xref: /linux/block/blk-mq.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 		blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 		struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 			 struct io_comp_batch *iob, unsigned int flags);
54 
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61 	return !list_empty_careful(&hctx->dispatch) ||
62 		sbitmap_any_bit_set(&hctx->ctx_map) ||
63 			blk_mq_sched_has_work(hctx);
64 }
65 
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 				     struct blk_mq_ctx *ctx)
71 {
72 	const int bit = ctx->index_hw[hctx->type];
73 
74 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 		sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77 
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 				      struct blk_mq_ctx *ctx)
80 {
81 	const int bit = ctx->index_hw[hctx->type];
82 
83 	sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85 
86 struct mq_inflight {
87 	struct block_device *part;
88 	unsigned int inflight[2];
89 };
90 
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93 	struct mq_inflight *mi = priv;
94 
95 	if (rq->part && blk_do_io_stat(rq) &&
96 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 		mi->inflight[rq_data_dir(rq)]++;
99 
100 	return true;
101 }
102 
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 		struct block_device *part)
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109 
110 	return mi.inflight[0] + mi.inflight[1];
111 }
112 
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 		unsigned int inflight[2])
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 	inflight[0] = mi.inflight[0];
120 	inflight[1] = mi.inflight[1];
121 }
122 
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125 	mutex_lock(&q->mq_freeze_lock);
126 	if (++q->mq_freeze_depth == 1) {
127 		percpu_ref_kill(&q->q_usage_counter);
128 		mutex_unlock(&q->mq_freeze_lock);
129 		if (queue_is_mq(q))
130 			blk_mq_run_hw_queues(q, false);
131 	} else {
132 		mutex_unlock(&q->mq_freeze_lock);
133 	}
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136 
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142 
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 				     unsigned long timeout)
145 {
146 	return wait_event_timeout(q->mq_freeze_wq,
147 					percpu_ref_is_zero(&q->q_usage_counter),
148 					timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151 
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158 	/*
159 	 * In the !blk_mq case we are only calling this to kill the
160 	 * q_usage_counter, otherwise this increases the freeze depth
161 	 * and waits for it to return to zero.  For this reason there is
162 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 	 * exported to drivers as the only user for unfreeze is blk_mq.
164 	 */
165 	blk_freeze_queue_start(q);
166 	blk_mq_freeze_queue_wait(q);
167 }
168 
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * ...just an alias to keep freeze and unfreeze actions balanced
173 	 * in the blk_mq_* namespace
174 	 */
175 	blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178 
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181 	mutex_lock(&q->mq_freeze_lock);
182 	if (force_atomic)
183 		q->q_usage_counter.data->force_atomic = true;
184 	q->mq_freeze_depth--;
185 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 	if (!q->mq_freeze_depth) {
187 		percpu_ref_resurrect(&q->q_usage_counter);
188 		wake_up_all(&q->mq_freeze_wq);
189 	}
190 	mutex_unlock(&q->mq_freeze_lock);
191 }
192 
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195 	__blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198 
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205 	unsigned long flags;
206 
207 	spin_lock_irqsave(&q->queue_lock, flags);
208 	if (!q->quiesce_depth++)
209 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 	spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213 
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225 	if (set->flags & BLK_MQ_F_BLOCKING)
226 		synchronize_srcu(set->srcu);
227 	else
228 		synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231 
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243 	blk_mq_quiesce_queue_nowait(q);
244 	/* nothing to wait for non-mq queues */
245 	if (queue_is_mq(q))
246 		blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	unsigned long flags;
260 	bool run_queue = false;
261 
262 	spin_lock_irqsave(&q->queue_lock, flags);
263 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264 		;
265 	} else if (!--q->quiesce_depth) {
266 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 		run_queue = true;
268 	}
269 	spin_unlock_irqrestore(&q->queue_lock, flags);
270 
271 	/* dispatch requests which are inserted during quiescing */
272 	if (run_queue)
273 		blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276 
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279 	struct request_queue *q;
280 
281 	mutex_lock(&set->tag_list_lock);
282 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 		if (!blk_queue_skip_tagset_quiesce(q))
284 			blk_mq_quiesce_queue_nowait(q);
285 	}
286 	blk_mq_wait_quiesce_done(set);
287 	mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290 
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293 	struct request_queue *q;
294 
295 	mutex_lock(&set->tag_list_lock);
296 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 		if (!blk_queue_skip_tagset_quiesce(q))
298 			blk_mq_unquiesce_queue(q);
299 	}
300 	mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303 
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306 	struct blk_mq_hw_ctx *hctx;
307 	unsigned long i;
308 
309 	queue_for_each_hw_ctx(q, hctx, i)
310 		if (blk_mq_hw_queue_mapped(hctx))
311 			blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313 
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316 	memset(rq, 0, sizeof(*rq));
317 
318 	INIT_LIST_HEAD(&rq->queuelist);
319 	rq->q = q;
320 	rq->__sector = (sector_t) -1;
321 	INIT_HLIST_NODE(&rq->hash);
322 	RB_CLEAR_NODE(&rq->rb_node);
323 	rq->tag = BLK_MQ_NO_TAG;
324 	rq->internal_tag = BLK_MQ_NO_TAG;
325 	rq->start_time_ns = blk_time_get_ns();
326 	rq->part = NULL;
327 	blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330 
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
333 {
334 	if (blk_mq_need_time_stamp(rq))
335 		rq->start_time_ns = blk_time_get_ns();
336 	else
337 		rq->start_time_ns = 0;
338 
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 	if (blk_queue_rq_alloc_time(rq->q))
341 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 	else
343 		rq->alloc_time_ns = 0;
344 #endif
345 }
346 
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 		struct blk_mq_tags *tags, unsigned int tag)
349 {
350 	struct blk_mq_ctx *ctx = data->ctx;
351 	struct blk_mq_hw_ctx *hctx = data->hctx;
352 	struct request_queue *q = data->q;
353 	struct request *rq = tags->static_rqs[tag];
354 
355 	rq->q = q;
356 	rq->mq_ctx = ctx;
357 	rq->mq_hctx = hctx;
358 	rq->cmd_flags = data->cmd_flags;
359 
360 	if (data->flags & BLK_MQ_REQ_PM)
361 		data->rq_flags |= RQF_PM;
362 	if (blk_queue_io_stat(q))
363 		data->rq_flags |= RQF_IO_STAT;
364 	rq->rq_flags = data->rq_flags;
365 
366 	if (data->rq_flags & RQF_SCHED_TAGS) {
367 		rq->tag = BLK_MQ_NO_TAG;
368 		rq->internal_tag = tag;
369 	} else {
370 		rq->tag = tag;
371 		rq->internal_tag = BLK_MQ_NO_TAG;
372 	}
373 	rq->timeout = 0;
374 
375 	rq->part = NULL;
376 	rq->io_start_time_ns = 0;
377 	rq->stats_sectors = 0;
378 	rq->nr_phys_segments = 0;
379 	rq->nr_integrity_segments = 0;
380 	rq->end_io = NULL;
381 	rq->end_io_data = NULL;
382 
383 	blk_crypto_rq_set_defaults(rq);
384 	INIT_LIST_HEAD(&rq->queuelist);
385 	/* tag was already set */
386 	WRITE_ONCE(rq->deadline, 0);
387 	req_ref_set(rq, 1);
388 
389 	if (rq->rq_flags & RQF_USE_SCHED) {
390 		struct elevator_queue *e = data->q->elevator;
391 
392 		INIT_HLIST_NODE(&rq->hash);
393 		RB_CLEAR_NODE(&rq->rb_node);
394 
395 		if (e->type->ops.prepare_request)
396 			e->type->ops.prepare_request(rq);
397 	}
398 
399 	return rq;
400 }
401 
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
404 {
405 	unsigned int tag, tag_offset;
406 	struct blk_mq_tags *tags;
407 	struct request *rq;
408 	unsigned long tag_mask;
409 	int i, nr = 0;
410 
411 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
412 	if (unlikely(!tag_mask))
413 		return NULL;
414 
415 	tags = blk_mq_tags_from_data(data);
416 	for (i = 0; tag_mask; i++) {
417 		if (!(tag_mask & (1UL << i)))
418 			continue;
419 		tag = tag_offset + i;
420 		prefetch(tags->static_rqs[tag]);
421 		tag_mask &= ~(1UL << i);
422 		rq = blk_mq_rq_ctx_init(data, tags, tag);
423 		rq_list_add(data->cached_rq, rq);
424 		nr++;
425 	}
426 	if (!(data->rq_flags & RQF_SCHED_TAGS))
427 		blk_mq_add_active_requests(data->hctx, nr);
428 	/* caller already holds a reference, add for remainder */
429 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 	data->nr_tags -= nr;
431 
432 	return rq_list_pop(data->cached_rq);
433 }
434 
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
436 {
437 	struct request_queue *q = data->q;
438 	u64 alloc_time_ns = 0;
439 	struct request *rq;
440 	unsigned int tag;
441 
442 	/* alloc_time includes depth and tag waits */
443 	if (blk_queue_rq_alloc_time(q))
444 		alloc_time_ns = blk_time_get_ns();
445 
446 	if (data->cmd_flags & REQ_NOWAIT)
447 		data->flags |= BLK_MQ_REQ_NOWAIT;
448 
449 retry:
450 	data->ctx = blk_mq_get_ctx(q);
451 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
452 
453 	if (q->elevator) {
454 		/*
455 		 * All requests use scheduler tags when an I/O scheduler is
456 		 * enabled for the queue.
457 		 */
458 		data->rq_flags |= RQF_SCHED_TAGS;
459 
460 		/*
461 		 * Flush/passthrough requests are special and go directly to the
462 		 * dispatch list.
463 		 */
464 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
465 		    !blk_op_is_passthrough(data->cmd_flags)) {
466 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
467 
468 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
469 
470 			data->rq_flags |= RQF_USE_SCHED;
471 			if (ops->limit_depth)
472 				ops->limit_depth(data->cmd_flags, data);
473 		}
474 	} else {
475 		blk_mq_tag_busy(data->hctx);
476 	}
477 
478 	if (data->flags & BLK_MQ_REQ_RESERVED)
479 		data->rq_flags |= RQF_RESV;
480 
481 	/*
482 	 * Try batched alloc if we want more than 1 tag.
483 	 */
484 	if (data->nr_tags > 1) {
485 		rq = __blk_mq_alloc_requests_batch(data);
486 		if (rq) {
487 			blk_mq_rq_time_init(rq, alloc_time_ns);
488 			return rq;
489 		}
490 		data->nr_tags = 1;
491 	}
492 
493 	/*
494 	 * Waiting allocations only fail because of an inactive hctx.  In that
495 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 	 * should have migrated us to an online CPU by now.
497 	 */
498 	tag = blk_mq_get_tag(data);
499 	if (tag == BLK_MQ_NO_TAG) {
500 		if (data->flags & BLK_MQ_REQ_NOWAIT)
501 			return NULL;
502 		/*
503 		 * Give up the CPU and sleep for a random short time to
504 		 * ensure that thread using a realtime scheduling class
505 		 * are migrated off the CPU, and thus off the hctx that
506 		 * is going away.
507 		 */
508 		msleep(3);
509 		goto retry;
510 	}
511 
512 	if (!(data->rq_flags & RQF_SCHED_TAGS))
513 		blk_mq_inc_active_requests(data->hctx);
514 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
515 	blk_mq_rq_time_init(rq, alloc_time_ns);
516 	return rq;
517 }
518 
519 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
520 					    struct blk_plug *plug,
521 					    blk_opf_t opf,
522 					    blk_mq_req_flags_t flags)
523 {
524 	struct blk_mq_alloc_data data = {
525 		.q		= q,
526 		.flags		= flags,
527 		.cmd_flags	= opf,
528 		.nr_tags	= plug->nr_ios,
529 		.cached_rq	= &plug->cached_rq,
530 	};
531 	struct request *rq;
532 
533 	if (blk_queue_enter(q, flags))
534 		return NULL;
535 
536 	plug->nr_ios = 1;
537 
538 	rq = __blk_mq_alloc_requests(&data);
539 	if (unlikely(!rq))
540 		blk_queue_exit(q);
541 	return rq;
542 }
543 
544 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
545 						   blk_opf_t opf,
546 						   blk_mq_req_flags_t flags)
547 {
548 	struct blk_plug *plug = current->plug;
549 	struct request *rq;
550 
551 	if (!plug)
552 		return NULL;
553 
554 	if (rq_list_empty(plug->cached_rq)) {
555 		if (plug->nr_ios == 1)
556 			return NULL;
557 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
558 		if (!rq)
559 			return NULL;
560 	} else {
561 		rq = rq_list_peek(&plug->cached_rq);
562 		if (!rq || rq->q != q)
563 			return NULL;
564 
565 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
566 			return NULL;
567 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
568 			return NULL;
569 
570 		plug->cached_rq = rq_list_next(rq);
571 		blk_mq_rq_time_init(rq, 0);
572 	}
573 
574 	rq->cmd_flags = opf;
575 	INIT_LIST_HEAD(&rq->queuelist);
576 	return rq;
577 }
578 
579 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
580 		blk_mq_req_flags_t flags)
581 {
582 	struct request *rq;
583 
584 	rq = blk_mq_alloc_cached_request(q, opf, flags);
585 	if (!rq) {
586 		struct blk_mq_alloc_data data = {
587 			.q		= q,
588 			.flags		= flags,
589 			.cmd_flags	= opf,
590 			.nr_tags	= 1,
591 		};
592 		int ret;
593 
594 		ret = blk_queue_enter(q, flags);
595 		if (ret)
596 			return ERR_PTR(ret);
597 
598 		rq = __blk_mq_alloc_requests(&data);
599 		if (!rq)
600 			goto out_queue_exit;
601 	}
602 	rq->__data_len = 0;
603 	rq->__sector = (sector_t) -1;
604 	rq->bio = rq->biotail = NULL;
605 	return rq;
606 out_queue_exit:
607 	blk_queue_exit(q);
608 	return ERR_PTR(-EWOULDBLOCK);
609 }
610 EXPORT_SYMBOL(blk_mq_alloc_request);
611 
612 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
613 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
614 {
615 	struct blk_mq_alloc_data data = {
616 		.q		= q,
617 		.flags		= flags,
618 		.cmd_flags	= opf,
619 		.nr_tags	= 1,
620 	};
621 	u64 alloc_time_ns = 0;
622 	struct request *rq;
623 	unsigned int cpu;
624 	unsigned int tag;
625 	int ret;
626 
627 	/* alloc_time includes depth and tag waits */
628 	if (blk_queue_rq_alloc_time(q))
629 		alloc_time_ns = blk_time_get_ns();
630 
631 	/*
632 	 * If the tag allocator sleeps we could get an allocation for a
633 	 * different hardware context.  No need to complicate the low level
634 	 * allocator for this for the rare use case of a command tied to
635 	 * a specific queue.
636 	 */
637 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
638 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
639 		return ERR_PTR(-EINVAL);
640 
641 	if (hctx_idx >= q->nr_hw_queues)
642 		return ERR_PTR(-EIO);
643 
644 	ret = blk_queue_enter(q, flags);
645 	if (ret)
646 		return ERR_PTR(ret);
647 
648 	/*
649 	 * Check if the hardware context is actually mapped to anything.
650 	 * If not tell the caller that it should skip this queue.
651 	 */
652 	ret = -EXDEV;
653 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
654 	if (!blk_mq_hw_queue_mapped(data.hctx))
655 		goto out_queue_exit;
656 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
657 	if (cpu >= nr_cpu_ids)
658 		goto out_queue_exit;
659 	data.ctx = __blk_mq_get_ctx(q, cpu);
660 
661 	if (q->elevator)
662 		data.rq_flags |= RQF_SCHED_TAGS;
663 	else
664 		blk_mq_tag_busy(data.hctx);
665 
666 	if (flags & BLK_MQ_REQ_RESERVED)
667 		data.rq_flags |= RQF_RESV;
668 
669 	ret = -EWOULDBLOCK;
670 	tag = blk_mq_get_tag(&data);
671 	if (tag == BLK_MQ_NO_TAG)
672 		goto out_queue_exit;
673 	if (!(data.rq_flags & RQF_SCHED_TAGS))
674 		blk_mq_inc_active_requests(data.hctx);
675 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
676 	blk_mq_rq_time_init(rq, alloc_time_ns);
677 	rq->__data_len = 0;
678 	rq->__sector = (sector_t) -1;
679 	rq->bio = rq->biotail = NULL;
680 	return rq;
681 
682 out_queue_exit:
683 	blk_queue_exit(q);
684 	return ERR_PTR(ret);
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
687 
688 static void blk_mq_finish_request(struct request *rq)
689 {
690 	struct request_queue *q = rq->q;
691 
692 	blk_zone_finish_request(rq);
693 
694 	if (rq->rq_flags & RQF_USE_SCHED) {
695 		q->elevator->type->ops.finish_request(rq);
696 		/*
697 		 * For postflush request that may need to be
698 		 * completed twice, we should clear this flag
699 		 * to avoid double finish_request() on the rq.
