xref: /linux/block/blk-mq.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40 
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx, dispatch list or elevator
63  * have pending work in this hardware queue.
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 	return !list_empty_careful(&hctx->dispatch) ||
68 		sbitmap_any_bit_set(&hctx->ctx_map) ||
69 			blk_mq_sched_has_work(hctx);
70 }
71 
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 				     struct blk_mq_ctx *ctx)
77 {
78 	const int bit = ctx->index_hw[hctx->type];
79 
80 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 		sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83 
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 				      struct blk_mq_ctx *ctx)
86 {
87 	const int bit = ctx->index_hw[hctx->type];
88 
89 	sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91 
92 struct mq_inflight {
93 	struct hd_struct *part;
94 	unsigned int *inflight;
95 };
96 
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 				  struct request *rq, void *priv,
99 				  bool reserved)
100 {
101 	struct mq_inflight *mi = priv;
102 
103 	/*
104 	 * index[0] counts the specific partition that was asked for.
105 	 */
106 	if (rq->part == mi->part)
107 		mi->inflight[0]++;
108 
109 	return true;
110 }
111 
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 	unsigned inflight[2];
115 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 
117 	inflight[0] = inflight[1] = 0;
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return inflight[0];
121 }
122 
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 				     struct request *rq, void *priv,
125 				     bool reserved)
126 {
127 	struct mq_inflight *mi = priv;
128 
129 	if (rq->part == mi->part)
130 		mi->inflight[rq_data_dir(rq)]++;
131 
132 	return true;
133 }
134 
135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
136 			 unsigned int inflight[2])
137 {
138 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
139 
140 	inflight[0] = inflight[1] = 0;
141 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
142 }
143 
144 void blk_freeze_queue_start(struct request_queue *q)
145 {
146 	int freeze_depth;
147 
148 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
149 	if (freeze_depth == 1) {
150 		percpu_ref_kill(&q->q_usage_counter);
151 		if (queue_is_mq(q))
152 			blk_mq_run_hw_queues(q, false);
153 	}
154 }
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
156 
157 void blk_mq_freeze_queue_wait(struct request_queue *q)
158 {
159 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
162 
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
164 				     unsigned long timeout)
165 {
166 	return wait_event_timeout(q->mq_freeze_wq,
167 					percpu_ref_is_zero(&q->q_usage_counter),
168 					timeout);
169 }
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
171 
172 /*
173  * Guarantee no request is in use, so we can change any data structure of
174  * the queue afterward.
175  */
176 void blk_freeze_queue(struct request_queue *q)
177 {
178 	/*
179 	 * In the !blk_mq case we are only calling this to kill the
180 	 * q_usage_counter, otherwise this increases the freeze depth
181 	 * and waits for it to return to zero.  For this reason there is
182 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183 	 * exported to drivers as the only user for unfreeze is blk_mq.
184 	 */
185 	blk_freeze_queue_start(q);
186 	blk_mq_freeze_queue_wait(q);
187 }
188 
189 void blk_mq_freeze_queue(struct request_queue *q)
190 {
191 	/*
192 	 * ...just an alias to keep freeze and unfreeze actions balanced
193 	 * in the blk_mq_* namespace
194 	 */
195 	blk_freeze_queue(q);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
198 
199 void blk_mq_unfreeze_queue(struct request_queue *q)
200 {
201 	int freeze_depth;
202 
203 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
204 	WARN_ON_ONCE(freeze_depth < 0);
205 	if (!freeze_depth) {
206 		percpu_ref_resurrect(&q->q_usage_counter);
207 		wake_up_all(&q->mq_freeze_wq);
208 	}
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
211 
212 /*
213  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214  * mpt3sas driver such that this function can be removed.
215  */
216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 {
218 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 }
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
221 
222 /**
223  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224  * @q: request queue.
225  *
226  * Note: this function does not prevent that the struct request end_io()
227  * callback function is invoked. Once this function is returned, we make
228  * sure no dispatch can happen until the queue is unquiesced via
229  * blk_mq_unquiesce_queue().
230  */
231 void blk_mq_quiesce_queue(struct request_queue *q)
232 {
233 	struct blk_mq_hw_ctx *hctx;
234 	unsigned int i;
235 	bool rcu = false;
236 
237 	blk_mq_quiesce_queue_nowait(q);
238 
239 	queue_for_each_hw_ctx(q, hctx, i) {
240 		if (hctx->flags & BLK_MQ_F_BLOCKING)
241 			synchronize_srcu(hctx->srcu);
242 		else
243 			rcu = true;
244 	}
245 	if (rcu)
246 		synchronize_rcu();
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249 
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260 
261 	/* dispatch requests which are inserted during quiescing */
262 	blk_mq_run_hw_queues(q, true);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265 
266 void blk_mq_wake_waiters(struct request_queue *q)
267 {
268 	struct blk_mq_hw_ctx *hctx;
269 	unsigned int i;
270 
271 	queue_for_each_hw_ctx(q, hctx, i)
272 		if (blk_mq_hw_queue_mapped(hctx))
273 			blk_mq_tag_wakeup_all(hctx->tags, true);
274 }
275 
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
277 {
278 	return blk_mq_has_free_tags(hctx->tags);
279 }
280 EXPORT_SYMBOL(blk_mq_can_queue);
281 
282 /*
283  * Only need start/end time stamping if we have stats enabled, or using
284  * an IO scheduler.
285  */
286 static inline bool blk_mq_need_time_stamp(struct request *rq)
287 {
288 	return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
289 }
290 
291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
292 		unsigned int tag, unsigned int op)
293 {
294 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
295 	struct request *rq = tags->static_rqs[tag];
296 	req_flags_t rq_flags = 0;
297 
298 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
299 		rq->tag = -1;
300 		rq->internal_tag = tag;
301 	} else {
302 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
303 			rq_flags = RQF_MQ_INFLIGHT;
304 			atomic_inc(&data->hctx->nr_active);
305 		}
306 		rq->tag = tag;
307 		rq->internal_tag = -1;
308 		data->hctx->tags->rqs[rq->tag] = rq;
309 	}
310 
311 	/* csd/requeue_work/fifo_time is initialized before use */
312 	rq->q = data->q;
313 	rq->mq_ctx = data->ctx;
314 	rq->mq_hctx = data->hctx;
315 	rq->rq_flags = rq_flags;
316 	rq->cmd_flags = op;
317 	if (data->flags & BLK_MQ_REQ_PREEMPT)
318 		rq->rq_flags |= RQF_PREEMPT;
319 	if (blk_queue_io_stat(data->q))
320 		rq->rq_flags |= RQF_IO_STAT;
321 	INIT_LIST_HEAD(&rq->queuelist);
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->rq_disk = NULL;
325 	rq->part = NULL;
326 	if (blk_mq_need_time_stamp(rq))
327 		rq->start_time_ns = ktime_get_ns();
328 	else
329 		rq->start_time_ns = 0;
330 	rq->io_start_time_ns = 0;
331 	rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 	rq->nr_integrity_segments = 0;
334 #endif
335 	/* tag was already set */
336 	rq->extra_len = 0;
337 	WRITE_ONCE(rq->deadline, 0);
338 
339 	rq->timeout = 0;
340 
341 	rq->end_io = NULL;
342 	rq->end_io_data = NULL;
343 
344 	data->ctx->rq_dispatched[op_is_sync(op)]++;
345 	refcount_set(&rq->ref, 1);
346 	return rq;
347 }
348 
349 static struct request *blk_mq_get_request(struct request_queue *q,
350 					  struct bio *bio,
351 					  struct blk_mq_alloc_data *data)
352 {
353 	struct elevator_queue *e = q->elevator;
354 	struct request *rq;
355 	unsigned int tag;
356 	bool put_ctx_on_error = false;
357 
358 	blk_queue_enter_live(q);
359 	data->q = q;
360 	if (likely(!data->ctx)) {
361 		data->ctx = blk_mq_get_ctx(q);
362 		put_ctx_on_error = true;
363 	}
364 	if (likely(!data->hctx))
365 		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
366 						data->ctx);
367 	if (data->cmd_flags & REQ_NOWAIT)
368 		data->flags |= BLK_MQ_REQ_NOWAIT;
369 
370 	if (e) {
371 		data->flags |= BLK_MQ_REQ_INTERNAL;
372 
373 		/*
374 		 * Flush requests are special and go directly to the
375 		 * dispatch list. Don't include reserved tags in the
376 		 * limiting, as it isn't useful.
377 		 */
378 		if (!op_is_flush(data->cmd_flags) &&
379 		    e->type->ops.limit_depth &&
380 		    !(data->flags & BLK_MQ_REQ_RESERVED))
381 			e->type->ops.limit_depth(data->cmd_flags, data);
382 	} else {
383 		blk_mq_tag_busy(data->hctx);
384 	}
385 
386 	tag = blk_mq_get_tag(data);
387 	if (tag == BLK_MQ_TAG_FAIL) {
388 		if (put_ctx_on_error) {
389 			blk_mq_put_ctx(data->ctx);
390 			data->ctx = NULL;
391 		}
392 		blk_queue_exit(q);
393 		return NULL;
394 	}
395 
396 	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 	if (!op_is_flush(data->cmd_flags)) {
398 		rq->elv.icq = NULL;
399 		if (e && e->type->ops.prepare_request) {
400 			if (e->type->icq_cache)
401 				blk_mq_sched_assign_ioc(rq);
402 
403 			e->type->ops.prepare_request(rq, bio);
404 			rq->rq_flags |= RQF_ELVPRIV;
405 		}
406 	}
407 	data->hctx->queued++;
408 	return rq;
409 }
410 
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 		blk_mq_req_flags_t flags)
413 {
414 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 	struct request *rq;
416 	int ret;
417 
418 	ret = blk_queue_enter(q, flags);
419 	if (ret)
420 		return ERR_PTR(ret);
421 
422 	rq = blk_mq_get_request(q, NULL, &alloc_data);
423 	blk_queue_exit(q);
424 
425 	if (!rq)
426 		return ERR_PTR(-EWOULDBLOCK);
427 
428 	blk_mq_put_ctx(alloc_data.ctx);
429 
430 	rq->__data_len = 0;
431 	rq->__sector = (sector_t) -1;
432 	rq->bio = rq->biotail = NULL;
433 	return rq;
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436 
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
441 	struct request *rq;
442 	unsigned int cpu;
443 	int ret;
444 
445 	/*
446 	 * If the tag allocator sleeps we could get an allocation for a
447 	 * different hardware context.  No need to complicate the low level
448 	 * allocator for this for the rare use case of a command tied to
449 	 * a specific queue.
