1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->part && blk_do_io_stat(rq) && 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 void blk_freeze_queue_start(struct request_queue *q) 124 { 125 mutex_lock(&q->mq_freeze_lock); 126 if (++q->mq_freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 mutex_unlock(&q->mq_freeze_lock); 129 if (queue_is_mq(q)) 130 blk_mq_run_hw_queues(q, false); 131 } else { 132 mutex_unlock(&q->mq_freeze_lock); 133 } 134 } 135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 136 137 void blk_mq_freeze_queue_wait(struct request_queue *q) 138 { 139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 140 } 141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 142 143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 144 unsigned long timeout) 145 { 146 return wait_event_timeout(q->mq_freeze_wq, 147 percpu_ref_is_zero(&q->q_usage_counter), 148 timeout); 149 } 150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 151 152 /* 153 * Guarantee no request is in use, so we can change any data structure of 154 * the queue afterward. 155 */ 156 void blk_freeze_queue(struct request_queue *q) 157 { 158 /* 159 * In the !blk_mq case we are only calling this to kill the 160 * q_usage_counter, otherwise this increases the freeze depth 161 * and waits for it to return to zero. For this reason there is 162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 163 * exported to drivers as the only user for unfreeze is blk_mq. 164 */ 165 blk_freeze_queue_start(q); 166 blk_mq_freeze_queue_wait(q); 167 } 168 169 void blk_mq_freeze_queue(struct request_queue *q) 170 { 171 /* 172 * ...just an alias to keep freeze and unfreeze actions balanced 173 * in the blk_mq_* namespace 174 */ 175 blk_freeze_queue(q); 176 } 177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 178 179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 180 { 181 mutex_lock(&q->mq_freeze_lock); 182 if (force_atomic) 183 q->q_usage_counter.data->force_atomic = true; 184 q->mq_freeze_depth--; 185 WARN_ON_ONCE(q->mq_freeze_depth < 0); 186 if (!q->mq_freeze_depth) { 187 percpu_ref_resurrect(&q->q_usage_counter); 188 wake_up_all(&q->mq_freeze_wq); 189 } 190 mutex_unlock(&q->mq_freeze_lock); 191 } 192 193 void blk_mq_unfreeze_queue(struct request_queue *q) 194 { 195 __blk_mq_unfreeze_queue(q, false); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 unsigned long flags; 206 207 spin_lock_irqsave(&q->queue_lock, flags); 208 if (!q->quiesce_depth++) 209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 210 spin_unlock_irqrestore(&q->queue_lock, flags); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 216 * @set: tag_set to wait on 217 * 218 * Note: it is driver's responsibility for making sure that quiesce has 219 * been started on or more of the request_queues of the tag_set. This 220 * function only waits for the quiesce on those request_queues that had 221 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 222 */ 223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 224 { 225 if (set->flags & BLK_MQ_F_BLOCKING) 226 synchronize_srcu(set->srcu); 227 else 228 synchronize_rcu(); 229 } 230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 231 232 /** 233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 234 * @q: request queue. 235 * 236 * Note: this function does not prevent that the struct request end_io() 237 * callback function is invoked. Once this function is returned, we make 238 * sure no dispatch can happen until the queue is unquiesced via 239 * blk_mq_unquiesce_queue(). 240 */ 241 void blk_mq_quiesce_queue(struct request_queue *q) 242 { 243 blk_mq_quiesce_queue_nowait(q); 244 /* nothing to wait for non-mq queues */ 245 if (queue_is_mq(q)) 246 blk_mq_wait_quiesce_done(q->tag_set); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 unsigned long flags; 260 bool run_queue = false; 261 262 spin_lock_irqsave(&q->queue_lock, flags); 263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 264 ; 265 } else if (!--q->quiesce_depth) { 266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 267 run_queue = true; 268 } 269 spin_unlock_irqrestore(&q->queue_lock, flags); 270 271 /* dispatch requests which are inserted during quiescing */ 272 if (run_queue) 273 blk_mq_run_hw_queues(q, true); 274 } 275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 276 277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 278 { 279 struct request_queue *q; 280 281 mutex_lock(&set->tag_list_lock); 282 list_for_each_entry(q, &set->tag_list, tag_set_list) { 283 if (!blk_queue_skip_tagset_quiesce(q)) 284 blk_mq_quiesce_queue_nowait(q); 285 } 286 blk_mq_wait_quiesce_done(set); 287 mutex_unlock(&set->tag_list_lock); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 290 291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 292 { 293 struct request_queue *q; 294 295 mutex_lock(&set->tag_list_lock); 296 list_for_each_entry(q, &set->tag_list, tag_set_list) { 297 if (!blk_queue_skip_tagset_quiesce(q)) 298 blk_mq_unquiesce_queue(q); 299 } 300 mutex_unlock(&set->tag_list_lock); 301 } 302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 303 304 void blk_mq_wake_waiters(struct request_queue *q) 305 { 306 struct blk_mq_hw_ctx *hctx; 307 unsigned long i; 308 309 queue_for_each_hw_ctx(q, hctx, i) 310 if (blk_mq_hw_queue_mapped(hctx)) 311 blk_mq_tag_wakeup_all(hctx->tags, true); 312 } 313 314 void blk_rq_init(struct request_queue *q, struct request *rq) 315 { 316 memset(rq, 0, sizeof(*rq)); 317 318 INIT_LIST_HEAD(&rq->queuelist); 319 rq->q = q; 320 rq->__sector = (sector_t) -1; 321 INIT_HLIST_NODE(&rq->hash); 322 RB_CLEAR_NODE(&rq->rb_node); 323 rq->tag = BLK_MQ_NO_TAG; 324 rq->internal_tag = BLK_MQ_NO_TAG; 325 rq->start_time_ns = blk_time_get_ns(); 326 rq->part = NULL; 327 blk_crypto_rq_set_defaults(rq); 328 } 329 EXPORT_SYMBOL(blk_rq_init); 330 331 /* Set start and alloc time when the allocated request is actually used */ 332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 333 { 334 if (blk_mq_need_time_stamp(rq)) 335 rq->start_time_ns = blk_time_get_ns(); 336 else 337 rq->start_time_ns = 0; 338 339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 340 if (blk_queue_rq_alloc_time(rq->q)) 341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns; 342 else 343 rq->alloc_time_ns = 0; 344 #endif 345 } 346 347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 348 struct blk_mq_tags *tags, unsigned int tag) 349 { 350 struct blk_mq_ctx *ctx = data->ctx; 351 struct blk_mq_hw_ctx *hctx = data->hctx; 352 struct request_queue *q = data->q; 353 struct request *rq = tags->static_rqs[tag]; 354 355 rq->q = q; 356 rq->mq_ctx = ctx; 357 rq->mq_hctx = hctx; 358 rq->cmd_flags = data->cmd_flags; 359 360 if (data->flags & BLK_MQ_REQ_PM) 361 data->rq_flags |= RQF_PM; 362 if (blk_queue_io_stat(q)) 363 data->rq_flags |= RQF_IO_STAT; 364 rq->rq_flags = data->rq_flags; 365 366 if (data->rq_flags & RQF_SCHED_TAGS) { 367 rq->tag = BLK_MQ_NO_TAG; 368 rq->internal_tag = tag; 369 } else { 370 rq->tag = tag; 371 rq->internal_tag = BLK_MQ_NO_TAG; 372 } 373 rq->timeout = 0; 374 375 rq->part = NULL; 376 rq->io_start_time_ns = 0; 377 rq->stats_sectors = 0; 378 rq->nr_phys_segments = 0; 379 rq->nr_integrity_segments = 0; 380 rq->end_io = NULL; 381 rq->end_io_data = NULL; 382 383 blk_crypto_rq_set_defaults(rq); 384 INIT_LIST_HEAD(&rq->queuelist); 385 /* tag was already set */ 386 WRITE_ONCE(rq->deadline, 0); 387 req_ref_set(rq, 1); 388 389 if (rq->rq_flags & RQF_USE_SCHED) { 390 struct elevator_queue *e = data->q->elevator; 391 392 INIT_HLIST_NODE(&rq->hash); 393 RB_CLEAR_NODE(&rq->rb_node); 394 395 if (e->type->ops.prepare_request) 396 e->type->ops.prepare_request(rq); 397 } 398 399 return rq; 400 } 401 402 static inline struct request * 403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 404 { 405 unsigned int tag, tag_offset; 406 struct blk_mq_tags *tags; 407 struct request *rq; 408 unsigned long tag_mask; 409 int i, nr = 0; 410 411 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 412 if (unlikely(!tag_mask)) 413 return NULL; 414 415 tags = blk_mq_tags_from_data(data); 416 for (i = 0; tag_mask; i++) { 417 if (!(tag_mask & (1UL << i))) 418 continue; 419 tag = tag_offset + i; 420 prefetch(tags->static_rqs[tag]); 421 tag_mask &= ~(1UL << i); 422 rq = blk_mq_rq_ctx_init(data, tags, tag); 423 rq_list_add(data->cached_rq, rq); 424 nr++; 425 } 426 if (!(data->rq_flags & RQF_SCHED_TAGS)) 427 blk_mq_add_active_requests(data->hctx, nr); 428 /* caller already holds a reference, add for remainder */ 429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 430 data->nr_tags -= nr; 431 432 return rq_list_pop(data->cached_rq); 433 } 434 435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 436 { 437 struct request_queue *q = data->q; 438 u64 alloc_time_ns = 0; 439 struct request *rq; 440 unsigned int tag; 441 442 /* alloc_time includes depth and tag waits */ 443 if (blk_queue_rq_alloc_time(q)) 444 alloc_time_ns = blk_time_get_ns(); 445 446 if (data->cmd_flags & REQ_NOWAIT) 447 data->flags |= BLK_MQ_REQ_NOWAIT; 448 449 retry: 450 data->ctx = blk_mq_get_ctx(q); 451 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 452 453 if (q->elevator) { 454 /* 455 * All requests use scheduler tags when an I/O scheduler is 456 * enabled for the queue. 457 */ 458 data->rq_flags |= RQF_SCHED_TAGS; 459 460 /* 461 * Flush/passthrough requests are special and go directly to the 462 * dispatch list. 463 */ 464 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 465 !blk_op_is_passthrough(data->cmd_flags)) { 466 struct elevator_mq_ops *ops = &q->elevator->type->ops; 467 468 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 469 470 data->rq_flags |= RQF_USE_SCHED; 471 if (ops->limit_depth) 472 ops->limit_depth(data->cmd_flags, data); 473 } 474 } else { 475 blk_mq_tag_busy(data->hctx); 476 } 477 478 if (data->flags & BLK_MQ_REQ_RESERVED) 479 data->rq_flags |= RQF_RESV; 480 481 /* 482 * Try batched alloc if we want more than 1 tag. 483 */ 484 if (data->nr_tags > 1) { 485 rq = __blk_mq_alloc_requests_batch(data); 486 if (rq) { 487 blk_mq_rq_time_init(rq, alloc_time_ns); 488 return rq; 489 } 490 data->nr_tags = 1; 491 } 492 493 /* 494 * Waiting allocations only fail because of an inactive hctx. In that 495 * case just retry the hctx assignment and tag allocation as CPU hotplug 496 * should have migrated us to an online CPU by now. 497 */ 498 tag = blk_mq_get_tag(data); 499 if (tag == BLK_MQ_NO_TAG) { 500 if (data->flags & BLK_MQ_REQ_NOWAIT) 501 return NULL; 502 /* 503 * Give up the CPU and sleep for a random short time to 504 * ensure that thread using a realtime scheduling class 505 * are migrated off the CPU, and thus off the hctx that 506 * is going away. 507 */ 508 msleep(3); 509 goto retry; 510 } 511 512 if (!(data->rq_flags & RQF_SCHED_TAGS)) 513 blk_mq_inc_active_requests(data->hctx); 514 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 515 blk_mq_rq_time_init(rq, alloc_time_ns); 516 return rq; 517 } 518 519 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 520 struct blk_plug *plug, 521 blk_opf_t opf, 522 blk_mq_req_flags_t flags) 523 { 524 struct blk_mq_alloc_data data = { 525 .q = q, 526 .flags = flags, 527 .cmd_flags = opf, 528 .nr_tags = plug->nr_ios, 529 .cached_rq = &plug->cached_rq, 530 }; 531 struct request *rq; 532 533 if (blk_queue_enter(q, flags)) 534 return NULL; 535 536 plug->nr_ios = 1; 537 538 rq = __blk_mq_alloc_requests(&data); 539 if (unlikely(!rq)) 540 blk_queue_exit(q); 541 return rq; 542 } 543 544 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 545 blk_opf_t opf, 546 blk_mq_req_flags_t flags) 547 { 548 struct blk_plug *plug = current->plug; 549 struct request *rq; 550 551 if (!plug) 552 return NULL; 553 554 if (rq_list_empty(plug->cached_rq)) { 555 if (plug->nr_ios == 1) 556 return NULL; 557 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 558 if (!rq) 559 return NULL; 560 } else { 561 rq = rq_list_peek(&plug->cached_rq); 562 if (!rq || rq->q != q) 563 return NULL; 564 565 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 566 return NULL; 567 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 568 return NULL; 569 570 plug->cached_rq = rq_list_next(rq); 571 blk_mq_rq_time_init(rq, 0); 572 } 573 574 rq->cmd_flags = opf; 575 INIT_LIST_HEAD(&rq->queuelist); 576 return rq; 577 } 578 579 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 580 blk_mq_req_flags_t flags) 581 { 582 struct request *rq; 583 584 rq = blk_mq_alloc_cached_request(q, opf, flags); 585 if (!rq) { 586 struct blk_mq_alloc_data data = { 587 .q = q, 588 .flags = flags, 589 .cmd_flags = opf, 590 .nr_tags = 1, 591 }; 592 int ret; 593 594 ret = blk_queue_enter(q, flags); 595 if (ret) 596 return ERR_PTR(ret); 597 598 rq = __blk_mq_alloc_requests(&data); 599 if (!rq) 600 goto out_queue_exit; 601 } 602 rq->__data_len = 0; 603 rq->__sector = (sector_t) -1; 604 rq->bio = rq->biotail = NULL; 605 return rq; 606 out_queue_exit: 607 blk_queue_exit(q); 608 return ERR_PTR(-EWOULDBLOCK); 609 } 610 EXPORT_SYMBOL(blk_mq_alloc_request); 611 612 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 613 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 614 { 615 struct blk_mq_alloc_data data = { 616 .q = q, 617 .flags = flags, 618 .cmd_flags = opf, 619 .nr_tags = 1, 620 }; 621 u64 alloc_time_ns = 0; 622 struct request *rq; 623 unsigned int cpu; 624 unsigned int tag; 625 int ret; 626 627 /* alloc_time includes depth and tag waits */ 628 if (blk_queue_rq_alloc_time(q)) 629 alloc_time_ns = blk_time_get_ns(); 630 631 /* 632 * If the tag allocator sleeps we could get an allocation for a 633 * different hardware context. No need to complicate the low level 634 * allocator for this for the rare use case of a command tied to 635 * a specific queue. 636 */ 637 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 638 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 639 return ERR_PTR(-EINVAL); 640 641 if (hctx_idx >= q->nr_hw_queues) 642 return ERR_PTR(-EIO); 643 644 ret = blk_queue_enter(q, flags); 645 if (ret) 646 return ERR_PTR(ret); 647 648 /* 649 * Check if the hardware context is actually mapped to anything. 650 * If not tell the caller that it should skip this queue. 651 */ 652 ret = -EXDEV; 653 data.hctx = xa_load(&q->hctx_table, hctx_idx); 654 if (!blk_mq_hw_queue_mapped(data.hctx)) 655 goto out_queue_exit; 656 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 657 if (cpu >= nr_cpu_ids) 658 goto out_queue_exit; 659 data.ctx = __blk_mq_get_ctx(q, cpu); 660 661 if (q->elevator) 662 data.rq_flags |= RQF_SCHED_TAGS; 663 else 664 blk_mq_tag_busy(data.hctx); 665 666 if (flags & BLK_MQ_REQ_RESERVED) 667 data.rq_flags |= RQF_RESV; 668 669 ret = -EWOULDBLOCK; 670 tag = blk_mq_get_tag(&data); 671 if (tag == BLK_MQ_NO_TAG) 672 goto out_queue_exit; 673 if (!(data.rq_flags & RQF_SCHED_TAGS)) 674 blk_mq_inc_active_requests(data.hctx); 675 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 676 blk_mq_rq_time_init(rq, alloc_time_ns); 677 rq->__data_len = 0; 678 rq->__sector = (sector_t) -1; 679 rq->bio = rq->biotail = NULL; 680 return rq; 681 682 out_queue_exit: 683 blk_queue_exit(q); 684 return ERR_PTR(ret); 685 } 686 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 687 688 static void blk_mq_finish_request(struct request *rq) 689 { 690 struct request_queue *q = rq->q; 691 692 blk_zone_finish_request(rq); 693 694 if (rq->rq_flags & RQF_USE_SCHED) { 695 q->elevator->type->ops.finish_request(rq); 696 /* 697 * For postflush request that may need to be 698 * completed twice, we should clear this flag 699 * to avoid double finish_request() on the rq. 700 */ 701 rq->rq_flags &= ~RQF_USE_SCHED; 702 } 703 } 704 705 static void __blk_mq_free_request(struct request *rq) 706 { 707 struct request_queue *q = rq->q; 708 struct blk_mq_ctx *ctx = rq->mq_ctx; 709 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 710 const int sched_tag = rq->internal_tag; 711 712 blk_crypto_free_request(rq); 713 blk_pm_mark_last_busy(rq); 714 rq->mq_hctx = NULL; 715 716 if (rq->tag != BLK_MQ_NO_TAG) { 717 blk_mq_dec_active_requests(hctx); 718 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 719 } 720 if (sched_tag != BLK_MQ_NO_TAG) 721 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 722 blk_mq_sched_restart(hctx); 723 blk_queue_exit(q); 724 } 725 726 void blk_mq_free_request(struct request *rq) 727 { 728 struct request_queue *q = rq->q; 729 730 blk_mq_finish_request(rq); 731 732 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 733 laptop_io_completion(q->disk->bdi); 734 735 rq_qos_done(q, rq); 736 737 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 738 if (req_ref_put_and_test(rq)) 739 __blk_mq_free_request(rq); 740 } 741 EXPORT_SYMBOL_GPL(blk_mq_free_request); 742 743 void blk_mq_free_plug_rqs(struct blk_plug *plug) 744 { 745 struct request *rq; 746 747 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 748 blk_mq_free_request(rq); 749 } 750 751 void blk_dump_rq_flags(struct request *rq, char *msg) 752 { 753 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 754 rq->q->disk ? rq->q->disk->disk_name : "?", 755 (__force unsigned long long) rq->cmd_flags); 756 757 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 758 (unsigned long long)blk_rq_pos(rq), 759 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 760 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 761 rq->bio, rq->biotail, blk_rq_bytes(rq)); 762 } 763 EXPORT_SYMBOL(blk_dump_rq_flags); 764 765 static void blk_account_io_completion(struct request *req, unsigned int bytes) 766 { 767 if (req->part && blk_do_io_stat(req)) { 768 const int sgrp = op_stat_group(req_op(req)); 769 770 part_stat_lock(); 771 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 772 part_stat_unlock(); 773 } 774 } 775 776 static void blk_print_req_error(struct request *req, blk_status_t status) 777 { 778 printk_ratelimited(KERN_ERR 779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 780 "phys_seg %u prio class %u\n", 781 blk_status_to_str(status), 782 req->q->disk ? req->q->disk->disk_name : "?", 783 blk_rq_pos(req), (__force u32)req_op(req), 784 blk_op_str(req_op(req)), 785 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 786 req->nr_phys_segments, 787 IOPRIO_PRIO_CLASS(req->ioprio)); 788 } 789 790 /* 791 * Fully end IO on a request. Does not support partial completions, or 792 * errors. 