1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/delay.h> 24 #include <linux/crash_dump.h> 25 26 #include <trace/events/block.h> 27 28 #include <linux/blk-mq.h> 29 #include "blk.h" 30 #include "blk-mq.h" 31 #include "blk-mq-tag.h" 32 33 static DEFINE_MUTEX(all_q_mutex); 34 static LIST_HEAD(all_q_list); 35 36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 37 38 /* 39 * Check if any of the ctx's have pending work in this hardware queue 40 */ 41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 42 { 43 unsigned int i; 44 45 for (i = 0; i < hctx->ctx_map.size; i++) 46 if (hctx->ctx_map.map[i].word) 47 return true; 48 49 return false; 50 } 51 52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 53 struct blk_mq_ctx *ctx) 54 { 55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 56 } 57 58 #define CTX_TO_BIT(hctx, ctx) \ 59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 60 61 /* 62 * Mark this ctx as having pending work in this hardware queue 63 */ 64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 65 struct blk_mq_ctx *ctx) 66 { 67 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 68 69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 71 } 72 73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 74 struct blk_mq_ctx *ctx) 75 { 76 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 77 78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 79 } 80 81 void blk_mq_freeze_queue_start(struct request_queue *q) 82 { 83 int freeze_depth; 84 85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 86 if (freeze_depth == 1) { 87 percpu_ref_kill(&q->q_usage_counter); 88 blk_mq_run_hw_queues(q, false); 89 } 90 } 91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 92 93 static void blk_mq_freeze_queue_wait(struct request_queue *q) 94 { 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 96 } 97 98 /* 99 * Guarantee no request is in use, so we can change any data structure of 100 * the queue afterward. 101 */ 102 void blk_freeze_queue(struct request_queue *q) 103 { 104 /* 105 * In the !blk_mq case we are only calling this to kill the 106 * q_usage_counter, otherwise this increases the freeze depth 107 * and waits for it to return to zero. For this reason there is 108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 109 * exported to drivers as the only user for unfreeze is blk_mq. 110 */ 111 blk_mq_freeze_queue_start(q); 112 blk_mq_freeze_queue_wait(q); 113 } 114 115 void blk_mq_freeze_queue(struct request_queue *q) 116 { 117 /* 118 * ...just an alias to keep freeze and unfreeze actions balanced 119 * in the blk_mq_* namespace 120 */ 121 blk_freeze_queue(q); 122 } 123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 124 125 void blk_mq_unfreeze_queue(struct request_queue *q) 126 { 127 int freeze_depth; 128 129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 130 WARN_ON_ONCE(freeze_depth < 0); 131 if (!freeze_depth) { 132 percpu_ref_reinit(&q->q_usage_counter); 133 wake_up_all(&q->mq_freeze_wq); 134 } 135 } 136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 137 138 void blk_mq_wake_waiters(struct request_queue *q) 139 { 140 struct blk_mq_hw_ctx *hctx; 141 unsigned int i; 142 143 queue_for_each_hw_ctx(q, hctx, i) 144 if (blk_mq_hw_queue_mapped(hctx)) 145 blk_mq_tag_wakeup_all(hctx->tags, true); 146 147 /* 148 * If we are called because the queue has now been marked as 149 * dying, we need to ensure that processes currently waiting on 150 * the queue are notified as well. 151 */ 152 wake_up_all(&q->mq_freeze_wq); 153 } 154 155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 156 { 157 return blk_mq_has_free_tags(hctx->tags); 158 } 159 EXPORT_SYMBOL(blk_mq_can_queue); 160 161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 162 struct request *rq, unsigned int rw_flags) 163 { 164 if (blk_queue_io_stat(q)) 165 rw_flags |= REQ_IO_STAT; 166 167 INIT_LIST_HEAD(&rq->queuelist); 168 /* csd/requeue_work/fifo_time is initialized before use */ 169 rq->q = q; 170 rq->mq_ctx = ctx; 171 rq->cmd_flags |= rw_flags; 172 /* do not touch atomic flags, it needs atomic ops against the timer */ 173 rq->cpu = -1; 174 INIT_HLIST_NODE(&rq->hash); 175 RB_CLEAR_NODE(&rq->rb_node); 176 rq->rq_disk = NULL; 177 rq->part = NULL; 178 rq->start_time = jiffies; 179 #ifdef CONFIG_BLK_CGROUP 180 rq->rl = NULL; 181 set_start_time_ns(rq); 182 rq->io_start_time_ns = 0; 183 #endif 184 rq->nr_phys_segments = 0; 185 #if defined(CONFIG_BLK_DEV_INTEGRITY) 186 rq->nr_integrity_segments = 0; 187 #endif 188 rq->special = NULL; 189 /* tag was already set */ 190 rq->errors = 0; 191 192 rq->cmd = rq->__cmd; 193 194 rq->extra_len = 0; 195 rq->sense_len = 0; 196 rq->resid_len = 0; 197 rq->sense = NULL; 198 199 INIT_LIST_HEAD(&rq->timeout_list); 200 rq->timeout = 0; 201 202 rq->end_io = NULL; 203 rq->end_io_data = NULL; 204 rq->next_rq = NULL; 205 206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 207 } 208 209 static struct request * 210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 211 { 212 struct request *rq; 213 unsigned int tag; 214 215 tag = blk_mq_get_tag(data); 216 if (tag != BLK_MQ_TAG_FAIL) { 217 rq = data->hctx->tags->rqs[tag]; 218 219 if (blk_mq_tag_busy(data->hctx)) { 220 rq->cmd_flags = REQ_MQ_INFLIGHT; 221 atomic_inc(&data->hctx->nr_active); 222 } 223 224 rq->tag = tag; 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 226 return rq; 227 } 228 229 return NULL; 230 } 231 232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 233 unsigned int flags) 234 { 235 struct blk_mq_ctx *ctx; 236 struct blk_mq_hw_ctx *hctx; 237 struct request *rq; 238 struct blk_mq_alloc_data alloc_data; 239 int ret; 240 241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 242 if (ret) 243 return ERR_PTR(ret); 244 245 ctx = blk_mq_get_ctx(q); 246 hctx = q->mq_ops->map_queue(q, ctx->cpu); 247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 248 249 rq = __blk_mq_alloc_request(&alloc_data, rw); 250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) { 251 __blk_mq_run_hw_queue(hctx); 252 blk_mq_put_ctx(ctx); 253 254 ctx = blk_mq_get_ctx(q); 255 hctx = q->mq_ops->map_queue(q, ctx->cpu); 256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 257 rq = __blk_mq_alloc_request(&alloc_data, rw); 258 ctx = alloc_data.ctx; 259 } 260 blk_mq_put_ctx(ctx); 261 if (!rq) { 262 blk_queue_exit(q); 263 return ERR_PTR(-EWOULDBLOCK); 264 } 265 return rq; 266 } 267 EXPORT_SYMBOL(blk_mq_alloc_request); 268 269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 270 struct blk_mq_ctx *ctx, struct request *rq) 271 { 272 const int tag = rq->tag; 273 struct request_queue *q = rq->q; 274 275 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 276 atomic_dec(&hctx->nr_active); 277 rq->cmd_flags = 0; 278 279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 280 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 281 blk_queue_exit(q); 282 } 283 284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 285 { 286 struct blk_mq_ctx *ctx = rq->mq_ctx; 287 288 ctx->rq_completed[rq_is_sync(rq)]++; 289 __blk_mq_free_request(hctx, ctx, rq); 290 291 } 292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 293 294 void blk_mq_free_request(struct request *rq) 295 { 296 struct blk_mq_hw_ctx *hctx; 297 struct request_queue *q = rq->q; 298 299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 300 blk_mq_free_hctx_request(hctx, rq); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_free_request); 303 304 inline void __blk_mq_end_request(struct request *rq, int error) 305 { 306 blk_account_io_done(rq); 307 308 if (rq->end_io) { 309 rq->end_io(rq, error); 310 } else { 311 if (unlikely(blk_bidi_rq(rq))) 312 blk_mq_free_request(rq->next_rq); 313 blk_mq_free_request(rq); 314 } 315 } 316 EXPORT_SYMBOL(__blk_mq_end_request); 317 318 void blk_mq_end_request(struct request *rq, int error) 319 { 320 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 321 BUG(); 322 __blk_mq_end_request(rq, error); 323 } 324 EXPORT_SYMBOL(blk_mq_end_request); 325 326 static void __blk_mq_complete_request_remote(void *data) 327 { 328 struct request *rq = data; 329 330 rq->q->softirq_done_fn(rq); 331 } 332 333 static void blk_mq_ipi_complete_request(struct request *rq) 334 { 335 struct blk_mq_ctx *ctx = rq->mq_ctx; 336 bool shared = false; 337 int cpu; 338 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 340 rq->q->softirq_done_fn(rq); 341 return; 342 } 343 344 cpu = get_cpu(); 345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 346 shared = cpus_share_cache(cpu, ctx->cpu); 347 348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 349 rq->csd.func = __blk_mq_complete_request_remote; 350 rq->csd.info = rq; 351 rq->csd.flags = 0; 352 smp_call_function_single_async(ctx->cpu, &rq->csd); 353 } else { 354 rq->q->softirq_done_fn(rq); 355 } 356 put_cpu(); 357 } 358 359 static void __blk_mq_complete_request(struct request *rq) 360 { 361 struct request_queue *q = rq->q; 362 363 if (!q->softirq_done_fn) 364 blk_mq_end_request(rq, rq->errors); 365 else 366 blk_mq_ipi_complete_request(rq); 367 } 368 369 /** 370 * blk_mq_complete_request - end I/O on a request 371 * @rq: the request being processed 372 * 373 * Description: 374 * Ends all I/O on a request. It does not handle partial completions. 375 * The actual completion happens out-of-order, through a IPI handler. 376 **/ 377 void blk_mq_complete_request(struct request *rq, int error) 378 { 379 struct request_queue *q = rq->q; 380 381 if (unlikely(blk_should_fake_timeout(q))) 382 return; 383 if (!blk_mark_rq_complete(rq)) { 384 rq->errors = error; 385 __blk_mq_complete_request(rq); 386 } 387 } 388 EXPORT_SYMBOL(blk_mq_complete_request); 389 390 int blk_mq_request_started(struct request *rq) 391 { 392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 393 } 394 EXPORT_SYMBOL_GPL(blk_mq_request_started); 395 396 void blk_mq_start_request(struct request *rq) 397 { 398 struct request_queue *q = rq->q; 399 400 trace_block_rq_issue(q, rq); 401 402 rq->resid_len = blk_rq_bytes(rq); 403 if (unlikely(blk_bidi_rq(rq))) 404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 405 406 blk_add_timer(rq); 407 408 /* 409 * Ensure that ->deadline is visible before set the started 410 * flag and clear the completed flag. 411 */ 412 smp_mb__before_atomic(); 413 414 /* 415 * Mark us as started and clear complete. Complete might have been 416 * set if requeue raced with timeout, which then marked it as 417 * complete. So be sure to clear complete again when we start 418 * the request, otherwise we'll ignore the completion event. 419 */ 420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 424 425 if (q->dma_drain_size && blk_rq_bytes(rq)) { 426 /* 427 * Make sure space for the drain appears. We know we can do 428 * this because max_hw_segments has been adjusted to be one 429 * fewer than the device can handle. 430 */ 431 rq->nr_phys_segments++; 432 } 433 } 434 EXPORT_SYMBOL(blk_mq_start_request); 435 436 static void __blk_mq_requeue_request(struct request *rq) 437 { 438 struct request_queue *q = rq->q; 439 440 trace_block_rq_requeue(q, rq); 441 442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 443 if (q->dma_drain_size && blk_rq_bytes(rq)) 444 rq->nr_phys_segments--; 445 } 446 } 447 448 void blk_mq_requeue_request(struct request *rq) 449 { 450 __blk_mq_requeue_request(rq); 451 452 BUG_ON(blk_queued_rq(rq)); 453 blk_mq_add_to_requeue_list(rq, true); 454 } 455 EXPORT_SYMBOL(blk_mq_requeue_request); 456 457 static void blk_mq_requeue_work(struct work_struct *work) 458 { 459 struct request_queue *q = 460 container_of(work, struct request_queue, requeue_work); 461 LIST_HEAD(rq_list); 462 struct request *rq, *next; 463 unsigned long flags; 464 465 spin_lock_irqsave(&q->requeue_lock, flags); 466 list_splice_init(&q->requeue_list, &rq_list); 467 spin_unlock_irqrestore(&q->requeue_lock, flags); 468 469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 470 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 471 continue; 472 473 rq->cmd_flags &= ~REQ_SOFTBARRIER; 474 list_del_init(&rq->queuelist); 475 blk_mq_insert_request(rq, true, false, false); 476 } 477 478 while (!list_empty(&rq_list)) { 479 rq = list_entry(rq_list.next, struct request, queuelist); 480 list_del_init(&rq->queuelist); 481 blk_mq_insert_request(rq, false, false, false); 482 } 483 484 /* 485 * Use the start variant of queue running here, so that running 486 * the requeue work will kick stopped queues. 487 */ 488 blk_mq_start_hw_queues(q); 489 } 490 491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 492 { 493 struct request_queue *q = rq->q; 494 unsigned long flags; 495 496 /* 497 * We abuse this flag that is otherwise used by the I/O scheduler to 498 * request head insertation from the workqueue. 499 */ 500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 501 502 spin_lock_irqsave(&q->requeue_lock, flags); 503 if (at_head) { 504 rq->cmd_flags |= REQ_SOFTBARRIER; 505 list_add(&rq->queuelist, &q->requeue_list); 506 } else { 507 list_add_tail(&rq->queuelist, &q->requeue_list); 508 } 509 spin_unlock_irqrestore(&q->requeue_lock, flags); 510 } 511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 512 513 void blk_mq_cancel_requeue_work(struct request_queue *q) 514 { 515 cancel_work_sync(&q->requeue_work); 516 } 517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 518 519 void blk_mq_kick_requeue_list(struct request_queue *q) 520 { 521 kblockd_schedule_work(&q->requeue_work); 522 } 523 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 524 525 void blk_mq_abort_requeue_list(struct request_queue *q) 526 { 527 unsigned long flags; 528 LIST_HEAD(rq_list); 529 530 spin_lock_irqsave(&q->requeue_lock, flags); 531 list_splice_init(&q->requeue_list, &rq_list); 532 spin_unlock_irqrestore(&q->requeue_lock, flags); 533 534 while (!list_empty(&rq_list)) { 535 struct request *rq; 536 537 rq = list_first_entry(&rq_list, struct request, queuelist); 538 list_del_init(&rq->queuelist); 539 rq->errors = -EIO; 540 blk_mq_end_request(rq, rq->errors); 541 } 542 } 543 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 544 545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 546 { 547 if (tag < tags->nr_tags) 548 return tags->rqs[tag]; 549 550 return NULL; 551 } 552 EXPORT_SYMBOL(blk_mq_tag_to_rq); 553 554 struct blk_mq_timeout_data { 555 unsigned long next; 556 unsigned int next_set; 557 }; 558 559 void blk_mq_rq_timed_out(struct request *req, bool reserved) 560 { 561 struct blk_mq_ops *ops = req->q->mq_ops; 562 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 563 564 /* 565 * We know that complete is set at this point. If STARTED isn't set 566 * anymore, then the request isn't active and the "timeout" should 567 * just be ignored. This can happen due to the bitflag ordering. 568 * Timeout first checks if STARTED is set, and if it is, assumes 569 * the request is active. But if we race with completion, then 570 * we both flags will get cleared. So check here again, and ignore 571 * a timeout event with a request that isn't active. 572 */ 573 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 574 return; 575 576 if (ops->timeout) 577 ret = ops->timeout(req, reserved); 578 579 switch (ret) { 580 case BLK_EH_HANDLED: 581 __blk_mq_complete_request(req); 582 break; 583 case BLK_EH_RESET_TIMER: 584 blk_add_timer(req); 585 blk_clear_rq_complete(req); 586 break; 587 case BLK_EH_NOT_HANDLED: 588 break; 589 default: 590 printk(KERN_ERR "block: bad eh return: %d\n", ret); 591 break; 592 } 593 } 594 595 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 596 struct request *rq, void *priv, bool reserved) 597 { 598 struct blk_mq_timeout_data *data = priv; 599 600 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 601 /* 602 * If a request wasn't started before the queue was 603 * marked dying, kill it here or it'll go unnoticed. 