700 		 */
701 		rq->rq_flags &= ~RQF_USE_SCHED;
702 	}
703 }
704 
705 static void __blk_mq_free_request(struct request *rq)
706 {
707 	struct request_queue *q = rq->q;
708 	struct blk_mq_ctx *ctx = rq->mq_ctx;
709 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710 	const int sched_tag = rq->internal_tag;
711 
712 	blk_crypto_free_request(rq);
713 	blk_pm_mark_last_busy(rq);
714 	rq->mq_hctx = NULL;
715 
716 	if (rq->tag != BLK_MQ_NO_TAG) {
717 		blk_mq_dec_active_requests(hctx);
718 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
719 	}
720 	if (sched_tag != BLK_MQ_NO_TAG)
721 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722 	blk_mq_sched_restart(hctx);
723 	blk_queue_exit(q);
724 }
725 
726 void blk_mq_free_request(struct request *rq)
727 {
728 	struct request_queue *q = rq->q;
729 
730 	blk_mq_finish_request(rq);
731 
732 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733 		laptop_io_completion(q->disk->bdi);
734 
735 	rq_qos_done(q, rq);
736 
737 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738 	if (req_ref_put_and_test(rq))
739 		__blk_mq_free_request(rq);
740 }
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
742 
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
744 {
745 	struct request *rq;
746 
747 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748 		blk_mq_free_request(rq);
749 }
750 
751 void blk_dump_rq_flags(struct request *rq, char *msg)
752 {
753 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754 		rq->q->disk ? rq->q->disk->disk_name : "?",
755 		(__force unsigned long long) rq->cmd_flags);
756 
757 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
758 	       (unsigned long long)blk_rq_pos(rq),
759 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
761 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
762 }
763 EXPORT_SYMBOL(blk_dump_rq_flags);
764 
765 static void blk_account_io_completion(struct request *req, unsigned int bytes)
766 {
767 	if (req->part && blk_do_io_stat(req)) {
768 		const int sgrp = op_stat_group(req_op(req));
769 
770 		part_stat_lock();
771 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
772 		part_stat_unlock();
773 	}
774 }
775 
776 static void blk_print_req_error(struct request *req, blk_status_t status)
777 {
778 	printk_ratelimited(KERN_ERR
779 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780 		"phys_seg %u prio class %u\n",
781 		blk_status_to_str(status),
782 		req->q->disk ? req->q->disk->disk_name : "?",
783 		blk_rq_pos(req), (__force u32)req_op(req),
784 		blk_op_str(req_op(req)),
785 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
786 		req->nr_phys_segments,
787 		IOPRIO_PRIO_CLASS(req->ioprio));
788 }
789 
790 /*
791  * Fully end IO on a request. Does not support partial completions, or
792  * errors.
793  */
794 static void blk_complete_request(struct request *req)
795 {
796 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
797 	int total_bytes = blk_rq_bytes(req);
798 	struct bio *bio = req->bio;
799 
800 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
801 
802 	if (!bio)
803 		return;
804 
805 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806 		blk_integrity_complete(req, total_bytes);
807 
808 	/*
809 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
810 	 * bio_endio().  Therefore, the keyslot must be released before that.
811 	 */
812 	blk_crypto_rq_put_keyslot(req);
813 
814 	blk_account_io_completion(req, total_bytes);
815 
816 	do {
817 		struct bio *next = bio->bi_next;
818 
819 		/* Completion has already been traced */
820 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
821 
822 		blk_zone_update_request_bio(req, bio);
823 
824 		if (!is_flush)
825 			bio_endio(bio);
826 		bio = next;
827 	} while (bio);
828 
829 	/*
830 	 * Reset counters so that the request stacking driver
831 	 * can find how many bytes remain in the request
832 	 * later.
833 	 */
834 	if (!req->end_io) {
835 		req->bio = NULL;
836 		req->__data_len = 0;
837 	}
838 }
839 
840 /**
841  * blk_update_request - Complete multiple bytes without completing the request
842  * @req:      the request being processed
843  * @error:    block status code
844  * @nr_bytes: number of bytes to complete for @req
845  *
846  * Description:
847  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
848  *     the request structure even if @req doesn't have leftover.
849  *     If @req has leftover, sets it up for the next range of segments.
850  *
851  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
852  *     %false return from this function.
853  *
854  * Note:
855  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
856  *      except in the consistency check at the end of this function.
857  *
858  * Return:
859  *     %false - this request doesn't have any more data
860  *     %true  - this request has more data
861  **/
862 bool blk_update_request(struct request *req, blk_status_t error,
863 		unsigned int nr_bytes)
864 {
865 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
866 	bool quiet = req->rq_flags & RQF_QUIET;
867 	int total_bytes;
868 
869 	trace_block_rq_complete(req, error, nr_bytes);
870 
871 	if (!req->bio)
872 		return false;
873 
874 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
875 	    error == BLK_STS_OK)
876 		blk_integrity_complete(req, nr_bytes);
877 
878 	/*
879 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
880 	 * bio_endio().  Therefore, the keyslot must be released before that.
881 	 */
882 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
883 		__blk_crypto_rq_put_keyslot(req);
884 
885 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
886 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
887 		blk_print_req_error(req, error);
888 		trace_block_rq_error(req, error, nr_bytes);
889 	}
890 
891 	blk_account_io_completion(req, nr_bytes);
892 
893 	total_bytes = 0;
894 	while (req->bio) {
895 		struct bio *bio = req->bio;
896 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
897 
898 		if (unlikely(error))
899 			bio->bi_status = error;
900 
901 		if (bio_bytes == bio->bi_iter.bi_size) {
902 			req->bio = bio->bi_next;
903 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
904 			/*
905 			 * Partial zone append completions cannot be supported
906 			 * as the BIO fragments may end up not being written
907 			 * sequentially.
908 			 */
909 			bio->bi_status = BLK_STS_IOERR;
910 		}
911 
912 		/* Completion has already been traced */
913 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
914 		if (unlikely(quiet))
915 			bio_set_flag(bio, BIO_QUIET);
916 
917 		bio_advance(bio, bio_bytes);
918 
919 		/* Don't actually finish bio if it's part of flush sequence */
920 		if (!bio->bi_iter.bi_size) {
921 			blk_zone_update_request_bio(req, bio);
922 			if (!is_flush)
923 				bio_endio(bio);
924 		}
925 
926 		total_bytes += bio_bytes;
927 		nr_bytes -= bio_bytes;
928 
929 		if (!nr_bytes)
930 			break;
931 	}
932 
933 	/*
934 	 * completely done
935 	 */
936 	if (!req->bio) {
937 		/*
938 		 * Reset counters so that the request stacking driver
939 		 * can find how many bytes remain in the request
940 		 * later.
941 		 */
942 		req->__data_len = 0;
943 		return false;
944 	}
945 
946 	req->__data_len -= total_bytes;
947 
948 	/* update sector only for requests with clear definition of sector */
949 	if (!blk_rq_is_passthrough(req))
950 		req->__sector += total_bytes >> 9;
951 
952 	/* mixed attributes always follow the first bio */
953 	if (req->rq_flags & RQF_MIXED_MERGE) {
954 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
955 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
956 	}
957 
958 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
959 		/*
960 		 * If total number of sectors is less than the first segment
961 		 * size, something has gone terribly wrong.
962 		 */
963 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
964 			blk_dump_rq_flags(req, "request botched");
965 			req->__data_len = blk_rq_cur_bytes(req);
966 		}
967 
968 		/* recalculate the number of segments */
969 		req->nr_phys_segments = blk_recalc_rq_segments(req);
970 	}
971 
972 	return true;
973 }
974 EXPORT_SYMBOL_GPL(blk_update_request);
975 
976 static inline void blk_account_io_done(struct request *req, u64 now)
977 {
978 	trace_block_io_done(req);
979 
980 	/*
981 	 * Account IO completion.  flush_rq isn't accounted as a
982 	 * normal IO on queueing nor completion.  Accounting the
983 	 * containing request is enough.
984 	 */
985 	if (blk_do_io_stat(req) && req->part &&
986 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
987 		const int sgrp = op_stat_group(req_op(req));
988 
989 		part_stat_lock();
990 		update_io_ticks(req->part, jiffies, true);
991 		part_stat_inc(req->part, ios[sgrp]);
992 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
993 		part_stat_local_dec(req->part,
994 				    in_flight[op_is_write(req_op(req))]);
995 		part_stat_unlock();
996 	}
997 }
998 
999 static inline void blk_account_io_start(struct request *req)
1000 {
1001 	trace_block_io_start(req);
1002 
1003 	if (blk_do_io_stat(req)) {
1004 		/*
1005 		 * All non-passthrough requests are created from a bio with one
1006 		 * exception: when a flush command that is part of a flush sequence
1007 		 * generated by the state machine in blk-flush.c is cloned onto the
1008 		 * lower device by dm-multipath we can get here without a bio.
1009 		 */
1010 		if (req->bio)
1011 			req->part = req->bio->bi_bdev;
1012 		else
1013 			req->part = req->q->disk->part0;
1014 
1015 		part_stat_lock();
1016 		update_io_ticks(req->part, jiffies, false);
1017 		part_stat_local_inc(req->part,
1018 				    in_flight[op_is_write(req_op(req))]);
1019 		part_stat_unlock();
1020 	}
1021 }
1022 
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025 	if (rq->rq_flags & RQF_STATS)
1026 		blk_stat_add(rq, now);
1027 
1028 	blk_mq_sched_completed_request(rq, now);
1029 	blk_account_io_done(rq, now);
1030 }
1031 
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034 	if (blk_mq_need_time_stamp(rq))
1035 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1036 
1037 	blk_mq_finish_request(rq);
1038 
1039 	if (rq->end_io) {
1040 		rq_qos_done(rq->q, rq);
1041 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042 			blk_mq_free_request(rq);
1043 	} else {
1044 		blk_mq_free_request(rq);
1045 	}
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048 
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052 		BUG();
1053 	__blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056 
1057 #define TAG_COMP_BATCH		32
1058 
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060 					  int *tag_array, int nr_tags)
1061 {
1062 	struct request_queue *q = hctx->queue;
1063 
1064 	blk_mq_sub_active_requests(hctx, nr_tags);
1065 
1066 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1067 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1068 }
1069 
1070 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1071 {
1072 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1073 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1074 	struct request *rq;
1075 	u64 now = 0;
1076 
1077 	if (iob->need_ts)
1078 		now = blk_time_get_ns();
1079 
1080 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1081 		prefetch(rq->bio);
1082 		prefetch(rq->rq_next);
1083 
1084 		blk_complete_request(rq);
1085 		if (iob->need_ts)
1086 			__blk_mq_end_request_acct(rq, now);
1087 
1088 		blk_mq_finish_request(rq);
1089 
1090 		rq_qos_done(rq->q, rq);
1091 
1092 		/*
1093 		 * If end_io handler returns NONE, then it still has
1094 		 * ownership of the request.
1095 		 */
1096 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1097 			continue;
1098 
1099 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1100 		if (!req_ref_put_and_test(rq))
1101 			continue;
1102 
1103 		blk_crypto_free_request(rq);
1104 		blk_pm_mark_last_busy(rq);
1105 
1106 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1107 			if (cur_hctx)
1108 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1109 			nr_tags = 0;
1110 			cur_hctx = rq->mq_hctx;
1111 		}
1112 		tags[nr_tags++] = rq->tag;
1113 	}
1114 
1115 	if (nr_tags)
1116 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1117 }
1118 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1119 
1120 static void blk_complete_reqs(struct llist_head *list)
1121 {
1122 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1123 	struct request *rq, *next;
1124 
1125 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1126 		rq->q->mq_ops->complete(rq);
1127 }
1128 
1129 static __latent_entropy void blk_done_softirq(void)
1130 {
1131 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1132 }
1133 
1134 static int blk_softirq_cpu_dead(unsigned int cpu)
1135 {
1136 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1137 	return 0;
1138 }
1139 
1140 static void __blk_mq_complete_request_remote(void *data)
1141 {
1142 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1143 }
1144 
1145 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1146 {
1147 	int cpu = raw_smp_processor_id();
1148 
1149 	if (!IS_ENABLED(CONFIG_SMP) ||
1150 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1151 		return false;
1152 	/*
1153 	 * With force threaded interrupts enabled, raising softirq from an SMP
1154 	 * function call will always result in waking the ksoftirqd thread.
1155 	 * This is probably worse than completing the request on a different
1156 	 * cache domain.
1157 	 */
1158 	if (force_irqthreads())
1159 		return false;
1160 
1161 	/* same CPU or cache domain and capacity?  Complete locally */
1162 	if (cpu == rq->mq_ctx->cpu ||
1163 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1164 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1165 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1166 		return false;
1167 
1168 	/* don't try to IPI to an offline CPU */
1169 	return cpu_online(rq->mq_ctx->cpu);
1170 }
1171 
1172 static void blk_mq_complete_send_ipi(struct request *rq)
1173 {
1174 	unsigned int cpu;
1175 
1176 	cpu = rq->mq_ctx->cpu;
1177 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1178 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1179 }
1180 
1181 static void blk_mq_raise_softirq(struct request *rq)
1182 {
1183 	struct llist_head *list;
1184 
1185 	preempt_disable();
1186 	list = this_cpu_ptr(&blk_cpu_done);
1187 	if (llist_add(&rq->ipi_list, list))
1188 		raise_softirq(BLOCK_SOFTIRQ);
1189 	preempt_enable();
1190 }
1191 
1192 bool blk_mq_complete_request_remote(struct request *rq)
1193 {
1194 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1195 
1196 	/*
1197 	 * For request which hctx has only one ctx mapping,
1198 	 * or a polled request, always complete locally,
1199 	 * it's pointless to redirect the completion.
1200 	 */
1201 	if ((rq->mq_hctx->nr_ctx == 1 &&
1202 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1203 	     rq->cmd_flags & REQ_POLLED)
1204 		return false;
1205 
1206 	if (blk_mq_complete_need_ipi(rq)) {
1207 		blk_mq_complete_send_ipi(rq);
1208 		return true;
1209 	}
1210 
1211 	if (rq->q->nr_hw_queues == 1) {
1212 		blk_mq_raise_softirq(rq);
1213 		return true;
1214 	}
1215 	return false;
1216 }
1217 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1218 
1219 /**
1220  * blk_mq_complete_request - end I/O on a request
1221  * @rq:		the request being processed
1222  *
1223  * Description:
1224  *	Complete a request by scheduling the ->complete_rq operation.
1225  **/
1226 void blk_mq_complete_request(struct request *rq)
1227 {
1228 	if (!blk_mq_complete_request_remote(rq))
1229 		rq->q->mq_ops->complete(rq);
1230 }
1231 EXPORT_SYMBOL(blk_mq_complete_request);
1232 
1233 /**
1234  * blk_mq_start_request - Start processing a request
1235  * @rq: Pointer to request to be started
1236  *
1237  * Function used by device drivers to notify the block layer that a request
1238  * is going to be processed now, so blk layer can do proper initializations
1239  * such as starting the timeout timer.
1240  */
1241 void blk_mq_start_request(struct request *rq)
1242 {
1243 	struct request_queue *q = rq->q;
1244 
1245 	trace_block_rq_issue(rq);
1246 
1247 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1248 	    !blk_rq_is_passthrough(rq)) {
1249 		rq->io_start_time_ns = blk_time_get_ns();
1250 		rq->stats_sectors = blk_rq_sectors(rq);
1251 		rq->rq_flags |= RQF_STATS;
1252 		rq_qos_issue(q, rq);
1253 	}
1254 
1255 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1256 
1257 	blk_add_timer(rq);
1258 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1259 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1260 
1261 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1262 		blk_integrity_prepare(rq);
1263 
1264 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1265 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1266 }
1267 EXPORT_SYMBOL(blk_mq_start_request);
1268 
1269 /*
1270  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1271  * queues. This is important for md arrays to benefit from merging
1272  * requests.
1273  */
1274 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1275 {
1276 	if (plug->multiple_queues)
1277 		return BLK_MAX_REQUEST_COUNT * 2;
1278 	return BLK_MAX_REQUEST_COUNT;
1279 }
1280 
1281 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1282 {
1283 	struct request *last = rq_list_peek(&plug->mq_list);
1284 
1285 	if (!plug->rq_count) {
1286 		trace_block_plug(rq->q);
1287 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1288 		   (!blk_queue_nomerges(rq->q) &&
1289 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1290 		blk_mq_flush_plug_list(plug, false);
1291 		last = NULL;
1292 		trace_block_plug(rq->q);
1293 	}
1294 
1295 	if (!plug->multiple_queues && last && last->q != rq->q)
1296 		plug->multiple_queues = true;
1297 	/*
1298 	 * Any request allocated from sched tags can't be issued to
1299 	 * ->queue_rqs() directly
1300 	 */
1301 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1302 		plug->has_elevator = true;
1303 	rq->rq_next = NULL;
1304 	rq_list_add(&plug->mq_list, rq);
1305 	plug->rq_count++;
1306 }
1307 
1308 /**
1309  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1310  * @rq:		request to insert
1311  * @at_head:    insert request at head or tail of queue
1312  *
1313  * Description:
1314  *    Insert a fully prepared request at the back of the I/O scheduler queue
1315  *    for execution.  Don't wait for completion.
1316  *
1317  * Note:
1318  *    This function will invoke @done directly if the queue is dead.
1319  */
1320 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1321 {
1322 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1323 
1324 	WARN_ON(irqs_disabled());
1325 	WARN_ON(!blk_rq_is_passthrough(rq));
1326 
1327 	blk_account_io_start(rq);
1328 
1329 	if (current->plug && !at_head) {
1330 		blk_add_rq_to_plug(current->plug, rq);
1331 		return;
1332 	}
1333 
1334 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1335 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1336 }
1337 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1338 
1339 struct blk_rq_wait {
1340 	struct completion done;
1341 	blk_status_t ret;
1342 };
1343 
1344 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1345 {
1346 	struct blk_rq_wait *wait = rq->end_io_data;
1347 
1348 	wait->ret = ret;
1349 	complete(&wait->done);
1350 	return RQ_END_IO_NONE;
1351 }
1352 
1353 bool blk_rq_is_poll(struct request *rq)
1354 {
1355 	if (!rq->mq_hctx)
1356 		return false;
1357 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1358 		return false;
1359 	return true;
1360 }
1361 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1362 
1363 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1364 {
1365 	do {
1366 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1367 		cond_resched();
1368 	} while (!completion_done(wait));
1369 }
1370 
1371 /**
1372  * blk_execute_rq - insert a request into queue for execution
1373  * @rq:		request to insert
1374  * @at_head:    insert request at head or tail of queue
1375  *
1376  * Description:
1377  *    Insert a fully prepared request at the back of the I/O scheduler queue
1378  *    for execution and wait for completion.
1379  * Return: The blk_status_t result provided to blk_mq_end_request().
