xref: /linux/block/blk-mq.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = blk_time_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = blk_time_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 	rq->nr_integrity_segments = 0;
381 #endif
382 	rq->end_io = NULL;
383 	rq->end_io_data = NULL;
384 
385 	blk_crypto_rq_set_defaults(rq);
386 	INIT_LIST_HEAD(&rq->queuelist);
387 	/* tag was already set */
388 	WRITE_ONCE(rq->deadline, 0);
389 	req_ref_set(rq, 1);
390 
391 	if (rq->rq_flags & RQF_USE_SCHED) {
392 		struct elevator_queue *e = data->q->elevator;
393 
394 		INIT_HLIST_NODE(&rq->hash);
395 		RB_CLEAR_NODE(&rq->rb_node);
396 
397 		if (e->type->ops.prepare_request)
398 			e->type->ops.prepare_request(rq);
399 	}
400 
401 	return rq;
402 }
403 
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
406 {
407 	unsigned int tag, tag_offset;
408 	struct blk_mq_tags *tags;
409 	struct request *rq;
410 	unsigned long tag_mask;
411 	int i, nr = 0;
412 
413 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 	if (unlikely(!tag_mask))
415 		return NULL;
416 
417 	tags = blk_mq_tags_from_data(data);
418 	for (i = 0; tag_mask; i++) {
419 		if (!(tag_mask & (1UL << i)))
420 			continue;
421 		tag = tag_offset + i;
422 		prefetch(tags->static_rqs[tag]);
423 		tag_mask &= ~(1UL << i);
424 		rq = blk_mq_rq_ctx_init(data, tags, tag);
425 		rq_list_add(data->cached_rq, rq);
426 		nr++;
427 	}
428 	if (!(data->rq_flags & RQF_SCHED_TAGS))
429 		blk_mq_add_active_requests(data->hctx, nr);
430 	/* caller already holds a reference, add for remainder */
431 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
432 	data->nr_tags -= nr;
433 
434 	return rq_list_pop(data->cached_rq);
435 }
436 
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
438 {
439 	struct request_queue *q = data->q;
440 	u64 alloc_time_ns = 0;
441 	struct request *rq;
442 	unsigned int tag;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = blk_time_get_ns();
447 
448 	if (data->cmd_flags & REQ_NOWAIT)
449 		data->flags |= BLK_MQ_REQ_NOWAIT;
450 
451 retry:
452 	data->ctx = blk_mq_get_ctx(q);
453 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
454 
455 	if (q->elevator) {
456 		/*
457 		 * All requests use scheduler tags when an I/O scheduler is
458 		 * enabled for the queue.
459 		 */
460 		data->rq_flags |= RQF_SCHED_TAGS;
461 
462 		/*
463 		 * Flush/passthrough requests are special and go directly to the
464 		 * dispatch list.
465 		 */
466 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
467 		    !blk_op_is_passthrough(data->cmd_flags)) {
468 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
469 
470 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
471 
472 			data->rq_flags |= RQF_USE_SCHED;
473 			if (ops->limit_depth)
474 				ops->limit_depth(data->cmd_flags, data);
475 		}
476 	} else {
477 		blk_mq_tag_busy(data->hctx);
478 	}
479 
480 	if (data->flags & BLK_MQ_REQ_RESERVED)
481 		data->rq_flags |= RQF_RESV;
482 
483 	/*
484 	 * Try batched alloc if we want more than 1 tag.
485 	 */
486 	if (data->nr_tags > 1) {
487 		rq = __blk_mq_alloc_requests_batch(data);
488 		if (rq) {
489 			blk_mq_rq_time_init(rq, alloc_time_ns);
490 			return rq;
491 		}
492 		data->nr_tags = 1;
493 	}
494 
495 	/*
496 	 * Waiting allocations only fail because of an inactive hctx.  In that
497 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 	 * should have migrated us to an online CPU by now.
499 	 */
500 	tag = blk_mq_get_tag(data);
501 	if (tag == BLK_MQ_NO_TAG) {
502 		if (data->flags & BLK_MQ_REQ_NOWAIT)
503 			return NULL;
504 		/*
505 		 * Give up the CPU and sleep for a random short time to
506 		 * ensure that thread using a realtime scheduling class
507 		 * are migrated off the CPU, and thus off the hctx that
508 		 * is going away.
509 		 */
510 		msleep(3);
511 		goto retry;
512 	}
513 
514 	if (!(data->rq_flags & RQF_SCHED_TAGS))
515 		blk_mq_inc_active_requests(data->hctx);
516 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517 	blk_mq_rq_time_init(rq, alloc_time_ns);
518 	return rq;
519 }
520 
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522 					    struct blk_plug *plug,
523 					    blk_opf_t opf,
524 					    blk_mq_req_flags_t flags)
525 {
526 	struct blk_mq_alloc_data data = {
527 		.q		= q,
528 		.flags		= flags,
529 		.cmd_flags	= opf,
530 		.nr_tags	= plug->nr_ios,
531 		.cached_rq	= &plug->cached_rq,
532 	};
533 	struct request *rq;
534 
535 	if (blk_queue_enter(q, flags))
536 		return NULL;
537 
538 	plug->nr_ios = 1;
539 
540 	rq = __blk_mq_alloc_requests(&data);
541 	if (unlikely(!rq))
542 		blk_queue_exit(q);
543 	return rq;
544 }
545 
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
547 						   blk_opf_t opf,
548 						   blk_mq_req_flags_t flags)
549 {
550 	struct blk_plug *plug = current->plug;
551 	struct request *rq;
552 
553 	if (!plug)
554 		return NULL;
555 
556 	if (rq_list_empty(plug->cached_rq)) {
557 		if (plug->nr_ios == 1)
558 			return NULL;
559 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
560 		if (!rq)
561 			return NULL;
562 	} else {
563 		rq = rq_list_peek(&plug->cached_rq);
564 		if (!rq || rq->q != q)
565 			return NULL;
566 
567 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
568 			return NULL;
569 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
570 			return NULL;
571 
572 		plug->cached_rq = rq_list_next(rq);
573 		blk_mq_rq_time_init(rq, 0);
574 	}
575 
576 	rq->cmd_flags = opf;
577 	INIT_LIST_HEAD(&rq->queuelist);
578 	return rq;
579 }
580 
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582 		blk_mq_req_flags_t flags)
583 {
584 	struct request *rq;
585 
586 	rq = blk_mq_alloc_cached_request(q, opf, flags);
587 	if (!rq) {
588 		struct blk_mq_alloc_data data = {
589 			.q		= q,
590 			.flags		= flags,
591 			.cmd_flags	= opf,
592 			.nr_tags	= 1,
593 		};
594 		int ret;
595 
596 		ret = blk_queue_enter(q, flags);
597 		if (ret)
598 			return ERR_PTR(ret);
599 
600 		rq = __blk_mq_alloc_requests(&data);
601 		if (!rq)
602 			goto out_queue_exit;
603 	}
604 	rq->__data_len = 0;
605 	rq->__sector = (sector_t) -1;
606 	rq->bio = rq->biotail = NULL;
607 	return rq;
608 out_queue_exit:
609 	blk_queue_exit(q);
610 	return ERR_PTR(-EWOULDBLOCK);
611 }
612 EXPORT_SYMBOL(blk_mq_alloc_request);
613 
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
616 {
617 	struct blk_mq_alloc_data data = {
618 		.q		= q,
619 		.flags		= flags,
620 		.cmd_flags	= opf,
621 		.nr_tags	= 1,
622 	};
623 	u64 alloc_time_ns = 0;
624 	struct request *rq;
625 	unsigned int cpu;
626 	unsigned int tag;
627 	int ret;
628 
629 	/* alloc_time includes depth and tag waits */
630 	if (blk_queue_rq_alloc_time(q))
631 		alloc_time_ns = blk_time_get_ns();
632 
633 	/*
634 	 * If the tag allocator sleeps we could get an allocation for a
635 	 * different hardware context.  No need to complicate the low level
636 	 * allocator for this for the rare use case of a command tied to
637 	 * a specific queue.
638 	 */
639 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641 		return ERR_PTR(-EINVAL);
642 
643 	if (hctx_idx >= q->nr_hw_queues)
644 		return ERR_PTR(-EIO);
645 
646 	ret = blk_queue_enter(q, flags);
647 	if (ret)
648 		return ERR_PTR(ret);
649 
650 	/*
651 	 * Check if the hardware context is actually mapped to anything.
652 	 * If not tell the caller that it should skip this queue.
653 	 */
654 	ret = -EXDEV;
655 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
656 	if (!blk_mq_hw_queue_mapped(data.hctx))
657 		goto out_queue_exit;
658 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659 	if (cpu >= nr_cpu_ids)
660 		goto out_queue_exit;
661 	data.ctx = __blk_mq_get_ctx(q, cpu);
662 
663 	if (q->elevator)
664 		data.rq_flags |= RQF_SCHED_TAGS;
665 	else
666 		blk_mq_tag_busy(data.hctx);
667 
668 	if (flags & BLK_MQ_REQ_RESERVED)
669 		data.rq_flags |= RQF_RESV;
670 
671 	ret = -EWOULDBLOCK;
672 	tag = blk_mq_get_tag(&data);
673 	if (tag == BLK_MQ_NO_TAG)
674 		goto out_queue_exit;
675 	if (!(data.rq_flags & RQF_SCHED_TAGS))
676 		blk_mq_inc_active_requests(data.hctx);
677 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678 	blk_mq_rq_time_init(rq, alloc_time_ns);
679 	rq->__data_len = 0;
680 	rq->__sector = (sector_t) -1;
681 	rq->bio = rq->biotail = NULL;
682 	return rq;
683 
684 out_queue_exit:
685 	blk_queue_exit(q);
686 	return ERR_PTR(ret);
687 }
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
689 
690 static void blk_mq_finish_request(struct request *rq)
691 {
692 	struct request_queue *q = rq->q;
693 
694 	blk_zone_finish_request(rq);
695 
696 	if (rq->rq_flags & RQF_USE_SCHED) {
697 		q->elevator->type->ops.finish_request(rq);
698 		/*
699 		 * For postflush request that may need to be
700 		 * completed twice, we should clear this flag
701 		 * to avoid double finish_request() on the rq.
702 		 */
703 		rq->rq_flags &= ~RQF_USE_SCHED;
704 	}
705 }
706 
707 static void __blk_mq_free_request(struct request *rq)
708 {
709 	struct request_queue *q = rq->q;
710 	struct blk_mq_ctx *ctx = rq->mq_ctx;
711 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
712 	const int sched_tag = rq->internal_tag;
713 
714 	blk_crypto_free_request(rq);
715 	blk_pm_mark_last_busy(rq);
716 	rq->mq_hctx = NULL;
717 
718 	if (rq->tag != BLK_MQ_NO_TAG) {
719 		blk_mq_dec_active_requests(hctx);
720 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721 	}
722 	if (sched_tag != BLK_MQ_NO_TAG)
723 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 	blk_mq_sched_restart(hctx);
725 	blk_queue_exit(q);
726 }
727 
728 void blk_mq_free_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 
732 	blk_mq_finish_request(rq);
733 
734 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
735 		laptop_io_completion(q->disk->bdi);
736 
737 	rq_qos_done(q, rq);
738 
739 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
740 	if (req_ref_put_and_test(rq))
741 		__blk_mq_free_request(rq);
742 }
743 EXPORT_SYMBOL_GPL(blk_mq_free_request);
744 
745 void blk_mq_free_plug_rqs(struct blk_plug *plug)
746 {
747 	struct request *rq;
748 
749 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
750 		blk_mq_free_request(rq);
751 }
752 
753 void blk_dump_rq_flags(struct request *rq, char *msg)
754 {
755 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
756 		rq->q->disk ? rq->q->disk->disk_name : "?",
757 		(__force unsigned long long) rq->cmd_flags);
758 
759 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
760 	       (unsigned long long)blk_rq_pos(rq),
761 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
762 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
763 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
764 }
765 EXPORT_SYMBOL(blk_dump_rq_flags);
766 
767 static void blk_account_io_completion(struct request *req, unsigned int bytes)
768 {
769 	if (req->part && blk_do_io_stat(req)) {
770 		const int sgrp = op_stat_group(req_op(req));
771 
772 		part_stat_lock();
773 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
774 		part_stat_unlock();
775 	}
776 }
777 
778 static void blk_print_req_error(struct request *req, blk_status_t status)
779 {
780 	printk_ratelimited(KERN_ERR
781 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
782 		"phys_seg %u prio class %u\n",
783 		blk_status_to_str(status),
784 		req->q->disk ? req->q->disk->disk_name : "?",
785 		blk_rq_pos(req), (__force u32)req_op(req),
786 		blk_op_str(req_op(req)),
787 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
788 		req->nr_phys_segments,
789 		IOPRIO_PRIO_CLASS(req->ioprio));
790 }
791 
792 /*
793  * Fully end IO on a request. Does not support partial completions, or
794  * errors.
795  */
796 static void blk_complete_request(struct request *req)
797 {
798 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
799 	int total_bytes = blk_rq_bytes(req);
800 	struct bio *bio = req->bio;
801 
802 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
803 
804 	if (!bio)
805 		return;
806 
807 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
808 		blk_integrity_complete(req, total_bytes);
809 
810 	/*
811 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
812 	 * bio_endio().  Therefore, the keyslot must be released before that.
813 	 */
814 	blk_crypto_rq_put_keyslot(req);
815 
816 	blk_account_io_completion(req, total_bytes);
817 
818 	do {
819 		struct bio *next = bio->bi_next;
820 
821 		/* Completion has already been traced */
822 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
823 
824 		blk_zone_update_request_bio(req, bio);
825 
826 		if (!is_flush)
827 			bio_endio(bio);
828 		bio = next;
829 	} while (bio);
830 
831 	/*
832 	 * Reset counters so that the request stacking driver
833 	 * can find how many bytes remain in the request
834 	 * later.
835 	 */
836 	if (!req->end_io) {
837 		req->bio = NULL;
838 		req->__data_len = 0;
839 	}
840 }
841 
842 /**
843  * blk_update_request - Complete multiple bytes without completing the request
844  * @req:      the request being processed
845  * @error:    block status code
846  * @nr_bytes: number of bytes to complete for @req
847  *
848  * Description:
849  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
850  *     the request structure even if @req doesn't have leftover.
851  *     If @req has leftover, sets it up for the next range of segments.
852  *
853  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
854  *     %false return from this function.
855  *
856  * Note:
857  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
858  *      except in the consistency check at the end of this function.
859  *
860  * Return:
861  *     %false - this request doesn't have any more data
862  *     %true  - this request has more data
863  **/
864 bool blk_update_request(struct request *req, blk_status_t error,
865 		unsigned int nr_bytes)
866 {
867 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
868 	bool quiet = req->rq_flags & RQF_QUIET;
869 	int total_bytes;
870 
871 	trace_block_rq_complete(req, error, nr_bytes);
872 
873 	if (!req->bio)
874 		return false;
875 
876 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
877 	    error == BLK_STS_OK)
878 		blk_integrity_complete(req, nr_bytes);
879 
880 	/*
881 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
882 	 * bio_endio().  Therefore, the keyslot must be released before that.
883 	 */
884 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
885 		__blk_crypto_rq_put_keyslot(req);
886 
887 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
888 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
889 		blk_print_req_error(req, error);
890 		trace_block_rq_error(req, error, nr_bytes);
891 	}
892 
893 	blk_account_io_completion(req, nr_bytes);
894 
895 	total_bytes = 0;
896 	while (req->bio) {
897 		struct bio *bio = req->bio;
898 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
899 
900 		if (unlikely(error))
901 			bio->bi_status = error;
902 
903 		if (bio_bytes == bio->bi_iter.bi_size) {
904 			req->bio = bio->bi_next;
905 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
906 			/*
907 			 * Partial zone append completions cannot be supported
908 			 * as the BIO fragments may end up not being written
909 			 * sequentially.
910 			 */
911 			bio->bi_status = BLK_STS_IOERR;
912 		}
913 
914 		/* Completion has already been traced */
915 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
916 		if (unlikely(quiet))
917 			bio_set_flag(bio, BIO_QUIET);
918 
919 		bio_advance(bio, bio_bytes);
920 
921 		/* Don't actually finish bio if it's part of flush sequence */
922 		if (!bio->bi_iter.bi_size) {
923 			blk_zone_update_request_bio(req, bio);
924 			if (!is_flush)
925 				bio_endio(bio);
926 		}
927 
928 		total_bytes += bio_bytes;
929 		nr_bytes -= bio_bytes;
930 
931 		if (!nr_bytes)
932 			break;
933 	}
934 
935 	/*
936 	 * completely done
937 	 */
938 	if (!req->bio) {
939 		/*
940 		 * Reset counters so that the request stacking driver
941 		 * can find how many bytes remain in the request
942 		 * later.
943 		 */
944 		req->__data_len = 0;
945 		return false;
946 	}
947 
948 	req->__data_len -= total_bytes;
949 
950 	/* update sector only for requests with clear definition of sector */
951 	if (!blk_rq_is_passthrough(req))
952 		req->__sector += total_bytes >> 9;
953 
954 	/* mixed attributes always follow the first bio */
955 	if (req->rq_flags & RQF_MIXED_MERGE) {
956 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
957 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958 	}
959 
960 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
961 		/*
962 		 * If total number of sectors is less than the first segment
963 		 * size, something has gone terribly wrong.