604 */ 605 if (unlikely(blk_queue_dying(rq->q))) { 606 rq->errors = -EIO; 607 blk_mq_end_request(rq, rq->errors); 608 } 609 return; 610 } 611 612 if (time_after_eq(jiffies, rq->deadline)) { 613 if (!blk_mark_rq_complete(rq)) 614 blk_mq_rq_timed_out(rq, reserved); 615 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 616 data->next = rq->deadline; 617 data->next_set = 1; 618 } 619 } 620 621 static void blk_mq_timeout_work(struct work_struct *work) 622 { 623 struct request_queue *q = 624 container_of(work, struct request_queue, timeout_work); 625 struct blk_mq_timeout_data data = { 626 .next = 0, 627 .next_set = 0, 628 }; 629 int i; 630 631 if (blk_queue_enter(q, true)) 632 return; 633 634 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 635 636 if (data.next_set) { 637 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 638 mod_timer(&q->timeout, data.next); 639 } else { 640 struct blk_mq_hw_ctx *hctx; 641 642 queue_for_each_hw_ctx(q, hctx, i) { 643 /* the hctx may be unmapped, so check it here */ 644 if (blk_mq_hw_queue_mapped(hctx)) 645 blk_mq_tag_idle(hctx); 646 } 647 } 648 blk_queue_exit(q); 649 } 650 651 /* 652 * Reverse check our software queue for entries that we could potentially 653 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 654 * too much time checking for merges. 655 */ 656 static bool blk_mq_attempt_merge(struct request_queue *q, 657 struct blk_mq_ctx *ctx, struct bio *bio) 658 { 659 struct request *rq; 660 int checked = 8; 661 662 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 663 int el_ret; 664 665 if (!checked--) 666 break; 667 668 if (!blk_rq_merge_ok(rq, bio)) 669 continue; 670 671 el_ret = blk_try_merge(rq, bio); 672 if (el_ret == ELEVATOR_BACK_MERGE) { 673 if (bio_attempt_back_merge(q, rq, bio)) { 674 ctx->rq_merged++; 675 return true; 676 } 677 break; 678 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 679 if (bio_attempt_front_merge(q, rq, bio)) { 680 ctx->rq_merged++; 681 return true; 682 } 683 break; 684 } 685 } 686 687 return false; 688 } 689 690 /* 691 * Process software queues that have been marked busy, splicing them 692 * to the for-dispatch 693 */ 694 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 695 { 696 struct blk_mq_ctx *ctx; 697 int i; 698 699 for (i = 0; i < hctx->ctx_map.size; i++) { 700 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 701 unsigned int off, bit; 702 703 if (!bm->word) 704 continue; 705 706 bit = 0; 707 off = i * hctx->ctx_map.bits_per_word; 708 do { 709 bit = find_next_bit(&bm->word, bm->depth, bit); 710 if (bit >= bm->depth) 711 break; 712 713 ctx = hctx->ctxs[bit + off]; 714 clear_bit(bit, &bm->word); 715 spin_lock(&ctx->lock); 716 list_splice_tail_init(&ctx->rq_list, list); 717 spin_unlock(&ctx->lock); 718 719 bit++; 720 } while (1); 721 } 722 } 723 724 /* 725 * Run this hardware queue, pulling any software queues mapped to it in. 726 * Note that this function currently has various problems around ordering 727 * of IO. In particular, we'd like FIFO behaviour on handling existing 728 * items on the hctx->dispatch list. Ignore that for now. 729 */ 730 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 731 { 732 struct request_queue *q = hctx->queue; 733 struct request *rq; 734 LIST_HEAD(rq_list); 735 LIST_HEAD(driver_list); 736 struct list_head *dptr; 737 int queued; 738 739 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 740 741 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 742 return; 743 744 hctx->run++; 745 746 /* 747 * Touch any software queue that has pending entries. 748 */ 749 flush_busy_ctxs(hctx, &rq_list); 750 751 /* 752 * If we have previous entries on our dispatch list, grab them 753 * and stuff them at the front for more fair dispatch. 754 */ 755 if (!list_empty_careful(&hctx->dispatch)) { 756 spin_lock(&hctx->lock); 757 if (!list_empty(&hctx->dispatch)) 758 list_splice_init(&hctx->dispatch, &rq_list); 759 spin_unlock(&hctx->lock); 760 } 761 762 /* 763 * Start off with dptr being NULL, so we start the first request 764 * immediately, even if we have more pending. 765 */ 766 dptr = NULL; 767 768 /* 769 * Now process all the entries, sending them to the driver. 770 */ 771 queued = 0; 772 while (!list_empty(&rq_list)) { 773 struct blk_mq_queue_data bd; 774 int ret; 775 776 rq = list_first_entry(&rq_list, struct request, queuelist); 777 list_del_init(&rq->queuelist); 778 779 bd.rq = rq; 780 bd.list = dptr; 781 bd.last = list_empty(&rq_list); 782 783 ret = q->mq_ops->queue_rq(hctx, &bd); 784 switch (ret) { 785 case BLK_MQ_RQ_QUEUE_OK: 786 queued++; 787 continue; 788 case BLK_MQ_RQ_QUEUE_BUSY: 789 list_add(&rq->queuelist, &rq_list); 790 __blk_mq_requeue_request(rq); 791 break; 792 default: 793 pr_err("blk-mq: bad return on queue: %d\n", ret); 794 case BLK_MQ_RQ_QUEUE_ERROR: 795 rq->errors = -EIO; 796 blk_mq_end_request(rq, rq->errors); 797 break; 798 } 799 800 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 801 break; 802 803 /* 804 * We've done the first request. If we have more than 1 805 * left in the list, set dptr to defer issue. 806 */ 807 if (!dptr && rq_list.next != rq_list.prev) 808 dptr = &driver_list; 809 } 810 811 if (!queued) 812 hctx->dispatched[0]++; 813 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 814 hctx->dispatched[ilog2(queued) + 1]++; 815 816 /* 817 * Any items that need requeuing? Stuff them into hctx->dispatch, 818 * that is where we will continue on next queue run. 819 */ 820 if (!list_empty(&rq_list)) { 821 spin_lock(&hctx->lock); 822 list_splice(&rq_list, &hctx->dispatch); 823 spin_unlock(&hctx->lock); 824 /* 825 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 826 * it's possible the queue is stopped and restarted again 827 * before this. Queue restart will dispatch requests. And since 828 * requests in rq_list aren't added into hctx->dispatch yet, 829 * the requests in rq_list might get lost. 830 * 831 * blk_mq_run_hw_queue() already checks the STOPPED bit 832 **/ 833 blk_mq_run_hw_queue(hctx, true); 834 } 835 } 836 837 /* 838 * It'd be great if the workqueue API had a way to pass 839 * in a mask and had some smarts for more clever placement. 840 * For now we just round-robin here, switching for every 841 * BLK_MQ_CPU_WORK_BATCH queued items. 842 */ 843 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 844 { 845 if (hctx->queue->nr_hw_queues == 1) 846 return WORK_CPU_UNBOUND; 847 848 if (--hctx->next_cpu_batch <= 0) { 849 int cpu = hctx->next_cpu, next_cpu; 850 851 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 852 if (next_cpu >= nr_cpu_ids) 853 next_cpu = cpumask_first(hctx->cpumask); 854 855 hctx->next_cpu = next_cpu; 856 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 857 858 return cpu; 859 } 860 861 return hctx->next_cpu; 862 } 863 864 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 865 { 866 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 867 !blk_mq_hw_queue_mapped(hctx))) 868 return; 869 870 if (!async) { 871 int cpu = get_cpu(); 872 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 873 __blk_mq_run_hw_queue(hctx); 874 put_cpu(); 875 return; 876 } 877 878 put_cpu(); 879 } 880 881 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 882 &hctx->run_work, 0); 883 } 884 885 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 886 { 887 struct blk_mq_hw_ctx *hctx; 888 int i; 889 890 queue_for_each_hw_ctx(q, hctx, i) { 891 if ((!blk_mq_hctx_has_pending(hctx) && 892 list_empty_careful(&hctx->dispatch)) || 893 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 894 continue; 895 896 blk_mq_run_hw_queue(hctx, async); 897 } 898 } 899 EXPORT_SYMBOL(blk_mq_run_hw_queues); 900 901 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 902 { 903 cancel_delayed_work(&hctx->run_work); 904 cancel_delayed_work(&hctx->delay_work); 905 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 906 } 907 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 908 909 void blk_mq_stop_hw_queues(struct request_queue *q) 910 { 911 struct blk_mq_hw_ctx *hctx; 912 int i; 913 914 queue_for_each_hw_ctx(q, hctx, i) 915 blk_mq_stop_hw_queue(hctx); 916 } 917 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 918 919 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 920 { 921 