793 */ 794 static void blk_complete_request(struct request *req) 795 { 796 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 797 int total_bytes = blk_rq_bytes(req); 798 struct bio *bio = req->bio; 799 800 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 801 802 if (!bio) 803 return; 804 805 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 806 blk_integrity_complete(req, total_bytes); 807 808 /* 809 * Upper layers may call blk_crypto_evict_key() anytime after the last 810 * bio_endio(). Therefore, the keyslot must be released before that. 811 */ 812 blk_crypto_rq_put_keyslot(req); 813 814 blk_account_io_completion(req, total_bytes); 815 816 do { 817 struct bio *next = bio->bi_next; 818 819 /* Completion has already been traced */ 820 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 821 822 blk_zone_update_request_bio(req, bio); 823 824 if (!is_flush) 825 bio_endio(bio); 826 bio = next; 827 } while (bio); 828 829 /* 830 * Reset counters so that the request stacking driver 831 * can find how many bytes remain in the request 832 * later. 833 */ 834 if (!req->end_io) { 835 req->bio = NULL; 836 req->__data_len = 0; 837 } 838 } 839 840 /** 841 * blk_update_request - Complete multiple bytes without completing the request 842 * @req: the request being processed 843 * @error: block status code 844 * @nr_bytes: number of bytes to complete for @req 845 * 846 * Description: 847 * Ends I/O on a number of bytes attached to @req, but doesn't complete 848 * the request structure even if @req doesn't have leftover. 849 * If @req has leftover, sets it up for the next range of segments. 850 * 851 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 852 * %false return from this function. 853 * 854 * Note: 855 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 856 * except in the consistency check at the end of this function. 857 * 858 * Return: 859 * %false - this request doesn't have any more data 860 * %true - this request has more data 861 **/ 862 bool blk_update_request(struct request *req, blk_status_t error, 863 unsigned int nr_bytes) 864 { 865 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 866 bool quiet = req->rq_flags & RQF_QUIET; 867 int total_bytes; 868 869 trace_block_rq_complete(req, error, nr_bytes); 870 871 if (!req->bio) 872 return false; 873 874 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 875 error == BLK_STS_OK) 876 blk_integrity_complete(req, nr_bytes); 877 878 /* 879 * Upper layers may call blk_crypto_evict_key() anytime after the last 880 * bio_endio(). Therefore, the keyslot must be released before that. 881 */ 882 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 883 __blk_crypto_rq_put_keyslot(req); 884 885 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 886 !test_bit(GD_DEAD, &req->q->disk->state)) { 887 blk_print_req_error(req, error); 888 trace_block_rq_error(req, error, nr_bytes); 889 } 890 891 blk_account_io_completion(req, nr_bytes); 892 893 total_bytes = 0; 894 while (req->bio) { 895 struct bio *bio = req->bio; 896 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 897 898 if (unlikely(error)) 899 bio->bi_status = error; 900 901 if (bio_bytes == bio->bi_iter.bi_size) { 902 req->bio = bio->bi_next; 903 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 904 /* 905 * Partial zone append completions cannot be supported 906 * as the BIO fragments may end up not being written 907 * sequentially. 908 */ 909 bio->bi_status = BLK_STS_IOERR; 910 } 911 912 /* Completion has already been traced */ 913 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 914 if (unlikely(quiet)) 915 bio_set_flag(bio, BIO_QUIET); 916 917 bio_advance(bio, bio_bytes); 918 919 /* Don't actually finish bio if it's part of flush sequence */ 920 if (!bio->bi_iter.bi_size) { 921 blk_zone_update_request_bio(req, bio); 922 if (!is_flush) 923 bio_endio(bio); 924 } 925 926 total_bytes += bio_bytes; 927 nr_bytes -= bio_bytes; 928 929 if (!nr_bytes) 930 break; 931 } 932 933 /* 934 * completely done 935 */ 936 if (!req->bio) { 937 /* 938 * Reset counters so that the request stacking driver 939 * can find how many bytes remain in the request 940 * later. 941 */ 942 req->__data_len = 0; 943 return false; 944 } 945 946 req->__data_len -= total_bytes; 947 948 /* update sector only for requests with clear definition of sector */ 949 if (!blk_rq_is_passthrough(req)) 950 req->__sector += total_bytes >> 9; 951 952 /* mixed attributes always follow the first bio */ 953 if (req->rq_flags & RQF_MIXED_MERGE) { 954 req->cmd_flags &= ~REQ_FAILFAST_MASK; 955 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 956 } 957 958 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 959 /* 960 * If total number of sectors is less than the first segment 961 * size, something has gone terribly wrong. 962 */ 963 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 964 blk_dump_rq_flags(req, "request botched"); 965 req->__data_len = blk_rq_cur_bytes(req); 966 } 967 968 /* recalculate the number of segments */ 969 req->nr_phys_segments = blk_recalc_rq_segments(req); 970 } 971 972 return true; 973 } 974 EXPORT_SYMBOL_GPL(blk_update_request); 975 976 static inline void blk_account_io_done(struct request *req, u64 now) 977 { 978 trace_block_io_done(req); 979 980 /* 981 * Account IO completion. flush_rq isn't accounted as a 982 * normal IO on queueing nor completion. Accounting the 983 * containing request is enough. 984 */ 985 if (blk_do_io_stat(req) && req->part && 986 !(req->rq_flags & RQF_FLUSH_SEQ)) { 987 const int sgrp = op_stat_group(req_op(req)); 988 989 part_stat_lock(); 990 update_io_ticks(req->part, jiffies, true); 991 part_stat_inc(req->part, ios[sgrp]); 992 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 993 part_stat_local_dec(req->part, 994 in_flight[op_is_write(req_op(req))]); 995 part_stat_unlock(); 996 } 997 } 998 999 static inline void blk_account_io_start(struct request *req) 1000 { 1001 trace_block_io_start(req); 1002 1003 if (blk_do_io_stat(req)) { 1004 /* 1005 * All non-passthrough requests are created from a bio with one 1006 * exception: when a flush command that is part of a flush sequence 1007 * generated by the state machine in blk-flush.c is cloned onto the 1008 * lower device by dm-multipath we can get here without a bio. 1009 */ 1010 if (req->bio) 1011 req->part = req->bio->bi_bdev; 1012 else 1013 req->part = req->q->disk->part0; 1014 1015 part_stat_lock(); 1016 update_io_ticks(req->part, jiffies, false); 1017 part_stat_local_inc(req->part, 1018 in_flight[op_is_write(req_op(req))]); 1019 part_stat_unlock(); 1020 } 1021 } 1022 1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1024 { 1025 if (rq->rq_flags & RQF_STATS) 1026 blk_stat_add(rq, now); 1027 1028 blk_mq_sched_completed_request(rq, now); 1029 blk_account_io_done(rq, now); 1030 } 1031 1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1033 { 1034 if (blk_mq_need_time_stamp(rq)) 1035 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1036 1037 blk_mq_finish_request(rq); 1038 1039 if (rq->end_io) { 1040 rq_qos_done(rq->q, rq); 1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1042 blk_mq_free_request(rq); 1043 } else { 1044 blk_mq_free_request(rq); 1045 } 1046 } 1047 EXPORT_SYMBOL(__blk_mq_end_request); 1048 1049 void blk_mq_end_request(struct request *rq, blk_status_t error) 1050 { 1051 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1052 BUG(); 1053 __blk_mq_end_request(rq, error); 1054 } 1055 EXPORT_SYMBOL(blk_mq_end_request); 1056 1057 #define TAG_COMP_BATCH 32 1058 1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1060 int *tag_array, int nr_tags) 1061 { 1062 struct request_queue *q = hctx->queue; 1063 1064 blk_mq_sub_active_requests(hctx, nr_tags); 1065 1066 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1067 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1068 } 1069 1070 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1071 { 1072 int tags[TAG_COMP_BATCH], nr_tags = 0; 1073 struct blk_mq_hw_ctx *cur_hctx = NULL; 1074 struct request *rq; 1075 u64 now = 0; 1076 1077 if (iob->need_ts) 1078 now = blk_time_get_ns(); 1079 1080 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1081 prefetch(rq->bio); 1082 prefetch(rq->rq_next); 1083 1084 blk_complete_request(rq); 1085 if (iob->need_ts) 1086 __blk_mq_end_request_acct(rq, now); 1087 1088 blk_mq_finish_request(rq); 1089 1090 rq_qos_done(rq->q, rq); 1091 1092 /* 1093 * If end_io handler returns NONE, then it still has 1094 * ownership of the request. 1095 */ 1096 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1097 continue; 1098 1099 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1100 if (!req_ref_put_and_test(rq)) 1101 continue; 1102 1103 blk_crypto_free_request(rq); 1104 blk_pm_mark_last_busy(rq); 1105 1106 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1107 if (cur_hctx) 1108 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1109 nr_tags = 0; 1110 cur_hctx = rq->mq_hctx; 1111 } 1112 tags[nr_tags++] = rq->tag; 1113 } 1114 1115 if (nr_tags) 1116 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1117 } 1118 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1119 1120 static void blk_complete_reqs(struct llist_head *list) 1121 { 1122 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1123 struct request *rq, *next; 1124 1125 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1126 rq->q->mq_ops->complete(rq); 1127 } 1128 1129 static __latent_entropy void blk_done_softirq(void) 1130 { 1131 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1132 } 1133 1134 static int blk_softirq_cpu_dead(unsigned int cpu) 1135 { 1136 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1137 return 0; 1138 } 1139 1140 static void __blk_mq_complete_request_remote(void *data) 1141 { 1142 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1143 } 1144 1145 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1146 { 1147 int cpu = raw_smp_processor_id(); 1148 1149 if (!IS_ENABLED(CONFIG_SMP) || 1150 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1151 return false; 1152 /* 1153 * With force threaded interrupts enabled, raising softirq from an SMP 1154 * function call will always result in waking the ksoftirqd thread. 1155 * This is probably worse than completing the request on a different 1156 * cache domain. 1157 */ 1158 if (force_irqthreads()) 1159 return false; 1160 1161 /* same CPU or cache domain and capacity? Complete locally */ 1162 if (cpu == rq->mq_ctx->cpu || 1163 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1164 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1165 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1166 return false; 1167 1168 /* don't try to IPI to an offline CPU */ 1169 return cpu_online(rq->mq_ctx->cpu); 1170 } 1171 1172 static void blk_mq_complete_send_ipi(struct request *rq) 1173 { 1174 unsigned int cpu; 1175 1176 cpu = rq->mq_ctx->cpu; 1177 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1178 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1179 } 1180 1181 static void blk_mq_raise_softirq(struct request *rq) 1182 { 1183 struct llist_head *list; 1184 1185 preempt_disable(); 1186 list = this_cpu_ptr(&blk_cpu_done); 1187 if (llist_add(&rq->ipi_list, list)) 1188 raise_softirq(BLOCK_SOFTIRQ); 1189 preempt_enable(); 1190 } 1191 1192 bool blk_mq_complete_request_remote(struct request *rq) 1193 { 1194 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1195 1196 /* 1197 * For request which hctx has only one ctx mapping, 1198 * or a polled request, always complete locally, 1199 * it's pointless to redirect the completion. 1200 */ 1201 if ((rq->mq_hctx->nr_ctx == 1 && 1202 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1203 rq->cmd_flags & REQ_POLLED) 1204 return false; 1205 1206 if (blk_mq_complete_need_ipi(rq)) { 1207 blk_mq_complete_send_ipi(rq); 1208 return true; 1209 } 1210 1211 if (rq->q->nr_hw_queues == 1) { 1212 blk_mq_raise_softirq(rq); 1213 return true; 1214 } 1215 return false; 1216 } 1217 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1218 1219 /** 1220 * blk_mq_complete_request - end I/O on a request 1221 * @rq: the request being processed 1222 * 1223 * Description: 1224 * Complete a request by scheduling the ->complete_rq operation. 1225 **/ 1226 void blk_mq_complete_request(struct request *rq) 1227 { 1228 if (!blk_mq_complete_request_remote(rq)) 1229 rq->q->mq_ops->complete(rq); 1230 } 1231 EXPORT_SYMBOL(blk_mq_complete_request); 1232 1233 /** 1234 * blk_mq_start_request - Start processing a request 1235 * @rq: Pointer to request to be started 1236 * 1237 * Function used by device drivers to notify the block layer that a request 1238 * is going to be processed now, so blk layer can do proper initializations 1239 * such as starting the timeout timer. 1240 */ 1241 void blk_mq_start_request(struct request *rq) 1242 { 1243 struct request_queue *q = rq->q; 1244 1245 trace_block_rq_issue(rq); 1246 1247 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1248 !blk_rq_is_passthrough(rq)) { 1249 rq->io_start_time_ns = blk_time_get_ns(); 1250 rq->stats_sectors = blk_rq_sectors(rq); 1251 rq->rq_flags |= RQF_STATS; 1252 rq_qos_issue(q, rq); 1253 } 1254 1255 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1256 1257 blk_add_timer(rq); 1258 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1259 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1260 1261 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1262 blk_integrity_prepare(rq); 1263 1264 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1265 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1266 } 1267 EXPORT_SYMBOL(blk_mq_start_request); 1268 1269 /* 1270 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1271 * queues. This is important for md arrays to benefit from merging 1272 * requests. 1273 */ 1274 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1275 { 1276 if (plug->multiple_queues) 1277 return BLK_MAX_REQUEST_COUNT * 2; 1278 return BLK_MAX_REQUEST_COUNT; 1279 } 1280 1281 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1282 { 1283 struct request *last = rq_list_peek(&plug->mq_list); 1284 1285 if (!plug->rq_count) { 1286 trace_block_plug(rq->q); 1287 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1288 (!blk_queue_nomerges(rq->q) && 1289 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1290 blk_mq_flush_plug_list(plug, false); 1291 last = NULL; 1292 trace_block_plug(rq->q); 1293 } 1294 1295 if (!plug->multiple_queues && last && last->q != rq->q) 1296 plug->multiple_queues = true; 1297 /* 1298 * Any request allocated from sched tags can't be issued to 1299 * ->queue_rqs() directly 1300 */ 1301 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1302 plug->has_elevator = true; 1303 rq->rq_next = NULL; 1304 rq_list_add(&plug->mq_list, rq); 1305 plug->rq_count++; 1306 } 1307 1308 /** 1309 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1310 * @rq: request to insert 1311 * @at_head: insert request at head or tail of queue 1312 * 1313 * Description: 1314 * Insert a fully prepared request at the back of the I/O scheduler queue 1315 * for execution. Don't wait for completion. 1316 * 1317 * Note: 1318 * This function will invoke @done directly if the queue is dead. 1319 */ 1320 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1321 { 1322 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1323 1324 WARN_ON(irqs_disabled()); 1325 WARN_ON(!blk_rq_is_passthrough(rq)); 1326 1327 blk_account_io_start(rq); 1328 1329 if (current->plug && !at_head) { 1330 blk_add_rq_to_plug(current->plug, rq); 1331 return; 1332 } 1333 1334 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1335 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1336 } 1337 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1338 1339 struct blk_rq_wait { 1340 struct completion done; 1341 blk_status_t ret; 1342 }; 1343 1344 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1345 { 1346 struct blk_rq_wait *wait = rq->end_io_data; 1347 1348 wait->ret = ret; 1349 complete(&wait->done); 1350 return RQ_END_IO_NONE; 1351 } 1352 1353 bool blk_rq_is_poll(struct request *rq) 1354 { 1355 if (!rq->mq_hctx) 1356 return false; 1357 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1358 return false; 1359 return true; 1360 } 1361 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1362 1363 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1364 { 1365 do { 1366 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1367 cond_resched(); 1368 } while (!completion_done(wait)); 1369 } 1370 1371 /** 1372 * blk_execute_rq - insert a request into queue for execution 1373 * @rq: request to insert 1374 * @at_head: insert request at head or tail of queue 1375 * 1376 * Description: 1377 * Insert a fully prepared request at the back of the I/O scheduler queue 1378 * for execution and wait for completion. 