964 		 */
965 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966 			blk_dump_rq_flags(req, "request botched");
967 			req->__data_len = blk_rq_cur_bytes(req);
968 		}
969 
970 		/* recalculate the number of segments */
971 		req->nr_phys_segments = blk_recalc_rq_segments(req);
972 	}
973 
974 	return true;
975 }
976 EXPORT_SYMBOL_GPL(blk_update_request);
977 
978 static inline void blk_account_io_done(struct request *req, u64 now)
979 {
980 	trace_block_io_done(req);
981 
982 	/*
983 	 * Account IO completion.  flush_rq isn't accounted as a
984 	 * normal IO on queueing nor completion.  Accounting the
985 	 * containing request is enough.
986 	 */
987 	if (blk_do_io_stat(req) && req->part &&
988 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
989 		const int sgrp = op_stat_group(req_op(req));
990 
991 		part_stat_lock();
992 		update_io_ticks(req->part, jiffies, true);
993 		part_stat_inc(req->part, ios[sgrp]);
994 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
995 		part_stat_local_dec(req->part,
996 				    in_flight[op_is_write(req_op(req))]);
997 		part_stat_unlock();
998 	}
999 }
1000 
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003 	trace_block_io_start(req);
1004 
1005 	if (blk_do_io_stat(req)) {
1006 		/*
1007 		 * All non-passthrough requests are created from a bio with one
1008 		 * exception: when a flush command that is part of a flush sequence
1009 		 * generated by the state machine in blk-flush.c is cloned onto the
1010 		 * lower device by dm-multipath we can get here without a bio.
1011 		 */
1012 		if (req->bio)
1013 			req->part = req->bio->bi_bdev;
1014 		else
1015 			req->part = req->q->disk->part0;
1016 
1017 		part_stat_lock();
1018 		update_io_ticks(req->part, jiffies, false);
1019 		part_stat_local_inc(req->part,
1020 				    in_flight[op_is_write(req_op(req))]);
1021 		part_stat_unlock();
1022 	}
1023 }
1024 
1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026 {
1027 	if (rq->rq_flags & RQF_STATS)
1028 		blk_stat_add(rq, now);
1029 
1030 	blk_mq_sched_completed_request(rq, now);
1031 	blk_account_io_done(rq, now);
1032 }
1033 
1034 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1035 {
1036 	if (blk_mq_need_time_stamp(rq))
1037 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1038 
1039 	blk_mq_finish_request(rq);
1040 
1041 	if (rq->end_io) {
1042 		rq_qos_done(rq->q, rq);
1043 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044 			blk_mq_free_request(rq);
1045 	} else {
1046 		blk_mq_free_request(rq);
1047 	}
1048 }
1049 EXPORT_SYMBOL(__blk_mq_end_request);
1050 
1051 void blk_mq_end_request(struct request *rq, blk_status_t error)
1052 {
1053 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054 		BUG();
1055 	__blk_mq_end_request(rq, error);
1056 }
1057 EXPORT_SYMBOL(blk_mq_end_request);
1058 
1059 #define TAG_COMP_BATCH		32
1060 
1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062 					  int *tag_array, int nr_tags)
1063 {
1064 	struct request_queue *q = hctx->queue;
1065 
1066 	blk_mq_sub_active_requests(hctx, nr_tags);
1067 
1068 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1069 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1070 }
1071 
1072 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1073 {
1074 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1075 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1076 	struct request *rq;
1077 	u64 now = 0;
1078 
1079 	if (iob->need_ts)
1080 		now = blk_time_get_ns();
1081 
1082 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1083 		prefetch(rq->bio);
1084 		prefetch(rq->rq_next);
1085 
1086 		blk_complete_request(rq);
1087 		if (iob->need_ts)
1088 			__blk_mq_end_request_acct(rq, now);
1089 
1090 		blk_mq_finish_request(rq);
1091 
1092 		rq_qos_done(rq->q, rq);
1093 
1094 		/*
1095 		 * If end_io handler returns NONE, then it still has
1096 		 * ownership of the request.
1097 		 */
1098 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1099 			continue;
1100 
1101 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1102 		if (!req_ref_put_and_test(rq))
1103 			continue;
1104 
1105 		blk_crypto_free_request(rq);
1106 		blk_pm_mark_last_busy(rq);
1107 
1108 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1109 			if (cur_hctx)
1110 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1111 			nr_tags = 0;
1112 			cur_hctx = rq->mq_hctx;
1113 		}
1114 		tags[nr_tags++] = rq->tag;
1115 	}
1116 
1117 	if (nr_tags)
1118 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 }
1120 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1121 
1122 static void blk_complete_reqs(struct llist_head *list)
1123 {
1124 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1125 	struct request *rq, *next;
1126 
1127 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1128 		rq->q->mq_ops->complete(rq);
1129 }
1130 
1131 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1132 {
1133 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1134 }
1135 
1136 static int blk_softirq_cpu_dead(unsigned int cpu)
1137 {
1138 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1139 	return 0;
1140 }
1141 
1142 static void __blk_mq_complete_request_remote(void *data)
1143 {
1144 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1145 }
1146 
1147 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1148 {
1149 	int cpu = raw_smp_processor_id();
1150 
1151 	if (!IS_ENABLED(CONFIG_SMP) ||
1152 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1153 		return false;
1154 	/*
1155 	 * With force threaded interrupts enabled, raising softirq from an SMP
1156 	 * function call will always result in waking the ksoftirqd thread.
1157 	 * This is probably worse than completing the request on a different
1158 	 * cache domain.
1159 	 */
1160 	if (force_irqthreads())
1161 		return false;
1162 
1163 	/* same CPU or cache domain and capacity?  Complete locally */
1164 	if (cpu == rq->mq_ctx->cpu ||
1165 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1166 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1167 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1168 		return false;
1169 
1170 	/* don't try to IPI to an offline CPU */
1171 	return cpu_online(rq->mq_ctx->cpu);
1172 }
1173 
1174 static void blk_mq_complete_send_ipi(struct request *rq)
1175 {
1176 	unsigned int cpu;
1177 
1178 	cpu = rq->mq_ctx->cpu;
1179 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1180 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1181 }
1182 
1183 static void blk_mq_raise_softirq(struct request *rq)
1184 {
1185 	struct llist_head *list;
1186 
1187 	preempt_disable();
1188 	list = this_cpu_ptr(&blk_cpu_done);
1189 	if (llist_add(&rq->ipi_list, list))
1190 		raise_softirq(BLOCK_SOFTIRQ);
1191 	preempt_enable();
1192 }
1193 
1194 bool blk_mq_complete_request_remote(struct request *rq)
1195 {
1196 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1197 
1198 	/*
1199 	 * For request which hctx has only one ctx mapping,
1200 	 * or a polled request, always complete locally,
1201 	 * it's pointless to redirect the completion.
1202 	 */
1203 	if ((rq->mq_hctx->nr_ctx == 1 &&
1204 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1205 	     rq->cmd_flags & REQ_POLLED)
1206 		return false;
1207 
1208 	if (blk_mq_complete_need_ipi(rq)) {
1209 		blk_mq_complete_send_ipi(rq);
1210 		return true;
1211 	}
1212 
1213 	if (rq->q->nr_hw_queues == 1) {
1214 		blk_mq_raise_softirq(rq);
1215 		return true;
1216 	}
1217 	return false;
1218 }
1219 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1220 
1221 /**
1222  * blk_mq_complete_request - end I/O on a request
1223  * @rq:		the request being processed
1224  *
1225  * Description:
1226  *	Complete a request by scheduling the ->complete_rq operation.
1227  **/
1228 void blk_mq_complete_request(struct request *rq)
1229 {
1230 	if (!blk_mq_complete_request_remote(rq))
1231 		rq->q->mq_ops->complete(rq);
1232 }
1233 EXPORT_SYMBOL(blk_mq_complete_request);
1234 
1235 /**
1236  * blk_mq_start_request - Start processing a request
1237  * @rq: Pointer to request to be started
1238  *
1239  * Function used by device drivers to notify the block layer that a request
1240  * is going to be processed now, so blk layer can do proper initializations
1241  * such as starting the timeout timer.
1242  */
1243 void blk_mq_start_request(struct request *rq)
1244 {
1245 	struct request_queue *q = rq->q;
1246 
1247 	trace_block_rq_issue(rq);
1248 
1249 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1250 	    !blk_rq_is_passthrough(rq)) {
1251 		rq->io_start_time_ns = blk_time_get_ns();
1252 		rq->stats_sectors = blk_rq_sectors(rq);
1253 		rq->rq_flags |= RQF_STATS;
1254 		rq_qos_issue(q, rq);
1255 	}
1256 
1257 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1258 
1259 	blk_add_timer(rq);
1260 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1261 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1262 
1263 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1264 		blk_integrity_prepare(rq);
1265 
1266 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1267 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1268 }
1269 EXPORT_SYMBOL(blk_mq_start_request);
1270 
1271 /*
1272  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1273  * queues. This is important for md arrays to benefit from merging
1274  * requests.
1275  */
1276 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1277 {
1278 	if (plug->multiple_queues)
1279 		return BLK_MAX_REQUEST_COUNT * 2;
1280 	return BLK_MAX_REQUEST_COUNT;
1281 }
1282 
1283 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1284 {
1285 	struct request *last = rq_list_peek(&plug->mq_list);
1286 
1287 	if (!plug->rq_count) {
1288 		trace_block_plug(rq->q);
1289 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1290 		   (!blk_queue_nomerges(rq->q) &&
1291 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1292 		blk_mq_flush_plug_list(plug, false);
1293 		last = NULL;
1294 		trace_block_plug(rq->q);
1295 	}
1296 
1297 	if (!plug->multiple_queues && last && last->q != rq->q)
1298 		plug->multiple_queues = true;
1299 	/*
1300 	 * Any request allocated from sched tags can't be issued to
1301 	 * ->queue_rqs() directly
1302 	 */
1303 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1304 		plug->has_elevator = true;
1305 	rq->rq_next = NULL;
1306 	rq_list_add(&plug->mq_list, rq);
1307 	plug->rq_count++;
1308 }
1309 
1310 /**
1311  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312  * @rq:		request to insert
1313  * @at_head:    insert request at head or tail of queue
1314  *
1315  * Description:
1316  *    Insert a fully prepared request at the back of the I/O scheduler queue
1317  *    for execution.  Don't wait for completion.
1318  *
1319  * Note:
1320  *    This function will invoke @done directly if the queue is dead.
1321  */
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323 {
1324 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1325 
1326 	WARN_ON(irqs_disabled());
1327 	WARN_ON(!blk_rq_is_passthrough(rq));
1328 
1329 	blk_account_io_start(rq);
1330 
1331 	if (current->plug && !at_head) {
1332 		blk_add_rq_to_plug(current->plug, rq);
1333 		return;
1334 	}
1335 
1336 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1337 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1338 }
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340 
1341 struct blk_rq_wait {
1342 	struct completion done;
1343 	blk_status_t ret;
1344 };
1345 
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347 {
1348 	struct blk_rq_wait *wait = rq->end_io_data;
1349 
1350 	wait->ret = ret;
1351 	complete(&wait->done);
1352 	return RQ_END_IO_NONE;
1353 }
1354 
1355 bool blk_rq_is_poll(struct request *rq)
1356 {
1357 	if (!rq->mq_hctx)
1358 		return false;
1359 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360 		return false;
1361 	return true;
1362 }
1363 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1364 
1365 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1366 {
1367 	do {
1368 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1369 		cond_resched();
1370 	} while (!completion_done(wait));
1371 }
1372 
1373 /**
1374  * blk_execute_rq - insert a request into queue for execution
1375  * @rq:		request to insert
1376  * @at_head:    insert request at head or tail of queue
1377  *
1378  * Description:
1379  *    Insert a fully prepared request at the back of the I/O scheduler queue
1380  *    for execution and wait for completion.
1381  * Return: The blk_status_t result provided to blk_mq_end_request().
1382  */
1383 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1384 {
1385 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1386 	struct blk_rq_wait wait = {
1387 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388 	};
1389 
1390 	WARN_ON(irqs_disabled());
1391 	WARN_ON(!blk_rq_is_passthrough(rq));
1392 
1393 	rq->end_io_data = &wait;
1394 	rq->end_io = blk_end_sync_rq;
1395 
1396 	blk_account_io_start(rq);
1397 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1398 	blk_mq_run_hw_queue(hctx, false);
1399 
1400 	if (blk_rq_is_poll(rq))
1401 		blk_rq_poll_completion(rq, &wait.done);
1402 	else
1403 		blk_wait_io(&wait.done);
1404 
1405 	return wait.ret;
1406 }
1407 EXPORT_SYMBOL(blk_execute_rq);
1408 
1409 static void __blk_mq_requeue_request(struct request *rq)
1410 {
1411 	struct request_queue *q = rq->q;
1412 
1413 	blk_mq_put_driver_tag(rq);
1414 
1415 	trace_block_rq_requeue(rq);
1416 	rq_qos_requeue(q, rq);
1417 
1418 	if (blk_mq_request_started(rq)) {
1419 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1420 		rq->rq_flags &= ~RQF_TIMED_OUT;
1421 	}
1422 }
1423 
1424 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1425 {
1426 	struct request_queue *q = rq->q;
1427 	unsigned long flags;
1428 
1429 	__blk_mq_requeue_request(rq);
1430 
1431 	/* this request will be re-inserted to io scheduler queue */
1432 	blk_mq_sched_requeue_request(rq);
1433 
1434 	spin_lock_irqsave(&q->requeue_lock, flags);
1435 	list_add_tail(&rq->queuelist, &q->requeue_list);
1436 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1437 
1438 	if (kick_requeue_list)
1439 		blk_mq_kick_requeue_list(q);
1440 }
1441 EXPORT_SYMBOL(blk_mq_requeue_request);
1442 
1443 static void blk_mq_requeue_work(struct work_struct *work)
1444 {
1445 	struct request_queue *q =
1446 		container_of(work, struct request_queue, requeue_work.work);
1447 	LIST_HEAD(rq_list);
1448 	LIST_HEAD(flush_list);
1449 	struct request *rq;
1450 
1451 	spin_lock_irq(&q->requeue_lock);
1452 	list_splice_init(&q->requeue_list, &rq_list);
1453 	list_splice_init(&q->flush_list, &flush_list);
1454 	spin_unlock_irq(&q->requeue_lock);
1455 
1456 	while (!list_empty(&rq_list)) {
1457 		rq = list_entry(rq_list.next, struct request, queuelist);
1458 		/*
1459 		 * If RQF_DONTPREP ist set, the request has been started by the
1460 		 * driver already and might have driver-specific data allocated
1461 		 * already.  Insert it into the hctx dispatch list to avoid
1462 		 * block layer merges for the request.
1463 		 */
1464 		if (rq->rq_flags & RQF_DONTPREP) {
1465 			list_del_init(&rq->queuelist);
1466 			blk_mq_request_bypass_insert(rq, 0);
1467 		} else {
1468 			list_del_init(&rq->queuelist);
1469 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1470 		}
1471 	}
1472 
1473 	while (!list_empty(&flush_list)) {
1474 		rq = list_entry(flush_list.next, struct request, queuelist);
1475 		list_del_init(&rq->queuelist);
1476 		blk_mq_insert_request(rq, 0);
1477 	}
1478 
1479 	blk_mq_run_hw_queues(q, false);
1480 }
1481 
1482 void blk_mq_kick_requeue_list(struct request_queue *q)
1483 {
1484 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1485 }
1486 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1487 
1488 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1489 				    unsigned long msecs)
1490 {
1491 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1492 				    msecs_to_jiffies(msecs));
1493 }
1494 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1495 
1496 static bool blk_is_flush_data_rq(struct request *rq)
1497 {
1498 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1499 }
1500 
1501 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1502 {
1503 	/*
1504 	 * If we find a request that isn't idle we know the queue is busy
1505 	 * as it's checked in the iter.
1506 	 * Return false to stop the iteration.
1507 	 *
1508 	 * In case of queue quiesce, if one flush data request is completed,
1509 	 * don't count it as inflight given the flush sequence is suspended,
1510 	 * and the original flush data request is invisible to driver, just
1511 	 * like other pending requests because of quiesce
1512 	 */
1513 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1514 				blk_is_flush_data_rq(rq) &&
1515 				blk_mq_request_completed(rq))) {
1516 		bool *busy = priv;
1517 
1518 		*busy = true;
1519 		return false;
1520 	}
1521 
1522 	return true;
1523 }
1524 
1525 bool blk_mq_queue_inflight(struct request_queue *q)
1526 {
1527 	bool busy = false;
1528 
1529 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1530 	return busy;
1531 }
1532 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1533 
1534 static void blk_mq_rq_timed_out(struct request *req)
1535 {
1536 	req->rq_flags |= RQF_TIMED_OUT;
1537 	if (req->q->mq_ops->timeout) {
1538 		enum blk_eh_timer_return ret;
1539 
1540 		ret = req->q->mq_ops->timeout(req);
1541 		if (ret == BLK_EH_DONE)
1542 			return;
1543 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1544 	}
1545 
1546 	blk_add_timer(req);
1547 }
1548 
1549 struct blk_expired_data {
1550 	bool has_timedout_rq;
1551 	unsigned long next;
1552 	unsigned long timeout_start;
1553 };
1554 
1555 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1556 {
1557 	unsigned long deadline;
1558 
1559 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1560 		return false;
1561 	if (rq->rq_flags & RQF_TIMED_OUT)
1562 		return false;
1563 
1564 	deadline = READ_ONCE(rq->deadline);
1565 	if (time_after_eq(expired->timeout_start, deadline))
1566 		return true;
1567 
1568 	if (expired->next == 0)
1569 		expired->next = deadline;
1570 	else if (time_after(expired->next, deadline))
1571 		expired->next = deadline;
1572 	return false;
1573 }
1574 
1575 void blk_mq_put_rq_ref(struct request *rq)
1576 {
1577 	if (is_flush_rq(rq)) {
1578 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1579 			blk_mq_free_request(rq);
1580 	} else if (req_ref_put_and_test(rq)) {
1581 		__blk_mq_free_request(rq);
1582 	}
1583 }
1584 
1585 static bool blk_mq_check_expired(struct request *rq, void *priv)
1586 {
1587 	struct blk_expired_data *expired = priv;
1588 
1589 	/*
1590 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1591 	 * be reallocated underneath the timeout handler's processing, then
1592 	 * the expire check is reliable. If the request is not expired, then
1593 	 * it was completed and reallocated as a new request after returning
1594 	 * from blk_mq_check_expired().