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 922 923 blk_mq_run_hw_queue(hctx, false); 924 } 925 EXPORT_SYMBOL(blk_mq_start_hw_queue); 926 927 void blk_mq_start_hw_queues(struct request_queue *q) 928 { 929 struct blk_mq_hw_ctx *hctx; 930 int i; 931 932 queue_for_each_hw_ctx(q, hctx, i) 933 blk_mq_start_hw_queue(hctx); 934 } 935 EXPORT_SYMBOL(blk_mq_start_hw_queues); 936 937 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 938 { 939 struct blk_mq_hw_ctx *hctx; 940 int i; 941 942 queue_for_each_hw_ctx(q, hctx, i) { 943 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 944 continue; 945 946 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 947 blk_mq_run_hw_queue(hctx, async); 948 } 949 } 950 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 951 952 static void blk_mq_run_work_fn(struct work_struct *work) 953 { 954 struct blk_mq_hw_ctx *hctx; 955 956 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 957 958 __blk_mq_run_hw_queue(hctx); 959 } 960 961 static void blk_mq_delay_work_fn(struct work_struct *work) 962 { 963 struct blk_mq_hw_ctx *hctx; 964 965 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 966 967 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 968 __blk_mq_run_hw_queue(hctx); 969 } 970 971 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 972 { 973 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 974 return; 975 976 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 977 &hctx->delay_work, msecs_to_jiffies(msecs)); 978 } 979 EXPORT_SYMBOL(blk_mq_delay_queue); 980 981 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 982 struct blk_mq_ctx *ctx, 983 struct request *rq, 984 bool at_head) 985 { 986 trace_block_rq_insert(hctx->queue, rq); 987 988 if (at_head) 989 list_add(&rq->queuelist, &ctx->rq_list); 990 else 991 list_add_tail(&rq->queuelist, &ctx->rq_list); 992 } 993 994 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 995 struct request *rq, bool at_head) 996 { 997 struct blk_mq_ctx *ctx = rq->mq_ctx; 998 999 __blk_mq_insert_req_list(hctx, ctx, rq, at_head); 1000 blk_mq_hctx_mark_pending(hctx, ctx); 1001 } 1002 1003 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1004 bool async) 1005 { 1006 struct request_queue *q = rq->q; 1007 struct blk_mq_hw_ctx *hctx; 1008 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1009 1010 current_ctx = blk_mq_get_ctx(q); 1011 if (!cpu_online(ctx->cpu)) 1012 rq->mq_ctx = ctx = current_ctx; 1013 1014 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1015 1016 spin_lock(&ctx->lock); 1017 __blk_mq_insert_request(hctx, rq, at_head); 1018 spin_unlock(&ctx->lock); 1019 1020 if (run_queue) 1021 blk_mq_run_hw_queue(hctx, async); 1022 1023 blk_mq_put_ctx(current_ctx); 1024 } 1025 1026 static void blk_mq_insert_requests(struct request_queue *q, 1027 struct blk_mq_ctx *ctx, 1028 struct list_head *list, 1029 int depth, 1030 bool from_schedule) 1031 1032 { 1033 struct blk_mq_hw_ctx *hctx; 1034 struct blk_mq_ctx *current_ctx; 1035 1036 trace_block_unplug(q, depth, !from_schedule); 1037 1038 current_ctx = blk_mq_get_ctx(q); 1039 1040 if (!cpu_online(ctx->cpu)) 1041 ctx = current_ctx; 1042 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1043 1044 /* 1045 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1046 * offline now 1047 */ 1048 spin_lock(&ctx->lock); 1049 while (!list_empty(list)) { 1050 struct request *rq; 1051 1052 rq = list_first_entry(list, struct request, queuelist); 1053 list_del_init(&rq->queuelist); 1054 rq->mq_ctx = ctx; 1055 __blk_mq_insert_req_list(hctx, ctx, rq, false); 1056 } 1057 blk_mq_hctx_mark_pending(hctx, ctx); 1058 spin_unlock(&ctx->lock); 1059 1060 blk_mq_run_hw_queue(hctx, from_schedule); 1061 blk_mq_put_ctx(current_ctx); 1062 } 1063 1064 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1065 { 1066 struct request *rqa = container_of(a, struct request, queuelist); 1067 struct request *rqb = container_of(b, struct request, queuelist); 1068 1069 return !(rqa->mq_ctx < rqb->mq_ctx || 1070 (rqa->mq_ctx == rqb->mq_ctx && 1071 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1072 } 1073 1074 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1075 { 1076 struct blk_mq_ctx *this_ctx; 1077 struct request_queue *this_q; 1078 struct request *rq; 1079 LIST_HEAD(list); 1080 LIST_HEAD(ctx_list); 1081 unsigned int depth; 1082 1083 list_splice_init(&plug->mq_list, &list); 1084 1085 list_sort(NULL, &list, plug_ctx_cmp); 1086 1087 this_q = NULL; 1088 this_ctx = NULL; 1089 depth = 0; 1090 1091 while (!list_empty(&list)) { 1092 rq = list_entry_rq(list.next); 1093 list_del_init(&rq->queuelist); 1094 BUG_ON(!rq->q); 1095 if (rq->mq_ctx != this_ctx) { 1096 if (this_ctx) { 1097 blk_mq_insert_requests(this_q, this_ctx, 1098 &ctx_list, depth, 1099 from_schedule); 1100 } 1101 1102 this_ctx = rq->mq_ctx; 1103 this_q = rq->q; 1104 depth = 0; 1105 } 1106 1107 depth++; 1108 list_add_tail(&rq->queuelist, &ctx_list); 1109 } 1110 1111 /* 1112 * If 'this_ctx' is set, we know we have entries to complete 1113 * on 'ctx_list'. Do those. 1114 */ 1115 if (this_ctx) { 1116 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1117 from_schedule); 1118 } 1119 } 1120 1121 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1122 { 1123 init_request_from_bio(rq, bio); 1124 1125 if (blk_do_io_stat(rq)) 1126 blk_account_io_start(rq, 1); 1127 } 1128 1129 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1130 { 1131 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1132 !blk_queue_nomerges(hctx->queue); 1133 } 1134 1135 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1136 struct blk_mq_ctx *ctx, 1137 struct request *rq, struct bio *bio) 1138 { 1139 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1140 blk_mq_bio_to_request(rq, bio); 1141 spin_lock(&ctx->lock); 1142 insert_rq: 1143 __blk_mq_insert_request(hctx, rq, false); 1144 spin_unlock(&ctx->lock); 1145 return false; 1146 } else { 1147 struct request_queue *q = hctx->queue; 1148 1149 spin_lock(&ctx->lock); 1150 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1151 blk_mq_bio_to_request(rq, bio); 1152 goto insert_rq; 1153 } 1154 1155 spin_unlock(&ctx->lock); 1156 __blk_mq_free_request(hctx, ctx, rq); 1157 return true; 1158 } 1159 } 1160 1161 struct blk_map_ctx { 1162 struct blk_mq_hw_ctx *hctx; 1163 struct blk_mq_ctx *ctx; 1164 }; 1165 1166 static struct request *blk_mq_map_request(struct request_queue *q, 1167 struct bio *bio, 1168 struct blk_map_ctx *data) 1169 { 1170 struct blk_mq_hw_ctx *hctx; 1171 struct blk_mq_ctx *ctx; 1172 struct request *rq; 1173 int rw = bio_data_dir(bio); 1174 struct blk_mq_alloc_data alloc_data; 1175 1176 blk_queue_enter_live(q); 1177 ctx = blk_mq_get_ctx(q); 1178 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1179 1180 if (rw_is_sync(bio->bi_rw)) 1181 rw |= REQ_SYNC; 1182 1183 trace_block_getrq(q, bio, rw); 1184 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx); 1185 rq = __blk_mq_alloc_request(&alloc_data, rw); 1186 if (unlikely(!rq)) { 1187 __blk_mq_run_hw_queue(hctx); 1188 blk_mq_put_ctx(ctx); 1189 trace_block_sleeprq(q, bio, rw); 1190 1191 ctx = blk_mq_get_ctx(q); 1192 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1193 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx); 1194 rq = __blk_mq_alloc_request(&alloc_data, rw); 1195 ctx = alloc_data.ctx; 1196 hctx = alloc_data.hctx; 1197 } 1198 1199 hctx->queued++; 1200 data->hctx = hctx; 1201 data->ctx = ctx; 1202 return rq; 1203 } 1204 1205 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie) 1206 { 1207 int ret; 1208 struct request_queue *q = rq->q; 1209 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, 1210 rq->mq_ctx->cpu); 1211 struct blk_mq_queue_data bd = { 1212 .rq = rq, 1213 .list = NULL, 1214 .last = 1 1215 }; 1216 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num); 1217 1218 /* 1219 * For OK queue, we are done. For error, kill it. Any other 1220 * error (busy), just add it to our list as we previously 1221 * would have done 1222 */ 1223 ret = q->mq_ops->queue_rq(hctx, &bd); 