450 	 */
451 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
452 		return ERR_PTR(-EINVAL);
453 
454 	if (hctx_idx >= q->nr_hw_queues)
455 		return ERR_PTR(-EIO);
456 
457 	ret = blk_queue_enter(q, flags);
458 	if (ret)
459 		return ERR_PTR(ret);
460 
461 	/*
462 	 * Check if the hardware context is actually mapped to anything.
463 	 * If not tell the caller that it should skip this queue.
464 	 */
465 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
467 		blk_queue_exit(q);
468 		return ERR_PTR(-EXDEV);
469 	}
470 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
471 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
472 
473 	rq = blk_mq_get_request(q, NULL, &alloc_data);
474 	blk_queue_exit(q);
475 
476 	if (!rq)
477 		return ERR_PTR(-EWOULDBLOCK);
478 
479 	return rq;
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
482 
483 static void __blk_mq_free_request(struct request *rq)
484 {
485 	struct request_queue *q = rq->q;
486 	struct blk_mq_ctx *ctx = rq->mq_ctx;
487 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
488 	const int sched_tag = rq->internal_tag;
489 
490 	blk_pm_mark_last_busy(rq);
491 	rq->mq_hctx = NULL;
492 	if (rq->tag != -1)
493 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 	if (sched_tag != -1)
495 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 	blk_mq_sched_restart(hctx);
497 	blk_queue_exit(q);
498 }
499 
500 void blk_mq_free_request(struct request *rq)
501 {
502 	struct request_queue *q = rq->q;
503 	struct elevator_queue *e = q->elevator;
504 	struct blk_mq_ctx *ctx = rq->mq_ctx;
505 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
506 
507 	if (rq->rq_flags & RQF_ELVPRIV) {
508 		if (e && e->type->ops.finish_request)
509 			e->type->ops.finish_request(rq);
510 		if (rq->elv.icq) {
511 			put_io_context(rq->elv.icq->ioc);
512 			rq->elv.icq = NULL;
513 		}
514 	}
515 
516 	ctx->rq_completed[rq_is_sync(rq)]++;
517 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
518 		atomic_dec(&hctx->nr_active);
519 
520 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
521 		laptop_io_completion(q->backing_dev_info);
522 
523 	rq_qos_done(q, rq);
524 
525 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
526 	if (refcount_dec_and_test(&rq->ref))
527 		__blk_mq_free_request(rq);
528 }
529 EXPORT_SYMBOL_GPL(blk_mq_free_request);
530 
531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
532 {
533 	u64 now = 0;
534 
535 	if (blk_mq_need_time_stamp(rq))
536 		now = ktime_get_ns();
537 
538 	if (rq->rq_flags & RQF_STATS) {
539 		blk_mq_poll_stats_start(rq->q);
540 		blk_stat_add(rq, now);
541 	}
542 
543 	if (rq->internal_tag != -1)
544 		blk_mq_sched_completed_request(rq, now);
545 
546 	blk_account_io_done(rq, now);
547 
548 	if (rq->end_io) {
549 		rq_qos_done(rq->q, rq);
550 		rq->end_io(rq, error);
551 	} else {
552 		blk_mq_free_request(rq);
553 	}
554 }
555 EXPORT_SYMBOL(__blk_mq_end_request);
556 
557 void blk_mq_end_request(struct request *rq, blk_status_t error)
558 {
559 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
560 		BUG();
561 	__blk_mq_end_request(rq, error);
562 }
563 EXPORT_SYMBOL(blk_mq_end_request);
564 
565 static void __blk_mq_complete_request_remote(void *data)
566 {
567 	struct request *rq = data;
568 	struct request_queue *q = rq->q;
569 
570 	q->mq_ops->complete(rq);
571 }
572 
573 static void __blk_mq_complete_request(struct request *rq)
574 {
575 	struct blk_mq_ctx *ctx = rq->mq_ctx;
576 	struct request_queue *q = rq->q;
577 	bool shared = false;
578 	int cpu;
579 
580 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
581 	/*
582 	 * Most of single queue controllers, there is only one irq vector
583 	 * for handling IO completion, and the only irq's affinity is set
584 	 * as all possible CPUs. On most of ARCHs, this affinity means the
585 	 * irq is handled on one specific CPU.
586 	 *
587 	 * So complete IO reqeust in softirq context in case of single queue
588 	 * for not degrading IO performance by irqsoff latency.
589 	 */
590 	if (q->nr_hw_queues == 1) {
591 		__blk_complete_request(rq);
592 		return;
593 	}
594 
595 	/*
596 	 * For a polled request, always complete locallly, it's pointless
597 	 * to redirect the completion.
598 	 */
599 	if ((rq->cmd_flags & REQ_HIPRI) ||
600 	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
601 		q->mq_ops->complete(rq);
602 		return;
603 	}
604 
605 	cpu = get_cpu();
606 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
607 		shared = cpus_share_cache(cpu, ctx->cpu);
608 
609 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
610 		rq->csd.func = __blk_mq_complete_request_remote;
611 		rq->csd.info = rq;
612 		rq->csd.flags = 0;
613 		smp_call_function_single_async(ctx->cpu, &rq->csd);
614 	} else {
615 		q->mq_ops->complete(rq);
616 	}
617 	put_cpu();
618 }
619 
620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
621 	__releases(hctx->srcu)
622 {
623 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624 		rcu_read_unlock();
625 	else
626 		srcu_read_unlock(hctx->srcu, srcu_idx);
627 }
628 
629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
630 	__acquires(hctx->srcu)
631 {
632 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
633 		/* shut up gcc false positive */
634 		*srcu_idx = 0;
635 		rcu_read_lock();
636 	} else
637 		*srcu_idx = srcu_read_lock(hctx->srcu);
638 }
639 
640 /**
641  * blk_mq_complete_request - end I/O on a request
642  * @rq:		the request being processed
643  *
644  * Description:
645  *	Ends all I/O on a request. It does not handle partial completions.
646  *	The actual completion happens out-of-order, through a IPI handler.
647  **/
648 bool blk_mq_complete_request(struct request *rq)
649 {
650 	if (unlikely(blk_should_fake_timeout(rq->q)))
651 		return false;
652 	__blk_mq_complete_request(rq);
653 	return true;
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656 
657 void blk_mq_complete_request_sync(struct request *rq)
658 {
659 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
660 	rq->q->mq_ops->complete(rq);
661 }
662 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
663 
664 int blk_mq_request_started(struct request *rq)
665 {
666 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
667 }
668 EXPORT_SYMBOL_GPL(blk_mq_request_started);
669 
670 void blk_mq_start_request(struct request *rq)
671 {
672 	struct request_queue *q = rq->q;
673 
674 	blk_mq_sched_started_request(rq);
675 
676 	trace_block_rq_issue(q, rq);
677 
678 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
679 		rq->io_start_time_ns = ktime_get_ns();
680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
681 		rq->throtl_size = blk_rq_sectors(rq);
682 #endif
683 		rq->rq_flags |= RQF_STATS;
684 		rq_qos_issue(q, rq);
685 	}
686 
687 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
688 
689 	blk_add_timer(rq);
690 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
691 
692 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
693 		/*
694 		 * Make sure space for the drain appears.  We know we can do
695 		 * this because max_hw_segments has been adjusted to be one
696 		 * fewer than the device can handle.
697 		 */
698 		rq->nr_phys_segments++;
699 	}
700 }
701 EXPORT_SYMBOL(blk_mq_start_request);
702 
703 static void __blk_mq_requeue_request(struct request *rq)
704 {
705 	struct request_queue *q = rq->q;
706 
707 	blk_mq_put_driver_tag(rq);
708 
709 	trace_block_rq_requeue(q, rq);
710 	rq_qos_requeue(q, rq);
711 
712 	if (blk_mq_request_started(rq)) {
713 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
714 		rq->rq_flags &= ~RQF_TIMED_OUT;
715 		if (q->dma_drain_size && blk_rq_bytes(rq))
716 			rq->nr_phys_segments--;
717 	}
718 }
719 
720 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
721 {
722 	__blk_mq_requeue_request(rq);
723 
724 	/* this request will be re-inserted to io scheduler queue */
725 	blk_mq_sched_requeue_request(rq);
726 
727 	BUG_ON(!list_empty(&rq->queuelist));
728 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
729 }
730 EXPORT_SYMBOL(blk_mq_requeue_request);
731 
732 static void blk_mq_requeue_work(struct work_struct *work)
733 {
734 	struct request_queue *q =
735 		container_of(work, struct request_queue, requeue_work.work);
736 	LIST_HEAD(rq_list);
737 	struct request *rq, *next;
738 
739 	spin_lock_irq(&q->requeue_lock);
740 	list_splice_init(&q->requeue_list, &rq_list);
741 	spin_unlock_irq(&q->requeue_lock);
742 
743 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
744 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
745 			continue;
746 
747 		rq->rq_flags &= ~RQF_SOFTBARRIER;
748 		list_del_init(&rq->queuelist);
749 		/*
750 		 * If RQF_DONTPREP, rq has contained some driver specific
751 		 * data, so insert it to hctx dispatch list to avoid any
752 		 * merge.
753 		 */
754 		if (rq->rq_flags & RQF_DONTPREP)
755 			blk_mq_request_bypass_insert(rq, false);
756 		else
757 			blk_mq_sched_insert_request(rq, true, false, false);
758 	}
759 
760 	while (!list_empty(&rq_list)) {
761 		rq = list_entry(rq_list.next, struct request, queuelist);
762 		list_del_init(&rq->queuelist);
763 		blk_mq_sched_insert_request(rq, false, false, false);
764 	}
765 
766 	blk_mq_run_hw_queues(q, false);
767 }
768 
769 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
770 				bool kick_requeue_list)
771 {
772 	struct request_queue *q = rq->q;
773 	unsigned long flags;
774 
775 	/*
776 	 * We abuse this flag that is otherwise used by the I/O scheduler to
777 	 * request head insertion from the workqueue.