1595 	 */
1596 	if (blk_mq_req_expired(rq, expired)) {
1597 		expired->has_timedout_rq = true;
1598 		return false;
1599 	}
1600 	return true;
1601 }
1602 
1603 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1604 {
1605 	struct blk_expired_data *expired = priv;
1606 
1607 	if (blk_mq_req_expired(rq, expired))
1608 		blk_mq_rq_timed_out(rq);
1609 	return true;
1610 }
1611 
1612 static void blk_mq_timeout_work(struct work_struct *work)
1613 {
1614 	struct request_queue *q =
1615 		container_of(work, struct request_queue, timeout_work);
1616 	struct blk_expired_data expired = {
1617 		.timeout_start = jiffies,
1618 	};
1619 	struct blk_mq_hw_ctx *hctx;
1620 	unsigned long i;
1621 
1622 	/* A deadlock might occur if a request is stuck requiring a
1623 	 * timeout at the same time a queue freeze is waiting
1624 	 * completion, since the timeout code would not be able to
1625 	 * acquire the queue reference here.
1626 	 *
1627 	 * That's why we don't use blk_queue_enter here; instead, we use
1628 	 * percpu_ref_tryget directly, because we need to be able to
1629 	 * obtain a reference even in the short window between the queue
1630 	 * starting to freeze, by dropping the first reference in
1631 	 * blk_freeze_queue_start, and the moment the last request is
1632 	 * consumed, marked by the instant q_usage_counter reaches
1633 	 * zero.
1634 	 */
1635 	if (!percpu_ref_tryget(&q->q_usage_counter))
1636 		return;
1637 
1638 	/* check if there is any timed-out request */
1639 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1640 	if (expired.has_timedout_rq) {
1641 		/*
1642 		 * Before walking tags, we must ensure any submit started
1643 		 * before the current time has finished. Since the submit
1644 		 * uses srcu or rcu, wait for a synchronization point to
1645 		 * ensure all running submits have finished
1646 		 */
1647 		blk_mq_wait_quiesce_done(q->tag_set);
1648 
1649 		expired.next = 0;
1650 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1651 	}
1652 
1653 	if (expired.next != 0) {
1654 		mod_timer(&q->timeout, expired.next);
1655 	} else {
1656 		/*
1657 		 * Request timeouts are handled as a forward rolling timer. If
1658 		 * we end up here it means that no requests are pending and
1659 		 * also that no request has been pending for a while. Mark
1660 		 * each hctx as idle.
1661 		 */
1662 		queue_for_each_hw_ctx(q, hctx, i) {
1663 			/* the hctx may be unmapped, so check it here */
1664 			if (blk_mq_hw_queue_mapped(hctx))
1665 				blk_mq_tag_idle(hctx);
1666 		}
1667 	}
1668 	blk_queue_exit(q);
1669 }
1670 
1671 struct flush_busy_ctx_data {
1672 	struct blk_mq_hw_ctx *hctx;
1673 	struct list_head *list;
1674 };
1675 
1676 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1677 {
1678 	struct flush_busy_ctx_data *flush_data = data;
1679 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1680 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1681 	enum hctx_type type = hctx->type;
1682 
1683 	spin_lock(&ctx->lock);
1684 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1685 	sbitmap_clear_bit(sb, bitnr);
1686 	spin_unlock(&ctx->lock);
1687 	return true;
1688 }
1689 
1690 /*
1691  * Process software queues that have been marked busy, splicing them
1692  * to the for-dispatch
1693  */
1694 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1695 {
1696 	struct flush_busy_ctx_data data = {
1697 		.hctx = hctx,
1698 		.list = list,
1699 	};
1700 
1701 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1702 }
1703 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1704 
1705 struct dispatch_rq_data {
1706 	struct blk_mq_hw_ctx *hctx;
1707 	struct request *rq;
1708 };
1709 
1710 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1711 		void *data)
1712 {
1713 	struct dispatch_rq_data *dispatch_data = data;
1714 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1715 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1716 	enum hctx_type type = hctx->type;
1717 
1718 	spin_lock(&ctx->lock);
1719 	if (!list_empty(&ctx->rq_lists[type])) {
1720 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1721 		list_del_init(&dispatch_data->rq->queuelist);
1722 		if (list_empty(&ctx->rq_lists[type]))
1723 			sbitmap_clear_bit(sb, bitnr);
1724 	}
1725 	spin_unlock(&ctx->lock);
1726 
1727 	return !dispatch_data->rq;
1728 }
1729 
1730 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1731 					struct blk_mq_ctx *start)
1732 {
1733 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1734 	struct dispatch_rq_data data = {
1735 		.hctx = hctx,
1736 		.rq   = NULL,
1737 	};
1738 
1739 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1740 			       dispatch_rq_from_ctx, &data);
1741 
1742 	return data.rq;
1743 }
1744 
1745 bool __blk_mq_alloc_driver_tag(struct request *rq)
1746 {
1747 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1748 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1749 	int tag;
1750 
1751 	blk_mq_tag_busy(rq->mq_hctx);
1752 
1753 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1754 		bt = &rq->mq_hctx->tags->breserved_tags;
1755 		tag_offset = 0;
1756 	} else {
1757 		if (!hctx_may_queue(rq->mq_hctx, bt))
1758 			return false;
1759 	}
1760 
1761 	tag = __sbitmap_queue_get(bt);
1762 	if (tag == BLK_MQ_NO_TAG)
1763 		return false;
1764 
1765 	rq->tag = tag + tag_offset;
1766 	blk_mq_inc_active_requests(rq->mq_hctx);
1767 	return true;
1768 }
1769 
1770 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1771 				int flags, void *key)
1772 {
1773 	struct blk_mq_hw_ctx *hctx;
1774 
1775 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1776 
1777 	spin_lock(&hctx->dispatch_wait_lock);
1778 	if (!list_empty(&wait->entry)) {
1779 		struct sbitmap_queue *sbq;
1780 
1781 		list_del_init(&wait->entry);
1782 		sbq = &hctx->tags->bitmap_tags;
1783 		atomic_dec(&sbq->ws_active);
1784 	}
1785 	spin_unlock(&hctx->dispatch_wait_lock);
1786 
1787 	blk_mq_run_hw_queue(hctx, true);
1788 	return 1;
1789 }
1790 
1791 /*
1792  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1793  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1794  * restart. For both cases, take care to check the condition again after
1795  * marking us as waiting.
1796  */
1797 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1798 				 struct request *rq)
1799 {
1800 	struct sbitmap_queue *sbq;
1801 	struct wait_queue_head *wq;
1802 	wait_queue_entry_t *wait;
1803 	bool ret;
1804 
1805 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1806 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1807 		blk_mq_sched_mark_restart_hctx(hctx);
1808 
1809 		/*
1810 		 * It's possible that a tag was freed in the window between the
1811 		 * allocation failure and adding the hardware queue to the wait
1812 		 * queue.
1813 		 *
1814 		 * Don't clear RESTART here, someone else could have set it.
1815 		 * At most this will cost an extra queue run.
1816 		 */
1817 		return blk_mq_get_driver_tag(rq);
1818 	}
1819 
1820 	wait = &hctx->dispatch_wait;
1821 	if (!list_empty_careful(&wait->entry))
1822 		return false;
1823 
1824 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1825 		sbq = &hctx->tags->breserved_tags;
1826 	else
1827 		sbq = &hctx->tags->bitmap_tags;
1828 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1829 
1830 	spin_lock_irq(&wq->lock);
1831 	spin_lock(&hctx->dispatch_wait_lock);
1832 	if (!list_empty(&wait->entry)) {
1833 		spin_unlock(&hctx->dispatch_wait_lock);
1834 		spin_unlock_irq(&wq->lock);
1835 		return false;
1836 	}
1837 
1838 	atomic_inc(&sbq->ws_active);
1839 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1840 	__add_wait_queue(wq, wait);
1841 
1842 	/*
1843 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1844 	 * not imply barrier in case of failure.
1845 	 *
1846 	 * Order adding us to wait queue and allocating driver tag.
1847 	 *
1848 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1849 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1850 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1851 	 *
1852 	 * Otherwise, re-order of adding wait queue and getting driver tag
1853 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1854 	 * the waitqueue_active() may not observe us in wait queue.
1855 	 */
1856 	smp_mb();
1857 
1858 	/*
1859 	 * It's possible that a tag was freed in the window between the
1860 	 * allocation failure and adding the hardware queue to the wait
1861 	 * queue.
1862 	 */
1863 	ret = blk_mq_get_driver_tag(rq);
1864 	if (!ret) {
1865 		spin_unlock(&hctx->dispatch_wait_lock);
1866 		spin_unlock_irq(&wq->lock);
1867 		return false;
1868 	}
1869 
1870 	/*
1871 	 * We got a tag, remove ourselves from the wait queue to ensure
1872 	 * someone else gets the wakeup.
1873 	 */
1874 	list_del_init(&wait->entry);
1875 	atomic_dec(&sbq->ws_active);
1876 	spin_unlock(&hctx->dispatch_wait_lock);
1877 	spin_unlock_irq(&wq->lock);
1878 
1879 	return true;
1880 }
1881 
1882 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1883 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1884 /*
1885  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1886  * - EWMA is one simple way to compute running average value
1887  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1888  * - take 4 as factor for avoiding to get too small(0) result, and this
1889  *   factor doesn't matter because EWMA decreases exponentially
1890  */
1891 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1892 {
1893 	unsigned int ewma;
1894 
1895 	ewma = hctx->dispatch_busy;
1896 
1897 	if (!ewma && !busy)
1898 		return;
1899 
1900 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1901 	if (busy)
1902 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1903 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1904 
1905 	hctx->dispatch_busy = ewma;
1906 }
1907 
1908 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1909 
1910 static void blk_mq_handle_dev_resource(struct request *rq,
1911 				       struct list_head *list)
1912 {
1913 	list_add(&rq->queuelist, list);
1914 	__blk_mq_requeue_request(rq);
1915 }
1916 
1917 enum prep_dispatch {
1918 	PREP_DISPATCH_OK,
1919 	PREP_DISPATCH_NO_TAG,
1920 	PREP_DISPATCH_NO_BUDGET,
1921 };
1922 
1923 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1924 						  bool need_budget)
1925 {
1926 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1927 	int budget_token = -1;
1928 
1929 	if (need_budget) {
1930 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1931 		if (budget_token < 0) {
1932 			blk_mq_put_driver_tag(rq);
1933 			return PREP_DISPATCH_NO_BUDGET;
1934 		}
1935 		blk_mq_set_rq_budget_token(rq, budget_token);
1936 	}
1937 
1938 	if (!blk_mq_get_driver_tag(rq)) {
1939 		/*
1940 		 * The initial allocation attempt failed, so we need to
1941 		 * rerun the hardware queue when a tag is freed. The
1942 		 * waitqueue takes care of that. If the queue is run
1943 		 * before we add this entry back on the dispatch list,
1944 		 * we'll re-run it below.
1945 		 */
1946 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1947 			/*
1948 			 * All budgets not got from this function will be put
1949 			 * together during handling partial dispatch
1950 			 */
1951 			if (need_budget)
1952 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1953 			return PREP_DISPATCH_NO_TAG;
1954 		}
1955 	}
1956 
1957 	return PREP_DISPATCH_OK;
1958 }
1959 
1960 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1961 static void blk_mq_release_budgets(struct request_queue *q,
1962 		struct list_head *list)
1963 {
1964 	struct request *rq;
1965 
1966 	list_for_each_entry(rq, list, queuelist) {
1967 		int budget_token = blk_mq_get_rq_budget_token(rq);
1968 
1969 		if (budget_token >= 0)
1970 			blk_mq_put_dispatch_budget(q, budget_token);
1971 	}
1972 }
1973 
1974 /*
1975  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1976  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1977  * details)
1978  * Attention, we should explicitly call this in unusual cases:
1979  *  1) did not queue everything initially scheduled to queue
1980  *  2) the last attempt to queue a request failed
1981  */
1982 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1983 			      bool from_schedule)
1984 {
1985 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1986 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1987 		hctx->queue->mq_ops->commit_rqs(hctx);
1988 	}
1989 }
1990 
1991 /*
1992  * Returns true if we did some work AND can potentially do more.
1993  */
1994 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1995 			     unsigned int nr_budgets)
1996 {
1997 	enum prep_dispatch prep;
1998 	struct request_queue *q = hctx->queue;
1999 	struct request *rq;
2000 	int queued;
2001 	blk_status_t ret = BLK_STS_OK;
2002 	bool needs_resource = false;
2003 
2004 	if (list_empty(list))
2005 		return false;
2006 
2007 	/*
2008 	 * Now process all the entries, sending them to the driver.
2009 	 */
2010 	queued = 0;
2011 	do {
2012 		struct blk_mq_queue_data bd;
2013 
2014 		rq = list_first_entry(list, struct request, queuelist);
2015 
2016 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2017 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2018 		if (prep != PREP_DISPATCH_OK)
2019 			break;
2020 
2021 		list_del_init(&rq->queuelist);
2022 
2023 		bd.rq = rq;
2024 		bd.last = list_empty(list);
2025 
2026 		/*
2027 		 * once the request is queued to lld, no need to cover the
2028 		 * budget any more
2029 		 */
2030 		if (nr_budgets)
2031 			nr_budgets--;
2032 		ret = q->mq_ops->queue_rq(hctx, &bd);
2033 		switch (ret) {
2034 		case BLK_STS_OK:
2035 			queued++;
2036 			break;
2037 		case BLK_STS_RESOURCE:
2038 			needs_resource = true;
2039 			fallthrough;
2040 		case BLK_STS_DEV_RESOURCE:
2041 			blk_mq_handle_dev_resource(rq, list);
2042 			goto out;
2043 		default:
2044 			blk_mq_end_request(rq, ret);
2045 		}
2046 	} while (!list_empty(list));
2047 out:
2048 	/* If we didn't flush the entire list, we could have told the driver
2049 	 * there was more coming, but that turned out to be a lie.
2050 	 */
2051 	if (!list_empty(list) || ret != BLK_STS_OK)
2052 		blk_mq_commit_rqs(hctx, queued, false);
2053 
2054 	/*
2055 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2056 	 * that is where we will continue on next queue run.
2057 	 */
2058 	if (!list_empty(list)) {
2059 		bool needs_restart;
2060 		/* For non-shared tags, the RESTART check will suffice */
2061 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2062 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2063 			blk_mq_is_shared_tags(hctx->flags));
2064 
2065 		if (nr_budgets)
2066 			blk_mq_release_budgets(q, list);
2067 
2068 		spin_lock(&hctx->lock);
2069 		list_splice_tail_init(list, &hctx->dispatch);
2070 		spin_unlock(&hctx->lock);
2071 
2072 		/*
2073 		 * Order adding requests to hctx->dispatch and checking
2074 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2075 		 * in blk_mq_sched_restart(). Avoid restart code path to
2076 		 * miss the new added requests to hctx->dispatch, meantime
2077 		 * SCHED_RESTART is observed here.
2078 		 */
2079 		smp_mb();
2080 
2081 		/*
2082 		 * If SCHED_RESTART was set by the caller of this function and
2083 		 * it is no longer set that means that it was cleared by another
2084 		 * thread and hence that a queue rerun is needed.
2085 		 *
2086 		 * If 'no_tag' is set, that means that we failed getting
2087 		 * a driver tag with an I/O scheduler attached. If our dispatch
2088 		 * waitqueue is no longer active, ensure that we run the queue
2089 		 * AFTER adding our entries back to the list.
2090 		 *
2091 		 * If no I/O scheduler has been configured it is possible that
2092 		 * the hardware queue got stopped and restarted before requests
2093 		 * were pushed back onto the dispatch list. Rerun the queue to
2094 		 * avoid starvation. Notes:
2095 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2096 		 *   been stopped before rerunning a queue.
2097 		 * - Some but not all block drivers stop a queue before
2098 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2099 		 *   and dm-rq.
2100 		 *
2101 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2102 		 * bit is set, run queue after a delay to avoid IO stalls
2103 		 * that could otherwise occur if the queue is idle.  We'll do
2104 		 * similar if we couldn't get budget or couldn't lock a zone
2105 		 * and SCHED_RESTART is set.