1224 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1225 *cookie = new_cookie; 1226 return 0; 1227 } 1228 1229 __blk_mq_requeue_request(rq); 1230 1231 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1232 *cookie = BLK_QC_T_NONE; 1233 rq->errors = -EIO; 1234 blk_mq_end_request(rq, rq->errors); 1235 return 0; 1236 } 1237 1238 return -1; 1239 } 1240 1241 /* 1242 * Multiple hardware queue variant. This will not use per-process plugs, 1243 * but will attempt to bypass the hctx queueing if we can go straight to 1244 * hardware for SYNC IO. 1245 */ 1246 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1247 { 1248 const int is_sync = rw_is_sync(bio->bi_rw); 1249 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1250 struct blk_map_ctx data; 1251 struct request *rq; 1252 unsigned int request_count = 0; 1253 struct blk_plug *plug; 1254 struct request *same_queue_rq = NULL; 1255 blk_qc_t cookie; 1256 1257 blk_queue_bounce(q, &bio); 1258 1259 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1260 bio_io_error(bio); 1261 return BLK_QC_T_NONE; 1262 } 1263 1264 blk_queue_split(q, &bio, q->bio_split); 1265 1266 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1267 if (blk_attempt_plug_merge(q, bio, &request_count, 1268 &same_queue_rq)) 1269 return BLK_QC_T_NONE; 1270 } else 1271 request_count = blk_plug_queued_count(q); 1272 1273 rq = blk_mq_map_request(q, bio, &data); 1274 if (unlikely(!rq)) 1275 return BLK_QC_T_NONE; 1276 1277 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1278 1279 if (unlikely(is_flush_fua)) { 1280 blk_mq_bio_to_request(rq, bio); 1281 blk_insert_flush(rq); 1282 goto run_queue; 1283 } 1284 1285 plug = current->plug; 1286 /* 1287 * If the driver supports defer issued based on 'last', then 1288 * queue it up like normal since we can potentially save some 1289 * CPU this way. 1290 */ 1291 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1292 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1293 struct request *old_rq = NULL; 1294 1295 blk_mq_bio_to_request(rq, bio); 1296 1297 /* 1298 * We do limited pluging. If the bio can be merged, do that. 1299 * Otherwise the existing request in the plug list will be 1300 * issued. So the plug list will have one request at most 1301 */ 1302 if (plug) { 1303 /* 1304 * The plug list might get flushed before this. If that 1305 * happens, same_queue_rq is invalid and plug list is 1306 * empty 1307 */ 1308 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1309 old_rq = same_queue_rq; 1310 list_del_init(&old_rq->queuelist); 1311 } 1312 list_add_tail(&rq->queuelist, &plug->mq_list); 1313 } else /* is_sync */ 1314 old_rq = rq; 1315 blk_mq_put_ctx(data.ctx); 1316 if (!old_rq) 1317 goto done; 1318 if (!blk_mq_direct_issue_request(old_rq, &cookie)) 1319 goto done; 1320 blk_mq_insert_request(old_rq, false, true, true); 1321 goto done; 1322 } 1323 1324 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1325 /* 1326 * For a SYNC request, send it to the hardware immediately. For 1327 * an ASYNC request, just ensure that we run it later on. The 1328 * latter allows for merging opportunities and more efficient 1329 * dispatching. 1330 */ 1331 run_queue: 1332 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1333 } 1334 blk_mq_put_ctx(data.ctx); 1335 done: 1336 return cookie; 1337 } 1338 1339 /* 1340 * Single hardware queue variant. This will attempt to use any per-process 1341 * plug for merging and IO deferral. 1342 */ 1343 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1344 { 1345 const int is_sync = rw_is_sync(bio->bi_rw); 1346 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1347 struct blk_plug *plug; 1348 unsigned int request_count = 0; 1349 struct blk_map_ctx data; 1350 struct request *rq; 1351 blk_qc_t cookie; 1352 1353 blk_queue_bounce(q, &bio); 1354 1355 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1356 bio_io_error(bio); 1357 return BLK_QC_T_NONE; 1358 } 1359 1360 blk_queue_split(q, &bio, q->bio_split); 1361 1362 if (!is_flush_fua && !blk_queue_nomerges(q) && 1363 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1364 return BLK_QC_T_NONE; 1365 1366 rq = blk_mq_map_request(q, bio, &data); 1367 if (unlikely(!rq)) 1368 return BLK_QC_T_NONE; 1369 1370 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num); 1371 1372 if (unlikely(is_flush_fua)) { 1373 blk_mq_bio_to_request(rq, bio); 1374 blk_insert_flush(rq); 1375 goto run_queue; 1376 } 1377 1378 /* 1379 * A task plug currently exists. Since this is completely lockless, 1380 * utilize that to temporarily store requests until the task is 1381 * either done or scheduled away. 1382 */ 1383 plug = current->plug; 1384 if (plug) { 1385 blk_mq_bio_to_request(rq, bio); 1386 if (!request_count) 1387 trace_block_plug(q); 1388 1389 blk_mq_put_ctx(data.ctx); 1390 1391 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1392 blk_flush_plug_list(plug, false); 1393 trace_block_plug(q); 1394 } 1395 1396 list_add_tail(&rq->queuelist, &plug->mq_list); 1397 return cookie; 1398 } 1399 1400 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1401 /* 1402 * For a SYNC request, send it to the hardware immediately. For 1403 * an ASYNC request, just ensure that we run it later on. The 1404 * latter allows for merging opportunities and more efficient 1405 * dispatching. 1406 */ 1407 run_queue: 1408 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1409 } 1410 1411 blk_mq_put_ctx(data.ctx); 1412 return cookie; 1413 } 1414 1415 /* 1416 * Default mapping to a software queue, since we use one per CPU. 1417 */ 1418 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1419 { 1420 return q->queue_hw_ctx[q->mq_map[cpu]]; 1421 } 1422 EXPORT_SYMBOL(blk_mq_map_queue); 1423 1424 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1425 struct blk_mq_tags *tags, unsigned int hctx_idx) 1426 { 1427 struct page *page; 1428 1429 if (tags->rqs && set->ops->exit_request) { 1430 int i; 1431 1432 for (i = 0; i < tags->nr_tags; i++) { 1433 if (!tags->rqs[i]) 1434 continue; 1435 set->ops->exit_request(set->driver_data, tags->rqs[i], 1436 hctx_idx, i); 1437 tags->rqs[i] = NULL; 1438 } 1439 } 1440 1441 while (!list_empty(&tags->page_list)) { 1442 page = list_first_entry(&tags->page_list, struct page, lru); 1443 list_del_init(&page->lru); 1444 /* 1445 * Remove kmemleak object previously allocated in 1446 * blk_mq_init_rq_map(). 1447 */ 1448 kmemleak_free(page_address(page)); 1449 __free_pages(page, page->private); 1450 } 1451 1452 kfree(tags->rqs); 1453 1454 blk_mq_free_tags(tags); 1455 } 1456 1457 static size_t order_to_size(unsigned int order) 1458 { 1459 return (size_t)PAGE_SIZE << order; 1460 } 1461 1462 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1463 unsigned int hctx_idx) 1464 { 1465 struct blk_mq_tags *tags; 1466 unsigned int i, j, entries_per_page, max_order = 4; 1467 size_t rq_size, left; 1468 1469 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1470 set->numa_node, 1471 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1472 if (!tags) 1473 return NULL; 1474 1475 INIT_LIST_HEAD(&tags->page_list); 1476 1477 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1478 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1479 set->numa_node); 1480 if (!tags->rqs) { 1481 blk_mq_free_tags(tags); 1482 return NULL; 1483 } 1484 1485 /* 1486 * rq_size is the size of the request plus driver payload, rounded 1487 * to the cacheline size 1488 */ 1489 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1490 cache_line_size()); 1491 left = rq_size * set->queue_depth; 1492 1493 for (i = 0; i < set->queue_depth; ) { 1494 int this_order = max_order; 1495 struct page *page; 1496 int to_do; 1497 void *p; 1498 1499 while (left < order_to_size(this_order - 1) && this_order) 1500 this_order--; 1501 1502 do { 1503 page = alloc_pages_node(set->numa_node, 1504 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1505 this_order); 1506 if (page) 1507 break; 1508 if (!this_order--) 1509 break; 1510 if (order_to_size(this_order) < rq_size) 1511 break; 1512 } while (1); 1513 1514 if (!page) 1515 goto fail; 1516 1517 page->private = this_order; 1518 list_add_tail(&page->lru, &tags->page_list); 1519 1520 p = page_address(page); 1521 /* 1522 * Allow kmemleak to scan these pages as they contain pointers 1523 * to additional allocations like via ops->init_request(). 