xref: /linux/block/blk-mq.c (revision 55a42f78ffd386e01a5404419f8c5ded7db70a21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
46 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_in_driver(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->rq_flags & RQF_IO_STAT &&
97 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 void blk_mq_in_driver_rw(struct block_device *part, unsigned int inflight[2])
105 {
106 	struct mq_inflight mi = { .part = part };
107 
108 	blk_mq_queue_tag_busy_iter(bdev_get_queue(part), blk_mq_check_in_driver,
109 				   &mi);
110 	inflight[READ] = mi.inflight[READ];
111 	inflight[WRITE] = mi.inflight[WRITE];
112 }
113 
114 #ifdef CONFIG_LOCKDEP
115 static bool blk_freeze_set_owner(struct request_queue *q,
116 				 struct task_struct *owner)
117 {
118 	if (!owner)
119 		return false;
120 
121 	if (!q->mq_freeze_depth) {
122 		q->mq_freeze_owner = owner;
123 		q->mq_freeze_owner_depth = 1;
124 		q->mq_freeze_disk_dead = !q->disk ||
125 			test_bit(GD_DEAD, &q->disk->state) ||
126 			!blk_queue_registered(q);
127 		q->mq_freeze_queue_dying = blk_queue_dying(q);
128 		return true;
129 	}
130 
131 	if (owner == q->mq_freeze_owner)
132 		q->mq_freeze_owner_depth += 1;
133 	return false;
134 }
135 
136 /* verify the last unfreeze in owner context */
137 static bool blk_unfreeze_check_owner(struct request_queue *q)
138 {
139 	if (q->mq_freeze_owner != current)
140 		return false;
141 	if (--q->mq_freeze_owner_depth == 0) {
142 		q->mq_freeze_owner = NULL;
143 		return true;
144 	}
145 	return false;
146 }
147 
148 #else
149 
150 static bool blk_freeze_set_owner(struct request_queue *q,
151 				 struct task_struct *owner)
152 {
153 	return false;
154 }
155 
156 static bool blk_unfreeze_check_owner(struct request_queue *q)
157 {
158 	return false;
159 }
160 #endif
161 
162 bool __blk_freeze_queue_start(struct request_queue *q,
163 			      struct task_struct *owner)
164 {
165 	bool freeze;
166 
167 	mutex_lock(&q->mq_freeze_lock);
168 	freeze = blk_freeze_set_owner(q, owner);
169 	if (++q->mq_freeze_depth == 1) {
170 		percpu_ref_kill(&q->q_usage_counter);
171 		mutex_unlock(&q->mq_freeze_lock);
172 		if (queue_is_mq(q))
173 			blk_mq_run_hw_queues(q, false);
174 	} else {
175 		mutex_unlock(&q->mq_freeze_lock);
176 	}
177 
178 	return freeze;
179 }
180 
181 void blk_freeze_queue_start(struct request_queue *q)
182 {
183 	if (__blk_freeze_queue_start(q, current))
184 		blk_freeze_acquire_lock(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
187 
188 void blk_mq_freeze_queue_wait(struct request_queue *q)
189 {
190 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
193 
194 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
195 				     unsigned long timeout)
196 {
197 	return wait_event_timeout(q->mq_freeze_wq,
198 					percpu_ref_is_zero(&q->q_usage_counter),
199 					timeout);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
202 
203 void blk_mq_freeze_queue_nomemsave(struct request_queue *q)
204 {
205 	blk_freeze_queue_start(q);
206 	blk_mq_freeze_queue_wait(q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_nomemsave);
209 
210 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
211 {
212 	bool unfreeze;
213 
214 	mutex_lock(&q->mq_freeze_lock);
215 	if (force_atomic)
216 		q->q_usage_counter.data->force_atomic = true;
217 	q->mq_freeze_depth--;
218 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
219 	if (!q->mq_freeze_depth) {
220 		percpu_ref_resurrect(&q->q_usage_counter);
221 		wake_up_all(&q->mq_freeze_wq);
222 	}
223 	unfreeze = blk_unfreeze_check_owner(q);
224 	mutex_unlock(&q->mq_freeze_lock);
225 
226 	return unfreeze;
227 }
228 
229 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q)
230 {
231 	if (__blk_mq_unfreeze_queue(q, false))
232 		blk_unfreeze_release_lock(q);
233 }
234 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_nomemrestore);
235 
236 /*
237  * non_owner variant of blk_freeze_queue_start
238  *
239  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
240  * by the same task.  This is fragile and should not be used if at all
241  * possible.
242  */
243 void blk_freeze_queue_start_non_owner(struct request_queue *q)
244 {
245 	__blk_freeze_queue_start(q, NULL);
246 }
247 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
248 
249 /* non_owner variant of blk_mq_unfreeze_queue */
250 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
251 {
252 	__blk_mq_unfreeze_queue(q, false);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
255 
256 /*
257  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
258  * mpt3sas driver such that this function can be removed.
259  */
260 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
261 {
262 	unsigned long flags;
263 
264 	spin_lock_irqsave(&q->queue_lock, flags);
265 	if (!q->quiesce_depth++)
266 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
267 	spin_unlock_irqrestore(&q->queue_lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
270 
271 /**
272  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
273  * @set: tag_set to wait on
274  *
275  * Note: it is driver's responsibility for making sure that quiesce has
276  * been started on or more of the request_queues of the tag_set.  This
277  * function only waits for the quiesce on those request_queues that had
278  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
279  */
280 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
281 {
282 	if (set->flags & BLK_MQ_F_BLOCKING)
283 		synchronize_srcu(set->srcu);
284 	else
285 		synchronize_rcu();
286 }
287 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
288 
289 /**
290  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
291  * @q: request queue.
292  *
293  * Note: this function does not prevent that the struct request end_io()
294  * callback function is invoked. Once this function is returned, we make
295  * sure no dispatch can happen until the queue is unquiesced via
296  * blk_mq_unquiesce_queue().
297  */
298 void blk_mq_quiesce_queue(struct request_queue *q)
299 {
300 	blk_mq_quiesce_queue_nowait(q);
301 	/* nothing to wait for non-mq queues */
302 	if (queue_is_mq(q))
303 		blk_mq_wait_quiesce_done(q->tag_set);
304 }
305 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
306 
307 /*
308  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
309  * @q: request queue.
310  *
311  * This function recovers queue into the state before quiescing
312  * which is done by blk_mq_quiesce_queue.
313  */
314 void blk_mq_unquiesce_queue(struct request_queue *q)
315 {
316 	unsigned long flags;
317 	bool run_queue = false;
318 
319 	spin_lock_irqsave(&q->queue_lock, flags);
320 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
321 		;
322 	} else if (!--q->quiesce_depth) {
323 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
324 		run_queue = true;
325 	}
326 	spin_unlock_irqrestore(&q->queue_lock, flags);
327 
328 	/* dispatch requests which are inserted during quiescing */
329 	if (run_queue)
330 		blk_mq_run_hw_queues(q, true);
331 }
332 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
333 
334 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
335 {
336 	struct request_queue *q;
337 
338 	mutex_lock(&set->tag_list_lock);
339 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
340 		if (!blk_queue_skip_tagset_quiesce(q))
341 			blk_mq_quiesce_queue_nowait(q);
342 	}
343 	mutex_unlock(&set->tag_list_lock);
344 
345 	blk_mq_wait_quiesce_done(set);
346 }
347 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
348 
349 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
350 {
351 	struct request_queue *q;
352 
353 	mutex_lock(&set->tag_list_lock);
354 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
355 		if (!blk_queue_skip_tagset_quiesce(q))
356 			blk_mq_unquiesce_queue(q);
357 	}
358 	mutex_unlock(&set->tag_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
361 
362 void blk_mq_wake_waiters(struct request_queue *q)
363 {
364 	struct blk_mq_hw_ctx *hctx;
365 	unsigned long i;
366 
367 	queue_for_each_hw_ctx(q, hctx, i)
368 		if (blk_mq_hw_queue_mapped(hctx))
369 			blk_mq_tag_wakeup_all(hctx->tags, true);
370 }
371 
372 void blk_rq_init(struct request_queue *q, struct request *rq)
373 {
374 	memset(rq, 0, sizeof(*rq));
375 
376 	INIT_LIST_HEAD(&rq->queuelist);
377 	rq->q = q;
378 	rq->__sector = (sector_t) -1;
379 	INIT_HLIST_NODE(&rq->hash);
380 	RB_CLEAR_NODE(&rq->rb_node);
381 	rq->tag = BLK_MQ_NO_TAG;
382 	rq->internal_tag = BLK_MQ_NO_TAG;
383 	rq->start_time_ns = blk_time_get_ns();
384 	blk_crypto_rq_set_defaults(rq);
385 }
386 EXPORT_SYMBOL(blk_rq_init);
387 
388 /* Set start and alloc time when the allocated request is actually used */
389 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
390 {
391 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
392 	if (blk_queue_rq_alloc_time(rq->q))
393 		rq->alloc_time_ns = alloc_time_ns;
394 	else
395 		rq->alloc_time_ns = 0;
396 #endif
397 }
398 
399 static inline void blk_mq_bio_issue_init(struct request_queue *q,
400 					 struct bio *bio)
401 {
402 #ifdef CONFIG_BLK_CGROUP
403 	if (test_bit(QUEUE_FLAG_BIO_ISSUE_TIME, &q->queue_flags))
404 		bio->issue_time_ns = blk_time_get_ns();
405 #endif
406 }
407 
408 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
409 		struct blk_mq_tags *tags, unsigned int tag)
410 {
411 	struct blk_mq_ctx *ctx = data->ctx;
412 	struct blk_mq_hw_ctx *hctx = data->hctx;
413 	struct request_queue *q = data->q;
414 	struct request *rq = tags->static_rqs[tag];
415 
416 	rq->q = q;
417 	rq->mq_ctx = ctx;
418 	rq->mq_hctx = hctx;
419 	rq->cmd_flags = data->cmd_flags;
420 
421 	if (data->flags & BLK_MQ_REQ_PM)
422 		data->rq_flags |= RQF_PM;
423 	rq->rq_flags = data->rq_flags;
424 
425 	if (data->rq_flags & RQF_SCHED_TAGS) {
426 		rq->tag = BLK_MQ_NO_TAG;
427 		rq->internal_tag = tag;
428 	} else {
429 		rq->tag = tag;
430 		rq->internal_tag = BLK_MQ_NO_TAG;
431 	}
432 	rq->timeout = 0;
433 
434 	rq->part = NULL;
435 	rq->io_start_time_ns = 0;
436 	rq->stats_sectors = 0;
437 	rq->nr_phys_segments = 0;
438 	rq->nr_integrity_segments = 0;
439 	rq->end_io = NULL;
440 	rq->end_io_data = NULL;
441 
442 	blk_crypto_rq_set_defaults(rq);
443 	INIT_LIST_HEAD(&rq->queuelist);
444 	/* tag was already set */
445 	WRITE_ONCE(rq->deadline, 0);
446 	req_ref_set(rq, 1);
447 
448 	if (rq->rq_flags & RQF_USE_SCHED) {
449 		struct elevator_queue *e = data->q->elevator;
450 
451 		INIT_HLIST_NODE(&rq->hash);
452 		RB_CLEAR_NODE(&rq->rb_node);
453 
454 		if (e->type->ops.prepare_request)
455 			e->type->ops.prepare_request(rq);
456 	}
457 
458 	return rq;
459 }
460 
461 static inline struct request *
462 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
463 {
464 	unsigned int tag, tag_offset;
465 	struct blk_mq_tags *tags;
466 	struct request *rq;
467 	unsigned long tag_mask;
468 	int i, nr = 0;
469 
470 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
471 	if (unlikely(!tag_mask))
472 		return NULL;
473 
474 	tags = blk_mq_tags_from_data(data);
475 	for (i = 0; tag_mask; i++) {
476 		if (!(tag_mask & (1UL << i)))
477 			continue;
478 		tag = tag_offset + i;
479 		prefetch(tags->static_rqs[tag]);
480 		tag_mask &= ~(1UL << i);
481 		rq = blk_mq_rq_ctx_init(data, tags, tag);
482 		rq_list_add_head(data->cached_rqs, rq);
483 		nr++;
484 	}
485 	if (!(data->rq_flags & RQF_SCHED_TAGS))
486 		blk_mq_add_active_requests(data->hctx, nr);
487 	/* caller already holds a reference, add for remainder */
488 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
489 	data->nr_tags -= nr;
490 
491 	return rq_list_pop(data->cached_rqs);
492 }
493 
494 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
495 {
496 	struct request_queue *q = data->q;
497 	u64 alloc_time_ns = 0;
498 	struct request *rq;
499 	unsigned int tag;
500 
501 	/* alloc_time includes depth and tag waits */
502 	if (blk_queue_rq_alloc_time(q))
503 		alloc_time_ns = blk_time_get_ns();
504 
505 	if (data->cmd_flags & REQ_NOWAIT)
506 		data->flags |= BLK_MQ_REQ_NOWAIT;
507 
508 retry:
509 	data->ctx = blk_mq_get_ctx(q);
510 	data->hctx = blk_mq_map_queue(data->cmd_flags, data->ctx);
511 
512 	if (q->elevator) {
513 		/*
514 		 * All requests use scheduler tags when an I/O scheduler is
515 		 * enabled for the queue.
516 		 */
517 		data->rq_flags |= RQF_SCHED_TAGS;
518 
519 		/*
520 		 * Flush/passthrough requests are special and go directly to the
521 		 * dispatch list.
522 		 */
523 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
524 		    !blk_op_is_passthrough(data->cmd_flags)) {
525 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
526 
527 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
528 
529 			data->rq_flags |= RQF_USE_SCHED;
530 			if (ops->limit_depth)
531 				ops->limit_depth(data->cmd_flags, data);
532 		}
533 	} else {
534 		blk_mq_tag_busy(data->hctx);
535 	}
536 
537 	if (data->flags & BLK_MQ_REQ_RESERVED)
538 		data->rq_flags |= RQF_RESV;
539 
540 	/*
541 	 * Try batched alloc if we want more than 1 tag.
542 	 */
543 	if (data->nr_tags > 1) {
544 		rq = __blk_mq_alloc_requests_batch(data);
545 		if (rq) {
546 			blk_mq_rq_time_init(rq, alloc_time_ns);
547 			return rq;
548 		}
549 		data->nr_tags = 1;
550 	}
551 
552 	/*
553 	 * Waiting allocations only fail because of an inactive hctx.  In that
554 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
555 	 * should have migrated us to an online CPU by now.
556 	 */
557 	tag = blk_mq_get_tag(data);
558 	if (tag == BLK_MQ_NO_TAG) {
559 		if (data->flags & BLK_MQ_REQ_NOWAIT)
560 			return NULL;
561 		/*
562 		 * Give up the CPU and sleep for a random short time to
563 		 * ensure that thread using a realtime scheduling class
564 		 * are migrated off the CPU, and thus off the hctx that
565 		 * is going away.
566 		 */
567 		msleep(3);
568 		goto retry;
569 	}
570 
571 	if (!(data->rq_flags & RQF_SCHED_TAGS))
572 		blk_mq_inc_active_requests(data->hctx);
573 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
574 	blk_mq_rq_time_init(rq, alloc_time_ns);
575 	return rq;
576 }
577 
578 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
579 					    struct blk_plug *plug,
580 					    blk_opf_t opf,
581 					    blk_mq_req_flags_t flags)
582 {
583 	struct blk_mq_alloc_data data = {
584 		.q		= q,
585 		.flags		= flags,
586 		.shallow_depth	= 0,
587 		.cmd_flags	= opf,
588 		.rq_flags	= 0,
589 		.nr_tags	= plug->nr_ios,
590 		.cached_rqs	= &plug->cached_rqs,
591 		.ctx		= NULL,
592 		.hctx		= NULL
593 	};
594 	struct request *rq;
595 
596 	if (blk_queue_enter(q, flags))
597 		return NULL;
598 
599 	plug->nr_ios = 1;
600 
601 	rq = __blk_mq_alloc_requests(&data);
602 	if (unlikely(!rq))
603 		blk_queue_exit(q);
604 	return rq;
605 }
606 
607 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
608 						   blk_opf_t opf,
609 						   blk_mq_req_flags_t flags)
610 {
611 	struct blk_plug *plug = current->plug;
612 	struct request *rq;
613 
614 	if (!plug)
615 		return NULL;
616 
617 	if (rq_list_empty(&plug->cached_rqs)) {
618 		if (plug->nr_ios == 1)
619 			return NULL;
620 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
621 		if (!rq)
622 			return NULL;
623 	} else {
624 		rq = rq_list_peek(&plug->cached_rqs);
625 		if (!rq || rq->q != q)
626 			return NULL;
627 
628 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
629 			return NULL;
630 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
631 			return NULL;
632 
633 		rq_list_pop(&plug->cached_rqs);
634 		blk_mq_rq_time_init(rq, blk_time_get_ns());
635 	}
636 
637 	rq->cmd_flags = opf;
638 	INIT_LIST_HEAD(&rq->queuelist);
639 	return rq;
640 }
641 
642 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
643 		blk_mq_req_flags_t flags)
644 {
645 	struct request *rq;
646 
647 	rq = blk_mq_alloc_cached_request(q, opf, flags);
648 	if (!rq) {
649 		struct blk_mq_alloc_data data = {
650 			.q		= q,
651 			.flags		= flags,
652 			.shallow_depth	= 0,
653 			.cmd_flags	= opf,
654 			.rq_flags	= 0,
655 			.nr_tags	= 1,
656 			.cached_rqs	= NULL,
657 			.ctx		= NULL,
658 			.hctx		= NULL
659 		};
660 		int ret;
661 
662 		ret = blk_queue_enter(q, flags);
663 		if (ret)
664 			return ERR_PTR(ret);
665 
666 		rq = __blk_mq_alloc_requests(&data);
667 		if (!rq)
668 			goto out_queue_exit;
669 	}
670 	rq->__data_len = 0;
671 	rq->__sector = (sector_t) -1;
672 	rq->bio = rq->biotail = NULL;
673 	return rq;
674 out_queue_exit:
675 	blk_queue_exit(q);
676 	return ERR_PTR(-EWOULDBLOCK);
677 }
678 EXPORT_SYMBOL(blk_mq_alloc_request);
679 
680 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
681 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
682 {
683 	struct blk_mq_alloc_data data = {
684 		.q		= q,
685 		.flags		= flags,
686 		.shallow_depth	= 0,
687 		.cmd_flags	= opf,
688 		.rq_flags	= 0,
689 		.nr_tags	= 1,
690 		.cached_rqs	= NULL,
691 		.ctx		= NULL,
692 		.hctx		= NULL
693 	};
694 	u64 alloc_time_ns = 0;
695 	struct request *rq;
696 	unsigned int cpu;
697 	unsigned int tag;
698 	int ret;
699 
700 	/* alloc_time includes depth and tag waits */
701 	if (blk_queue_rq_alloc_time(q))
702 		alloc_time_ns = blk_time_get_ns();
703 
704 	/*
705 	 * If the tag allocator sleeps we could get an allocation for a
706 	 * different hardware context.  No need to complicate the low level
707 	 * allocator for this for the rare use case of a command tied to
708 	 * a specific queue.
709 	 */
710 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
711 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
712 		return ERR_PTR(-EINVAL);
713 
714 	if (hctx_idx >= q->nr_hw_queues)
715 		return ERR_PTR(-EIO);
716 
717 	ret = blk_queue_enter(q, flags);
718 	if (ret)
719 		return ERR_PTR(ret);
720 
721 	/*
722 	 * Check if the hardware context is actually mapped to anything.
723 	 * If not tell the caller that it should skip this queue.