778 	 */
779 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
780 
781 	spin_lock_irqsave(&q->requeue_lock, flags);
782 	if (at_head) {
783 		rq->rq_flags |= RQF_SOFTBARRIER;
784 		list_add(&rq->queuelist, &q->requeue_list);
785 	} else {
786 		list_add_tail(&rq->queuelist, &q->requeue_list);
787 	}
788 	spin_unlock_irqrestore(&q->requeue_lock, flags);
789 
790 	if (kick_requeue_list)
791 		blk_mq_kick_requeue_list(q);
792 }
793 
794 void blk_mq_kick_requeue_list(struct request_queue *q)
795 {
796 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
797 }
798 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
799 
800 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
801 				    unsigned long msecs)
802 {
803 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
804 				    msecs_to_jiffies(msecs));
805 }
806 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
807 
808 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
809 {
810 	if (tag < tags->nr_tags) {
811 		prefetch(tags->rqs[tag]);
812 		return tags->rqs[tag];
813 	}
814 
815 	return NULL;
816 }
817 EXPORT_SYMBOL(blk_mq_tag_to_rq);
818 
819 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
820 			       void *priv, bool reserved)
821 {
822 	/*
823 	 * If we find a request that is inflight and the queue matches,
824 	 * we know the queue is busy. Return false to stop the iteration.
825 	 */
826 	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
827 		bool *busy = priv;
828 
829 		*busy = true;
830 		return false;
831 	}
832 
833 	return true;
834 }
835 
836 bool blk_mq_queue_inflight(struct request_queue *q)
837 {
838 	bool busy = false;
839 
840 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
841 	return busy;
842 }
843 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
844 
845 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
846 {
847 	req->rq_flags |= RQF_TIMED_OUT;
848 	if (req->q->mq_ops->timeout) {
849 		enum blk_eh_timer_return ret;
850 
851 		ret = req->q->mq_ops->timeout(req, reserved);
852 		if (ret == BLK_EH_DONE)
853 			return;
854 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
855 	}
856 
857 	blk_add_timer(req);
858 }
859 
860 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
861 {
862 	unsigned long deadline;
863 
864 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
865 		return false;
866 	if (rq->rq_flags & RQF_TIMED_OUT)
867 		return false;
868 
869 	deadline = READ_ONCE(rq->deadline);
870 	if (time_after_eq(jiffies, deadline))
871 		return true;
872 
873 	if (*next == 0)
874 		*next = deadline;
875 	else if (time_after(*next, deadline))
876 		*next = deadline;
877 	return false;
878 }
879 
880 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
881 		struct request *rq, void *priv, bool reserved)
882 {
883 	unsigned long *next = priv;
884 
885 	/*
886 	 * Just do a quick check if it is expired before locking the request in
887 	 * so we're not unnecessarilly synchronizing across CPUs.
888 	 */
889 	if (!blk_mq_req_expired(rq, next))
890 		return true;
891 
892 	/*
893 	 * We have reason to believe the request may be expired. Take a
894 	 * reference on the request to lock this request lifetime into its
895 	 * currently allocated context to prevent it from being reallocated in
896 	 * the event the completion by-passes this timeout handler.
897 	 *
898 	 * If the reference was already released, then the driver beat the
899 	 * timeout handler to posting a natural completion.
900 	 */
901 	if (!refcount_inc_not_zero(&rq->ref))
902 		return true;
903 
904 	/*
905 	 * The request is now locked and cannot be reallocated underneath the
906 	 * timeout handler's processing. Re-verify this exact request is truly
907 	 * expired; if it is not expired, then the request was completed and
908 	 * reallocated as a new request.
909 	 */
910 	if (blk_mq_req_expired(rq, next))
911 		blk_mq_rq_timed_out(rq, reserved);
912 	if (refcount_dec_and_test(&rq->ref))
913 		__blk_mq_free_request(rq);
914 
915 	return true;
916 }
917 
918 static void blk_mq_timeout_work(struct work_struct *work)
919 {
920 	struct request_queue *q =
921 		container_of(work, struct request_queue, timeout_work);
922 	unsigned long next = 0;
923 	struct blk_mq_hw_ctx *hctx;
924 	int i;
925 
926 	/* A deadlock might occur if a request is stuck requiring a
927 	 * timeout at the same time a queue freeze is waiting
928 	 * completion, since the timeout code would not be able to
929 	 * acquire the queue reference here.
930 	 *
931 	 * That's why we don't use blk_queue_enter here; instead, we use
932 	 * percpu_ref_tryget directly, because we need to be able to
933 	 * obtain a reference even in the short window between the queue
934 	 * starting to freeze, by dropping the first reference in
935 	 * blk_freeze_queue_start, and the moment the last request is
936 	 * consumed, marked by the instant q_usage_counter reaches
937 	 * zero.
938 	 */
939 	if (!percpu_ref_tryget(&q->q_usage_counter))
940 		return;
941 
942 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
943 
944 	if (next != 0) {
945 		mod_timer(&q->timeout, next);
946 	} else {
947 		/*
948 		 * Request timeouts are handled as a forward rolling timer. If
949 		 * we end up here it means that no requests are pending and
950 		 * also that no request has been pending for a while. Mark
951 		 * each hctx as idle.
952 		 */
953 		queue_for_each_hw_ctx(q, hctx, i) {
954 			/* the hctx may be unmapped, so check it here */
955 			if (blk_mq_hw_queue_mapped(hctx))
956 				blk_mq_tag_idle(hctx);
957 		}
958 	}
959 	blk_queue_exit(q);
960 }
961 
962 struct flush_busy_ctx_data {
963 	struct blk_mq_hw_ctx *hctx;
964 	struct list_head *list;
965 };
966 
967 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
968 {
969 	struct flush_busy_ctx_data *flush_data = data;
970 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
971 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
972 	enum hctx_type type = hctx->type;
973 
974 	spin_lock(&ctx->lock);
975 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
976 	sbitmap_clear_bit(sb, bitnr);
977 	spin_unlock(&ctx->lock);
978 	return true;
979 }
980 
981 /*
982  * Process software queues that have been marked busy, splicing them
983  * to the for-dispatch
984  */
985 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
986 {
987 	struct flush_busy_ctx_data data = {
988 		.hctx = hctx,
989 		.list = list,
990 	};
991 
992 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
993 }
994 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
995 
996 struct dispatch_rq_data {
997 	struct blk_mq_hw_ctx *hctx;
998 	struct request *rq;
999 };
1000 
1001 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1002 		void *data)
1003 {
1004 	struct dispatch_rq_data *dispatch_data = data;
1005 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1006 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1007 	enum hctx_type type = hctx->type;
1008 
1009 	spin_lock(&ctx->lock);
1010 	if (!list_empty(&ctx->rq_lists[type])) {
1011 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1012 		list_del_init(&dispatch_data->rq->queuelist);
1013 		if (list_empty(&ctx->rq_lists[type]))
1014 			sbitmap_clear_bit(sb, bitnr);
1015 	}
1016 	spin_unlock(&ctx->lock);
1017 
1018 	return !dispatch_data->rq;
1019 }
1020 
1021 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1022 					struct blk_mq_ctx *start)
1023 {
1024 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1025 	struct dispatch_rq_data data = {
1026 		.hctx = hctx,
1027 		.rq   = NULL,
1028 	};
1029 
1030 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1031 			       dispatch_rq_from_ctx, &data);
1032 
1033 	return data.rq;
1034 }
1035 
1036 static inline unsigned int queued_to_index(unsigned int queued)
1037 {
1038 	if (!queued)
1039 		return 0;
1040 
1041 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1042 }
1043 
1044 bool blk_mq_get_driver_tag(struct request *rq)
1045 {
1046 	struct blk_mq_alloc_data data = {
1047 		.q = rq->q,
1048 		.hctx = rq->mq_hctx,
1049 		.flags = BLK_MQ_REQ_NOWAIT,
1050 		.cmd_flags = rq->cmd_flags,
1051 	};
1052 	bool shared;
1053 
1054 	if (rq->tag != -1)
1055 		goto done;
1056 
1057 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1058 		data.flags |= BLK_MQ_REQ_RESERVED;
1059 
1060 	shared = blk_mq_tag_busy(data.hctx);
1061 	rq->tag = blk_mq_get_tag(&data);
1062 	if (rq->tag >= 0) {
1063 		if (shared) {
1064 			rq->rq_flags |= RQF_MQ_INFLIGHT;
1065 			atomic_inc(&data.hctx->nr_active);
1066 		}
1067 		data.hctx->tags->rqs[rq->tag] = rq;
1068 	}
1069 
1070 done:
1071 	return rq->tag != -1;
1072 }
1073 
1074 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1075 				int flags, void *key)
1076 {
1077 	struct blk_mq_hw_ctx *hctx;
1078 
1079 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1080 
1081 	spin_lock(&hctx->dispatch_wait_lock);
1082 	if (!list_empty(&wait->entry)) {
1083 		struct sbitmap_queue *sbq;
1084 
1085 		list_del_init(&wait->entry);
1086 		sbq = &hctx->tags->bitmap_tags;
1087 		atomic_dec(&sbq->ws_active);
1088 	}
1089 	spin_unlock(&hctx->dispatch_wait_lock);
1090 
1091 	blk_mq_run_hw_queue(hctx, true);
1092 	return 1;
1093 }
1094 
1095 /*
1096  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1097  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1098  * restart. For both cases, take care to check the condition again after
1099  * marking us as waiting.
1100  */
1101 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1102 				 struct request *rq)
1103 {
1104 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1105 	struct wait_queue_head *wq;
1106 	wait_queue_entry_t *wait;
1107 	bool ret;
1108 
1109 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1110 		blk_mq_sched_mark_restart_hctx(hctx);
1111 
1112 		/*
1113 		 * It's possible that a tag was freed in the window between the
1114 		 * allocation failure and adding the hardware queue to the wait
1115 		 * queue.
1116 		 *
1117 		 * Don't clear RESTART here, someone else could have set it.
1118 		 * At most this will cost an extra queue run.
1119 		 */
1120 		return blk_mq_get_driver_tag(rq);
1121 	}
1122 
1123 	wait = &hctx->dispatch_wait;
1124 	if (!list_empty_careful(&wait->entry))
1125 		return false;
1126 
1127 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1128 
1129 	spin_lock_irq(&wq->lock);
1130 	spin_lock(&hctx->dispatch_wait_lock);
1131 	if (!list_empty(&wait->entry)) {
1132 		spin_unlock(&hctx->dispatch_wait_lock);
1133 		spin_unlock_irq(&wq->lock);
1134 		return false;
1135 	}
1136 
1137 	atomic_inc(&sbq->ws_active);
1138 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1139 	__add_wait_queue(wq, wait);
1140 
1141 	/*
1142 	 * It's possible that a tag was freed in the window between the
1143 	 * allocation failure and adding the hardware queue to the wait
1144 	 * queue.