1379 * Return: The blk_status_t result provided to blk_mq_end_request(). 1380 */ 1381 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1382 { 1383 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1384 struct blk_rq_wait wait = { 1385 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1386 }; 1387 1388 WARN_ON(irqs_disabled()); 1389 WARN_ON(!blk_rq_is_passthrough(rq)); 1390 1391 rq->end_io_data = &wait; 1392 rq->end_io = blk_end_sync_rq; 1393 1394 blk_account_io_start(rq); 1395 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1396 blk_mq_run_hw_queue(hctx, false); 1397 1398 if (blk_rq_is_poll(rq)) 1399 blk_rq_poll_completion(rq, &wait.done); 1400 else 1401 blk_wait_io(&wait.done); 1402 1403 return wait.ret; 1404 } 1405 EXPORT_SYMBOL(blk_execute_rq); 1406 1407 static void __blk_mq_requeue_request(struct request *rq) 1408 { 1409 struct request_queue *q = rq->q; 1410 1411 blk_mq_put_driver_tag(rq); 1412 1413 trace_block_rq_requeue(rq); 1414 rq_qos_requeue(q, rq); 1415 1416 if (blk_mq_request_started(rq)) { 1417 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1418 rq->rq_flags &= ~RQF_TIMED_OUT; 1419 } 1420 } 1421 1422 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1423 { 1424 struct request_queue *q = rq->q; 1425 unsigned long flags; 1426 1427 __blk_mq_requeue_request(rq); 1428 1429 /* this request will be re-inserted to io scheduler queue */ 1430 blk_mq_sched_requeue_request(rq); 1431 1432 spin_lock_irqsave(&q->requeue_lock, flags); 1433 list_add_tail(&rq->queuelist, &q->requeue_list); 1434 spin_unlock_irqrestore(&q->requeue_lock, flags); 1435 1436 if (kick_requeue_list) 1437 blk_mq_kick_requeue_list(q); 1438 } 1439 EXPORT_SYMBOL(blk_mq_requeue_request); 1440 1441 static void blk_mq_requeue_work(struct work_struct *work) 1442 { 1443 struct request_queue *q = 1444 container_of(work, struct request_queue, requeue_work.work); 1445 LIST_HEAD(rq_list); 1446 LIST_HEAD(flush_list); 1447 struct request *rq; 1448 1449 spin_lock_irq(&q->requeue_lock); 1450 list_splice_init(&q->requeue_list, &rq_list); 1451 list_splice_init(&q->flush_list, &flush_list); 1452 spin_unlock_irq(&q->requeue_lock); 1453 1454 while (!list_empty(&rq_list)) { 1455 rq = list_entry(rq_list.next, struct request, queuelist); 1456 /* 1457 * If RQF_DONTPREP ist set, the request has been started by the 1458 * driver already and might have driver-specific data allocated 1459 * already. Insert it into the hctx dispatch list to avoid 1460 * block layer merges for the request. 1461 */ 1462 if (rq->rq_flags & RQF_DONTPREP) { 1463 list_del_init(&rq->queuelist); 1464 blk_mq_request_bypass_insert(rq, 0); 1465 } else { 1466 list_del_init(&rq->queuelist); 1467 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1468 } 1469 } 1470 1471 while (!list_empty(&flush_list)) { 1472 rq = list_entry(flush_list.next, struct request, queuelist); 1473 list_del_init(&rq->queuelist); 1474 blk_mq_insert_request(rq, 0); 1475 } 1476 1477 blk_mq_run_hw_queues(q, false); 1478 } 1479 1480 void blk_mq_kick_requeue_list(struct request_queue *q) 1481 { 1482 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1483 } 1484 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1485 1486 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1487 unsigned long msecs) 1488 { 1489 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1490 msecs_to_jiffies(msecs)); 1491 } 1492 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1493 1494 static bool blk_is_flush_data_rq(struct request *rq) 1495 { 1496 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1497 } 1498 1499 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1500 { 1501 /* 1502 * If we find a request that isn't idle we know the queue is busy 1503 * as it's checked in the iter. 1504 * Return false to stop the iteration. 1505 * 1506 * In case of queue quiesce, if one flush data request is completed, 1507 * don't count it as inflight given the flush sequence is suspended, 1508 * and the original flush data request is invisible to driver, just 1509 * like other pending requests because of quiesce 1510 */ 1511 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1512 blk_is_flush_data_rq(rq) && 1513 blk_mq_request_completed(rq))) { 1514 bool *busy = priv; 1515 1516 *busy = true; 1517 return false; 1518 } 1519 1520 return true; 1521 } 1522 1523 bool blk_mq_queue_inflight(struct request_queue *q) 1524 { 1525 bool busy = false; 1526 1527 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1528 return busy; 1529 } 1530 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1531 1532 static void blk_mq_rq_timed_out(struct request *req) 1533 { 1534 req->rq_flags |= RQF_TIMED_OUT; 1535 if (req->q->mq_ops->timeout) { 1536 enum blk_eh_timer_return ret; 1537 1538 ret = req->q->mq_ops->timeout(req); 1539 if (ret == BLK_EH_DONE) 1540 return; 1541 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1542 } 1543 1544 blk_add_timer(req); 1545 } 1546 1547 struct blk_expired_data { 1548 bool has_timedout_rq; 1549 unsigned long next; 1550 unsigned long timeout_start; 1551 }; 1552 1553 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1554 { 1555 unsigned long deadline; 1556 1557 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1558 return false; 1559 if (rq->rq_flags & RQF_TIMED_OUT) 1560 return false; 1561 1562 deadline = READ_ONCE(rq->deadline); 1563 if (time_after_eq(expired->timeout_start, deadline)) 1564 return true; 1565 1566 if (expired->next == 0) 1567 expired->next = deadline; 1568 else if (time_after(expired->next, deadline)) 1569 expired->next = deadline; 1570 return false; 1571 } 1572 1573 void blk_mq_put_rq_ref(struct request *rq) 1574 { 1575 if (is_flush_rq(rq)) { 1576 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1577 blk_mq_free_request(rq); 1578 } else if (req_ref_put_and_test(rq)) { 1579 __blk_mq_free_request(rq); 1580 } 1581 } 1582 1583 static bool blk_mq_check_expired(struct request *rq, void *priv) 1584 { 1585 struct blk_expired_data *expired = priv; 1586 1587 /* 1588 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1589 * be reallocated underneath the timeout handler's processing, then 1590 * the expire check is reliable. If the request is not expired, then 1591 * it was completed and reallocated as a new request after returning 1592 * from blk_mq_check_expired(). 1593 */ 1594 if (blk_mq_req_expired(rq, expired)) { 1595 expired->has_timedout_rq = true; 1596 return false; 1597 } 1598 return true; 1599 } 1600 1601 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1602 { 1603 struct blk_expired_data *expired = priv; 1604 1605 if (blk_mq_req_expired(rq, expired)) 1606 blk_mq_rq_timed_out(rq); 1607 return true; 1608 } 1609 1610 static void blk_mq_timeout_work(struct work_struct *work) 1611 { 1612 struct request_queue *q = 1613 container_of(work, struct request_queue, timeout_work); 1614 struct blk_expired_data expired = { 1615 .timeout_start = jiffies, 1616 }; 1617 struct blk_mq_hw_ctx *hctx; 1618 unsigned long i; 1619 1620 /* A deadlock might occur if a request is stuck requiring a 1621 * timeout at the same time a queue freeze is waiting 1622 * completion, since the timeout code would not be able to 1623 * acquire the queue reference here. 1624 * 1625 * That's why we don't use blk_queue_enter here; instead, we use 1626 * percpu_ref_tryget directly, because we need to be able to 1627 * obtain a reference even in the short window between the queue 1628 * starting to freeze, by dropping the first reference in 1629 * blk_freeze_queue_start, and the moment the last request is 1630 * consumed, marked by the instant q_usage_counter reaches 1631 * zero. 1632 */ 1633 if (!percpu_ref_tryget(&q->q_usage_counter)) 1634 return; 1635 1636 /* check if there is any timed-out request */ 1637 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1638 if (expired.has_timedout_rq) { 1639 /* 1640 * Before walking tags, we must ensure any submit started 1641 * before the current time has finished. Since the submit 1642 * uses srcu or rcu, wait for a synchronization point to 1643 * ensure all running submits have finished 1644 */ 1645 blk_mq_wait_quiesce_done(q->tag_set); 1646 1647 expired.next = 0; 1648 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1649 } 1650 1651 if (expired.next != 0) { 1652 mod_timer(&q->timeout, expired.next); 1653 } else { 1654 /* 1655 * Request timeouts are handled as a forward rolling timer. If 1656 * we end up here it means that no requests are pending and 1657 * also that no request has been pending for a while. Mark 1658 * each hctx as idle. 1659 */ 1660 queue_for_each_hw_ctx(q, hctx, i) { 1661 /* the hctx may be unmapped, so check it here */ 1662 if (blk_mq_hw_queue_mapped(hctx)) 1663 blk_mq_tag_idle(hctx); 1664 } 1665 } 1666 blk_queue_exit(q); 1667 } 1668 1669 struct flush_busy_ctx_data { 1670 struct blk_mq_hw_ctx *hctx; 1671 struct list_head *list; 1672 }; 1673 1674 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1675 { 1676 struct flush_busy_ctx_data *flush_data = data; 1677 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1678 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1679 enum hctx_type type = hctx->type; 1680 1681 spin_lock(&ctx->lock); 1682 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1683 sbitmap_clear_bit(sb, bitnr); 1684 spin_unlock(&ctx->lock); 1685 return true; 1686 } 1687 1688 /* 1689 * Process software queues that have been marked busy, splicing them 1690 * to the for-dispatch 1691 */ 1692 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1693 { 1694 struct flush_busy_ctx_data data = { 1695 .hctx = hctx, 1696 .list = list, 1697 }; 1698 1699 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1700 } 1701 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1702 1703 struct dispatch_rq_data { 1704 struct blk_mq_hw_ctx *hctx; 1705 struct request *rq; 1706 }; 1707 1708 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1709 void *data) 1710 { 1711 struct dispatch_rq_data *dispatch_data = data; 1712 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1713 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1714 enum hctx_type type = hctx->type; 1715 1716 spin_lock(&ctx->lock); 1717 if (!list_empty(&ctx->rq_lists[type])) { 1718 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1719 list_del_init(&dispatch_data->rq->queuelist); 1720 if (list_empty(&ctx->rq_lists[type])) 1721 sbitmap_clear_bit(sb, bitnr); 1722 } 1723 spin_unlock(&ctx->lock); 1724 1725 return !dispatch_data->rq; 1726 } 1727 1728 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1729 struct blk_mq_ctx *start) 1730 { 1731 unsigned off = start ? start->index_hw[hctx->type] : 0; 1732 struct dispatch_rq_data data = { 1733 .hctx = hctx, 1734 .rq = NULL, 1735 }; 1736 1737 __sbitmap_for_each_set(&hctx->ctx_map, off, 1738 dispatch_rq_from_ctx, &data); 1739 1740 return data.rq; 1741 } 1742 1743 bool __blk_mq_alloc_driver_tag(struct request *rq) 1744 { 1745 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1746 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1747 int tag; 1748 1749 blk_mq_tag_busy(rq->mq_hctx); 1750 1751 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1752 bt = &rq->mq_hctx->tags->breserved_tags; 1753 tag_offset = 0; 1754 } else { 1755 if (!hctx_may_queue(rq->mq_hctx, bt)) 1756 return false; 1757 } 1758 1759 tag = __sbitmap_queue_get(bt); 1760 if (tag == BLK_MQ_NO_TAG) 1761 return false; 1762 1763 rq->tag = tag + tag_offset; 1764 blk_mq_inc_active_requests(rq->mq_hctx); 1765 return true; 1766 } 1767 1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1769 int flags, void *key) 1770 { 1771 struct blk_mq_hw_ctx *hctx; 1772 1773 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1774 1775 spin_lock(&hctx->dispatch_wait_lock); 1776 if (!list_empty(&wait->entry)) { 1777 struct sbitmap_queue *sbq; 1778 1779 list_del_init(&wait->entry); 1780 sbq = &hctx->tags->bitmap_tags; 1781 atomic_dec(&sbq->ws_active); 1782 } 1783 spin_unlock(&hctx->dispatch_wait_lock); 1784 1785 blk_mq_run_hw_queue(hctx, true); 1786 return 1; 1787 } 1788 1789 /* 1790 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1791 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1792 * restart. For both cases, take care to check the condition again after 1793 * marking us as waiting. 1794 */ 1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1796 struct request *rq) 1797 { 1798 struct sbitmap_queue *sbq; 1799 struct wait_queue_head *wq; 1800 wait_queue_entry_t *wait; 1801 bool ret; 1802 1803 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1804 !(blk_mq_is_shared_tags(hctx->flags))) { 1805 blk_mq_sched_mark_restart_hctx(hctx); 1806 1807 /* 1808 * It's possible that a tag was freed in the window between the 1809 * allocation failure and adding the hardware queue to the wait 1810 * queue. 1811 * 1812 * Don't clear RESTART here, someone else could have set it. 1813 * At most this will cost an extra queue run. 1814 */ 1815 return blk_mq_get_driver_tag(rq); 1816 } 1817 1818 wait = &hctx->dispatch_wait; 1819 if (!list_empty_careful(&wait->entry)) 1820 return false; 1821 1822 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1823 sbq = &hctx->tags->breserved_tags; 1824 else 1825 sbq = &hctx->tags->bitmap_tags; 1826 wq = &bt_wait_ptr(sbq, hctx)->wait; 1827 1828 spin_lock_irq(&wq->lock); 1829 spin_lock(&hctx->dispatch_wait_lock); 1830 if (!list_empty(&wait->entry)) { 1831 spin_unlock(&hctx->dispatch_wait_lock); 1832 spin_unlock_irq(&wq->lock); 1833 return false; 1834 } 1835 1836 atomic_inc(&sbq->ws_active); 1837 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1838 __add_wait_queue(wq, wait); 1839 1840 /* 1841 * Add one explicit barrier since blk_mq_get_driver_tag() may 1842 * not imply barrier in case of failure. 1843 * 1844 * Order adding us to wait queue and allocating driver tag. 1845 * 1846 * The pair is the one implied in sbitmap_queue_wake_up() which 1847 * orders clearing sbitmap tag bits and waitqueue_active() in 1848 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1849 * 1850 * Otherwise, re-order of adding wait queue and getting driver tag 1851 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1852 * the waitqueue_active() may not observe us in wait queue. 1853 */ 1854 smp_mb(); 1855 1856 /* 1857 * It's possible that a tag was freed in the window between the 1858 * allocation failure and adding the hardware queue to the wait 1859 * queue. 1860 */ 1861 ret = blk_mq_get_driver_tag(rq); 1862 if (!ret) { 1863 spin_unlock(&hctx->dispatch_wait_lock); 1864 spin_unlock_irq(&wq->lock); 1865 return false; 1866 } 1867 1868 /* 1869 * We got a tag, remove ourselves from the wait queue to ensure 1870 * someone else gets the wakeup. 1871 */ 1872 list_del_init(&wait->entry); 1873 atomic_dec(&sbq->ws_active); 1874 spin_unlock(&hctx->dispatch_wait_lock); 1875 spin_unlock_irq(&wq->lock); 1876 1877 return true; 1878 } 1879 1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1881 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1882 /* 1883 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1884 * - EWMA is one simple way to compute running average value 1885 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1886 * - take 4 as factor for avoiding to get too small(0) result, and this 1887 * factor doesn't matter because EWMA decreases exponentially 1888 */ 1889 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1890 { 1891 unsigned int ewma; 1892 1893 ewma = hctx->dispatch_busy; 1894 1895 if (!ewma && !busy) 1896 return; 1897 1898 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1899 if (busy) 1900 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1901 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1902 1903 hctx->dispatch_busy = ewma; 1904 } 1905 1906 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1907 1908 static void blk_mq_handle_dev_resource(struct request *rq, 1909 struct list_head *list) 1910 { 1911 list_add(&rq->queuelist, list); 1912 __blk_mq_requeue_request(rq); 1913 } 1914 1915 enum prep_dispatch { 1916 PREP_DISPATCH_OK, 1917 PREP_DISPATCH_NO_TAG, 1918 PREP_DISPATCH_NO_BUDGET, 1919 }; 1920 1921 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1922 bool need_budget) 1923 { 1924 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1925 int budget_token = -1; 1926 1927 if (need_budget) { 1928 budget_token = blk_mq_get_dispatch_budget(rq->q); 1929 if (budget_token < 0) { 1930 blk_mq_put_driver_tag(rq); 1931 return PREP_DISPATCH_NO_BUDGET; 1932 } 1933 blk_mq_set_rq_budget_token(rq, budget_token); 1934 } 1935 1936 if (!blk_mq_get_driver_tag(rq)) { 1937 /* 1938 * The initial allocation attempt failed, so we need to 1939 * rerun the hardware queue when a tag is freed. The 1940 * waitqueue takes care of that. If the queue is run 1941 * before we add this entry back on the dispatch list, 1942 * we'll re-run it below. 