1524 */ 1525 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL); 1526 entries_per_page = order_to_size(this_order) / rq_size; 1527 to_do = min(entries_per_page, set->queue_depth - i); 1528 left -= to_do * rq_size; 1529 for (j = 0; j < to_do; j++) { 1530 tags->rqs[i] = p; 1531 if (set->ops->init_request) { 1532 if (set->ops->init_request(set->driver_data, 1533 tags->rqs[i], hctx_idx, i, 1534 set->numa_node)) { 1535 tags->rqs[i] = NULL; 1536 goto fail; 1537 } 1538 } 1539 1540 p += rq_size; 1541 i++; 1542 } 1543 } 1544 return tags; 1545 1546 fail: 1547 blk_mq_free_rq_map(set, tags, hctx_idx); 1548 return NULL; 1549 } 1550 1551 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1552 { 1553 kfree(bitmap->map); 1554 } 1555 1556 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1557 { 1558 unsigned int bpw = 8, total, num_maps, i; 1559 1560 bitmap->bits_per_word = bpw; 1561 1562 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1563 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1564 GFP_KERNEL, node); 1565 if (!bitmap->map) 1566 return -ENOMEM; 1567 1568 total = nr_cpu_ids; 1569 for (i = 0; i < num_maps; i++) { 1570 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1571 total -= bitmap->map[i].depth; 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1578 { 1579 struct request_queue *q = hctx->queue; 1580 struct blk_mq_ctx *ctx; 1581 LIST_HEAD(tmp); 1582 1583 /* 1584 * Move ctx entries to new CPU, if this one is going away. 1585 */ 1586 ctx = __blk_mq_get_ctx(q, cpu); 1587 1588 spin_lock(&ctx->lock); 1589 if (!list_empty(&ctx->rq_list)) { 1590 list_splice_init(&ctx->rq_list, &tmp); 1591 blk_mq_hctx_clear_pending(hctx, ctx); 1592 } 1593 spin_unlock(&ctx->lock); 1594 1595 if (list_empty(&tmp)) 1596 return NOTIFY_OK; 1597 1598 ctx = blk_mq_get_ctx(q); 1599 spin_lock(&ctx->lock); 1600 1601 while (!list_empty(&tmp)) { 1602 struct request *rq; 1603 1604 rq = list_first_entry(&tmp, struct request, queuelist); 1605 rq->mq_ctx = ctx; 1606 list_move_tail(&rq->queuelist, &ctx->rq_list); 1607 } 1608 1609 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1610 blk_mq_hctx_mark_pending(hctx, ctx); 1611 1612 spin_unlock(&ctx->lock); 1613 1614 blk_mq_run_hw_queue(hctx, true); 1615 blk_mq_put_ctx(ctx); 1616 return NOTIFY_OK; 1617 } 1618 1619 static int blk_mq_hctx_notify(void *data, unsigned long action, 1620 unsigned int cpu) 1621 { 1622 struct blk_mq_hw_ctx *hctx = data; 1623 1624 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1625 return blk_mq_hctx_cpu_offline(hctx, cpu); 1626 1627 /* 1628 * In case of CPU online, tags may be reallocated 1629 * in blk_mq_map_swqueue() after mapping is updated. 1630 */ 1631 1632 return NOTIFY_OK; 1633 } 1634 1635 /* hctx->ctxs will be freed in queue's release handler */ 1636 static void blk_mq_exit_hctx(struct request_queue *q, 1637 struct blk_mq_tag_set *set, 1638 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1639 { 1640 unsigned flush_start_tag = set->queue_depth; 1641 1642 blk_mq_tag_idle(hctx); 1643 1644 if (set->ops->exit_request) 1645 set->ops->exit_request(set->driver_data, 1646 hctx->fq->flush_rq, hctx_idx, 1647 flush_start_tag + hctx_idx); 1648 1649 if (set->ops->exit_hctx) 1650 set->ops->exit_hctx(hctx, hctx_idx); 1651 1652 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1653 blk_free_flush_queue(hctx->fq); 1654 blk_mq_free_bitmap(&hctx->ctx_map); 1655 } 1656 1657 static void blk_mq_exit_hw_queues(struct request_queue *q, 1658 struct blk_mq_tag_set *set, int nr_queue) 1659 { 1660 struct blk_mq_hw_ctx *hctx; 1661 unsigned int i; 1662 1663 queue_for_each_hw_ctx(q, hctx, i) { 1664 if (i == nr_queue) 1665 break; 1666 blk_mq_exit_hctx(q, set, hctx, i); 1667 } 1668 } 1669 1670 static void blk_mq_free_hw_queues(struct request_queue *q, 1671 struct blk_mq_tag_set *set) 1672 { 1673 struct blk_mq_hw_ctx *hctx; 1674 unsigned int i; 1675 1676 queue_for_each_hw_ctx(q, hctx, i) 1677 free_cpumask_var(hctx->cpumask); 1678 } 1679 1680 static int blk_mq_init_hctx(struct request_queue *q, 1681 struct blk_mq_tag_set *set, 1682 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1683 { 1684 int node; 1685 unsigned flush_start_tag = set->queue_depth; 1686 1687 node = hctx->numa_node; 1688 if (node == NUMA_NO_NODE) 1689 node = hctx->numa_node = set->numa_node; 1690 1691 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1692 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1693 spin_lock_init(&hctx->lock); 1694 INIT_LIST_HEAD(&hctx->dispatch); 1695 hctx->queue = q; 1696 hctx->queue_num = hctx_idx; 1697 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1698 1699 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1700 blk_mq_hctx_notify, hctx); 1701 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1702 1703 hctx->tags = set->tags[hctx_idx]; 1704 1705 /* 1706 * Allocate space for all possible cpus to avoid allocation at 1707 * runtime 1708 */ 1709 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1710 GFP_KERNEL, node); 1711 if (!hctx->ctxs) 1712 goto unregister_cpu_notifier; 1713 1714 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1715 goto free_ctxs; 1716 1717 hctx->nr_ctx = 0; 1718 1719 if (set->ops->init_hctx && 1720 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1721 goto free_bitmap; 1722 1723 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1724 if (!hctx->fq) 1725 goto exit_hctx; 1726 1727 if (set->ops->init_request && 1728 set->ops->init_request(set->driver_data, 1729 hctx->fq->flush_rq, hctx_idx, 1730 flush_start_tag + hctx_idx, node)) 1731 goto free_fq; 1732 1733 return 0; 1734 1735 free_fq: 1736 kfree(hctx->fq); 1737 exit_hctx: 1738 if (set->ops->exit_hctx) 1739 set->ops->exit_hctx(hctx, hctx_idx); 1740 free_bitmap: 1741 blk_mq_free_bitmap(&hctx->ctx_map); 1742 free_ctxs: 1743 kfree(hctx->ctxs); 1744 unregister_cpu_notifier: 1745 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1746 1747 return -1; 1748 } 1749 1750 static void blk_mq_init_cpu_queues(struct request_queue *q, 1751 unsigned int nr_hw_queues) 1752 { 1753 unsigned int i; 1754 1755 for_each_possible_cpu(i) { 1756 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1757 struct blk_mq_hw_ctx *hctx; 1758 1759 memset(__ctx, 0, sizeof(*__ctx)); 1760 __ctx->cpu = i; 1761 spin_lock_init(&__ctx->lock); 1762 INIT_LIST_HEAD(&__ctx->rq_list); 1763 __ctx->queue = q; 1764 1765 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1766 if (!cpu_online(i)) 1767 continue; 1768 1769 hctx = q->mq_ops->map_queue(q, i); 1770 1771 /* 1772 * Set local node, IFF we have more than one hw queue. If 1773 * not, we remain on the home node of the device 1774 */ 1775 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1776 hctx->numa_node = local_memory_node(cpu_to_node(i)); 1777 } 1778 } 1779 1780 static void blk_mq_map_swqueue(struct request_queue *q, 1781 const struct cpumask *online_mask) 1782 { 1783 unsigned int i; 1784 struct blk_mq_hw_ctx *hctx; 1785 struct blk_mq_ctx *ctx; 1786 struct blk_mq_tag_set *set = q->tag_set; 1787 1788 /* 1789 * Avoid others reading imcomplete hctx->cpumask through sysfs 1790 */ 1791 mutex_lock(&q->sysfs_lock); 1792 1793 queue_for_each_hw_ctx(q, hctx, i) { 1794 cpumask_clear(hctx->cpumask); 1795 hctx->nr_ctx = 0; 1796 } 1797 1798 /* 1799 * Map software to hardware queues 1800 */ 1801 for_each_possible_cpu(i) { 1802 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1803 if (!cpumask_test_cpu(i, online_mask)) 1804 continue; 1805 1806 ctx = per_cpu_ptr(q->queue_ctx, i); 1807 hctx = q->mq_ops->map_queue(q, i); 1808 1809 cpumask_set_cpu(i, hctx->cpumask); 1810 ctx->index_hw = hctx->nr_ctx; 1811 hctx->ctxs[hctx->nr_ctx++] = ctx; 1812 } 1813 1814 mutex_unlock(&q->sysfs_lock); 1815 1816 queue_for_each_hw_ctx(q, hctx, i) { 1817 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1818 1819 /* 1820 * If no software queues are mapped to this hardware queue, 1821 * disable it and free the request entries. 