1145 	 */
1146 	ret = blk_mq_get_driver_tag(rq);
1147 	if (!ret) {
1148 		spin_unlock(&hctx->dispatch_wait_lock);
1149 		spin_unlock_irq(&wq->lock);
1150 		return false;
1151 	}
1152 
1153 	/*
1154 	 * We got a tag, remove ourselves from the wait queue to ensure
1155 	 * someone else gets the wakeup.
1156 	 */
1157 	list_del_init(&wait->entry);
1158 	atomic_dec(&sbq->ws_active);
1159 	spin_unlock(&hctx->dispatch_wait_lock);
1160 	spin_unlock_irq(&wq->lock);
1161 
1162 	return true;
1163 }
1164 
1165 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1167 /*
1168  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1169  * - EWMA is one simple way to compute running average value
1170  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1171  * - take 4 as factor for avoiding to get too small(0) result, and this
1172  *   factor doesn't matter because EWMA decreases exponentially
1173  */
1174 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1175 {
1176 	unsigned int ewma;
1177 
1178 	if (hctx->queue->elevator)
1179 		return;
1180 
1181 	ewma = hctx->dispatch_busy;
1182 
1183 	if (!ewma && !busy)
1184 		return;
1185 
1186 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1187 	if (busy)
1188 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1189 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1190 
1191 	hctx->dispatch_busy = ewma;
1192 }
1193 
1194 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1195 
1196 /*
1197  * Returns true if we did some work AND can potentially do more.
1198  */
1199 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1200 			     bool got_budget)
1201 {
1202 	struct blk_mq_hw_ctx *hctx;
1203 	struct request *rq, *nxt;
1204 	bool no_tag = false;
1205 	int errors, queued;
1206 	blk_status_t ret = BLK_STS_OK;
1207 
1208 	if (list_empty(list))
1209 		return false;
1210 
1211 	WARN_ON(!list_is_singular(list) && got_budget);
1212 
1213 	/*
1214 	 * Now process all the entries, sending them to the driver.
1215 	 */
1216 	errors = queued = 0;
1217 	do {
1218 		struct blk_mq_queue_data bd;
1219 
1220 		rq = list_first_entry(list, struct request, queuelist);
1221 
1222 		hctx = rq->mq_hctx;
1223 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1224 			break;
1225 
1226 		if (!blk_mq_get_driver_tag(rq)) {
1227 			/*
1228 			 * The initial allocation attempt failed, so we need to
1229 			 * rerun the hardware queue when a tag is freed. The
1230 			 * waitqueue takes care of that. If the queue is run
1231 			 * before we add this entry back on the dispatch list,
1232 			 * we'll re-run it below.
1233 			 */
1234 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1235 				blk_mq_put_dispatch_budget(hctx);
1236 				/*
1237 				 * For non-shared tags, the RESTART check
1238 				 * will suffice.
1239 				 */
1240 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1241 					no_tag = true;
1242 				break;
1243 			}
1244 		}
1245 
1246 		list_del_init(&rq->queuelist);
1247 
1248 		bd.rq = rq;
1249 
1250 		/*
1251 		 * Flag last if we have no more requests, or if we have more
1252 		 * but can't assign a driver tag to it.
1253 		 */
1254 		if (list_empty(list))
1255 			bd.last = true;
1256 		else {
1257 			nxt = list_first_entry(list, struct request, queuelist);
1258 			bd.last = !blk_mq_get_driver_tag(nxt);
1259 		}
1260 
1261 		ret = q->mq_ops->queue_rq(hctx, &bd);
1262 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1263 			/*
1264 			 * If an I/O scheduler has been configured and we got a
1265 			 * driver tag for the next request already, free it
1266 			 * again.
1267 			 */
1268 			if (!list_empty(list)) {
1269 				nxt = list_first_entry(list, struct request, queuelist);
1270 				blk_mq_put_driver_tag(nxt);
1271 			}
1272 			list_add(&rq->queuelist, list);
1273 			__blk_mq_requeue_request(rq);
1274 			break;
1275 		}
1276 
1277 		if (unlikely(ret != BLK_STS_OK)) {
1278 			errors++;
1279 			blk_mq_end_request(rq, BLK_STS_IOERR);
1280 			continue;
1281 		}
1282 
1283 		queued++;
1284 	} while (!list_empty(list));
1285 
1286 	hctx->dispatched[queued_to_index(queued)]++;
1287 
1288 	/*
1289 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1290 	 * that is where we will continue on next queue run.
1291 	 */
1292 	if (!list_empty(list)) {
1293 		bool needs_restart;
1294 
1295 		/*
1296 		 * If we didn't flush the entire list, we could have told
1297 		 * the driver there was more coming, but that turned out to
1298 		 * be a lie.
1299 		 */
1300 		if (q->mq_ops->commit_rqs)
1301 			q->mq_ops->commit_rqs(hctx);
1302 
1303 		spin_lock(&hctx->lock);
1304 		list_splice_init(list, &hctx->dispatch);
1305 		spin_unlock(&hctx->lock);
1306 
1307 		/*
1308 		 * If SCHED_RESTART was set by the caller of this function and
1309 		 * it is no longer set that means that it was cleared by another
1310 		 * thread and hence that a queue rerun is needed.
1311 		 *
1312 		 * If 'no_tag' is set, that means that we failed getting
1313 		 * a driver tag with an I/O scheduler attached. If our dispatch
1314 		 * waitqueue is no longer active, ensure that we run the queue
1315 		 * AFTER adding our entries back to the list.
1316 		 *
1317 		 * If no I/O scheduler has been configured it is possible that
1318 		 * the hardware queue got stopped and restarted before requests
1319 		 * were pushed back onto the dispatch list. Rerun the queue to
1320 		 * avoid starvation. Notes:
1321 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1322 		 *   been stopped before rerunning a queue.
1323 		 * - Some but not all block drivers stop a queue before
1324 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1325 		 *   and dm-rq.
1326 		 *
1327 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1328 		 * bit is set, run queue after a delay to avoid IO stalls
1329 		 * that could otherwise occur if the queue is idle.
1330 		 */
1331 		needs_restart = blk_mq_sched_needs_restart(hctx);
1332 		if (!needs_restart ||
1333 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1334 			blk_mq_run_hw_queue(hctx, true);
1335 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1336 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1337 
1338 		blk_mq_update_dispatch_busy(hctx, true);
1339 		return false;
1340 	} else
1341 		blk_mq_update_dispatch_busy(hctx, false);
1342 
1343 	/*
1344 	 * If the host/device is unable to accept more work, inform the
1345 	 * caller of that.
1346 	 */
1347 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1348 		return false;
1349 
1350 	return (queued + errors) != 0;
1351 }
1352 
1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1354 {
1355 	int srcu_idx;
1356 
1357 	/*
1358 	 * We should be running this queue from one of the CPUs that
1359 	 * are mapped to it.
1360 	 *
1361 	 * There are at least two related races now between setting
1362 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1363 	 * __blk_mq_run_hw_queue():
1364 	 *
1365 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1366 	 *   but later it becomes online, then this warning is harmless
1367 	 *   at all
1368 	 *
1369 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1370 	 *   but later it becomes offline, then the warning can't be
1371 	 *   triggered, and we depend on blk-mq timeout handler to
1372 	 *   handle dispatched requests to this hctx
1373 	 */
1374 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1375 		cpu_online(hctx->next_cpu)) {
1376 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1377 			raw_smp_processor_id(),
1378 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1379 		dump_stack();
1380 	}
1381 
1382 	/*
1383 	 * We can't run the queue inline with ints disabled. Ensure that
1384 	 * we catch bad users of this early.
1385 	 */
1386 	WARN_ON_ONCE(in_interrupt());
1387 
1388 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1389 
1390 	hctx_lock(hctx, &srcu_idx);
1391 	blk_mq_sched_dispatch_requests(hctx);
1392 	hctx_unlock(hctx, srcu_idx);
1393 }
1394 
1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1396 {
1397 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1398 
1399 	if (cpu >= nr_cpu_ids)
1400 		cpu = cpumask_first(hctx->cpumask);
1401 	return cpu;
1402 }
1403 
1404 /*
1405  * It'd be great if the workqueue API had a way to pass
1406  * in a mask and had some smarts for more clever placement.
1407  * For now we just round-robin here, switching for every
1408  * BLK_MQ_CPU_WORK_BATCH queued items.
1409  */
1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1411 {
1412 	bool tried = false;
1413 	int next_cpu = hctx->next_cpu;
1414 
1415 	if (hctx->queue->nr_hw_queues == 1)
1416 		return WORK_CPU_UNBOUND;
1417 
1418 	if (--hctx->next_cpu_batch <= 0) {
1419 select_cpu:
1420 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1421 				cpu_online_mask);
1422 		if (next_cpu >= nr_cpu_ids)
1423 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1424 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1425 	}
1426 
1427 	/*
1428 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1429 	 * and it should only happen in the path of handling CPU DEAD.
1430 	 */
1431 	if (!cpu_online(next_cpu)) {
1432 		if (!tried) {
1433 			tried = true;
1434 			goto select_cpu;
1435 		}
1436 
1437 		/*
1438 		 * Make sure to re-select CPU next time once after CPUs
1439 		 * in hctx->cpumask become online again.
1440 		 */
1441 		hctx->next_cpu = next_cpu;
1442 		hctx->next_cpu_batch = 1;
1443 		return WORK_CPU_UNBOUND;
1444 	}
1445 
1446 	hctx->next_cpu = next_cpu;
1447 	return next_cpu;
1448 }
1449 
1450 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1451 					unsigned long msecs)
1452 {
1453 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1454 		return;
1455 
1456 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1457 		int cpu = get_cpu();
1458 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1459 			__blk_mq_run_hw_queue(hctx);
1460 			put_cpu();
1461 			return;
1462 		}
1463 
1464 		put_cpu();
1465 	}
1466 
1467 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1468 				    msecs_to_jiffies(msecs));
1469 }
1470 
1471 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1472 {
1473 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1474 }
1475 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1476 
1477 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1478 {
1479 	int srcu_idx;
1480 	bool need_run;
1481 
1482 	/*
1483 	 * When queue is quiesced, we may be switching io scheduler, or
1484 	 * updating nr_hw_queues, or other things, and we can't run queue
1485 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1486 	 *
1487 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1488 	 * quiesced.