1943 */ 1944 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1945 /* 1946 * All budgets not got from this function will be put 1947 * together during handling partial dispatch 1948 */ 1949 if (need_budget) 1950 blk_mq_put_dispatch_budget(rq->q, budget_token); 1951 return PREP_DISPATCH_NO_TAG; 1952 } 1953 } 1954 1955 return PREP_DISPATCH_OK; 1956 } 1957 1958 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1959 static void blk_mq_release_budgets(struct request_queue *q, 1960 struct list_head *list) 1961 { 1962 struct request *rq; 1963 1964 list_for_each_entry(rq, list, queuelist) { 1965 int budget_token = blk_mq_get_rq_budget_token(rq); 1966 1967 if (budget_token >= 0) 1968 blk_mq_put_dispatch_budget(q, budget_token); 1969 } 1970 } 1971 1972 /* 1973 * blk_mq_commit_rqs will notify driver using bd->last that there is no 1974 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 1975 * details) 1976 * Attention, we should explicitly call this in unusual cases: 1977 * 1) did not queue everything initially scheduled to queue 1978 * 2) the last attempt to queue a request failed 1979 */ 1980 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 1981 bool from_schedule) 1982 { 1983 if (hctx->queue->mq_ops->commit_rqs && queued) { 1984 trace_block_unplug(hctx->queue, queued, !from_schedule); 1985 hctx->queue->mq_ops->commit_rqs(hctx); 1986 } 1987 } 1988 1989 /* 1990 * Returns true if we did some work AND can potentially do more. 1991 */ 1992 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1993 unsigned int nr_budgets) 1994 { 1995 enum prep_dispatch prep; 1996 struct request_queue *q = hctx->queue; 1997 struct request *rq; 1998 int queued; 1999 blk_status_t ret = BLK_STS_OK; 2000 bool needs_resource = false; 2001 2002 if (list_empty(list)) 2003 return false; 2004 2005 /* 2006 * Now process all the entries, sending them to the driver. 2007 */ 2008 queued = 0; 2009 do { 2010 struct blk_mq_queue_data bd; 2011 2012 rq = list_first_entry(list, struct request, queuelist); 2013 2014 WARN_ON_ONCE(hctx != rq->mq_hctx); 2015 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2016 if (prep != PREP_DISPATCH_OK) 2017 break; 2018 2019 list_del_init(&rq->queuelist); 2020 2021 bd.rq = rq; 2022 bd.last = list_empty(list); 2023 2024 /* 2025 * once the request is queued to lld, no need to cover the 2026 * budget any more 2027 */ 2028 if (nr_budgets) 2029 nr_budgets--; 2030 ret = q->mq_ops->queue_rq(hctx, &bd); 2031 switch (ret) { 2032 case BLK_STS_OK: 2033 queued++; 2034 break; 2035 case BLK_STS_RESOURCE: 2036 needs_resource = true; 2037 fallthrough; 2038 case BLK_STS_DEV_RESOURCE: 2039 blk_mq_handle_dev_resource(rq, list); 2040 goto out; 2041 default: 2042 blk_mq_end_request(rq, ret); 2043 } 2044 } while (!list_empty(list)); 2045 out: 2046 /* If we didn't flush the entire list, we could have told the driver 2047 * there was more coming, but that turned out to be a lie. 2048 */ 2049 if (!list_empty(list) || ret != BLK_STS_OK) 2050 blk_mq_commit_rqs(hctx, queued, false); 2051 2052 /* 2053 * Any items that need requeuing? Stuff them into hctx->dispatch, 2054 * that is where we will continue on next queue run. 2055 */ 2056 if (!list_empty(list)) { 2057 bool needs_restart; 2058 /* For non-shared tags, the RESTART check will suffice */ 2059 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2060 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2061 blk_mq_is_shared_tags(hctx->flags)); 2062 2063 if (nr_budgets) 2064 blk_mq_release_budgets(q, list); 2065 2066 spin_lock(&hctx->lock); 2067 list_splice_tail_init(list, &hctx->dispatch); 2068 spin_unlock(&hctx->lock); 2069 2070 /* 2071 * Order adding requests to hctx->dispatch and checking 2072 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2073 * in blk_mq_sched_restart(). Avoid restart code path to 2074 * miss the new added requests to hctx->dispatch, meantime 2075 * SCHED_RESTART is observed here. 2076 */ 2077 smp_mb(); 2078 2079 /* 2080 * If SCHED_RESTART was set by the caller of this function and 2081 * it is no longer set that means that it was cleared by another 2082 * thread and hence that a queue rerun is needed. 2083 * 2084 * If 'no_tag' is set, that means that we failed getting 2085 * a driver tag with an I/O scheduler attached. If our dispatch 2086 * waitqueue is no longer active, ensure that we run the queue 2087 * AFTER adding our entries back to the list. 2088 * 2089 * If no I/O scheduler has been configured it is possible that 2090 * the hardware queue got stopped and restarted before requests 2091 * were pushed back onto the dispatch list. Rerun the queue to 2092 * avoid starvation. Notes: 2093 * - blk_mq_run_hw_queue() checks whether or not a queue has 2094 * been stopped before rerunning a queue. 2095 * - Some but not all block drivers stop a queue before 2096 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2097 * and dm-rq. 2098 * 2099 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2100 * bit is set, run queue after a delay to avoid IO stalls 2101 * that could otherwise occur if the queue is idle. We'll do 2102 * similar if we couldn't get budget or couldn't lock a zone 2103 * and SCHED_RESTART is set. 2104 */ 2105 needs_restart = blk_mq_sched_needs_restart(hctx); 2106 if (prep == PREP_DISPATCH_NO_BUDGET) 2107 needs_resource = true; 2108 if (!needs_restart || 2109 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2110 blk_mq_run_hw_queue(hctx, true); 2111 else if (needs_resource) 2112 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2113 2114 blk_mq_update_dispatch_busy(hctx, true); 2115 return false; 2116 } 2117 2118 blk_mq_update_dispatch_busy(hctx, false); 2119 return true; 2120 } 2121 2122 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2123 { 2124 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2125 2126 if (cpu >= nr_cpu_ids) 2127 cpu = cpumask_first(hctx->cpumask); 2128 return cpu; 2129 } 2130 2131 /* 2132 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2133 * it for speeding up the check 2134 */ 2135 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2136 { 2137 return hctx->next_cpu >= nr_cpu_ids; 2138 } 2139 2140 /* 2141 * It'd be great if the workqueue API had a way to pass 2142 * in a mask and had some smarts for more clever placement. 2143 * For now we just round-robin here, switching for every 2144 * BLK_MQ_CPU_WORK_BATCH queued items. 2145 */ 2146 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2147 { 2148 bool tried = false; 2149 int next_cpu = hctx->next_cpu; 2150 2151 /* Switch to unbound if no allowable CPUs in this hctx */ 2152 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2153 return WORK_CPU_UNBOUND; 2154 2155 if (--hctx->next_cpu_batch <= 0) { 2156 select_cpu: 2157 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2158 cpu_online_mask); 2159 if (next_cpu >= nr_cpu_ids) 2160 next_cpu = blk_mq_first_mapped_cpu(hctx); 2161 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2162 } 2163 2164 /* 2165 * Do unbound schedule if we can't find a online CPU for this hctx, 2166 * and it should only happen in the path of handling CPU DEAD. 2167 */ 2168 if (!cpu_online(next_cpu)) { 2169 if (!tried) { 2170 tried = true; 2171 goto select_cpu; 2172 } 2173 2174 /* 2175 * Make sure to re-select CPU next time once after CPUs 2176 * in hctx->cpumask become online again. 2177 */ 2178 hctx->next_cpu = next_cpu; 2179 hctx->next_cpu_batch = 1; 2180 return WORK_CPU_UNBOUND; 2181 } 2182 2183 hctx->next_cpu = next_cpu; 2184 return next_cpu; 2185 } 2186 2187 /** 2188 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2189 * @hctx: Pointer to the hardware queue to run. 2190 * @msecs: Milliseconds of delay to wait before running the queue. 2191 * 2192 * Run a hardware queue asynchronously with a delay of @msecs. 2193 */ 2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2195 { 2196 if (unlikely(blk_mq_hctx_stopped(hctx))) 2197 return; 2198 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2199 msecs_to_jiffies(msecs)); 2200 } 2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2202 2203 /** 2204 * blk_mq_run_hw_queue - Start to run a hardware queue. 2205 * @hctx: Pointer to the hardware queue to run. 2206 * @async: If we want to run the queue asynchronously. 2207 * 2208 * Check if the request queue is not in a quiesced state and if there are 2209 * pending requests to be sent. If this is true, run the queue to send requests 2210 * to hardware. 2211 */ 2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2213 { 2214 bool need_run; 2215 2216 /* 2217 * We can't run the queue inline with interrupts disabled. 2218 */ 2219 WARN_ON_ONCE(!async && in_interrupt()); 2220 2221 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2222 2223 /* 2224 * When queue is quiesced, we may be switching io scheduler, or 2225 * updating nr_hw_queues, or other things, and we can't run queue 2226 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2227 * 2228 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2229 * quiesced. 2230 */ 2231 __blk_mq_run_dispatch_ops(hctx->queue, false, 2232 need_run = !blk_queue_quiesced(hctx->queue) && 2233 blk_mq_hctx_has_pending(hctx)); 2234 2235 if (!need_run) 2236 return; 2237 2238 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2239 blk_mq_delay_run_hw_queue(hctx, 0); 2240 return; 2241 } 2242 2243 blk_mq_run_dispatch_ops(hctx->queue, 2244 blk_mq_sched_dispatch_requests(hctx)); 2245 } 2246 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2247 2248 /* 2249 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2250 * scheduler. 2251 */ 2252 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2253 { 2254 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2255 /* 2256 * If the IO scheduler does not respect hardware queues when 2257 * dispatching, we just don't bother with multiple HW queues and 2258 * dispatch from hctx for the current CPU since running multiple queues 2259 * just causes lock contention inside the scheduler and pointless cache 2260 * bouncing. 2261 */ 2262 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2263 2264 if (!blk_mq_hctx_stopped(hctx)) 2265 return hctx; 2266 return NULL; 2267 } 2268 2269 /** 2270 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2271 * @q: Pointer to the request queue to run. 2272 * @async: If we want to run the queue asynchronously. 2273 */ 2274 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2275 { 2276 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2277 unsigned long i; 2278 2279 sq_hctx = NULL; 2280 if (blk_queue_sq_sched(q)) 2281 sq_hctx = blk_mq_get_sq_hctx(q); 2282 queue_for_each_hw_ctx(q, hctx, i) { 2283 if (blk_mq_hctx_stopped(hctx)) 2284 continue; 2285 /* 2286 * Dispatch from this hctx either if there's no hctx preferred 2287 * by IO scheduler or if it has requests that bypass the 2288 * scheduler. 2289 */ 2290 if (!sq_hctx || sq_hctx == hctx || 2291 !list_empty_careful(&hctx->dispatch)) 2292 blk_mq_run_hw_queue(hctx, async); 2293 } 2294 } 2295 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2296 2297 /** 2298 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2299 * @q: Pointer to the request queue to run. 2300 * @msecs: Milliseconds of delay to wait before running the queues. 2301 */ 2302 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2303 { 2304 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2305 unsigned long i; 2306 2307 sq_hctx = NULL; 2308 if (blk_queue_sq_sched(q)) 2309 sq_hctx = blk_mq_get_sq_hctx(q); 2310 queue_for_each_hw_ctx(q, hctx, i) { 2311 if (blk_mq_hctx_stopped(hctx)) 2312 continue; 2313 /* 2314 * If there is already a run_work pending, leave the 2315 * pending delay untouched. Otherwise, a hctx can stall 2316 * if another hctx is re-delaying the other's work 2317 * before the work executes. 2318 */ 2319 if (delayed_work_pending(&hctx->run_work)) 2320 continue; 2321 /* 2322 * Dispatch from this hctx either if there's no hctx preferred 2323 * by IO scheduler or if it has requests that bypass the 2324 * scheduler. 2325 */ 2326 if (!sq_hctx || sq_hctx == hctx || 2327 !list_empty_careful(&hctx->dispatch)) 2328 blk_mq_delay_run_hw_queue(hctx, msecs); 2329 } 2330 } 2331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2332 2333 /* 2334 * This function is often used for pausing .queue_rq() by driver when 2335 * there isn't enough resource or some conditions aren't satisfied, and 2336 * BLK_STS_RESOURCE is usually returned. 2337 * 2338 * We do not guarantee that dispatch can be drained or blocked 2339 * after blk_mq_stop_hw_queue() returns. Please use 2340 * blk_mq_quiesce_queue() for that requirement. 2341 */ 2342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2343 { 2344 cancel_delayed_work(&hctx->run_work); 2345 2346 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2347 } 2348 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2349 2350 /* 2351 * This function is often used for pausing .queue_rq() by driver when 2352 * there isn't enough resource or some conditions aren't satisfied, and 2353 * BLK_STS_RESOURCE is usually returned. 2354 * 2355 * We do not guarantee that dispatch can be drained or blocked 2356 * after blk_mq_stop_hw_queues() returns. Please use 2357 * blk_mq_quiesce_queue() for that requirement. 2358 */ 2359 void blk_mq_stop_hw_queues(struct request_queue *q) 2360 { 2361 struct blk_mq_hw_ctx *hctx; 2362 unsigned long i; 2363 2364 queue_for_each_hw_ctx(q, hctx, i) 2365 blk_mq_stop_hw_queue(hctx); 2366 } 2367 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2368 2369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2370 { 2371 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2372 2373 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2374 } 2375 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2376 2377 void blk_mq_start_hw_queues(struct request_queue *q) 2378 { 2379 struct blk_mq_hw_ctx *hctx; 2380 unsigned long i; 2381 2382 queue_for_each_hw_ctx(q, hctx, i) 2383 blk_mq_start_hw_queue(hctx); 2384 } 2385 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2386 2387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2388 { 2389 if (!blk_mq_hctx_stopped(hctx)) 2390 return; 2391 2392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2393 blk_mq_run_hw_queue(hctx, async); 2394 } 2395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2396 2397 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2398 { 2399 struct blk_mq_hw_ctx *hctx; 2400 unsigned long i; 2401 2402 queue_for_each_hw_ctx(q, hctx, i) 2403 blk_mq_start_stopped_hw_queue(hctx, async || 2404 (hctx->flags & BLK_MQ_F_BLOCKING)); 2405 } 2406 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2407 2408 static void blk_mq_run_work_fn(struct work_struct *work) 2409 { 2410 struct blk_mq_hw_ctx *hctx = 2411 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2412 2413 blk_mq_run_dispatch_ops(hctx->queue, 2414 blk_mq_sched_dispatch_requests(hctx)); 2415 } 2416 2417 /** 2418 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2419 * @rq: Pointer to request to be inserted. 2420 * @flags: BLK_MQ_INSERT_* 2421 * 2422 * Should only be used carefully, when the caller knows we want to 2423 * bypass a potential IO scheduler on the target device. 2424 */ 2425 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2426 { 2427 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2428 2429 spin_lock(&hctx->lock); 2430 if (flags & BLK_MQ_INSERT_AT_HEAD) 2431 list_add(&rq->queuelist, &hctx->dispatch); 2432 else 2433 list_add_tail(&rq->queuelist, &hctx->dispatch); 2434 spin_unlock(&hctx->lock); 2435 } 2436 2437 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2438 struct blk_mq_ctx *ctx, struct list_head *list, 2439 bool run_queue_async) 2440 { 2441 struct request *rq; 2442 enum hctx_type type = hctx->type; 2443 2444 /* 2445 * Try to issue requests directly if the hw queue isn't busy to save an 2446 * extra enqueue & dequeue to the sw queue. 2447 */ 2448 if (!hctx->dispatch_busy && !run_queue_async) { 2449 blk_mq_run_dispatch_ops(hctx->queue, 2450 blk_mq_try_issue_list_directly(hctx, list)); 2451 if (list_empty(list)) 2452 goto out; 2453 } 2454 2455 /* 2456 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2457 * offline now 2458 */ 2459 list_for_each_entry(rq, list, queuelist) { 2460 BUG_ON(rq->mq_ctx != ctx); 2461 trace_block_rq_insert(rq); 2462 if (rq->cmd_flags & REQ_NOWAIT) 2463 run_queue_async = true; 2464 } 2465 2466 spin_lock(&ctx->lock); 2467 list_splice_tail_init(list, &ctx->rq_lists[type]); 2468 blk_mq_hctx_mark_pending(hctx, ctx); 2469 spin_unlock(&ctx->lock); 2470 out: 2471 blk_mq_run_hw_queue(hctx, run_queue_async); 2472 } 2473 2474 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2475 { 2476 struct request_queue *q = rq->q; 2477 struct blk_mq_ctx *ctx = rq->mq_ctx; 2478 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2479 2480 if (blk_rq_is_passthrough(rq)) { 2481 /* 2482 * Passthrough request have to be added to hctx->dispatch 2483 * directly. The device may be in a situation where it can't 2484 * handle FS request, and always returns BLK_STS_RESOURCE for 2485 * them, which gets them added to hctx->dispatch. 