2106 		 */
2107 		needs_restart = blk_mq_sched_needs_restart(hctx);
2108 		if (prep == PREP_DISPATCH_NO_BUDGET)
2109 			needs_resource = true;
2110 		if (!needs_restart ||
2111 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2112 			blk_mq_run_hw_queue(hctx, true);
2113 		else if (needs_resource)
2114 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2115 
2116 		blk_mq_update_dispatch_busy(hctx, true);
2117 		return false;
2118 	}
2119 
2120 	blk_mq_update_dispatch_busy(hctx, false);
2121 	return true;
2122 }
2123 
2124 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2125 {
2126 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2127 
2128 	if (cpu >= nr_cpu_ids)
2129 		cpu = cpumask_first(hctx->cpumask);
2130 	return cpu;
2131 }
2132 
2133 /*
2134  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2135  * it for speeding up the check
2136  */
2137 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2138 {
2139         return hctx->next_cpu >= nr_cpu_ids;
2140 }
2141 
2142 /*
2143  * It'd be great if the workqueue API had a way to pass
2144  * in a mask and had some smarts for more clever placement.
2145  * For now we just round-robin here, switching for every
2146  * BLK_MQ_CPU_WORK_BATCH queued items.
2147  */
2148 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2149 {
2150 	bool tried = false;
2151 	int next_cpu = hctx->next_cpu;
2152 
2153 	/* Switch to unbound if no allowable CPUs in this hctx */
2154 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2155 		return WORK_CPU_UNBOUND;
2156 
2157 	if (--hctx->next_cpu_batch <= 0) {
2158 select_cpu:
2159 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2160 				cpu_online_mask);
2161 		if (next_cpu >= nr_cpu_ids)
2162 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2163 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2164 	}
2165 
2166 	/*
2167 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2168 	 * and it should only happen in the path of handling CPU DEAD.
2169 	 */
2170 	if (!cpu_online(next_cpu)) {
2171 		if (!tried) {
2172 			tried = true;
2173 			goto select_cpu;
2174 		}
2175 
2176 		/*
2177 		 * Make sure to re-select CPU next time once after CPUs
2178 		 * in hctx->cpumask become online again.
2179 		 */
2180 		hctx->next_cpu = next_cpu;
2181 		hctx->next_cpu_batch = 1;
2182 		return WORK_CPU_UNBOUND;
2183 	}
2184 
2185 	hctx->next_cpu = next_cpu;
2186 	return next_cpu;
2187 }
2188 
2189 /**
2190  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2191  * @hctx: Pointer to the hardware queue to run.
2192  * @msecs: Milliseconds of delay to wait before running the queue.
2193  *
2194  * Run a hardware queue asynchronously with a delay of @msecs.
2195  */
2196 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2197 {
2198 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2199 		return;
2200 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2201 				    msecs_to_jiffies(msecs));
2202 }
2203 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2204 
2205 /**
2206  * blk_mq_run_hw_queue - Start to run a hardware queue.
2207  * @hctx: Pointer to the hardware queue to run.
2208  * @async: If we want to run the queue asynchronously.
2209  *
2210  * Check if the request queue is not in a quiesced state and if there are
2211  * pending requests to be sent. If this is true, run the queue to send requests
2212  * to hardware.
2213  */
2214 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2215 {
2216 	bool need_run;
2217 
2218 	/*
2219 	 * We can't run the queue inline with interrupts disabled.
2220 	 */
2221 	WARN_ON_ONCE(!async && in_interrupt());
2222 
2223 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2224 
2225 	/*
2226 	 * When queue is quiesced, we may be switching io scheduler, or
2227 	 * updating nr_hw_queues, or other things, and we can't run queue
2228 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2229 	 *
2230 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2231 	 * quiesced.
2232 	 */
2233 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2234 		need_run = !blk_queue_quiesced(hctx->queue) &&
2235 		blk_mq_hctx_has_pending(hctx));
2236 
2237 	if (!need_run)
2238 		return;
2239 
2240 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2241 		blk_mq_delay_run_hw_queue(hctx, 0);
2242 		return;
2243 	}
2244 
2245 	blk_mq_run_dispatch_ops(hctx->queue,
2246 				blk_mq_sched_dispatch_requests(hctx));
2247 }
2248 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2249 
2250 /*
2251  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2252  * scheduler.
2253  */
2254 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2255 {
2256 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2257 	/*
2258 	 * If the IO scheduler does not respect hardware queues when
2259 	 * dispatching, we just don't bother with multiple HW queues and
2260 	 * dispatch from hctx for the current CPU since running multiple queues
2261 	 * just causes lock contention inside the scheduler and pointless cache
2262 	 * bouncing.
2263 	 */
2264 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2265 
2266 	if (!blk_mq_hctx_stopped(hctx))
2267 		return hctx;
2268 	return NULL;
2269 }
2270 
2271 /**
2272  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2273  * @q: Pointer to the request queue to run.
2274  * @async: If we want to run the queue asynchronously.
2275  */
2276 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2277 {
2278 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2279 	unsigned long i;
2280 
2281 	sq_hctx = NULL;
2282 	if (blk_queue_sq_sched(q))
2283 		sq_hctx = blk_mq_get_sq_hctx(q);
2284 	queue_for_each_hw_ctx(q, hctx, i) {
2285 		if (blk_mq_hctx_stopped(hctx))
2286 			continue;
2287 		/*
2288 		 * Dispatch from this hctx either if there's no hctx preferred
2289 		 * by IO scheduler or if it has requests that bypass the
2290 		 * scheduler.
2291 		 */
2292 		if (!sq_hctx || sq_hctx == hctx ||
2293 		    !list_empty_careful(&hctx->dispatch))
2294 			blk_mq_run_hw_queue(hctx, async);
2295 	}
2296 }
2297 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2298 
2299 /**
2300  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2301  * @q: Pointer to the request queue to run.
2302  * @msecs: Milliseconds of delay to wait before running the queues.
2303  */
2304 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2305 {
2306 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2307 	unsigned long i;
2308 
2309 	sq_hctx = NULL;
2310 	if (blk_queue_sq_sched(q))
2311 		sq_hctx = blk_mq_get_sq_hctx(q);
2312 	queue_for_each_hw_ctx(q, hctx, i) {
2313 		if (blk_mq_hctx_stopped(hctx))
2314 			continue;
2315 		/*
2316 		 * If there is already a run_work pending, leave the
2317 		 * pending delay untouched. Otherwise, a hctx can stall
2318 		 * if another hctx is re-delaying the other's work
2319 		 * before the work executes.
2320 		 */
2321 		if (delayed_work_pending(&hctx->run_work))
2322 			continue;
2323 		/*
2324 		 * Dispatch from this hctx either if there's no hctx preferred
2325 		 * by IO scheduler or if it has requests that bypass the
2326 		 * scheduler.
2327 		 */
2328 		if (!sq_hctx || sq_hctx == hctx ||
2329 		    !list_empty_careful(&hctx->dispatch))
2330 			blk_mq_delay_run_hw_queue(hctx, msecs);
2331 	}
2332 }
2333 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2334 
2335 /*
2336  * This function is often used for pausing .queue_rq() by driver when
2337  * there isn't enough resource or some conditions aren't satisfied, and
2338  * BLK_STS_RESOURCE is usually returned.
2339  *
2340  * We do not guarantee that dispatch can be drained or blocked
2341  * after blk_mq_stop_hw_queue() returns. Please use
2342  * blk_mq_quiesce_queue() for that requirement.
2343  */
2344 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2345 {
2346 	cancel_delayed_work(&hctx->run_work);
2347 
2348 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2349 }
2350 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2351 
2352 /*
2353  * This function is often used for pausing .queue_rq() by driver when
2354  * there isn't enough resource or some conditions aren't satisfied, and
2355  * BLK_STS_RESOURCE is usually returned.
2356  *
2357  * We do not guarantee that dispatch can be drained or blocked
2358  * after blk_mq_stop_hw_queues() returns. Please use
2359  * blk_mq_quiesce_queue() for that requirement.
2360  */
2361 void blk_mq_stop_hw_queues(struct request_queue *q)
2362 {
2363 	struct blk_mq_hw_ctx *hctx;
2364 	unsigned long i;
2365 
2366 	queue_for_each_hw_ctx(q, hctx, i)
2367 		blk_mq_stop_hw_queue(hctx);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2370 
2371 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2372 {
2373 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2374 
2375 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2376 }
2377 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2378 
2379 void blk_mq_start_hw_queues(struct request_queue *q)
2380 {
2381 	struct blk_mq_hw_ctx *hctx;
2382 	unsigned long i;
2383 
2384 	queue_for_each_hw_ctx(q, hctx, i)
2385 		blk_mq_start_hw_queue(hctx);
2386 }
2387 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2388 
2389 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2390 {
2391 	if (!blk_mq_hctx_stopped(hctx))
2392 		return;
2393 
2394 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2395 	blk_mq_run_hw_queue(hctx, async);
2396 }
2397 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2398 
2399 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2400 {
2401 	struct blk_mq_hw_ctx *hctx;
2402 	unsigned long i;
2403 
2404 	queue_for_each_hw_ctx(q, hctx, i)
2405 		blk_mq_start_stopped_hw_queue(hctx, async ||
2406 					(hctx->flags & BLK_MQ_F_BLOCKING));
2407 }
2408 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2409 
2410 static void blk_mq_run_work_fn(struct work_struct *work)
2411 {
2412 	struct blk_mq_hw_ctx *hctx =
2413 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2414 
2415 	blk_mq_run_dispatch_ops(hctx->queue,
2416 				blk_mq_sched_dispatch_requests(hctx));
2417 }
2418 
2419 /**
2420  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2421  * @rq: Pointer to request to be inserted.
2422  * @flags: BLK_MQ_INSERT_*
2423  *
2424  * Should only be used carefully, when the caller knows we want to
2425  * bypass a potential IO scheduler on the target device.
2426  */
2427 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2428 {
2429 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2430 
2431 	spin_lock(&hctx->lock);
2432 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2433 		list_add(&rq->queuelist, &hctx->dispatch);
2434 	else
2435 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2436 	spin_unlock(&hctx->lock);
2437 }
2438 
2439 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2440 		struct blk_mq_ctx *ctx, struct list_head *list,
2441 		bool run_queue_async)
2442 {
2443 	struct request *rq;
2444 	enum hctx_type type = hctx->type;
2445 
2446 	/*
2447 	 * Try to issue requests directly if the hw queue isn't busy to save an
2448 	 * extra enqueue & dequeue to the sw queue.
2449 	 */
2450 	if (!hctx->dispatch_busy && !run_queue_async) {
2451 		blk_mq_run_dispatch_ops(hctx->queue,
2452 			blk_mq_try_issue_list_directly(hctx, list));
2453 		if (list_empty(list))
2454 			goto out;
2455 	}
2456 
2457 	/*
2458 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2459 	 * offline now
2460 	 */
2461 	list_for_each_entry(rq, list, queuelist) {
2462 		BUG_ON(rq->mq_ctx != ctx);
2463 		trace_block_rq_insert(rq);
2464 		if (rq->cmd_flags & REQ_NOWAIT)
2465 			run_queue_async = true;
2466 	}
2467 
2468 	spin_lock(&ctx->lock);
2469 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2470 	blk_mq_hctx_mark_pending(hctx, ctx);
2471 	spin_unlock(&ctx->lock);
2472 out:
2473 	blk_mq_run_hw_queue(hctx, run_queue_async);
2474 }
2475 
2476 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2477 {
2478 	struct request_queue *q = rq->q;
2479 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2480 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2481 
2482 	if (blk_rq_is_passthrough(rq)) {
2483 		/*
2484 		 * Passthrough request have to be added to hctx->dispatch
2485 		 * directly.  The device may be in a situation where it can't
2486 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2487 		 * them, which gets them added to hctx->dispatch.
2488 		 *
2489 		 * If a passthrough request is required to unblock the queues,
2490 		 * and it is added to the scheduler queue, there is no chance to
2491 		 * dispatch it given we prioritize requests in hctx->dispatch.
2492 		 */
2493 		blk_mq_request_bypass_insert(rq, flags);
2494 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2495 		/*
2496 		 * Firstly normal IO request is inserted to scheduler queue or
2497 		 * sw queue, meantime we add flush request to dispatch queue(
2498 		 * hctx->dispatch) directly and there is at most one in-flight
2499 		 * flush request for each hw queue, so it doesn't matter to add
2500 		 * flush request to tail or front of the dispatch queue.
2501 		 *
2502 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2503 		 * command, and queueing it will fail when there is any
2504 		 * in-flight normal IO request(NCQ command). When adding flush
2505 		 * rq to the front of hctx->dispatch, it is easier to introduce
2506 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2507 		 * compared with adding to the tail of dispatch queue, then
2508 		 * chance of flush merge is increased, and less flush requests
2509 		 * will be issued to controller. It is observed that ~10% time
2510 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2511 		 * drive when adding flush rq to the front of hctx->dispatch.
2512 		 *
2513 		 * Simply queue flush rq to the front of hctx->dispatch so that
2514 		 * intensive flush workloads can benefit in case of NCQ HW.
2515 		 */
2516 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2517 	} else if (q->elevator) {
2518 		LIST_HEAD(list);
2519 
2520 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2521 
2522 		list_add(&rq->queuelist, &list);
2523 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2524 	} else {
2525 		trace_block_rq_insert(rq);
2526 
2527 		spin_lock(&ctx->lock);
2528 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2529 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2530 		else
2531 			list_add_tail(&rq->queuelist,
2532 				      &ctx->rq_lists[hctx->type]);
2533 		blk_mq_hctx_mark_pending(hctx, ctx);
2534 		spin_unlock(&ctx->lock);
2535 	}
2536 }
2537 
2538 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2539 		unsigned int nr_segs)
2540 {
2541 	int err;
2542 
2543 	if (bio->bi_opf & REQ_RAHEAD)
2544 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2545 
2546 	rq->__sector = bio->bi_iter.bi_sector;
2547 	rq->write_hint = bio->bi_write_hint;
2548 	blk_rq_bio_prep(rq, bio, nr_segs);
2549 
2550 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2551 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2552 	WARN_ON_ONCE(err);
2553 
2554 	blk_account_io_start(rq);
2555 }
2556 
2557 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2558 					    struct request *rq, bool last)
2559 {
2560 	struct request_queue *q = rq->q;
2561 	struct blk_mq_queue_data bd = {
2562 		.rq = rq,
2563 		.last = last,
2564 	};
2565 	blk_status_t ret;
2566 
2567 	/*
2568 	 * For OK queue, we are done. For error, caller may kill it.
2569 	 * Any other error (busy), just add it to our list as we
2570 	 * previously would have done.
2571 	 */
2572 	ret = q->mq_ops->queue_rq(hctx, &bd);
2573 	switch (ret) {
2574 	case BLK_STS_OK:
2575 		blk_mq_update_dispatch_busy(hctx, false);
2576 		break;
2577 	case BLK_STS_RESOURCE:
2578 	case BLK_STS_DEV_RESOURCE:
2579 		blk_mq_update_dispatch_busy(hctx, true);
2580 		__blk_mq_requeue_request(rq);
2581 		break;
2582 	default:
2583 		blk_mq_update_dispatch_busy(hctx, false);
2584 		break;
2585 	}
2586 
2587 	return ret;
2588 }
2589 
2590 static bool blk_mq_get_budget_and_tag(struct request *rq)
2591 {
2592 	int budget_token;
2593 
2594 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2595 	if (budget_token < 0)
2596 		return false;
2597 	blk_mq_set_rq_budget_token(rq, budget_token);
2598 	if (!blk_mq_get_driver_tag(rq)) {
2599 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2600 		return false;
2601 	}
2602 	return true;
2603 }
2604 
2605 /**
2606  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2607  * @hctx: Pointer of the associated hardware queue.
2608  * @rq: Pointer to request to be sent.
2609  *
2610  * If the device has enough resources to accept a new request now, send the
2611  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2612  * we can try send it another time in the future. Requests inserted at this
2613  * queue have higher priority.