1489 	 */
1490 	hctx_lock(hctx, &srcu_idx);
1491 	need_run = !blk_queue_quiesced(hctx->queue) &&
1492 		blk_mq_hctx_has_pending(hctx);
1493 	hctx_unlock(hctx, srcu_idx);
1494 
1495 	if (need_run) {
1496 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1497 		return true;
1498 	}
1499 
1500 	return false;
1501 }
1502 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1503 
1504 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1505 {
1506 	struct blk_mq_hw_ctx *hctx;
1507 	int i;
1508 
1509 	queue_for_each_hw_ctx(q, hctx, i) {
1510 		if (blk_mq_hctx_stopped(hctx))
1511 			continue;
1512 
1513 		blk_mq_run_hw_queue(hctx, async);
1514 	}
1515 }
1516 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1517 
1518 /**
1519  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1520  * @q: request queue.
1521  *
1522  * The caller is responsible for serializing this function against
1523  * blk_mq_{start,stop}_hw_queue().
1524  */
1525 bool blk_mq_queue_stopped(struct request_queue *q)
1526 {
1527 	struct blk_mq_hw_ctx *hctx;
1528 	int i;
1529 
1530 	queue_for_each_hw_ctx(q, hctx, i)
1531 		if (blk_mq_hctx_stopped(hctx))
1532 			return true;
1533 
1534 	return false;
1535 }
1536 EXPORT_SYMBOL(blk_mq_queue_stopped);
1537 
1538 /*
1539  * This function is often used for pausing .queue_rq() by driver when
1540  * there isn't enough resource or some conditions aren't satisfied, and
1541  * BLK_STS_RESOURCE is usually returned.
1542  *
1543  * We do not guarantee that dispatch can be drained or blocked
1544  * after blk_mq_stop_hw_queue() returns. Please use
1545  * blk_mq_quiesce_queue() for that requirement.
1546  */
1547 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1548 {
1549 	cancel_delayed_work(&hctx->run_work);
1550 
1551 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1554 
1555 /*
1556  * This function is often used for pausing .queue_rq() by driver when
1557  * there isn't enough resource or some conditions aren't satisfied, and
1558  * BLK_STS_RESOURCE is usually returned.
1559  *
1560  * We do not guarantee that dispatch can be drained or blocked
1561  * after blk_mq_stop_hw_queues() returns. Please use
1562  * blk_mq_quiesce_queue() for that requirement.
1563  */
1564 void blk_mq_stop_hw_queues(struct request_queue *q)
1565 {
1566 	struct blk_mq_hw_ctx *hctx;
1567 	int i;
1568 
1569 	queue_for_each_hw_ctx(q, hctx, i)
1570 		blk_mq_stop_hw_queue(hctx);
1571 }
1572 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1573 
1574 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1575 {
1576 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1577 
1578 	blk_mq_run_hw_queue(hctx, false);
1579 }
1580 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1581 
1582 void blk_mq_start_hw_queues(struct request_queue *q)
1583 {
1584 	struct blk_mq_hw_ctx *hctx;
1585 	int i;
1586 
1587 	queue_for_each_hw_ctx(q, hctx, i)
1588 		blk_mq_start_hw_queue(hctx);
1589 }
1590 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1591 
1592 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1593 {
1594 	if (!blk_mq_hctx_stopped(hctx))
1595 		return;
1596 
1597 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1598 	blk_mq_run_hw_queue(hctx, async);
1599 }
1600 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1601 
1602 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1603 {
1604 	struct blk_mq_hw_ctx *hctx;
1605 	int i;
1606 
1607 	queue_for_each_hw_ctx(q, hctx, i)
1608 		blk_mq_start_stopped_hw_queue(hctx, async);
1609 }
1610 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1611 
1612 static void blk_mq_run_work_fn(struct work_struct *work)
1613 {
1614 	struct blk_mq_hw_ctx *hctx;
1615 
1616 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1617 
1618 	/*
1619 	 * If we are stopped, don't run the queue.
1620 	 */
1621 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1622 		return;
1623 
1624 	__blk_mq_run_hw_queue(hctx);
1625 }
1626 
1627 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1628 					    struct request *rq,
1629 					    bool at_head)
1630 {
1631 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1632 	enum hctx_type type = hctx->type;
1633 
1634 	lockdep_assert_held(&ctx->lock);
1635 
1636 	trace_block_rq_insert(hctx->queue, rq);
1637 
1638 	if (at_head)
1639 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1640 	else
1641 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1642 }
1643 
1644 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1645 			     bool at_head)
1646 {
1647 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1648 
1649 	lockdep_assert_held(&ctx->lock);
1650 
1651 	__blk_mq_insert_req_list(hctx, rq, at_head);
1652 	blk_mq_hctx_mark_pending(hctx, ctx);
1653 }
1654 
1655 /*
1656  * Should only be used carefully, when the caller knows we want to
1657  * bypass a potential IO scheduler on the target device.
1658  */
1659 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1660 {
1661 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1662 
1663 	spin_lock(&hctx->lock);
1664 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1665 	spin_unlock(&hctx->lock);
1666 
1667 	if (run_queue)
1668 		blk_mq_run_hw_queue(hctx, false);
1669 }
1670 
1671 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1672 			    struct list_head *list)
1673 
1674 {
1675 	struct request *rq;
1676 	enum hctx_type type = hctx->type;
1677 
1678 	/*
1679 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1680 	 * offline now
1681 	 */
1682 	list_for_each_entry(rq, list, queuelist) {
1683 		BUG_ON(rq->mq_ctx != ctx);
1684 		trace_block_rq_insert(hctx->queue, rq);
1685 	}
1686 
1687 	spin_lock(&ctx->lock);
1688 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1689 	blk_mq_hctx_mark_pending(hctx, ctx);
1690 	spin_unlock(&ctx->lock);
1691 }
1692 
1693 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1694 {
1695 	struct request *rqa = container_of(a, struct request, queuelist);
1696 	struct request *rqb = container_of(b, struct request, queuelist);
1697 
1698 	if (rqa->mq_ctx < rqb->mq_ctx)
1699 		return -1;
1700 	else if (rqa->mq_ctx > rqb->mq_ctx)
1701 		return 1;
1702 	else if (rqa->mq_hctx < rqb->mq_hctx)
1703 		return -1;
1704 	else if (rqa->mq_hctx > rqb->mq_hctx)
1705 		return 1;
1706 
1707 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1708 }
1709 
1710 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1711 {
1712 	struct blk_mq_hw_ctx *this_hctx;
1713 	struct blk_mq_ctx *this_ctx;
1714 	struct request_queue *this_q;
1715 	struct request *rq;
1716 	LIST_HEAD(list);
1717 	LIST_HEAD(rq_list);
1718 	unsigned int depth;
1719 
1720 	list_splice_init(&plug->mq_list, &list);
1721 
1722 	if (plug->rq_count > 2 && plug->multiple_queues)
1723 		list_sort(NULL, &list, plug_rq_cmp);
1724 
1725 	plug->rq_count = 0;
1726 
1727 	this_q = NULL;
1728 	this_hctx = NULL;
1729 	this_ctx = NULL;
1730 	depth = 0;
1731 
1732 	while (!list_empty(&list)) {
1733 		rq = list_entry_rq(list.next);
1734 		list_del_init(&rq->queuelist);
1735 		BUG_ON(!rq->q);
1736 		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1737 			if (this_hctx) {
1738 				trace_block_unplug(this_q, depth, !from_schedule);
1739 				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1740 								&rq_list,
1741 								from_schedule);
1742 			}
1743 
1744 			this_q = rq->q;
1745 			this_ctx = rq->mq_ctx;
1746 			this_hctx = rq->mq_hctx;
1747 			depth = 0;
1748 		}
1749 
1750 		depth++;
1751 		list_add_tail(&rq->queuelist, &rq_list);
1752 	}
1753 
1754 	/*
1755 	 * If 'this_hctx' is set, we know we have entries to complete
1756 	 * on 'rq_list'. Do those.
1757 	 */
1758 	if (this_hctx) {
1759 		trace_block_unplug(this_q, depth, !from_schedule);
1760 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1761 						from_schedule);
1762 	}
1763 }
1764 
1765 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1766 {
1767 	blk_init_request_from_bio(rq, bio);
1768 
1769 	blk_account_io_start(rq, true);
1770 }
1771 
1772 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1773 					    struct request *rq,
1774 					    blk_qc_t *cookie, bool last)
1775 {
1776 	struct request_queue *q = rq->q;
1777 	struct blk_mq_queue_data bd = {
1778 		.rq = rq,
1779 		.last = last,
1780 	};
1781 	blk_qc_t new_cookie;
1782 	blk_status_t ret;
1783 
1784 	new_cookie = request_to_qc_t(hctx, rq);
1785 
1786 	/*
1787 	 * For OK queue, we are done. For error, caller may kill it.
1788 	 * Any other error (busy), just add it to our list as we
1789 	 * previously would have done.
1790 	 */
1791 	ret = q->mq_ops->queue_rq(hctx, &bd);
1792 	switch (ret) {
1793 	case BLK_STS_OK:
1794 		blk_mq_update_dispatch_busy(hctx, false);
1795 		*cookie = new_cookie;
1796 		break;
1797 	case BLK_STS_RESOURCE:
1798 	case BLK_STS_DEV_RESOURCE:
1799 		blk_mq_update_dispatch_busy(hctx, true);
1800 		__blk_mq_requeue_request(rq);
1801 		break;
1802 	default:
1803 		blk_mq_update_dispatch_busy(hctx, false);
1804 		*cookie = BLK_QC_T_NONE;
1805 		break;
1806 	}
1807 
1808 	return ret;
1809 }
1810 
1811 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1812 						struct request *rq,
1813 						blk_qc_t *cookie,
1814 						bool bypass_insert, bool last)
1815 {
1816 	struct request_queue *q = rq->q;
1817 	bool run_queue = true;
1818 
1819 	/*
1820 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1821 	 *
1822 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1823 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1824 	 * and avoid driver to try to dispatch again.