724 	 */
725 	ret = -EXDEV;
726 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
727 	if (!blk_mq_hw_queue_mapped(data.hctx))
728 		goto out_queue_exit;
729 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
730 	if (cpu >= nr_cpu_ids)
731 		goto out_queue_exit;
732 	data.ctx = __blk_mq_get_ctx(q, cpu);
733 
734 	if (q->elevator)
735 		data.rq_flags |= RQF_SCHED_TAGS;
736 	else
737 		blk_mq_tag_busy(data.hctx);
738 
739 	if (flags & BLK_MQ_REQ_RESERVED)
740 		data.rq_flags |= RQF_RESV;
741 
742 	ret = -EWOULDBLOCK;
743 	tag = blk_mq_get_tag(&data);
744 	if (tag == BLK_MQ_NO_TAG)
745 		goto out_queue_exit;
746 	if (!(data.rq_flags & RQF_SCHED_TAGS))
747 		blk_mq_inc_active_requests(data.hctx);
748 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
749 	blk_mq_rq_time_init(rq, alloc_time_ns);
750 	rq->__data_len = 0;
751 	rq->__sector = (sector_t) -1;
752 	rq->bio = rq->biotail = NULL;
753 	return rq;
754 
755 out_queue_exit:
756 	blk_queue_exit(q);
757 	return ERR_PTR(ret);
758 }
759 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
760 
761 static void blk_mq_finish_request(struct request *rq)
762 {
763 	struct request_queue *q = rq->q;
764 
765 	blk_zone_finish_request(rq);
766 
767 	if (rq->rq_flags & RQF_USE_SCHED) {
768 		q->elevator->type->ops.finish_request(rq);
769 		/*
770 		 * For postflush request that may need to be
771 		 * completed twice, we should clear this flag
772 		 * to avoid double finish_request() on the rq.
773 		 */
774 		rq->rq_flags &= ~RQF_USE_SCHED;
775 	}
776 }
777 
778 static void __blk_mq_free_request(struct request *rq)
779 {
780 	struct request_queue *q = rq->q;
781 	struct blk_mq_ctx *ctx = rq->mq_ctx;
782 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
783 	const int sched_tag = rq->internal_tag;
784 
785 	blk_crypto_free_request(rq);
786 	blk_pm_mark_last_busy(rq);
787 	rq->mq_hctx = NULL;
788 
789 	if (rq->tag != BLK_MQ_NO_TAG) {
790 		blk_mq_dec_active_requests(hctx);
791 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
792 	}
793 	if (sched_tag != BLK_MQ_NO_TAG)
794 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
795 	blk_mq_sched_restart(hctx);
796 	blk_queue_exit(q);
797 }
798 
799 void blk_mq_free_request(struct request *rq)
800 {
801 	struct request_queue *q = rq->q;
802 
803 	blk_mq_finish_request(rq);
804 
805 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
806 		laptop_io_completion(q->disk->bdi);
807 
808 	rq_qos_done(q, rq);
809 
810 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
811 	if (req_ref_put_and_test(rq))
812 		__blk_mq_free_request(rq);
813 }
814 EXPORT_SYMBOL_GPL(blk_mq_free_request);
815 
816 void blk_mq_free_plug_rqs(struct blk_plug *plug)
817 {
818 	struct request *rq;
819 
820 	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
821 		blk_mq_free_request(rq);
822 }
823 
824 void blk_dump_rq_flags(struct request *rq, char *msg)
825 {
826 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
827 		rq->q->disk ? rq->q->disk->disk_name : "?",
828 		(__force unsigned long long) rq->cmd_flags);
829 
830 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
831 	       (unsigned long long)blk_rq_pos(rq),
832 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
833 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
834 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
835 }
836 EXPORT_SYMBOL(blk_dump_rq_flags);
837 
838 static void blk_account_io_completion(struct request *req, unsigned int bytes)
839 {
840 	if (req->rq_flags & RQF_IO_STAT) {
841 		const int sgrp = op_stat_group(req_op(req));
842 
843 		part_stat_lock();
844 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
845 		part_stat_unlock();
846 	}
847 }
848 
849 static void blk_print_req_error(struct request *req, blk_status_t status)
850 {
851 	printk_ratelimited(KERN_ERR
852 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
853 		"phys_seg %u prio class %u\n",
854 		blk_status_to_str(status),
855 		req->q->disk ? req->q->disk->disk_name : "?",
856 		blk_rq_pos(req), (__force u32)req_op(req),
857 		blk_op_str(req_op(req)),
858 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
859 		req->nr_phys_segments,
860 		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
861 }
862 
863 /*
864  * Fully end IO on a request. Does not support partial completions, or
865  * errors.
866  */
867 static void blk_complete_request(struct request *req)
868 {
869 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
870 	int total_bytes = blk_rq_bytes(req);
871 	struct bio *bio = req->bio;
872 
873 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
874 
875 	if (!bio)
876 		return;
877 
878 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
879 		blk_integrity_complete(req, total_bytes);
880 
881 	/*
882 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
883 	 * bio_endio().  Therefore, the keyslot must be released before that.
884 	 */
885 	blk_crypto_rq_put_keyslot(req);
886 
887 	blk_account_io_completion(req, total_bytes);
888 
889 	do {
890 		struct bio *next = bio->bi_next;
891 
892 		/* Completion has already been traced */
893 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
894 
895 		if (blk_req_bio_is_zone_append(req, bio))
896 			blk_zone_append_update_request_bio(req, bio);
897 
898 		if (!is_flush)
899 			bio_endio(bio);
900 		bio = next;
901 	} while (bio);
902 
903 	/*
904 	 * Reset counters so that the request stacking driver
905 	 * can find how many bytes remain in the request
906 	 * later.
907 	 */
908 	if (!req->end_io) {
909 		req->bio = NULL;
910 		req->__data_len = 0;
911 	}
912 }
913 
914 /**
915  * blk_update_request - Complete multiple bytes without completing the request
916  * @req:      the request being processed
917  * @error:    block status code
918  * @nr_bytes: number of bytes to complete for @req
919  *
920  * Description:
921  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
922  *     the request structure even if @req doesn't have leftover.
923  *     If @req has leftover, sets it up for the next range of segments.
924  *
925  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
926  *     %false return from this function.
927  *
928  * Note:
929  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
930  *      except in the consistency check at the end of this function.
931  *
932  * Return:
933  *     %false - this request doesn't have any more data
934  *     %true  - this request has more data
935  **/
936 bool blk_update_request(struct request *req, blk_status_t error,
937 		unsigned int nr_bytes)
938 {
939 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
940 	bool quiet = req->rq_flags & RQF_QUIET;
941 	int total_bytes;
942 
943 	trace_block_rq_complete(req, error, nr_bytes);
944 
945 	if (!req->bio)
946 		return false;
947 
948 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
949 	    error == BLK_STS_OK)
950 		blk_integrity_complete(req, nr_bytes);
951 
952 	/*
953 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
954 	 * bio_endio().  Therefore, the keyslot must be released before that.
955 	 */
956 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
957 		__blk_crypto_rq_put_keyslot(req);
958 
959 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
960 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
961 		blk_print_req_error(req, error);
962 		trace_block_rq_error(req, error, nr_bytes);
963 	}
964 
965 	blk_account_io_completion(req, nr_bytes);
966 
967 	total_bytes = 0;
968 	while (req->bio) {
969 		struct bio *bio = req->bio;
970 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
971 
972 		if (unlikely(error))
973 			bio->bi_status = error;
974 
975 		if (bio_bytes == bio->bi_iter.bi_size) {
976 			req->bio = bio->bi_next;
977 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
978 			/*
979 			 * Partial zone append completions cannot be supported
980 			 * as the BIO fragments may end up not being written
981 			 * sequentially.
982 			 */
983 			bio->bi_status = BLK_STS_IOERR;
984 		}
985 
986 		/* Completion has already been traced */
987 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
988 		if (unlikely(quiet))
989 			bio_set_flag(bio, BIO_QUIET);
990 
991 		bio_advance(bio, bio_bytes);
992 
993 		/* Don't actually finish bio if it's part of flush sequence */
994 		if (!bio->bi_iter.bi_size) {
995 			if (blk_req_bio_is_zone_append(req, bio))
996 				blk_zone_append_update_request_bio(req, bio);
997 			if (!is_flush)
998 				bio_endio(bio);
999 		}
1000 
1001 		total_bytes += bio_bytes;
1002 		nr_bytes -= bio_bytes;
1003 
1004 		if (!nr_bytes)
1005 			break;
1006 	}
1007 
1008 	/*
1009 	 * completely done
1010 	 */
1011 	if (!req->bio) {
1012 		/*
1013 		 * Reset counters so that the request stacking driver
1014 		 * can find how many bytes remain in the request
1015 		 * later.
1016 		 */
1017 		req->__data_len = 0;
1018 		return false;
1019 	}
1020 
1021 	req->__data_len -= total_bytes;
1022 
1023 	/* update sector only for requests with clear definition of sector */
1024 	if (!blk_rq_is_passthrough(req))
1025 		req->__sector += total_bytes >> 9;
1026 
1027 	/* mixed attributes always follow the first bio */
1028 	if (req->rq_flags & RQF_MIXED_MERGE) {
1029 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1030 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1031 	}
1032 
1033 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1034 		/*
1035 		 * If total number of sectors is less than the first segment
1036 		 * size, something has gone terribly wrong.
1037 		 */
1038 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1039 			blk_dump_rq_flags(req, "request botched");
1040 			req->__data_len = blk_rq_cur_bytes(req);
1041 		}
1042 
1043 		/* recalculate the number of segments */
1044 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1045 	}
1046 
1047 	return true;
1048 }
1049 EXPORT_SYMBOL_GPL(blk_update_request);
1050 
1051 static inline void blk_account_io_done(struct request *req, u64 now)
1052 {
1053 	trace_block_io_done(req);
1054 
1055 	/*
1056 	 * Account IO completion.  flush_rq isn't accounted as a
1057 	 * normal IO on queueing nor completion.  Accounting the
1058 	 * containing request is enough.
1059 	 */
1060 	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1061 		const int sgrp = op_stat_group(req_op(req));
1062 
1063 		part_stat_lock();
1064 		update_io_ticks(req->part, jiffies, true);
1065 		part_stat_inc(req->part, ios[sgrp]);
1066 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1067 		part_stat_local_dec(req->part,
1068 				    in_flight[op_is_write(req_op(req))]);
1069 		part_stat_unlock();
1070 	}
1071 }
1072 
1073 static inline bool blk_rq_passthrough_stats(struct request *req)
1074 {
1075 	struct bio *bio = req->bio;
1076 
1077 	if (!blk_queue_passthrough_stat(req->q))
1078 		return false;
1079 
1080 	/* Requests without a bio do not transfer data. */
1081 	if (!bio)
1082 		return false;
1083 
1084 	/*
1085 	 * Stats are accumulated in the bdev, so must have one attached to a
1086 	 * bio to track stats. Most drivers do not set the bdev for passthrough
1087 	 * requests, but nvme is one that will set it.
1088 	 */
1089 	if (!bio->bi_bdev)
1090 		return false;
1091 
1092 	/*
1093 	 * We don't know what a passthrough command does, but we know the
1094 	 * payload size and data direction. Ensuring the size is aligned to the
1095 	 * block size filters out most commands with payloads that don't
1096 	 * represent sector access.
1097 	 */
1098 	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1099 		return false;
1100 	return true;
1101 }
1102 
1103 static inline void blk_account_io_start(struct request *req)
1104 {
1105 	trace_block_io_start(req);
1106 
1107 	if (!blk_queue_io_stat(req->q))
1108 		return;
1109 	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1110 		return;
1111 
1112 	req->rq_flags |= RQF_IO_STAT;
1113 	req->start_time_ns = blk_time_get_ns();
1114 
1115 	/*
1116 	 * All non-passthrough requests are created from a bio with one
1117 	 * exception: when a flush command that is part of a flush sequence
1118 	 * generated by the state machine in blk-flush.c is cloned onto the
1119 	 * lower device by dm-multipath we can get here without a bio.
1120 	 */
1121 	if (req->bio)
1122 		req->part = req->bio->bi_bdev;
1123 	else
1124 		req->part = req->q->disk->part0;
1125 
1126 	part_stat_lock();
1127 	update_io_ticks(req->part, jiffies, false);
1128 	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1129 	part_stat_unlock();
1130 }
1131 
1132 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1133 {
1134 	if (rq->rq_flags & RQF_STATS)
1135 		blk_stat_add(rq, now);
1136 
1137 	blk_mq_sched_completed_request(rq, now);
1138 	blk_account_io_done(rq, now);
1139 }
1140 
1141 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1142 {
1143 	if (blk_mq_need_time_stamp(rq))
1144 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1145 
1146 	blk_mq_finish_request(rq);
1147 
1148 	if (rq->end_io) {
1149 		rq_qos_done(rq->q, rq);
1150 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1151 			blk_mq_free_request(rq);
1152 	} else {
1153 		blk_mq_free_request(rq);
1154 	}
1155 }
1156 EXPORT_SYMBOL(__blk_mq_end_request);
1157 
1158 void blk_mq_end_request(struct request *rq, blk_status_t error)
1159 {
1160 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1161 		BUG();
1162 	__blk_mq_end_request(rq, error);
1163 }
1164 EXPORT_SYMBOL(blk_mq_end_request);
1165 
1166 #define TAG_COMP_BATCH		32
1167 
1168 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1169 					  int *tag_array, int nr_tags)
1170 {
1171 	struct request_queue *q = hctx->queue;
1172 
1173 	blk_mq_sub_active_requests(hctx, nr_tags);
1174 
1175 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1176 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1177 }
1178 
1179 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1180 {
1181 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1182 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1183 	struct request *rq;
1184 	u64 now = 0;
1185 
1186 	if (iob->need_ts)
1187 		now = blk_time_get_ns();
1188 
1189 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1190 		prefetch(rq->bio);
1191 		prefetch(rq->rq_next);
1192 
1193 		blk_complete_request(rq);
1194 		if (iob->need_ts)
1195 			__blk_mq_end_request_acct(rq, now);
1196 
1197 		blk_mq_finish_request(rq);
1198 
1199 		rq_qos_done(rq->q, rq);
1200 
1201 		/*
1202 		 * If end_io handler returns NONE, then it still has
1203 		 * ownership of the request.
1204 		 */
1205 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1206 			continue;
1207 
1208 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1209 		if (!req_ref_put_and_test(rq))
1210 			continue;
1211 
1212 		blk_crypto_free_request(rq);
1213 		blk_pm_mark_last_busy(rq);
1214 
1215 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1216 			if (cur_hctx)
1217 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1218 			nr_tags = 0;
1219 			cur_hctx = rq->mq_hctx;
1220 		}
1221 		tags[nr_tags++] = rq->tag;
1222 	}
1223 
1224 	if (nr_tags)
1225 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1226 }
1227 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1228 
1229 static void blk_complete_reqs(struct llist_head *list)
1230 {
1231 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1232 	struct request *rq, *next;
1233 
1234 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1235 		rq->q->mq_ops->complete(rq);
1236 }
1237 
1238 static __latent_entropy void blk_done_softirq(void)
1239 {
1240 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1241 }
1242 
1243 static int blk_softirq_cpu_dead(unsigned int cpu)
1244 {
1245 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1246 	return 0;
1247 }
1248 
1249 static void __blk_mq_complete_request_remote(void *data)
1250 {
1251 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1252 }
1253 
1254 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1255 {
1256 	int cpu = raw_smp_processor_id();
1257 
1258 	if (!IS_ENABLED(CONFIG_SMP) ||
1259 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1260 		return false;
1261 	/*
1262 	 * With force threaded interrupts enabled, raising softirq from an SMP
1263 	 * function call will always result in waking the ksoftirqd thread.
1264 	 * This is probably worse than completing the request on a different
1265 	 * cache domain.
1266 	 */
1267 	if (force_irqthreads())
1268 		return false;
1269 
1270 	/* same CPU or cache domain and capacity?  Complete locally */
1271 	if (cpu == rq->mq_ctx->cpu ||
1272 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1273 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1274 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1275 		return false;
1276 
1277 	/* don't try to IPI to an offline CPU */
1278 	return cpu_online(rq->mq_ctx->cpu);
1279 }
1280 
1281 static void blk_mq_complete_send_ipi(struct request *rq)
1282 {
1283 	unsigned int cpu;
1284 
1285 	cpu = rq->mq_ctx->cpu;
1286 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1287 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1288 }
1289 
1290 static void blk_mq_raise_softirq(struct request *rq)
1291 {
1292 	struct llist_head *list;
1293 
1294 	preempt_disable();
1295 	list = this_cpu_ptr(&blk_cpu_done);
1296 	if (llist_add(&rq->ipi_list, list))
1297 		raise_softirq(BLOCK_SOFTIRQ);
1298 	preempt_enable();
1299 }
1300 
1301 bool blk_mq_complete_request_remote(struct request *rq)
1302 {
1303 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1304 
1305 	/*
1306 	 * For request which hctx has only one ctx mapping,
1307 	 * or a polled request, always complete locally,
1308 	 * it's pointless to redirect the completion.
1309 	 */
1310 	if ((rq->mq_hctx->nr_ctx == 1 &&
1311 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1312 	     rq->cmd_flags & REQ_POLLED)
1313 		return false;
1314 
1315 	if (blk_mq_complete_need_ipi(rq)) {
1316 		blk_mq_complete_send_ipi(rq);
1317 		return true;
1318 	}
1319 
1320 	if (rq->q->nr_hw_queues == 1) {
1321 		blk_mq_raise_softirq(rq);
1322 		return true;
1323 	}
1324 	return false;
1325 }
1326 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1327 
1328 /**
1329  * blk_mq_complete_request - end I/O on a request
1330  * @rq:		the request being processed
1331  *
1332  * Description:
1333  *	Complete a request by scheduling the ->complete_rq operation.
1334  **/
1335 void blk_mq_complete_request(struct request *rq)
1336 {
1337 	if (!blk_mq_complete_request_remote(rq))
1338 		rq->q->mq_ops->complete(rq);
1339 }
1340 EXPORT_SYMBOL(blk_mq_complete_request);
1341 
1342 /**
1343  * blk_mq_start_request - Start processing a request
1344  * @rq: Pointer to request to be started
1345  *
1346  * Function used by device drivers to notify the block layer that a request
1347  * is going to be processed now, so blk layer can do proper initializations
1348  * such as starting the timeout timer.
1349  */
1350 void blk_mq_start_request(struct request *rq)
1351 {
1352 	struct request_queue *q = rq->q;
1353 
1354 	trace_block_rq_issue(rq);
1355 
1356 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1357 	    !blk_rq_is_passthrough(rq)) {
1358 		rq->io_start_time_ns = blk_time_get_ns();
1359 		rq->stats_sectors = blk_rq_sectors(rq);
1360 		rq->rq_flags |= RQF_STATS;
1361 		rq_qos_issue(q, rq);
1362 	}
1363 
1364 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1365 
1366 	blk_add_timer(rq);
1367 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1368 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1369 
1370 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1371 		blk_integrity_prepare(rq);
1372 
1373 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1374 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1375 }
1376 EXPORT_SYMBOL(blk_mq_start_request);
1377 
1378 /*
1379  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1380  * queues. This is important for md arrays to benefit from merging
1381  * requests.
1382  */
1383 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1384 {
1385 	if (plug->multiple_queues)
1386 		return BLK_MAX_REQUEST_COUNT * 2;
1387 	return BLK_MAX_REQUEST_COUNT;
1388 }
1389 
1390 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1391 {
1392 	struct request *last = rq_list_peek(&plug->mq_list);
1393 
1394 	if (!plug->rq_count) {
1395 		trace_block_plug(rq->q);
1396 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1397 		   (!blk_queue_nomerges(rq->q) &&
1398 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1399 		blk_mq_flush_plug_list(plug, false);
1400 		last = NULL;
1401 		trace_block_plug(rq->q);
1402 	}
1403 
1404 	if (!plug->multiple_queues && last && last->q != rq->q)
1405 		plug->multiple_queues = true;
1406 	/*
1407 	 * Any request allocated from sched tags can't be issued to
1408 	 * ->queue_rqs() directly
1409 	 */
1410 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1411 		plug->has_elevator = true;
1412 	rq_list_add_tail(&plug->mq_list, rq);
1413 	plug->rq_count++;
1414 }
1415 
1416 /**
1417  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1418  * @rq:		request to insert
1419  * @at_head:    insert request at head or tail of queue
1420  *
1421  * Description:
1422  *    Insert a fully prepared request at the back of the I/O scheduler queue
1423  *    for execution.  Don't wait for completion.