2614  */
2615 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2616 		struct request *rq)
2617 {
2618 	blk_status_t ret;
2619 
2620 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2621 		blk_mq_insert_request(rq, 0);
2622 		return;
2623 	}
2624 
2625 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2626 		blk_mq_insert_request(rq, 0);
2627 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2628 		return;
2629 	}
2630 
2631 	ret = __blk_mq_issue_directly(hctx, rq, true);
2632 	switch (ret) {
2633 	case BLK_STS_OK:
2634 		break;
2635 	case BLK_STS_RESOURCE:
2636 	case BLK_STS_DEV_RESOURCE:
2637 		blk_mq_request_bypass_insert(rq, 0);
2638 		blk_mq_run_hw_queue(hctx, false);
2639 		break;
2640 	default:
2641 		blk_mq_end_request(rq, ret);
2642 		break;
2643 	}
2644 }
2645 
2646 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2647 {
2648 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2649 
2650 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2651 		blk_mq_insert_request(rq, 0);
2652 		return BLK_STS_OK;
2653 	}
2654 
2655 	if (!blk_mq_get_budget_and_tag(rq))
2656 		return BLK_STS_RESOURCE;
2657 	return __blk_mq_issue_directly(hctx, rq, last);
2658 }
2659 
2660 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2661 {
2662 	struct blk_mq_hw_ctx *hctx = NULL;
2663 	struct request *rq;
2664 	int queued = 0;
2665 	blk_status_t ret = BLK_STS_OK;
2666 
2667 	while ((rq = rq_list_pop(&plug->mq_list))) {
2668 		bool last = rq_list_empty(plug->mq_list);
2669 
2670 		if (hctx != rq->mq_hctx) {
2671 			if (hctx) {
2672 				blk_mq_commit_rqs(hctx, queued, false);
2673 				queued = 0;
2674 			}
2675 			hctx = rq->mq_hctx;
2676 		}
2677 
2678 		ret = blk_mq_request_issue_directly(rq, last);
2679 		switch (ret) {
2680 		case BLK_STS_OK:
2681 			queued++;
2682 			break;
2683 		case BLK_STS_RESOURCE:
2684 		case BLK_STS_DEV_RESOURCE:
2685 			blk_mq_request_bypass_insert(rq, 0);
2686 			blk_mq_run_hw_queue(hctx, false);
2687 			goto out;
2688 		default:
2689 			blk_mq_end_request(rq, ret);
2690 			break;
2691 		}
2692 	}
2693 
2694 out:
2695 	if (ret != BLK_STS_OK)
2696 		blk_mq_commit_rqs(hctx, queued, false);
2697 }
2698 
2699 static void __blk_mq_flush_plug_list(struct request_queue *q,
2700 				     struct blk_plug *plug)
2701 {
2702 	if (blk_queue_quiesced(q))
2703 		return;
2704 	q->mq_ops->queue_rqs(&plug->mq_list);
2705 }
2706 
2707 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2708 {
2709 	struct blk_mq_hw_ctx *this_hctx = NULL;
2710 	struct blk_mq_ctx *this_ctx = NULL;
2711 	struct request *requeue_list = NULL;
2712 	struct request **requeue_lastp = &requeue_list;
2713 	unsigned int depth = 0;
2714 	bool is_passthrough = false;
2715 	LIST_HEAD(list);
2716 
2717 	do {
2718 		struct request *rq = rq_list_pop(&plug->mq_list);
2719 
2720 		if (!this_hctx) {
2721 			this_hctx = rq->mq_hctx;
2722 			this_ctx = rq->mq_ctx;
2723 			is_passthrough = blk_rq_is_passthrough(rq);
2724 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2725 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2726 			rq_list_add_tail(&requeue_lastp, rq);
2727 			continue;
2728 		}
2729 		list_add(&rq->queuelist, &list);
2730 		depth++;
2731 	} while (!rq_list_empty(plug->mq_list));
2732 
2733 	plug->mq_list = requeue_list;
2734 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2735 
2736 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2737 	/* passthrough requests should never be issued to the I/O scheduler */
2738 	if (is_passthrough) {
2739 		spin_lock(&this_hctx->lock);
2740 		list_splice_tail_init(&list, &this_hctx->dispatch);
2741 		spin_unlock(&this_hctx->lock);
2742 		blk_mq_run_hw_queue(this_hctx, from_sched);
2743 	} else if (this_hctx->queue->elevator) {
2744 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2745 				&list, 0);
2746 		blk_mq_run_hw_queue(this_hctx, from_sched);
2747 	} else {
2748 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749 	}
2750 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2751 }
2752 
2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 {
2755 	struct request *rq;
2756 
2757 	/*
2758 	 * We may have been called recursively midway through handling
2759 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2760 	 * To avoid mq_list changing under our feet, clear rq_count early and
2761 	 * bail out specifically if rq_count is 0 rather than checking
2762 	 * whether the mq_list is empty.
2763 	 */
2764 	if (plug->rq_count == 0)
2765 		return;
2766 	plug->rq_count = 0;
2767 
2768 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2769 		struct request_queue *q;
2770 
2771 		rq = rq_list_peek(&plug->mq_list);
2772 		q = rq->q;
2773 
2774 		/*
2775 		 * Peek first request and see if we have a ->queue_rqs() hook.
2776 		 * If we do, we can dispatch the whole plug list in one go. We
2777 		 * already know at this point that all requests belong to the
2778 		 * same queue, caller must ensure that's the case.
2779 		 */
2780 		if (q->mq_ops->queue_rqs) {
2781 			blk_mq_run_dispatch_ops(q,
2782 				__blk_mq_flush_plug_list(q, plug));
2783 			if (rq_list_empty(plug->mq_list))
2784 				return;
2785 		}
2786 
2787 		blk_mq_run_dispatch_ops(q,
2788 				blk_mq_plug_issue_direct(plug));
2789 		if (rq_list_empty(plug->mq_list))
2790 			return;
2791 	}
2792 
2793 	do {
2794 		blk_mq_dispatch_plug_list(plug, from_schedule);
2795 	} while (!rq_list_empty(plug->mq_list));
2796 }
2797 
2798 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2799 		struct list_head *list)
2800 {
2801 	int queued = 0;
2802 	blk_status_t ret = BLK_STS_OK;
2803 
2804 	while (!list_empty(list)) {
2805 		struct request *rq = list_first_entry(list, struct request,
2806 				queuelist);
2807 
2808 		list_del_init(&rq->queuelist);
2809 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2810 		switch (ret) {
2811 		case BLK_STS_OK:
2812 			queued++;
2813 			break;
2814 		case BLK_STS_RESOURCE:
2815 		case BLK_STS_DEV_RESOURCE:
2816 			blk_mq_request_bypass_insert(rq, 0);
2817 			if (list_empty(list))
2818 				blk_mq_run_hw_queue(hctx, false);
2819 			goto out;
2820 		default:
2821 			blk_mq_end_request(rq, ret);
2822 			break;
2823 		}
2824 	}
2825 
2826 out:
2827 	if (ret != BLK_STS_OK)
2828 		blk_mq_commit_rqs(hctx, queued, false);
2829 }
2830 
2831 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2832 				     struct bio *bio, unsigned int nr_segs)
2833 {
2834 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2835 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2836 			return true;
2837 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2838 			return true;
2839 	}
2840 	return false;
2841 }
2842 
2843 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2844 					       struct blk_plug *plug,
2845 					       struct bio *bio,
2846 					       unsigned int nsegs)
2847 {
2848 	struct blk_mq_alloc_data data = {
2849 		.q		= q,
2850 		.nr_tags	= 1,
2851 		.cmd_flags	= bio->bi_opf,
2852 	};
2853 	struct request *rq;
2854 
2855 	rq_qos_throttle(q, bio);
2856 
2857 	if (plug) {
2858 		data.nr_tags = plug->nr_ios;
2859 		plug->nr_ios = 1;
2860 		data.cached_rq = &plug->cached_rq;
2861 	}
2862 
2863 	rq = __blk_mq_alloc_requests(&data);
2864 	if (rq)
2865 		return rq;
2866 	rq_qos_cleanup(q, bio);
2867 	if (bio->bi_opf & REQ_NOWAIT)
2868 		bio_wouldblock_error(bio);
2869 	return NULL;
2870 }
2871 
2872 /*
2873  * Check if there is a suitable cached request and return it.
2874  */
2875 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2876 		struct request_queue *q, blk_opf_t opf)
2877 {
2878 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2879 	struct request *rq;
2880 
2881 	if (!plug)
2882 		return NULL;
2883 	rq = rq_list_peek(&plug->cached_rq);
2884 	if (!rq || rq->q != q)
2885 		return NULL;
2886 	if (type != rq->mq_hctx->type &&
2887 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2888 		return NULL;
2889 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2890 		return NULL;
2891 	return rq;
2892 }
2893 
2894 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2895 		struct bio *bio)
2896 {
2897 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2898 
2899 	/*
2900 	 * If any qos ->throttle() end up blocking, we will have flushed the
2901 	 * plug and hence killed the cached_rq list as well. Pop this entry
2902 	 * before we throttle.
2903 	 */
2904 	plug->cached_rq = rq_list_next(rq);
2905 	rq_qos_throttle(rq->q, bio);
2906 
2907 	blk_mq_rq_time_init(rq, 0);
2908 	rq->cmd_flags = bio->bi_opf;
2909 	INIT_LIST_HEAD(&rq->queuelist);
2910 }
2911 
2912 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
2913 {
2914 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
2915 
2916 	/* .bi_sector of any zero sized bio need to be initialized */
2917 	if ((bio->bi_iter.bi_size & bs_mask) ||
2918 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
2919 		return true;
2920 	return false;
2921 }
2922 
2923 /**
2924  * blk_mq_submit_bio - Create and send a request to block device.
2925  * @bio: Bio pointer.
2926  *
2927  * Builds up a request structure from @q and @bio and send to the device. The
2928  * request may not be queued directly to hardware if:
2929  * * This request can be merged with another one
2930  * * We want to place request at plug queue for possible future merging
2931  * * There is an IO scheduler active at this queue
2932  *
2933  * It will not queue the request if there is an error with the bio, or at the
2934  * request creation.
2935  */
2936 void blk_mq_submit_bio(struct bio *bio)
2937 {
2938 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2939 	struct blk_plug *plug = current->plug;
2940 	const int is_sync = op_is_sync(bio->bi_opf);
2941 	struct blk_mq_hw_ctx *hctx;
2942 	unsigned int nr_segs = 1;
2943 	struct request *rq;
2944 	blk_status_t ret;
2945 
2946 	/*
2947 	 * If the plug has a cached request for this queue, try to use it.
2948 	 */
2949 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2950 
2951 	/*
2952 	 * A BIO that was released from a zone write plug has already been
2953 	 * through the preparation in this function, already holds a reference
2954 	 * on the queue usage counter, and is the only write BIO in-flight for
2955 	 * the target zone. Go straight to preparing a request for it.
2956 	 */
2957 	if (bio_zone_write_plugging(bio)) {
2958 		nr_segs = bio->__bi_nr_segments;
2959 		if (rq)
2960 			blk_queue_exit(q);
2961 		goto new_request;
2962 	}
2963 
2964 	bio = blk_queue_bounce(bio, q);
2965 
2966 	/*
2967 	 * The cached request already holds a q_usage_counter reference and we
2968 	 * don't have to acquire a new one if we use it.
2969 	 */
2970 	if (!rq) {
2971 		if (unlikely(bio_queue_enter(bio)))
2972 			return;
2973 	}
2974 
2975 	/*
2976 	 * Device reconfiguration may change logical block size, so alignment
2977 	 * check has to be done with queue usage counter held
2978 	 */
2979 	if (unlikely(bio_unaligned(bio, q))) {
2980 		bio_io_error(bio);
2981 		goto queue_exit;
2982 	}
2983 
2984 	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2985 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2986 		if (!bio)
2987 			goto queue_exit;
2988 	}
2989 	if (!bio_integrity_prep(bio))
2990 		goto queue_exit;
2991 
2992 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2993 		goto queue_exit;
2994 
2995 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2996 		goto queue_exit;
2997 
2998 new_request:
2999 	if (!rq) {
3000 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3001 		if (unlikely(!rq))
3002 			goto queue_exit;
3003 	} else {
3004 		blk_mq_use_cached_rq(rq, plug, bio);
3005 	}
3006 
3007 	trace_block_getrq(bio);
3008 
3009 	rq_qos_track(q, rq, bio);
3010 
3011 	blk_mq_bio_to_request(rq, bio, nr_segs);
3012 
3013 	ret = blk_crypto_rq_get_keyslot(rq);
3014 	if (ret != BLK_STS_OK) {
3015 		bio->bi_status = ret;
3016 		bio_endio(bio);
3017 		blk_mq_free_request(rq);
3018 		return;
3019 	}
3020 
3021 	if (bio_zone_write_plugging(bio))
3022 		blk_zone_write_plug_init_request(rq);
3023 
3024 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3025 		return;
3026 
3027 	if (plug) {
3028 		blk_add_rq_to_plug(plug, rq);
3029 		return;
3030 	}
3031 
3032 	hctx = rq->mq_hctx;
3033 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3034 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3035 		blk_mq_insert_request(rq, 0);
3036 		blk_mq_run_hw_queue(hctx, true);
3037 	} else {
3038 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3039 	}
3040 	return;
3041 
3042 queue_exit:
3043 	/*
3044 	 * Don't drop the queue reference if we were trying to use a cached
3045 	 * request and thus didn't acquire one.
3046 	 */
3047 	if (!rq)
3048 		blk_queue_exit(q);
3049 }
3050 
3051 #ifdef CONFIG_BLK_MQ_STACKING
3052 /**
3053  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3054  * @rq: the request being queued
3055  */
3056 blk_status_t blk_insert_cloned_request(struct request *rq)
3057 {
3058 	struct request_queue *q = rq->q;
3059 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3060 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3061 	blk_status_t ret;
3062 
3063 	if (blk_rq_sectors(rq) > max_sectors) {
3064 		/*
3065 		 * SCSI device does not have a good way to return if
3066 		 * Write Same/Zero is actually supported. If a device rejects
3067 		 * a non-read/write command (discard, write same,etc.) the
3068 		 * low-level device driver will set the relevant queue limit to
3069 		 * 0 to prevent blk-lib from issuing more of the offending
3070 		 * operations. Commands queued prior to the queue limit being
3071 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3072 		 * errors being propagated to upper layers.
3073 		 */
3074 		if (max_sectors == 0)
3075 			return BLK_STS_NOTSUPP;
3076 
3077 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3078 			__func__, blk_rq_sectors(rq), max_sectors);
3079 		return BLK_STS_IOERR;
3080 	}
3081 
3082 	/*
3083 	 * The queue settings related to segment counting may differ from the
3084 	 * original queue.
3085 	 */
3086 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3087 	if (rq->nr_phys_segments > max_segments) {
3088 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3089 			__func__, rq->nr_phys_segments, max_segments);
3090 		return BLK_STS_IOERR;
3091 	}
3092 
3093 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3094 		return BLK_STS_IOERR;
3095 
3096 	ret = blk_crypto_rq_get_keyslot(rq);
3097 	if (ret != BLK_STS_OK)
3098 		return ret;
3099 
3100 	blk_account_io_start(rq);
3101 
3102 	/*
3103 	 * Since we have a scheduler attached on the top device,
3104 	 * bypass a potential scheduler on the bottom device for
3105 	 * insert.
3106 	 */
3107 	blk_mq_run_dispatch_ops(q,
3108 			ret = blk_mq_request_issue_directly(rq, true));
3109 	if (ret)
3110 		blk_account_io_done(rq, blk_time_get_ns());
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3114 
3115 /**
3116  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3117  * @rq: the clone request to be cleaned up
3118  *
3119  * Description:
3120  *     Free all bios in @rq for a cloned request.
3121  */
3122 void blk_rq_unprep_clone(struct request *rq)
3123 {
3124 	struct bio *bio;
3125 
3126 	while ((bio = rq->bio) != NULL) {
3127 		rq->bio = bio->bi_next;
3128 
3129 		bio_put(bio);
3130 	}
3131 }
3132 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3133 
3134 /**
3135  * blk_rq_prep_clone - Helper function to setup clone request
3136  * @rq: the request to be setup
3137  * @rq_src: original request to be cloned
3138  * @bs: bio_set that bios for clone are allocated from
3139  * @gfp_mask: memory allocation mask for bio
3140  * @bio_ctr: setup function to be called for each clone bio.
3141  *           Returns %0 for success, non %0 for failure.
3142  * @data: private data to be passed to @bio_ctr
3143  *
3144  * Description:
3145  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3146  *     Also, pages which the original bios are pointing to are not copied
3147  *     and the cloned bios just point same pages.
3148  *     So cloned bios must be completed before original bios, which means
3149  *     the caller must complete @rq before @rq_src.
3150  */
3151 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3152 		      struct bio_set *bs, gfp_t gfp_mask,
3153 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3154 		      void *data)
3155 {
3156 	struct bio *bio, *bio_src;
3157 
3158 	if (!bs)
3159 		bs = &fs_bio_set;
3160 
3161 	__rq_for_each_bio(bio_src, rq_src) {
3162 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3163 				      bs);
3164 		if (!bio)
3165 			goto free_and_out;
3166 
3167 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3168 			goto free_and_out;
3169 
3170 		if (rq->bio) {
3171 			rq->biotail->bi_next = bio;
3172 			rq->biotail = bio;
3173 		} else {
3174 			rq->bio = rq->biotail = bio;
3175 		}
3176 		bio = NULL;
3177 	}
3178 
3179 	/* Copy attributes of the original request to the clone request. */
3180 	rq->__sector = blk_rq_pos(rq_src);
3181 	rq->__data_len = blk_rq_bytes(rq_src);
3182 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3183 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3184 		rq->special_vec = rq_src->special_vec;
3185 	}
3186 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3187 	rq->ioprio = rq_src->ioprio;
3188 	rq->write_hint = rq_src->write_hint;
3189 
3190 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3191 		goto free_and_out;
3192 
3193 	return 0;
3194 
3195 free_and_out:
3196 	if (bio)
3197 		bio_put(bio);
3198 	blk_rq_unprep_clone(rq);
3199 
3200 	return -ENOMEM;
3201 }
3202 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3203 #endif /* CONFIG_BLK_MQ_STACKING */
3204 
3205 /*
3206  * Steal bios from a request and add them to a bio list.
3207  * The request must not have been partially completed before.