1825 	 */
1826 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1827 		run_queue = false;
1828 		bypass_insert = false;
1829 		goto insert;
1830 	}
1831 
1832 	if (q->elevator && !bypass_insert)
1833 		goto insert;
1834 
1835 	if (!blk_mq_get_dispatch_budget(hctx))
1836 		goto insert;
1837 
1838 	if (!blk_mq_get_driver_tag(rq)) {
1839 		blk_mq_put_dispatch_budget(hctx);
1840 		goto insert;
1841 	}
1842 
1843 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1844 insert:
1845 	if (bypass_insert)
1846 		return BLK_STS_RESOURCE;
1847 
1848 	blk_mq_request_bypass_insert(rq, run_queue);
1849 	return BLK_STS_OK;
1850 }
1851 
1852 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1853 		struct request *rq, blk_qc_t *cookie)
1854 {
1855 	blk_status_t ret;
1856 	int srcu_idx;
1857 
1858 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1859 
1860 	hctx_lock(hctx, &srcu_idx);
1861 
1862 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1863 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1864 		blk_mq_request_bypass_insert(rq, true);
1865 	else if (ret != BLK_STS_OK)
1866 		blk_mq_end_request(rq, ret);
1867 
1868 	hctx_unlock(hctx, srcu_idx);
1869 }
1870 
1871 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1872 {
1873 	blk_status_t ret;
1874 	int srcu_idx;
1875 	blk_qc_t unused_cookie;
1876 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1877 
1878 	hctx_lock(hctx, &srcu_idx);
1879 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1880 	hctx_unlock(hctx, srcu_idx);
1881 
1882 	return ret;
1883 }
1884 
1885 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1886 		struct list_head *list)
1887 {
1888 	while (!list_empty(list)) {
1889 		blk_status_t ret;
1890 		struct request *rq = list_first_entry(list, struct request,
1891 				queuelist);
1892 
1893 		list_del_init(&rq->queuelist);
1894 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1895 		if (ret != BLK_STS_OK) {
1896 			if (ret == BLK_STS_RESOURCE ||
1897 					ret == BLK_STS_DEV_RESOURCE) {
1898 				blk_mq_request_bypass_insert(rq,
1899 							list_empty(list));
1900 				break;
1901 			}
1902 			blk_mq_end_request(rq, ret);
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * If we didn't flush the entire list, we could have told
1908 	 * the driver there was more coming, but that turned out to
1909 	 * be a lie.
1910 	 */
1911 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1912 		hctx->queue->mq_ops->commit_rqs(hctx);
1913 }
1914 
1915 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1916 {
1917 	list_add_tail(&rq->queuelist, &plug->mq_list);
1918 	plug->rq_count++;
1919 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1920 		struct request *tmp;
1921 
1922 		tmp = list_first_entry(&plug->mq_list, struct request,
1923 						queuelist);
1924 		if (tmp->q != rq->q)
1925 			plug->multiple_queues = true;
1926 	}
1927 }
1928 
1929 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1930 {
1931 	const int is_sync = op_is_sync(bio->bi_opf);
1932 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1933 	struct blk_mq_alloc_data data = { .flags = 0};
1934 	struct request *rq;
1935 	struct blk_plug *plug;
1936 	struct request *same_queue_rq = NULL;
1937 	blk_qc_t cookie;
1938 
1939 	blk_queue_bounce(q, &bio);
1940 
1941 	blk_queue_split(q, &bio);
1942 
1943 	if (!bio_integrity_prep(bio))
1944 		return BLK_QC_T_NONE;
1945 
1946 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1947 	    blk_attempt_plug_merge(q, bio, &same_queue_rq))
1948 		return BLK_QC_T_NONE;
1949 
1950 	if (blk_mq_sched_bio_merge(q, bio))
1951 		return BLK_QC_T_NONE;
1952 
1953 	rq_qos_throttle(q, bio);
1954 
1955 	data.cmd_flags = bio->bi_opf;
1956 	rq = blk_mq_get_request(q, bio, &data);
1957 	if (unlikely(!rq)) {
1958 		rq_qos_cleanup(q, bio);
1959 		if (bio->bi_opf & REQ_NOWAIT)
1960 			bio_wouldblock_error(bio);
1961 		return BLK_QC_T_NONE;
1962 	}
1963 
1964 	trace_block_getrq(q, bio, bio->bi_opf);
1965 
1966 	rq_qos_track(q, rq, bio);
1967 
1968 	cookie = request_to_qc_t(data.hctx, rq);
1969 
1970 	plug = current->plug;
1971 	if (unlikely(is_flush_fua)) {
1972 		blk_mq_put_ctx(data.ctx);
1973 		blk_mq_bio_to_request(rq, bio);
1974 
1975 		/* bypass scheduler for flush rq */
1976 		blk_insert_flush(rq);
1977 		blk_mq_run_hw_queue(data.hctx, true);
1978 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1979 		/*
1980 		 * Use plugging if we have a ->commit_rqs() hook as well, as
1981 		 * we know the driver uses bd->last in a smart fashion.
1982 		 */
1983 		unsigned int request_count = plug->rq_count;
1984 		struct request *last = NULL;
1985 
1986 		blk_mq_put_ctx(data.ctx);
1987 		blk_mq_bio_to_request(rq, bio);
1988 
1989 		if (!request_count)
1990 			trace_block_plug(q);
1991 		else
1992 			last = list_entry_rq(plug->mq_list.prev);
1993 
1994 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1995 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1996 			blk_flush_plug_list(plug, false);
1997 			trace_block_plug(q);
1998 		}
1999 
2000 		blk_add_rq_to_plug(plug, rq);
2001 	} else if (plug && !blk_queue_nomerges(q)) {
2002 		blk_mq_bio_to_request(rq, bio);
2003 
2004 		/*
2005 		 * We do limited plugging. If the bio can be merged, do that.
2006 		 * Otherwise the existing request in the plug list will be
2007 		 * issued. So the plug list will have one request at most
2008 		 * The plug list might get flushed before this. If that happens,
2009 		 * the plug list is empty, and same_queue_rq is invalid.
2010 		 */
2011 		if (list_empty(&plug->mq_list))
2012 			same_queue_rq = NULL;
2013 		if (same_queue_rq) {
2014 			list_del_init(&same_queue_rq->queuelist);
2015 			plug->rq_count--;
2016 		}
2017 		blk_add_rq_to_plug(plug, rq);
2018 		trace_block_plug(q);
2019 
2020 		blk_mq_put_ctx(data.ctx);
2021 
2022 		if (same_queue_rq) {
2023 			data.hctx = same_queue_rq->mq_hctx;
2024 			trace_block_unplug(q, 1, true);
2025 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2026 					&cookie);
2027 		}
2028 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2029 			!data.hctx->dispatch_busy)) {
2030 		blk_mq_put_ctx(data.ctx);
2031 		blk_mq_bio_to_request(rq, bio);
2032 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2033 	} else {
2034 		blk_mq_put_ctx(data.ctx);
2035 		blk_mq_bio_to_request(rq, bio);
2036 		blk_mq_sched_insert_request(rq, false, true, true);
2037 	}
2038 
2039 	return cookie;
2040 }
2041 
2042 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2043 		     unsigned int hctx_idx)
2044 {
2045 	struct page *page;
2046 
2047 	if (tags->rqs && set->ops->exit_request) {
2048 		int i;
2049 
2050 		for (i = 0; i < tags->nr_tags; i++) {
2051 			struct request *rq = tags->static_rqs[i];
2052 
2053 			if (!rq)
2054 				continue;
2055 			set->ops->exit_request(set, rq, hctx_idx);
2056 			tags->static_rqs[i] = NULL;
2057 		}
2058 	}
2059 
2060 	while (!list_empty(&tags->page_list)) {
2061 		page = list_first_entry(&tags->page_list, struct page, lru);
2062 		list_del_init(&page->lru);
2063 		/*
2064 		 * Remove kmemleak object previously allocated in
2065 		 * blk_mq_init_rq_map().
2066 		 */
2067 		kmemleak_free(page_address(page));
2068 		__free_pages(page, page->private);
2069 	}
2070 }
2071 
2072 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2073 {
2074 	kfree(tags->rqs);
2075 	tags->rqs = NULL;
2076 	kfree(tags->static_rqs);
2077 	tags->static_rqs = NULL;
2078 
2079 	blk_mq_free_tags(tags);
2080 }
2081 
2082 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2083 					unsigned int hctx_idx,
2084 					unsigned int nr_tags,
2085 					unsigned int reserved_tags)
2086 {
2087 	struct blk_mq_tags *tags;
2088 	int node;
2089 
2090 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2091 	if (node == NUMA_NO_NODE)
2092 		node = set->numa_node;
2093 
2094 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2095 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2096 	if (!tags)
2097 		return NULL;
2098 
2099 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2100 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2101 				 node);
2102 	if (!tags->rqs) {
2103 		blk_mq_free_tags(tags);
2104 		return NULL;
2105 	}
2106 
2107 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2108 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2109 					node);
2110 	if (!tags->static_rqs) {
2111 		kfree(tags->rqs);
2112 		blk_mq_free_tags(tags);
2113 		return NULL;
2114 	}
2115 
2116 	return tags;
2117 }
2118 
2119 static size_t order_to_size(unsigned int order)
2120 {
2121 	return (size_t)PAGE_SIZE << order;
2122 }
2123 
2124 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2125 			       unsigned int hctx_idx, int node)
2126 {
2127 	int ret;
2128 
2129 	if (set->ops->init_request) {
2130 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2131 		if (ret)
2132 			return ret;
2133 	}
2134 
2135 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2136 	return 0;
2137 }
2138 
2139 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2140 		     unsigned int hctx_idx, unsigned int depth)
2141 {
2142 	unsigned int i, j, entries_per_page, max_order = 4;
2143 	size_t rq_size, left;
2144 	int node;
2145 
2146 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2147 	if (node == NUMA_NO_NODE)
2148 		node = set->numa_node;
2149 
2150 	INIT_LIST_HEAD(&tags->page_list);
2151 
2152 	/*
2153 	 * rq_size is the size of the request plus driver payload, rounded
2154 	 * to the cacheline size
2155 	 */
2156 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2157 				cache_line_size());
2158 	left = rq_size * depth;
2159 
2160 	for (i = 0; i < depth; ) {
2161 		int this_order = max_order;
2162 		struct page *page;
2163 		int to_do;
2164 		void *p;
2165 
2166 		while (this_order && left < order_to_size(this_order - 1))
2167 			this_order--;
2168 
2169 		do {
2170 			page = alloc_pages_node(node,
2171 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2172 				this_order);
2173 			if (page)
2174 				break;
2175 			if (!this_order--)
2176 				break;
2177 			if (order_to_size(this_order) < rq_size)
2178 				break;
2179 		} while (1);
2180 
2181 		if (!page)
2182 			goto fail;
2183 
2184 		page->private = this_order;
2185 		list_add_tail(&page->lru, &tags->page_list);
2186 
2187 		p = page_address(page);
2188 		/*
2189 		 * Allow kmemleak to scan these pages as they contain pointers
2190 		 * to additional allocations like via ops->init_request().