1822 */ 1823 if (!hctx->nr_ctx) { 1824 if (set->tags[i]) { 1825 blk_mq_free_rq_map(set, set->tags[i], i); 1826 set->tags[i] = NULL; 1827 } 1828 hctx->tags = NULL; 1829 continue; 1830 } 1831 1832 /* unmapped hw queue can be remapped after CPU topo changed */ 1833 if (!set->tags[i]) 1834 set->tags[i] = blk_mq_init_rq_map(set, i); 1835 hctx->tags = set->tags[i]; 1836 WARN_ON(!hctx->tags); 1837 1838 cpumask_copy(hctx->tags->cpumask, hctx->cpumask); 1839 /* 1840 * Set the map size to the number of mapped software queues. 1841 * This is more accurate and more efficient than looping 1842 * over all possibly mapped software queues. 1843 */ 1844 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1845 1846 /* 1847 * Initialize batch roundrobin counts 1848 */ 1849 hctx->next_cpu = cpumask_first(hctx->cpumask); 1850 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1851 } 1852 } 1853 1854 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 1855 { 1856 struct blk_mq_hw_ctx *hctx; 1857 int i; 1858 1859 queue_for_each_hw_ctx(q, hctx, i) { 1860 if (shared) 1861 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1862 else 1863 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1864 } 1865 } 1866 1867 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 1868 { 1869 struct request_queue *q; 1870 1871 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1872 blk_mq_freeze_queue(q); 1873 queue_set_hctx_shared(q, shared); 1874 blk_mq_unfreeze_queue(q); 1875 } 1876 } 1877 1878 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1879 { 1880 struct blk_mq_tag_set *set = q->tag_set; 1881 1882 mutex_lock(&set->tag_list_lock); 1883 list_del_init(&q->tag_set_list); 1884 if (list_is_singular(&set->tag_list)) { 1885 /* just transitioned to unshared */ 1886 set->flags &= ~BLK_MQ_F_TAG_SHARED; 1887 /* update existing queue */ 1888 blk_mq_update_tag_set_depth(set, false); 1889 } 1890 mutex_unlock(&set->tag_list_lock); 1891 } 1892 1893 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1894 struct request_queue *q) 1895 { 1896 q->tag_set = set; 1897 1898 mutex_lock(&set->tag_list_lock); 1899 1900 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 1901 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 1902 set->flags |= BLK_MQ_F_TAG_SHARED; 1903 /* update existing queue */ 1904 blk_mq_update_tag_set_depth(set, true); 1905 } 1906 if (set->flags & BLK_MQ_F_TAG_SHARED) 1907 queue_set_hctx_shared(q, true); 1908 list_add_tail(&q->tag_set_list, &set->tag_list); 1909 1910 mutex_unlock(&set->tag_list_lock); 1911 } 1912 1913 /* 1914 * It is the actual release handler for mq, but we do it from 1915 * request queue's release handler for avoiding use-after-free 1916 * and headache because q->mq_kobj shouldn't have been introduced, 1917 * but we can't group ctx/kctx kobj without it. 1918 */ 1919 void blk_mq_release(struct request_queue *q) 1920 { 1921 struct blk_mq_hw_ctx *hctx; 1922 unsigned int i; 1923 1924 /* hctx kobj stays in hctx */ 1925 queue_for_each_hw_ctx(q, hctx, i) { 1926 if (!hctx) 1927 continue; 1928 kfree(hctx->ctxs); 1929 kfree(hctx); 1930 } 1931 1932 kfree(q->mq_map); 1933 q->mq_map = NULL; 1934 1935 kfree(q->queue_hw_ctx); 1936 1937 /* ctx kobj stays in queue_ctx */ 1938 free_percpu(q->queue_ctx); 1939 } 1940 1941 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1942 { 1943 struct request_queue *uninit_q, *q; 1944 1945 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1946 if (!uninit_q) 1947 return ERR_PTR(-ENOMEM); 1948 1949 q = blk_mq_init_allocated_queue(set, uninit_q); 1950 if (IS_ERR(q)) 1951 blk_cleanup_queue(uninit_q); 1952 1953 return q; 1954 } 1955 EXPORT_SYMBOL(blk_mq_init_queue); 1956 1957 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 1958 struct request_queue *q) 1959 { 1960 int i, j; 1961 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 1962 1963 blk_mq_sysfs_unregister(q); 1964 for (i = 0; i < set->nr_hw_queues; i++) { 1965 int node; 1966 1967 if (hctxs[i]) 1968 continue; 1969 1970 node = blk_mq_hw_queue_to_node(q->mq_map, i); 1971 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1972 GFP_KERNEL, node); 1973 if (!hctxs[i]) 1974 break; 1975 1976 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1977 node)) { 1978 kfree(hctxs[i]); 1979 hctxs[i] = NULL; 1980 break; 1981 } 1982 1983 atomic_set(&hctxs[i]->nr_active, 0); 1984 hctxs[i]->numa_node = node; 1985 hctxs[i]->queue_num = i; 1986 1987 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 1988 free_cpumask_var(hctxs[i]->cpumask); 1989 kfree(hctxs[i]); 1990 hctxs[i] = NULL; 1991 break; 1992 } 1993 blk_mq_hctx_kobj_init(hctxs[i]); 1994 } 1995 for (j = i; j < q->nr_hw_queues; j++) { 1996 struct blk_mq_hw_ctx *hctx = hctxs[j]; 1997 1998 if (hctx) { 1999 if (hctx->tags) { 2000 blk_mq_free_rq_map(set, hctx->tags, j); 2001 set->tags[j] = NULL; 2002 } 2003 blk_mq_exit_hctx(q, set, hctx, j); 2004 free_cpumask_var(hctx->cpumask); 2005 kobject_put(&hctx->kobj); 2006 kfree(hctx->ctxs); 2007 kfree(hctx); 2008 hctxs[j] = NULL; 2009 2010 } 2011 } 2012 q->nr_hw_queues = i; 2013 blk_mq_sysfs_register(q); 2014 } 2015 2016 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2017 struct request_queue *q) 2018 { 2019 /* mark the queue as mq asap */ 2020 q->mq_ops = set->ops; 2021 2022 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2023 if (!q->queue_ctx) 2024 return ERR_PTR(-ENOMEM); 2025 2026 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2027 GFP_KERNEL, set->numa_node); 2028 if (!q->queue_hw_ctx) 2029 goto err_percpu; 2030 2031 q->mq_map = blk_mq_make_queue_map(set); 2032 if (!q->mq_map) 2033 goto err_map; 2034 2035 blk_mq_realloc_hw_ctxs(set, q); 2036 if (!q->nr_hw_queues) 2037 goto err_hctxs; 2038 2039 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2040 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2041 2042 q->nr_queues = nr_cpu_ids; 2043 2044 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2045 2046 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2047 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2048 2049 q->sg_reserved_size = INT_MAX; 2050 2051 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 2052 INIT_LIST_HEAD(&q->requeue_list); 2053 spin_lock_init(&q->requeue_lock); 2054 2055 if (q->nr_hw_queues > 1) 2056 blk_queue_make_request(q, blk_mq_make_request); 2057 else 2058 blk_queue_make_request(q, blk_sq_make_request); 2059 2060 /* 2061 * Do this after blk_queue_make_request() overrides it... 2062 */ 2063 q->nr_requests = set->queue_depth; 2064 2065 if (set->ops->complete) 2066 blk_queue_softirq_done(q, set->ops->complete); 2067 2068 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2069 2070 get_online_cpus(); 2071 mutex_lock(&all_q_mutex); 2072 2073 list_add_tail(&q->all_q_node, &all_q_list); 2074 blk_mq_add_queue_tag_set(set, q); 2075 blk_mq_map_swqueue(q, cpu_online_mask); 2076 2077 mutex_unlock(&all_q_mutex); 2078 put_online_cpus(); 2079 2080 return q; 2081 2082 err_hctxs: 2083 kfree(q->mq_map); 2084 err_map: 2085 kfree(q->queue_hw_ctx); 2086 err_percpu: 2087 free_percpu(q->queue_ctx); 2088 return ERR_PTR(-ENOMEM); 2089 } 2090 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2091 2092 void blk_mq_free_queue(struct request_queue *q) 2093 { 2094 struct blk_mq_tag_set *set = q->tag_set; 2095 2096 mutex_lock(&all_q_mutex); 2097 list_del_init(&q->all_q_node); 2098 mutex_unlock(&all_q_mutex); 2099 2100 blk_mq_del_queue_tag_set(q); 2101 2102 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2103 blk_mq_free_hw_queues(q, set); 2104 } 2105 2106 /* Basically redo blk_mq_init_queue with queue frozen */ 2107 static void blk_mq_queue_reinit(struct request_queue *q, 2108 const struct cpumask *online_mask) 2109 { 2110 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2111 2112 blk_mq_sysfs_unregister(q); 2113 2114 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask); 2115 2116 /* 2117 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2118 * we should change hctx numa_node according to new topology (this 2119 * involves free and re-allocate memory, worthy doing?) 