2486 * 2487 * If a passthrough request is required to unblock the queues, 2488 * and it is added to the scheduler queue, there is no chance to 2489 * dispatch it given we prioritize requests in hctx->dispatch. 2490 */ 2491 blk_mq_request_bypass_insert(rq, flags); 2492 } else if (req_op(rq) == REQ_OP_FLUSH) { 2493 /* 2494 * Firstly normal IO request is inserted to scheduler queue or 2495 * sw queue, meantime we add flush request to dispatch queue( 2496 * hctx->dispatch) directly and there is at most one in-flight 2497 * flush request for each hw queue, so it doesn't matter to add 2498 * flush request to tail or front of the dispatch queue. 2499 * 2500 * Secondly in case of NCQ, flush request belongs to non-NCQ 2501 * command, and queueing it will fail when there is any 2502 * in-flight normal IO request(NCQ command). When adding flush 2503 * rq to the front of hctx->dispatch, it is easier to introduce 2504 * extra time to flush rq's latency because of S_SCHED_RESTART 2505 * compared with adding to the tail of dispatch queue, then 2506 * chance of flush merge is increased, and less flush requests 2507 * will be issued to controller. It is observed that ~10% time 2508 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2509 * drive when adding flush rq to the front of hctx->dispatch. 2510 * 2511 * Simply queue flush rq to the front of hctx->dispatch so that 2512 * intensive flush workloads can benefit in case of NCQ HW. 2513 */ 2514 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2515 } else if (q->elevator) { 2516 LIST_HEAD(list); 2517 2518 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2519 2520 list_add(&rq->queuelist, &list); 2521 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2522 } else { 2523 trace_block_rq_insert(rq); 2524 2525 spin_lock(&ctx->lock); 2526 if (flags & BLK_MQ_INSERT_AT_HEAD) 2527 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2528 else 2529 list_add_tail(&rq->queuelist, 2530 &ctx->rq_lists[hctx->type]); 2531 blk_mq_hctx_mark_pending(hctx, ctx); 2532 spin_unlock(&ctx->lock); 2533 } 2534 } 2535 2536 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2537 unsigned int nr_segs) 2538 { 2539 int err; 2540 2541 if (bio->bi_opf & REQ_RAHEAD) 2542 rq->cmd_flags |= REQ_FAILFAST_MASK; 2543 2544 rq->__sector = bio->bi_iter.bi_sector; 2545 rq->write_hint = bio->bi_write_hint; 2546 blk_rq_bio_prep(rq, bio, nr_segs); 2547 if (bio_integrity(bio)) 2548 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2549 bio); 2550 2551 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2552 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2553 WARN_ON_ONCE(err); 2554 2555 blk_account_io_start(rq); 2556 } 2557 2558 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2559 struct request *rq, bool last) 2560 { 2561 struct request_queue *q = rq->q; 2562 struct blk_mq_queue_data bd = { 2563 .rq = rq, 2564 .last = last, 2565 }; 2566 blk_status_t ret; 2567 2568 /* 2569 * For OK queue, we are done. For error, caller may kill it. 2570 * Any other error (busy), just add it to our list as we 2571 * previously would have done. 2572 */ 2573 ret = q->mq_ops->queue_rq(hctx, &bd); 2574 switch (ret) { 2575 case BLK_STS_OK: 2576 blk_mq_update_dispatch_busy(hctx, false); 2577 break; 2578 case BLK_STS_RESOURCE: 2579 case BLK_STS_DEV_RESOURCE: 2580 blk_mq_update_dispatch_busy(hctx, true); 2581 __blk_mq_requeue_request(rq); 2582 break; 2583 default: 2584 blk_mq_update_dispatch_busy(hctx, false); 2585 break; 2586 } 2587 2588 return ret; 2589 } 2590 2591 static bool blk_mq_get_budget_and_tag(struct request *rq) 2592 { 2593 int budget_token; 2594 2595 budget_token = blk_mq_get_dispatch_budget(rq->q); 2596 if (budget_token < 0) 2597 return false; 2598 blk_mq_set_rq_budget_token(rq, budget_token); 2599 if (!blk_mq_get_driver_tag(rq)) { 2600 blk_mq_put_dispatch_budget(rq->q, budget_token); 2601 return false; 2602 } 2603 return true; 2604 } 2605 2606 /** 2607 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2608 * @hctx: Pointer of the associated hardware queue. 2609 * @rq: Pointer to request to be sent. 2610 * 2611 * If the device has enough resources to accept a new request now, send the 2612 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2613 * we can try send it another time in the future. Requests inserted at this 2614 * queue have higher priority. 2615 */ 2616 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2617 struct request *rq) 2618 { 2619 blk_status_t ret; 2620 2621 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2622 blk_mq_insert_request(rq, 0); 2623 return; 2624 } 2625 2626 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2627 blk_mq_insert_request(rq, 0); 2628 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2629 return; 2630 } 2631 2632 ret = __blk_mq_issue_directly(hctx, rq, true); 2633 switch (ret) { 2634 case BLK_STS_OK: 2635 break; 2636 case BLK_STS_RESOURCE: 2637 case BLK_STS_DEV_RESOURCE: 2638 blk_mq_request_bypass_insert(rq, 0); 2639 blk_mq_run_hw_queue(hctx, false); 2640 break; 2641 default: 2642 blk_mq_end_request(rq, ret); 2643 break; 2644 } 2645 } 2646 2647 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2648 { 2649 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2650 2651 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2652 blk_mq_insert_request(rq, 0); 2653 return BLK_STS_OK; 2654 } 2655 2656 if (!blk_mq_get_budget_and_tag(rq)) 2657 return BLK_STS_RESOURCE; 2658 return __blk_mq_issue_directly(hctx, rq, last); 2659 } 2660 2661 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2662 { 2663 struct blk_mq_hw_ctx *hctx = NULL; 2664 struct request *rq; 2665 int queued = 0; 2666 blk_status_t ret = BLK_STS_OK; 2667 2668 while ((rq = rq_list_pop(&plug->mq_list))) { 2669 bool last = rq_list_empty(plug->mq_list); 2670 2671 if (hctx != rq->mq_hctx) { 2672 if (hctx) { 2673 blk_mq_commit_rqs(hctx, queued, false); 2674 queued = 0; 2675 } 2676 hctx = rq->mq_hctx; 2677 } 2678 2679 ret = blk_mq_request_issue_directly(rq, last); 2680 switch (ret) { 2681 case BLK_STS_OK: 2682 queued++; 2683 break; 2684 case BLK_STS_RESOURCE: 2685 case BLK_STS_DEV_RESOURCE: 2686 blk_mq_request_bypass_insert(rq, 0); 2687 blk_mq_run_hw_queue(hctx, false); 2688 goto out; 2689 default: 2690 blk_mq_end_request(rq, ret); 2691 break; 2692 } 2693 } 2694 2695 out: 2696 if (ret != BLK_STS_OK) 2697 blk_mq_commit_rqs(hctx, queued, false); 2698 } 2699 2700 static void __blk_mq_flush_plug_list(struct request_queue *q, 2701 struct blk_plug *plug) 2702 { 2703 if (blk_queue_quiesced(q)) 2704 return; 2705 q->mq_ops->queue_rqs(&plug->mq_list); 2706 } 2707 2708 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2709 { 2710 struct blk_mq_hw_ctx *this_hctx = NULL; 2711 struct blk_mq_ctx *this_ctx = NULL; 2712 struct request *requeue_list = NULL; 2713 struct request **requeue_lastp = &requeue_list; 2714 unsigned int depth = 0; 2715 bool is_passthrough = false; 2716 LIST_HEAD(list); 2717 2718 do { 2719 struct request *rq = rq_list_pop(&plug->mq_list); 2720 2721 if (!this_hctx) { 2722 this_hctx = rq->mq_hctx; 2723 this_ctx = rq->mq_ctx; 2724 is_passthrough = blk_rq_is_passthrough(rq); 2725 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2726 is_passthrough != blk_rq_is_passthrough(rq)) { 2727 rq_list_add_tail(&requeue_lastp, rq); 2728 continue; 2729 } 2730 list_add(&rq->queuelist, &list); 2731 depth++; 2732 } while (!rq_list_empty(plug->mq_list)); 2733 2734 plug->mq_list = requeue_list; 2735 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2736 2737 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2738 /* passthrough requests should never be issued to the I/O scheduler */ 2739 if (is_passthrough) { 2740 spin_lock(&this_hctx->lock); 2741 list_splice_tail_init(&list, &this_hctx->dispatch); 2742 spin_unlock(&this_hctx->lock); 2743 blk_mq_run_hw_queue(this_hctx, from_sched); 2744 } else if (this_hctx->queue->elevator) { 2745 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2746 &list, 0); 2747 blk_mq_run_hw_queue(this_hctx, from_sched); 2748 } else { 2749 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2750 } 2751 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2752 } 2753 2754 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2755 { 2756 struct request *rq; 2757 unsigned int depth; 2758 2759 /* 2760 * We may have been called recursively midway through handling 2761 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2762 * To avoid mq_list changing under our feet, clear rq_count early and 2763 * bail out specifically if rq_count is 0 rather than checking 2764 * whether the mq_list is empty. 2765 */ 2766 if (plug->rq_count == 0) 2767 return; 2768 depth = plug->rq_count; 2769 plug->rq_count = 0; 2770 2771 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2772 struct request_queue *q; 2773 2774 rq = rq_list_peek(&plug->mq_list); 2775 q = rq->q; 2776 trace_block_unplug(q, depth, true); 2777 2778 /* 2779 * Peek first request and see if we have a ->queue_rqs() hook. 2780 * If we do, we can dispatch the whole plug list in one go. We 2781 * already know at this point that all requests belong to the 2782 * same queue, caller must ensure that's the case. 2783 */ 2784 if (q->mq_ops->queue_rqs) { 2785 blk_mq_run_dispatch_ops(q, 2786 __blk_mq_flush_plug_list(q, plug)); 2787 if (rq_list_empty(plug->mq_list)) 2788 return; 2789 } 2790 2791 blk_mq_run_dispatch_ops(q, 2792 blk_mq_plug_issue_direct(plug)); 2793 if (rq_list_empty(plug->mq_list)) 2794 return; 2795 } 2796 2797 do { 2798 blk_mq_dispatch_plug_list(plug, from_schedule); 2799 } while (!rq_list_empty(plug->mq_list)); 2800 } 2801 2802 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2803 struct list_head *list) 2804 { 2805 int queued = 0; 2806 blk_status_t ret = BLK_STS_OK; 2807 2808 while (!list_empty(list)) { 2809 struct request *rq = list_first_entry(list, struct request, 2810 queuelist); 2811 2812 list_del_init(&rq->queuelist); 2813 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2814 switch (ret) { 2815 case BLK_STS_OK: 2816 queued++; 2817 break; 2818 case BLK_STS_RESOURCE: 2819 case BLK_STS_DEV_RESOURCE: 2820 blk_mq_request_bypass_insert(rq, 0); 2821 if (list_empty(list)) 2822 blk_mq_run_hw_queue(hctx, false); 2823 goto out; 2824 default: 2825 blk_mq_end_request(rq, ret); 2826 break; 2827 } 2828 } 2829 2830 out: 2831 if (ret != BLK_STS_OK) 2832 blk_mq_commit_rqs(hctx, queued, false); 2833 } 2834 2835 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2836 struct bio *bio, unsigned int nr_segs) 2837 { 2838 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2839 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2840 return true; 2841 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2842 return true; 2843 } 2844 return false; 2845 } 2846 2847 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2848 struct blk_plug *plug, 2849 struct bio *bio, 2850 unsigned int nsegs) 2851 { 2852 struct blk_mq_alloc_data data = { 2853 .q = q, 2854 .nr_tags = 1, 2855 .cmd_flags = bio->bi_opf, 2856 }; 2857 struct request *rq; 2858 2859 rq_qos_throttle(q, bio); 2860 2861 if (plug) { 2862 data.nr_tags = plug->nr_ios; 2863 plug->nr_ios = 1; 2864 data.cached_rq = &plug->cached_rq; 2865 } 2866 2867 rq = __blk_mq_alloc_requests(&data); 2868 if (rq) 2869 return rq; 2870 rq_qos_cleanup(q, bio); 2871 if (bio->bi_opf & REQ_NOWAIT) 2872 bio_wouldblock_error(bio); 2873 return NULL; 2874 } 2875 2876 /* 2877 * Check if there is a suitable cached request and return it. 2878 */ 2879 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2880 struct request_queue *q, blk_opf_t opf) 2881 { 2882 enum hctx_type type = blk_mq_get_hctx_type(opf); 2883 struct request *rq; 2884 2885 if (!plug) 2886 return NULL; 2887 rq = rq_list_peek(&plug->cached_rq); 2888 if (!rq || rq->q != q) 2889 return NULL; 2890 if (type != rq->mq_hctx->type && 2891 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 2892 return NULL; 2893 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 2894 return NULL; 2895 return rq; 2896 } 2897 2898 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 2899 struct bio *bio) 2900 { 2901 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq); 2902 2903 /* 2904 * If any qos ->throttle() end up blocking, we will have flushed the 2905 * plug and hence killed the cached_rq list as well. Pop this entry 2906 * before we throttle. 2907 */ 2908 plug->cached_rq = rq_list_next(rq); 2909 rq_qos_throttle(rq->q, bio); 2910 2911 blk_mq_rq_time_init(rq, 0); 2912 rq->cmd_flags = bio->bi_opf; 2913 INIT_LIST_HEAD(&rq->queuelist); 2914 } 2915 2916 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 2917 { 2918 unsigned int bs_mask = queue_logical_block_size(q) - 1; 2919 2920 /* .bi_sector of any zero sized bio need to be initialized */ 2921 if ((bio->bi_iter.bi_size & bs_mask) || 2922 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 2923 return true; 2924 return false; 2925 } 2926 2927 /** 2928 * blk_mq_submit_bio - Create and send a request to block device. 2929 * @bio: Bio pointer. 2930 * 2931 * Builds up a request structure from @q and @bio and send to the device. The 2932 * request may not be queued directly to hardware if: 2933 * * This request can be merged with another one 2934 * * We want to place request at plug queue for possible future merging 2935 * * There is an IO scheduler active at this queue 2936 * 2937 * It will not queue the request if there is an error with the bio, or at the 2938 * request creation. 2939 */ 2940 void blk_mq_submit_bio(struct bio *bio) 2941 { 2942 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2943 struct blk_plug *plug = current->plug; 2944 const int is_sync = op_is_sync(bio->bi_opf); 2945 struct blk_mq_hw_ctx *hctx; 2946 unsigned int nr_segs; 2947 struct request *rq; 2948 blk_status_t ret; 2949 2950 /* 2951 * If the plug has a cached request for this queue, try to use it. 2952 */ 2953 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 2954 2955 /* 2956 * A BIO that was released from a zone write plug has already been 2957 * through the preparation in this function, already holds a reference 2958 * on the queue usage counter, and is the only write BIO in-flight for 2959 * the target zone. Go straight to preparing a request for it. 2960 */ 2961 if (bio_zone_write_plugging(bio)) { 2962 nr_segs = bio->__bi_nr_segments; 2963 if (rq) 2964 blk_queue_exit(q); 2965 goto new_request; 2966 } 2967 2968 bio = blk_queue_bounce(bio, q); 2969 2970 /* 2971 * The cached request already holds a q_usage_counter reference and we 2972 * don't have to acquire a new one if we use it. 2973 */ 2974 if (!rq) { 2975 if (unlikely(bio_queue_enter(bio))) 2976 return; 2977 } 2978 2979 /* 2980 * Device reconfiguration may change logical block size, so alignment 2981 * check has to be done with queue usage counter held 2982 */ 2983 if (unlikely(bio_unaligned(bio, q))) { 2984 bio_io_error(bio); 2985 goto queue_exit; 2986 } 2987 2988 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2989 if (!bio) 2990 goto queue_exit; 2991 2992 if (!bio_integrity_prep(bio)) 2993 goto queue_exit; 2994 2995 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 2996 goto queue_exit; 2997 2998 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 2999 goto queue_exit; 3000 3001 new_request: 3002 if (!rq) { 3003 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3004 if (unlikely(!rq)) 3005 goto queue_exit; 3006 } else { 3007 blk_mq_use_cached_rq(rq, plug, bio); 3008 } 3009 3010 trace_block_getrq(bio); 3011 3012 rq_qos_track(q, rq, bio); 3013 3014 blk_mq_bio_to_request(rq, bio, nr_segs); 3015 3016 ret = blk_crypto_rq_get_keyslot(rq); 3017 if (ret != BLK_STS_OK) { 3018 bio->bi_status = ret; 3019 bio_endio(bio); 3020 blk_mq_free_request(rq); 3021 return; 3022 } 3023 3024 if (bio_zone_write_plugging(bio)) 3025 blk_zone_write_plug_init_request(rq); 3026 3027 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3028 return; 3029 3030 if (plug) { 3031 blk_add_rq_to_plug(plug, rq); 3032 return; 3033 } 3034 3035 hctx = rq->mq_hctx; 3036 if ((rq->rq_flags & RQF_USE_SCHED) || 3037 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3038 blk_mq_insert_request(rq, 0); 3039 blk_mq_run_hw_queue(hctx, true); 3040 } else { 3041 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3042 } 3043 return; 3044 3045 queue_exit: 3046 /* 3047 * Don't drop the queue reference if we were trying to use a cached 3048 * request and thus didn't acquire one. 3049 */ 3050 if (!rq) 3051 blk_queue_exit(q); 3052 } 3053 3054 #ifdef CONFIG_BLK_MQ_STACKING 3055 /** 3056 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3057 * @rq: the request being queued 3058 */ 3059 blk_status_t blk_insert_cloned_request(struct request *rq) 3060 { 3061 struct request_queue *q = rq->q; 3062 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3063 unsigned int max_segments = blk_rq_get_max_segments(rq); 3064 blk_status_t ret; 3065 3066 if (blk_rq_sectors(rq) > max_sectors) { 3067 /* 3068 * SCSI device does not have a good way to return if 3069 * Write Same/Zero is actually supported. If a device rejects 3070 * a non-read/write command (discard, write same,etc.) the 3071 * low-level device driver will set the relevant queue limit to 3072 * 0 to prevent blk-lib from issuing more of the offending 3073 * operations. Commands queued prior to the queue limit being 3074 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3075 * errors being propagated to upper layers. 