1424  *
1425  * Note:
1426  *    This function will invoke @done directly if the queue is dead.
1427  */
1428 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1429 {
1430 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1431 
1432 	WARN_ON(irqs_disabled());
1433 	WARN_ON(!blk_rq_is_passthrough(rq));
1434 
1435 	blk_account_io_start(rq);
1436 
1437 	if (current->plug && !at_head) {
1438 		blk_add_rq_to_plug(current->plug, rq);
1439 		return;
1440 	}
1441 
1442 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1443 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1444 }
1445 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1446 
1447 struct blk_rq_wait {
1448 	struct completion done;
1449 	blk_status_t ret;
1450 };
1451 
1452 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1453 {
1454 	struct blk_rq_wait *wait = rq->end_io_data;
1455 
1456 	wait->ret = ret;
1457 	complete(&wait->done);
1458 	return RQ_END_IO_NONE;
1459 }
1460 
1461 bool blk_rq_is_poll(struct request *rq)
1462 {
1463 	if (!rq->mq_hctx)
1464 		return false;
1465 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1466 		return false;
1467 	return true;
1468 }
1469 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1470 
1471 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1472 {
1473 	do {
1474 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1475 		cond_resched();
1476 	} while (!completion_done(wait));
1477 }
1478 
1479 /**
1480  * blk_execute_rq - insert a request into queue for execution
1481  * @rq:		request to insert
1482  * @at_head:    insert request at head or tail of queue
1483  *
1484  * Description:
1485  *    Insert a fully prepared request at the back of the I/O scheduler queue
1486  *    for execution and wait for completion.
1487  * Return: The blk_status_t result provided to blk_mq_end_request().
1488  */
1489 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1490 {
1491 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1492 	struct blk_rq_wait wait = {
1493 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1494 	};
1495 
1496 	WARN_ON(irqs_disabled());
1497 	WARN_ON(!blk_rq_is_passthrough(rq));
1498 
1499 	rq->end_io_data = &wait;
1500 	rq->end_io = blk_end_sync_rq;
1501 
1502 	blk_account_io_start(rq);
1503 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1504 	blk_mq_run_hw_queue(hctx, false);
1505 
1506 	if (blk_rq_is_poll(rq))
1507 		blk_rq_poll_completion(rq, &wait.done);
1508 	else
1509 		blk_wait_io(&wait.done);
1510 
1511 	return wait.ret;
1512 }
1513 EXPORT_SYMBOL(blk_execute_rq);
1514 
1515 static void __blk_mq_requeue_request(struct request *rq)
1516 {
1517 	struct request_queue *q = rq->q;
1518 
1519 	blk_mq_put_driver_tag(rq);
1520 
1521 	trace_block_rq_requeue(rq);
1522 	rq_qos_requeue(q, rq);
1523 
1524 	if (blk_mq_request_started(rq)) {
1525 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1526 		rq->rq_flags &= ~RQF_TIMED_OUT;
1527 	}
1528 }
1529 
1530 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1531 {
1532 	struct request_queue *q = rq->q;
1533 	unsigned long flags;
1534 
1535 	__blk_mq_requeue_request(rq);
1536 
1537 	/* this request will be re-inserted to io scheduler queue */
1538 	blk_mq_sched_requeue_request(rq);
1539 
1540 	spin_lock_irqsave(&q->requeue_lock, flags);
1541 	list_add_tail(&rq->queuelist, &q->requeue_list);
1542 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1543 
1544 	if (kick_requeue_list)
1545 		blk_mq_kick_requeue_list(q);
1546 }
1547 EXPORT_SYMBOL(blk_mq_requeue_request);
1548 
1549 static void blk_mq_requeue_work(struct work_struct *work)
1550 {
1551 	struct request_queue *q =
1552 		container_of(work, struct request_queue, requeue_work.work);
1553 	LIST_HEAD(rq_list);
1554 	LIST_HEAD(flush_list);
1555 	struct request *rq;
1556 
1557 	spin_lock_irq(&q->requeue_lock);
1558 	list_splice_init(&q->requeue_list, &rq_list);
1559 	list_splice_init(&q->flush_list, &flush_list);
1560 	spin_unlock_irq(&q->requeue_lock);
1561 
1562 	while (!list_empty(&rq_list)) {
1563 		rq = list_entry(rq_list.next, struct request, queuelist);
1564 		list_del_init(&rq->queuelist);
1565 		/*
1566 		 * If RQF_DONTPREP is set, the request has been started by the
1567 		 * driver already and might have driver-specific data allocated
1568 		 * already.  Insert it into the hctx dispatch list to avoid
1569 		 * block layer merges for the request.
1570 		 */
1571 		if (rq->rq_flags & RQF_DONTPREP)
1572 			blk_mq_request_bypass_insert(rq, 0);
1573 		else
1574 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1575 	}
1576 
1577 	while (!list_empty(&flush_list)) {
1578 		rq = list_entry(flush_list.next, struct request, queuelist);
1579 		list_del_init(&rq->queuelist);
1580 		blk_mq_insert_request(rq, 0);
1581 	}
1582 
1583 	blk_mq_run_hw_queues(q, false);
1584 }
1585 
1586 void blk_mq_kick_requeue_list(struct request_queue *q)
1587 {
1588 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1589 }
1590 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1591 
1592 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1593 				    unsigned long msecs)
1594 {
1595 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1596 				    msecs_to_jiffies(msecs));
1597 }
1598 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1599 
1600 static bool blk_is_flush_data_rq(struct request *rq)
1601 {
1602 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1603 }
1604 
1605 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1606 {
1607 	/*
1608 	 * If we find a request that isn't idle we know the queue is busy
1609 	 * as it's checked in the iter.
1610 	 * Return false to stop the iteration.
1611 	 *
1612 	 * In case of queue quiesce, if one flush data request is completed,
1613 	 * don't count it as inflight given the flush sequence is suspended,
1614 	 * and the original flush data request is invisible to driver, just
1615 	 * like other pending requests because of quiesce
1616 	 */
1617 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1618 				blk_is_flush_data_rq(rq) &&
1619 				blk_mq_request_completed(rq))) {
1620 		bool *busy = priv;
1621 
1622 		*busy = true;
1623 		return false;
1624 	}
1625 
1626 	return true;
1627 }
1628 
1629 bool blk_mq_queue_inflight(struct request_queue *q)
1630 {
1631 	bool busy = false;
1632 
1633 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1634 	return busy;
1635 }
1636 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1637 
1638 static void blk_mq_rq_timed_out(struct request *req)
1639 {
1640 	req->rq_flags |= RQF_TIMED_OUT;
1641 	if (req->q->mq_ops->timeout) {
1642 		enum blk_eh_timer_return ret;
1643 
1644 		ret = req->q->mq_ops->timeout(req);
1645 		if (ret == BLK_EH_DONE)
1646 			return;
1647 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1648 	}
1649 
1650 	blk_add_timer(req);
1651 }
1652 
1653 struct blk_expired_data {
1654 	bool has_timedout_rq;
1655 	unsigned long next;
1656 	unsigned long timeout_start;
1657 };
1658 
1659 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1660 {
1661 	unsigned long deadline;
1662 
1663 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1664 		return false;
1665 	if (rq->rq_flags & RQF_TIMED_OUT)
1666 		return false;
1667 
1668 	deadline = READ_ONCE(rq->deadline);
1669 	if (time_after_eq(expired->timeout_start, deadline))
1670 		return true;
1671 
1672 	if (expired->next == 0)
1673 		expired->next = deadline;
1674 	else if (time_after(expired->next, deadline))
1675 		expired->next = deadline;
1676 	return false;
1677 }
1678 
1679 void blk_mq_put_rq_ref(struct request *rq)
1680 {
1681 	if (is_flush_rq(rq)) {
1682 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1683 			blk_mq_free_request(rq);
1684 	} else if (req_ref_put_and_test(rq)) {
1685 		__blk_mq_free_request(rq);
1686 	}
1687 }
1688 
1689 static bool blk_mq_check_expired(struct request *rq, void *priv)
1690 {
1691 	struct blk_expired_data *expired = priv;
1692 
1693 	/*
1694 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1695 	 * be reallocated underneath the timeout handler's processing, then
1696 	 * the expire check is reliable. If the request is not expired, then
1697 	 * it was completed and reallocated as a new request after returning
1698 	 * from blk_mq_check_expired().
1699 	 */
1700 	if (blk_mq_req_expired(rq, expired)) {
1701 		expired->has_timedout_rq = true;
1702 		return false;
1703 	}
1704 	return true;
1705 }
1706 
1707 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1708 {
1709 	struct blk_expired_data *expired = priv;
1710 
1711 	if (blk_mq_req_expired(rq, expired))
1712 		blk_mq_rq_timed_out(rq);
1713 	return true;
1714 }
1715 
1716 static void blk_mq_timeout_work(struct work_struct *work)
1717 {
1718 	struct request_queue *q =
1719 		container_of(work, struct request_queue, timeout_work);
1720 	struct blk_expired_data expired = {
1721 		.timeout_start = jiffies,
1722 	};
1723 	struct blk_mq_hw_ctx *hctx;
1724 	unsigned long i;
1725 
1726 	/* A deadlock might occur if a request is stuck requiring a
1727 	 * timeout at the same time a queue freeze is waiting
1728 	 * completion, since the timeout code would not be able to
1729 	 * acquire the queue reference here.
1730 	 *
1731 	 * That's why we don't use blk_queue_enter here; instead, we use
1732 	 * percpu_ref_tryget directly, because we need to be able to
1733 	 * obtain a reference even in the short window between the queue
1734 	 * starting to freeze, by dropping the first reference in
1735 	 * blk_freeze_queue_start, and the moment the last request is
1736 	 * consumed, marked by the instant q_usage_counter reaches
1737 	 * zero.
1738 	 */
1739 	if (!percpu_ref_tryget(&q->q_usage_counter))
1740 		return;
1741 
1742 	/* check if there is any timed-out request */
1743 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1744 	if (expired.has_timedout_rq) {
1745 		/*
1746 		 * Before walking tags, we must ensure any submit started
1747 		 * before the current time has finished. Since the submit
1748 		 * uses srcu or rcu, wait for a synchronization point to
1749 		 * ensure all running submits have finished
1750 		 */
1751 		blk_mq_wait_quiesce_done(q->tag_set);
1752 
1753 		expired.next = 0;
1754 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1755 	}
1756 
1757 	if (expired.next != 0) {
1758 		mod_timer(&q->timeout, expired.next);
1759 	} else {
1760 		/*
1761 		 * Request timeouts are handled as a forward rolling timer. If
1762 		 * we end up here it means that no requests are pending and
1763 		 * also that no request has been pending for a while. Mark
1764 		 * each hctx as idle.
1765 		 */
1766 		queue_for_each_hw_ctx(q, hctx, i) {
1767 			/* the hctx may be unmapped, so check it here */
1768 			if (blk_mq_hw_queue_mapped(hctx))
1769 				blk_mq_tag_idle(hctx);
1770 		}
1771 	}
1772 	blk_queue_exit(q);
1773 }
1774 
1775 struct flush_busy_ctx_data {
1776 	struct blk_mq_hw_ctx *hctx;
1777 	struct list_head *list;
1778 };
1779 
1780 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1781 {
1782 	struct flush_busy_ctx_data *flush_data = data;
1783 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1784 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1785 	enum hctx_type type = hctx->type;
1786 
1787 	spin_lock(&ctx->lock);
1788 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1789 	sbitmap_clear_bit(sb, bitnr);
1790 	spin_unlock(&ctx->lock);
1791 	return true;
1792 }
1793 
1794 /*
1795  * Process software queues that have been marked busy, splicing them
1796  * to the for-dispatch
1797  */
1798 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1799 {
1800 	struct flush_busy_ctx_data data = {
1801 		.hctx = hctx,
1802 		.list = list,
1803 	};
1804 
1805 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1806 }
1807 
1808 struct dispatch_rq_data {
1809 	struct blk_mq_hw_ctx *hctx;
1810 	struct request *rq;
1811 };
1812 
1813 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1814 		void *data)
1815 {
1816 	struct dispatch_rq_data *dispatch_data = data;
1817 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1818 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1819 	enum hctx_type type = hctx->type;
1820 
1821 	spin_lock(&ctx->lock);
1822 	if (!list_empty(&ctx->rq_lists[type])) {
1823 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1824 		list_del_init(&dispatch_data->rq->queuelist);
1825 		if (list_empty(&ctx->rq_lists[type]))
1826 			sbitmap_clear_bit(sb, bitnr);
1827 	}
1828 	spin_unlock(&ctx->lock);
1829 
1830 	return !dispatch_data->rq;
1831 }
1832 
1833 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1834 					struct blk_mq_ctx *start)
1835 {
1836 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1837 	struct dispatch_rq_data data = {
1838 		.hctx = hctx,
1839 		.rq   = NULL,
1840 	};
1841 
1842 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1843 			       dispatch_rq_from_ctx, &data);
1844 
1845 	return data.rq;
1846 }
1847 
1848 bool __blk_mq_alloc_driver_tag(struct request *rq)
1849 {
1850 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1851 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1852 	int tag;
1853 
1854 	blk_mq_tag_busy(rq->mq_hctx);
1855 
1856 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1857 		bt = &rq->mq_hctx->tags->breserved_tags;
1858 		tag_offset = 0;
1859 	} else {
1860 		if (!hctx_may_queue(rq->mq_hctx, bt))
1861 			return false;
1862 	}
1863 
1864 	tag = __sbitmap_queue_get(bt);
1865 	if (tag == BLK_MQ_NO_TAG)
1866 		return false;
1867 
1868 	rq->tag = tag + tag_offset;
1869 	blk_mq_inc_active_requests(rq->mq_hctx);
1870 	return true;
1871 }
1872 
1873 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1874 				int flags, void *key)
1875 {
1876 	struct blk_mq_hw_ctx *hctx;
1877 
1878 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1879 
1880 	spin_lock(&hctx->dispatch_wait_lock);
1881 	if (!list_empty(&wait->entry)) {
1882 		struct sbitmap_queue *sbq;
1883 
1884 		list_del_init(&wait->entry);
1885 		sbq = &hctx->tags->bitmap_tags;
1886 		atomic_dec(&sbq->ws_active);
1887 	}
1888 	spin_unlock(&hctx->dispatch_wait_lock);
1889 
1890 	blk_mq_run_hw_queue(hctx, true);
1891 	return 1;
1892 }
1893 
1894 /*
1895  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1896  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1897  * restart. For both cases, take care to check the condition again after
1898  * marking us as waiting.
1899  */
1900 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1901 				 struct request *rq)
1902 {
1903 	struct sbitmap_queue *sbq;
1904 	struct wait_queue_head *wq;
1905 	wait_queue_entry_t *wait;
1906 	bool ret;
1907 
1908 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1909 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1910 		blk_mq_sched_mark_restart_hctx(hctx);
1911 
1912 		/*
1913 		 * It's possible that a tag was freed in the window between the
1914 		 * allocation failure and adding the hardware queue to the wait
1915 		 * queue.
1916 		 *
1917 		 * Don't clear RESTART here, someone else could have set it.
1918 		 * At most this will cost an extra queue run.
1919 		 */
1920 		return blk_mq_get_driver_tag(rq);
1921 	}
1922 
1923 	wait = &hctx->dispatch_wait;
1924 	if (!list_empty_careful(&wait->entry))
1925 		return false;
1926 
1927 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1928 		sbq = &hctx->tags->breserved_tags;
1929 	else
1930 		sbq = &hctx->tags->bitmap_tags;
1931 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1932 
1933 	spin_lock_irq(&wq->lock);
1934 	spin_lock(&hctx->dispatch_wait_lock);
1935 	if (!list_empty(&wait->entry)) {
1936 		spin_unlock(&hctx->dispatch_wait_lock);
1937 		spin_unlock_irq(&wq->lock);
1938 		return false;
1939 	}
1940 
1941 	atomic_inc(&sbq->ws_active);
1942 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1943 	__add_wait_queue(wq, wait);
1944 
1945 	/*
1946 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1947 	 * not imply barrier in case of failure.
1948 	 *
1949 	 * Order adding us to wait queue and allocating driver tag.
1950 	 *
1951 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1952 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1953 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1954 	 *
1955 	 * Otherwise, re-order of adding wait queue and getting driver tag
1956 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1957 	 * the waitqueue_active() may not observe us in wait queue.
1958 	 */
1959 	smp_mb();
1960 
1961 	/*
1962 	 * It's possible that a tag was freed in the window between the
1963 	 * allocation failure and adding the hardware queue to the wait
1964 	 * queue.
1965 	 */
1966 	ret = blk_mq_get_driver_tag(rq);
1967 	if (!ret) {
1968 		spin_unlock(&hctx->dispatch_wait_lock);
1969 		spin_unlock_irq(&wq->lock);
1970 		return false;
1971 	}
1972 
1973 	/*
1974 	 * We got a tag, remove ourselves from the wait queue to ensure
1975 	 * someone else gets the wakeup.
1976 	 */
1977 	list_del_init(&wait->entry);
1978 	atomic_dec(&sbq->ws_active);
1979 	spin_unlock(&hctx->dispatch_wait_lock);
1980 	spin_unlock_irq(&wq->lock);
1981 
1982 	return true;
1983 }
1984 
1985 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1986 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1987 /*
1988  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1989  * - EWMA is one simple way to compute running average value
1990  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1991  * - take 4 as factor for avoiding to get too small(0) result, and this
1992  *   factor doesn't matter because EWMA decreases exponentially
1993  */
1994 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1995 {
1996 	unsigned int ewma;
1997 
1998 	ewma = hctx->dispatch_busy;
1999 
2000 	if (!ewma && !busy)
2001 		return;
2002 
2003 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2004 	if (busy)
2005 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2006 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2007 
2008 	hctx->dispatch_busy = ewma;
2009 }
2010 
2011 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
2012 
2013 static void blk_mq_handle_dev_resource(struct request *rq,
2014 				       struct list_head *list)
2015 {
2016 	list_add(&rq->queuelist, list);
2017 	__blk_mq_requeue_request(rq);
2018 }
2019 
2020 enum prep_dispatch {
2021 	PREP_DISPATCH_OK,
2022 	PREP_DISPATCH_NO_TAG,
2023 	PREP_DISPATCH_NO_BUDGET,
2024 };
2025 
2026 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2027 						  bool need_budget)
2028 {
2029 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2030 	int budget_token = -1;
2031 
2032 	if (need_budget) {
2033 		budget_token = blk_mq_get_dispatch_budget(rq->q);
2034 		if (budget_token < 0) {
2035 			blk_mq_put_driver_tag(rq);
2036 			return PREP_DISPATCH_NO_BUDGET;
2037 		}
2038 		blk_mq_set_rq_budget_token(rq, budget_token);
2039 	}
2040 
2041 	if (!blk_mq_get_driver_tag(rq)) {
2042 		/*
2043 		 * The initial allocation attempt failed, so we need to
2044 		 * rerun the hardware queue when a tag is freed. The
2045 		 * waitqueue takes care of that. If the queue is run
2046 		 * before we add this entry back on the dispatch list,
2047 		 * we'll re-run it below.