3208  */
3209 void blk_steal_bios(struct bio_list *list, struct request *rq)
3210 {
3211 	if (rq->bio) {
3212 		if (list->tail)
3213 			list->tail->bi_next = rq->bio;
3214 		else
3215 			list->head = rq->bio;
3216 		list->tail = rq->biotail;
3217 
3218 		rq->bio = NULL;
3219 		rq->biotail = NULL;
3220 	}
3221 
3222 	rq->__data_len = 0;
3223 }
3224 EXPORT_SYMBOL_GPL(blk_steal_bios);
3225 
3226 static size_t order_to_size(unsigned int order)
3227 {
3228 	return (size_t)PAGE_SIZE << order;
3229 }
3230 
3231 /* called before freeing request pool in @tags */
3232 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3233 				    struct blk_mq_tags *tags)
3234 {
3235 	struct page *page;
3236 	unsigned long flags;
3237 
3238 	/*
3239 	 * There is no need to clear mapping if driver tags is not initialized
3240 	 * or the mapping belongs to the driver tags.
3241 	 */
3242 	if (!drv_tags || drv_tags == tags)
3243 		return;
3244 
3245 	list_for_each_entry(page, &tags->page_list, lru) {
3246 		unsigned long start = (unsigned long)page_address(page);
3247 		unsigned long end = start + order_to_size(page->private);
3248 		int i;
3249 
3250 		for (i = 0; i < drv_tags->nr_tags; i++) {
3251 			struct request *rq = drv_tags->rqs[i];
3252 			unsigned long rq_addr = (unsigned long)rq;
3253 
3254 			if (rq_addr >= start && rq_addr < end) {
3255 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3256 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3257 			}
3258 		}
3259 	}
3260 
3261 	/*
3262 	 * Wait until all pending iteration is done.
3263 	 *
3264 	 * Request reference is cleared and it is guaranteed to be observed
3265 	 * after the ->lock is released.
3266 	 */
3267 	spin_lock_irqsave(&drv_tags->lock, flags);
3268 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3269 }
3270 
3271 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3272 		     unsigned int hctx_idx)
3273 {
3274 	struct blk_mq_tags *drv_tags;
3275 	struct page *page;
3276 
3277 	if (list_empty(&tags->page_list))
3278 		return;
3279 
3280 	if (blk_mq_is_shared_tags(set->flags))
3281 		drv_tags = set->shared_tags;
3282 	else
3283 		drv_tags = set->tags[hctx_idx];
3284 
3285 	if (tags->static_rqs && set->ops->exit_request) {
3286 		int i;
3287 
3288 		for (i = 0; i < tags->nr_tags; i++) {
3289 			struct request *rq = tags->static_rqs[i];
3290 
3291 			if (!rq)
3292 				continue;
3293 			set->ops->exit_request(set, rq, hctx_idx);
3294 			tags->static_rqs[i] = NULL;
3295 		}
3296 	}
3297 
3298 	blk_mq_clear_rq_mapping(drv_tags, tags);
3299 
3300 	while (!list_empty(&tags->page_list)) {
3301 		page = list_first_entry(&tags->page_list, struct page, lru);
3302 		list_del_init(&page->lru);
3303 		/*
3304 		 * Remove kmemleak object previously allocated in
3305 		 * blk_mq_alloc_rqs().
3306 		 */
3307 		kmemleak_free(page_address(page));
3308 		__free_pages(page, page->private);
3309 	}
3310 }
3311 
3312 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3313 {
3314 	kfree(tags->rqs);
3315 	tags->rqs = NULL;
3316 	kfree(tags->static_rqs);
3317 	tags->static_rqs = NULL;
3318 
3319 	blk_mq_free_tags(tags);
3320 }
3321 
3322 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3323 		unsigned int hctx_idx)
3324 {
3325 	int i;
3326 
3327 	for (i = 0; i < set->nr_maps; i++) {
3328 		unsigned int start = set->map[i].queue_offset;
3329 		unsigned int end = start + set->map[i].nr_queues;
3330 
3331 		if (hctx_idx >= start && hctx_idx < end)
3332 			break;
3333 	}
3334 
3335 	if (i >= set->nr_maps)
3336 		i = HCTX_TYPE_DEFAULT;
3337 
3338 	return i;
3339 }
3340 
3341 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3342 		unsigned int hctx_idx)
3343 {
3344 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3345 
3346 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3347 }
3348 
3349 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3350 					       unsigned int hctx_idx,
3351 					       unsigned int nr_tags,
3352 					       unsigned int reserved_tags)
3353 {
3354 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3355 	struct blk_mq_tags *tags;
3356 
3357 	if (node == NUMA_NO_NODE)
3358 		node = set->numa_node;
3359 
3360 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3361 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3362 	if (!tags)
3363 		return NULL;
3364 
3365 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3366 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3367 				 node);
3368 	if (!tags->rqs)
3369 		goto err_free_tags;
3370 
3371 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3372 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3373 					node);
3374 	if (!tags->static_rqs)
3375 		goto err_free_rqs;
3376 
3377 	return tags;
3378 
3379 err_free_rqs:
3380 	kfree(tags->rqs);
3381 err_free_tags:
3382 	blk_mq_free_tags(tags);
3383 	return NULL;
3384 }
3385 
3386 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3387 			       unsigned int hctx_idx, int node)
3388 {
3389 	int ret;
3390 
3391 	if (set->ops->init_request) {
3392 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3393 		if (ret)
3394 			return ret;
3395 	}
3396 
3397 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3398 	return 0;
3399 }
3400 
3401 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3402 			    struct blk_mq_tags *tags,
3403 			    unsigned int hctx_idx, unsigned int depth)
3404 {
3405 	unsigned int i, j, entries_per_page, max_order = 4;
3406 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3407 	size_t rq_size, left;
3408 
3409 	if (node == NUMA_NO_NODE)
3410 		node = set->numa_node;
3411 
3412 	INIT_LIST_HEAD(&tags->page_list);
3413 
3414 	/*
3415 	 * rq_size is the size of the request plus driver payload, rounded
3416 	 * to the cacheline size
3417 	 */
3418 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3419 				cache_line_size());
3420 	left = rq_size * depth;
3421 
3422 	for (i = 0; i < depth; ) {
3423 		int this_order = max_order;
3424 		struct page *page;
3425 		int to_do;
3426 		void *p;
3427 
3428 		while (this_order && left < order_to_size(this_order - 1))
3429 			this_order--;
3430 
3431 		do {
3432 			page = alloc_pages_node(node,
3433 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3434 				this_order);
3435 			if (page)
3436 				break;
3437 			if (!this_order--)
3438 				break;
3439 			if (order_to_size(this_order) < rq_size)
3440 				break;
3441 		} while (1);
3442 
3443 		if (!page)
3444 			goto fail;
3445 
3446 		page->private = this_order;
3447 		list_add_tail(&page->lru, &tags->page_list);
3448 
3449 		p = page_address(page);
3450 		/*
3451 		 * Allow kmemleak to scan these pages as they contain pointers
3452 		 * to additional allocations like via ops->init_request().
3453 		 */
3454 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3455 		entries_per_page = order_to_size(this_order) / rq_size;
3456 		to_do = min(entries_per_page, depth - i);
3457 		left -= to_do * rq_size;
3458 		for (j = 0; j < to_do; j++) {
3459 			struct request *rq = p;
3460 
3461 			tags->static_rqs[i] = rq;
3462 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3463 				tags->static_rqs[i] = NULL;
3464 				goto fail;
3465 			}
3466 
3467 			p += rq_size;
3468 			i++;
3469 		}
3470 	}
3471 	return 0;
3472 
3473 fail:
3474 	blk_mq_free_rqs(set, tags, hctx_idx);
3475 	return -ENOMEM;
3476 }
3477 
3478 struct rq_iter_data {
3479 	struct blk_mq_hw_ctx *hctx;
3480 	bool has_rq;
3481 };
3482 
3483 static bool blk_mq_has_request(struct request *rq, void *data)
3484 {
3485 	struct rq_iter_data *iter_data = data;
3486 
3487 	if (rq->mq_hctx != iter_data->hctx)
3488 		return true;
3489 	iter_data->has_rq = true;
3490 	return false;
3491 }
3492 
3493 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3494 {
3495 	struct blk_mq_tags *tags = hctx->sched_tags ?
3496 			hctx->sched_tags : hctx->tags;
3497 	struct rq_iter_data data = {
3498 		.hctx	= hctx,
3499 	};
3500 
3501 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3502 	return data.has_rq;
3503 }
3504 
3505 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3506 		unsigned int this_cpu)
3507 {
3508 	enum hctx_type type = hctx->type;
3509 	int cpu;
3510 
3511 	/*
3512 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3513 	 * might submit IOs on these isolated CPUs, so use the queue map to
3514 	 * check if all CPUs mapped to this hctx are offline
3515 	 */
3516 	for_each_online_cpu(cpu) {
3517 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3518 				type, cpu);
3519 
3520 		if (h != hctx)
3521 			continue;
3522 
3523 		/* this hctx has at least one online CPU */
3524 		if (this_cpu != cpu)
3525 			return true;
3526 	}
3527 
3528 	return false;
3529 }
3530 
3531 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3532 {
3533 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3534 			struct blk_mq_hw_ctx, cpuhp_online);
3535 
3536 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3537 		return 0;
3538 
3539 	/*
3540 	 * Prevent new request from being allocated on the current hctx.
3541 	 *
3542 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3543 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3544 	 * seen once we return from the tag allocator.
3545 	 */
3546 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3547 	smp_mb__after_atomic();
3548 
3549 	/*
3550 	 * Try to grab a reference to the queue and wait for any outstanding
3551 	 * requests.  If we could not grab a reference the queue has been
3552 	 * frozen and there are no requests.
3553 	 */
3554 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3555 		while (blk_mq_hctx_has_requests(hctx))
3556 			msleep(5);
3557 		percpu_ref_put(&hctx->queue->q_usage_counter);
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Check if one CPU is mapped to the specified hctx
3565  *
3566  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3567  * to be used for scheduling kworker only. For other usage, please call this
3568  * helper for checking if one CPU belongs to the specified hctx
3569  */
3570 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3571 		const struct blk_mq_hw_ctx *hctx)
3572 {
3573 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3574 			hctx->type, cpu);
3575 
3576 	return mapped_hctx == hctx;
3577 }
3578 
3579 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3580 {
3581 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3582 			struct blk_mq_hw_ctx, cpuhp_online);
3583 
3584 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3585 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3586 	return 0;
3587 }
3588 
3589 /*
3590  * 'cpu' is going away. splice any existing rq_list entries from this
3591  * software queue to the hw queue dispatch list, and ensure that it
3592  * gets run.
3593  */
3594 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3595 {
3596 	struct blk_mq_hw_ctx *hctx;
3597 	struct blk_mq_ctx *ctx;
3598 	LIST_HEAD(tmp);
3599 	enum hctx_type type;
3600 
3601 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3602 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3603 		return 0;
3604 
3605 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3606 	type = hctx->type;
3607 
3608 	spin_lock(&ctx->lock);
3609 	if (!list_empty(&ctx->rq_lists[type])) {
3610 		list_splice_init(&ctx->rq_lists[type], &tmp);
3611 		blk_mq_hctx_clear_pending(hctx, ctx);
3612 	}
3613 	spin_unlock(&ctx->lock);
3614 
3615 	if (list_empty(&tmp))
3616 		return 0;
3617 
3618 	spin_lock(&hctx->lock);
3619 	list_splice_tail_init(&tmp, &hctx->dispatch);
3620 	spin_unlock(&hctx->lock);
3621 
3622 	blk_mq_run_hw_queue(hctx, true);
3623 	return 0;
3624 }
3625 
3626 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3627 {
3628 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3629 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3630 						    &hctx->cpuhp_online);
3631 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3632 					    &hctx->cpuhp_dead);
3633 }
3634 
3635 /*
3636  * Before freeing hw queue, clearing the flush request reference in
3637  * tags->rqs[] for avoiding potential UAF.
3638  */
3639 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3640 		unsigned int queue_depth, struct request *flush_rq)
3641 {
3642 	int i;
3643 	unsigned long flags;
3644 
3645 	/* The hw queue may not be mapped yet */
3646 	if (!tags)
3647 		return;
3648 
3649 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3650 
3651 	for (i = 0; i < queue_depth; i++)
3652 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3653 
3654 	/*
3655 	 * Wait until all pending iteration is done.
3656 	 *
3657 	 * Request reference is cleared and it is guaranteed to be observed
3658 	 * after the ->lock is released.
3659 	 */
3660 	spin_lock_irqsave(&tags->lock, flags);
3661 	spin_unlock_irqrestore(&tags->lock, flags);
3662 }
3663 
3664 /* hctx->ctxs will be freed in queue's release handler */
3665 static void blk_mq_exit_hctx(struct request_queue *q,
3666 		struct blk_mq_tag_set *set,
3667 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3668 {
3669 	struct request *flush_rq = hctx->fq->flush_rq;
3670 
3671 	if (blk_mq_hw_queue_mapped(hctx))
3672 		blk_mq_tag_idle(hctx);
3673 
3674 	if (blk_queue_init_done(q))
3675 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3676 				set->queue_depth, flush_rq);
3677 	if (set->ops->exit_request)
3678 		set->ops->exit_request(set, flush_rq, hctx_idx);
3679 
3680 	if (set->ops->exit_hctx)
3681 		set->ops->exit_hctx(hctx, hctx_idx);
3682 
3683 	blk_mq_remove_cpuhp(hctx);
3684 
3685 	xa_erase(&q->hctx_table, hctx_idx);
3686 
3687 	spin_lock(&q->unused_hctx_lock);
3688 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3689 	spin_unlock(&q->unused_hctx_lock);
3690 }
3691 
3692 static void blk_mq_exit_hw_queues(struct request_queue *q,
3693 		struct blk_mq_tag_set *set, int nr_queue)
3694 {
3695 	struct blk_mq_hw_ctx *hctx;
3696 	unsigned long i;
3697 
3698 	queue_for_each_hw_ctx(q, hctx, i) {
3699 		if (i == nr_queue)
3700 			break;
3701 		blk_mq_exit_hctx(q, set, hctx, i);
3702 	}
3703 }
3704 
3705 static int blk_mq_init_hctx(struct request_queue *q,
3706 		struct blk_mq_tag_set *set,
3707 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3708 {
3709 	hctx->queue_num = hctx_idx;
3710 
3711 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3712 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3713 				&hctx->cpuhp_online);
3714 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3715 
3716 	hctx->tags = set->tags[hctx_idx];
3717 
3718 	if (set->ops->init_hctx &&
3719 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3720 		goto unregister_cpu_notifier;
3721 
3722 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3723 				hctx->numa_node))
3724 		goto exit_hctx;
3725 
3726 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3727 		goto exit_flush_rq;
3728 
3729 	return 0;
3730 
3731  exit_flush_rq:
3732 	if (set->ops->exit_request)
3733 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3734  exit_hctx:
3735 	if (set->ops->exit_hctx)
3736 		set->ops->exit_hctx(hctx, hctx_idx);
3737  unregister_cpu_notifier:
3738 	blk_mq_remove_cpuhp(hctx);
3739 	return -1;
3740 }
3741 
3742 static struct blk_mq_hw_ctx *
3743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3744 		int node)
3745 {
3746 	struct blk_mq_hw_ctx *hctx;
3747 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3748 
3749 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3750 	if (!hctx)
3751 		goto fail_alloc_hctx;
3752 
3753 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3754 		goto free_hctx;
3755 
3756 	atomic_set(&hctx->nr_active, 0);
3757 	if (node == NUMA_NO_NODE)
3758 		node = set->numa_node;
3759 	hctx->numa_node = node;
3760 
3761 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3762 	spin_lock_init(&hctx->lock);
3763 	INIT_LIST_HEAD(&hctx->dispatch);
3764 	hctx->queue = q;
3765 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3766 
3767 	INIT_LIST_HEAD(&hctx->hctx_list);
3768 
3769 	/*
3770 	 * Allocate space for all possible cpus to avoid allocation at
3771 	 * runtime
3772 	 */
3773 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3774 			gfp, node);
3775 	if (!hctx->ctxs)
3776 		goto free_cpumask;
3777 
3778 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3779 				gfp, node, false, false))
3780 		goto free_ctxs;
3781 	hctx->nr_ctx = 0;
3782 
3783 	spin_lock_init(&hctx->dispatch_wait_lock);
3784 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3785 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3786 
3787 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3788 	if (!hctx->fq)
3789 		goto free_bitmap;
3790 
3791 	blk_mq_hctx_kobj_init(hctx);
3792 
3793 	return hctx;
3794 
3795  free_bitmap:
3796 	sbitmap_free(&hctx->ctx_map);
3797  free_ctxs:
3798 	kfree(hctx->ctxs);
3799  free_cpumask:
3800 	free_cpumask_var(hctx->cpumask);
3801  free_hctx:
3802 	kfree(hctx);
3803  fail_alloc_hctx:
3804 	return NULL;
3805 }
3806 
3807 static void blk_mq_init_cpu_queues(struct request_queue *q,
3808 				   unsigned int nr_hw_queues)
3809 {
3810 	struct blk_mq_tag_set *set = q->tag_set;
3811 	unsigned int i, j;
3812 
3813 	for_each_possible_cpu(i) {
3814 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3815 		struct blk_mq_hw_ctx *hctx;
3816 		int k;
3817 
3818 		__ctx->cpu = i;
3819 		spin_lock_init(&__ctx->lock);
3820 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3821 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3822 
3823 		__ctx->queue = q;
3824 
3825 		/*
3826 		 * Set local node, IFF we have more than one hw queue. If
3827 		 * not, we remain on the home node of the device
3828 		 */
3829 		for (j = 0; j < set->nr_maps; j++) {
3830 			hctx = blk_mq_map_queue_type(q, j, i);
3831 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3832 				hctx->numa_node = cpu_to_node(i);
3833 		}
3834 	}
3835 }
3836 
3837 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3838 					     unsigned int hctx_idx,
3839 					     unsigned int depth)
3840 {
3841 	struct blk_mq_tags *tags;
3842 	int ret;
3843 
3844 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3845 	if (!tags)
3846 		return NULL;
3847 
3848 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3849 	if (ret) {
3850 		blk_mq_free_rq_map(tags);
3851 		return NULL;
3852 	}
3853 
3854 	return tags;
3855 }
3856 
3857 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3858 				       int hctx_idx)
3859 {
3860 	if (blk_mq_is_shared_tags(set->flags)) {
3861 		set->tags[hctx_idx] = set->shared_tags;
3862 
3863 		return true;
3864 	}
3865 
3866 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3867 						       set->queue_depth);
3868 
3869 	return set->tags[hctx_idx];
3870 }
3871 
3872 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3873 			     struct blk_mq_tags *tags,
3874 			     unsigned int hctx_idx)
3875 {
3876 	if (tags) {
3877 		blk_mq_free_rqs(set, tags, hctx_idx);
3878 		blk_mq_free_rq_map(tags);
3879 	}
3880 }
3881 
3882 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3883 				      unsigned int hctx_idx)
3884 {
3885 	if (!blk_mq_is_shared_tags(set->flags))
3886 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3887 
3888 	set->tags[hctx_idx] = NULL;
3889 }
3890 
3891 static void blk_mq_map_swqueue(struct request_queue *q)
3892 {
3893 	unsigned int j, hctx_idx;
3894 	unsigned long i;
3895 	struct blk_mq_hw_ctx *hctx;
3896 	struct blk_mq_ctx *ctx;
3897 	struct blk_mq_tag_set *set = q->tag_set;
3898 
3899 	queue_for_each_hw_ctx(q, hctx, i) {
3900 		cpumask_clear(hctx->cpumask);
3901 		hctx->nr_ctx = 0;
3902 		hctx->dispatch_from = NULL;
3903 	}
3904 
3905 	/*
3906 	 * Map software to hardware queues.