3076 */ 3077 if (max_sectors == 0) 3078 return BLK_STS_NOTSUPP; 3079 3080 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3081 __func__, blk_rq_sectors(rq), max_sectors); 3082 return BLK_STS_IOERR; 3083 } 3084 3085 /* 3086 * The queue settings related to segment counting may differ from the 3087 * original queue. 3088 */ 3089 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3090 if (rq->nr_phys_segments > max_segments) { 3091 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3092 __func__, rq->nr_phys_segments, max_segments); 3093 return BLK_STS_IOERR; 3094 } 3095 3096 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3097 return BLK_STS_IOERR; 3098 3099 ret = blk_crypto_rq_get_keyslot(rq); 3100 if (ret != BLK_STS_OK) 3101 return ret; 3102 3103 blk_account_io_start(rq); 3104 3105 /* 3106 * Since we have a scheduler attached on the top device, 3107 * bypass a potential scheduler on the bottom device for 3108 * insert. 3109 */ 3110 blk_mq_run_dispatch_ops(q, 3111 ret = blk_mq_request_issue_directly(rq, true)); 3112 if (ret) 3113 blk_account_io_done(rq, blk_time_get_ns()); 3114 return ret; 3115 } 3116 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3117 3118 /** 3119 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3120 * @rq: the clone request to be cleaned up 3121 * 3122 * Description: 3123 * Free all bios in @rq for a cloned request. 3124 */ 3125 void blk_rq_unprep_clone(struct request *rq) 3126 { 3127 struct bio *bio; 3128 3129 while ((bio = rq->bio) != NULL) { 3130 rq->bio = bio->bi_next; 3131 3132 bio_put(bio); 3133 } 3134 } 3135 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3136 3137 /** 3138 * blk_rq_prep_clone - Helper function to setup clone request 3139 * @rq: the request to be setup 3140 * @rq_src: original request to be cloned 3141 * @bs: bio_set that bios for clone are allocated from 3142 * @gfp_mask: memory allocation mask for bio 3143 * @bio_ctr: setup function to be called for each clone bio. 3144 * Returns %0 for success, non %0 for failure. 3145 * @data: private data to be passed to @bio_ctr 3146 * 3147 * Description: 3148 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3149 * Also, pages which the original bios are pointing to are not copied 3150 * and the cloned bios just point same pages. 3151 * So cloned bios must be completed before original bios, which means 3152 * the caller must complete @rq before @rq_src. 3153 */ 3154 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3155 struct bio_set *bs, gfp_t gfp_mask, 3156 int (*bio_ctr)(struct bio *, struct bio *, void *), 3157 void *data) 3158 { 3159 struct bio *bio, *bio_src; 3160 3161 if (!bs) 3162 bs = &fs_bio_set; 3163 3164 __rq_for_each_bio(bio_src, rq_src) { 3165 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3166 bs); 3167 if (!bio) 3168 goto free_and_out; 3169 3170 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3171 goto free_and_out; 3172 3173 if (rq->bio) { 3174 rq->biotail->bi_next = bio; 3175 rq->biotail = bio; 3176 } else { 3177 rq->bio = rq->biotail = bio; 3178 } 3179 bio = NULL; 3180 } 3181 3182 /* Copy attributes of the original request to the clone request. */ 3183 rq->__sector = blk_rq_pos(rq_src); 3184 rq->__data_len = blk_rq_bytes(rq_src); 3185 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3186 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3187 rq->special_vec = rq_src->special_vec; 3188 } 3189 rq->nr_phys_segments = rq_src->nr_phys_segments; 3190 rq->ioprio = rq_src->ioprio; 3191 rq->write_hint = rq_src->write_hint; 3192 3193 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3194 goto free_and_out; 3195 3196 return 0; 3197 3198 free_and_out: 3199 if (bio) 3200 bio_put(bio); 3201 blk_rq_unprep_clone(rq); 3202 3203 return -ENOMEM; 3204 } 3205 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3206 #endif /* CONFIG_BLK_MQ_STACKING */ 3207 3208 /* 3209 * Steal bios from a request and add them to a bio list. 3210 * The request must not have been partially completed before. 3211 */ 3212 void blk_steal_bios(struct bio_list *list, struct request *rq) 3213 { 3214 if (rq->bio) { 3215 if (list->tail) 3216 list->tail->bi_next = rq->bio; 3217 else 3218 list->head = rq->bio; 3219 list->tail = rq->biotail; 3220 3221 rq->bio = NULL; 3222 rq->biotail = NULL; 3223 } 3224 3225 rq->__data_len = 0; 3226 } 3227 EXPORT_SYMBOL_GPL(blk_steal_bios); 3228 3229 static size_t order_to_size(unsigned int order) 3230 { 3231 return (size_t)PAGE_SIZE << order; 3232 } 3233 3234 /* called before freeing request pool in @tags */ 3235 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3236 struct blk_mq_tags *tags) 3237 { 3238 struct page *page; 3239 unsigned long flags; 3240 3241 /* 3242 * There is no need to clear mapping if driver tags is not initialized 3243 * or the mapping belongs to the driver tags. 3244 */ 3245 if (!drv_tags || drv_tags == tags) 3246 return; 3247 3248 list_for_each_entry(page, &tags->page_list, lru) { 3249 unsigned long start = (unsigned long)page_address(page); 3250 unsigned long end = start + order_to_size(page->private); 3251 int i; 3252 3253 for (i = 0; i < drv_tags->nr_tags; i++) { 3254 struct request *rq = drv_tags->rqs[i]; 3255 unsigned long rq_addr = (unsigned long)rq; 3256 3257 if (rq_addr >= start && rq_addr < end) { 3258 WARN_ON_ONCE(req_ref_read(rq) != 0); 3259 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3260 } 3261 } 3262 } 3263 3264 /* 3265 * Wait until all pending iteration is done. 3266 * 3267 * Request reference is cleared and it is guaranteed to be observed 3268 * after the ->lock is released. 3269 */ 3270 spin_lock_irqsave(&drv_tags->lock, flags); 3271 spin_unlock_irqrestore(&drv_tags->lock, flags); 3272 } 3273 3274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3275 unsigned int hctx_idx) 3276 { 3277 struct blk_mq_tags *drv_tags; 3278 struct page *page; 3279 3280 if (list_empty(&tags->page_list)) 3281 return; 3282 3283 if (blk_mq_is_shared_tags(set->flags)) 3284 drv_tags = set->shared_tags; 3285 else 3286 drv_tags = set->tags[hctx_idx]; 3287 3288 if (tags->static_rqs && set->ops->exit_request) { 3289 int i; 3290 3291 for (i = 0; i < tags->nr_tags; i++) { 3292 struct request *rq = tags->static_rqs[i]; 3293 3294 if (!rq) 3295 continue; 3296 set->ops->exit_request(set, rq, hctx_idx); 3297 tags->static_rqs[i] = NULL; 3298 } 3299 } 3300 3301 blk_mq_clear_rq_mapping(drv_tags, tags); 3302 3303 while (!list_empty(&tags->page_list)) { 3304 page = list_first_entry(&tags->page_list, struct page, lru); 3305 list_del_init(&page->lru); 3306 /* 3307 * Remove kmemleak object previously allocated in 3308 * blk_mq_alloc_rqs(). 3309 */ 3310 kmemleak_free(page_address(page)); 3311 __free_pages(page, page->private); 3312 } 3313 } 3314 3315 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3316 { 3317 kfree(tags->rqs); 3318 tags->rqs = NULL; 3319 kfree(tags->static_rqs); 3320 tags->static_rqs = NULL; 3321 3322 blk_mq_free_tags(tags); 3323 } 3324 3325 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3326 unsigned int hctx_idx) 3327 { 3328 int i; 3329 3330 for (i = 0; i < set->nr_maps; i++) { 3331 unsigned int start = set->map[i].queue_offset; 3332 unsigned int end = start + set->map[i].nr_queues; 3333 3334 if (hctx_idx >= start && hctx_idx < end) 3335 break; 3336 } 3337 3338 if (i >= set->nr_maps) 3339 i = HCTX_TYPE_DEFAULT; 3340 3341 return i; 3342 } 3343 3344 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3345 unsigned int hctx_idx) 3346 { 3347 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3348 3349 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3350 } 3351 3352 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3353 unsigned int hctx_idx, 3354 unsigned int nr_tags, 3355 unsigned int reserved_tags) 3356 { 3357 int node = blk_mq_get_hctx_node(set, hctx_idx); 3358 struct blk_mq_tags *tags; 3359 3360 if (node == NUMA_NO_NODE) 3361 node = set->numa_node; 3362 3363 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3364 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3365 if (!tags) 3366 return NULL; 3367 3368 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3369 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3370 node); 3371 if (!tags->rqs) 3372 goto err_free_tags; 3373 3374 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3375 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3376 node); 3377 if (!tags->static_rqs) 3378 goto err_free_rqs; 3379 3380 return tags; 3381 3382 err_free_rqs: 3383 kfree(tags->rqs); 3384 err_free_tags: 3385 blk_mq_free_tags(tags); 3386 return NULL; 3387 } 3388 3389 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3390 unsigned int hctx_idx, int node) 3391 { 3392 int ret; 3393 3394 if (set->ops->init_request) { 3395 ret = set->ops->init_request(set, rq, hctx_idx, node); 3396 if (ret) 3397 return ret; 3398 } 3399 3400 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3401 return 0; 3402 } 3403 3404 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3405 struct blk_mq_tags *tags, 3406 unsigned int hctx_idx, unsigned int depth) 3407 { 3408 unsigned int i, j, entries_per_page, max_order = 4; 3409 int node = blk_mq_get_hctx_node(set, hctx_idx); 3410 size_t rq_size, left; 3411 3412 if (node == NUMA_NO_NODE) 3413 node = set->numa_node; 3414 3415 INIT_LIST_HEAD(&tags->page_list); 3416 3417 /* 3418 * rq_size is the size of the request plus driver payload, rounded 3419 * to the cacheline size 3420 */ 3421 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3422 cache_line_size()); 3423 left = rq_size * depth; 3424 3425 for (i = 0; i < depth; ) { 3426 int this_order = max_order; 3427 struct page *page; 3428 int to_do; 3429 void *p; 3430 3431 while (this_order && left < order_to_size(this_order - 1)) 3432 this_order--; 3433 3434 do { 3435 page = alloc_pages_node(node, 3436 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3437 this_order); 3438 if (page) 3439 break; 3440 if (!this_order--) 3441 break; 3442 if (order_to_size(this_order) < rq_size) 3443 break; 3444 } while (1); 3445 3446 if (!page) 3447 goto fail; 3448 3449 page->private = this_order; 3450 list_add_tail(&page->lru, &tags->page_list); 3451 3452 p = page_address(page); 3453 /* 3454 * Allow kmemleak to scan these pages as they contain pointers 3455 * to additional allocations like via ops->init_request(). 3456 */ 3457 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3458 entries_per_page = order_to_size(this_order) / rq_size; 3459 to_do = min(entries_per_page, depth - i); 3460 left -= to_do * rq_size; 3461 for (j = 0; j < to_do; j++) { 3462 struct request *rq = p; 3463 3464 tags->static_rqs[i] = rq; 3465 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3466 tags->static_rqs[i] = NULL; 3467 goto fail; 3468 } 3469 3470 p += rq_size; 3471 i++; 3472 } 3473 } 3474 return 0; 3475 3476 fail: 3477 blk_mq_free_rqs(set, tags, hctx_idx); 3478 return -ENOMEM; 3479 } 3480 3481 struct rq_iter_data { 3482 struct blk_mq_hw_ctx *hctx; 3483 bool has_rq; 3484 }; 3485 3486 static bool blk_mq_has_request(struct request *rq, void *data) 3487 { 3488 struct rq_iter_data *iter_data = data; 3489 3490 if (rq->mq_hctx != iter_data->hctx) 3491 return true; 3492 iter_data->has_rq = true; 3493 return false; 3494 } 3495 3496 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3497 { 3498 struct blk_mq_tags *tags = hctx->sched_tags ? 3499 hctx->sched_tags : hctx->tags; 3500 struct rq_iter_data data = { 3501 .hctx = hctx, 3502 }; 3503 3504 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3505 return data.has_rq; 3506 } 3507 3508 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3509 unsigned int this_cpu) 3510 { 3511 enum hctx_type type = hctx->type; 3512 int cpu; 3513 3514 /* 3515 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3516 * might submit IOs on these isolated CPUs, so use the queue map to 3517 * check if all CPUs mapped to this hctx are offline 3518 */ 3519 for_each_online_cpu(cpu) { 3520 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3521 type, cpu); 3522 3523 if (h != hctx) 3524 continue; 3525 3526 /* this hctx has at least one online CPU */ 3527 if (this_cpu != cpu) 3528 return true; 3529 } 3530 3531 return false; 3532 } 3533 3534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3535 { 3536 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3537 struct blk_mq_hw_ctx, cpuhp_online); 3538 3539 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3540 return 0; 3541 3542 /* 3543 * Prevent new request from being allocated on the current hctx. 3544 * 3545 * The smp_mb__after_atomic() Pairs with the implied barrier in 3546 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3547 * seen once we return from the tag allocator. 3548 */ 3549 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3550 smp_mb__after_atomic(); 3551 3552 /* 3553 * Try to grab a reference to the queue and wait for any outstanding 3554 * requests. If we could not grab a reference the queue has been 3555 * frozen and there are no requests. 3556 */ 3557 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3558 while (blk_mq_hctx_has_requests(hctx)) 3559 msleep(5); 3560 percpu_ref_put(&hctx->queue->q_usage_counter); 3561 } 3562 3563 return 0; 3564 } 3565 3566 /* 3567 * Check if one CPU is mapped to the specified hctx 3568 * 3569 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3570 * to be used for scheduling kworker only. For other usage, please call this 3571 * helper for checking if one CPU belongs to the specified hctx 3572 */ 3573 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3574 const struct blk_mq_hw_ctx *hctx) 3575 { 3576 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3577 hctx->type, cpu); 3578 3579 return mapped_hctx == hctx; 3580 } 3581 3582 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3583 { 3584 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3585 struct blk_mq_hw_ctx, cpuhp_online); 3586 3587 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3588 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3589 return 0; 3590 } 3591 3592 /* 3593 * 'cpu' is going away. splice any existing rq_list entries from this 3594 * software queue to the hw queue dispatch list, and ensure that it 3595 * gets run. 3596 */ 3597 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3598 { 3599 struct blk_mq_hw_ctx *hctx; 3600 struct blk_mq_ctx *ctx; 3601 LIST_HEAD(tmp); 3602 enum hctx_type type; 3603 3604 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3605 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3606 return 0; 3607 3608 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3609 type = hctx->type; 3610 3611 spin_lock(&ctx->lock); 3612 if (!list_empty(&ctx->rq_lists[type])) { 3613 list_splice_init(&ctx->rq_lists[type], &tmp); 3614 blk_mq_hctx_clear_pending(hctx, ctx); 3615 } 3616 spin_unlock(&ctx->lock); 3617 3618 if (list_empty(&tmp)) 3619 return 0; 3620 3621 spin_lock(&hctx->lock); 3622 list_splice_tail_init(&tmp, &hctx->dispatch); 3623 spin_unlock(&hctx->lock); 3624 3625 blk_mq_run_hw_queue(hctx, true); 3626 return 0; 3627 } 3628 3629 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3630 { 3631 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3632 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3633 &hctx->cpuhp_online); 3634 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3635 &hctx->cpuhp_dead); 3636 } 3637 3638 /* 3639 * Before freeing hw queue, clearing the flush request reference in 3640 * tags->rqs[] for avoiding potential UAF. 3641 */ 3642 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3643 unsigned int queue_depth, struct request *flush_rq) 3644 { 3645 int i; 3646 unsigned long flags; 3647 3648 /* The hw queue may not be mapped yet */ 3649 if (!tags) 3650 return; 3651 3652 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3653 3654 for (i = 0; i < queue_depth; i++) 3655 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3656 3657 /* 3658 * Wait until all pending iteration is done. 3659 * 3660 * Request reference is cleared and it is guaranteed to be observed 3661 * after the ->lock is released. 