1380  */
1381 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1382 {
1383 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1384 	struct blk_rq_wait wait = {
1385 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1386 	};
1387 
1388 	WARN_ON(irqs_disabled());
1389 	WARN_ON(!blk_rq_is_passthrough(rq));
1390 
1391 	rq->end_io_data = &wait;
1392 	rq->end_io = blk_end_sync_rq;
1393 
1394 	blk_account_io_start(rq);
1395 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1396 	blk_mq_run_hw_queue(hctx, false);
1397 
1398 	if (blk_rq_is_poll(rq))
1399 		blk_rq_poll_completion(rq, &wait.done);
1400 	else
1401 		blk_wait_io(&wait.done);
1402 
1403 	return wait.ret;
1404 }
1405 EXPORT_SYMBOL(blk_execute_rq);
1406 
1407 static void __blk_mq_requeue_request(struct request *rq)
1408 {
1409 	struct request_queue *q = rq->q;
1410 
1411 	blk_mq_put_driver_tag(rq);
1412 
1413 	trace_block_rq_requeue(rq);
1414 	rq_qos_requeue(q, rq);
1415 
1416 	if (blk_mq_request_started(rq)) {
1417 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1418 		rq->rq_flags &= ~RQF_TIMED_OUT;
1419 	}
1420 }
1421 
1422 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1423 {
1424 	struct request_queue *q = rq->q;
1425 	unsigned long flags;
1426 
1427 	__blk_mq_requeue_request(rq);
1428 
1429 	/* this request will be re-inserted to io scheduler queue */
1430 	blk_mq_sched_requeue_request(rq);
1431 
1432 	spin_lock_irqsave(&q->requeue_lock, flags);
1433 	list_add_tail(&rq->queuelist, &q->requeue_list);
1434 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1435 
1436 	if (kick_requeue_list)
1437 		blk_mq_kick_requeue_list(q);
1438 }
1439 EXPORT_SYMBOL(blk_mq_requeue_request);
1440 
1441 static void blk_mq_requeue_work(struct work_struct *work)
1442 {
1443 	struct request_queue *q =
1444 		container_of(work, struct request_queue, requeue_work.work);
1445 	LIST_HEAD(rq_list);
1446 	LIST_HEAD(flush_list);
1447 	struct request *rq;
1448 
1449 	spin_lock_irq(&q->requeue_lock);
1450 	list_splice_init(&q->requeue_list, &rq_list);
1451 	list_splice_init(&q->flush_list, &flush_list);
1452 	spin_unlock_irq(&q->requeue_lock);
1453 
1454 	while (!list_empty(&rq_list)) {
1455 		rq = list_entry(rq_list.next, struct request, queuelist);
1456 		/*
1457 		 * If RQF_DONTPREP ist set, the request has been started by the
1458 		 * driver already and might have driver-specific data allocated
1459 		 * already.  Insert it into the hctx dispatch list to avoid
1460 		 * block layer merges for the request.
1461 		 */
1462 		if (rq->rq_flags & RQF_DONTPREP) {
1463 			list_del_init(&rq->queuelist);
1464 			blk_mq_request_bypass_insert(rq, 0);
1465 		} else {
1466 			list_del_init(&rq->queuelist);
1467 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1468 		}
1469 	}
1470 
1471 	while (!list_empty(&flush_list)) {
1472 		rq = list_entry(flush_list.next, struct request, queuelist);
1473 		list_del_init(&rq->queuelist);
1474 		blk_mq_insert_request(rq, 0);
1475 	}
1476 
1477 	blk_mq_run_hw_queues(q, false);
1478 }
1479 
1480 void blk_mq_kick_requeue_list(struct request_queue *q)
1481 {
1482 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1483 }
1484 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1485 
1486 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1487 				    unsigned long msecs)
1488 {
1489 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1490 				    msecs_to_jiffies(msecs));
1491 }
1492 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1493 
1494 static bool blk_is_flush_data_rq(struct request *rq)
1495 {
1496 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1497 }
1498 
1499 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1500 {
1501 	/*
1502 	 * If we find a request that isn't idle we know the queue is busy
1503 	 * as it's checked in the iter.
1504 	 * Return false to stop the iteration.
1505 	 *
1506 	 * In case of queue quiesce, if one flush data request is completed,
1507 	 * don't count it as inflight given the flush sequence is suspended,
1508 	 * and the original flush data request is invisible to driver, just
1509 	 * like other pending requests because of quiesce
1510 	 */
1511 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1512 				blk_is_flush_data_rq(rq) &&
1513 				blk_mq_request_completed(rq))) {
1514 		bool *busy = priv;
1515 
1516 		*busy = true;
1517 		return false;
1518 	}
1519 
1520 	return true;
1521 }
1522 
1523 bool blk_mq_queue_inflight(struct request_queue *q)
1524 {
1525 	bool busy = false;
1526 
1527 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1528 	return busy;
1529 }
1530 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1531 
1532 static void blk_mq_rq_timed_out(struct request *req)
1533 {
1534 	req->rq_flags |= RQF_TIMED_OUT;
1535 	if (req->q->mq_ops->timeout) {
1536 		enum blk_eh_timer_return ret;
1537 
1538 		ret = req->q->mq_ops->timeout(req);
1539 		if (ret == BLK_EH_DONE)
1540 			return;
1541 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1542 	}
1543 
1544 	blk_add_timer(req);
1545 }
1546 
1547 struct blk_expired_data {
1548 	bool has_timedout_rq;
1549 	unsigned long next;
1550 	unsigned long timeout_start;
1551 };
1552 
1553 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1554 {
1555 	unsigned long deadline;
1556 
1557 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1558 		return false;
1559 	if (rq->rq_flags & RQF_TIMED_OUT)
1560 		return false;
1561 
1562 	deadline = READ_ONCE(rq->deadline);
1563 	if (time_after_eq(expired->timeout_start, deadline))
1564 		return true;
1565 
1566 	if (expired->next == 0)
1567 		expired->next = deadline;
1568 	else if (time_after(expired->next, deadline))
1569 		expired->next = deadline;
1570 	return false;
1571 }
1572 
1573 void blk_mq_put_rq_ref(struct request *rq)
1574 {
1575 	if (is_flush_rq(rq)) {
1576 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1577 			blk_mq_free_request(rq);
1578 	} else if (req_ref_put_and_test(rq)) {
1579 		__blk_mq_free_request(rq);
1580 	}
1581 }
1582 
1583 static bool blk_mq_check_expired(struct request *rq, void *priv)
1584 {
1585 	struct blk_expired_data *expired = priv;
1586 
1587 	/*
1588 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1589 	 * be reallocated underneath the timeout handler's processing, then
1590 	 * the expire check is reliable. If the request is not expired, then
1591 	 * it was completed and reallocated as a new request after returning
1592 	 * from blk_mq_check_expired().
1593 	 */
1594 	if (blk_mq_req_expired(rq, expired)) {
1595 		expired->has_timedout_rq = true;
1596 		return false;
1597 	}
1598 	return true;
1599 }
1600 
1601 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1602 {
1603 	struct blk_expired_data *expired = priv;
1604 
1605 	if (blk_mq_req_expired(rq, expired))
1606 		blk_mq_rq_timed_out(rq);
1607 	return true;
1608 }
1609 
1610 static void blk_mq_timeout_work(struct work_struct *work)
1611 {
1612 	struct request_queue *q =
1613 		container_of(work, struct request_queue, timeout_work);
1614 	struct blk_expired_data expired = {
1615 		.timeout_start = jiffies,
1616 	};
1617 	struct blk_mq_hw_ctx *hctx;
1618 	unsigned long i;
1619 
1620 	/* A deadlock might occur if a request is stuck requiring a
1621 	 * timeout at the same time a queue freeze is waiting
1622 	 * completion, since the timeout code would not be able to
1623 	 * acquire the queue reference here.
1624 	 *
1625 	 * That's why we don't use blk_queue_enter here; instead, we use
1626 	 * percpu_ref_tryget directly, because we need to be able to
1627 	 * obtain a reference even in the short window between the queue
1628 	 * starting to freeze, by dropping the first reference in
1629 	 * blk_freeze_queue_start, and the moment the last request is
1630 	 * consumed, marked by the instant q_usage_counter reaches
1631 	 * zero.
1632 	 */
1633 	if (!percpu_ref_tryget(&q->q_usage_counter))
1634 		return;
1635 
1636 	/* check if there is any timed-out request */
1637 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1638 	if (expired.has_timedout_rq) {
1639 		/*
1640 		 * Before walking tags, we must ensure any submit started
1641 		 * before the current time has finished. Since the submit
1642 		 * uses srcu or rcu, wait for a synchronization point to
1643 		 * ensure all running submits have finished
1644 		 */
1645 		blk_mq_wait_quiesce_done(q->tag_set);
1646 
1647 		expired.next = 0;
1648 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1649 	}
1650 
1651 	if (expired.next != 0) {
1652 		mod_timer(&q->timeout, expired.next);
1653 	} else {
1654 		/*
1655 		 * Request timeouts are handled as a forward rolling timer. If
1656 		 * we end up here it means that no requests are pending and
1657 		 * also that no request has been pending for a while. Mark
1658 		 * each hctx as idle.
1659 		 */
1660 		queue_for_each_hw_ctx(q, hctx, i) {
1661 			/* the hctx may be unmapped, so check it here */
1662 			if (blk_mq_hw_queue_mapped(hctx))
1663 				blk_mq_tag_idle(hctx);
1664 		}
1665 	}
1666 	blk_queue_exit(q);
1667 }
1668 
1669 struct flush_busy_ctx_data {
1670 	struct blk_mq_hw_ctx *hctx;
1671 	struct list_head *list;
1672 };
1673 
1674 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1675 {
1676 	struct flush_busy_ctx_data *flush_data = data;
1677 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1678 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1679 	enum hctx_type type = hctx->type;
1680 
1681 	spin_lock(&ctx->lock);
1682 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1683 	sbitmap_clear_bit(sb, bitnr);
1684 	spin_unlock(&ctx->lock);
1685 	return true;
1686 }
1687 
1688 /*
1689  * Process software queues that have been marked busy, splicing them
1690  * to the for-dispatch
1691  */
1692 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1693 {
1694 	struct flush_busy_ctx_data data = {
1695 		.hctx = hctx,
1696 		.list = list,
1697 	};
1698 
1699 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1700 }
1701 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1702 
1703 struct dispatch_rq_data {
1704 	struct blk_mq_hw_ctx *hctx;
1705 	struct request *rq;
1706 };
1707 
1708 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1709 		void *data)
1710 {
1711 	struct dispatch_rq_data *dispatch_data = data;
1712 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1713 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1714 	enum hctx_type type = hctx->type;
1715 
1716 	spin_lock(&ctx->lock);
1717 	if (!list_empty(&ctx->rq_lists[type])) {
1718 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1719 		list_del_init(&dispatch_data->rq->queuelist);
1720 		if (list_empty(&ctx->rq_lists[type]))
1721 			sbitmap_clear_bit(sb, bitnr);
1722 	}
1723 	spin_unlock(&ctx->lock);
1724 
1725 	return !dispatch_data->rq;
1726 }
1727 
1728 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1729 					struct blk_mq_ctx *start)
1730 {
1731 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1732 	struct dispatch_rq_data data = {
1733 		.hctx = hctx,
1734 		.rq   = NULL,
1735 	};
1736 
1737 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1738 			       dispatch_rq_from_ctx, &data);
1739 
1740 	return data.rq;
1741 }
1742 
1743 bool __blk_mq_alloc_driver_tag(struct request *rq)
1744 {
1745 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1746 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1747 	int tag;
1748 
1749 	blk_mq_tag_busy(rq->mq_hctx);
1750 
1751 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1752 		bt = &rq->mq_hctx->tags->breserved_tags;
1753 		tag_offset = 0;
1754 	} else {
1755 		if (!hctx_may_queue(rq->mq_hctx, bt))
1756 			return false;
1757 	}
1758 
1759 	tag = __sbitmap_queue_get(bt);
1760 	if (tag == BLK_MQ_NO_TAG)
1761 		return false;
1762 
1763 	rq->tag = tag + tag_offset;
1764 	blk_mq_inc_active_requests(rq->mq_hctx);
1765 	return true;
1766 }
1767 
1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1769 				int flags, void *key)
1770 {
1771 	struct blk_mq_hw_ctx *hctx;
1772 
1773 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1774 
1775 	spin_lock(&hctx->dispatch_wait_lock);
1776 	if (!list_empty(&wait->entry)) {
1777 		struct sbitmap_queue *sbq;
1778 
1779 		list_del_init(&wait->entry);
1780 		sbq = &hctx->tags->bitmap_tags;
1781 		atomic_dec(&sbq->ws_active);
1782 	}
1783 	spin_unlock(&hctx->dispatch_wait_lock);
1784 
1785 	blk_mq_run_hw_queue(hctx, true);
1786 	return 1;
1787 }
1788 
1789 /*
1790  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1791  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1792  * restart. For both cases, take care to check the condition again after
1793  * marking us as waiting.
1794  */
1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1796 				 struct request *rq)
1797 {
1798 	struct sbitmap_queue *sbq;
1799 	struct wait_queue_head *wq;
1800 	wait_queue_entry_t *wait;
1801 	bool ret;
1802 
1803 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1804 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1805 		blk_mq_sched_mark_restart_hctx(hctx);
1806 
1807 		/*
1808 		 * It's possible that a tag was freed in the window between the
1809 		 * allocation failure and adding the hardware queue to the wait
1810 		 * queue.
1811 		 *
1812 		 * Don't clear RESTART here, someone else could have set it.
1813 		 * At most this will cost an extra queue run.
1814 		 */
1815 		return blk_mq_get_driver_tag(rq);
1816 	}
1817 
1818 	wait = &hctx->dispatch_wait;
1819 	if (!list_empty_careful(&wait->entry))
1820 		return false;
1821 
1822 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1823 		sbq = &hctx->tags->breserved_tags;
1824 	else
1825 		sbq = &hctx->tags->bitmap_tags;
1826 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1827 
1828 	spin_lock_irq(&wq->lock);
1829 	spin_lock(&hctx->dispatch_wait_lock);
1830 	if (!list_empty(&wait->entry)) {
1831 		spin_unlock(&hctx->dispatch_wait_lock);
1832 		spin_unlock_irq(&wq->lock);
1833 		return false;
1834 	}
1835 
1836 	atomic_inc(&sbq->ws_active);
1837 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1838 	__add_wait_queue(wq, wait);
1839 
1840 	/*
1841 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1842 	 * not imply barrier in case of failure.
1843 	 *
1844 	 * Order adding us to wait queue and allocating driver tag.
1845 	 *
1846 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1847 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1848 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1849 	 *
1850 	 * Otherwise, re-order of adding wait queue and getting driver tag
1851 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1852 	 * the waitqueue_active() may not observe us in wait queue.
1853 	 */
1854 	smp_mb();
1855 
1856 	/*
1857 	 * It's possible that a tag was freed in the window between the
1858 	 * allocation failure and adding the hardware queue to the wait
1859 	 * queue.
1860 	 */
1861 	ret = blk_mq_get_driver_tag(rq);
1862 	if (!ret) {
1863 		spin_unlock(&hctx->dispatch_wait_lock);
1864 		spin_unlock_irq(&wq->lock);
1865 		return false;
1866 	}
1867 
1868 	/*
1869 	 * We got a tag, remove ourselves from the wait queue to ensure
1870 	 * someone else gets the wakeup.
1871 	 */
1872 	list_del_init(&wait->entry);
1873 	atomic_dec(&sbq->ws_active);
1874 	spin_unlock(&hctx->dispatch_wait_lock);
1875 	spin_unlock_irq(&wq->lock);
1876 
1877 	return true;
1878 }
1879 
1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1881 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1882 /*
1883  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1884  * - EWMA is one simple way to compute running average value
1885  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1886  * - take 4 as factor for avoiding to get too small(0) result, and this
1887  *   factor doesn't matter because EWMA decreases exponentially
1888  */
1889 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1890 {
1891 	unsigned int ewma;
1892 
1893 	ewma = hctx->dispatch_busy;
1894 
1895 	if (!ewma && !busy)
1896 		return;
1897 
1898 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1899 	if (busy)
1900 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1901 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1902 
1903 	hctx->dispatch_busy = ewma;
1904 }
1905 
1906 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1907 
1908 static void blk_mq_handle_dev_resource(struct request *rq,
1909 				       struct list_head *list)
1910 {
1911 	list_add(&rq->queuelist, list);
1912 	__blk_mq_requeue_request(rq);
1913 }
1914 
1915 enum prep_dispatch {
1916 	PREP_DISPATCH_OK,
1917 	PREP_DISPATCH_NO_TAG,
1918 	PREP_DISPATCH_NO_BUDGET,
1919 };
1920 
1921 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1922 						  bool need_budget)
1923 {
1924 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1925 	int budget_token = -1;
1926 
1927 	if (need_budget) {
1928 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1929 		if (budget_token < 0) {
1930 			blk_mq_put_driver_tag(rq);
1931 			return PREP_DISPATCH_NO_BUDGET;
1932 		}
1933 		blk_mq_set_rq_budget_token(rq, budget_token);
1934 	}
1935 
1936 	if (!blk_mq_get_driver_tag(rq)) {
1937 		/*
1938 		 * The initial allocation attempt failed, so we need to
1939 		 * rerun the hardware queue when a tag is freed. The
1940 		 * waitqueue takes care of that. If the queue is run
1941 		 * before we add this entry back on the dispatch list,
1942 		 * we'll re-run it below.
1943 		 */
1944 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1945 			/*
1946 			 * All budgets not got from this function will be put
1947 			 * together during handling partial dispatch
1948 			 */
1949 			if (need_budget)
1950 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1951 			return PREP_DISPATCH_NO_TAG;
1952 		}
1953 	}
1954 
1955 	return PREP_DISPATCH_OK;
1956 }
1957 
1958 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1959 static void blk_mq_release_budgets(struct request_queue *q,
1960 		struct list_head *list)
1961 {
1962 	struct request *rq;
1963 
1964 	list_for_each_entry(rq, list, queuelist) {
1965 		int budget_token = blk_mq_get_rq_budget_token(rq);
1966 
1967 		if (budget_token >= 0)
1968 			blk_mq_put_dispatch_budget(q, budget_token);
1969 	}
1970 }
1971 
1972 /*
1973  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1974  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1975  * details)
1976  * Attention, we should explicitly call this in unusual cases:
1977  *  1) did not queue everything initially scheduled to queue
1978  *  2) the last attempt to queue a request failed
1979  */
1980 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1981 			      bool from_schedule)
1982 {
1983 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1984 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1985 		hctx->queue->mq_ops->commit_rqs(hctx);
1986 	}
1987 }
1988 
1989 /*
1990  * Returns true if we did some work AND can potentially do more.