2048 		 */
2049 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2050 			/*
2051 			 * All budgets not got from this function will be put
2052 			 * together during handling partial dispatch
2053 			 */
2054 			if (need_budget)
2055 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2056 			return PREP_DISPATCH_NO_TAG;
2057 		}
2058 	}
2059 
2060 	return PREP_DISPATCH_OK;
2061 }
2062 
2063 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2064 static void blk_mq_release_budgets(struct request_queue *q,
2065 		struct list_head *list)
2066 {
2067 	struct request *rq;
2068 
2069 	list_for_each_entry(rq, list, queuelist) {
2070 		int budget_token = blk_mq_get_rq_budget_token(rq);
2071 
2072 		if (budget_token >= 0)
2073 			blk_mq_put_dispatch_budget(q, budget_token);
2074 	}
2075 }
2076 
2077 /*
2078  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2079  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2080  * details)
2081  * Attention, we should explicitly call this in unusual cases:
2082  *  1) did not queue everything initially scheduled to queue
2083  *  2) the last attempt to queue a request failed
2084  */
2085 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2086 			      bool from_schedule)
2087 {
2088 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2089 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2090 		hctx->queue->mq_ops->commit_rqs(hctx);
2091 	}
2092 }
2093 
2094 /*
2095  * Returns true if we did some work AND can potentially do more.
2096  */
2097 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2098 			     bool get_budget)
2099 {
2100 	enum prep_dispatch prep;
2101 	struct request_queue *q = hctx->queue;
2102 	struct request *rq;
2103 	int queued;
2104 	blk_status_t ret = BLK_STS_OK;
2105 	bool needs_resource = false;
2106 
2107 	if (list_empty(list))
2108 		return false;
2109 
2110 	/*
2111 	 * Now process all the entries, sending them to the driver.
2112 	 */
2113 	queued = 0;
2114 	do {
2115 		struct blk_mq_queue_data bd;
2116 
2117 		rq = list_first_entry(list, struct request, queuelist);
2118 
2119 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2120 		prep = blk_mq_prep_dispatch_rq(rq, get_budget);
2121 		if (prep != PREP_DISPATCH_OK)
2122 			break;
2123 
2124 		list_del_init(&rq->queuelist);
2125 
2126 		bd.rq = rq;
2127 		bd.last = list_empty(list);
2128 
2129 		ret = q->mq_ops->queue_rq(hctx, &bd);
2130 		switch (ret) {
2131 		case BLK_STS_OK:
2132 			queued++;
2133 			break;
2134 		case BLK_STS_RESOURCE:
2135 			needs_resource = true;
2136 			fallthrough;
2137 		case BLK_STS_DEV_RESOURCE:
2138 			blk_mq_handle_dev_resource(rq, list);
2139 			goto out;
2140 		default:
2141 			blk_mq_end_request(rq, ret);
2142 		}
2143 	} while (!list_empty(list));
2144 out:
2145 	/* If we didn't flush the entire list, we could have told the driver
2146 	 * there was more coming, but that turned out to be a lie.
2147 	 */
2148 	if (!list_empty(list) || ret != BLK_STS_OK)
2149 		blk_mq_commit_rqs(hctx, queued, false);
2150 
2151 	/*
2152 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2153 	 * that is where we will continue on next queue run.
2154 	 */
2155 	if (!list_empty(list)) {
2156 		bool needs_restart;
2157 		/* For non-shared tags, the RESTART check will suffice */
2158 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2159 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2160 			blk_mq_is_shared_tags(hctx->flags));
2161 
2162 		/*
2163 		 * If the caller allocated budgets, free the budgets of the
2164 		 * requests that have not yet been passed to the block driver.
2165 		 */
2166 		if (!get_budget)
2167 			blk_mq_release_budgets(q, list);
2168 
2169 		spin_lock(&hctx->lock);
2170 		list_splice_tail_init(list, &hctx->dispatch);
2171 		spin_unlock(&hctx->lock);
2172 
2173 		/*
2174 		 * Order adding requests to hctx->dispatch and checking
2175 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2176 		 * in blk_mq_sched_restart(). Avoid restart code path to
2177 		 * miss the new added requests to hctx->dispatch, meantime
2178 		 * SCHED_RESTART is observed here.
2179 		 */
2180 		smp_mb();
2181 
2182 		/*
2183 		 * If SCHED_RESTART was set by the caller of this function and
2184 		 * it is no longer set that means that it was cleared by another
2185 		 * thread and hence that a queue rerun is needed.
2186 		 *
2187 		 * If 'no_tag' is set, that means that we failed getting
2188 		 * a driver tag with an I/O scheduler attached. If our dispatch
2189 		 * waitqueue is no longer active, ensure that we run the queue
2190 		 * AFTER adding our entries back to the list.
2191 		 *
2192 		 * If no I/O scheduler has been configured it is possible that
2193 		 * the hardware queue got stopped and restarted before requests
2194 		 * were pushed back onto the dispatch list. Rerun the queue to
2195 		 * avoid starvation. Notes:
2196 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2197 		 *   been stopped before rerunning a queue.
2198 		 * - Some but not all block drivers stop a queue before
2199 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2200 		 *   and dm-rq.
2201 		 *
2202 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2203 		 * bit is set, run queue after a delay to avoid IO stalls
2204 		 * that could otherwise occur if the queue is idle.  We'll do
2205 		 * similar if we couldn't get budget or couldn't lock a zone
2206 		 * and SCHED_RESTART is set.
2207 		 */
2208 		needs_restart = blk_mq_sched_needs_restart(hctx);
2209 		if (prep == PREP_DISPATCH_NO_BUDGET)
2210 			needs_resource = true;
2211 		if (!needs_restart ||
2212 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2213 			blk_mq_run_hw_queue(hctx, true);
2214 		else if (needs_resource)
2215 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2216 
2217 		blk_mq_update_dispatch_busy(hctx, true);
2218 		return false;
2219 	}
2220 
2221 	blk_mq_update_dispatch_busy(hctx, false);
2222 	return true;
2223 }
2224 
2225 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2226 {
2227 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2228 
2229 	if (cpu >= nr_cpu_ids)
2230 		cpu = cpumask_first(hctx->cpumask);
2231 	return cpu;
2232 }
2233 
2234 /*
2235  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2236  * it for speeding up the check
2237  */
2238 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2239 {
2240         return hctx->next_cpu >= nr_cpu_ids;
2241 }
2242 
2243 /*
2244  * It'd be great if the workqueue API had a way to pass
2245  * in a mask and had some smarts for more clever placement.
2246  * For now we just round-robin here, switching for every
2247  * BLK_MQ_CPU_WORK_BATCH queued items.
2248  */
2249 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2250 {
2251 	bool tried = false;
2252 	int next_cpu = hctx->next_cpu;
2253 
2254 	/* Switch to unbound if no allowable CPUs in this hctx */
2255 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2256 		return WORK_CPU_UNBOUND;
2257 
2258 	if (--hctx->next_cpu_batch <= 0) {
2259 select_cpu:
2260 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2261 				cpu_online_mask);
2262 		if (next_cpu >= nr_cpu_ids)
2263 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2264 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2265 	}
2266 
2267 	/*
2268 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2269 	 * and it should only happen in the path of handling CPU DEAD.
2270 	 */
2271 	if (!cpu_online(next_cpu)) {
2272 		if (!tried) {
2273 			tried = true;
2274 			goto select_cpu;
2275 		}
2276 
2277 		/*
2278 		 * Make sure to re-select CPU next time once after CPUs
2279 		 * in hctx->cpumask become online again.
2280 		 */
2281 		hctx->next_cpu = next_cpu;
2282 		hctx->next_cpu_batch = 1;
2283 		return WORK_CPU_UNBOUND;
2284 	}
2285 
2286 	hctx->next_cpu = next_cpu;
2287 	return next_cpu;
2288 }
2289 
2290 /**
2291  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2292  * @hctx: Pointer to the hardware queue to run.
2293  * @msecs: Milliseconds of delay to wait before running the queue.
2294  *
2295  * Run a hardware queue asynchronously with a delay of @msecs.
2296  */
2297 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2298 {
2299 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2300 		return;
2301 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2302 				    msecs_to_jiffies(msecs));
2303 }
2304 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2305 
2306 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2307 {
2308 	bool need_run;
2309 
2310 	/*
2311 	 * When queue is quiesced, we may be switching io scheduler, or
2312 	 * updating nr_hw_queues, or other things, and we can't run queue
2313 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2314 	 *
2315 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2316 	 * quiesced.
2317 	 */
2318 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2319 		need_run = !blk_queue_quiesced(hctx->queue) &&
2320 		blk_mq_hctx_has_pending(hctx));
2321 	return need_run;
2322 }
2323 
2324 /**
2325  * blk_mq_run_hw_queue - Start to run a hardware queue.
2326  * @hctx: Pointer to the hardware queue to run.
2327  * @async: If we want to run the queue asynchronously.
2328  *
2329  * Check if the request queue is not in a quiesced state and if there are
2330  * pending requests to be sent. If this is true, run the queue to send requests
2331  * to hardware.
2332  */
2333 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2334 {
2335 	bool need_run;
2336 
2337 	/*
2338 	 * We can't run the queue inline with interrupts disabled.
2339 	 */
2340 	WARN_ON_ONCE(!async && in_interrupt());
2341 
2342 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2343 
2344 	need_run = blk_mq_hw_queue_need_run(hctx);
2345 	if (!need_run) {
2346 		unsigned long flags;
2347 
2348 		/*
2349 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2350 		 * if hw queue is quiesced locklessly above, we need the use
2351 		 * ->queue_lock to make sure we see the up-to-date status to
2352 		 * not miss rerunning the hw queue.
2353 		 */
2354 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2355 		need_run = blk_mq_hw_queue_need_run(hctx);
2356 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2357 
2358 		if (!need_run)
2359 			return;
2360 	}
2361 
2362 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2363 		blk_mq_delay_run_hw_queue(hctx, 0);
2364 		return;
2365 	}
2366 
2367 	blk_mq_run_dispatch_ops(hctx->queue,
2368 				blk_mq_sched_dispatch_requests(hctx));
2369 }
2370 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2371 
2372 /*
2373  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2374  * scheduler.
2375  */
2376 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2377 {
2378 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2379 	/*
2380 	 * If the IO scheduler does not respect hardware queues when
2381 	 * dispatching, we just don't bother with multiple HW queues and
2382 	 * dispatch from hctx for the current CPU since running multiple queues
2383 	 * just causes lock contention inside the scheduler and pointless cache
2384 	 * bouncing.
2385 	 */
2386 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2387 
2388 	if (!blk_mq_hctx_stopped(hctx))
2389 		return hctx;
2390 	return NULL;
2391 }
2392 
2393 /**
2394  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2395  * @q: Pointer to the request queue to run.
2396  * @async: If we want to run the queue asynchronously.
2397  */
2398 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2399 {
2400 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2401 	unsigned long i;
2402 
2403 	sq_hctx = NULL;
2404 	if (blk_queue_sq_sched(q))
2405 		sq_hctx = blk_mq_get_sq_hctx(q);
2406 	queue_for_each_hw_ctx(q, hctx, i) {
2407 		if (blk_mq_hctx_stopped(hctx))
2408 			continue;
2409 		/*
2410 		 * Dispatch from this hctx either if there's no hctx preferred
2411 		 * by IO scheduler or if it has requests that bypass the
2412 		 * scheduler.
2413 		 */
2414 		if (!sq_hctx || sq_hctx == hctx ||
2415 		    !list_empty_careful(&hctx->dispatch))
2416 			blk_mq_run_hw_queue(hctx, async);
2417 	}
2418 }
2419 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2420 
2421 /**
2422  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2423  * @q: Pointer to the request queue to run.
2424  * @msecs: Milliseconds of delay to wait before running the queues.
2425  */
2426 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2427 {
2428 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2429 	unsigned long i;
2430 
2431 	sq_hctx = NULL;
2432 	if (blk_queue_sq_sched(q))
2433 		sq_hctx = blk_mq_get_sq_hctx(q);
2434 	queue_for_each_hw_ctx(q, hctx, i) {
2435 		if (blk_mq_hctx_stopped(hctx))
2436 			continue;
2437 		/*
2438 		 * If there is already a run_work pending, leave the
2439 		 * pending delay untouched. Otherwise, a hctx can stall
2440 		 * if another hctx is re-delaying the other's work
2441 		 * before the work executes.
2442 		 */
2443 		if (delayed_work_pending(&hctx->run_work))
2444 			continue;
2445 		/*
2446 		 * Dispatch from this hctx either if there's no hctx preferred
2447 		 * by IO scheduler or if it has requests that bypass the
2448 		 * scheduler.
2449 		 */
2450 		if (!sq_hctx || sq_hctx == hctx ||
2451 		    !list_empty_careful(&hctx->dispatch))
2452 			blk_mq_delay_run_hw_queue(hctx, msecs);
2453 	}
2454 }
2455 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2456 
2457 /*
2458  * This function is often used for pausing .queue_rq() by driver when
2459  * there isn't enough resource or some conditions aren't satisfied, and
2460  * BLK_STS_RESOURCE is usually returned.
2461  *
2462  * We do not guarantee that dispatch can be drained or blocked
2463  * after blk_mq_stop_hw_queue() returns. Please use
2464  * blk_mq_quiesce_queue() for that requirement.
2465  */
2466 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2467 {
2468 	cancel_delayed_work(&hctx->run_work);
2469 
2470 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2471 }
2472 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2473 
2474 /*
2475  * This function is often used for pausing .queue_rq() by driver when
2476  * there isn't enough resource or some conditions aren't satisfied, and
2477  * BLK_STS_RESOURCE is usually returned.
2478  *
2479  * We do not guarantee that dispatch can be drained or blocked
2480  * after blk_mq_stop_hw_queues() returns. Please use
2481  * blk_mq_quiesce_queue() for that requirement.
2482  */
2483 void blk_mq_stop_hw_queues(struct request_queue *q)
2484 {
2485 	struct blk_mq_hw_ctx *hctx;
2486 	unsigned long i;
2487 
2488 	queue_for_each_hw_ctx(q, hctx, i)
2489 		blk_mq_stop_hw_queue(hctx);
2490 }
2491 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2492 
2493 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2494 {
2495 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2496 
2497 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2498 }
2499 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2500 
2501 void blk_mq_start_hw_queues(struct request_queue *q)
2502 {
2503 	struct blk_mq_hw_ctx *hctx;
2504 	unsigned long i;
2505 
2506 	queue_for_each_hw_ctx(q, hctx, i)
2507 		blk_mq_start_hw_queue(hctx);
2508 }
2509 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2510 
2511 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2512 {
2513 	if (!blk_mq_hctx_stopped(hctx))
2514 		return;
2515 
2516 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2517 	/*
2518 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2519 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2520 	 * list in the subsequent routine.
2521 	 */
2522 	smp_mb__after_atomic();
2523 	blk_mq_run_hw_queue(hctx, async);
2524 }
2525 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2526 
2527 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2528 {
2529 	struct blk_mq_hw_ctx *hctx;
2530 	unsigned long i;
2531 
2532 	queue_for_each_hw_ctx(q, hctx, i)
2533 		blk_mq_start_stopped_hw_queue(hctx, async ||
2534 					(hctx->flags & BLK_MQ_F_BLOCKING));
2535 }
2536 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2537 
2538 static void blk_mq_run_work_fn(struct work_struct *work)
2539 {
2540 	struct blk_mq_hw_ctx *hctx =
2541 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2542 
2543 	blk_mq_run_dispatch_ops(hctx->queue,
2544 				blk_mq_sched_dispatch_requests(hctx));
2545 }
2546 
2547 /**
2548  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2549  * @rq: Pointer to request to be inserted.
2550  * @flags: BLK_MQ_INSERT_*
2551  *
2552  * Should only be used carefully, when the caller knows we want to
2553  * bypass a potential IO scheduler on the target device.
2554  */
2555 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2556 {
2557 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2558 
2559 	spin_lock(&hctx->lock);
2560 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2561 		list_add(&rq->queuelist, &hctx->dispatch);
2562 	else
2563 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2564 	spin_unlock(&hctx->lock);
2565 }
2566 
2567 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2568 		struct blk_mq_ctx *ctx, struct list_head *list,
2569 		bool run_queue_async)
2570 {
2571 	struct request *rq;
2572 	enum hctx_type type = hctx->type;
2573 
2574 	/*
2575 	 * Try to issue requests directly if the hw queue isn't busy to save an
2576 	 * extra enqueue & dequeue to the sw queue.
2577 	 */
2578 	if (!hctx->dispatch_busy && !run_queue_async) {
2579 		blk_mq_run_dispatch_ops(hctx->queue,
2580 			blk_mq_try_issue_list_directly(hctx, list));
2581 		if (list_empty(list))
2582 			goto out;
2583 	}
2584 
2585 	/*
2586 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2587 	 * offline now
2588 	 */
2589 	list_for_each_entry(rq, list, queuelist) {
2590 		BUG_ON(rq->mq_ctx != ctx);
2591 		trace_block_rq_insert(rq);
2592 		if (rq->cmd_flags & REQ_NOWAIT)
2593 			run_queue_async = true;
2594 	}
2595 
2596 	spin_lock(&ctx->lock);
2597 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2598 	blk_mq_hctx_mark_pending(hctx, ctx);
2599 	spin_unlock(&ctx->lock);
2600 out:
2601 	blk_mq_run_hw_queue(hctx, run_queue_async);
2602 }
2603 
2604 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2605 {
2606 	struct request_queue *q = rq->q;
2607 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2608 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2609 
2610 	if (blk_rq_is_passthrough(rq)) {
2611 		/*
2612 		 * Passthrough request have to be added to hctx->dispatch
2613 		 * directly.  The device may be in a situation where it can't
2614 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2615 		 * them, which gets them added to hctx->dispatch.
2616 		 *
2617 		 * If a passthrough request is required to unblock the queues,
2618 		 * and it is added to the scheduler queue, there is no chance to
2619 		 * dispatch it given we prioritize requests in hctx->dispatch.
2620 		 */
2621 		blk_mq_request_bypass_insert(rq, flags);
2622 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2623 		/*
2624 		 * Firstly normal IO request is inserted to scheduler queue or
2625 		 * sw queue, meantime we add flush request to dispatch queue(
2626 		 * hctx->dispatch) directly and there is at most one in-flight
2627 		 * flush request for each hw queue, so it doesn't matter to add
2628 		 * flush request to tail or front of the dispatch queue.
2629 		 *
2630 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2631 		 * command, and queueing it will fail when there is any
2632 		 * in-flight normal IO request(NCQ command). When adding flush
2633 		 * rq to the front of hctx->dispatch, it is easier to introduce
2634 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2635 		 * compared with adding to the tail of dispatch queue, then
2636 		 * chance of flush merge is increased, and less flush requests
2637 		 * will be issued to controller. It is observed that ~10% time
2638 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2639 		 * drive when adding flush rq to the front of hctx->dispatch.
2640 		 *
2641 		 * Simply queue flush rq to the front of hctx->dispatch so that
2642 		 * intensive flush workloads can benefit in case of NCQ HW.
2643 		 */
2644 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2645 	} else if (q->elevator) {
2646 		LIST_HEAD(list);
2647 
2648 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2649 
2650 		list_add(&rq->queuelist, &list);
2651 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2652 	} else {
2653 		trace_block_rq_insert(rq);
2654 
2655 		spin_lock(&ctx->lock);
2656 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2657 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2658 		else
2659 			list_add_tail(&rq->queuelist,
2660 				      &ctx->rq_lists[hctx->type]);
2661 		blk_mq_hctx_mark_pending(hctx, ctx);
2662 		spin_unlock(&ctx->lock);
2663 	}
2664 }
2665 
2666 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2667 		unsigned int nr_segs)
2668 {
2669 	int err;
2670 
2671 	if (bio->bi_opf & REQ_RAHEAD)
2672 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2673 
2674 	rq->bio = rq->biotail = bio;
2675 	rq->__sector = bio->bi_iter.bi_sector;
2676 	rq->__data_len = bio->bi_iter.bi_size;
2677 	rq->nr_phys_segments = nr_segs;
2678 	if (bio_integrity(bio))
2679 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2680 								      bio);
2681 
2682 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2683 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2684 	WARN_ON_ONCE(err);
2685 
2686 	blk_account_io_start(rq);
2687 }
2688 
2689 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2690 					    struct request *rq, bool last)
2691 {
2692 	struct request_queue *q = rq->q;
2693 	struct blk_mq_queue_data bd = {
2694 		.rq = rq,
2695 		.last = last,
2696 	};
2697 	blk_status_t ret;
2698 
2699 	/*
2700 	 * For OK queue, we are done. For error, caller may kill it.