3662 */ 3663 spin_lock_irqsave(&tags->lock, flags); 3664 spin_unlock_irqrestore(&tags->lock, flags); 3665 } 3666 3667 /* hctx->ctxs will be freed in queue's release handler */ 3668 static void blk_mq_exit_hctx(struct request_queue *q, 3669 struct blk_mq_tag_set *set, 3670 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3671 { 3672 struct request *flush_rq = hctx->fq->flush_rq; 3673 3674 if (blk_mq_hw_queue_mapped(hctx)) 3675 blk_mq_tag_idle(hctx); 3676 3677 if (blk_queue_init_done(q)) 3678 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3679 set->queue_depth, flush_rq); 3680 if (set->ops->exit_request) 3681 set->ops->exit_request(set, flush_rq, hctx_idx); 3682 3683 if (set->ops->exit_hctx) 3684 set->ops->exit_hctx(hctx, hctx_idx); 3685 3686 blk_mq_remove_cpuhp(hctx); 3687 3688 xa_erase(&q->hctx_table, hctx_idx); 3689 3690 spin_lock(&q->unused_hctx_lock); 3691 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3692 spin_unlock(&q->unused_hctx_lock); 3693 } 3694 3695 static void blk_mq_exit_hw_queues(struct request_queue *q, 3696 struct blk_mq_tag_set *set, int nr_queue) 3697 { 3698 struct blk_mq_hw_ctx *hctx; 3699 unsigned long i; 3700 3701 queue_for_each_hw_ctx(q, hctx, i) { 3702 if (i == nr_queue) 3703 break; 3704 blk_mq_exit_hctx(q, set, hctx, i); 3705 } 3706 } 3707 3708 static int blk_mq_init_hctx(struct request_queue *q, 3709 struct blk_mq_tag_set *set, 3710 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3711 { 3712 hctx->queue_num = hctx_idx; 3713 3714 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3715 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3716 &hctx->cpuhp_online); 3717 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3718 3719 hctx->tags = set->tags[hctx_idx]; 3720 3721 if (set->ops->init_hctx && 3722 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3723 goto unregister_cpu_notifier; 3724 3725 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3726 hctx->numa_node)) 3727 goto exit_hctx; 3728 3729 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3730 goto exit_flush_rq; 3731 3732 return 0; 3733 3734 exit_flush_rq: 3735 if (set->ops->exit_request) 3736 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3737 exit_hctx: 3738 if (set->ops->exit_hctx) 3739 set->ops->exit_hctx(hctx, hctx_idx); 3740 unregister_cpu_notifier: 3741 blk_mq_remove_cpuhp(hctx); 3742 return -1; 3743 } 3744 3745 static struct blk_mq_hw_ctx * 3746 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3747 int node) 3748 { 3749 struct blk_mq_hw_ctx *hctx; 3750 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3751 3752 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3753 if (!hctx) 3754 goto fail_alloc_hctx; 3755 3756 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3757 goto free_hctx; 3758 3759 atomic_set(&hctx->nr_active, 0); 3760 if (node == NUMA_NO_NODE) 3761 node = set->numa_node; 3762 hctx->numa_node = node; 3763 3764 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3765 spin_lock_init(&hctx->lock); 3766 INIT_LIST_HEAD(&hctx->dispatch); 3767 hctx->queue = q; 3768 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3769 3770 INIT_LIST_HEAD(&hctx->hctx_list); 3771 3772 /* 3773 * Allocate space for all possible cpus to avoid allocation at 3774 * runtime 3775 */ 3776 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3777 gfp, node); 3778 if (!hctx->ctxs) 3779 goto free_cpumask; 3780 3781 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3782 gfp, node, false, false)) 3783 goto free_ctxs; 3784 hctx->nr_ctx = 0; 3785 3786 spin_lock_init(&hctx->dispatch_wait_lock); 3787 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3788 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3789 3790 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3791 if (!hctx->fq) 3792 goto free_bitmap; 3793 3794 blk_mq_hctx_kobj_init(hctx); 3795 3796 return hctx; 3797 3798 free_bitmap: 3799 sbitmap_free(&hctx->ctx_map); 3800 free_ctxs: 3801 kfree(hctx->ctxs); 3802 free_cpumask: 3803 free_cpumask_var(hctx->cpumask); 3804 free_hctx: 3805 kfree(hctx); 3806 fail_alloc_hctx: 3807 return NULL; 3808 } 3809 3810 static void blk_mq_init_cpu_queues(struct request_queue *q, 3811 unsigned int nr_hw_queues) 3812 { 3813 struct blk_mq_tag_set *set = q->tag_set; 3814 unsigned int i, j; 3815 3816 for_each_possible_cpu(i) { 3817 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3818 struct blk_mq_hw_ctx *hctx; 3819 int k; 3820 3821 __ctx->cpu = i; 3822 spin_lock_init(&__ctx->lock); 3823 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3824 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3825 3826 __ctx->queue = q; 3827 3828 /* 3829 * Set local node, IFF we have more than one hw queue. If 3830 * not, we remain on the home node of the device 3831 */ 3832 for (j = 0; j < set->nr_maps; j++) { 3833 hctx = blk_mq_map_queue_type(q, j, i); 3834 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3835 hctx->numa_node = cpu_to_node(i); 3836 } 3837 } 3838 } 3839 3840 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3841 unsigned int hctx_idx, 3842 unsigned int depth) 3843 { 3844 struct blk_mq_tags *tags; 3845 int ret; 3846 3847 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3848 if (!tags) 3849 return NULL; 3850 3851 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3852 if (ret) { 3853 blk_mq_free_rq_map(tags); 3854 return NULL; 3855 } 3856 3857 return tags; 3858 } 3859 3860 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3861 int hctx_idx) 3862 { 3863 if (blk_mq_is_shared_tags(set->flags)) { 3864 set->tags[hctx_idx] = set->shared_tags; 3865 3866 return true; 3867 } 3868 3869 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3870 set->queue_depth); 3871 3872 return set->tags[hctx_idx]; 3873 } 3874 3875 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3876 struct blk_mq_tags *tags, 3877 unsigned int hctx_idx) 3878 { 3879 if (tags) { 3880 blk_mq_free_rqs(set, tags, hctx_idx); 3881 blk_mq_free_rq_map(tags); 3882 } 3883 } 3884 3885 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3886 unsigned int hctx_idx) 3887 { 3888 if (!blk_mq_is_shared_tags(set->flags)) 3889 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3890 3891 set->tags[hctx_idx] = NULL; 3892 } 3893 3894 static void blk_mq_map_swqueue(struct request_queue *q) 3895 { 3896 unsigned int j, hctx_idx; 3897 unsigned long i; 3898 struct blk_mq_hw_ctx *hctx; 3899 struct blk_mq_ctx *ctx; 3900 struct blk_mq_tag_set *set = q->tag_set; 3901 3902 queue_for_each_hw_ctx(q, hctx, i) { 3903 cpumask_clear(hctx->cpumask); 3904 hctx->nr_ctx = 0; 3905 hctx->dispatch_from = NULL; 3906 } 3907 3908 /* 3909 * Map software to hardware queues. 3910 * 3911 * If the cpu isn't present, the cpu is mapped to first hctx. 3912 */ 3913 for_each_possible_cpu(i) { 3914 3915 ctx = per_cpu_ptr(q->queue_ctx, i); 3916 for (j = 0; j < set->nr_maps; j++) { 3917 if (!set->map[j].nr_queues) { 3918 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3919 HCTX_TYPE_DEFAULT, i); 3920 continue; 3921 } 3922 hctx_idx = set->map[j].mq_map[i]; 3923 /* unmapped hw queue can be remapped after CPU topo changed */ 3924 if (!set->tags[hctx_idx] && 3925 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3926 /* 3927 * If tags initialization fail for some hctx, 3928 * that hctx won't be brought online. In this 3929 * case, remap the current ctx to hctx[0] which 3930 * is guaranteed to always have tags allocated 3931 */ 3932 set->map[j].mq_map[i] = 0; 3933 } 3934 3935 hctx = blk_mq_map_queue_type(q, j, i); 3936 ctx->hctxs[j] = hctx; 3937 /* 3938 * If the CPU is already set in the mask, then we've 3939 * mapped this one already. This can happen if 3940 * devices share queues across queue maps. 3941 */ 3942 if (cpumask_test_cpu(i, hctx->cpumask)) 3943 continue; 3944 3945 cpumask_set_cpu(i, hctx->cpumask); 3946 hctx->type = j; 3947 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3948 hctx->ctxs[hctx->nr_ctx++] = ctx; 3949 3950 /* 3951 * If the nr_ctx type overflows, we have exceeded the 3952 * amount of sw queues we can support. 3953 */ 3954 BUG_ON(!hctx->nr_ctx); 3955 } 3956 3957 for (; j < HCTX_MAX_TYPES; j++) 3958 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3959 HCTX_TYPE_DEFAULT, i); 3960 } 3961 3962 queue_for_each_hw_ctx(q, hctx, i) { 3963 int cpu; 3964 3965 /* 3966 * If no software queues are mapped to this hardware queue, 3967 * disable it and free the request entries. 3968 */ 3969 if (!hctx->nr_ctx) { 3970 /* Never unmap queue 0. We need it as a 3971 * fallback in case of a new remap fails 3972 * allocation 3973 */ 3974 if (i) 3975 __blk_mq_free_map_and_rqs(set, i); 3976 3977 hctx->tags = NULL; 3978 continue; 3979 } 3980 3981 hctx->tags = set->tags[i]; 3982 WARN_ON(!hctx->tags); 3983 3984 /* 3985 * Set the map size to the number of mapped software queues. 3986 * This is more accurate and more efficient than looping 3987 * over all possibly mapped software queues. 3988 */ 3989 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3990 3991 /* 3992 * Rule out isolated CPUs from hctx->cpumask to avoid 3993 * running block kworker on isolated CPUs 3994 */ 3995 for_each_cpu(cpu, hctx->cpumask) { 3996 if (cpu_is_isolated(cpu)) 3997 cpumask_clear_cpu(cpu, hctx->cpumask); 3998 } 3999 4000 /* 4001 * Initialize batch roundrobin counts 4002 */ 4003 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4004 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4005 } 4006 } 4007 4008 /* 4009 * Caller needs to ensure that we're either frozen/quiesced, or that 4010 * the queue isn't live yet. 4011 */ 4012 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4013 { 4014 struct blk_mq_hw_ctx *hctx; 4015 unsigned long i; 4016 4017 queue_for_each_hw_ctx(q, hctx, i) { 4018 if (shared) { 4019 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4020 } else { 4021 blk_mq_tag_idle(hctx); 4022 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4023 } 4024 } 4025 } 4026 4027 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4028 bool shared) 4029 { 4030 struct request_queue *q; 4031 4032 lockdep_assert_held(&set->tag_list_lock); 4033 4034 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4035 blk_mq_freeze_queue(q); 4036 queue_set_hctx_shared(q, shared); 4037 blk_mq_unfreeze_queue(q); 4038 } 4039 } 4040 4041 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4042 { 4043 struct blk_mq_tag_set *set = q->tag_set; 4044 4045 mutex_lock(&set->tag_list_lock); 4046 list_del(&q->tag_set_list); 4047 if (list_is_singular(&set->tag_list)) { 4048 /* just transitioned to unshared */ 4049 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4050 /* update existing queue */ 4051 blk_mq_update_tag_set_shared(set, false); 4052 } 4053 mutex_unlock(&set->tag_list_lock); 4054 INIT_LIST_HEAD(&q->tag_set_list); 4055 } 4056 4057 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4058 struct request_queue *q) 4059 { 4060 mutex_lock(&set->tag_list_lock); 4061 4062 /* 4063 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4064 */ 4065 if (!list_empty(&set->tag_list) && 4066 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4067 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4068 /* update existing queue */ 4069 blk_mq_update_tag_set_shared(set, true); 4070 } 4071 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4072 queue_set_hctx_shared(q, true); 4073 list_add_tail(&q->tag_set_list, &set->tag_list); 4074 4075 mutex_unlock(&set->tag_list_lock); 4076 } 4077 4078 /* All allocations will be freed in release handler of q->mq_kobj */ 4079 static int blk_mq_alloc_ctxs(struct request_queue *q) 4080 { 4081 struct blk_mq_ctxs *ctxs; 4082 int cpu; 4083 4084 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4085 if (!ctxs) 4086 return -ENOMEM; 4087 4088 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4089 if (!ctxs->queue_ctx) 4090 goto fail; 4091 4092 for_each_possible_cpu(cpu) { 4093 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4094 ctx->ctxs = ctxs; 4095 } 4096 4097 q->mq_kobj = &ctxs->kobj; 4098 q->queue_ctx = ctxs->queue_ctx; 4099 4100 return 0; 4101 fail: 4102 kfree(ctxs); 4103 return -ENOMEM; 4104 } 4105 4106 /* 4107 * It is the actual release handler for mq, but we do it from 4108 * request queue's release handler for avoiding use-after-free 4109 * and headache because q->mq_kobj shouldn't have been introduced, 4110 * but we can't group ctx/kctx kobj without it. 4111 */ 4112 void blk_mq_release(struct request_queue *q) 4113 { 4114 struct blk_mq_hw_ctx *hctx, *next; 4115 unsigned long i; 4116 4117 queue_for_each_hw_ctx(q, hctx, i) 4118 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4119 4120 /* all hctx are in .unused_hctx_list now */ 4121 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4122 list_del_init(&hctx->hctx_list); 4123 kobject_put(&hctx->kobj); 4124 } 4125 4126 xa_destroy(&q->hctx_table); 4127 4128 /* 4129 * release .mq_kobj and sw queue's kobject now because 4130 * both share lifetime with request queue. 4131 */ 4132 blk_mq_sysfs_deinit(q); 4133 } 4134 4135 static bool blk_mq_can_poll(struct blk_mq_tag_set *set) 4136 { 4137 return set->nr_maps > HCTX_TYPE_POLL && 4138 set->map[HCTX_TYPE_POLL].nr_queues; 4139 } 4140 4141 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4142 struct queue_limits *lim, void *queuedata) 4143 { 4144 struct queue_limits default_lim = { }; 4145 struct request_queue *q; 4146 int ret; 4147 4148 if (!lim) 4149 lim = &default_lim; 4150 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4151 if (blk_mq_can_poll(set)) 4152 lim->features |= BLK_FEAT_POLL; 4153 4154 q = blk_alloc_queue(lim, set->numa_node); 4155 if (IS_ERR(q)) 4156 return q; 4157 q->queuedata = queuedata; 4158 ret = blk_mq_init_allocated_queue(set, q); 4159 if (ret) { 4160 blk_put_queue(q); 4161 return ERR_PTR(ret); 4162 } 4163 return q; 4164 } 4165 EXPORT_SYMBOL(blk_mq_alloc_queue); 4166 4167 /** 4168 * blk_mq_destroy_queue - shutdown a request queue 4169 * @q: request queue to shutdown 4170 * 4171 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4172 * requests will be failed with -ENODEV. The caller is responsible for dropping 4173 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4174 * 4175 * Context: can sleep 4176 */ 4177 void blk_mq_destroy_queue(struct request_queue *q) 4178 { 4179 WARN_ON_ONCE(!queue_is_mq(q)); 4180 WARN_ON_ONCE(blk_queue_registered(q)); 4181 4182 might_sleep(); 4183 4184 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4185 blk_queue_start_drain(q); 4186 blk_mq_freeze_queue_wait(q); 4187 4188 blk_sync_queue(q); 4189 blk_mq_cancel_work_sync(q); 4190 blk_mq_exit_queue(q); 4191 } 4192 EXPORT_SYMBOL(blk_mq_destroy_queue); 4193 4194 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4195 struct queue_limits *lim, void *queuedata, 4196 struct lock_class_key *lkclass) 4197 { 4198 struct request_queue *q; 4199 struct gendisk *disk; 4200 4201 q = blk_mq_alloc_queue(set, lim, queuedata); 4202 if (IS_ERR(q)) 4203 return ERR_CAST(q); 4204 4205 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4206 if (!disk) { 4207 blk_mq_destroy_queue(q); 4208 blk_put_queue(q); 4209 return ERR_PTR(-ENOMEM); 4210 } 4211 set_bit(GD_OWNS_QUEUE, &disk->state); 4212 return disk; 4213 } 4214 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4215 4216 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4217 struct lock_class_key *lkclass) 4218 { 4219 struct gendisk *disk; 4220 4221 if (!blk_get_queue(q)) 4222 return NULL; 4223 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4224 if (!disk) 4225 blk_put_queue(q); 4226 return disk; 4227 } 4228 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4229 4230 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4231 struct blk_mq_tag_set *set, struct request_queue *q, 4232 int hctx_idx, int node) 4233 { 4234 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4235 4236 /* reuse dead hctx first */ 4237 spin_lock(&q->unused_hctx_lock); 4238 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4239 if (tmp->numa_node == node) { 4240 hctx = tmp; 4241 break; 4242 } 4243 } 4244 if (hctx) 4245 list_del_init(&hctx->hctx_list); 4246 spin_unlock(&q->unused_hctx_lock); 4247 4248 if (!hctx) 4249 hctx = blk_mq_alloc_hctx(q, set, node); 4250 if (!hctx) 4251 goto fail; 4252 4253 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4254 goto free_hctx; 4255 4256 return hctx; 4257 4258 free_hctx: 4259 kobject_put(&hctx->kobj); 4260 fail: 4261 return NULL; 4262 } 4263 4264 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4265 struct request_queue *q) 4266 { 4267 struct blk_mq_hw_ctx *hctx; 4268 unsigned long i, j; 4269 4270 /* protect against switching io scheduler */ 4271 mutex_lock(&q->sysfs_lock); 4272 for (i = 0; i < set->nr_hw_queues; i++) { 4273 int old_node; 4274 int node = blk_mq_get_hctx_node(set, i); 4275 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4276 4277 if (old_hctx) { 4278 old_node = old_hctx->numa_node; 4279 blk_mq_exit_hctx(q, set, old_hctx, i); 4280 } 4281 4282 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4283 if (!old_hctx) 4284 break; 4285 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4286 node, old_node); 4287 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4288 WARN_ON_ONCE(!hctx); 4289 } 4290 } 4291 /* 4292 * Increasing nr_hw_queues fails. Free the newly allocated 4293 * hctxs and keep the previous q->nr_hw_queues. 