1991  */
1992 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1993 			     unsigned int nr_budgets)
1994 {
1995 	enum prep_dispatch prep;
1996 	struct request_queue *q = hctx->queue;
1997 	struct request *rq;
1998 	int queued;
1999 	blk_status_t ret = BLK_STS_OK;
2000 	bool needs_resource = false;
2001 
2002 	if (list_empty(list))
2003 		return false;
2004 
2005 	/*
2006 	 * Now process all the entries, sending them to the driver.
2007 	 */
2008 	queued = 0;
2009 	do {
2010 		struct blk_mq_queue_data bd;
2011 
2012 		rq = list_first_entry(list, struct request, queuelist);
2013 
2014 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2015 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2016 		if (prep != PREP_DISPATCH_OK)
2017 			break;
2018 
2019 		list_del_init(&rq->queuelist);
2020 
2021 		bd.rq = rq;
2022 		bd.last = list_empty(list);
2023 
2024 		/*
2025 		 * once the request is queued to lld, no need to cover the
2026 		 * budget any more
2027 		 */
2028 		if (nr_budgets)
2029 			nr_budgets--;
2030 		ret = q->mq_ops->queue_rq(hctx, &bd);
2031 		switch (ret) {
2032 		case BLK_STS_OK:
2033 			queued++;
2034 			break;
2035 		case BLK_STS_RESOURCE:
2036 			needs_resource = true;
2037 			fallthrough;
2038 		case BLK_STS_DEV_RESOURCE:
2039 			blk_mq_handle_dev_resource(rq, list);
2040 			goto out;
2041 		default:
2042 			blk_mq_end_request(rq, ret);
2043 		}
2044 	} while (!list_empty(list));
2045 out:
2046 	/* If we didn't flush the entire list, we could have told the driver
2047 	 * there was more coming, but that turned out to be a lie.
2048 	 */
2049 	if (!list_empty(list) || ret != BLK_STS_OK)
2050 		blk_mq_commit_rqs(hctx, queued, false);
2051 
2052 	/*
2053 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2054 	 * that is where we will continue on next queue run.
2055 	 */
2056 	if (!list_empty(list)) {
2057 		bool needs_restart;
2058 		/* For non-shared tags, the RESTART check will suffice */
2059 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2060 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2061 			blk_mq_is_shared_tags(hctx->flags));
2062 
2063 		if (nr_budgets)
2064 			blk_mq_release_budgets(q, list);
2065 
2066 		spin_lock(&hctx->lock);
2067 		list_splice_tail_init(list, &hctx->dispatch);
2068 		spin_unlock(&hctx->lock);
2069 
2070 		/*
2071 		 * Order adding requests to hctx->dispatch and checking
2072 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2073 		 * in blk_mq_sched_restart(). Avoid restart code path to
2074 		 * miss the new added requests to hctx->dispatch, meantime
2075 		 * SCHED_RESTART is observed here.
2076 		 */
2077 		smp_mb();
2078 
2079 		/*
2080 		 * If SCHED_RESTART was set by the caller of this function and
2081 		 * it is no longer set that means that it was cleared by another
2082 		 * thread and hence that a queue rerun is needed.
2083 		 *
2084 		 * If 'no_tag' is set, that means that we failed getting
2085 		 * a driver tag with an I/O scheduler attached. If our dispatch
2086 		 * waitqueue is no longer active, ensure that we run the queue
2087 		 * AFTER adding our entries back to the list.
2088 		 *
2089 		 * If no I/O scheduler has been configured it is possible that
2090 		 * the hardware queue got stopped and restarted before requests
2091 		 * were pushed back onto the dispatch list. Rerun the queue to
2092 		 * avoid starvation. Notes:
2093 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2094 		 *   been stopped before rerunning a queue.
2095 		 * - Some but not all block drivers stop a queue before
2096 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2097 		 *   and dm-rq.
2098 		 *
2099 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2100 		 * bit is set, run queue after a delay to avoid IO stalls
2101 		 * that could otherwise occur if the queue is idle.  We'll do
2102 		 * similar if we couldn't get budget or couldn't lock a zone
2103 		 * and SCHED_RESTART is set.
2104 		 */
2105 		needs_restart = blk_mq_sched_needs_restart(hctx);
2106 		if (prep == PREP_DISPATCH_NO_BUDGET)
2107 			needs_resource = true;
2108 		if (!needs_restart ||
2109 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2110 			blk_mq_run_hw_queue(hctx, true);
2111 		else if (needs_resource)
2112 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2113 
2114 		blk_mq_update_dispatch_busy(hctx, true);
2115 		return false;
2116 	}
2117 
2118 	blk_mq_update_dispatch_busy(hctx, false);
2119 	return true;
2120 }
2121 
2122 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2123 {
2124 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2125 
2126 	if (cpu >= nr_cpu_ids)
2127 		cpu = cpumask_first(hctx->cpumask);
2128 	return cpu;
2129 }
2130 
2131 /*
2132  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2133  * it for speeding up the check
2134  */
2135 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2136 {
2137         return hctx->next_cpu >= nr_cpu_ids;
2138 }
2139 
2140 /*
2141  * It'd be great if the workqueue API had a way to pass
2142  * in a mask and had some smarts for more clever placement.
2143  * For now we just round-robin here, switching for every
2144  * BLK_MQ_CPU_WORK_BATCH queued items.
2145  */
2146 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2147 {
2148 	bool tried = false;
2149 	int next_cpu = hctx->next_cpu;
2150 
2151 	/* Switch to unbound if no allowable CPUs in this hctx */
2152 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2153 		return WORK_CPU_UNBOUND;
2154 
2155 	if (--hctx->next_cpu_batch <= 0) {
2156 select_cpu:
2157 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2158 				cpu_online_mask);
2159 		if (next_cpu >= nr_cpu_ids)
2160 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2161 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2162 	}
2163 
2164 	/*
2165 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2166 	 * and it should only happen in the path of handling CPU DEAD.
2167 	 */
2168 	if (!cpu_online(next_cpu)) {
2169 		if (!tried) {
2170 			tried = true;
2171 			goto select_cpu;
2172 		}
2173 
2174 		/*
2175 		 * Make sure to re-select CPU next time once after CPUs
2176 		 * in hctx->cpumask become online again.
2177 		 */
2178 		hctx->next_cpu = next_cpu;
2179 		hctx->next_cpu_batch = 1;
2180 		return WORK_CPU_UNBOUND;
2181 	}
2182 
2183 	hctx->next_cpu = next_cpu;
2184 	return next_cpu;
2185 }
2186 
2187 /**
2188  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2189  * @hctx: Pointer to the hardware queue to run.
2190  * @msecs: Milliseconds of delay to wait before running the queue.
2191  *
2192  * Run a hardware queue asynchronously with a delay of @msecs.
2193  */
2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2195 {
2196 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2197 		return;
2198 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2199 				    msecs_to_jiffies(msecs));
2200 }
2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2202 
2203 /**
2204  * blk_mq_run_hw_queue - Start to run a hardware queue.
2205  * @hctx: Pointer to the hardware queue to run.
2206  * @async: If we want to run the queue asynchronously.
2207  *
2208  * Check if the request queue is not in a quiesced state and if there are
2209  * pending requests to be sent. If this is true, run the queue to send requests
2210  * to hardware.
2211  */
2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2213 {
2214 	bool need_run;
2215 
2216 	/*
2217 	 * We can't run the queue inline with interrupts disabled.
2218 	 */
2219 	WARN_ON_ONCE(!async && in_interrupt());
2220 
2221 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2222 
2223 	/*
2224 	 * When queue is quiesced, we may be switching io scheduler, or
2225 	 * updating nr_hw_queues, or other things, and we can't run queue
2226 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2227 	 *
2228 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2229 	 * quiesced.
2230 	 */
2231 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2232 		need_run = !blk_queue_quiesced(hctx->queue) &&
2233 		blk_mq_hctx_has_pending(hctx));
2234 
2235 	if (!need_run)
2236 		return;
2237 
2238 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2239 		blk_mq_delay_run_hw_queue(hctx, 0);
2240 		return;
2241 	}
2242 
2243 	blk_mq_run_dispatch_ops(hctx->queue,
2244 				blk_mq_sched_dispatch_requests(hctx));
2245 }
2246 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2247 
2248 /*
2249  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2250  * scheduler.
2251  */
2252 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2253 {
2254 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2255 	/*
2256 	 * If the IO scheduler does not respect hardware queues when
2257 	 * dispatching, we just don't bother with multiple HW queues and
2258 	 * dispatch from hctx for the current CPU since running multiple queues
2259 	 * just causes lock contention inside the scheduler and pointless cache
2260 	 * bouncing.
2261 	 */
2262 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2263 
2264 	if (!blk_mq_hctx_stopped(hctx))
2265 		return hctx;
2266 	return NULL;
2267 }
2268 
2269 /**
2270  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2271  * @q: Pointer to the request queue to run.
2272  * @async: If we want to run the queue asynchronously.
2273  */
2274 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2275 {
2276 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2277 	unsigned long i;
2278 
2279 	sq_hctx = NULL;
2280 	if (blk_queue_sq_sched(q))
2281 		sq_hctx = blk_mq_get_sq_hctx(q);
2282 	queue_for_each_hw_ctx(q, hctx, i) {
2283 		if (blk_mq_hctx_stopped(hctx))
2284 			continue;
2285 		/*
2286 		 * Dispatch from this hctx either if there's no hctx preferred
2287 		 * by IO scheduler or if it has requests that bypass the
2288 		 * scheduler.
2289 		 */
2290 		if (!sq_hctx || sq_hctx == hctx ||
2291 		    !list_empty_careful(&hctx->dispatch))
2292 			blk_mq_run_hw_queue(hctx, async);
2293 	}
2294 }
2295 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2296 
2297 /**
2298  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2299  * @q: Pointer to the request queue to run.
2300  * @msecs: Milliseconds of delay to wait before running the queues.
2301  */
2302 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2303 {
2304 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2305 	unsigned long i;
2306 
2307 	sq_hctx = NULL;
2308 	if (blk_queue_sq_sched(q))
2309 		sq_hctx = blk_mq_get_sq_hctx(q);
2310 	queue_for_each_hw_ctx(q, hctx, i) {
2311 		if (blk_mq_hctx_stopped(hctx))
2312 			continue;
2313 		/*
2314 		 * If there is already a run_work pending, leave the
2315 		 * pending delay untouched. Otherwise, a hctx can stall
2316 		 * if another hctx is re-delaying the other's work
2317 		 * before the work executes.
2318 		 */
2319 		if (delayed_work_pending(&hctx->run_work))
2320 			continue;
2321 		/*
2322 		 * Dispatch from this hctx either if there's no hctx preferred
2323 		 * by IO scheduler or if it has requests that bypass the
2324 		 * scheduler.
2325 		 */
2326 		if (!sq_hctx || sq_hctx == hctx ||
2327 		    !list_empty_careful(&hctx->dispatch))
2328 			blk_mq_delay_run_hw_queue(hctx, msecs);
2329 	}
2330 }
2331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2332 
2333 /*
2334  * This function is often used for pausing .queue_rq() by driver when
2335  * there isn't enough resource or some conditions aren't satisfied, and
2336  * BLK_STS_RESOURCE is usually returned.
2337  *
2338  * We do not guarantee that dispatch can be drained or blocked
2339  * after blk_mq_stop_hw_queue() returns. Please use
2340  * blk_mq_quiesce_queue() for that requirement.
2341  */
2342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2343 {
2344 	cancel_delayed_work(&hctx->run_work);
2345 
2346 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2347 }
2348 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2349 
2350 /*
2351  * This function is often used for pausing .queue_rq() by driver when
2352  * there isn't enough resource or some conditions aren't satisfied, and
2353  * BLK_STS_RESOURCE is usually returned.
2354  *
2355  * We do not guarantee that dispatch can be drained or blocked
2356  * after blk_mq_stop_hw_queues() returns. Please use
2357  * blk_mq_quiesce_queue() for that requirement.
2358  */
2359 void blk_mq_stop_hw_queues(struct request_queue *q)
2360 {
2361 	struct blk_mq_hw_ctx *hctx;
2362 	unsigned long i;
2363 
2364 	queue_for_each_hw_ctx(q, hctx, i)
2365 		blk_mq_stop_hw_queue(hctx);
2366 }
2367 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2368 
2369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2370 {
2371 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2372 
2373 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2374 }
2375 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2376 
2377 void blk_mq_start_hw_queues(struct request_queue *q)
2378 {
2379 	struct blk_mq_hw_ctx *hctx;
2380 	unsigned long i;
2381 
2382 	queue_for_each_hw_ctx(q, hctx, i)
2383 		blk_mq_start_hw_queue(hctx);
2384 }
2385 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2386 
2387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2388 {
2389 	if (!blk_mq_hctx_stopped(hctx))
2390 		return;
2391 
2392 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393 	blk_mq_run_hw_queue(hctx, async);
2394 }
2395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2396 
2397 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2398 {
2399 	struct blk_mq_hw_ctx *hctx;
2400 	unsigned long i;
2401 
2402 	queue_for_each_hw_ctx(q, hctx, i)
2403 		blk_mq_start_stopped_hw_queue(hctx, async ||
2404 					(hctx->flags & BLK_MQ_F_BLOCKING));
2405 }
2406 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2407 
2408 static void blk_mq_run_work_fn(struct work_struct *work)
2409 {
2410 	struct blk_mq_hw_ctx *hctx =
2411 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2412 
2413 	blk_mq_run_dispatch_ops(hctx->queue,
2414 				blk_mq_sched_dispatch_requests(hctx));
2415 }
2416 
2417 /**
2418  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2419  * @rq: Pointer to request to be inserted.
2420  * @flags: BLK_MQ_INSERT_*
2421  *
2422  * Should only be used carefully, when the caller knows we want to
2423  * bypass a potential IO scheduler on the target device.
2424  */
2425 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2426 {
2427 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2428 
2429 	spin_lock(&hctx->lock);
2430 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2431 		list_add(&rq->queuelist, &hctx->dispatch);
2432 	else
2433 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2434 	spin_unlock(&hctx->lock);
2435 }
2436 
2437 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2438 		struct blk_mq_ctx *ctx, struct list_head *list,
2439 		bool run_queue_async)
2440 {
2441 	struct request *rq;
2442 	enum hctx_type type = hctx->type;
2443 
2444 	/*
2445 	 * Try to issue requests directly if the hw queue isn't busy to save an
2446 	 * extra enqueue & dequeue to the sw queue.
2447 	 */
2448 	if (!hctx->dispatch_busy && !run_queue_async) {
2449 		blk_mq_run_dispatch_ops(hctx->queue,
2450 			blk_mq_try_issue_list_directly(hctx, list));
2451 		if (list_empty(list))
2452 			goto out;
2453 	}
2454 
2455 	/*
2456 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2457 	 * offline now
2458 	 */
2459 	list_for_each_entry(rq, list, queuelist) {
2460 		BUG_ON(rq->mq_ctx != ctx);
2461 		trace_block_rq_insert(rq);
2462 		if (rq->cmd_flags & REQ_NOWAIT)
2463 			run_queue_async = true;
2464 	}
2465 
2466 	spin_lock(&ctx->lock);
2467 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2468 	blk_mq_hctx_mark_pending(hctx, ctx);
2469 	spin_unlock(&ctx->lock);
2470 out:
2471 	blk_mq_run_hw_queue(hctx, run_queue_async);
2472 }
2473 
2474 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2475 {
2476 	struct request_queue *q = rq->q;
2477 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2478 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2479 
2480 	if (blk_rq_is_passthrough(rq)) {
2481 		/*
2482 		 * Passthrough request have to be added to hctx->dispatch
2483 		 * directly.  The device may be in a situation where it can't
2484 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2485 		 * them, which gets them added to hctx->dispatch.
2486 		 *
2487 		 * If a passthrough request is required to unblock the queues,
2488 		 * and it is added to the scheduler queue, there is no chance to
2489 		 * dispatch it given we prioritize requests in hctx->dispatch.
2490 		 */
2491 		blk_mq_request_bypass_insert(rq, flags);
2492 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2493 		/*
2494 		 * Firstly normal IO request is inserted to scheduler queue or
2495 		 * sw queue, meantime we add flush request to dispatch queue(
2496 		 * hctx->dispatch) directly and there is at most one in-flight
2497 		 * flush request for each hw queue, so it doesn't matter to add
2498 		 * flush request to tail or front of the dispatch queue.
2499 		 *
2500 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2501 		 * command, and queueing it will fail when there is any
2502 		 * in-flight normal IO request(NCQ command). When adding flush
2503 		 * rq to the front of hctx->dispatch, it is easier to introduce
2504 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2505 		 * compared with adding to the tail of dispatch queue, then
2506 		 * chance of flush merge is increased, and less flush requests
2507 		 * will be issued to controller. It is observed that ~10% time
2508 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2509 		 * drive when adding flush rq to the front of hctx->dispatch.
2510 		 *
2511 		 * Simply queue flush rq to the front of hctx->dispatch so that
2512 		 * intensive flush workloads can benefit in case of NCQ HW.
2513 		 */
2514 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2515 	} else if (q->elevator) {
2516 		LIST_HEAD(list);
2517 
2518 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2519 
2520 		list_add(&rq->queuelist, &list);
2521 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2522 	} else {
2523 		trace_block_rq_insert(rq);
2524 
2525 		spin_lock(&ctx->lock);
2526 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2527 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2528 		else
2529 			list_add_tail(&rq->queuelist,
2530 				      &ctx->rq_lists[hctx->type]);
2531 		blk_mq_hctx_mark_pending(hctx, ctx);
2532 		spin_unlock(&ctx->lock);
2533 	}
2534 }
2535 
2536 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2537 		unsigned int nr_segs)
2538 {
2539 	int err;
2540 
2541 	if (bio->bi_opf & REQ_RAHEAD)
2542 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2543 
2544 	rq->__sector = bio->bi_iter.bi_sector;
2545 	rq->write_hint = bio->bi_write_hint;
2546 	blk_rq_bio_prep(rq, bio, nr_segs);
2547 	if (bio_integrity(bio))
2548 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2549 								      bio);
2550 
2551 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2552 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2553 	WARN_ON_ONCE(err);
2554 
2555 	blk_account_io_start(rq);
2556 }
2557 
2558 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2559 					    struct request *rq, bool last)
2560 {
2561 	struct request_queue *q = rq->q;
2562 	struct blk_mq_queue_data bd = {
2563 		.rq = rq,
2564 		.last = last,
2565 	};
2566 	blk_status_t ret;
2567 
2568 	/*
2569 	 * For OK queue, we are done. For error, caller may kill it.