2701 	 * Any other error (busy), just add it to our list as we
2702 	 * previously would have done.
2703 	 */
2704 	ret = q->mq_ops->queue_rq(hctx, &bd);
2705 	switch (ret) {
2706 	case BLK_STS_OK:
2707 		blk_mq_update_dispatch_busy(hctx, false);
2708 		break;
2709 	case BLK_STS_RESOURCE:
2710 	case BLK_STS_DEV_RESOURCE:
2711 		blk_mq_update_dispatch_busy(hctx, true);
2712 		__blk_mq_requeue_request(rq);
2713 		break;
2714 	default:
2715 		blk_mq_update_dispatch_busy(hctx, false);
2716 		break;
2717 	}
2718 
2719 	return ret;
2720 }
2721 
2722 static bool blk_mq_get_budget_and_tag(struct request *rq)
2723 {
2724 	int budget_token;
2725 
2726 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2727 	if (budget_token < 0)
2728 		return false;
2729 	blk_mq_set_rq_budget_token(rq, budget_token);
2730 	if (!blk_mq_get_driver_tag(rq)) {
2731 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2732 		return false;
2733 	}
2734 	return true;
2735 }
2736 
2737 /**
2738  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2739  * @hctx: Pointer of the associated hardware queue.
2740  * @rq: Pointer to request to be sent.
2741  *
2742  * If the device has enough resources to accept a new request now, send the
2743  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2744  * we can try send it another time in the future. Requests inserted at this
2745  * queue have higher priority.
2746  */
2747 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2748 		struct request *rq)
2749 {
2750 	blk_status_t ret;
2751 
2752 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2753 		blk_mq_insert_request(rq, 0);
2754 		blk_mq_run_hw_queue(hctx, false);
2755 		return;
2756 	}
2757 
2758 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2759 		blk_mq_insert_request(rq, 0);
2760 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2761 		return;
2762 	}
2763 
2764 	ret = __blk_mq_issue_directly(hctx, rq, true);
2765 	switch (ret) {
2766 	case BLK_STS_OK:
2767 		break;
2768 	case BLK_STS_RESOURCE:
2769 	case BLK_STS_DEV_RESOURCE:
2770 		blk_mq_request_bypass_insert(rq, 0);
2771 		blk_mq_run_hw_queue(hctx, false);
2772 		break;
2773 	default:
2774 		blk_mq_end_request(rq, ret);
2775 		break;
2776 	}
2777 }
2778 
2779 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2780 {
2781 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2782 
2783 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2784 		blk_mq_insert_request(rq, 0);
2785 		blk_mq_run_hw_queue(hctx, false);
2786 		return BLK_STS_OK;
2787 	}
2788 
2789 	if (!blk_mq_get_budget_and_tag(rq))
2790 		return BLK_STS_RESOURCE;
2791 	return __blk_mq_issue_directly(hctx, rq, last);
2792 }
2793 
2794 static void blk_mq_issue_direct(struct rq_list *rqs)
2795 {
2796 	struct blk_mq_hw_ctx *hctx = NULL;
2797 	struct request *rq;
2798 	int queued = 0;
2799 	blk_status_t ret = BLK_STS_OK;
2800 
2801 	while ((rq = rq_list_pop(rqs))) {
2802 		bool last = rq_list_empty(rqs);
2803 
2804 		if (hctx != rq->mq_hctx) {
2805 			if (hctx) {
2806 				blk_mq_commit_rqs(hctx, queued, false);
2807 				queued = 0;
2808 			}
2809 			hctx = rq->mq_hctx;
2810 		}
2811 
2812 		ret = blk_mq_request_issue_directly(rq, last);
2813 		switch (ret) {
2814 		case BLK_STS_OK:
2815 			queued++;
2816 			break;
2817 		case BLK_STS_RESOURCE:
2818 		case BLK_STS_DEV_RESOURCE:
2819 			blk_mq_request_bypass_insert(rq, 0);
2820 			blk_mq_run_hw_queue(hctx, false);
2821 			goto out;
2822 		default:
2823 			blk_mq_end_request(rq, ret);
2824 			break;
2825 		}
2826 	}
2827 
2828 out:
2829 	if (ret != BLK_STS_OK)
2830 		blk_mq_commit_rqs(hctx, queued, false);
2831 }
2832 
2833 static void __blk_mq_flush_list(struct request_queue *q, struct rq_list *rqs)
2834 {
2835 	if (blk_queue_quiesced(q))
2836 		return;
2837 	q->mq_ops->queue_rqs(rqs);
2838 }
2839 
2840 static unsigned blk_mq_extract_queue_requests(struct rq_list *rqs,
2841 					      struct rq_list *queue_rqs)
2842 {
2843 	struct request *rq = rq_list_pop(rqs);
2844 	struct request_queue *this_q = rq->q;
2845 	struct request **prev = &rqs->head;
2846 	struct rq_list matched_rqs = {};
2847 	struct request *last = NULL;
2848 	unsigned depth = 1;
2849 
2850 	rq_list_add_tail(&matched_rqs, rq);
2851 	while ((rq = *prev)) {
2852 		if (rq->q == this_q) {
2853 			/* move rq from rqs to matched_rqs */
2854 			*prev = rq->rq_next;
2855 			rq_list_add_tail(&matched_rqs, rq);
2856 			depth++;
2857 		} else {
2858 			/* leave rq in rqs */
2859 			prev = &rq->rq_next;
2860 			last = rq;
2861 		}
2862 	}
2863 
2864 	rqs->tail = last;
2865 	*queue_rqs = matched_rqs;
2866 	return depth;
2867 }
2868 
2869 static void blk_mq_dispatch_queue_requests(struct rq_list *rqs, unsigned depth)
2870 {
2871 	struct request_queue *q = rq_list_peek(rqs)->q;
2872 
2873 	trace_block_unplug(q, depth, true);
2874 
2875 	/*
2876 	 * Peek first request and see if we have a ->queue_rqs() hook.
2877 	 * If we do, we can dispatch the whole list in one go.
2878 	 * We already know at this point that all requests belong to the
2879 	 * same queue, caller must ensure that's the case.
2880 	 */
2881 	if (q->mq_ops->queue_rqs) {
2882 		blk_mq_run_dispatch_ops(q, __blk_mq_flush_list(q, rqs));
2883 		if (rq_list_empty(rqs))
2884 			return;
2885 	}
2886 
2887 	blk_mq_run_dispatch_ops(q, blk_mq_issue_direct(rqs));
2888 }
2889 
2890 static void blk_mq_dispatch_list(struct rq_list *rqs, bool from_sched)
2891 {
2892 	struct blk_mq_hw_ctx *this_hctx = NULL;
2893 	struct blk_mq_ctx *this_ctx = NULL;
2894 	struct rq_list requeue_list = {};
2895 	unsigned int depth = 0;
2896 	bool is_passthrough = false;
2897 	LIST_HEAD(list);
2898 
2899 	do {
2900 		struct request *rq = rq_list_pop(rqs);
2901 
2902 		if (!this_hctx) {
2903 			this_hctx = rq->mq_hctx;
2904 			this_ctx = rq->mq_ctx;
2905 			is_passthrough = blk_rq_is_passthrough(rq);
2906 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2907 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2908 			rq_list_add_tail(&requeue_list, rq);
2909 			continue;
2910 		}
2911 		list_add_tail(&rq->queuelist, &list);
2912 		depth++;
2913 	} while (!rq_list_empty(rqs));
2914 
2915 	*rqs = requeue_list;
2916 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2917 
2918 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2919 	/* passthrough requests should never be issued to the I/O scheduler */
2920 	if (is_passthrough) {
2921 		spin_lock(&this_hctx->lock);
2922 		list_splice_tail_init(&list, &this_hctx->dispatch);
2923 		spin_unlock(&this_hctx->lock);
2924 		blk_mq_run_hw_queue(this_hctx, from_sched);
2925 	} else if (this_hctx->queue->elevator) {
2926 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2927 				&list, 0);
2928 		blk_mq_run_hw_queue(this_hctx, from_sched);
2929 	} else {
2930 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2931 	}
2932 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2933 }
2934 
2935 static void blk_mq_dispatch_multiple_queue_requests(struct rq_list *rqs)
2936 {
2937 	do {
2938 		struct rq_list queue_rqs;
2939 		unsigned depth;
2940 
2941 		depth = blk_mq_extract_queue_requests(rqs, &queue_rqs);
2942 		blk_mq_dispatch_queue_requests(&queue_rqs, depth);
2943 		while (!rq_list_empty(&queue_rqs))
2944 			blk_mq_dispatch_list(&queue_rqs, false);
2945 	} while (!rq_list_empty(rqs));
2946 }
2947 
2948 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2949 {
2950 	unsigned int depth;
2951 
2952 	/*
2953 	 * We may have been called recursively midway through handling
2954 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2955 	 * To avoid mq_list changing under our feet, clear rq_count early and
2956 	 * bail out specifically if rq_count is 0 rather than checking
2957 	 * whether the mq_list is empty.
2958 	 */
2959 	if (plug->rq_count == 0)
2960 		return;
2961 	depth = plug->rq_count;
2962 	plug->rq_count = 0;
2963 
2964 	if (!plug->has_elevator && !from_schedule) {
2965 		if (plug->multiple_queues) {
2966 			blk_mq_dispatch_multiple_queue_requests(&plug->mq_list);
2967 			return;
2968 		}
2969 
2970 		blk_mq_dispatch_queue_requests(&plug->mq_list, depth);
2971 		if (rq_list_empty(&plug->mq_list))
2972 			return;
2973 	}
2974 
2975 	do {
2976 		blk_mq_dispatch_list(&plug->mq_list, from_schedule);
2977 	} while (!rq_list_empty(&plug->mq_list));
2978 }
2979 
2980 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2981 		struct list_head *list)
2982 {
2983 	int queued = 0;
2984 	blk_status_t ret = BLK_STS_OK;
2985 
2986 	while (!list_empty(list)) {
2987 		struct request *rq = list_first_entry(list, struct request,
2988 				queuelist);
2989 
2990 		list_del_init(&rq->queuelist);
2991 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2992 		switch (ret) {
2993 		case BLK_STS_OK:
2994 			queued++;
2995 			break;
2996 		case BLK_STS_RESOURCE:
2997 		case BLK_STS_DEV_RESOURCE:
2998 			blk_mq_request_bypass_insert(rq, 0);
2999 			if (list_empty(list))
3000 				blk_mq_run_hw_queue(hctx, false);
3001 			goto out;
3002 		default:
3003 			blk_mq_end_request(rq, ret);
3004 			break;
3005 		}
3006 	}
3007 
3008 out:
3009 	if (ret != BLK_STS_OK)
3010 		blk_mq_commit_rqs(hctx, queued, false);
3011 }
3012 
3013 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
3014 				     struct bio *bio, unsigned int nr_segs)
3015 {
3016 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
3017 		if (blk_attempt_plug_merge(q, bio, nr_segs))
3018 			return true;
3019 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
3020 			return true;
3021 	}
3022 	return false;
3023 }
3024 
3025 static struct request *blk_mq_get_new_requests(struct request_queue *q,
3026 					       struct blk_plug *plug,
3027 					       struct bio *bio)
3028 {
3029 	struct blk_mq_alloc_data data = {
3030 		.q		= q,
3031 		.flags		= 0,
3032 		.shallow_depth	= 0,
3033 		.cmd_flags	= bio->bi_opf,
3034 		.rq_flags	= 0,
3035 		.nr_tags	= 1,
3036 		.cached_rqs	= NULL,
3037 		.ctx		= NULL,
3038 		.hctx		= NULL
3039 	};
3040 	struct request *rq;
3041 
3042 	rq_qos_throttle(q, bio);
3043 
3044 	if (plug) {
3045 		data.nr_tags = plug->nr_ios;
3046 		plug->nr_ios = 1;
3047 		data.cached_rqs = &plug->cached_rqs;
3048 	}
3049 
3050 	rq = __blk_mq_alloc_requests(&data);
3051 	if (unlikely(!rq))
3052 		rq_qos_cleanup(q, bio);
3053 	return rq;
3054 }
3055 
3056 /*
3057  * Check if there is a suitable cached request and return it.
3058  */
3059 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3060 		struct request_queue *q, blk_opf_t opf)
3061 {
3062 	enum hctx_type type = blk_mq_get_hctx_type(opf);
3063 	struct request *rq;
3064 
3065 	if (!plug)
3066 		return NULL;
3067 	rq = rq_list_peek(&plug->cached_rqs);
3068 	if (!rq || rq->q != q)
3069 		return NULL;
3070 	if (type != rq->mq_hctx->type &&
3071 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3072 		return NULL;
3073 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3074 		return NULL;
3075 	return rq;
3076 }
3077 
3078 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3079 		struct bio *bio)
3080 {
3081 	if (rq_list_pop(&plug->cached_rqs) != rq)
3082 		WARN_ON_ONCE(1);
3083 
3084 	/*
3085 	 * If any qos ->throttle() end up blocking, we will have flushed the
3086 	 * plug and hence killed the cached_rq list as well. Pop this entry
3087 	 * before we throttle.
3088 	 */
3089 	rq_qos_throttle(rq->q, bio);
3090 
3091 	blk_mq_rq_time_init(rq, blk_time_get_ns());
3092 	rq->cmd_flags = bio->bi_opf;
3093 	INIT_LIST_HEAD(&rq->queuelist);
3094 }
3095 
3096 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3097 {
3098 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3099 
3100 	/* .bi_sector of any zero sized bio need to be initialized */
3101 	if ((bio->bi_iter.bi_size & bs_mask) ||
3102 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3103 		return true;
3104 	return false;
3105 }
3106 
3107 /**
3108  * blk_mq_submit_bio - Create and send a request to block device.
3109  * @bio: Bio pointer.
3110  *
3111  * Builds up a request structure from @q and @bio and send to the device. The
3112  * request may not be queued directly to hardware if:
3113  * * This request can be merged with another one
3114  * * We want to place request at plug queue for possible future merging
3115  * * There is an IO scheduler active at this queue
3116  *
3117  * It will not queue the request if there is an error with the bio, or at the
3118  * request creation.
3119  */
3120 void blk_mq_submit_bio(struct bio *bio)
3121 {
3122 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3123 	struct blk_plug *plug = current->plug;
3124 	const int is_sync = op_is_sync(bio->bi_opf);
3125 	struct blk_mq_hw_ctx *hctx;
3126 	unsigned int nr_segs;
3127 	struct request *rq;
3128 	blk_status_t ret;
3129 
3130 	/*
3131 	 * If the plug has a cached request for this queue, try to use it.
3132 	 */
3133 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3134 
3135 	/*
3136 	 * A BIO that was released from a zone write plug has already been
3137 	 * through the preparation in this function, already holds a reference
3138 	 * on the queue usage counter, and is the only write BIO in-flight for
3139 	 * the target zone. Go straight to preparing a request for it.
3140 	 */
3141 	if (bio_zone_write_plugging(bio)) {
3142 		nr_segs = bio->__bi_nr_segments;
3143 		if (rq)
3144 			blk_queue_exit(q);
3145 		goto new_request;
3146 	}
3147 
3148 	/*
3149 	 * The cached request already holds a q_usage_counter reference and we
3150 	 * don't have to acquire a new one if we use it.
3151 	 */
3152 	if (!rq) {
3153 		if (unlikely(bio_queue_enter(bio)))
3154 			return;
3155 	}
3156 
3157 	/*
3158 	 * Device reconfiguration may change logical block size or reduce the
3159 	 * number of poll queues, so the checks for alignment and poll support
3160 	 * have to be done with queue usage counter held.
3161 	 */
3162 	if (unlikely(bio_unaligned(bio, q))) {
3163 		bio_io_error(bio);
3164 		goto queue_exit;
3165 	}
3166 
3167 	if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3168 		bio->bi_status = BLK_STS_NOTSUPP;
3169 		bio_endio(bio);
3170 		goto queue_exit;
3171 	}
3172 
3173 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3174 	if (!bio)
3175 		goto queue_exit;
3176 
3177 	if (!bio_integrity_prep(bio))
3178 		goto queue_exit;
3179 
3180 	blk_mq_bio_issue_init(q, bio);
3181 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3182 		goto queue_exit;
3183 
3184 	if (bio_needs_zone_write_plugging(bio)) {
3185 		if (blk_zone_plug_bio(bio, nr_segs))
3186 			goto queue_exit;
3187 	}
3188 
3189 new_request:
3190 	if (rq) {
3191 		blk_mq_use_cached_rq(rq, plug, bio);
3192 	} else {
3193 		rq = blk_mq_get_new_requests(q, plug, bio);
3194 		if (unlikely(!rq)) {
3195 			if (bio->bi_opf & REQ_NOWAIT)
3196 				bio_wouldblock_error(bio);
3197 			goto queue_exit;
3198 		}
3199 	}
3200 
3201 	trace_block_getrq(bio);
3202 
3203 	rq_qos_track(q, rq, bio);
3204 
3205 	blk_mq_bio_to_request(rq, bio, nr_segs);
3206 
3207 	ret = blk_crypto_rq_get_keyslot(rq);
3208 	if (ret != BLK_STS_OK) {
3209 		bio->bi_status = ret;
3210 		bio_endio(bio);
3211 		blk_mq_free_request(rq);
3212 		return;
3213 	}
3214 
3215 	if (bio_zone_write_plugging(bio))
3216 		blk_zone_write_plug_init_request(rq);
3217 
3218 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3219 		return;
3220 
3221 	if (plug) {
3222 		blk_add_rq_to_plug(plug, rq);
3223 		return;
3224 	}
3225 
3226 	hctx = rq->mq_hctx;
3227 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3228 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3229 		blk_mq_insert_request(rq, 0);
3230 		blk_mq_run_hw_queue(hctx, true);
3231 	} else {
3232 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3233 	}
3234 	return;
3235 
3236 queue_exit:
3237 	/*
3238 	 * Don't drop the queue reference if we were trying to use a cached
3239 	 * request and thus didn't acquire one.
3240 	 */
3241 	if (!rq)
3242 		blk_queue_exit(q);
3243 }
3244 
3245 #ifdef CONFIG_BLK_MQ_STACKING
3246 /**
3247  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3248  * @rq: the request being queued
3249  */
3250 blk_status_t blk_insert_cloned_request(struct request *rq)
3251 {
3252 	struct request_queue *q = rq->q;
3253 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3254 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3255 	blk_status_t ret;
3256 
3257 	if (blk_rq_sectors(rq) > max_sectors) {
3258 		/*
3259 		 * SCSI device does not have a good way to return if
3260 		 * Write Same/Zero is actually supported. If a device rejects
3261 		 * a non-read/write command (discard, write same,etc.) the
3262 		 * low-level device driver will set the relevant queue limit to
3263 		 * 0 to prevent blk-lib from issuing more of the offending
3264 		 * operations. Commands queued prior to the queue limit being
3265 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3266 		 * errors being propagated to upper layers.
3267 		 */
3268 		if (max_sectors == 0)
3269 			return BLK_STS_NOTSUPP;
3270 
3271 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3272 			__func__, blk_rq_sectors(rq), max_sectors);
3273 		return BLK_STS_IOERR;
3274 	}
3275 
3276 	/*
3277 	 * The queue settings related to segment counting may differ from the
3278 	 * original queue.