3907 	 *
3908 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3909 	 */
3910 	for_each_possible_cpu(i) {
3911 
3912 		ctx = per_cpu_ptr(q->queue_ctx, i);
3913 		for (j = 0; j < set->nr_maps; j++) {
3914 			if (!set->map[j].nr_queues) {
3915 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3916 						HCTX_TYPE_DEFAULT, i);
3917 				continue;
3918 			}
3919 			hctx_idx = set->map[j].mq_map[i];
3920 			/* unmapped hw queue can be remapped after CPU topo changed */
3921 			if (!set->tags[hctx_idx] &&
3922 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3923 				/*
3924 				 * If tags initialization fail for some hctx,
3925 				 * that hctx won't be brought online.  In this
3926 				 * case, remap the current ctx to hctx[0] which
3927 				 * is guaranteed to always have tags allocated
3928 				 */
3929 				set->map[j].mq_map[i] = 0;
3930 			}
3931 
3932 			hctx = blk_mq_map_queue_type(q, j, i);
3933 			ctx->hctxs[j] = hctx;
3934 			/*
3935 			 * If the CPU is already set in the mask, then we've
3936 			 * mapped this one already. This can happen if
3937 			 * devices share queues across queue maps.
3938 			 */
3939 			if (cpumask_test_cpu(i, hctx->cpumask))
3940 				continue;
3941 
3942 			cpumask_set_cpu(i, hctx->cpumask);
3943 			hctx->type = j;
3944 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3945 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3946 
3947 			/*
3948 			 * If the nr_ctx type overflows, we have exceeded the
3949 			 * amount of sw queues we can support.
3950 			 */
3951 			BUG_ON(!hctx->nr_ctx);
3952 		}
3953 
3954 		for (; j < HCTX_MAX_TYPES; j++)
3955 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3956 					HCTX_TYPE_DEFAULT, i);
3957 	}
3958 
3959 	queue_for_each_hw_ctx(q, hctx, i) {
3960 		int cpu;
3961 
3962 		/*
3963 		 * If no software queues are mapped to this hardware queue,
3964 		 * disable it and free the request entries.
3965 		 */
3966 		if (!hctx->nr_ctx) {
3967 			/* Never unmap queue 0.  We need it as a
3968 			 * fallback in case of a new remap fails
3969 			 * allocation
3970 			 */
3971 			if (i)
3972 				__blk_mq_free_map_and_rqs(set, i);
3973 
3974 			hctx->tags = NULL;
3975 			continue;
3976 		}
3977 
3978 		hctx->tags = set->tags[i];
3979 		WARN_ON(!hctx->tags);
3980 
3981 		/*
3982 		 * Set the map size to the number of mapped software queues.
3983 		 * This is more accurate and more efficient than looping
3984 		 * over all possibly mapped software queues.
3985 		 */
3986 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3987 
3988 		/*
3989 		 * Rule out isolated CPUs from hctx->cpumask to avoid
3990 		 * running block kworker on isolated CPUs
3991 		 */
3992 		for_each_cpu(cpu, hctx->cpumask) {
3993 			if (cpu_is_isolated(cpu))
3994 				cpumask_clear_cpu(cpu, hctx->cpumask);
3995 		}
3996 
3997 		/*
3998 		 * Initialize batch roundrobin counts
3999 		 */
4000 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4001 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4002 	}
4003 }
4004 
4005 /*
4006  * Caller needs to ensure that we're either frozen/quiesced, or that
4007  * the queue isn't live yet.
4008  */
4009 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4010 {
4011 	struct blk_mq_hw_ctx *hctx;
4012 	unsigned long i;
4013 
4014 	queue_for_each_hw_ctx(q, hctx, i) {
4015 		if (shared) {
4016 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4017 		} else {
4018 			blk_mq_tag_idle(hctx);
4019 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4020 		}
4021 	}
4022 }
4023 
4024 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4025 					 bool shared)
4026 {
4027 	struct request_queue *q;
4028 
4029 	lockdep_assert_held(&set->tag_list_lock);
4030 
4031 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4032 		blk_mq_freeze_queue(q);
4033 		queue_set_hctx_shared(q, shared);
4034 		blk_mq_unfreeze_queue(q);
4035 	}
4036 }
4037 
4038 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4039 {
4040 	struct blk_mq_tag_set *set = q->tag_set;
4041 
4042 	mutex_lock(&set->tag_list_lock);
4043 	list_del(&q->tag_set_list);
4044 	if (list_is_singular(&set->tag_list)) {
4045 		/* just transitioned to unshared */
4046 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4047 		/* update existing queue */
4048 		blk_mq_update_tag_set_shared(set, false);
4049 	}
4050 	mutex_unlock(&set->tag_list_lock);
4051 	INIT_LIST_HEAD(&q->tag_set_list);
4052 }
4053 
4054 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4055 				     struct request_queue *q)
4056 {
4057 	mutex_lock(&set->tag_list_lock);
4058 
4059 	/*
4060 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4061 	 */
4062 	if (!list_empty(&set->tag_list) &&
4063 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4064 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4065 		/* update existing queue */
4066 		blk_mq_update_tag_set_shared(set, true);
4067 	}
4068 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4069 		queue_set_hctx_shared(q, true);
4070 	list_add_tail(&q->tag_set_list, &set->tag_list);
4071 
4072 	mutex_unlock(&set->tag_list_lock);
4073 }
4074 
4075 /* All allocations will be freed in release handler of q->mq_kobj */
4076 static int blk_mq_alloc_ctxs(struct request_queue *q)
4077 {
4078 	struct blk_mq_ctxs *ctxs;
4079 	int cpu;
4080 
4081 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4082 	if (!ctxs)
4083 		return -ENOMEM;
4084 
4085 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4086 	if (!ctxs->queue_ctx)
4087 		goto fail;
4088 
4089 	for_each_possible_cpu(cpu) {
4090 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4091 		ctx->ctxs = ctxs;
4092 	}
4093 
4094 	q->mq_kobj = &ctxs->kobj;
4095 	q->queue_ctx = ctxs->queue_ctx;
4096 
4097 	return 0;
4098  fail:
4099 	kfree(ctxs);
4100 	return -ENOMEM;
4101 }
4102 
4103 /*
4104  * It is the actual release handler for mq, but we do it from
4105  * request queue's release handler for avoiding use-after-free
4106  * and headache because q->mq_kobj shouldn't have been introduced,
4107  * but we can't group ctx/kctx kobj without it.
4108  */
4109 void blk_mq_release(struct request_queue *q)
4110 {
4111 	struct blk_mq_hw_ctx *hctx, *next;
4112 	unsigned long i;
4113 
4114 	queue_for_each_hw_ctx(q, hctx, i)
4115 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4116 
4117 	/* all hctx are in .unused_hctx_list now */
4118 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4119 		list_del_init(&hctx->hctx_list);
4120 		kobject_put(&hctx->kobj);
4121 	}
4122 
4123 	xa_destroy(&q->hctx_table);
4124 
4125 	/*
4126 	 * release .mq_kobj and sw queue's kobject now because
4127 	 * both share lifetime with request queue.
4128 	 */
4129 	blk_mq_sysfs_deinit(q);
4130 }
4131 
4132 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4133 {
4134 	return set->nr_maps > HCTX_TYPE_POLL &&
4135 		set->map[HCTX_TYPE_POLL].nr_queues;
4136 }
4137 
4138 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4139 		struct queue_limits *lim, void *queuedata)
4140 {
4141 	struct queue_limits default_lim = { };
4142 	struct request_queue *q;
4143 	int ret;
4144 
4145 	if (!lim)
4146 		lim = &default_lim;
4147 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4148 	if (blk_mq_can_poll(set))
4149 		lim->features |= BLK_FEAT_POLL;
4150 
4151 	q = blk_alloc_queue(lim, set->numa_node);
4152 	if (IS_ERR(q))
4153 		return q;
4154 	q->queuedata = queuedata;
4155 	ret = blk_mq_init_allocated_queue(set, q);
4156 	if (ret) {
4157 		blk_put_queue(q);
4158 		return ERR_PTR(ret);
4159 	}
4160 	return q;
4161 }
4162 EXPORT_SYMBOL(blk_mq_alloc_queue);
4163 
4164 /**
4165  * blk_mq_destroy_queue - shutdown a request queue
4166  * @q: request queue to shutdown
4167  *
4168  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4169  * requests will be failed with -ENODEV. The caller is responsible for dropping
4170  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4171  *
4172  * Context: can sleep
4173  */
4174 void blk_mq_destroy_queue(struct request_queue *q)
4175 {
4176 	WARN_ON_ONCE(!queue_is_mq(q));
4177 	WARN_ON_ONCE(blk_queue_registered(q));
4178 
4179 	might_sleep();
4180 
4181 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4182 	blk_queue_start_drain(q);
4183 	blk_mq_freeze_queue_wait(q);
4184 
4185 	blk_sync_queue(q);
4186 	blk_mq_cancel_work_sync(q);
4187 	blk_mq_exit_queue(q);
4188 }
4189 EXPORT_SYMBOL(blk_mq_destroy_queue);
4190 
4191 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4192 		struct queue_limits *lim, void *queuedata,
4193 		struct lock_class_key *lkclass)
4194 {
4195 	struct request_queue *q;
4196 	struct gendisk *disk;
4197 
4198 	q = blk_mq_alloc_queue(set, lim, queuedata);
4199 	if (IS_ERR(q))
4200 		return ERR_CAST(q);
4201 
4202 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4203 	if (!disk) {
4204 		blk_mq_destroy_queue(q);
4205 		blk_put_queue(q);
4206 		return ERR_PTR(-ENOMEM);
4207 	}
4208 	set_bit(GD_OWNS_QUEUE, &disk->state);
4209 	return disk;
4210 }
4211 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4212 
4213 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4214 		struct lock_class_key *lkclass)
4215 {
4216 	struct gendisk *disk;
4217 
4218 	if (!blk_get_queue(q))
4219 		return NULL;
4220 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4221 	if (!disk)
4222 		blk_put_queue(q);
4223 	return disk;
4224 }
4225 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4226 
4227 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4228 		struct blk_mq_tag_set *set, struct request_queue *q,
4229 		int hctx_idx, int node)
4230 {
4231 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4232 
4233 	/* reuse dead hctx first */
4234 	spin_lock(&q->unused_hctx_lock);
4235 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4236 		if (tmp->numa_node == node) {
4237 			hctx = tmp;
4238 			break;
4239 		}
4240 	}
4241 	if (hctx)
4242 		list_del_init(&hctx->hctx_list);
4243 	spin_unlock(&q->unused_hctx_lock);
4244 
4245 	if (!hctx)
4246 		hctx = blk_mq_alloc_hctx(q, set, node);
4247 	if (!hctx)
4248 		goto fail;
4249 
4250 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4251 		goto free_hctx;
4252 
4253 	return hctx;
4254 
4255  free_hctx:
4256 	kobject_put(&hctx->kobj);
4257  fail:
4258 	return NULL;
4259 }
4260 
4261 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4262 						struct request_queue *q)
4263 {
4264 	struct blk_mq_hw_ctx *hctx;
4265 	unsigned long i, j;
4266 
4267 	/* protect against switching io scheduler  */
4268 	mutex_lock(&q->sysfs_lock);
4269 	for (i = 0; i < set->nr_hw_queues; i++) {
4270 		int old_node;
4271 		int node = blk_mq_get_hctx_node(set, i);
4272 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4273 
4274 		if (old_hctx) {
4275 			old_node = old_hctx->numa_node;
4276 			blk_mq_exit_hctx(q, set, old_hctx, i);
4277 		}
4278 
4279 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4280 			if (!old_hctx)
4281 				break;
4282 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4283 					node, old_node);
4284 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4285 			WARN_ON_ONCE(!hctx);
4286 		}
4287 	}
4288 	/*
4289 	 * Increasing nr_hw_queues fails. Free the newly allocated
4290 	 * hctxs and keep the previous q->nr_hw_queues.
4291 	 */
4292 	if (i != set->nr_hw_queues) {
4293 		j = q->nr_hw_queues;
4294 	} else {
4295 		j = i;
4296 		q->nr_hw_queues = set->nr_hw_queues;
4297 	}
4298 
4299 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4300 		blk_mq_exit_hctx(q, set, hctx, j);
4301 	mutex_unlock(&q->sysfs_lock);
4302 }
4303 
4304 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4305 		struct request_queue *q)
4306 {
4307 	/* mark the queue as mq asap */
4308 	q->mq_ops = set->ops;
4309 
4310 	if (blk_mq_alloc_ctxs(q))
4311 		goto err_exit;
4312 
4313 	/* init q->mq_kobj and sw queues' kobjects */
4314 	blk_mq_sysfs_init(q);
4315 
4316 	INIT_LIST_HEAD(&q->unused_hctx_list);
4317 	spin_lock_init(&q->unused_hctx_lock);
4318 
4319 	xa_init(&q->hctx_table);
4320 
4321 	blk_mq_realloc_hw_ctxs(set, q);
4322 	if (!q->nr_hw_queues)
4323 		goto err_hctxs;
4324 
4325 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4326 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4327 
4328 	q->tag_set = set;
4329 
4330 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4331 
4332 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4333 	INIT_LIST_HEAD(&q->flush_list);
4334 	INIT_LIST_HEAD(&q->requeue_list);
4335 	spin_lock_init(&q->requeue_lock);
4336 
4337 	q->nr_requests = set->queue_depth;
4338 
4339 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4340 	blk_mq_add_queue_tag_set(set, q);
4341 	blk_mq_map_swqueue(q);
4342 	return 0;
4343 
4344 err_hctxs:
4345 	blk_mq_release(q);
4346 err_exit:
4347 	q->mq_ops = NULL;
4348 	return -ENOMEM;
4349 }
4350 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4351 
4352 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4353 void blk_mq_exit_queue(struct request_queue *q)
4354 {
4355 	struct blk_mq_tag_set *set = q->tag_set;
4356 
4357 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4358 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4359 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4360 	blk_mq_del_queue_tag_set(q);
4361 }
4362 
4363 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4364 {
4365 	int i;
4366 
4367 	if (blk_mq_is_shared_tags(set->flags)) {
4368 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4369 						BLK_MQ_NO_HCTX_IDX,
4370 						set->queue_depth);
4371 		if (!set->shared_tags)
4372 			return -ENOMEM;
4373 	}
4374 
4375 	for (i = 0; i < set->nr_hw_queues; i++) {
4376 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4377 			goto out_unwind;
4378 		cond_resched();
4379 	}
4380 
4381 	return 0;
4382 
4383 out_unwind:
4384 	while (--i >= 0)
4385 		__blk_mq_free_map_and_rqs(set, i);
4386 
4387 	if (blk_mq_is_shared_tags(set->flags)) {
4388 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4389 					BLK_MQ_NO_HCTX_IDX);
4390 	}
4391 
4392 	return -ENOMEM;
4393 }
4394 
4395 /*
4396  * Allocate the request maps associated with this tag_set. Note that this
4397  * may reduce the depth asked for, if memory is tight. set->queue_depth
4398  * will be updated to reflect the allocated depth.