2120 */ 2121 2122 blk_mq_map_swqueue(q, online_mask); 2123 2124 blk_mq_sysfs_register(q); 2125 } 2126 2127 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2128 unsigned long action, void *hcpu) 2129 { 2130 struct request_queue *q; 2131 int cpu = (unsigned long)hcpu; 2132 /* 2133 * New online cpumask which is going to be set in this hotplug event. 2134 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2135 * one-by-one and dynamically allocating this could result in a failure. 2136 */ 2137 static struct cpumask online_new; 2138 2139 /* 2140 * Before hotadded cpu starts handling requests, new mappings must 2141 * be established. Otherwise, these requests in hw queue might 2142 * never be dispatched. 2143 * 2144 * For example, there is a single hw queue (hctx) and two CPU queues 2145 * (ctx0 for CPU0, and ctx1 for CPU1). 2146 * 2147 * Now CPU1 is just onlined and a request is inserted into 2148 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is 2149 * still zero. 2150 * 2151 * And then while running hw queue, flush_busy_ctxs() finds bit0 is 2152 * set in pending bitmap and tries to retrieve requests in 2153 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, 2154 * so the request in ctx1->rq_list is ignored. 2155 */ 2156 switch (action & ~CPU_TASKS_FROZEN) { 2157 case CPU_DEAD: 2158 case CPU_UP_CANCELED: 2159 cpumask_copy(&online_new, cpu_online_mask); 2160 break; 2161 case CPU_UP_PREPARE: 2162 cpumask_copy(&online_new, cpu_online_mask); 2163 cpumask_set_cpu(cpu, &online_new); 2164 break; 2165 default: 2166 return NOTIFY_OK; 2167 } 2168 2169 mutex_lock(&all_q_mutex); 2170 2171 /* 2172 * We need to freeze and reinit all existing queues. Freezing 2173 * involves synchronous wait for an RCU grace period and doing it 2174 * one by one may take a long time. Start freezing all queues in 2175 * one swoop and then wait for the completions so that freezing can 2176 * take place in parallel. 2177 */ 2178 list_for_each_entry(q, &all_q_list, all_q_node) 2179 blk_mq_freeze_queue_start(q); 2180 list_for_each_entry(q, &all_q_list, all_q_node) { 2181 blk_mq_freeze_queue_wait(q); 2182 2183 /* 2184 * timeout handler can't touch hw queue during the 2185 * reinitialization 2186 */ 2187 del_timer_sync(&q->timeout); 2188 } 2189 2190 list_for_each_entry(q, &all_q_list, all_q_node) 2191 blk_mq_queue_reinit(q, &online_new); 2192 2193 list_for_each_entry(q, &all_q_list, all_q_node) 2194 blk_mq_unfreeze_queue(q); 2195 2196 mutex_unlock(&all_q_mutex); 2197 return NOTIFY_OK; 2198 } 2199 2200 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2201 { 2202 int i; 2203 2204 for (i = 0; i < set->nr_hw_queues; i++) { 2205 set->tags[i] = blk_mq_init_rq_map(set, i); 2206 if (!set->tags[i]) 2207 goto out_unwind; 2208 } 2209 2210 return 0; 2211 2212 out_unwind: 2213 while (--i >= 0) 2214 blk_mq_free_rq_map(set, set->tags[i], i); 2215 2216 return -ENOMEM; 2217 } 2218 2219 /* 2220 * Allocate the request maps associated with this tag_set. Note that this 2221 * may reduce the depth asked for, if memory is tight. set->queue_depth 2222 * will be updated to reflect the allocated depth. 2223 */ 2224 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2225 { 2226 unsigned int depth; 2227 int err; 2228 2229 depth = set->queue_depth; 2230 do { 2231 err = __blk_mq_alloc_rq_maps(set); 2232 if (!err) 2233 break; 2234 2235 set->queue_depth >>= 1; 2236 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2237 err = -ENOMEM; 2238 break; 2239 } 2240 } while (set->queue_depth); 2241 2242 if (!set->queue_depth || err) { 2243 pr_err("blk-mq: failed to allocate request map\n"); 2244 return -ENOMEM; 2245 } 2246 2247 if (depth != set->queue_depth) 2248 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2249 depth, set->queue_depth); 2250 2251 return 0; 2252 } 2253 2254 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags) 2255 { 2256 return tags->cpumask; 2257 } 2258 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask); 2259 2260 /* 2261 * Alloc a tag set to be associated with one or more request queues. 2262 * May fail with EINVAL for various error conditions. May adjust the 2263 * requested depth down, if if it too large. In that case, the set 2264 * value will be stored in set->queue_depth. 2265 */ 2266 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2267 { 2268 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2269 2270 if (!set->nr_hw_queues) 2271 return -EINVAL; 2272 if (!set->queue_depth) 2273 return -EINVAL; 2274 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2275 return -EINVAL; 2276 2277 if (!set->ops->queue_rq || !set->ops->map_queue) 2278 return -EINVAL; 2279 2280 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2281 pr_info("blk-mq: reduced tag depth to %u\n", 2282 BLK_MQ_MAX_DEPTH); 2283 set->queue_depth = BLK_MQ_MAX_DEPTH; 2284 } 2285 2286 /* 2287 * If a crashdump is active, then we are potentially in a very 2288 * memory constrained environment. Limit us to 1 queue and 2289 * 64 tags to prevent using too much memory. 2290 */ 2291 if (is_kdump_kernel()) { 2292 set->nr_hw_queues = 1; 2293 set->queue_depth = min(64U, set->queue_depth); 2294 } 2295 /* 2296 * There is no use for more h/w queues than cpus. 2297 */ 2298 if (set->nr_hw_queues > nr_cpu_ids) 2299 set->nr_hw_queues = nr_cpu_ids; 2300 2301 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2302 GFP_KERNEL, set->numa_node); 2303 if (!set->tags) 2304 return -ENOMEM; 2305 2306 if (blk_mq_alloc_rq_maps(set)) 2307 goto enomem; 2308 2309 mutex_init(&set->tag_list_lock); 2310 INIT_LIST_HEAD(&set->tag_list); 2311 2312 return 0; 2313 enomem: 2314 kfree(set->tags); 2315 set->tags = NULL; 2316 return -ENOMEM; 2317 } 2318 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2319 2320 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2321 { 2322 int i; 2323 2324 for (i = 0; i < nr_cpu_ids; i++) { 2325 if (set->tags[i]) 2326 blk_mq_free_rq_map(set, set->tags[i], i); 2327 } 2328 2329 kfree(set->tags); 2330 set->tags = NULL; 2331 } 2332 EXPORT_SYMBOL(blk_mq_free_tag_set); 2333 2334 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2335 { 2336 struct blk_mq_tag_set *set = q->tag_set; 2337 struct blk_mq_hw_ctx *hctx; 2338 int i, ret; 2339 2340 if (!set || nr > set->queue_depth) 2341 return -EINVAL; 2342 2343 ret = 0; 2344 queue_for_each_hw_ctx(q, hctx, i) { 2345 if (!hctx->tags) 2346 continue; 2347 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2348 if (ret) 2349 break; 2350 } 2351 2352 if (!ret) 2353 q->nr_requests = nr; 2354 2355 return ret; 2356 } 2357 2358 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2359 { 2360 struct request_queue *q; 2361 2362 if (nr_hw_queues > nr_cpu_ids) 2363 nr_hw_queues = nr_cpu_ids; 2364 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2365 return; 2366 2367 list_for_each_entry(q, &set->tag_list, tag_set_list) 2368 blk_mq_freeze_queue(q); 2369 2370 set->nr_hw_queues = nr_hw_queues; 2371 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2372 blk_mq_realloc_hw_ctxs(set, q); 2373 2374 if (q->nr_hw_queues > 1) 2375 blk_queue_make_request(q, blk_mq_make_request); 2376 else 2377 blk_queue_make_request(q, blk_sq_make_request); 2378 2379 blk_mq_queue_reinit(q, cpu_online_mask); 2380 } 2381 2382 list_for_each_entry(q, &set->tag_list, tag_set_list) 2383 blk_mq_unfreeze_queue(q); 2384 } 2385 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2386 2387 void blk_mq_disable_hotplug(void) 2388 { 2389 mutex_lock(&all_q_mutex); 2390 } 2391 2392 void blk_mq_enable_hotplug(void) 2393 { 2394 mutex_unlock(&all_q_mutex); 2395 } 2396 2397 static int __init blk_mq_init(void) 2398 { 2399 blk_mq_cpu_init(); 2400 2401 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2402 2403 return 0; 2404 } 2405 subsys_initcall(blk_mq_init); 2406