3279 	 */
3280 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3281 	if (rq->nr_phys_segments > max_segments) {
3282 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3283 			__func__, rq->nr_phys_segments, max_segments);
3284 		return BLK_STS_IOERR;
3285 	}
3286 
3287 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3288 		return BLK_STS_IOERR;
3289 
3290 	ret = blk_crypto_rq_get_keyslot(rq);
3291 	if (ret != BLK_STS_OK)
3292 		return ret;
3293 
3294 	blk_account_io_start(rq);
3295 
3296 	/*
3297 	 * Since we have a scheduler attached on the top device,
3298 	 * bypass a potential scheduler on the bottom device for
3299 	 * insert.
3300 	 */
3301 	blk_mq_run_dispatch_ops(q,
3302 			ret = blk_mq_request_issue_directly(rq, true));
3303 	if (ret)
3304 		blk_account_io_done(rq, blk_time_get_ns());
3305 	return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3308 
3309 /**
3310  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3311  * @rq: the clone request to be cleaned up
3312  *
3313  * Description:
3314  *     Free all bios in @rq for a cloned request.
3315  */
3316 void blk_rq_unprep_clone(struct request *rq)
3317 {
3318 	struct bio *bio;
3319 
3320 	while ((bio = rq->bio) != NULL) {
3321 		rq->bio = bio->bi_next;
3322 
3323 		bio_put(bio);
3324 	}
3325 }
3326 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3327 
3328 /**
3329  * blk_rq_prep_clone - Helper function to setup clone request
3330  * @rq: the request to be setup
3331  * @rq_src: original request to be cloned
3332  * @bs: bio_set that bios for clone are allocated from
3333  * @gfp_mask: memory allocation mask for bio
3334  * @bio_ctr: setup function to be called for each clone bio.
3335  *           Returns %0 for success, non %0 for failure.
3336  * @data: private data to be passed to @bio_ctr
3337  *
3338  * Description:
3339  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3340  *     Also, pages which the original bios are pointing to are not copied
3341  *     and the cloned bios just point same pages.
3342  *     So cloned bios must be completed before original bios, which means
3343  *     the caller must complete @rq before @rq_src.
3344  */
3345 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3346 		      struct bio_set *bs, gfp_t gfp_mask,
3347 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3348 		      void *data)
3349 {
3350 	struct bio *bio_src;
3351 
3352 	if (!bs)
3353 		bs = &fs_bio_set;
3354 
3355 	__rq_for_each_bio(bio_src, rq_src) {
3356 		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3357 					gfp_mask, bs);
3358 		if (!bio)
3359 			goto free_and_out;
3360 
3361 		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3362 			bio_put(bio);
3363 			goto free_and_out;
3364 		}
3365 
3366 		if (rq->bio) {
3367 			rq->biotail->bi_next = bio;
3368 			rq->biotail = bio;
3369 		} else {
3370 			rq->bio = rq->biotail = bio;
3371 		}
3372 	}
3373 
3374 	/* Copy attributes of the original request to the clone request. */
3375 	rq->__sector = blk_rq_pos(rq_src);
3376 	rq->__data_len = blk_rq_bytes(rq_src);
3377 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3378 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3379 		rq->special_vec = rq_src->special_vec;
3380 	}
3381 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3382 	rq->nr_integrity_segments = rq_src->nr_integrity_segments;
3383 
3384 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3385 		goto free_and_out;
3386 
3387 	return 0;
3388 
3389 free_and_out:
3390 	blk_rq_unprep_clone(rq);
3391 
3392 	return -ENOMEM;
3393 }
3394 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3395 #endif /* CONFIG_BLK_MQ_STACKING */
3396 
3397 /*
3398  * Steal bios from a request and add them to a bio list.
3399  * The request must not have been partially completed before.
3400  */
3401 void blk_steal_bios(struct bio_list *list, struct request *rq)
3402 {
3403 	if (rq->bio) {
3404 		if (list->tail)
3405 			list->tail->bi_next = rq->bio;
3406 		else
3407 			list->head = rq->bio;
3408 		list->tail = rq->biotail;
3409 
3410 		rq->bio = NULL;
3411 		rq->biotail = NULL;
3412 	}
3413 
3414 	rq->__data_len = 0;
3415 }
3416 EXPORT_SYMBOL_GPL(blk_steal_bios);
3417 
3418 static size_t order_to_size(unsigned int order)
3419 {
3420 	return (size_t)PAGE_SIZE << order;
3421 }
3422 
3423 /* called before freeing request pool in @tags */
3424 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3425 				    struct blk_mq_tags *tags)
3426 {
3427 	struct page *page;
3428 
3429 	/*
3430 	 * There is no need to clear mapping if driver tags is not initialized
3431 	 * or the mapping belongs to the driver tags.
3432 	 */
3433 	if (!drv_tags || drv_tags == tags)
3434 		return;
3435 
3436 	list_for_each_entry(page, &tags->page_list, lru) {
3437 		unsigned long start = (unsigned long)page_address(page);
3438 		unsigned long end = start + order_to_size(page->private);
3439 		int i;
3440 
3441 		for (i = 0; i < drv_tags->nr_tags; i++) {
3442 			struct request *rq = drv_tags->rqs[i];
3443 			unsigned long rq_addr = (unsigned long)rq;
3444 
3445 			if (rq_addr >= start && rq_addr < end) {
3446 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3447 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3448 			}
3449 		}
3450 	}
3451 }
3452 
3453 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3454 		     unsigned int hctx_idx)
3455 {
3456 	struct blk_mq_tags *drv_tags;
3457 
3458 	if (list_empty(&tags->page_list))
3459 		return;
3460 
3461 	if (blk_mq_is_shared_tags(set->flags))
3462 		drv_tags = set->shared_tags;
3463 	else
3464 		drv_tags = set->tags[hctx_idx];
3465 
3466 	if (tags->static_rqs && set->ops->exit_request) {
3467 		int i;
3468 
3469 		for (i = 0; i < tags->nr_tags; i++) {
3470 			struct request *rq = tags->static_rqs[i];
3471 
3472 			if (!rq)
3473 				continue;
3474 			set->ops->exit_request(set, rq, hctx_idx);
3475 			tags->static_rqs[i] = NULL;
3476 		}
3477 	}
3478 
3479 	blk_mq_clear_rq_mapping(drv_tags, tags);
3480 	/*
3481 	 * Free request pages in SRCU callback, which is called from
3482 	 * blk_mq_free_tags().
3483 	 */
3484 }
3485 
3486 void blk_mq_free_rq_map(struct blk_mq_tag_set *set, struct blk_mq_tags *tags)
3487 {
3488 	kfree(tags->rqs);
3489 	tags->rqs = NULL;
3490 	kfree(tags->static_rqs);
3491 	tags->static_rqs = NULL;
3492 
3493 	blk_mq_free_tags(set, tags);
3494 }
3495 
3496 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3497 		unsigned int hctx_idx)
3498 {
3499 	int i;
3500 
3501 	for (i = 0; i < set->nr_maps; i++) {
3502 		unsigned int start = set->map[i].queue_offset;
3503 		unsigned int end = start + set->map[i].nr_queues;
3504 
3505 		if (hctx_idx >= start && hctx_idx < end)
3506 			break;
3507 	}
3508 
3509 	if (i >= set->nr_maps)
3510 		i = HCTX_TYPE_DEFAULT;
3511 
3512 	return i;
3513 }
3514 
3515 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3516 		unsigned int hctx_idx)
3517 {
3518 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3519 
3520 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3521 }
3522 
3523 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3524 					       unsigned int hctx_idx,
3525 					       unsigned int nr_tags,
3526 					       unsigned int reserved_tags)
3527 {
3528 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3529 	struct blk_mq_tags *tags;
3530 
3531 	if (node == NUMA_NO_NODE)
3532 		node = set->numa_node;
3533 
3534 	tags = blk_mq_init_tags(nr_tags, reserved_tags, set->flags, node);
3535 	if (!tags)
3536 		return NULL;
3537 
3538 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3539 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3540 				 node);
3541 	if (!tags->rqs)
3542 		goto err_free_tags;
3543 
3544 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3545 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3546 					node);
3547 	if (!tags->static_rqs)
3548 		goto err_free_rqs;
3549 
3550 	return tags;
3551 
3552 err_free_rqs:
3553 	kfree(tags->rqs);
3554 err_free_tags:
3555 	blk_mq_free_tags(set, tags);
3556 	return NULL;
3557 }
3558 
3559 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3560 			       unsigned int hctx_idx, int node)
3561 {
3562 	int ret;
3563 
3564 	if (set->ops->init_request) {
3565 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3566 		if (ret)
3567 			return ret;
3568 	}
3569 
3570 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3571 	return 0;
3572 }
3573 
3574 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3575 			    struct blk_mq_tags *tags,
3576 			    unsigned int hctx_idx, unsigned int depth)
3577 {
3578 	unsigned int i, j, entries_per_page, max_order = 4;
3579 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3580 	size_t rq_size, left;
3581 
3582 	if (node == NUMA_NO_NODE)
3583 		node = set->numa_node;
3584 
3585 	/*
3586 	 * rq_size is the size of the request plus driver payload, rounded
3587 	 * to the cacheline size
3588 	 */
3589 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3590 				cache_line_size());
3591 	left = rq_size * depth;
3592 
3593 	for (i = 0; i < depth; ) {
3594 		int this_order = max_order;
3595 		struct page *page;
3596 		int to_do;
3597 		void *p;
3598 
3599 		while (this_order && left < order_to_size(this_order - 1))
3600 			this_order--;
3601 
3602 		do {
3603 			page = alloc_pages_node(node,
3604 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3605 				this_order);
3606 			if (page)
3607 				break;
3608 			if (!this_order--)
3609 				break;
3610 			if (order_to_size(this_order) < rq_size)
3611 				break;
3612 		} while (1);
3613 
3614 		if (!page)
3615 			goto fail;
3616 
3617 		page->private = this_order;
3618 		list_add_tail(&page->lru, &tags->page_list);
3619 
3620 		p = page_address(page);
3621 		/*
3622 		 * Allow kmemleak to scan these pages as they contain pointers
3623 		 * to additional allocations like via ops->init_request().
3624 		 */
3625 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3626 		entries_per_page = order_to_size(this_order) / rq_size;
3627 		to_do = min(entries_per_page, depth - i);
3628 		left -= to_do * rq_size;
3629 		for (j = 0; j < to_do; j++) {
3630 			struct request *rq = p;
3631 
3632 			tags->static_rqs[i] = rq;
3633 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3634 				tags->static_rqs[i] = NULL;
3635 				goto fail;
3636 			}
3637 
3638 			p += rq_size;
3639 			i++;
3640 		}
3641 	}
3642 	return 0;
3643 
3644 fail:
3645 	blk_mq_free_rqs(set, tags, hctx_idx);
3646 	return -ENOMEM;
3647 }
3648 
3649 struct rq_iter_data {
3650 	struct blk_mq_hw_ctx *hctx;
3651 	bool has_rq;
3652 };
3653 
3654 static bool blk_mq_has_request(struct request *rq, void *data)
3655 {
3656 	struct rq_iter_data *iter_data = data;
3657 
3658 	if (rq->mq_hctx != iter_data->hctx)
3659 		return true;
3660 	iter_data->has_rq = true;
3661 	return false;
3662 }
3663 
3664 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3665 {
3666 	struct blk_mq_tags *tags = hctx->sched_tags ?
3667 			hctx->sched_tags : hctx->tags;
3668 	struct rq_iter_data data = {
3669 		.hctx	= hctx,
3670 	};
3671 	int srcu_idx;
3672 
3673 	srcu_idx = srcu_read_lock(&hctx->queue->tag_set->tags_srcu);
3674 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3675 	srcu_read_unlock(&hctx->queue->tag_set->tags_srcu, srcu_idx);
3676 
3677 	return data.has_rq;
3678 }
3679 
3680 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3681 		unsigned int this_cpu)
3682 {
3683 	enum hctx_type type = hctx->type;
3684 	int cpu;
3685 
3686 	/*
3687 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3688 	 * might submit IOs on these isolated CPUs, so use the queue map to
3689 	 * check if all CPUs mapped to this hctx are offline
3690 	 */
3691 	for_each_online_cpu(cpu) {
3692 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3693 				type, cpu);
3694 
3695 		if (h != hctx)
3696 			continue;
3697 
3698 		/* this hctx has at least one online CPU */
3699 		if (this_cpu != cpu)
3700 			return true;
3701 	}
3702 
3703 	return false;
3704 }
3705 
3706 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3707 {
3708 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3709 			struct blk_mq_hw_ctx, cpuhp_online);
3710 
3711 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3712 		return 0;
3713 
3714 	/*
3715 	 * Prevent new request from being allocated on the current hctx.
3716 	 *
3717 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3718 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3719 	 * seen once we return from the tag allocator.
3720 	 */
3721 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3722 	smp_mb__after_atomic();
3723 
3724 	/*
3725 	 * Try to grab a reference to the queue and wait for any outstanding
3726 	 * requests.  If we could not grab a reference the queue has been
3727 	 * frozen and there are no requests.
3728 	 */
3729 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3730 		while (blk_mq_hctx_has_requests(hctx))
3731 			msleep(5);
3732 		percpu_ref_put(&hctx->queue->q_usage_counter);
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 /*
3739  * Check if one CPU is mapped to the specified hctx
3740  *
3741  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3742  * to be used for scheduling kworker only. For other usage, please call this
3743  * helper for checking if one CPU belongs to the specified hctx
3744  */
3745 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3746 		const struct blk_mq_hw_ctx *hctx)
3747 {
3748 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3749 			hctx->type, cpu);
3750 
3751 	return mapped_hctx == hctx;
3752 }
3753 
3754 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3755 {
3756 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3757 			struct blk_mq_hw_ctx, cpuhp_online);
3758 
3759 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3760 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3761 	return 0;
3762 }
3763 
3764 /*
3765  * 'cpu' is going away. splice any existing rq_list entries from this
3766  * software queue to the hw queue dispatch list, and ensure that it
3767  * gets run.
3768  */
3769 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3770 {
3771 	struct blk_mq_hw_ctx *hctx;
3772 	struct blk_mq_ctx *ctx;
3773 	LIST_HEAD(tmp);
3774 	enum hctx_type type;
3775 
3776 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3777 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3778 		return 0;
3779 
3780 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3781 	type = hctx->type;
3782 
3783 	spin_lock(&ctx->lock);
3784 	if (!list_empty(&ctx->rq_lists[type])) {
3785 		list_splice_init(&ctx->rq_lists[type], &tmp);
3786 		blk_mq_hctx_clear_pending(hctx, ctx);
3787 	}
3788 	spin_unlock(&ctx->lock);
3789 
3790 	if (list_empty(&tmp))
3791 		return 0;
3792 
3793 	spin_lock(&hctx->lock);
3794 	list_splice_tail_init(&tmp, &hctx->dispatch);
3795 	spin_unlock(&hctx->lock);
3796 
3797 	blk_mq_run_hw_queue(hctx, true);
3798 	return 0;
3799 }
3800 
3801 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3802 {
3803 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3804 
3805 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3806 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3807 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3808 						    &hctx->cpuhp_online);
3809 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3810 	}
3811 
3812 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3813 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3814 						    &hctx->cpuhp_dead);
3815 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3816 	}
3817 }
3818 
3819 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3820 {
3821 	mutex_lock(&blk_mq_cpuhp_lock);
3822 	__blk_mq_remove_cpuhp(hctx);
3823 	mutex_unlock(&blk_mq_cpuhp_lock);
3824 }
3825 
3826 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3827 {
3828 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3829 
3830 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3831 	    hlist_unhashed(&hctx->cpuhp_online))
3832 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3833 				&hctx->cpuhp_online);
3834 
3835 	if (hlist_unhashed(&hctx->cpuhp_dead))
3836 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3837 				&hctx->cpuhp_dead);
3838 }
3839 
3840 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3841 {
3842 	struct blk_mq_hw_ctx *hctx;
3843 
3844 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3845 
3846 	list_for_each_entry(hctx, head, hctx_list)
3847 		__blk_mq_remove_cpuhp(hctx);
3848 }
3849 
3850 /*
3851  * Unregister cpuhp callbacks from exited hw queues
3852  *
3853  * Safe to call if this `request_queue` is live
3854  */
3855 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3856 {
3857 	LIST_HEAD(hctx_list);
3858 
3859 	spin_lock(&q->unused_hctx_lock);
3860 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3861 	spin_unlock(&q->unused_hctx_lock);
3862 
3863 	mutex_lock(&blk_mq_cpuhp_lock);
3864 	__blk_mq_remove_cpuhp_list(&hctx_list);
3865 	mutex_unlock(&blk_mq_cpuhp_lock);
3866 
3867 	spin_lock(&q->unused_hctx_lock);
3868 	list_splice(&hctx_list, &q->unused_hctx_list);
3869 	spin_unlock(&q->unused_hctx_lock);
3870 }
3871 
3872 /*
3873  * Register cpuhp callbacks from all hw queues
3874  *
3875  * Safe to call if this `request_queue` is live
3876  */
3877 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3878 {
3879 	struct blk_mq_hw_ctx *hctx;
3880 	unsigned long i;
3881 
3882 	mutex_lock(&blk_mq_cpuhp_lock);
3883 	queue_for_each_hw_ctx(q, hctx, i)
3884 		__blk_mq_add_cpuhp(hctx);
3885 	mutex_unlock(&blk_mq_cpuhp_lock);
3886 }
3887 
3888 /*
3889  * Before freeing hw queue, clearing the flush request reference in
3890  * tags->rqs[] for avoiding potential UAF.