2570 	 * Any other error (busy), just add it to our list as we
2571 	 * previously would have done.
2572 	 */
2573 	ret = q->mq_ops->queue_rq(hctx, &bd);
2574 	switch (ret) {
2575 	case BLK_STS_OK:
2576 		blk_mq_update_dispatch_busy(hctx, false);
2577 		break;
2578 	case BLK_STS_RESOURCE:
2579 	case BLK_STS_DEV_RESOURCE:
2580 		blk_mq_update_dispatch_busy(hctx, true);
2581 		__blk_mq_requeue_request(rq);
2582 		break;
2583 	default:
2584 		blk_mq_update_dispatch_busy(hctx, false);
2585 		break;
2586 	}
2587 
2588 	return ret;
2589 }
2590 
2591 static bool blk_mq_get_budget_and_tag(struct request *rq)
2592 {
2593 	int budget_token;
2594 
2595 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2596 	if (budget_token < 0)
2597 		return false;
2598 	blk_mq_set_rq_budget_token(rq, budget_token);
2599 	if (!blk_mq_get_driver_tag(rq)) {
2600 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2601 		return false;
2602 	}
2603 	return true;
2604 }
2605 
2606 /**
2607  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2608  * @hctx: Pointer of the associated hardware queue.
2609  * @rq: Pointer to request to be sent.
2610  *
2611  * If the device has enough resources to accept a new request now, send the
2612  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2613  * we can try send it another time in the future. Requests inserted at this
2614  * queue have higher priority.
2615  */
2616 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2617 		struct request *rq)
2618 {
2619 	blk_status_t ret;
2620 
2621 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2622 		blk_mq_insert_request(rq, 0);
2623 		return;
2624 	}
2625 
2626 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2627 		blk_mq_insert_request(rq, 0);
2628 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2629 		return;
2630 	}
2631 
2632 	ret = __blk_mq_issue_directly(hctx, rq, true);
2633 	switch (ret) {
2634 	case BLK_STS_OK:
2635 		break;
2636 	case BLK_STS_RESOURCE:
2637 	case BLK_STS_DEV_RESOURCE:
2638 		blk_mq_request_bypass_insert(rq, 0);
2639 		blk_mq_run_hw_queue(hctx, false);
2640 		break;
2641 	default:
2642 		blk_mq_end_request(rq, ret);
2643 		break;
2644 	}
2645 }
2646 
2647 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2648 {
2649 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2650 
2651 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2652 		blk_mq_insert_request(rq, 0);
2653 		return BLK_STS_OK;
2654 	}
2655 
2656 	if (!blk_mq_get_budget_and_tag(rq))
2657 		return BLK_STS_RESOURCE;
2658 	return __blk_mq_issue_directly(hctx, rq, last);
2659 }
2660 
2661 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2662 {
2663 	struct blk_mq_hw_ctx *hctx = NULL;
2664 	struct request *rq;
2665 	int queued = 0;
2666 	blk_status_t ret = BLK_STS_OK;
2667 
2668 	while ((rq = rq_list_pop(&plug->mq_list))) {
2669 		bool last = rq_list_empty(plug->mq_list);
2670 
2671 		if (hctx != rq->mq_hctx) {
2672 			if (hctx) {
2673 				blk_mq_commit_rqs(hctx, queued, false);
2674 				queued = 0;
2675 			}
2676 			hctx = rq->mq_hctx;
2677 		}
2678 
2679 		ret = blk_mq_request_issue_directly(rq, last);
2680 		switch (ret) {
2681 		case BLK_STS_OK:
2682 			queued++;
2683 			break;
2684 		case BLK_STS_RESOURCE:
2685 		case BLK_STS_DEV_RESOURCE:
2686 			blk_mq_request_bypass_insert(rq, 0);
2687 			blk_mq_run_hw_queue(hctx, false);
2688 			goto out;
2689 		default:
2690 			blk_mq_end_request(rq, ret);
2691 			break;
2692 		}
2693 	}
2694 
2695 out:
2696 	if (ret != BLK_STS_OK)
2697 		blk_mq_commit_rqs(hctx, queued, false);
2698 }
2699 
2700 static void __blk_mq_flush_plug_list(struct request_queue *q,
2701 				     struct blk_plug *plug)
2702 {
2703 	if (blk_queue_quiesced(q))
2704 		return;
2705 	q->mq_ops->queue_rqs(&plug->mq_list);
2706 }
2707 
2708 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2709 {
2710 	struct blk_mq_hw_ctx *this_hctx = NULL;
2711 	struct blk_mq_ctx *this_ctx = NULL;
2712 	struct request *requeue_list = NULL;
2713 	struct request **requeue_lastp = &requeue_list;
2714 	unsigned int depth = 0;
2715 	bool is_passthrough = false;
2716 	LIST_HEAD(list);
2717 
2718 	do {
2719 		struct request *rq = rq_list_pop(&plug->mq_list);
2720 
2721 		if (!this_hctx) {
2722 			this_hctx = rq->mq_hctx;
2723 			this_ctx = rq->mq_ctx;
2724 			is_passthrough = blk_rq_is_passthrough(rq);
2725 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2726 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2727 			rq_list_add_tail(&requeue_lastp, rq);
2728 			continue;
2729 		}
2730 		list_add(&rq->queuelist, &list);
2731 		depth++;
2732 	} while (!rq_list_empty(plug->mq_list));
2733 
2734 	plug->mq_list = requeue_list;
2735 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2736 
2737 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2738 	/* passthrough requests should never be issued to the I/O scheduler */
2739 	if (is_passthrough) {
2740 		spin_lock(&this_hctx->lock);
2741 		list_splice_tail_init(&list, &this_hctx->dispatch);
2742 		spin_unlock(&this_hctx->lock);
2743 		blk_mq_run_hw_queue(this_hctx, from_sched);
2744 	} else if (this_hctx->queue->elevator) {
2745 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2746 				&list, 0);
2747 		blk_mq_run_hw_queue(this_hctx, from_sched);
2748 	} else {
2749 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2750 	}
2751 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2752 }
2753 
2754 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2755 {
2756 	struct request *rq;
2757 	unsigned int depth;
2758 
2759 	/*
2760 	 * We may have been called recursively midway through handling
2761 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2762 	 * To avoid mq_list changing under our feet, clear rq_count early and
2763 	 * bail out specifically if rq_count is 0 rather than checking
2764 	 * whether the mq_list is empty.
2765 	 */
2766 	if (plug->rq_count == 0)
2767 		return;
2768 	depth = plug->rq_count;
2769 	plug->rq_count = 0;
2770 
2771 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2772 		struct request_queue *q;
2773 
2774 		rq = rq_list_peek(&plug->mq_list);
2775 		q = rq->q;
2776 		trace_block_unplug(q, depth, true);
2777 
2778 		/*
2779 		 * Peek first request and see if we have a ->queue_rqs() hook.
2780 		 * If we do, we can dispatch the whole plug list in one go. We
2781 		 * already know at this point that all requests belong to the
2782 		 * same queue, caller must ensure that's the case.
2783 		 */
2784 		if (q->mq_ops->queue_rqs) {
2785 			blk_mq_run_dispatch_ops(q,
2786 				__blk_mq_flush_plug_list(q, plug));
2787 			if (rq_list_empty(plug->mq_list))
2788 				return;
2789 		}
2790 
2791 		blk_mq_run_dispatch_ops(q,
2792 				blk_mq_plug_issue_direct(plug));
2793 		if (rq_list_empty(plug->mq_list))
2794 			return;
2795 	}
2796 
2797 	do {
2798 		blk_mq_dispatch_plug_list(plug, from_schedule);
2799 	} while (!rq_list_empty(plug->mq_list));
2800 }
2801 
2802 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2803 		struct list_head *list)
2804 {
2805 	int queued = 0;
2806 	blk_status_t ret = BLK_STS_OK;
2807 
2808 	while (!list_empty(list)) {
2809 		struct request *rq = list_first_entry(list, struct request,
2810 				queuelist);
2811 
2812 		list_del_init(&rq->queuelist);
2813 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2814 		switch (ret) {
2815 		case BLK_STS_OK:
2816 			queued++;
2817 			break;
2818 		case BLK_STS_RESOURCE:
2819 		case BLK_STS_DEV_RESOURCE:
2820 			blk_mq_request_bypass_insert(rq, 0);
2821 			if (list_empty(list))
2822 				blk_mq_run_hw_queue(hctx, false);
2823 			goto out;
2824 		default:
2825 			blk_mq_end_request(rq, ret);
2826 			break;
2827 		}
2828 	}
2829 
2830 out:
2831 	if (ret != BLK_STS_OK)
2832 		blk_mq_commit_rqs(hctx, queued, false);
2833 }
2834 
2835 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2836 				     struct bio *bio, unsigned int nr_segs)
2837 {
2838 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2839 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2840 			return true;
2841 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2842 			return true;
2843 	}
2844 	return false;
2845 }
2846 
2847 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2848 					       struct blk_plug *plug,
2849 					       struct bio *bio,
2850 					       unsigned int nsegs)
2851 {
2852 	struct blk_mq_alloc_data data = {
2853 		.q		= q,
2854 		.nr_tags	= 1,
2855 		.cmd_flags	= bio->bi_opf,
2856 	};
2857 	struct request *rq;
2858 
2859 	rq_qos_throttle(q, bio);
2860 
2861 	if (plug) {
2862 		data.nr_tags = plug->nr_ios;
2863 		plug->nr_ios = 1;
2864 		data.cached_rq = &plug->cached_rq;
2865 	}
2866 
2867 	rq = __blk_mq_alloc_requests(&data);
2868 	if (rq)
2869 		return rq;
2870 	rq_qos_cleanup(q, bio);
2871 	if (bio->bi_opf & REQ_NOWAIT)
2872 		bio_wouldblock_error(bio);
2873 	return NULL;
2874 }
2875 
2876 /*
2877  * Check if there is a suitable cached request and return it.
2878  */
2879 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2880 		struct request_queue *q, blk_opf_t opf)
2881 {
2882 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2883 	struct request *rq;
2884 
2885 	if (!plug)
2886 		return NULL;
2887 	rq = rq_list_peek(&plug->cached_rq);
2888 	if (!rq || rq->q != q)
2889 		return NULL;
2890 	if (type != rq->mq_hctx->type &&
2891 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2892 		return NULL;
2893 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2894 		return NULL;
2895 	return rq;
2896 }
2897 
2898 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2899 		struct bio *bio)
2900 {
2901 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2902 
2903 	/*
2904 	 * If any qos ->throttle() end up blocking, we will have flushed the
2905 	 * plug and hence killed the cached_rq list as well. Pop this entry
2906 	 * before we throttle.
2907 	 */
2908 	plug->cached_rq = rq_list_next(rq);
2909 	rq_qos_throttle(rq->q, bio);
2910 
2911 	blk_mq_rq_time_init(rq, 0);
2912 	rq->cmd_flags = bio->bi_opf;
2913 	INIT_LIST_HEAD(&rq->queuelist);
2914 }
2915 
2916 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
2917 {
2918 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
2919 
2920 	/* .bi_sector of any zero sized bio need to be initialized */
2921 	if ((bio->bi_iter.bi_size & bs_mask) ||
2922 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
2923 		return true;
2924 	return false;
2925 }
2926 
2927 /**
2928  * blk_mq_submit_bio - Create and send a request to block device.
2929  * @bio: Bio pointer.
2930  *
2931  * Builds up a request structure from @q and @bio and send to the device. The
2932  * request may not be queued directly to hardware if:
2933  * * This request can be merged with another one
2934  * * We want to place request at plug queue for possible future merging
2935  * * There is an IO scheduler active at this queue
2936  *
2937  * It will not queue the request if there is an error with the bio, or at the
2938  * request creation.
2939  */
2940 void blk_mq_submit_bio(struct bio *bio)
2941 {
2942 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2943 	struct blk_plug *plug = current->plug;
2944 	const int is_sync = op_is_sync(bio->bi_opf);
2945 	struct blk_mq_hw_ctx *hctx;
2946 	unsigned int nr_segs;
2947 	struct request *rq;
2948 	blk_status_t ret;
2949 
2950 	/*
2951 	 * If the plug has a cached request for this queue, try to use it.
2952 	 */
2953 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2954 
2955 	/*
2956 	 * A BIO that was released from a zone write plug has already been
2957 	 * through the preparation in this function, already holds a reference
2958 	 * on the queue usage counter, and is the only write BIO in-flight for
2959 	 * the target zone. Go straight to preparing a request for it.
2960 	 */
2961 	if (bio_zone_write_plugging(bio)) {
2962 		nr_segs = bio->__bi_nr_segments;
2963 		if (rq)
2964 			blk_queue_exit(q);
2965 		goto new_request;
2966 	}
2967 
2968 	bio = blk_queue_bounce(bio, q);
2969 
2970 	/*
2971 	 * The cached request already holds a q_usage_counter reference and we
2972 	 * don't have to acquire a new one if we use it.
2973 	 */
2974 	if (!rq) {
2975 		if (unlikely(bio_queue_enter(bio)))
2976 			return;
2977 	}
2978 
2979 	/*
2980 	 * Device reconfiguration may change logical block size, so alignment
2981 	 * check has to be done with queue usage counter held
2982 	 */
2983 	if (unlikely(bio_unaligned(bio, q))) {
2984 		bio_io_error(bio);
2985 		goto queue_exit;
2986 	}
2987 
2988 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2989 	if (!bio)
2990 		goto queue_exit;
2991 
2992 	if (!bio_integrity_prep(bio))
2993 		goto queue_exit;
2994 
2995 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2996 		goto queue_exit;
2997 
2998 	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2999 		goto queue_exit;
3000 
3001 new_request:
3002 	if (!rq) {
3003 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3004 		if (unlikely(!rq))
3005 			goto queue_exit;
3006 	} else {
3007 		blk_mq_use_cached_rq(rq, plug, bio);
3008 	}
3009 
3010 	trace_block_getrq(bio);
3011 
3012 	rq_qos_track(q, rq, bio);
3013 
3014 	blk_mq_bio_to_request(rq, bio, nr_segs);
3015 
3016 	ret = blk_crypto_rq_get_keyslot(rq);
3017 	if (ret != BLK_STS_OK) {
3018 		bio->bi_status = ret;
3019 		bio_endio(bio);
3020 		blk_mq_free_request(rq);
3021 		return;
3022 	}
3023 
3024 	if (bio_zone_write_plugging(bio))
3025 		blk_zone_write_plug_init_request(rq);
3026 
3027 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3028 		return;
3029 
3030 	if (plug) {
3031 		blk_add_rq_to_plug(plug, rq);
3032 		return;
3033 	}
3034 
3035 	hctx = rq->mq_hctx;
3036 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3037 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3038 		blk_mq_insert_request(rq, 0);
3039 		blk_mq_run_hw_queue(hctx, true);
3040 	} else {
3041 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3042 	}
3043 	return;
3044 
3045 queue_exit:
3046 	/*
3047 	 * Don't drop the queue reference if we were trying to use a cached
3048 	 * request and thus didn't acquire one.
3049 	 */
3050 	if (!rq)
3051 		blk_queue_exit(q);
3052 }
3053 
3054 #ifdef CONFIG_BLK_MQ_STACKING
3055 /**
3056  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3057  * @rq: the request being queued
3058  */
3059 blk_status_t blk_insert_cloned_request(struct request *rq)
3060 {
3061 	struct request_queue *q = rq->q;
3062 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3063 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3064 	blk_status_t ret;
3065 
3066 	if (blk_rq_sectors(rq) > max_sectors) {
3067 		/*
3068 		 * SCSI device does not have a good way to return if
3069 		 * Write Same/Zero is actually supported. If a device rejects
3070 		 * a non-read/write command (discard, write same,etc.) the
3071 		 * low-level device driver will set the relevant queue limit to
3072 		 * 0 to prevent blk-lib from issuing more of the offending
3073 		 * operations. Commands queued prior to the queue limit being
3074 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3075 		 * errors being propagated to upper layers.
3076 		 */
3077 		if (max_sectors == 0)
3078 			return BLK_STS_NOTSUPP;
3079 
3080 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3081 			__func__, blk_rq_sectors(rq), max_sectors);
3082 		return BLK_STS_IOERR;
3083 	}
3084 
3085 	/*
3086 	 * The queue settings related to segment counting may differ from the
3087 	 * original queue.
3088 	 */
3089 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3090 	if (rq->nr_phys_segments > max_segments) {
3091 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3092 			__func__, rq->nr_phys_segments, max_segments);
3093 		return BLK_STS_IOERR;
3094 	}
3095 
3096 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3097 		return BLK_STS_IOERR;
3098 
3099 	ret = blk_crypto_rq_get_keyslot(rq);
3100 	if (ret != BLK_STS_OK)
3101 		return ret;
3102 
3103 	blk_account_io_start(rq);
3104 
3105 	/*
3106 	 * Since we have a scheduler attached on the top device,
3107 	 * bypass a potential scheduler on the bottom device for
3108 	 * insert.
3109 	 */
3110 	blk_mq_run_dispatch_ops(q,
3111 			ret = blk_mq_request_issue_directly(rq, true));
3112 	if (ret)
3113 		blk_account_io_done(rq, blk_time_get_ns());
3114 	return ret;
3115 }
3116 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3117 
3118 /**
3119  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3120  * @rq: the clone request to be cleaned up
3121  *
3122  * Description:
3123  *     Free all bios in @rq for a cloned request.