2191 		 */
2192 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2193 		entries_per_page = order_to_size(this_order) / rq_size;
2194 		to_do = min(entries_per_page, depth - i);
2195 		left -= to_do * rq_size;
2196 		for (j = 0; j < to_do; j++) {
2197 			struct request *rq = p;
2198 
2199 			tags->static_rqs[i] = rq;
2200 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2201 				tags->static_rqs[i] = NULL;
2202 				goto fail;
2203 			}
2204 
2205 			p += rq_size;
2206 			i++;
2207 		}
2208 	}
2209 	return 0;
2210 
2211 fail:
2212 	blk_mq_free_rqs(set, tags, hctx_idx);
2213 	return -ENOMEM;
2214 }
2215 
2216 /*
2217  * 'cpu' is going away. splice any existing rq_list entries from this
2218  * software queue to the hw queue dispatch list, and ensure that it
2219  * gets run.
2220  */
2221 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2222 {
2223 	struct blk_mq_hw_ctx *hctx;
2224 	struct blk_mq_ctx *ctx;
2225 	LIST_HEAD(tmp);
2226 	enum hctx_type type;
2227 
2228 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2229 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2230 	type = hctx->type;
2231 
2232 	spin_lock(&ctx->lock);
2233 	if (!list_empty(&ctx->rq_lists[type])) {
2234 		list_splice_init(&ctx->rq_lists[type], &tmp);
2235 		blk_mq_hctx_clear_pending(hctx, ctx);
2236 	}
2237 	spin_unlock(&ctx->lock);
2238 
2239 	if (list_empty(&tmp))
2240 		return 0;
2241 
2242 	spin_lock(&hctx->lock);
2243 	list_splice_tail_init(&tmp, &hctx->dispatch);
2244 	spin_unlock(&hctx->lock);
2245 
2246 	blk_mq_run_hw_queue(hctx, true);
2247 	return 0;
2248 }
2249 
2250 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2251 {
2252 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2253 					    &hctx->cpuhp_dead);
2254 }
2255 
2256 /* hctx->ctxs will be freed in queue's release handler */
2257 static void blk_mq_exit_hctx(struct request_queue *q,
2258 		struct blk_mq_tag_set *set,
2259 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2260 {
2261 	if (blk_mq_hw_queue_mapped(hctx))
2262 		blk_mq_tag_idle(hctx);
2263 
2264 	if (set->ops->exit_request)
2265 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2266 
2267 	if (set->ops->exit_hctx)
2268 		set->ops->exit_hctx(hctx, hctx_idx);
2269 
2270 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2271 		cleanup_srcu_struct(hctx->srcu);
2272 
2273 	blk_mq_remove_cpuhp(hctx);
2274 	blk_free_flush_queue(hctx->fq);
2275 	sbitmap_free(&hctx->ctx_map);
2276 }
2277 
2278 static void blk_mq_exit_hw_queues(struct request_queue *q,
2279 		struct blk_mq_tag_set *set, int nr_queue)
2280 {
2281 	struct blk_mq_hw_ctx *hctx;
2282 	unsigned int i;
2283 
2284 	queue_for_each_hw_ctx(q, hctx, i) {
2285 		if (i == nr_queue)
2286 			break;
2287 		blk_mq_debugfs_unregister_hctx(hctx);
2288 		blk_mq_exit_hctx(q, set, hctx, i);
2289 	}
2290 }
2291 
2292 static int blk_mq_init_hctx(struct request_queue *q,
2293 		struct blk_mq_tag_set *set,
2294 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2295 {
2296 	int node;
2297 
2298 	node = hctx->numa_node;
2299 	if (node == NUMA_NO_NODE)
2300 		node = hctx->numa_node = set->numa_node;
2301 
2302 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2303 	spin_lock_init(&hctx->lock);
2304 	INIT_LIST_HEAD(&hctx->dispatch);
2305 	hctx->queue = q;
2306 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2307 
2308 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2309 
2310 	hctx->tags = set->tags[hctx_idx];
2311 
2312 	/*
2313 	 * Allocate space for all possible cpus to avoid allocation at
2314 	 * runtime
2315 	 */
2316 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2317 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2318 	if (!hctx->ctxs)
2319 		goto unregister_cpu_notifier;
2320 
2321 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2322 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2323 		goto free_ctxs;
2324 
2325 	hctx->nr_ctx = 0;
2326 
2327 	spin_lock_init(&hctx->dispatch_wait_lock);
2328 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2329 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2330 
2331 	if (set->ops->init_hctx &&
2332 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2333 		goto free_bitmap;
2334 
2335 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2336 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2337 	if (!hctx->fq)
2338 		goto exit_hctx;
2339 
2340 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2341 		goto free_fq;
2342 
2343 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2344 		init_srcu_struct(hctx->srcu);
2345 
2346 	return 0;
2347 
2348  free_fq:
2349 	blk_free_flush_queue(hctx->fq);
2350  exit_hctx:
2351 	if (set->ops->exit_hctx)
2352 		set->ops->exit_hctx(hctx, hctx_idx);
2353  free_bitmap:
2354 	sbitmap_free(&hctx->ctx_map);
2355  free_ctxs:
2356 	kfree(hctx->ctxs);
2357  unregister_cpu_notifier:
2358 	blk_mq_remove_cpuhp(hctx);
2359 	return -1;
2360 }
2361 
2362 static void blk_mq_init_cpu_queues(struct request_queue *q,
2363 				   unsigned int nr_hw_queues)
2364 {
2365 	struct blk_mq_tag_set *set = q->tag_set;
2366 	unsigned int i, j;
2367 
2368 	for_each_possible_cpu(i) {
2369 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2370 		struct blk_mq_hw_ctx *hctx;
2371 		int k;
2372 
2373 		__ctx->cpu = i;
2374 		spin_lock_init(&__ctx->lock);
2375 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2376 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2377 
2378 		__ctx->queue = q;
2379 
2380 		/*
2381 		 * Set local node, IFF we have more than one hw queue. If
2382 		 * not, we remain on the home node of the device
2383 		 */
2384 		for (j = 0; j < set->nr_maps; j++) {
2385 			hctx = blk_mq_map_queue_type(q, j, i);
2386 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2387 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2388 		}
2389 	}
2390 }
2391 
2392 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2393 {
2394 	int ret = 0;
2395 
2396 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2397 					set->queue_depth, set->reserved_tags);
2398 	if (!set->tags[hctx_idx])
2399 		return false;
2400 
2401 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2402 				set->queue_depth);
2403 	if (!ret)
2404 		return true;
2405 
2406 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2407 	set->tags[hctx_idx] = NULL;
2408 	return false;
2409 }
2410 
2411 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2412 					 unsigned int hctx_idx)
2413 {
2414 	if (set->tags && set->tags[hctx_idx]) {
2415 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2416 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2417 		set->tags[hctx_idx] = NULL;
2418 	}
2419 }
2420 
2421 static void blk_mq_map_swqueue(struct request_queue *q)
2422 {
2423 	unsigned int i, j, hctx_idx;
2424 	struct blk_mq_hw_ctx *hctx;
2425 	struct blk_mq_ctx *ctx;
2426 	struct blk_mq_tag_set *set = q->tag_set;
2427 
2428 	/*
2429 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2430 	 */
2431 	mutex_lock(&q->sysfs_lock);
2432 
2433 	queue_for_each_hw_ctx(q, hctx, i) {
2434 		cpumask_clear(hctx->cpumask);
2435 		hctx->nr_ctx = 0;
2436 		hctx->dispatch_from = NULL;
2437 	}
2438 
2439 	/*
2440 	 * Map software to hardware queues.
2441 	 *
2442 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2443 	 */
2444 	for_each_possible_cpu(i) {
2445 		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2446 		/* unmapped hw queue can be remapped after CPU topo changed */
2447 		if (!set->tags[hctx_idx] &&
2448 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2449 			/*
2450 			 * If tags initialization fail for some hctx,
2451 			 * that hctx won't be brought online.  In this
2452 			 * case, remap the current ctx to hctx[0] which
2453 			 * is guaranteed to always have tags allocated
2454 			 */
2455 			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2456 		}
2457 
2458 		ctx = per_cpu_ptr(q->queue_ctx, i);
2459 		for (j = 0; j < set->nr_maps; j++) {
2460 			if (!set->map[j].nr_queues) {
2461 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2462 						HCTX_TYPE_DEFAULT, i);
2463 				continue;
2464 			}
2465 
2466 			hctx = blk_mq_map_queue_type(q, j, i);
2467 			ctx->hctxs[j] = hctx;
2468 			/*
2469 			 * If the CPU is already set in the mask, then we've
2470 			 * mapped this one already. This can happen if
2471 			 * devices share queues across queue maps.
2472 			 */
2473 			if (cpumask_test_cpu(i, hctx->cpumask))
2474 				continue;
2475 
2476 			cpumask_set_cpu(i, hctx->cpumask);
2477 			hctx->type = j;
2478 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2479 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2480 
2481 			/*
2482 			 * If the nr_ctx type overflows, we have exceeded the
2483 			 * amount of sw queues we can support.
2484 			 */
2485 			BUG_ON(!hctx->nr_ctx);
2486 		}
2487 
2488 		for (; j < HCTX_MAX_TYPES; j++)
2489 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2490 					HCTX_TYPE_DEFAULT, i);
2491 	}
2492 
2493 	mutex_unlock(&q->sysfs_lock);
2494 
2495 	queue_for_each_hw_ctx(q, hctx, i) {
2496 		/*
2497 		 * If no software queues are mapped to this hardware queue,
2498 		 * disable it and free the request entries.
2499 		 */
2500 		if (!hctx->nr_ctx) {
2501 			/* Never unmap queue 0.  We need it as a
2502 			 * fallback in case of a new remap fails
2503 			 * allocation
2504 			 */
2505 			if (i && set->tags[i])
2506 				blk_mq_free_map_and_requests(set, i);
2507 
2508 			hctx->tags = NULL;
2509 			continue;
2510 		}
2511 
2512 		hctx->tags = set->tags[i];
2513 		WARN_ON(!hctx->tags);
2514 
2515 		/*
2516 		 * Set the map size to the number of mapped software queues.
2517 		 * This is more accurate and more efficient than looping
2518 		 * over all possibly mapped software queues.
2519 		 */
2520 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2521 
2522 		/*
2523 		 * Initialize batch roundrobin counts
2524 		 */
2525 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2526 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2527 	}
2528 }
2529 
2530 /*
2531  * Caller needs to ensure that we're either frozen/quiesced, or that
2532  * the queue isn't live yet.