3891  */
3892 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3893 		unsigned int queue_depth, struct request *flush_rq)
3894 {
3895 	int i;
3896 
3897 	/* The hw queue may not be mapped yet */
3898 	if (!tags)
3899 		return;
3900 
3901 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3902 
3903 	for (i = 0; i < queue_depth; i++)
3904 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3905 }
3906 
3907 static void blk_free_flush_queue_callback(struct rcu_head *head)
3908 {
3909 	struct blk_flush_queue *fq =
3910 		container_of(head, struct blk_flush_queue, rcu_head);
3911 
3912 	blk_free_flush_queue(fq);
3913 }
3914 
3915 /* hctx->ctxs will be freed in queue's release handler */
3916 static void blk_mq_exit_hctx(struct request_queue *q,
3917 		struct blk_mq_tag_set *set,
3918 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3919 {
3920 	struct request *flush_rq = hctx->fq->flush_rq;
3921 
3922 	if (blk_mq_hw_queue_mapped(hctx))
3923 		blk_mq_tag_idle(hctx);
3924 
3925 	if (blk_queue_init_done(q))
3926 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3927 				set->queue_depth, flush_rq);
3928 	if (set->ops->exit_request)
3929 		set->ops->exit_request(set, flush_rq, hctx_idx);
3930 
3931 	if (set->ops->exit_hctx)
3932 		set->ops->exit_hctx(hctx, hctx_idx);
3933 
3934 	call_srcu(&set->tags_srcu, &hctx->fq->rcu_head,
3935 			blk_free_flush_queue_callback);
3936 	hctx->fq = NULL;
3937 
3938 	xa_erase(&q->hctx_table, hctx_idx);
3939 
3940 	spin_lock(&q->unused_hctx_lock);
3941 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3942 	spin_unlock(&q->unused_hctx_lock);
3943 }
3944 
3945 static void blk_mq_exit_hw_queues(struct request_queue *q,
3946 		struct blk_mq_tag_set *set, int nr_queue)
3947 {
3948 	struct blk_mq_hw_ctx *hctx;
3949 	unsigned long i;
3950 
3951 	queue_for_each_hw_ctx(q, hctx, i) {
3952 		if (i == nr_queue)
3953 			break;
3954 		blk_mq_remove_cpuhp(hctx);
3955 		blk_mq_exit_hctx(q, set, hctx, i);
3956 	}
3957 }
3958 
3959 static int blk_mq_init_hctx(struct request_queue *q,
3960 		struct blk_mq_tag_set *set,
3961 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3962 {
3963 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3964 
3965 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3966 	if (!hctx->fq)
3967 		goto fail;
3968 
3969 	hctx->queue_num = hctx_idx;
3970 
3971 	hctx->tags = set->tags[hctx_idx];
3972 
3973 	if (set->ops->init_hctx &&
3974 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3975 		goto fail_free_fq;
3976 
3977 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3978 				hctx->numa_node))
3979 		goto exit_hctx;
3980 
3981 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3982 		goto exit_flush_rq;
3983 
3984 	return 0;
3985 
3986  exit_flush_rq:
3987 	if (set->ops->exit_request)
3988 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3989  exit_hctx:
3990 	if (set->ops->exit_hctx)
3991 		set->ops->exit_hctx(hctx, hctx_idx);
3992  fail_free_fq:
3993 	blk_free_flush_queue(hctx->fq);
3994 	hctx->fq = NULL;
3995  fail:
3996 	return -1;
3997 }
3998 
3999 static struct blk_mq_hw_ctx *
4000 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
4001 		int node)
4002 {
4003 	struct blk_mq_hw_ctx *hctx;
4004 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
4005 
4006 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
4007 	if (!hctx)
4008 		goto fail_alloc_hctx;
4009 
4010 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
4011 		goto free_hctx;
4012 
4013 	atomic_set(&hctx->nr_active, 0);
4014 	if (node == NUMA_NO_NODE)
4015 		node = set->numa_node;
4016 	hctx->numa_node = node;
4017 
4018 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
4019 	spin_lock_init(&hctx->lock);
4020 	INIT_LIST_HEAD(&hctx->dispatch);
4021 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
4022 	INIT_HLIST_NODE(&hctx->cpuhp_online);
4023 	hctx->queue = q;
4024 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
4025 
4026 	INIT_LIST_HEAD(&hctx->hctx_list);
4027 
4028 	/*
4029 	 * Allocate space for all possible cpus to avoid allocation at
4030 	 * runtime
4031 	 */
4032 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4033 			gfp, node);
4034 	if (!hctx->ctxs)
4035 		goto free_cpumask;
4036 
4037 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4038 				gfp, node, false, false))
4039 		goto free_ctxs;
4040 	hctx->nr_ctx = 0;
4041 
4042 	spin_lock_init(&hctx->dispatch_wait_lock);
4043 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4044 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4045 
4046 	blk_mq_hctx_kobj_init(hctx);
4047 
4048 	return hctx;
4049 
4050  free_ctxs:
4051 	kfree(hctx->ctxs);
4052  free_cpumask:
4053 	free_cpumask_var(hctx->cpumask);
4054  free_hctx:
4055 	kfree(hctx);
4056  fail_alloc_hctx:
4057 	return NULL;
4058 }
4059 
4060 static void blk_mq_init_cpu_queues(struct request_queue *q,
4061 				   unsigned int nr_hw_queues)
4062 {
4063 	struct blk_mq_tag_set *set = q->tag_set;
4064 	unsigned int i, j;
4065 
4066 	for_each_possible_cpu(i) {
4067 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4068 		struct blk_mq_hw_ctx *hctx;
4069 		int k;
4070 
4071 		__ctx->cpu = i;
4072 		spin_lock_init(&__ctx->lock);
4073 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4074 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4075 
4076 		__ctx->queue = q;
4077 
4078 		/*
4079 		 * Set local node, IFF we have more than one hw queue. If
4080 		 * not, we remain on the home node of the device
4081 		 */
4082 		for (j = 0; j < set->nr_maps; j++) {
4083 			hctx = blk_mq_map_queue_type(q, j, i);
4084 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4085 				hctx->numa_node = cpu_to_node(i);
4086 		}
4087 	}
4088 }
4089 
4090 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4091 					     unsigned int hctx_idx,
4092 					     unsigned int depth)
4093 {
4094 	struct blk_mq_tags *tags;
4095 	int ret;
4096 
4097 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4098 	if (!tags)
4099 		return NULL;
4100 
4101 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4102 	if (ret) {
4103 		blk_mq_free_rq_map(set, tags);
4104 		return NULL;
4105 	}
4106 
4107 	return tags;
4108 }
4109 
4110 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4111 				       int hctx_idx)
4112 {
4113 	if (blk_mq_is_shared_tags(set->flags)) {
4114 		set->tags[hctx_idx] = set->shared_tags;
4115 
4116 		return true;
4117 	}
4118 
4119 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4120 						       set->queue_depth);
4121 
4122 	return set->tags[hctx_idx];
4123 }
4124 
4125 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4126 			     struct blk_mq_tags *tags,
4127 			     unsigned int hctx_idx)
4128 {
4129 	if (tags) {
4130 		blk_mq_free_rqs(set, tags, hctx_idx);
4131 		blk_mq_free_rq_map(set, tags);
4132 	}
4133 }
4134 
4135 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4136 				      unsigned int hctx_idx)
4137 {
4138 	if (!blk_mq_is_shared_tags(set->flags))
4139 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4140 
4141 	set->tags[hctx_idx] = NULL;
4142 }
4143 
4144 static void blk_mq_map_swqueue(struct request_queue *q)
4145 {
4146 	unsigned int j, hctx_idx;
4147 	unsigned long i;
4148 	struct blk_mq_hw_ctx *hctx;
4149 	struct blk_mq_ctx *ctx;
4150 	struct blk_mq_tag_set *set = q->tag_set;
4151 
4152 	queue_for_each_hw_ctx(q, hctx, i) {
4153 		cpumask_clear(hctx->cpumask);
4154 		hctx->nr_ctx = 0;
4155 		hctx->dispatch_from = NULL;
4156 	}
4157 
4158 	/*
4159 	 * Map software to hardware queues.
4160 	 *
4161 	 * If the cpu isn't present, the cpu is mapped to first hctx.
4162 	 */
4163 	for_each_possible_cpu(i) {
4164 
4165 		ctx = per_cpu_ptr(q->queue_ctx, i);
4166 		for (j = 0; j < set->nr_maps; j++) {
4167 			if (!set->map[j].nr_queues) {
4168 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4169 						HCTX_TYPE_DEFAULT, i);
4170 				continue;
4171 			}
4172 			hctx_idx = set->map[j].mq_map[i];
4173 			/* unmapped hw queue can be remapped after CPU topo changed */
4174 			if (!set->tags[hctx_idx] &&
4175 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4176 				/*
4177 				 * If tags initialization fail for some hctx,
4178 				 * that hctx won't be brought online.  In this
4179 				 * case, remap the current ctx to hctx[0] which
4180 				 * is guaranteed to always have tags allocated
4181 				 */
4182 				set->map[j].mq_map[i] = 0;
4183 			}
4184 
4185 			hctx = blk_mq_map_queue_type(q, j, i);
4186 			ctx->hctxs[j] = hctx;
4187 			/*
4188 			 * If the CPU is already set in the mask, then we've
4189 			 * mapped this one already. This can happen if
4190 			 * devices share queues across queue maps.
4191 			 */
4192 			if (cpumask_test_cpu(i, hctx->cpumask))
4193 				continue;
4194 
4195 			cpumask_set_cpu(i, hctx->cpumask);
4196 			hctx->type = j;
4197 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4198 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4199 
4200 			/*
4201 			 * If the nr_ctx type overflows, we have exceeded the
4202 			 * amount of sw queues we can support.
4203 			 */
4204 			BUG_ON(!hctx->nr_ctx);
4205 		}
4206 
4207 		for (; j < HCTX_MAX_TYPES; j++)
4208 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4209 					HCTX_TYPE_DEFAULT, i);
4210 	}
4211 
4212 	queue_for_each_hw_ctx(q, hctx, i) {
4213 		int cpu;
4214 
4215 		/*
4216 		 * If no software queues are mapped to this hardware queue,
4217 		 * disable it and free the request entries.
4218 		 */
4219 		if (!hctx->nr_ctx) {
4220 			/* Never unmap queue 0.  We need it as a
4221 			 * fallback in case of a new remap fails
4222 			 * allocation
4223 			 */
4224 			if (i)
4225 				__blk_mq_free_map_and_rqs(set, i);
4226 
4227 			hctx->tags = NULL;
4228 			continue;
4229 		}
4230 
4231 		hctx->tags = set->tags[i];
4232 		WARN_ON(!hctx->tags);
4233 
4234 		/*
4235 		 * Set the map size to the number of mapped software queues.
4236 		 * This is more accurate and more efficient than looping
4237 		 * over all possibly mapped software queues.
4238 		 */
4239 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4240 
4241 		/*
4242 		 * Rule out isolated CPUs from hctx->cpumask to avoid
4243 		 * running block kworker on isolated CPUs
4244 		 */
4245 		for_each_cpu(cpu, hctx->cpumask) {
4246 			if (cpu_is_isolated(cpu))
4247 				cpumask_clear_cpu(cpu, hctx->cpumask);
4248 		}
4249 
4250 		/*
4251 		 * Initialize batch roundrobin counts
4252 		 */
4253 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4254 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4255 	}
4256 }
4257 
4258 /*
4259  * Caller needs to ensure that we're either frozen/quiesced, or that
4260  * the queue isn't live yet.
4261  */
4262 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4263 {
4264 	struct blk_mq_hw_ctx *hctx;
4265 	unsigned long i;
4266 
4267 	queue_for_each_hw_ctx(q, hctx, i) {
4268 		if (shared) {
4269 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4270 		} else {
4271 			blk_mq_tag_idle(hctx);
4272 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4273 		}
4274 	}
4275 }
4276 
4277 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4278 					 bool shared)
4279 {
4280 	struct request_queue *q;
4281 	unsigned int memflags;
4282 
4283 	lockdep_assert_held(&set->tag_list_lock);
4284 
4285 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4286 		memflags = blk_mq_freeze_queue(q);
4287 		queue_set_hctx_shared(q, shared);
4288 		blk_mq_unfreeze_queue(q, memflags);
4289 	}
4290 }
4291 
4292 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4293 {
4294 	struct blk_mq_tag_set *set = q->tag_set;
4295 
4296 	mutex_lock(&set->tag_list_lock);
4297 	list_del(&q->tag_set_list);
4298 	if (list_is_singular(&set->tag_list)) {
4299 		/* just transitioned to unshared */
4300 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4301 		/* update existing queue */
4302 		blk_mq_update_tag_set_shared(set, false);
4303 	}
4304 	mutex_unlock(&set->tag_list_lock);
4305 	INIT_LIST_HEAD(&q->tag_set_list);
4306 }
4307 
4308 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4309 				     struct request_queue *q)
4310 {
4311 	mutex_lock(&set->tag_list_lock);
4312 
4313 	/*
4314 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4315 	 */
4316 	if (!list_empty(&set->tag_list) &&
4317 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4318 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4319 		/* update existing queue */
4320 		blk_mq_update_tag_set_shared(set, true);
4321 	}
4322 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4323 		queue_set_hctx_shared(q, true);
4324 	list_add_tail(&q->tag_set_list, &set->tag_list);
4325 
4326 	mutex_unlock(&set->tag_list_lock);
4327 }
4328 
4329 /* All allocations will be freed in release handler of q->mq_kobj */
4330 static int blk_mq_alloc_ctxs(struct request_queue *q)
4331 {
4332 	struct blk_mq_ctxs *ctxs;
4333 	int cpu;
4334 
4335 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4336 	if (!ctxs)
4337 		return -ENOMEM;
4338 
4339 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4340 	if (!ctxs->queue_ctx)
4341 		goto fail;
4342 
4343 	for_each_possible_cpu(cpu) {
4344 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4345 		ctx->ctxs = ctxs;
4346 	}
4347 
4348 	q->mq_kobj = &ctxs->kobj;
4349 	q->queue_ctx = ctxs->queue_ctx;
4350 
4351 	return 0;
4352  fail:
4353 	kfree(ctxs);
4354 	return -ENOMEM;
4355 }
4356 
4357 /*
4358  * It is the actual release handler for mq, but we do it from
4359  * request queue's release handler for avoiding use-after-free
4360  * and headache because q->mq_kobj shouldn't have been introduced,
4361  * but we can't group ctx/kctx kobj without it.
4362  */
4363 void blk_mq_release(struct request_queue *q)
4364 {
4365 	struct blk_mq_hw_ctx *hctx, *next;
4366 	unsigned long i;
4367 
4368 	queue_for_each_hw_ctx(q, hctx, i)
4369 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4370 
4371 	/* all hctx are in .unused_hctx_list now */
4372 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4373 		list_del_init(&hctx->hctx_list);
4374 		kobject_put(&hctx->kobj);
4375 	}
4376 
4377 	xa_destroy(&q->hctx_table);
4378 
4379 	/*
4380 	 * release .mq_kobj and sw queue's kobject now because
4381 	 * both share lifetime with request queue.
4382 	 */
4383 	blk_mq_sysfs_deinit(q);
4384 }
4385 
4386 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4387 		struct queue_limits *lim, void *queuedata)
4388 {
4389 	struct queue_limits default_lim = { };
4390 	struct request_queue *q;
4391 	int ret;
4392 
4393 	if (!lim)
4394 		lim = &default_lim;
4395 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4396 	if (set->nr_maps > HCTX_TYPE_POLL)
4397 		lim->features |= BLK_FEAT_POLL;
4398 
4399 	q = blk_alloc_queue(lim, set->numa_node);
4400 	if (IS_ERR(q))
4401 		return q;
4402 	q->queuedata = queuedata;
4403 	ret = blk_mq_init_allocated_queue(set, q);
4404 	if (ret) {
4405 		blk_put_queue(q);
4406 		return ERR_PTR(ret);
4407 	}
4408 	return q;
4409 }
4410 EXPORT_SYMBOL(blk_mq_alloc_queue);
4411 
4412 /**
4413  * blk_mq_destroy_queue - shutdown a request queue
4414  * @q: request queue to shutdown
4415  *
4416  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4417  * requests will be failed with -ENODEV. The caller is responsible for dropping
4418  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4419  *
4420  * Context: can sleep
4421  */
4422 void blk_mq_destroy_queue(struct request_queue *q)
4423 {
4424 	WARN_ON_ONCE(!queue_is_mq(q));
4425 	WARN_ON_ONCE(blk_queue_registered(q));
4426 
4427 	might_sleep();
4428 
4429 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4430 	blk_queue_start_drain(q);
4431 	blk_mq_freeze_queue_wait(q);
4432 
4433 	blk_sync_queue(q);
4434 	blk_mq_cancel_work_sync(q);
4435 	blk_mq_exit_queue(q);
4436 }
4437 EXPORT_SYMBOL(blk_mq_destroy_queue);
4438 
4439 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4440 		struct queue_limits *lim, void *queuedata,
4441 		struct lock_class_key *lkclass)
4442 {
4443 	struct request_queue *q;
4444 	struct gendisk *disk;
4445 
4446 	q = blk_mq_alloc_queue(set, lim, queuedata);
4447 	if (IS_ERR(q))
4448 		return ERR_CAST(q);
4449 
4450 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4451 	if (!disk) {
4452 		blk_mq_destroy_queue(q);
4453 		blk_put_queue(q);
4454 		return ERR_PTR(-ENOMEM);
4455 	}
4456 	set_bit(GD_OWNS_QUEUE, &disk->state);
4457 	return disk;
4458 }
4459 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4460 
4461 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4462 		struct lock_class_key *lkclass)
4463 {
4464 	struct gendisk *disk;
4465 
4466 	if (!blk_get_queue(q))
4467 		return NULL;
4468 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4469 	if (!disk)
4470 		blk_put_queue(q);
4471 	return disk;
4472 }
4473 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4474 
4475 /*
4476  * Only hctx removed from cpuhp list can be reused
4477  */
4478 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4479 {
4480 	return hlist_unhashed(&hctx->cpuhp_online) &&
4481 		hlist_unhashed(&hctx->cpuhp_dead);
4482 }
4483 
4484 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4485 		struct blk_mq_tag_set *set, struct request_queue *q,
4486 		int hctx_idx, int node)
4487 {
4488 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4489 
4490 	/* reuse dead hctx first */
4491 	spin_lock(&q->unused_hctx_lock);
4492 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4493 		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4494 			hctx = tmp;
4495 			break;
4496 		}
4497 	}
4498 	if (hctx)
4499 		list_del_init(&hctx->hctx_list);
4500 	spin_unlock(&q->unused_hctx_lock);
4501 
4502 	if (!hctx)
4503 		hctx = blk_mq_alloc_hctx(q, set, node);
4504 	if (!hctx)
4505 		goto fail;
4506 
4507 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4508 		goto free_hctx;
4509 
4510 	return hctx;
4511 
4512  free_hctx:
4513 	kobject_put(&hctx->kobj);
4514  fail:
4515 	return NULL;
4516 }
4517 
4518 static void __blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4519 				     struct request_queue *q)
4520 {
4521 	struct blk_mq_hw_ctx *hctx;
4522 	unsigned long i, j;
4523 
4524 	for (i = 0; i < set->nr_hw_queues; i++) {
4525 		int old_node;
4526 		int node = blk_mq_get_hctx_node(set, i);
4527 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4528 
4529 		if (old_hctx) {
4530 			old_node = old_hctx->numa_node;
4531 			blk_mq_exit_hctx(q, set, old_hctx, i);
4532 		}
4533 
4534 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4535 			if (!old_hctx)
4536 				break;
4537 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4538 					node, old_node);
4539 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4540 			WARN_ON_ONCE(!hctx);
4541 		}
4542 	}
4543 	/*
4544 	 * Increasing nr_hw_queues fails. Free the newly allocated
4545 	 * hctxs and keep the previous q->nr_hw_queues.
4546 	 */
4547 	if (i != set->nr_hw_queues) {
4548 		j = q->nr_hw_queues;
4549 	} else {
4550 		j = i;
4551 		q->nr_hw_queues = set->nr_hw_queues;
4552 	}
4553 
4554 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4555 		blk_mq_exit_hctx(q, set, hctx, j);
4556 }
4557 
4558 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4559 				   struct request_queue *q)
4560 {
4561 	__blk_mq_realloc_hw_ctxs(set, q);
4562 
4563 	/* unregister cpuhp callbacks for exited hctxs */
4564 	blk_mq_remove_hw_queues_cpuhp(q);
4565 
4566 	/* register cpuhp for new initialized hctxs */
4567 	blk_mq_add_hw_queues_cpuhp(q);
4568 }
4569 
4570 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4571 		struct request_queue *q)
4572 {
4573 	/* mark the queue as mq asap */
4574 	q->mq_ops = set->ops;
4575 
4576 	/*
4577 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4578 	 * handler needs it for checking queue mapping
4579 	 */
4580 	q->tag_set = set;
4581 
4582 	if (blk_mq_alloc_ctxs(q))
4583 		goto err_exit;
4584 
4585 	/* init q->mq_kobj and sw queues' kobjects */
4586 	blk_mq_sysfs_init(q);
4587 
4588 	INIT_LIST_HEAD(&q->unused_hctx_list);
4589 	spin_lock_init(&q->unused_hctx_lock);
4590 
4591 	xa_init(&q->hctx_table);
4592 
4593 	blk_mq_realloc_hw_ctxs(set, q);
4594 	if (!q->nr_hw_queues)
4595 		goto err_hctxs;
4596 
4597 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4598 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4599 
4600 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4601 
4602 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4603 	INIT_LIST_HEAD(&q->flush_list);
4604 	INIT_LIST_HEAD(&q->requeue_list);
4605 	spin_lock_init(&q->requeue_lock);
4606 
4607 	q->nr_requests = set->queue_depth;
4608 
4609 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4610 	blk_mq_map_swqueue(q);
4611 	blk_mq_add_queue_tag_set(set, q);
4612 	return 0;
4613 
4614 err_hctxs:
4615 	blk_mq_release(q);
4616 err_exit:
4617 	q->mq_ops = NULL;
4618 	return -ENOMEM;
4619 }
4620 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4621 
4622 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4623 void blk_mq_exit_queue(struct request_queue *q)
4624 {
4625 	struct blk_mq_tag_set *set = q->tag_set;
4626 
4627 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4628 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4629 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4630 	blk_mq_del_queue_tag_set(q);
4631 }
4632 
4633 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4634 {
4635 	int i;
4636 
4637 	if (blk_mq_is_shared_tags(set->flags)) {
4638 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4639 						BLK_MQ_NO_HCTX_IDX,
4640 						set->queue_depth);
4641 		if (!set->shared_tags)
4642 			return -ENOMEM;
4643 	}
4644 
4645 	for (i = 0; i < set->nr_hw_queues; i++) {
4646 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4647 			goto out_unwind;
4648 		cond_resched();
4649 	}
4650 
4651 	return 0;
4652 
4653 out_unwind:
4654 	while (--i >= 0)
4655 		__blk_mq_free_map_and_rqs(set, i);
4656 
4657 	if (blk_mq_is_shared_tags(set->flags)) {
4658 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4659 					BLK_MQ_NO_HCTX_IDX);
4660 	}
4661 
4662 	return -ENOMEM;
4663 }
4664 
4665 /*
4666  * Allocate the request maps associated with this tag_set. Note that this
4667  * may reduce the depth asked for, if memory is tight. set->queue_depth
4668  * will be updated to reflect the allocated depth.