3124  */
3125 void blk_rq_unprep_clone(struct request *rq)
3126 {
3127 	struct bio *bio;
3128 
3129 	while ((bio = rq->bio) != NULL) {
3130 		rq->bio = bio->bi_next;
3131 
3132 		bio_put(bio);
3133 	}
3134 }
3135 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3136 
3137 /**
3138  * blk_rq_prep_clone - Helper function to setup clone request
3139  * @rq: the request to be setup
3140  * @rq_src: original request to be cloned
3141  * @bs: bio_set that bios for clone are allocated from
3142  * @gfp_mask: memory allocation mask for bio
3143  * @bio_ctr: setup function to be called for each clone bio.
3144  *           Returns %0 for success, non %0 for failure.
3145  * @data: private data to be passed to @bio_ctr
3146  *
3147  * Description:
3148  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3149  *     Also, pages which the original bios are pointing to are not copied
3150  *     and the cloned bios just point same pages.
3151  *     So cloned bios must be completed before original bios, which means
3152  *     the caller must complete @rq before @rq_src.
3153  */
3154 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3155 		      struct bio_set *bs, gfp_t gfp_mask,
3156 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3157 		      void *data)
3158 {
3159 	struct bio *bio, *bio_src;
3160 
3161 	if (!bs)
3162 		bs = &fs_bio_set;
3163 
3164 	__rq_for_each_bio(bio_src, rq_src) {
3165 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3166 				      bs);
3167 		if (!bio)
3168 			goto free_and_out;
3169 
3170 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3171 			goto free_and_out;
3172 
3173 		if (rq->bio) {
3174 			rq->biotail->bi_next = bio;
3175 			rq->biotail = bio;
3176 		} else {
3177 			rq->bio = rq->biotail = bio;
3178 		}
3179 		bio = NULL;
3180 	}
3181 
3182 	/* Copy attributes of the original request to the clone request. */
3183 	rq->__sector = blk_rq_pos(rq_src);
3184 	rq->__data_len = blk_rq_bytes(rq_src);
3185 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3186 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3187 		rq->special_vec = rq_src->special_vec;
3188 	}
3189 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3190 	rq->ioprio = rq_src->ioprio;
3191 	rq->write_hint = rq_src->write_hint;
3192 
3193 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3194 		goto free_and_out;
3195 
3196 	return 0;
3197 
3198 free_and_out:
3199 	if (bio)
3200 		bio_put(bio);
3201 	blk_rq_unprep_clone(rq);
3202 
3203 	return -ENOMEM;
3204 }
3205 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3206 #endif /* CONFIG_BLK_MQ_STACKING */
3207 
3208 /*
3209  * Steal bios from a request and add them to a bio list.
3210  * The request must not have been partially completed before.
3211  */
3212 void blk_steal_bios(struct bio_list *list, struct request *rq)
3213 {
3214 	if (rq->bio) {
3215 		if (list->tail)
3216 			list->tail->bi_next = rq->bio;
3217 		else
3218 			list->head = rq->bio;
3219 		list->tail = rq->biotail;
3220 
3221 		rq->bio = NULL;
3222 		rq->biotail = NULL;
3223 	}
3224 
3225 	rq->__data_len = 0;
3226 }
3227 EXPORT_SYMBOL_GPL(blk_steal_bios);
3228 
3229 static size_t order_to_size(unsigned int order)
3230 {
3231 	return (size_t)PAGE_SIZE << order;
3232 }
3233 
3234 /* called before freeing request pool in @tags */
3235 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3236 				    struct blk_mq_tags *tags)
3237 {
3238 	struct page *page;
3239 	unsigned long flags;
3240 
3241 	/*
3242 	 * There is no need to clear mapping if driver tags is not initialized
3243 	 * or the mapping belongs to the driver tags.
3244 	 */
3245 	if (!drv_tags || drv_tags == tags)
3246 		return;
3247 
3248 	list_for_each_entry(page, &tags->page_list, lru) {
3249 		unsigned long start = (unsigned long)page_address(page);
3250 		unsigned long end = start + order_to_size(page->private);
3251 		int i;
3252 
3253 		for (i = 0; i < drv_tags->nr_tags; i++) {
3254 			struct request *rq = drv_tags->rqs[i];
3255 			unsigned long rq_addr = (unsigned long)rq;
3256 
3257 			if (rq_addr >= start && rq_addr < end) {
3258 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3259 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3260 			}
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * Wait until all pending iteration is done.
3266 	 *
3267 	 * Request reference is cleared and it is guaranteed to be observed
3268 	 * after the ->lock is released.
3269 	 */
3270 	spin_lock_irqsave(&drv_tags->lock, flags);
3271 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3272 }
3273 
3274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3275 		     unsigned int hctx_idx)
3276 {
3277 	struct blk_mq_tags *drv_tags;
3278 	struct page *page;
3279 
3280 	if (list_empty(&tags->page_list))
3281 		return;
3282 
3283 	if (blk_mq_is_shared_tags(set->flags))
3284 		drv_tags = set->shared_tags;
3285 	else
3286 		drv_tags = set->tags[hctx_idx];
3287 
3288 	if (tags->static_rqs && set->ops->exit_request) {
3289 		int i;
3290 
3291 		for (i = 0; i < tags->nr_tags; i++) {
3292 			struct request *rq = tags->static_rqs[i];
3293 
3294 			if (!rq)
3295 				continue;
3296 			set->ops->exit_request(set, rq, hctx_idx);
3297 			tags->static_rqs[i] = NULL;
3298 		}
3299 	}
3300 
3301 	blk_mq_clear_rq_mapping(drv_tags, tags);
3302 
3303 	while (!list_empty(&tags->page_list)) {
3304 		page = list_first_entry(&tags->page_list, struct page, lru);
3305 		list_del_init(&page->lru);
3306 		/*
3307 		 * Remove kmemleak object previously allocated in
3308 		 * blk_mq_alloc_rqs().
3309 		 */
3310 		kmemleak_free(page_address(page));
3311 		__free_pages(page, page->private);
3312 	}
3313 }
3314 
3315 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3316 {
3317 	kfree(tags->rqs);
3318 	tags->rqs = NULL;
3319 	kfree(tags->static_rqs);
3320 	tags->static_rqs = NULL;
3321 
3322 	blk_mq_free_tags(tags);
3323 }
3324 
3325 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3326 		unsigned int hctx_idx)
3327 {
3328 	int i;
3329 
3330 	for (i = 0; i < set->nr_maps; i++) {
3331 		unsigned int start = set->map[i].queue_offset;
3332 		unsigned int end = start + set->map[i].nr_queues;
3333 
3334 		if (hctx_idx >= start && hctx_idx < end)
3335 			break;
3336 	}
3337 
3338 	if (i >= set->nr_maps)
3339 		i = HCTX_TYPE_DEFAULT;
3340 
3341 	return i;
3342 }
3343 
3344 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3345 		unsigned int hctx_idx)
3346 {
3347 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3348 
3349 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3350 }
3351 
3352 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3353 					       unsigned int hctx_idx,
3354 					       unsigned int nr_tags,
3355 					       unsigned int reserved_tags)
3356 {
3357 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3358 	struct blk_mq_tags *tags;
3359 
3360 	if (node == NUMA_NO_NODE)
3361 		node = set->numa_node;
3362 
3363 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3364 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3365 	if (!tags)
3366 		return NULL;
3367 
3368 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3369 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3370 				 node);
3371 	if (!tags->rqs)
3372 		goto err_free_tags;
3373 
3374 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3375 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3376 					node);
3377 	if (!tags->static_rqs)
3378 		goto err_free_rqs;
3379 
3380 	return tags;
3381 
3382 err_free_rqs:
3383 	kfree(tags->rqs);
3384 err_free_tags:
3385 	blk_mq_free_tags(tags);
3386 	return NULL;
3387 }
3388 
3389 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3390 			       unsigned int hctx_idx, int node)
3391 {
3392 	int ret;
3393 
3394 	if (set->ops->init_request) {
3395 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3396 		if (ret)
3397 			return ret;
3398 	}
3399 
3400 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3401 	return 0;
3402 }
3403 
3404 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3405 			    struct blk_mq_tags *tags,
3406 			    unsigned int hctx_idx, unsigned int depth)
3407 {
3408 	unsigned int i, j, entries_per_page, max_order = 4;
3409 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3410 	size_t rq_size, left;
3411 
3412 	if (node == NUMA_NO_NODE)
3413 		node = set->numa_node;
3414 
3415 	INIT_LIST_HEAD(&tags->page_list);
3416 
3417 	/*
3418 	 * rq_size is the size of the request plus driver payload, rounded
3419 	 * to the cacheline size
3420 	 */
3421 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3422 				cache_line_size());
3423 	left = rq_size * depth;
3424 
3425 	for (i = 0; i < depth; ) {
3426 		int this_order = max_order;
3427 		struct page *page;
3428 		int to_do;
3429 		void *p;
3430 
3431 		while (this_order && left < order_to_size(this_order - 1))
3432 			this_order--;
3433 
3434 		do {
3435 			page = alloc_pages_node(node,
3436 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3437 				this_order);
3438 			if (page)
3439 				break;
3440 			if (!this_order--)
3441 				break;
3442 			if (order_to_size(this_order) < rq_size)
3443 				break;
3444 		} while (1);
3445 
3446 		if (!page)
3447 			goto fail;
3448 
3449 		page->private = this_order;
3450 		list_add_tail(&page->lru, &tags->page_list);
3451 
3452 		p = page_address(page);
3453 		/*
3454 		 * Allow kmemleak to scan these pages as they contain pointers
3455 		 * to additional allocations like via ops->init_request().
3456 		 */
3457 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3458 		entries_per_page = order_to_size(this_order) / rq_size;
3459 		to_do = min(entries_per_page, depth - i);
3460 		left -= to_do * rq_size;
3461 		for (j = 0; j < to_do; j++) {
3462 			struct request *rq = p;
3463 
3464 			tags->static_rqs[i] = rq;
3465 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3466 				tags->static_rqs[i] = NULL;
3467 				goto fail;
3468 			}
3469 
3470 			p += rq_size;
3471 			i++;
3472 		}
3473 	}
3474 	return 0;
3475 
3476 fail:
3477 	blk_mq_free_rqs(set, tags, hctx_idx);
3478 	return -ENOMEM;
3479 }
3480 
3481 struct rq_iter_data {
3482 	struct blk_mq_hw_ctx *hctx;
3483 	bool has_rq;
3484 };
3485 
3486 static bool blk_mq_has_request(struct request *rq, void *data)
3487 {
3488 	struct rq_iter_data *iter_data = data;
3489 
3490 	if (rq->mq_hctx != iter_data->hctx)
3491 		return true;
3492 	iter_data->has_rq = true;
3493 	return false;
3494 }
3495 
3496 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3497 {
3498 	struct blk_mq_tags *tags = hctx->sched_tags ?
3499 			hctx->sched_tags : hctx->tags;
3500 	struct rq_iter_data data = {
3501 		.hctx	= hctx,
3502 	};
3503 
3504 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3505 	return data.has_rq;
3506 }
3507 
3508 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3509 		unsigned int this_cpu)
3510 {
3511 	enum hctx_type type = hctx->type;
3512 	int cpu;
3513 
3514 	/*
3515 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3516 	 * might submit IOs on these isolated CPUs, so use the queue map to
3517 	 * check if all CPUs mapped to this hctx are offline
3518 	 */
3519 	for_each_online_cpu(cpu) {
3520 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3521 				type, cpu);
3522 
3523 		if (h != hctx)
3524 			continue;
3525 
3526 		/* this hctx has at least one online CPU */
3527 		if (this_cpu != cpu)
3528 			return true;
3529 	}
3530 
3531 	return false;
3532 }
3533 
3534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3535 {
3536 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3537 			struct blk_mq_hw_ctx, cpuhp_online);
3538 
3539 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3540 		return 0;
3541 
3542 	/*
3543 	 * Prevent new request from being allocated on the current hctx.
3544 	 *
3545 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3546 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3547 	 * seen once we return from the tag allocator.
3548 	 */
3549 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3550 	smp_mb__after_atomic();
3551 
3552 	/*
3553 	 * Try to grab a reference to the queue and wait for any outstanding
3554 	 * requests.  If we could not grab a reference the queue has been
3555 	 * frozen and there are no requests.
3556 	 */
3557 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3558 		while (blk_mq_hctx_has_requests(hctx))
3559 			msleep(5);
3560 		percpu_ref_put(&hctx->queue->q_usage_counter);
3561 	}
3562 
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Check if one CPU is mapped to the specified hctx
3568  *
3569  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3570  * to be used for scheduling kworker only. For other usage, please call this
3571  * helper for checking if one CPU belongs to the specified hctx
3572  */
3573 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3574 		const struct blk_mq_hw_ctx *hctx)
3575 {
3576 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3577 			hctx->type, cpu);
3578 
3579 	return mapped_hctx == hctx;
3580 }
3581 
3582 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3583 {
3584 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3585 			struct blk_mq_hw_ctx, cpuhp_online);
3586 
3587 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3588 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3589 	return 0;
3590 }
3591 
3592 /*
3593  * 'cpu' is going away. splice any existing rq_list entries from this
3594  * software queue to the hw queue dispatch list, and ensure that it
3595  * gets run.
3596  */
3597 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3598 {
3599 	struct blk_mq_hw_ctx *hctx;
3600 	struct blk_mq_ctx *ctx;
3601 	LIST_HEAD(tmp);
3602 	enum hctx_type type;
3603 
3604 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3605 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3606 		return 0;
3607 
3608 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3609 	type = hctx->type;
3610 
3611 	spin_lock(&ctx->lock);
3612 	if (!list_empty(&ctx->rq_lists[type])) {
3613 		list_splice_init(&ctx->rq_lists[type], &tmp);
3614 		blk_mq_hctx_clear_pending(hctx, ctx);
3615 	}
3616 	spin_unlock(&ctx->lock);
3617 
3618 	if (list_empty(&tmp))
3619 		return 0;
3620 
3621 	spin_lock(&hctx->lock);
3622 	list_splice_tail_init(&tmp, &hctx->dispatch);
3623 	spin_unlock(&hctx->lock);
3624 
3625 	blk_mq_run_hw_queue(hctx, true);
3626 	return 0;
3627 }
3628 
3629 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3630 {
3631 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3632 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3633 						    &hctx->cpuhp_online);
3634 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3635 					    &hctx->cpuhp_dead);
3636 }
3637 
3638 /*
3639  * Before freeing hw queue, clearing the flush request reference in
3640  * tags->rqs[] for avoiding potential UAF.
3641  */
3642 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3643 		unsigned int queue_depth, struct request *flush_rq)
3644 {
3645 	int i;
3646 	unsigned long flags;
3647 
3648 	/* The hw queue may not be mapped yet */
3649 	if (!tags)
3650 		return;
3651 
3652 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3653 
3654 	for (i = 0; i < queue_depth; i++)
3655 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3656 
3657 	/*
3658 	 * Wait until all pending iteration is done.
3659 	 *
3660 	 * Request reference is cleared and it is guaranteed to be observed
3661 	 * after the ->lock is released.
