTIMER_MODE_REL; 4670 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4671 hrtimer_set_expires(&hs.timer, kt); 4672 4673 do { 4674 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4675 break; 4676 set_current_state(TASK_UNINTERRUPTIBLE); 4677 hrtimer_sleeper_start_expires(&hs, mode); 4678 if (hs.task) 4679 io_schedule(); 4680 hrtimer_cancel(&hs.timer); 4681 mode = HRTIMER_MODE_ABS; 4682 } while (hs.task && !signal_pending(current)); 4683 4684 __set_current_state(TASK_RUNNING); 4685 destroy_hrtimer_on_stack(&hs.timer); 4686 4687 /* 4688 * If we sleep, have the caller restart the poll loop to reset the 4689 * state. Like for the other success return cases, the caller is 4690 * responsible for checking if the IO completed. If the IO isn't 4691 * complete, we'll get called again and will go straight to the busy 4692 * poll loop. 4693 */ 4694 return true; 4695 } 4696 4697 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4698 struct io_comp_batch *iob, unsigned int flags) 4699 { 4700 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4701 long state = get_current_state(); 4702 int ret; 4703 4704 do { 4705 ret = q->mq_ops->poll(hctx, iob); 4706 if (ret > 0) { 4707 __set_current_state(TASK_RUNNING); 4708 return ret; 4709 } 4710 4711 if (signal_pending_state(state, current)) 4712 __set_current_state(TASK_RUNNING); 4713 if (task_is_running(current)) 4714 return 1; 4715 4716 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4717 break; 4718 cpu_relax(); 4719 } while (!need_resched()); 4720 4721 __set_current_state(TASK_RUNNING); 4722 return 0; 4723 } 4724 4725 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4726 unsigned int flags) 4727 { 4728 if (!(flags & BLK_POLL_NOSLEEP) && 4729 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4730 if (blk_mq_poll_hybrid(q, cookie)) 4731 return 1; 4732 } 4733 return blk_mq_poll_classic(q, cookie, iob, flags); 4734 } 4735 4736 unsigned int blk_mq_rq_cpu(struct request *rq) 4737 { 4738 return rq->mq_ctx->cpu; 4739 } 4740 EXPORT_SYMBOL(blk_mq_rq_cpu); 4741 4742 void blk_mq_cancel_work_sync(struct request_queue *q) 4743 { 4744 if (queue_is_mq(q)) { 4745 struct blk_mq_hw_ctx *hctx; 4746 unsigned long i; 4747 4748 cancel_delayed_work_sync(&q->requeue_work); 4749 4750 queue_for_each_hw_ctx(q, hctx, i) 4751 cancel_delayed_work_sync(&hctx->run_work); 4752 } 4753 } 4754 4755 static int __init blk_mq_init(void) 4756 { 4757 int i; 4758 4759 for_each_possible_cpu(i) 4760 init_llist_head(&per_cpu(blk_cpu_done, i)); 4761 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4762 4763 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4764 "block/softirq:dead", NULL, 4765 blk_softirq_cpu_dead); 4766 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4767 blk_mq_hctx_notify_dead); 4768 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4769 blk_mq_hctx_notify_online, 4770 blk_mq_hctx_notify_offline); 4771 return 0; 4772 } 4773 subsys_initcall(blk_mq_init); 4774