4669  */
4670 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4671 {
4672 	unsigned int depth;
4673 	int err;
4674 
4675 	depth = set->queue_depth;
4676 	do {
4677 		err = __blk_mq_alloc_rq_maps(set);
4678 		if (!err)
4679 			break;
4680 
4681 		set->queue_depth >>= 1;
4682 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4683 			err = -ENOMEM;
4684 			break;
4685 		}
4686 	} while (set->queue_depth);
4687 
4688 	if (!set->queue_depth || err) {
4689 		pr_err("blk-mq: failed to allocate request map\n");
4690 		return -ENOMEM;
4691 	}
4692 
4693 	if (depth != set->queue_depth)
4694 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4695 						depth, set->queue_depth);
4696 
4697 	return 0;
4698 }
4699 
4700 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4701 {
4702 	/*
4703 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4704 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4705 	 * number of hardware queues.
4706 	 */
4707 	if (set->nr_maps == 1)
4708 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4709 
4710 	if (set->ops->map_queues) {
4711 		int i;
4712 
4713 		/*
4714 		 * transport .map_queues is usually done in the following
4715 		 * way:
4716 		 *
4717 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4718 		 * 	mask = get_cpu_mask(queue)
4719 		 * 	for_each_cpu(cpu, mask)
4720 		 * 		set->map[x].mq_map[cpu] = queue;
4721 		 * }
4722 		 *
4723 		 * When we need to remap, the table has to be cleared for
4724 		 * killing stale mapping since one CPU may not be mapped
4725 		 * to any hw queue.
4726 		 */
4727 		for (i = 0; i < set->nr_maps; i++)
4728 			blk_mq_clear_mq_map(&set->map[i]);
4729 
4730 		set->ops->map_queues(set);
4731 	} else {
4732 		BUG_ON(set->nr_maps > 1);
4733 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4734 	}
4735 }
4736 
4737 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4738 				       int new_nr_hw_queues)
4739 {
4740 	struct blk_mq_tags **new_tags;
4741 	int i;
4742 
4743 	if (set->nr_hw_queues >= new_nr_hw_queues)
4744 		goto done;
4745 
4746 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4747 				GFP_KERNEL, set->numa_node);
4748 	if (!new_tags)
4749 		return -ENOMEM;
4750 
4751 	if (set->tags)
4752 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4753 		       sizeof(*set->tags));
4754 	kfree(set->tags);
4755 	set->tags = new_tags;
4756 
4757 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4758 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4759 			while (--i >= set->nr_hw_queues)
4760 				__blk_mq_free_map_and_rqs(set, i);
4761 			return -ENOMEM;
4762 		}
4763 		cond_resched();
4764 	}
4765 
4766 done:
4767 	set->nr_hw_queues = new_nr_hw_queues;
4768 	return 0;
4769 }
4770 
4771 /*
4772  * Alloc a tag set to be associated with one or more request queues.
4773  * May fail with EINVAL for various error conditions. May adjust the
4774  * requested depth down, if it's too large. In that case, the set
4775  * value will be stored in set->queue_depth.
4776  */
4777 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4778 {
4779 	int i, ret;
4780 
4781 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4782 
4783 	if (!set->nr_hw_queues)
4784 		return -EINVAL;
4785 	if (!set->queue_depth)
4786 		return -EINVAL;
4787 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4788 		return -EINVAL;
4789 
4790 	if (!set->ops->queue_rq)
4791 		return -EINVAL;
4792 
4793 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4794 		return -EINVAL;
4795 
4796 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4797 		pr_info("blk-mq: reduced tag depth to %u\n",
4798 			BLK_MQ_MAX_DEPTH);
4799 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4800 	}
4801 
4802 	if (!set->nr_maps)
4803 		set->nr_maps = 1;
4804 	else if (set->nr_maps > HCTX_MAX_TYPES)
4805 		return -EINVAL;
4806 
4807 	/*
4808 	 * If a crashdump is active, then we are potentially in a very
4809 	 * memory constrained environment. Limit us to  64 tags to prevent
4810 	 * using too much memory.
4811 	 */
4812 	if (is_kdump_kernel())
4813 		set->queue_depth = min(64U, set->queue_depth);
4814 
4815 	/*
4816 	 * There is no use for more h/w queues than cpus if we just have
4817 	 * a single map
4818 	 */
4819 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4820 		set->nr_hw_queues = nr_cpu_ids;
4821 
4822 	if (set->flags & BLK_MQ_F_BLOCKING) {
4823 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4824 		if (!set->srcu)
4825 			return -ENOMEM;
4826 		ret = init_srcu_struct(set->srcu);
4827 		if (ret)
4828 			goto out_free_srcu;
4829 	}
4830 	ret = init_srcu_struct(&set->tags_srcu);
4831 	if (ret)
4832 		goto out_cleanup_srcu;
4833 
4834 	init_rwsem(&set->update_nr_hwq_lock);
4835 
4836 	ret = -ENOMEM;
4837 	set->tags = kcalloc_node(set->nr_hw_queues,
4838 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4839 				 set->numa_node);
4840 	if (!set->tags)
4841 		goto out_cleanup_tags_srcu;
4842 
4843 	for (i = 0; i < set->nr_maps; i++) {
4844 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4845 						  sizeof(set->map[i].mq_map[0]),
4846 						  GFP_KERNEL, set->numa_node);
4847 		if (!set->map[i].mq_map)
4848 			goto out_free_mq_map;
4849 		set->map[i].nr_queues = set->nr_hw_queues;
4850 	}
4851 
4852 	blk_mq_update_queue_map(set);
4853 
4854 	ret = blk_mq_alloc_set_map_and_rqs(set);
4855 	if (ret)
4856 		goto out_free_mq_map;
4857 
4858 	mutex_init(&set->tag_list_lock);
4859 	INIT_LIST_HEAD(&set->tag_list);
4860 
4861 	return 0;
4862 
4863 out_free_mq_map:
4864 	for (i = 0; i < set->nr_maps; i++) {
4865 		kfree(set->map[i].mq_map);
4866 		set->map[i].mq_map = NULL;
4867 	}
4868 	kfree(set->tags);
4869 	set->tags = NULL;
4870 out_cleanup_tags_srcu:
4871 	cleanup_srcu_struct(&set->tags_srcu);
4872 out_cleanup_srcu:
4873 	if (set->flags & BLK_MQ_F_BLOCKING)
4874 		cleanup_srcu_struct(set->srcu);
4875 out_free_srcu:
4876 	if (set->flags & BLK_MQ_F_BLOCKING)
4877 		kfree(set->srcu);
4878 	return ret;
4879 }
4880 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4881 
4882 /* allocate and initialize a tagset for a simple single-queue device */
4883 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4884 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4885 		unsigned int set_flags)
4886 {
4887 	memset(set, 0, sizeof(*set));
4888 	set->ops = ops;
4889 	set->nr_hw_queues = 1;
4890 	set->nr_maps = 1;
4891 	set->queue_depth = queue_depth;
4892 	set->numa_node = NUMA_NO_NODE;
4893 	set->flags = set_flags;
4894 	return blk_mq_alloc_tag_set(set);
4895 }
4896 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4897 
4898 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4899 {
4900 	int i, j;
4901 
4902 	for (i = 0; i < set->nr_hw_queues; i++)
4903 		__blk_mq_free_map_and_rqs(set, i);
4904 
4905 	if (blk_mq_is_shared_tags(set->flags)) {
4906 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4907 					BLK_MQ_NO_HCTX_IDX);
4908 	}
4909 
4910 	for (j = 0; j < set->nr_maps; j++) {
4911 		kfree(set->map[j].mq_map);
4912 		set->map[j].mq_map = NULL;
4913 	}
4914 
4915 	kfree(set->tags);
4916 	set->tags = NULL;
4917 
4918 	srcu_barrier(&set->tags_srcu);
4919 	cleanup_srcu_struct(&set->tags_srcu);
4920 	if (set->flags & BLK_MQ_F_BLOCKING) {
4921 		cleanup_srcu_struct(set->srcu);
4922 		kfree(set->srcu);
4923 	}
4924 }
4925 EXPORT_SYMBOL(blk_mq_free_tag_set);
4926 
4927 struct elevator_tags *blk_mq_update_nr_requests(struct request_queue *q,
4928 						struct elevator_tags *et,
4929 						unsigned int nr)
4930 {
4931 	struct blk_mq_tag_set *set = q->tag_set;
4932 	struct elevator_tags *old_et = NULL;
4933 	struct blk_mq_hw_ctx *hctx;
4934 	unsigned long i;
4935 
4936 	blk_mq_quiesce_queue(q);
4937 
4938 	if (blk_mq_is_shared_tags(set->flags)) {
4939 		/*
4940 		 * Shared tags, for sched tags, we allocate max initially hence
4941 		 * tags can't grow, see blk_mq_alloc_sched_tags().
4942 		 */
4943 		if (q->elevator)
4944 			blk_mq_tag_update_sched_shared_tags(q);
4945 		else
4946 			blk_mq_tag_resize_shared_tags(set, nr);
4947 	} else if (!q->elevator) {
4948 		/*
4949 		 * Non-shared hardware tags, nr is already checked from
4950 		 * queue_requests_store() and tags can't grow.
4951 		 */
4952 		queue_for_each_hw_ctx(q, hctx, i) {
4953 			if (!hctx->tags)
4954 				continue;
4955 			sbitmap_queue_resize(&hctx->tags->bitmap_tags,
4956 				nr - hctx->tags->nr_reserved_tags);
4957 		}
4958 	} else if (nr <= q->elevator->et->nr_requests) {
4959 		/* Non-shared sched tags, and tags don't grow. */
4960 		queue_for_each_hw_ctx(q, hctx, i) {
4961 			if (!hctx->sched_tags)
4962 				continue;
4963 			sbitmap_queue_resize(&hctx->sched_tags->bitmap_tags,
4964 				nr - hctx->sched_tags->nr_reserved_tags);
4965 		}
4966 	} else {
4967 		/* Non-shared sched tags, and tags grow */
4968 		queue_for_each_hw_ctx(q, hctx, i)
4969 			hctx->sched_tags = et->tags[i];
4970 		old_et =  q->elevator->et;
4971 		q->elevator->et = et;
4972 	}
4973 
4974 	q->nr_requests = nr;
4975 	if (q->elevator && q->elevator->type->ops.depth_updated)
4976 		q->elevator->type->ops.depth_updated(q);
4977 
4978 	blk_mq_unquiesce_queue(q);
4979 	return old_et;
4980 }
4981 
4982 /*
4983  * Switch back to the elevator type stored in the xarray.
4984  */
4985 static void blk_mq_elv_switch_back(struct request_queue *q,
4986 		struct xarray *elv_tbl, struct xarray *et_tbl)
4987 {
4988 	struct elevator_type *e = xa_load(elv_tbl, q->id);
4989 	struct elevator_tags *t = xa_load(et_tbl, q->id);
4990 
4991 	/* The elv_update_nr_hw_queues unfreezes the queue. */
4992 	elv_update_nr_hw_queues(q, e, t);
4993 
4994 	/* Drop the reference acquired in blk_mq_elv_switch_none. */
4995 	if (e)
4996 		elevator_put(e);
4997 }
4998 
4999 /*
5000  * Stores elevator type in xarray and set current elevator to none. It uses
5001  * q->id as an index to store the elevator type into the xarray.
5002  */
5003 static int blk_mq_elv_switch_none(struct request_queue *q,
5004 		struct xarray *elv_tbl)
5005 {
5006 	int ret = 0;
5007 
5008 	lockdep_assert_held_write(&q->tag_set->update_nr_hwq_lock);
5009 
5010 	/*
5011 	 * Accessing q->elevator without holding q->elevator_lock is safe here
5012 	 * because we're called from nr_hw_queue update which is protected by
5013 	 * set->update_nr_hwq_lock in the writer context. So, scheduler update/
5014 	 * switch code (which acquires the same lock in the reader context)
5015 	 * can't run concurrently.
5016 	 */
5017 	if (q->elevator) {
5018 
5019 		ret = xa_insert(elv_tbl, q->id, q->elevator->type, GFP_KERNEL);
5020 		if (WARN_ON_ONCE(ret))
5021 			return ret;
5022 
5023 		/*
5024 		 * Before we switch elevator to 'none', take a reference to
5025 		 * the elevator module so that while nr_hw_queue update is
5026 		 * running, no one can remove elevator module. We'd put the
5027 		 * reference to elevator module later when we switch back
5028 		 * elevator.
5029 		 */
5030 		__elevator_get(q->elevator->type);
5031 
5032 		elevator_set_none(q);
5033 	}
5034 	return ret;
5035 }
5036 
5037 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5038 							int nr_hw_queues)
5039 {
5040 	struct request_queue *q;
5041 	int prev_nr_hw_queues = set->nr_hw_queues;
5042 	unsigned int memflags;
5043 	int i;
5044 	struct xarray elv_tbl, et_tbl;
5045 	bool queues_frozen = false;
5046 
5047 	lockdep_assert_held(&set->tag_list_lock);
5048 
5049 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5050 		nr_hw_queues = nr_cpu_ids;
5051 	if (nr_hw_queues < 1)
5052 		return;
5053 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5054 		return;
5055 
5056 	memflags = memalloc_noio_save();
5057 
5058 	xa_init(&et_tbl);
5059 	if (blk_mq_alloc_sched_tags_batch(&et_tbl, set, nr_hw_queues) < 0)
5060 		goto out_memalloc_restore;
5061 
5062 	xa_init(&elv_tbl);
5063 
5064 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5065 		blk_mq_debugfs_unregister_hctxs(q);
5066 		blk_mq_sysfs_unregister_hctxs(q);
5067 	}
5068 
5069 	/*
5070 	 * Switch IO scheduler to 'none', cleaning up the data associated
5071 	 * with the previous scheduler. We will switch back once we are done
5072 	 * updating the new sw to hw queue mappings.
5073 	 */
5074 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5075 		if (blk_mq_elv_switch_none(q, &elv_tbl))
5076 			goto switch_back;
5077 
5078 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5079 		blk_mq_freeze_queue_nomemsave(q);
5080 	queues_frozen = true;
5081 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5082 		goto switch_back;
5083 
5084 fallback:
5085 	blk_mq_update_queue_map(set);
5086 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5087 		__blk_mq_realloc_hw_ctxs(set, q);
5088 
5089 		if (q->nr_hw_queues != set->nr_hw_queues) {
5090 			int i = prev_nr_hw_queues;
5091 
5092 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5093 					nr_hw_queues, prev_nr_hw_queues);
5094 			for (; i < set->nr_hw_queues; i++)
5095 				__blk_mq_free_map_and_rqs(set, i);
5096 
5097 			set->nr_hw_queues = prev_nr_hw_queues;
5098 			goto fallback;
5099 		}
5100 		blk_mq_map_swqueue(q);
5101 	}
5102 switch_back:
5103 	/* The blk_mq_elv_switch_back unfreezes queue for us. */
5104 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5105 		/* switch_back expects queue to be frozen */
5106 		if (!queues_frozen)
5107 			blk_mq_freeze_queue_nomemsave(q);
5108 		blk_mq_elv_switch_back(q, &elv_tbl, &et_tbl);
5109 	}
5110 
5111 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5112 		blk_mq_sysfs_register_hctxs(q);
5113 		blk_mq_debugfs_register_hctxs(q);
5114 
5115 		blk_mq_remove_hw_queues_cpuhp(q);
5116 		blk_mq_add_hw_queues_cpuhp(q);
5117 	}
5118 
5119 	xa_destroy(&elv_tbl);
5120 	xa_destroy(&et_tbl);
5121 out_memalloc_restore:
5122 	memalloc_noio_restore(memflags);
5123 
5124 	/* Free the excess tags when nr_hw_queues shrink. */
5125 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5126 		__blk_mq_free_map_and_rqs(set, i);
5127 }
5128 
5129 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5130 {
5131 	down_write(&set->update_nr_hwq_lock);
5132 	mutex_lock(&set->tag_list_lock);
5133 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5134 	mutex_unlock(&set->tag_list_lock);
5135 	up_write(&set->update_nr_hwq_lock);
5136 }
5137 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5138 
5139 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5140 			 struct io_comp_batch *iob, unsigned int flags)
5141 {
5142 	long state = get_current_state();
5143 	int ret;
5144 
5145 	do {
5146 		ret = q->mq_ops->poll(hctx, iob);
5147 		if (ret > 0) {
5148 			__set_current_state(TASK_RUNNING);
5149 			return ret;
5150 		}
5151 
5152 		if (signal_pending_state(state, current))
5153 			__set_current_state(TASK_RUNNING);
5154 		if (task_is_running(current))
5155 			return 1;
5156 
5157 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5158 			break;
5159 		cpu_relax();
5160 	} while (!need_resched());
5161 
5162 	__set_current_state(TASK_RUNNING);
5163 	return 0;
5164 }
5165 
5166 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5167 		struct io_comp_batch *iob, unsigned int flags)
5168 {
5169 	if (!blk_mq_can_poll(q))
5170 		return 0;
5171 	return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5172 }
5173 
5174 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5175 		unsigned int poll_flags)
5176 {
5177 	struct request_queue *q = rq->q;
5178 	int ret;
5179 
5180 	if (!blk_rq_is_poll(rq))
5181 		return 0;
5182 	if (!percpu_ref_tryget(&q->q_usage_counter))
5183 		return 0;
5184 
5185 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5186 	blk_queue_exit(q);
5187 
5188 	return ret;
5189 }
5190 EXPORT_SYMBOL_GPL(blk_rq_poll);
5191 
5192 unsigned int blk_mq_rq_cpu(struct request *rq)
5193 {
5194 	return rq->mq_ctx->cpu;
5195 }
5196 EXPORT_SYMBOL(blk_mq_rq_cpu);
5197 
5198 void blk_mq_cancel_work_sync(struct request_queue *q)
5199 {
5200 	struct blk_mq_hw_ctx *hctx;
5201 	unsigned long i;
5202 
5203 	cancel_delayed_work_sync(&q->requeue_work);
5204 
5205 	queue_for_each_hw_ctx(q, hctx, i)
5206 		cancel_delayed_work_sync(&hctx->run_work);
5207 }
5208 
5209 static int __init blk_mq_init(void)
5210 {
5211 	int i;
5212 
5213 	for_each_possible_cpu(i)
5214 		init_llist_head(&per_cpu(blk_cpu_done, i));
5215 	for_each_possible_cpu(i)
5216 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5217 			 __blk_mq_complete_request_remote, NULL);
5218 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5219 
5220 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5221 				  "block/softirq:dead", NULL,
5222 				  blk_softirq_cpu_dead);
5223 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5224 				blk_mq_hctx_notify_dead);
5225 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5226 				blk_mq_hctx_notify_online,
5227 				blk_mq_hctx_notify_offline);
5228 	return 0;
5229 }
5230 subsys_initcall(blk_mq_init);
5231