3662 	 */
3663 	spin_lock_irqsave(&tags->lock, flags);
3664 	spin_unlock_irqrestore(&tags->lock, flags);
3665 }
3666 
3667 /* hctx->ctxs will be freed in queue's release handler */
3668 static void blk_mq_exit_hctx(struct request_queue *q,
3669 		struct blk_mq_tag_set *set,
3670 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3671 {
3672 	struct request *flush_rq = hctx->fq->flush_rq;
3673 
3674 	if (blk_mq_hw_queue_mapped(hctx))
3675 		blk_mq_tag_idle(hctx);
3676 
3677 	if (blk_queue_init_done(q))
3678 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3679 				set->queue_depth, flush_rq);
3680 	if (set->ops->exit_request)
3681 		set->ops->exit_request(set, flush_rq, hctx_idx);
3682 
3683 	if (set->ops->exit_hctx)
3684 		set->ops->exit_hctx(hctx, hctx_idx);
3685 
3686 	blk_mq_remove_cpuhp(hctx);
3687 
3688 	xa_erase(&q->hctx_table, hctx_idx);
3689 
3690 	spin_lock(&q->unused_hctx_lock);
3691 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3692 	spin_unlock(&q->unused_hctx_lock);
3693 }
3694 
3695 static void blk_mq_exit_hw_queues(struct request_queue *q,
3696 		struct blk_mq_tag_set *set, int nr_queue)
3697 {
3698 	struct blk_mq_hw_ctx *hctx;
3699 	unsigned long i;
3700 
3701 	queue_for_each_hw_ctx(q, hctx, i) {
3702 		if (i == nr_queue)
3703 			break;
3704 		blk_mq_exit_hctx(q, set, hctx, i);
3705 	}
3706 }
3707 
3708 static int blk_mq_init_hctx(struct request_queue *q,
3709 		struct blk_mq_tag_set *set,
3710 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3711 {
3712 	hctx->queue_num = hctx_idx;
3713 
3714 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3715 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3716 				&hctx->cpuhp_online);
3717 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3718 
3719 	hctx->tags = set->tags[hctx_idx];
3720 
3721 	if (set->ops->init_hctx &&
3722 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3723 		goto unregister_cpu_notifier;
3724 
3725 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3726 				hctx->numa_node))
3727 		goto exit_hctx;
3728 
3729 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3730 		goto exit_flush_rq;
3731 
3732 	return 0;
3733 
3734  exit_flush_rq:
3735 	if (set->ops->exit_request)
3736 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3737  exit_hctx:
3738 	if (set->ops->exit_hctx)
3739 		set->ops->exit_hctx(hctx, hctx_idx);
3740  unregister_cpu_notifier:
3741 	blk_mq_remove_cpuhp(hctx);
3742 	return -1;
3743 }
3744 
3745 static struct blk_mq_hw_ctx *
3746 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3747 		int node)
3748 {
3749 	struct blk_mq_hw_ctx *hctx;
3750 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3751 
3752 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3753 	if (!hctx)
3754 		goto fail_alloc_hctx;
3755 
3756 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3757 		goto free_hctx;
3758 
3759 	atomic_set(&hctx->nr_active, 0);
3760 	if (node == NUMA_NO_NODE)
3761 		node = set->numa_node;
3762 	hctx->numa_node = node;
3763 
3764 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3765 	spin_lock_init(&hctx->lock);
3766 	INIT_LIST_HEAD(&hctx->dispatch);
3767 	hctx->queue = q;
3768 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3769 
3770 	INIT_LIST_HEAD(&hctx->hctx_list);
3771 
3772 	/*
3773 	 * Allocate space for all possible cpus to avoid allocation at
3774 	 * runtime
3775 	 */
3776 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3777 			gfp, node);
3778 	if (!hctx->ctxs)
3779 		goto free_cpumask;
3780 
3781 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3782 				gfp, node, false, false))
3783 		goto free_ctxs;
3784 	hctx->nr_ctx = 0;
3785 
3786 	spin_lock_init(&hctx->dispatch_wait_lock);
3787 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3788 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3789 
3790 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3791 	if (!hctx->fq)
3792 		goto free_bitmap;
3793 
3794 	blk_mq_hctx_kobj_init(hctx);
3795 
3796 	return hctx;
3797 
3798  free_bitmap:
3799 	sbitmap_free(&hctx->ctx_map);
3800  free_ctxs:
3801 	kfree(hctx->ctxs);
3802  free_cpumask:
3803 	free_cpumask_var(hctx->cpumask);
3804  free_hctx:
3805 	kfree(hctx);
3806  fail_alloc_hctx:
3807 	return NULL;
3808 }
3809 
3810 static void blk_mq_init_cpu_queues(struct request_queue *q,
3811 				   unsigned int nr_hw_queues)
3812 {
3813 	struct blk_mq_tag_set *set = q->tag_set;
3814 	unsigned int i, j;
3815 
3816 	for_each_possible_cpu(i) {
3817 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3818 		struct blk_mq_hw_ctx *hctx;
3819 		int k;
3820 
3821 		__ctx->cpu = i;
3822 		spin_lock_init(&__ctx->lock);
3823 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3824 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3825 
3826 		__ctx->queue = q;
3827 
3828 		/*
3829 		 * Set local node, IFF we have more than one hw queue. If
3830 		 * not, we remain on the home node of the device
3831 		 */
3832 		for (j = 0; j < set->nr_maps; j++) {
3833 			hctx = blk_mq_map_queue_type(q, j, i);
3834 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3835 				hctx->numa_node = cpu_to_node(i);
3836 		}
3837 	}
3838 }
3839 
3840 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3841 					     unsigned int hctx_idx,
3842 					     unsigned int depth)
3843 {
3844 	struct blk_mq_tags *tags;
3845 	int ret;
3846 
3847 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3848 	if (!tags)
3849 		return NULL;
3850 
3851 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3852 	if (ret) {
3853 		blk_mq_free_rq_map(tags);
3854 		return NULL;
3855 	}
3856 
3857 	return tags;
3858 }
3859 
3860 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3861 				       int hctx_idx)
3862 {
3863 	if (blk_mq_is_shared_tags(set->flags)) {
3864 		set->tags[hctx_idx] = set->shared_tags;
3865 
3866 		return true;
3867 	}
3868 
3869 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3870 						       set->queue_depth);
3871 
3872 	return set->tags[hctx_idx];
3873 }
3874 
3875 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3876 			     struct blk_mq_tags *tags,
3877 			     unsigned int hctx_idx)
3878 {
3879 	if (tags) {
3880 		blk_mq_free_rqs(set, tags, hctx_idx);
3881 		blk_mq_free_rq_map(tags);
3882 	}
3883 }
3884 
3885 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3886 				      unsigned int hctx_idx)
3887 {
3888 	if (!blk_mq_is_shared_tags(set->flags))
3889 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3890 
3891 	set->tags[hctx_idx] = NULL;
3892 }
3893 
3894 static void blk_mq_map_swqueue(struct request_queue *q)
3895 {
3896 	unsigned int j, hctx_idx;
3897 	unsigned long i;
3898 	struct blk_mq_hw_ctx *hctx;
3899 	struct blk_mq_ctx *ctx;
3900 	struct blk_mq_tag_set *set = q->tag_set;
3901 
3902 	queue_for_each_hw_ctx(q, hctx, i) {
3903 		cpumask_clear(hctx->cpumask);
3904 		hctx->nr_ctx = 0;
3905 		hctx->dispatch_from = NULL;
3906 	}
3907 
3908 	/*
3909 	 * Map software to hardware queues.
3910 	 *
3911 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3912 	 */
3913 	for_each_possible_cpu(i) {
3914 
3915 		ctx = per_cpu_ptr(q->queue_ctx, i);
3916 		for (j = 0; j < set->nr_maps; j++) {
3917 			if (!set->map[j].nr_queues) {
3918 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3919 						HCTX_TYPE_DEFAULT, i);
3920 				continue;
3921 			}
3922 			hctx_idx = set->map[j].mq_map[i];
3923 			/* unmapped hw queue can be remapped after CPU topo changed */
3924 			if (!set->tags[hctx_idx] &&
3925 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3926 				/*
3927 				 * If tags initialization fail for some hctx,
3928 				 * that hctx won't be brought online.  In this
3929 				 * case, remap the current ctx to hctx[0] which
3930 				 * is guaranteed to always have tags allocated
3931 				 */
3932 				set->map[j].mq_map[i] = 0;
3933 			}
3934 
3935 			hctx = blk_mq_map_queue_type(q, j, i);
3936 			ctx->hctxs[j] = hctx;
3937 			/*
3938 			 * If the CPU is already set in the mask, then we've
3939 			 * mapped this one already. This can happen if
3940 			 * devices share queues across queue maps.
3941 			 */
3942 			if (cpumask_test_cpu(i, hctx->cpumask))
3943 				continue;
3944 
3945 			cpumask_set_cpu(i, hctx->cpumask);
3946 			hctx->type = j;
3947 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3948 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3949 
3950 			/*
3951 			 * If the nr_ctx type overflows, we have exceeded the
3952 			 * amount of sw queues we can support.
3953 			 */
3954 			BUG_ON(!hctx->nr_ctx);
3955 		}
3956 
3957 		for (; j < HCTX_MAX_TYPES; j++)
3958 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3959 					HCTX_TYPE_DEFAULT, i);
3960 	}
3961 
3962 	queue_for_each_hw_ctx(q, hctx, i) {
3963 		int cpu;
3964 
3965 		/*
3966 		 * If no software queues are mapped to this hardware queue,
3967 		 * disable it and free the request entries.
3968 		 */
3969 		if (!hctx->nr_ctx) {
3970 			/* Never unmap queue 0.  We need it as a
3971 			 * fallback in case of a new remap fails
3972 			 * allocation
3973 			 */
3974 			if (i)
3975 				__blk_mq_free_map_and_rqs(set, i);
3976 
3977 			hctx->tags = NULL;
3978 			continue;
3979 		}
3980 
3981 		hctx->tags = set->tags[i];
3982 		WARN_ON(!hctx->tags);
3983 
3984 		/*
3985 		 * Set the map size to the number of mapped software queues.
3986 		 * This is more accurate and more efficient than looping
3987 		 * over all possibly mapped software queues.
3988 		 */
3989 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3990 
3991 		/*
3992 		 * Rule out isolated CPUs from hctx->cpumask to avoid
3993 		 * running block kworker on isolated CPUs
3994 		 */
3995 		for_each_cpu(cpu, hctx->cpumask) {
3996 			if (cpu_is_isolated(cpu))
3997 				cpumask_clear_cpu(cpu, hctx->cpumask);
3998 		}
3999 
4000 		/*
4001 		 * Initialize batch roundrobin counts
4002 		 */
4003 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4004 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4005 	}
4006 }
4007 
4008 /*
4009  * Caller needs to ensure that we're either frozen/quiesced, or that
4010  * the queue isn't live yet.
4011  */
4012 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4013 {
4014 	struct blk_mq_hw_ctx *hctx;
4015 	unsigned long i;
4016 
4017 	queue_for_each_hw_ctx(q, hctx, i) {
4018 		if (shared) {
4019 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4020 		} else {
4021 			blk_mq_tag_idle(hctx);
4022 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4023 		}
4024 	}
4025 }
4026 
4027 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4028 					 bool shared)
4029 {
4030 	struct request_queue *q;
4031 
4032 	lockdep_assert_held(&set->tag_list_lock);
4033 
4034 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4035 		blk_mq_freeze_queue(q);
4036 		queue_set_hctx_shared(q, shared);
4037 		blk_mq_unfreeze_queue(q);
4038 	}
4039 }
4040 
4041 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4042 {
4043 	struct blk_mq_tag_set *set = q->tag_set;
4044 
4045 	mutex_lock(&set->tag_list_lock);
4046 	list_del(&q->tag_set_list);
4047 	if (list_is_singular(&set->tag_list)) {
4048 		/* just transitioned to unshared */
4049 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4050 		/* update existing queue */
4051 		blk_mq_update_tag_set_shared(set, false);
4052 	}
4053 	mutex_unlock(&set->tag_list_lock);
4054 	INIT_LIST_HEAD(&q->tag_set_list);
4055 }
4056 
4057 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4058 				     struct request_queue *q)
4059 {
4060 	mutex_lock(&set->tag_list_lock);
4061 
4062 	/*
4063 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4064 	 */
4065 	if (!list_empty(&set->tag_list) &&
4066 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4067 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4068 		/* update existing queue */
4069 		blk_mq_update_tag_set_shared(set, true);
4070 	}
4071 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4072 		queue_set_hctx_shared(q, true);
4073 	list_add_tail(&q->tag_set_list, &set->tag_list);
4074 
4075 	mutex_unlock(&set->tag_list_lock);
4076 }
4077 
4078 /* All allocations will be freed in release handler of q->mq_kobj */
4079 static int blk_mq_alloc_ctxs(struct request_queue *q)
4080 {
4081 	struct blk_mq_ctxs *ctxs;
4082 	int cpu;
4083 
4084 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4085 	if (!ctxs)
4086 		return -ENOMEM;
4087 
4088 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4089 	if (!ctxs->queue_ctx)
4090 		goto fail;
4091 
4092 	for_each_possible_cpu(cpu) {
4093 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4094 		ctx->ctxs = ctxs;
4095 	}
4096 
4097 	q->mq_kobj = &ctxs->kobj;
4098 	q->queue_ctx = ctxs->queue_ctx;
4099 
4100 	return 0;
4101  fail:
4102 	kfree(ctxs);
4103 	return -ENOMEM;
4104 }
4105 
4106 /*
4107  * It is the actual release handler for mq, but we do it from
4108  * request queue's release handler for avoiding use-after-free
4109  * and headache because q->mq_kobj shouldn't have been introduced,
4110  * but we can't group ctx/kctx kobj without it.
4111  */
4112 void blk_mq_release(struct request_queue *q)
4113 {
4114 	struct blk_mq_hw_ctx *hctx, *next;
4115 	unsigned long i;
4116 
4117 	queue_for_each_hw_ctx(q, hctx, i)
4118 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4119 
4120 	/* all hctx are in .unused_hctx_list now */
4121 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4122 		list_del_init(&hctx->hctx_list);
4123 		kobject_put(&hctx->kobj);
4124 	}
4125 
4126 	xa_destroy(&q->hctx_table);
4127 
4128 	/*
4129 	 * release .mq_kobj and sw queue's kobject now because
4130 	 * both share lifetime with request queue.
4131 	 */
4132 	blk_mq_sysfs_deinit(q);
4133 }
4134 
4135 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4136 {
4137 	return set->nr_maps > HCTX_TYPE_POLL &&
4138 		set->map[HCTX_TYPE_POLL].nr_queues;
4139 }
4140 
4141 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4142 		struct queue_limits *lim, void *queuedata)
4143 {
4144 	struct queue_limits default_lim = { };
4145 	struct request_queue *q;
4146 	int ret;
4147 
4148 	if (!lim)
4149 		lim = &default_lim;
4150 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4151 	if (blk_mq_can_poll(set))
4152 		lim->features |= BLK_FEAT_POLL;
4153 
4154 	q = blk_alloc_queue(lim, set->numa_node);
4155 	if (IS_ERR(q))
4156 		return q;
4157 	q->queuedata = queuedata;
4158 	ret = blk_mq_init_allocated_queue(set, q);
4159 	if (ret) {
4160 		blk_put_queue(q);
4161 		return ERR_PTR(ret);
4162 	}
4163 	return q;
4164 }
4165 EXPORT_SYMBOL(blk_mq_alloc_queue);
4166 
4167 /**
4168  * blk_mq_destroy_queue - shutdown a request queue
4169  * @q: request queue to shutdown
4170  *
4171  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4172  * requests will be failed with -ENODEV. The caller is responsible for dropping
4173  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4174  *
4175  * Context: can sleep
4176  */
4177 void blk_mq_destroy_queue(struct request_queue *q)
4178 {
4179 	WARN_ON_ONCE(!queue_is_mq(q));
4180 	WARN_ON_ONCE(blk_queue_registered(q));
4181 
4182 	might_sleep();
4183 
4184 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4185 	blk_queue_start_drain(q);
4186 	blk_mq_freeze_queue_wait(q);
4187 
4188 	blk_sync_queue(q);
4189 	blk_mq_cancel_work_sync(q);
4190 	blk_mq_exit_queue(q);
4191 }
4192 EXPORT_SYMBOL(blk_mq_destroy_queue);
4193 
4194 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4195 		struct queue_limits *lim, void *queuedata,
4196 		struct lock_class_key *lkclass)
4197 {
4198 	struct request_queue *q;
4199 	struct gendisk *disk;
4200 
4201 	q = blk_mq_alloc_queue(set, lim, queuedata);
4202 	if (IS_ERR(q))
4203 		return ERR_CAST(q);
4204 
4205 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4206 	if (!disk) {
4207 		blk_mq_destroy_queue(q);
4208 		blk_put_queue(q);
4209 		return ERR_PTR(-ENOMEM);
4210 	}
4211 	set_bit(GD_OWNS_QUEUE, &disk->state);
4212 	return disk;
4213 }
4214 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4215 
4216 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4217 		struct lock_class_key *lkclass)
4218 {
4219 	struct gendisk *disk;
4220 
4221 	if (!blk_get_queue(q))
4222 		return NULL;
4223 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4224 	if (!disk)
4225 		blk_put_queue(q);
4226 	return disk;
4227 }
4228 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4229 
4230 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4231 		struct blk_mq_tag_set *set, struct request_queue *q,
4232 		int hctx_idx, int node)
4233 {
4234 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4235 
4236 	/* reuse dead hctx first */
4237 	spin_lock(&q->unused_hctx_lock);
4238 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4239 		if (tmp->numa_node == node) {
4240 			hctx = tmp;
4241 			break;
4242 		}
4243 	}
4244 	if (hctx)
4245 		list_del_init(&hctx->hctx_list);
4246 	spin_unlock(&q->unused_hctx_lock);
4247 
4248 	if (!hctx)
4249 		hctx = blk_mq_alloc_hctx(q, set, node);
4250 	if (!hctx)
4251 		goto fail;
4252 
4253 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4254 		goto free_hctx;
4255 
4256 	return hctx;
4257 
4258  free_hctx:
4259 	kobject_put(&hctx->kobj);
4260  fail:
4261 	return NULL;
4262 }
4263 
4264 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4265 						struct request_queue *q)
4266 {
4267 	struct blk_mq_hw_ctx *hctx;
4268 	unsigned long i, j;
4269 
4270 	/* protect against switching io scheduler  */
4271 	mutex_lock(&q->sysfs_lock);
4272 	for (i = 0; i < set->nr_hw_queues; i++) {
4273 		int old_node;
4274 		int node = blk_mq_get_hctx_node(set, i);
4275 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4276 
4277 		if (old_hctx) {
4278 			old_node = old_hctx->numa_node;
4279 			blk_mq_exit_hctx(q, set, old_hctx, i);
4280 		}
4281 
4282 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4283 			if (!old_hctx)
4284 				break;
4285 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4286 					node, old_node);
4287 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4288 			WARN_ON_ONCE(!hctx);
4289 		}
4290 	}
4291 	/*
4292 	 * Increasing nr_hw_queues fails. Free the newly allocated
4293 	 * hctxs and keep the previous q->nr_hw_queues.
4294 	 */
4295 	if (i != set->nr_hw_queues) {
4296 		j = q->nr_hw_queues;
4297 	} else {
4298 		j = i;
4299 		q->nr_hw_queues = set->nr_hw_queues;
4300 	}
4301 
4302 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4303 		blk_mq_exit_hctx(q, set, hctx, j);
4304 	mutex_unlock(&q->sysfs_lock);
4305 }
4306 
4307 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4308 		struct request_queue *q)
4309 {
4310 	/* mark the queue as mq asap */
4311 	q->mq_ops = set->ops;
4312 
4313 	/*
4314 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4315 	 * handler needs it for checking queue mapping
4316 	 */
4317 	q->tag_set = set;
4318 
4319 	if (blk_mq_alloc_ctxs(q))
4320 		goto err_exit;
4321 
4322 	/* init q->mq_kobj and sw queues' kobjects */
4323 	blk_mq_sysfs_init(q);
4324 
4325 	INIT_LIST_HEAD(&q->unused_hctx_list);
4326 	spin_lock_init(&q->unused_hctx_lock);
4327 
4328 	xa_init(&q->hctx_table);
4329 
4330 	blk_mq_realloc_hw_ctxs(set, q);
4331 	if (!q->nr_hw_queues)
4332 		goto err_hctxs;
4333 
4334 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4335 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4336 
4337 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4338 
4339 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4340 	INIT_LIST_HEAD(&q->flush_list);
4341 	INIT_LIST_HEAD(&q->requeue_list);
4342 	spin_lock_init(&q->requeue_lock);
4343 
4344 	q->nr_requests = set->queue_depth;
4345 
4346 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4347 	blk_mq_add_queue_tag_set(set, q);
4348 	blk_mq_map_swqueue(q);
4349 	return 0;
4350 
4351 err_hctxs:
4352 	blk_mq_release(q);
4353 err_exit:
4354 	q->mq_ops = NULL;
4355 	return -ENOMEM;
4356 }
4357 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4358 
4359 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4360 void blk_mq_exit_queue(struct request_queue *q)
4361 {
4362 	struct blk_mq_tag_set *set = q->tag_set;
4363 
4364 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4365 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4366 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4367 	blk_mq_del_queue_tag_set(q);
4368 }
4369 
4370 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4371 {
4372 	int i;
4373 
4374 	if (blk_mq_is_shared_tags(set->flags)) {
4375 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4376 						BLK_MQ_NO_HCTX_IDX,
4377 						set->queue_depth);
4378 		if (!set->shared_tags)
4379 			return -ENOMEM;
4380 	}
4381 
4382 	for (i = 0; i < set->nr_hw_queues; i++) {
4383 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4384 			goto out_unwind;
4385 		cond_resched();
4386 	}
4387 
4388 	return 0;
4389 
4390 out_unwind:
4391 	while (--i >= 0)
4392 		__blk_mq_free_map_and_rqs(set, i);
4393 
4394 	if (blk_mq_is_shared_tags(set->flags)) {
4395 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4396 					BLK_MQ_NO_HCTX_IDX);
4397 	}
4398 
4399 	return -ENOMEM;
4400 }
4401 
4402 /*
4403  * Allocate the request maps associated with this tag_set. Note that this
4404  * may reduce the depth asked for, if memory is tight. set->queue_depth
4405  * will be updated to reflect the allocated depth.