4399  */
4400 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4401 {
4402 	unsigned int depth;
4403 	int err;
4404 
4405 	depth = set->queue_depth;
4406 	do {
4407 		err = __blk_mq_alloc_rq_maps(set);
4408 		if (!err)
4409 			break;
4410 
4411 		set->queue_depth >>= 1;
4412 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4413 			err = -ENOMEM;
4414 			break;
4415 		}
4416 	} while (set->queue_depth);
4417 
4418 	if (!set->queue_depth || err) {
4419 		pr_err("blk-mq: failed to allocate request map\n");
4420 		return -ENOMEM;
4421 	}
4422 
4423 	if (depth != set->queue_depth)
4424 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4425 						depth, set->queue_depth);
4426 
4427 	return 0;
4428 }
4429 
4430 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4431 {
4432 	/*
4433 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4434 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4435 	 * number of hardware queues.
4436 	 */
4437 	if (set->nr_maps == 1)
4438 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4439 
4440 	if (set->ops->map_queues) {
4441 		int i;
4442 
4443 		/*
4444 		 * transport .map_queues is usually done in the following
4445 		 * way:
4446 		 *
4447 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4448 		 * 	mask = get_cpu_mask(queue)
4449 		 * 	for_each_cpu(cpu, mask)
4450 		 * 		set->map[x].mq_map[cpu] = queue;
4451 		 * }
4452 		 *
4453 		 * When we need to remap, the table has to be cleared for
4454 		 * killing stale mapping since one CPU may not be mapped
4455 		 * to any hw queue.
4456 		 */
4457 		for (i = 0; i < set->nr_maps; i++)
4458 			blk_mq_clear_mq_map(&set->map[i]);
4459 
4460 		set->ops->map_queues(set);
4461 	} else {
4462 		BUG_ON(set->nr_maps > 1);
4463 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4464 	}
4465 }
4466 
4467 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4468 				       int new_nr_hw_queues)
4469 {
4470 	struct blk_mq_tags **new_tags;
4471 	int i;
4472 
4473 	if (set->nr_hw_queues >= new_nr_hw_queues)
4474 		goto done;
4475 
4476 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4477 				GFP_KERNEL, set->numa_node);
4478 	if (!new_tags)
4479 		return -ENOMEM;
4480 
4481 	if (set->tags)
4482 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4483 		       sizeof(*set->tags));
4484 	kfree(set->tags);
4485 	set->tags = new_tags;
4486 
4487 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4488 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4489 			while (--i >= set->nr_hw_queues)
4490 				__blk_mq_free_map_and_rqs(set, i);
4491 			return -ENOMEM;
4492 		}
4493 		cond_resched();
4494 	}
4495 
4496 done:
4497 	set->nr_hw_queues = new_nr_hw_queues;
4498 	return 0;
4499 }
4500 
4501 /*
4502  * Alloc a tag set to be associated with one or more request queues.
4503  * May fail with EINVAL for various error conditions. May adjust the
4504  * requested depth down, if it's too large. In that case, the set
4505  * value will be stored in set->queue_depth.
4506  */
4507 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4508 {
4509 	int i, ret;
4510 
4511 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4512 
4513 	if (!set->nr_hw_queues)
4514 		return -EINVAL;
4515 	if (!set->queue_depth)
4516 		return -EINVAL;
4517 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4518 		return -EINVAL;
4519 
4520 	if (!set->ops->queue_rq)
4521 		return -EINVAL;
4522 
4523 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4524 		return -EINVAL;
4525 
4526 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4527 		pr_info("blk-mq: reduced tag depth to %u\n",
4528 			BLK_MQ_MAX_DEPTH);
4529 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4530 	}
4531 
4532 	if (!set->nr_maps)
4533 		set->nr_maps = 1;
4534 	else if (set->nr_maps > HCTX_MAX_TYPES)
4535 		return -EINVAL;
4536 
4537 	/*
4538 	 * If a crashdump is active, then we are potentially in a very
4539 	 * memory constrained environment. Limit us to  64 tags to prevent
4540 	 * using too much memory.
4541 	 */
4542 	if (is_kdump_kernel())
4543 		set->queue_depth = min(64U, set->queue_depth);
4544 
4545 	/*
4546 	 * There is no use for more h/w queues than cpus if we just have
4547 	 * a single map
4548 	 */
4549 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4550 		set->nr_hw_queues = nr_cpu_ids;
4551 
4552 	if (set->flags & BLK_MQ_F_BLOCKING) {
4553 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4554 		if (!set->srcu)
4555 			return -ENOMEM;
4556 		ret = init_srcu_struct(set->srcu);
4557 		if (ret)
4558 			goto out_free_srcu;
4559 	}
4560 
4561 	ret = -ENOMEM;
4562 	set->tags = kcalloc_node(set->nr_hw_queues,
4563 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4564 				 set->numa_node);
4565 	if (!set->tags)
4566 		goto out_cleanup_srcu;
4567 
4568 	for (i = 0; i < set->nr_maps; i++) {
4569 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4570 						  sizeof(set->map[i].mq_map[0]),
4571 						  GFP_KERNEL, set->numa_node);
4572 		if (!set->map[i].mq_map)
4573 			goto out_free_mq_map;
4574 		set->map[i].nr_queues = set->nr_hw_queues;
4575 	}
4576 
4577 	blk_mq_update_queue_map(set);
4578 
4579 	ret = blk_mq_alloc_set_map_and_rqs(set);
4580 	if (ret)
4581 		goto out_free_mq_map;
4582 
4583 	mutex_init(&set->tag_list_lock);
4584 	INIT_LIST_HEAD(&set->tag_list);
4585 
4586 	return 0;
4587 
4588 out_free_mq_map:
4589 	for (i = 0; i < set->nr_maps; i++) {
4590 		kfree(set->map[i].mq_map);
4591 		set->map[i].mq_map = NULL;
4592 	}
4593 	kfree(set->tags);
4594 	set->tags = NULL;
4595 out_cleanup_srcu:
4596 	if (set->flags & BLK_MQ_F_BLOCKING)
4597 		cleanup_srcu_struct(set->srcu);
4598 out_free_srcu:
4599 	if (set->flags & BLK_MQ_F_BLOCKING)
4600 		kfree(set->srcu);
4601 	return ret;
4602 }
4603 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4604 
4605 /* allocate and initialize a tagset for a simple single-queue device */
4606 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4607 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4608 		unsigned int set_flags)
4609 {
4610 	memset(set, 0, sizeof(*set));
4611 	set->ops = ops;
4612 	set->nr_hw_queues = 1;
4613 	set->nr_maps = 1;
4614 	set->queue_depth = queue_depth;
4615 	set->numa_node = NUMA_NO_NODE;
4616 	set->flags = set_flags;
4617 	return blk_mq_alloc_tag_set(set);
4618 }
4619 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4620 
4621 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4622 {
4623 	int i, j;
4624 
4625 	for (i = 0; i < set->nr_hw_queues; i++)
4626 		__blk_mq_free_map_and_rqs(set, i);
4627 
4628 	if (blk_mq_is_shared_tags(set->flags)) {
4629 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4630 					BLK_MQ_NO_HCTX_IDX);
4631 	}
4632 
4633 	for (j = 0; j < set->nr_maps; j++) {
4634 		kfree(set->map[j].mq_map);
4635 		set->map[j].mq_map = NULL;
4636 	}
4637 
4638 	kfree(set->tags);
4639 	set->tags = NULL;
4640 	if (set->flags & BLK_MQ_F_BLOCKING) {
4641 		cleanup_srcu_struct(set->srcu);
4642 		kfree(set->srcu);
4643 	}
4644 }
4645 EXPORT_SYMBOL(blk_mq_free_tag_set);
4646 
4647 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4648 {
4649 	struct blk_mq_tag_set *set = q->tag_set;
4650 	struct blk_mq_hw_ctx *hctx;
4651 	int ret;
4652 	unsigned long i;
4653 
4654 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4655 		return -EINVAL;
4656 
4657 	if (!set)
4658 		return -EINVAL;
4659 
4660 	if (q->nr_requests == nr)
4661 		return 0;
4662 
4663 	blk_mq_quiesce_queue(q);
4664 
4665 	ret = 0;
4666 	queue_for_each_hw_ctx(q, hctx, i) {
4667 		if (!hctx->tags)
4668 			continue;
4669 		/*
4670 		 * If we're using an MQ scheduler, just update the scheduler
4671 		 * queue depth. This is similar to what the old code would do.
4672 		 */
4673 		if (hctx->sched_tags) {
4674 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4675 						      nr, true);
4676 		} else {
4677 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4678 						      false);
4679 		}
4680 		if (ret)
4681 			break;
4682 		if (q->elevator && q->elevator->type->ops.depth_updated)
4683 			q->elevator->type->ops.depth_updated(hctx);
4684 	}
4685 	if (!ret) {
4686 		q->nr_requests = nr;
4687 		if (blk_mq_is_shared_tags(set->flags)) {
4688 			if (q->elevator)
4689 				blk_mq_tag_update_sched_shared_tags(q);
4690 			else
4691 				blk_mq_tag_resize_shared_tags(set, nr);
4692 		}
4693 	}
4694 
4695 	blk_mq_unquiesce_queue(q);
4696 
4697 	return ret;
4698 }
4699 
4700 /*
4701  * request_queue and elevator_type pair.
4702  * It is just used by __blk_mq_update_nr_hw_queues to cache
4703  * the elevator_type associated with a request_queue.
4704  */
4705 struct blk_mq_qe_pair {
4706 	struct list_head node;
4707 	struct request_queue *q;
4708 	struct elevator_type *type;
4709 };
4710 
4711 /*
4712  * Cache the elevator_type in qe pair list and switch the
4713  * io scheduler to 'none'
4714  */
4715 static bool blk_mq_elv_switch_none(struct list_head *head,
4716 		struct request_queue *q)
4717 {
4718 	struct blk_mq_qe_pair *qe;
4719 
4720 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4721 	if (!qe)
4722 		return false;
4723 
4724 	/* q->elevator needs protection from ->sysfs_lock */
4725 	mutex_lock(&q->sysfs_lock);
4726 
4727 	/* the check has to be done with holding sysfs_lock */
4728 	if (!q->elevator) {
4729 		kfree(qe);
4730 		goto unlock;
4731 	}
4732 
4733 	INIT_LIST_HEAD(&qe->node);
4734 	qe->q = q;
4735 	qe->type = q->elevator->type;
4736 	/* keep a reference to the elevator module as we'll switch back */
4737 	__elevator_get(qe->type);
4738 	list_add(&qe->node, head);
4739 	elevator_disable(q);
4740 unlock:
4741 	mutex_unlock(&q->sysfs_lock);
4742 
4743 	return true;
4744 }
4745 
4746 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4747 						struct request_queue *q)
4748 {
4749 	struct blk_mq_qe_pair *qe;
4750 
4751 	list_for_each_entry(qe, head, node)
4752 		if (qe->q == q)
4753 			return qe;
4754 
4755 	return NULL;
4756 }
4757 
4758 static void blk_mq_elv_switch_back(struct list_head *head,
4759 				  struct request_queue *q)
4760 {
4761 	struct blk_mq_qe_pair *qe;
4762 	struct elevator_type *t;
4763 
4764 	qe = blk_lookup_qe_pair(head, q);
4765 	if (!qe)
4766 		return;
4767 	t = qe->type;
4768 	list_del(&qe->node);
4769 	kfree(qe);
4770 
4771 	mutex_lock(&q->sysfs_lock);
4772 	elevator_switch(q, t);
4773 	/* drop the reference acquired in blk_mq_elv_switch_none */
4774 	elevator_put(t);
4775 	mutex_unlock(&q->sysfs_lock);
4776 }
4777 
4778 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4779 							int nr_hw_queues)
4780 {
4781 	struct request_queue *q;
4782 	LIST_HEAD(head);
4783 	int prev_nr_hw_queues = set->nr_hw_queues;
4784 	int i;
4785 
4786 	lockdep_assert_held(&set->tag_list_lock);
4787 
4788 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4789 		nr_hw_queues = nr_cpu_ids;
4790 	if (nr_hw_queues < 1)
4791 		return;
4792 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4793 		return;
4794 
4795 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4796 		blk_mq_freeze_queue(q);
4797 	/*
4798 	 * Switch IO scheduler to 'none', cleaning up the data associated
4799 	 * with the previous scheduler. We will switch back once we are done
4800 	 * updating the new sw to hw queue mappings.
4801 	 */
4802 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4803 		if (!blk_mq_elv_switch_none(&head, q))
4804 			goto switch_back;
4805 
4806 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4807 		blk_mq_debugfs_unregister_hctxs(q);
4808 		blk_mq_sysfs_unregister_hctxs(q);
4809 	}
4810 
4811 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4812 		goto reregister;
4813 
4814 fallback:
4815 	blk_mq_update_queue_map(set);
4816 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4817 		struct queue_limits lim;
4818 
4819 		blk_mq_realloc_hw_ctxs(set, q);
4820 
4821 		if (q->nr_hw_queues != set->nr_hw_queues) {
4822 			int i = prev_nr_hw_queues;
4823 
4824 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4825 					nr_hw_queues, prev_nr_hw_queues);
4826 			for (; i < set->nr_hw_queues; i++)
4827 				__blk_mq_free_map_and_rqs(set, i);
4828 
4829 			set->nr_hw_queues = prev_nr_hw_queues;
4830 			goto fallback;
4831 		}
4832 		lim = queue_limits_start_update(q);
4833 		if (blk_mq_can_poll(set))
4834 			lim.features |= BLK_FEAT_POLL;
4835 		else
4836 			lim.features &= ~BLK_FEAT_POLL;
4837 		if (queue_limits_commit_update(q, &lim) < 0)
4838 			pr_warn("updating the poll flag failed\n");
4839 		blk_mq_map_swqueue(q);
4840 	}
4841 
4842 reregister:
4843 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4844 		blk_mq_sysfs_register_hctxs(q);
4845 		blk_mq_debugfs_register_hctxs(q);
4846 	}
4847 
4848 switch_back:
4849 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4850 		blk_mq_elv_switch_back(&head, q);
4851 
4852 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4853 		blk_mq_unfreeze_queue(q);
4854 
4855 	/* Free the excess tags when nr_hw_queues shrink. */
4856 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4857 		__blk_mq_free_map_and_rqs(set, i);
4858 }
4859 
4860 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4861 {
4862 	mutex_lock(&set->tag_list_lock);
4863 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4864 	mutex_unlock(&set->tag_list_lock);
4865 }
4866 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4867 
4868 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4869 			 struct io_comp_batch *iob, unsigned int flags)
4870 {
4871 	long state = get_current_state();
4872 	int ret;
4873 
4874 	do {
4875 		ret = q->mq_ops->poll(hctx, iob);
4876 		if (ret > 0) {
4877 			__set_current_state(TASK_RUNNING);
4878 			return ret;
4879 		}
4880 
4881 		if (signal_pending_state(state, current))
4882 			__set_current_state(TASK_RUNNING);
4883 		if (task_is_running(current))
4884 			return 1;
4885 
4886 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4887 			break;
4888 		cpu_relax();
4889 	} while (!need_resched());
4890 
4891 	__set_current_state(TASK_RUNNING);
4892 	return 0;
4893 }
4894 
4895 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4896 		struct io_comp_batch *iob, unsigned int flags)
4897 {
4898 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4899 
4900 	return blk_hctx_poll(q, hctx, iob, flags);
4901 }
4902 
4903 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4904 		unsigned int poll_flags)
4905 {
4906 	struct request_queue *q = rq->q;
4907 	int ret;
4908 
4909 	if (!blk_rq_is_poll(rq))
4910 		return 0;
4911 	if (!percpu_ref_tryget(&q->q_usage_counter))
4912 		return 0;
4913 
4914 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4915 	blk_queue_exit(q);
4916 
4917 	return ret;
4918 }
4919 EXPORT_SYMBOL_GPL(blk_rq_poll);
4920 
4921 unsigned int blk_mq_rq_cpu(struct request *rq)
4922 {
4923 	return rq->mq_ctx->cpu;
4924 }
4925 EXPORT_SYMBOL(blk_mq_rq_cpu);
4926 
4927 void blk_mq_cancel_work_sync(struct request_queue *q)
4928 {
4929 	struct blk_mq_hw_ctx *hctx;
4930 	unsigned long i;
4931 
4932 	cancel_delayed_work_sync(&q->requeue_work);
4933 
4934 	queue_for_each_hw_ctx(q, hctx, i)
4935 		cancel_delayed_work_sync(&hctx->run_work);
4936 }
4937 
4938 static int __init blk_mq_init(void)
4939 {
4940 	int i;
4941 
4942 	for_each_possible_cpu(i)
4943 		init_llist_head(&per_cpu(blk_cpu_done, i));
4944 	for_each_possible_cpu(i)
4945 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4946 			 __blk_mq_complete_request_remote, NULL);
4947 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4948 
4949 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4950 				  "block/softirq:dead", NULL,
4951 				  blk_softirq_cpu_dead);
4952 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4953 				blk_mq_hctx_notify_dead);
4954 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4955 				blk_mq_hctx_notify_online,
4956 				blk_mq_hctx_notify_offline);
4957 	return 0;
4958 }
4959 subsys_initcall(blk_mq_init);
4960