4294 */ 4295 if (i != set->nr_hw_queues) { 4296 j = q->nr_hw_queues; 4297 } else { 4298 j = i; 4299 q->nr_hw_queues = set->nr_hw_queues; 4300 } 4301 4302 xa_for_each_start(&q->hctx_table, j, hctx, j) 4303 blk_mq_exit_hctx(q, set, hctx, j); 4304 mutex_unlock(&q->sysfs_lock); 4305 } 4306 4307 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4308 struct request_queue *q) 4309 { 4310 /* mark the queue as mq asap */ 4311 q->mq_ops = set->ops; 4312 4313 /* 4314 * ->tag_set has to be setup before initialize hctx, which cpuphp 4315 * handler needs it for checking queue mapping 4316 */ 4317 q->tag_set = set; 4318 4319 if (blk_mq_alloc_ctxs(q)) 4320 goto err_exit; 4321 4322 /* init q->mq_kobj and sw queues' kobjects */ 4323 blk_mq_sysfs_init(q); 4324 4325 INIT_LIST_HEAD(&q->unused_hctx_list); 4326 spin_lock_init(&q->unused_hctx_lock); 4327 4328 xa_init(&q->hctx_table); 4329 4330 blk_mq_realloc_hw_ctxs(set, q); 4331 if (!q->nr_hw_queues) 4332 goto err_hctxs; 4333 4334 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4335 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4336 4337 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4338 4339 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4340 INIT_LIST_HEAD(&q->flush_list); 4341 INIT_LIST_HEAD(&q->requeue_list); 4342 spin_lock_init(&q->requeue_lock); 4343 4344 q->nr_requests = set->queue_depth; 4345 4346 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4347 blk_mq_add_queue_tag_set(set, q); 4348 blk_mq_map_swqueue(q); 4349 return 0; 4350 4351 err_hctxs: 4352 blk_mq_release(q); 4353 err_exit: 4354 q->mq_ops = NULL; 4355 return -ENOMEM; 4356 } 4357 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4358 4359 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4360 void blk_mq_exit_queue(struct request_queue *q) 4361 { 4362 struct blk_mq_tag_set *set = q->tag_set; 4363 4364 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4365 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4366 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4367 blk_mq_del_queue_tag_set(q); 4368 } 4369 4370 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4371 { 4372 int i; 4373 4374 if (blk_mq_is_shared_tags(set->flags)) { 4375 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4376 BLK_MQ_NO_HCTX_IDX, 4377 set->queue_depth); 4378 if (!set->shared_tags) 4379 return -ENOMEM; 4380 } 4381 4382 for (i = 0; i < set->nr_hw_queues; i++) { 4383 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4384 goto out_unwind; 4385 cond_resched(); 4386 } 4387 4388 return 0; 4389 4390 out_unwind: 4391 while (--i >= 0) 4392 __blk_mq_free_map_and_rqs(set, i); 4393 4394 if (blk_mq_is_shared_tags(set->flags)) { 4395 blk_mq_free_map_and_rqs(set, set->shared_tags, 4396 BLK_MQ_NO_HCTX_IDX); 4397 } 4398 4399 return -ENOMEM; 4400 } 4401 4402 /* 4403 * Allocate the request maps associated with this tag_set. Note that this 4404 * may reduce the depth asked for, if memory is tight. set->queue_depth 4405 * will be updated to reflect the allocated depth. 4406 */ 4407 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4408 { 4409 unsigned int depth; 4410 int err; 4411 4412 depth = set->queue_depth; 4413 do { 4414 err = __blk_mq_alloc_rq_maps(set); 4415 if (!err) 4416 break; 4417 4418 set->queue_depth >>= 1; 4419 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4420 err = -ENOMEM; 4421 break; 4422 } 4423 } while (set->queue_depth); 4424 4425 if (!set->queue_depth || err) { 4426 pr_err("blk-mq: failed to allocate request map\n"); 4427 return -ENOMEM; 4428 } 4429 4430 if (depth != set->queue_depth) 4431 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4432 depth, set->queue_depth); 4433 4434 return 0; 4435 } 4436 4437 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4438 { 4439 /* 4440 * blk_mq_map_queues() and multiple .map_queues() implementations 4441 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4442 * number of hardware queues. 4443 */ 4444 if (set->nr_maps == 1) 4445 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4446 4447 if (set->ops->map_queues) { 4448 int i; 4449 4450 /* 4451 * transport .map_queues is usually done in the following 4452 * way: 4453 * 4454 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4455 * mask = get_cpu_mask(queue) 4456 * for_each_cpu(cpu, mask) 4457 * set->map[x].mq_map[cpu] = queue; 4458 * } 4459 * 4460 * When we need to remap, the table has to be cleared for 4461 * killing stale mapping since one CPU may not be mapped 4462 * to any hw queue. 4463 */ 4464 for (i = 0; i < set->nr_maps; i++) 4465 blk_mq_clear_mq_map(&set->map[i]); 4466 4467 set->ops->map_queues(set); 4468 } else { 4469 BUG_ON(set->nr_maps > 1); 4470 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4471 } 4472 } 4473 4474 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4475 int new_nr_hw_queues) 4476 { 4477 struct blk_mq_tags **new_tags; 4478 int i; 4479 4480 if (set->nr_hw_queues >= new_nr_hw_queues) 4481 goto done; 4482 4483 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4484 GFP_KERNEL, set->numa_node); 4485 if (!new_tags) 4486 return -ENOMEM; 4487 4488 if (set->tags) 4489 memcpy(new_tags, set->tags, set->nr_hw_queues * 4490 sizeof(*set->tags)); 4491 kfree(set->tags); 4492 set->tags = new_tags; 4493 4494 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4495 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4496 while (--i >= set->nr_hw_queues) 4497 __blk_mq_free_map_and_rqs(set, i); 4498 return -ENOMEM; 4499 } 4500 cond_resched(); 4501 } 4502 4503 done: 4504 set->nr_hw_queues = new_nr_hw_queues; 4505 return 0; 4506 } 4507 4508 /* 4509 * Alloc a tag set to be associated with one or more request queues. 4510 * May fail with EINVAL for various error conditions. May adjust the 4511 * requested depth down, if it's too large. In that case, the set 4512 * value will be stored in set->queue_depth. 4513 */ 4514 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4515 { 4516 int i, ret; 4517 4518 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4519 4520 if (!set->nr_hw_queues) 4521 return -EINVAL; 4522 if (!set->queue_depth) 4523 return -EINVAL; 4524 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4525 return -EINVAL; 4526 4527 if (!set->ops->queue_rq) 4528 return -EINVAL; 4529 4530 if (!set->ops->get_budget ^ !set->ops->put_budget) 4531 return -EINVAL; 4532 4533 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4534 pr_info("blk-mq: reduced tag depth to %u\n", 4535 BLK_MQ_MAX_DEPTH); 4536 set->queue_depth = BLK_MQ_MAX_DEPTH; 4537 } 4538 4539 if (!set->nr_maps) 4540 set->nr_maps = 1; 4541 else if (set->nr_maps > HCTX_MAX_TYPES) 4542 return -EINVAL; 4543 4544 /* 4545 * If a crashdump is active, then we are potentially in a very 4546 * memory constrained environment. Limit us to 64 tags to prevent 4547 * using too much memory. 4548 */ 4549 if (is_kdump_kernel()) 4550 set->queue_depth = min(64U, set->queue_depth); 4551 4552 /* 4553 * There is no use for more h/w queues than cpus if we just have 4554 * a single map 4555 */ 4556 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4557 set->nr_hw_queues = nr_cpu_ids; 4558 4559 if (set->flags & BLK_MQ_F_BLOCKING) { 4560 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4561 if (!set->srcu) 4562 return -ENOMEM; 4563 ret = init_srcu_struct(set->srcu); 4564 if (ret) 4565 goto out_free_srcu; 4566 } 4567 4568 ret = -ENOMEM; 4569 set->tags = kcalloc_node(set->nr_hw_queues, 4570 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4571 set->numa_node); 4572 if (!set->tags) 4573 goto out_cleanup_srcu; 4574 4575 for (i = 0; i < set->nr_maps; i++) { 4576 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4577 sizeof(set->map[i].mq_map[0]), 4578 GFP_KERNEL, set->numa_node); 4579 if (!set->map[i].mq_map) 4580 goto out_free_mq_map; 4581 set->map[i].nr_queues = set->nr_hw_queues; 4582 } 4583 4584 blk_mq_update_queue_map(set); 4585 4586 ret = blk_mq_alloc_set_map_and_rqs(set); 4587 if (ret) 4588 goto out_free_mq_map; 4589 4590 mutex_init(&set->tag_list_lock); 4591 INIT_LIST_HEAD(&set->tag_list); 4592 4593 return 0; 4594 4595 out_free_mq_map: 4596 for (i = 0; i < set->nr_maps; i++) { 4597 kfree(set->map[i].mq_map); 4598 set->map[i].mq_map = NULL; 4599 } 4600 kfree(set->tags); 4601 set->tags = NULL; 4602 out_cleanup_srcu: 4603 if (set->flags & BLK_MQ_F_BLOCKING) 4604 cleanup_srcu_struct(set->srcu); 4605 out_free_srcu: 4606 if (set->flags & BLK_MQ_F_BLOCKING) 4607 kfree(set->srcu); 4608 return ret; 4609 } 4610 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4611 4612 /* allocate and initialize a tagset for a simple single-queue device */ 4613 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4614 const struct blk_mq_ops *ops, unsigned int queue_depth, 4615 unsigned int set_flags) 4616 { 4617 memset(set, 0, sizeof(*set)); 4618 set->ops = ops; 4619 set->nr_hw_queues = 1; 4620 set->nr_maps = 1; 4621 set->queue_depth = queue_depth; 4622 set->numa_node = NUMA_NO_NODE; 4623 set->flags = set_flags; 4624 return blk_mq_alloc_tag_set(set); 4625 } 4626 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4627 4628 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4629 { 4630 int i, j; 4631 4632 for (i = 0; i < set->nr_hw_queues; i++) 4633 __blk_mq_free_map_and_rqs(set, i); 4634 4635 if (blk_mq_is_shared_tags(set->flags)) { 4636 blk_mq_free_map_and_rqs(set, set->shared_tags, 4637 BLK_MQ_NO_HCTX_IDX); 4638 } 4639 4640 for (j = 0; j < set->nr_maps; j++) { 4641 kfree(set->map[j].mq_map); 4642 set->map[j].mq_map = NULL; 4643 } 4644 4645 kfree(set->tags); 4646 set->tags = NULL; 4647 if (set->flags & BLK_MQ_F_BLOCKING) { 4648 cleanup_srcu_struct(set->srcu); 4649 kfree(set->srcu); 4650 } 4651 } 4652 EXPORT_SYMBOL(blk_mq_free_tag_set); 4653 4654 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4655 { 4656 struct blk_mq_tag_set *set = q->tag_set; 4657 struct blk_mq_hw_ctx *hctx; 4658 int ret; 4659 unsigned long i; 4660 4661 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4662 return -EINVAL; 4663 4664 if (!set) 4665 return -EINVAL; 4666 4667 if (q->nr_requests == nr) 4668 return 0; 4669 4670 blk_mq_quiesce_queue(q); 4671 4672 ret = 0; 4673 queue_for_each_hw_ctx(q, hctx, i) { 4674 if (!hctx->tags) 4675 continue; 4676 /* 4677 * If we're using an MQ scheduler, just update the scheduler 4678 * queue depth. This is similar to what the old code would do. 4679 */ 4680 if (hctx->sched_tags) { 4681 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4682 nr, true); 4683 } else { 4684 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4685 false); 4686 } 4687 if (ret) 4688 break; 4689 if (q->elevator && q->elevator->type->ops.depth_updated) 4690 q->elevator->type->ops.depth_updated(hctx); 4691 } 4692 if (!ret) { 4693 q->nr_requests = nr; 4694 if (blk_mq_is_shared_tags(set->flags)) { 4695 if (q->elevator) 4696 blk_mq_tag_update_sched_shared_tags(q); 4697 else 4698 blk_mq_tag_resize_shared_tags(set, nr); 4699 } 4700 } 4701 4702 blk_mq_unquiesce_queue(q); 4703 4704 return ret; 4705 } 4706 4707 /* 4708 * request_queue and elevator_type pair. 4709 * It is just used by __blk_mq_update_nr_hw_queues to cache 4710 * the elevator_type associated with a request_queue. 4711 */ 4712 struct blk_mq_qe_pair { 4713 struct list_head node; 4714 struct request_queue *q; 4715 struct elevator_type *type; 4716 }; 4717 4718 /* 4719 * Cache the elevator_type in qe pair list and switch the 4720 * io scheduler to 'none' 4721 */ 4722 static bool blk_mq_elv_switch_none(struct list_head *head, 4723 struct request_queue *q) 4724 { 4725 struct blk_mq_qe_pair *qe; 4726 4727 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4728 if (!qe) 4729 return false; 4730 4731 /* q->elevator needs protection from ->sysfs_lock */ 4732 mutex_lock(&q->sysfs_lock); 4733 4734 /* the check has to be done with holding sysfs_lock */ 4735 if (!q->elevator) { 4736 kfree(qe); 4737 goto unlock; 4738 } 4739 4740 INIT_LIST_HEAD(&qe->node); 4741 qe->q = q; 4742 qe->type = q->elevator->type; 4743 /* keep a reference to the elevator module as we'll switch back */ 4744 __elevator_get(qe->type); 4745 list_add(&qe->node, head); 4746 elevator_disable(q); 4747 unlock: 4748 mutex_unlock(&q->sysfs_lock); 4749 4750 return true; 4751 } 4752 4753 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4754 struct request_queue *q) 4755 { 4756 struct blk_mq_qe_pair *qe; 4757 4758 list_for_each_entry(qe, head, node) 4759 if (qe->q == q) 4760 return qe; 4761 4762 return NULL; 4763 } 4764 4765 static void blk_mq_elv_switch_back(struct list_head *head, 4766 struct request_queue *q) 4767 { 4768 struct blk_mq_qe_pair *qe; 4769 struct elevator_type *t; 4770 4771 qe = blk_lookup_qe_pair(head, q); 4772 if (!qe) 4773 return; 4774 t = qe->type; 4775 list_del(&qe->node); 4776 kfree(qe); 4777 4778 mutex_lock(&q->sysfs_lock); 4779 elevator_switch(q, t); 4780 /* drop the reference acquired in blk_mq_elv_switch_none */ 4781 elevator_put(t); 4782 mutex_unlock(&q->sysfs_lock); 4783 } 4784 4785 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4786 int nr_hw_queues) 4787 { 4788 struct request_queue *q; 4789 LIST_HEAD(head); 4790 int prev_nr_hw_queues = set->nr_hw_queues; 4791 int i; 4792 4793 lockdep_assert_held(&set->tag_list_lock); 4794 4795 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4796 nr_hw_queues = nr_cpu_ids; 4797 if (nr_hw_queues < 1) 4798 return; 4799 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4800 return; 4801 4802 list_for_each_entry(q, &set->tag_list, tag_set_list) 4803 blk_mq_freeze_queue(q); 4804 /* 4805 * Switch IO scheduler to 'none', cleaning up the data associated 4806 * with the previous scheduler. We will switch back once we are done 4807 * updating the new sw to hw queue mappings. 4808 */ 4809 list_for_each_entry(q, &set->tag_list, tag_set_list) 4810 if (!blk_mq_elv_switch_none(&head, q)) 4811 goto switch_back; 4812 4813 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4814 blk_mq_debugfs_unregister_hctxs(q); 4815 blk_mq_sysfs_unregister_hctxs(q); 4816 } 4817 4818 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4819 goto reregister; 4820 4821 fallback: 4822 blk_mq_update_queue_map(set); 4823 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4824 struct queue_limits lim; 4825 4826 blk_mq_realloc_hw_ctxs(set, q); 4827 4828 if (q->nr_hw_queues != set->nr_hw_queues) { 4829 int i = prev_nr_hw_queues; 4830 4831 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4832 nr_hw_queues, prev_nr_hw_queues); 4833 for (; i < set->nr_hw_queues; i++) 4834 __blk_mq_free_map_and_rqs(set, i); 4835 4836 set->nr_hw_queues = prev_nr_hw_queues; 4837 goto fallback; 4838 } 4839 lim = queue_limits_start_update(q); 4840 if (blk_mq_can_poll(set)) 4841 lim.features |= BLK_FEAT_POLL; 4842 else 4843 lim.features &= ~BLK_FEAT_POLL; 4844 if (queue_limits_commit_update(q, &lim) < 0) 4845 pr_warn("updating the poll flag failed\n"); 4846 blk_mq_map_swqueue(q); 4847 } 4848 4849 reregister: 4850 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4851 blk_mq_sysfs_register_hctxs(q); 4852 blk_mq_debugfs_register_hctxs(q); 4853 } 4854 4855 switch_back: 4856 list_for_each_entry(q, &set->tag_list, tag_set_list) 4857 blk_mq_elv_switch_back(&head, q); 4858 4859 list_for_each_entry(q, &set->tag_list, tag_set_list) 4860 blk_mq_unfreeze_queue(q); 4861 4862 /* Free the excess tags when nr_hw_queues shrink. */ 4863 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4864 __blk_mq_free_map_and_rqs(set, i); 4865 } 4866 4867 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4868 { 4869 mutex_lock(&set->tag_list_lock); 4870 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4871 mutex_unlock(&set->tag_list_lock); 4872 } 4873 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4874 4875 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4876 struct io_comp_batch *iob, unsigned int flags) 4877 { 4878 long state = get_current_state(); 4879 int ret; 4880 4881 do { 4882 ret = q->mq_ops->poll(hctx, iob); 4883 if (ret > 0) { 4884 __set_current_state(TASK_RUNNING); 4885 return ret; 4886 } 4887 4888 if (signal_pending_state(state, current)) 4889 __set_current_state(TASK_RUNNING); 4890 if (task_is_running(current)) 4891 return 1; 4892 4893 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4894 break; 4895 cpu_relax(); 4896 } while (!need_resched()); 4897 4898 __set_current_state(TASK_RUNNING); 4899 return 0; 4900 } 4901 4902 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 4903 struct io_comp_batch *iob, unsigned int flags) 4904 { 4905 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 4906 4907 return blk_hctx_poll(q, hctx, iob, flags); 4908 } 4909 4910 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 4911 unsigned int poll_flags) 4912 { 4913 struct request_queue *q = rq->q; 4914 int ret; 4915 4916 if (!blk_rq_is_poll(rq)) 4917 return 0; 4918 if (!percpu_ref_tryget(&q->q_usage_counter)) 4919 return 0; 4920 4921 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 4922 blk_queue_exit(q); 4923 4924 return ret; 4925 } 4926 EXPORT_SYMBOL_GPL(blk_rq_poll); 4927 4928 unsigned int blk_mq_rq_cpu(struct request *rq) 4929 { 4930 return rq->mq_ctx->cpu; 4931 } 4932 EXPORT_SYMBOL(blk_mq_rq_cpu); 4933 4934 void blk_mq_cancel_work_sync(struct request_queue *q) 4935 { 4936 struct blk_mq_hw_ctx *hctx; 4937 unsigned long i; 4938 4939 cancel_delayed_work_sync(&q->requeue_work); 4940 4941 queue_for_each_hw_ctx(q, hctx, i) 4942 cancel_delayed_work_sync(&hctx->run_work); 4943 } 4944 4945 static int __init blk_mq_init(void) 4946 { 4947 int i; 4948 4949 for_each_possible_cpu(i) 4950 init_llist_head(&per_cpu(blk_cpu_done, i)); 4951 for_each_possible_cpu(i) 4952 INIT_CSD(&per_cpu(blk_cpu_csd, i), 4953 __blk_mq_complete_request_remote, NULL); 4954 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4955 4956 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4957 "block/softirq:dead", NULL, 4958 blk_softirq_cpu_dead); 4959 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4960 blk_mq_hctx_notify_dead); 4961 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4962 blk_mq_hctx_notify_online, 4963 blk_mq_hctx_notify_offline); 4964 return 0; 4965 } 4966 subsys_initcall(blk_mq_init); 4967