4406  */
4407 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4408 {
4409 	unsigned int depth;
4410 	int err;
4411 
4412 	depth = set->queue_depth;
4413 	do {
4414 		err = __blk_mq_alloc_rq_maps(set);
4415 		if (!err)
4416 			break;
4417 
4418 		set->queue_depth >>= 1;
4419 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4420 			err = -ENOMEM;
4421 			break;
4422 		}
4423 	} while (set->queue_depth);
4424 
4425 	if (!set->queue_depth || err) {
4426 		pr_err("blk-mq: failed to allocate request map\n");
4427 		return -ENOMEM;
4428 	}
4429 
4430 	if (depth != set->queue_depth)
4431 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4432 						depth, set->queue_depth);
4433 
4434 	return 0;
4435 }
4436 
4437 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4438 {
4439 	/*
4440 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4441 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4442 	 * number of hardware queues.
4443 	 */
4444 	if (set->nr_maps == 1)
4445 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4446 
4447 	if (set->ops->map_queues) {
4448 		int i;
4449 
4450 		/*
4451 		 * transport .map_queues is usually done in the following
4452 		 * way:
4453 		 *
4454 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4455 		 * 	mask = get_cpu_mask(queue)
4456 		 * 	for_each_cpu(cpu, mask)
4457 		 * 		set->map[x].mq_map[cpu] = queue;
4458 		 * }
4459 		 *
4460 		 * When we need to remap, the table has to be cleared for
4461 		 * killing stale mapping since one CPU may not be mapped
4462 		 * to any hw queue.
4463 		 */
4464 		for (i = 0; i < set->nr_maps; i++)
4465 			blk_mq_clear_mq_map(&set->map[i]);
4466 
4467 		set->ops->map_queues(set);
4468 	} else {
4469 		BUG_ON(set->nr_maps > 1);
4470 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4471 	}
4472 }
4473 
4474 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4475 				       int new_nr_hw_queues)
4476 {
4477 	struct blk_mq_tags **new_tags;
4478 	int i;
4479 
4480 	if (set->nr_hw_queues >= new_nr_hw_queues)
4481 		goto done;
4482 
4483 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4484 				GFP_KERNEL, set->numa_node);
4485 	if (!new_tags)
4486 		return -ENOMEM;
4487 
4488 	if (set->tags)
4489 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4490 		       sizeof(*set->tags));
4491 	kfree(set->tags);
4492 	set->tags = new_tags;
4493 
4494 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4495 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4496 			while (--i >= set->nr_hw_queues)
4497 				__blk_mq_free_map_and_rqs(set, i);
4498 			return -ENOMEM;
4499 		}
4500 		cond_resched();
4501 	}
4502 
4503 done:
4504 	set->nr_hw_queues = new_nr_hw_queues;
4505 	return 0;
4506 }
4507 
4508 /*
4509  * Alloc a tag set to be associated with one or more request queues.
4510  * May fail with EINVAL for various error conditions. May adjust the
4511  * requested depth down, if it's too large. In that case, the set
4512  * value will be stored in set->queue_depth.
4513  */
4514 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4515 {
4516 	int i, ret;
4517 
4518 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4519 
4520 	if (!set->nr_hw_queues)
4521 		return -EINVAL;
4522 	if (!set->queue_depth)
4523 		return -EINVAL;
4524 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4525 		return -EINVAL;
4526 
4527 	if (!set->ops->queue_rq)
4528 		return -EINVAL;
4529 
4530 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4531 		return -EINVAL;
4532 
4533 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4534 		pr_info("blk-mq: reduced tag depth to %u\n",
4535 			BLK_MQ_MAX_DEPTH);
4536 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4537 	}
4538 
4539 	if (!set->nr_maps)
4540 		set->nr_maps = 1;
4541 	else if (set->nr_maps > HCTX_MAX_TYPES)
4542 		return -EINVAL;
4543 
4544 	/*
4545 	 * If a crashdump is active, then we are potentially in a very
4546 	 * memory constrained environment. Limit us to  64 tags to prevent
4547 	 * using too much memory.
4548 	 */
4549 	if (is_kdump_kernel())
4550 		set->queue_depth = min(64U, set->queue_depth);
4551 
4552 	/*
4553 	 * There is no use for more h/w queues than cpus if we just have
4554 	 * a single map
4555 	 */
4556 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4557 		set->nr_hw_queues = nr_cpu_ids;
4558 
4559 	if (set->flags & BLK_MQ_F_BLOCKING) {
4560 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4561 		if (!set->srcu)
4562 			return -ENOMEM;
4563 		ret = init_srcu_struct(set->srcu);
4564 		if (ret)
4565 			goto out_free_srcu;
4566 	}
4567 
4568 	ret = -ENOMEM;
4569 	set->tags = kcalloc_node(set->nr_hw_queues,
4570 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4571 				 set->numa_node);
4572 	if (!set->tags)
4573 		goto out_cleanup_srcu;
4574 
4575 	for (i = 0; i < set->nr_maps; i++) {
4576 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4577 						  sizeof(set->map[i].mq_map[0]),
4578 						  GFP_KERNEL, set->numa_node);
4579 		if (!set->map[i].mq_map)
4580 			goto out_free_mq_map;
4581 		set->map[i].nr_queues = set->nr_hw_queues;
4582 	}
4583 
4584 	blk_mq_update_queue_map(set);
4585 
4586 	ret = blk_mq_alloc_set_map_and_rqs(set);
4587 	if (ret)
4588 		goto out_free_mq_map;
4589 
4590 	mutex_init(&set->tag_list_lock);
4591 	INIT_LIST_HEAD(&set->tag_list);
4592 
4593 	return 0;
4594 
4595 out_free_mq_map:
4596 	for (i = 0; i < set->nr_maps; i++) {
4597 		kfree(set->map[i].mq_map);
4598 		set->map[i].mq_map = NULL;
4599 	}
4600 	kfree(set->tags);
4601 	set->tags = NULL;
4602 out_cleanup_srcu:
4603 	if (set->flags & BLK_MQ_F_BLOCKING)
4604 		cleanup_srcu_struct(set->srcu);
4605 out_free_srcu:
4606 	if (set->flags & BLK_MQ_F_BLOCKING)
4607 		kfree(set->srcu);
4608 	return ret;
4609 }
4610 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4611 
4612 /* allocate and initialize a tagset for a simple single-queue device */
4613 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4614 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4615 		unsigned int set_flags)
4616 {
4617 	memset(set, 0, sizeof(*set));
4618 	set->ops = ops;
4619 	set->nr_hw_queues = 1;
4620 	set->nr_maps = 1;
4621 	set->queue_depth = queue_depth;
4622 	set->numa_node = NUMA_NO_NODE;
4623 	set->flags = set_flags;
4624 	return blk_mq_alloc_tag_set(set);
4625 }
4626 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4627 
4628 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4629 {
4630 	int i, j;
4631 
4632 	for (i = 0; i < set->nr_hw_queues; i++)
4633 		__blk_mq_free_map_and_rqs(set, i);
4634 
4635 	if (blk_mq_is_shared_tags(set->flags)) {
4636 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4637 					BLK_MQ_NO_HCTX_IDX);
4638 	}
4639 
4640 	for (j = 0; j < set->nr_maps; j++) {
4641 		kfree(set->map[j].mq_map);
4642 		set->map[j].mq_map = NULL;
4643 	}
4644 
4645 	kfree(set->tags);
4646 	set->tags = NULL;
4647 	if (set->flags & BLK_MQ_F_BLOCKING) {
4648 		cleanup_srcu_struct(set->srcu);
4649 		kfree(set->srcu);
4650 	}
4651 }
4652 EXPORT_SYMBOL(blk_mq_free_tag_set);
4653 
4654 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4655 {
4656 	struct blk_mq_tag_set *set = q->tag_set;
4657 	struct blk_mq_hw_ctx *hctx;
4658 	int ret;
4659 	unsigned long i;
4660 
4661 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4662 		return -EINVAL;
4663 
4664 	if (!set)
4665 		return -EINVAL;
4666 
4667 	if (q->nr_requests == nr)
4668 		return 0;
4669 
4670 	blk_mq_quiesce_queue(q);
4671 
4672 	ret = 0;
4673 	queue_for_each_hw_ctx(q, hctx, i) {
4674 		if (!hctx->tags)
4675 			continue;
4676 		/*
4677 		 * If we're using an MQ scheduler, just update the scheduler
4678 		 * queue depth. This is similar to what the old code would do.
4679 		 */
4680 		if (hctx->sched_tags) {
4681 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4682 						      nr, true);
4683 		} else {
4684 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4685 						      false);
4686 		}
4687 		if (ret)
4688 			break;
4689 		if (q->elevator && q->elevator->type->ops.depth_updated)
4690 			q->elevator->type->ops.depth_updated(hctx);
4691 	}
4692 	if (!ret) {
4693 		q->nr_requests = nr;
4694 		if (blk_mq_is_shared_tags(set->flags)) {
4695 			if (q->elevator)
4696 				blk_mq_tag_update_sched_shared_tags(q);
4697 			else
4698 				blk_mq_tag_resize_shared_tags(set, nr);
4699 		}
4700 	}
4701 
4702 	blk_mq_unquiesce_queue(q);
4703 
4704 	return ret;
4705 }
4706 
4707 /*
4708  * request_queue and elevator_type pair.
4709  * It is just used by __blk_mq_update_nr_hw_queues to cache
4710  * the elevator_type associated with a request_queue.
4711  */
4712 struct blk_mq_qe_pair {
4713 	struct list_head node;
4714 	struct request_queue *q;
4715 	struct elevator_type *type;
4716 };
4717 
4718 /*
4719  * Cache the elevator_type in qe pair list and switch the
4720  * io scheduler to 'none'
4721  */
4722 static bool blk_mq_elv_switch_none(struct list_head *head,
4723 		struct request_queue *q)
4724 {
4725 	struct blk_mq_qe_pair *qe;
4726 
4727 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4728 	if (!qe)
4729 		return false;
4730 
4731 	/* q->elevator needs protection from ->sysfs_lock */
4732 	mutex_lock(&q->sysfs_lock);
4733 
4734 	/* the check has to be done with holding sysfs_lock */
4735 	if (!q->elevator) {
4736 		kfree(qe);
4737 		goto unlock;
4738 	}
4739 
4740 	INIT_LIST_HEAD(&qe->node);
4741 	qe->q = q;
4742 	qe->type = q->elevator->type;
4743 	/* keep a reference to the elevator module as we'll switch back */
4744 	__elevator_get(qe->type);
4745 	list_add(&qe->node, head);
4746 	elevator_disable(q);
4747 unlock:
4748 	mutex_unlock(&q->sysfs_lock);
4749 
4750 	return true;
4751 }
4752 
4753 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4754 						struct request_queue *q)
4755 {
4756 	struct blk_mq_qe_pair *qe;
4757 
4758 	list_for_each_entry(qe, head, node)
4759 		if (qe->q == q)
4760 			return qe;
4761 
4762 	return NULL;
4763 }
4764 
4765 static void blk_mq_elv_switch_back(struct list_head *head,
4766 				  struct request_queue *q)
4767 {
4768 	struct blk_mq_qe_pair *qe;
4769 	struct elevator_type *t;
4770 
4771 	qe = blk_lookup_qe_pair(head, q);
4772 	if (!qe)
4773 		return;
4774 	t = qe->type;
4775 	list_del(&qe->node);
4776 	kfree(qe);
4777 
4778 	mutex_lock(&q->sysfs_lock);
4779 	elevator_switch(q, t);
4780 	/* drop the reference acquired in blk_mq_elv_switch_none */
4781 	elevator_put(t);
4782 	mutex_unlock(&q->sysfs_lock);
4783 }
4784 
4785 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4786 							int nr_hw_queues)
4787 {
4788 	struct request_queue *q;
4789 	LIST_HEAD(head);
4790 	int prev_nr_hw_queues = set->nr_hw_queues;
4791 	int i;
4792 
4793 	lockdep_assert_held(&set->tag_list_lock);
4794 
4795 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4796 		nr_hw_queues = nr_cpu_ids;
4797 	if (nr_hw_queues < 1)
4798 		return;
4799 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4800 		return;
4801 
4802 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4803 		blk_mq_freeze_queue(q);
4804 	/*
4805 	 * Switch IO scheduler to 'none', cleaning up the data associated
4806 	 * with the previous scheduler. We will switch back once we are done
4807 	 * updating the new sw to hw queue mappings.
4808 	 */
4809 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4810 		if (!blk_mq_elv_switch_none(&head, q))
4811 			goto switch_back;
4812 
4813 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4814 		blk_mq_debugfs_unregister_hctxs(q);
4815 		blk_mq_sysfs_unregister_hctxs(q);
4816 	}
4817 
4818 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4819 		goto reregister;
4820 
4821 fallback:
4822 	blk_mq_update_queue_map(set);
4823 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4824 		struct queue_limits lim;
4825 
4826 		blk_mq_realloc_hw_ctxs(set, q);
4827 
4828 		if (q->nr_hw_queues != set->nr_hw_queues) {
4829 			int i = prev_nr_hw_queues;
4830 
4831 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4832 					nr_hw_queues, prev_nr_hw_queues);
4833 			for (; i < set->nr_hw_queues; i++)
4834 				__blk_mq_free_map_and_rqs(set, i);
4835 
4836 			set->nr_hw_queues = prev_nr_hw_queues;
4837 			goto fallback;
4838 		}
4839 		lim = queue_limits_start_update(q);
4840 		if (blk_mq_can_poll(set))
4841 			lim.features |= BLK_FEAT_POLL;
4842 		else
4843 			lim.features &= ~BLK_FEAT_POLL;
4844 		if (queue_limits_commit_update(q, &lim) < 0)
4845 			pr_warn("updating the poll flag failed\n");
4846 		blk_mq_map_swqueue(q);
4847 	}
4848 
4849 reregister:
4850 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4851 		blk_mq_sysfs_register_hctxs(q);
4852 		blk_mq_debugfs_register_hctxs(q);
4853 	}
4854 
4855 switch_back:
4856 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4857 		blk_mq_elv_switch_back(&head, q);
4858 
4859 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4860 		blk_mq_unfreeze_queue(q);
4861 
4862 	/* Free the excess tags when nr_hw_queues shrink. */
4863 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4864 		__blk_mq_free_map_and_rqs(set, i);
4865 }
4866 
4867 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4868 {
4869 	mutex_lock(&set->tag_list_lock);
4870 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4871 	mutex_unlock(&set->tag_list_lock);
4872 }
4873 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4874 
4875 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4876 			 struct io_comp_batch *iob, unsigned int flags)
4877 {
4878 	long state = get_current_state();
4879 	int ret;
4880 
4881 	do {
4882 		ret = q->mq_ops->poll(hctx, iob);
4883 		if (ret > 0) {
4884 			__set_current_state(TASK_RUNNING);
4885 			return ret;
4886 		}
4887 
4888 		if (signal_pending_state(state, current))
4889 			__set_current_state(TASK_RUNNING);
4890 		if (task_is_running(current))
4891 			return 1;
4892 
4893 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4894 			break;
4895 		cpu_relax();
4896 	} while (!need_resched());
4897 
4898 	__set_current_state(TASK_RUNNING);
4899 	return 0;
4900 }
4901 
4902 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4903 		struct io_comp_batch *iob, unsigned int flags)
4904 {
4905 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4906 
4907 	return blk_hctx_poll(q, hctx, iob, flags);
4908 }
4909 
4910 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4911 		unsigned int poll_flags)
4912 {
4913 	struct request_queue *q = rq->q;
4914 	int ret;
4915 
4916 	if (!blk_rq_is_poll(rq))
4917 		return 0;
4918 	if (!percpu_ref_tryget(&q->q_usage_counter))
4919 		return 0;
4920 
4921 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4922 	blk_queue_exit(q);
4923 
4924 	return ret;
4925 }
4926 EXPORT_SYMBOL_GPL(blk_rq_poll);
4927 
4928 unsigned int blk_mq_rq_cpu(struct request *rq)
4929 {
4930 	return rq->mq_ctx->cpu;
4931 }
4932 EXPORT_SYMBOL(blk_mq_rq_cpu);
4933 
4934 void blk_mq_cancel_work_sync(struct request_queue *q)
4935 {
4936 	struct blk_mq_hw_ctx *hctx;
4937 	unsigned long i;
4938 
4939 	cancel_delayed_work_sync(&q->requeue_work);
4940 
4941 	queue_for_each_hw_ctx(q, hctx, i)
4942 		cancel_delayed_work_sync(&hctx->run_work);
4943 }
4944 
4945 static int __init blk_mq_init(void)
4946 {
4947 	int i;
4948 
4949 	for_each_possible_cpu(i)
4950 		init_llist_head(&per_cpu(blk_cpu_done, i));
4951 	for_each_possible_cpu(i)
4952 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4953 			 __blk_mq_complete_request_remote, NULL);
4954 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4955 
4956 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4957 				  "block/softirq:dead", NULL,
4958 				  blk_softirq_cpu_dead);
4959 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4960 				blk_mq_hctx_notify_dead);
4961 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4962 				blk_mq_hctx_notify_online,
4963 				blk_mq_hctx_notify_offline);
4964 	return 0;
4965 }
4966 subsys_initcall(blk_mq_init);
4967