2533  */
2534 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2535 {
2536 	struct blk_mq_hw_ctx *hctx;
2537 	int i;
2538 
2539 	queue_for_each_hw_ctx(q, hctx, i) {
2540 		if (shared)
2541 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2542 		else
2543 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2544 	}
2545 }
2546 
2547 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2548 					bool shared)
2549 {
2550 	struct request_queue *q;
2551 
2552 	lockdep_assert_held(&set->tag_list_lock);
2553 
2554 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2555 		blk_mq_freeze_queue(q);
2556 		queue_set_hctx_shared(q, shared);
2557 		blk_mq_unfreeze_queue(q);
2558 	}
2559 }
2560 
2561 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2562 {
2563 	struct blk_mq_tag_set *set = q->tag_set;
2564 
2565 	mutex_lock(&set->tag_list_lock);
2566 	list_del_rcu(&q->tag_set_list);
2567 	if (list_is_singular(&set->tag_list)) {
2568 		/* just transitioned to unshared */
2569 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2570 		/* update existing queue */
2571 		blk_mq_update_tag_set_depth(set, false);
2572 	}
2573 	mutex_unlock(&set->tag_list_lock);
2574 	INIT_LIST_HEAD(&q->tag_set_list);
2575 }
2576 
2577 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2578 				     struct request_queue *q)
2579 {
2580 	mutex_lock(&set->tag_list_lock);
2581 
2582 	/*
2583 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2584 	 */
2585 	if (!list_empty(&set->tag_list) &&
2586 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2587 		set->flags |= BLK_MQ_F_TAG_SHARED;
2588 		/* update existing queue */
2589 		blk_mq_update_tag_set_depth(set, true);
2590 	}
2591 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2592 		queue_set_hctx_shared(q, true);
2593 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2594 
2595 	mutex_unlock(&set->tag_list_lock);
2596 }
2597 
2598 /* All allocations will be freed in release handler of q->mq_kobj */
2599 static int blk_mq_alloc_ctxs(struct request_queue *q)
2600 {
2601 	struct blk_mq_ctxs *ctxs;
2602 	int cpu;
2603 
2604 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2605 	if (!ctxs)
2606 		return -ENOMEM;
2607 
2608 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2609 	if (!ctxs->queue_ctx)
2610 		goto fail;
2611 
2612 	for_each_possible_cpu(cpu) {
2613 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2614 		ctx->ctxs = ctxs;
2615 	}
2616 
2617 	q->mq_kobj = &ctxs->kobj;
2618 	q->queue_ctx = ctxs->queue_ctx;
2619 
2620 	return 0;
2621  fail:
2622 	kfree(ctxs);
2623 	return -ENOMEM;
2624 }
2625 
2626 /*
2627  * It is the actual release handler for mq, but we do it from
2628  * request queue's release handler for avoiding use-after-free
2629  * and headache because q->mq_kobj shouldn't have been introduced,
2630  * but we can't group ctx/kctx kobj without it.
2631  */
2632 void blk_mq_release(struct request_queue *q)
2633 {
2634 	struct blk_mq_hw_ctx *hctx;
2635 	unsigned int i;
2636 
2637 	/* hctx kobj stays in hctx */
2638 	queue_for_each_hw_ctx(q, hctx, i) {
2639 		if (!hctx)
2640 			continue;
2641 		kobject_put(&hctx->kobj);
2642 	}
2643 
2644 	kfree(q->queue_hw_ctx);
2645 
2646 	/*
2647 	 * release .mq_kobj and sw queue's kobject now because
2648 	 * both share lifetime with request queue.
2649 	 */
2650 	blk_mq_sysfs_deinit(q);
2651 }
2652 
2653 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2654 {
2655 	struct request_queue *uninit_q, *q;
2656 
2657 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2658 	if (!uninit_q)
2659 		return ERR_PTR(-ENOMEM);
2660 
2661 	q = blk_mq_init_allocated_queue(set, uninit_q);
2662 	if (IS_ERR(q))
2663 		blk_cleanup_queue(uninit_q);
2664 
2665 	return q;
2666 }
2667 EXPORT_SYMBOL(blk_mq_init_queue);
2668 
2669 /*
2670  * Helper for setting up a queue with mq ops, given queue depth, and
2671  * the passed in mq ops flags.
2672  */
2673 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2674 					   const struct blk_mq_ops *ops,
2675 					   unsigned int queue_depth,
2676 					   unsigned int set_flags)
2677 {
2678 	struct request_queue *q;
2679 	int ret;
2680 
2681 	memset(set, 0, sizeof(*set));
2682 	set->ops = ops;
2683 	set->nr_hw_queues = 1;
2684 	set->nr_maps = 1;
2685 	set->queue_depth = queue_depth;
2686 	set->numa_node = NUMA_NO_NODE;
2687 	set->flags = set_flags;
2688 
2689 	ret = blk_mq_alloc_tag_set(set);
2690 	if (ret)
2691 		return ERR_PTR(ret);
2692 
2693 	q = blk_mq_init_queue(set);
2694 	if (IS_ERR(q)) {
2695 		blk_mq_free_tag_set(set);
2696 		return q;
2697 	}
2698 
2699 	return q;
2700 }
2701 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2702 
2703 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2704 {
2705 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2706 
2707 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2708 			   __alignof__(struct blk_mq_hw_ctx)) !=
2709 		     sizeof(struct blk_mq_hw_ctx));
2710 
2711 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2712 		hw_ctx_size += sizeof(struct srcu_struct);
2713 
2714 	return hw_ctx_size;
2715 }
2716 
2717 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2718 		struct blk_mq_tag_set *set, struct request_queue *q,
2719 		int hctx_idx, int node)
2720 {
2721 	struct blk_mq_hw_ctx *hctx;
2722 
2723 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2724 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2725 			node);
2726 	if (!hctx)
2727 		return NULL;
2728 
2729 	if (!zalloc_cpumask_var_node(&hctx->cpumask,
2730 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2731 				node)) {
2732 		kfree(hctx);
2733 		return NULL;
2734 	}
2735 
2736 	atomic_set(&hctx->nr_active, 0);
2737 	hctx->numa_node = node;
2738 	hctx->queue_num = hctx_idx;
2739 
2740 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2741 		free_cpumask_var(hctx->cpumask);
2742 		kfree(hctx);
2743 		return NULL;
2744 	}
2745 	blk_mq_hctx_kobj_init(hctx);
2746 
2747 	return hctx;
2748 }
2749 
2750 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2751 						struct request_queue *q)
2752 {
2753 	int i, j, end;
2754 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2755 
2756 	/* protect against switching io scheduler  */
2757 	mutex_lock(&q->sysfs_lock);
2758 	for (i = 0; i < set->nr_hw_queues; i++) {
2759 		int node;
2760 		struct blk_mq_hw_ctx *hctx;
2761 
2762 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2763 		/*
2764 		 * If the hw queue has been mapped to another numa node,
2765 		 * we need to realloc the hctx. If allocation fails, fallback
2766 		 * to use the previous one.
2767 		 */
2768 		if (hctxs[i] && (hctxs[i]->numa_node == node))
2769 			continue;
2770 
2771 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2772 		if (hctx) {
2773 			if (hctxs[i]) {
2774 				blk_mq_exit_hctx(q, set, hctxs[i], i);
2775 				kobject_put(&hctxs[i]->kobj);
2776 			}
2777 			hctxs[i] = hctx;
2778 		} else {
2779 			if (hctxs[i])
2780 				pr_warn("Allocate new hctx on node %d fails,\
2781 						fallback to previous one on node %d\n",
2782 						node, hctxs[i]->numa_node);
2783 			else
2784 				break;
2785 		}
2786 	}
2787 	/*
2788 	 * Increasing nr_hw_queues fails. Free the newly allocated
2789 	 * hctxs and keep the previous q->nr_hw_queues.
2790 	 */
2791 	if (i != set->nr_hw_queues) {
2792 		j = q->nr_hw_queues;
2793 		end = i;
2794 	} else {
2795 		j = i;
2796 		end = q->nr_hw_queues;
2797 		q->nr_hw_queues = set->nr_hw_queues;
2798 	}
2799 
2800 	for (; j < end; j++) {
2801 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2802 
2803 		if (hctx) {
2804 			if (hctx->tags)
2805 				blk_mq_free_map_and_requests(set, j);
2806 			blk_mq_exit_hctx(q, set, hctx, j);
2807 			kobject_put(&hctx->kobj);
2808 			hctxs[j] = NULL;
2809 
2810 		}
2811 	}
2812 	mutex_unlock(&q->sysfs_lock);
2813 }
2814 
2815 /*
2816  * Maximum number of hardware queues we support. For single sets, we'll never
2817  * have more than the CPUs (software queues). For multiple sets, the tag_set
2818  * user may have set ->nr_hw_queues larger.
2819  */
2820 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2821 {
2822 	if (set->nr_maps == 1)
2823 		return nr_cpu_ids;
2824 
2825 	return max(set->nr_hw_queues, nr_cpu_ids);
2826 }
2827 
2828 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2829 						  struct request_queue *q)
2830 {
2831 	/* mark the queue as mq asap */
2832 	q->mq_ops = set->ops;
2833 
2834 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2835 					     blk_mq_poll_stats_bkt,
2836 					     BLK_MQ_POLL_STATS_BKTS, q);
2837 	if (!q->poll_cb)
2838 		goto err_exit;
2839 
2840 	if (blk_mq_alloc_ctxs(q))
2841 		goto err_exit;
2842 
2843 	/* init q->mq_kobj and sw queues' kobjects */
2844 	blk_mq_sysfs_init(q);
2845 
2846 	q->nr_queues = nr_hw_queues(set);
2847 	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2848 						GFP_KERNEL, set->numa_node);
2849 	if (!q->queue_hw_ctx)
2850 		goto err_sys_init;
2851 
2852 	blk_mq_realloc_hw_ctxs(set, q);
2853 	if (!q->nr_hw_queues)
2854 		goto err_hctxs;
2855 
2856 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2857 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2858 
2859 	q->tag_set = set;
2860 
2861 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2862 	if (set->nr_maps > HCTX_TYPE_POLL &&
2863 	    set->map[HCTX_TYPE_POLL].nr_queues)
2864 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2865 
2866 	q->sg_reserved_size = INT_MAX;
2867 
2868 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2869 	INIT_LIST_HEAD(&q->requeue_list);
2870 	spin_lock_init(&q->requeue_lock);
2871 
2872 	blk_queue_make_request(q, blk_mq_make_request);
2873 
2874 	/*
2875 	 * Do this after blk_queue_make_request() overrides it...
2876 	 */
2877 	q->nr_requests = set->queue_depth;
2878 
2879 	/*
2880 	 * Default to classic polling
2881 	 */
2882 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2883 
2884 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2885 	blk_mq_add_queue_tag_set(set, q);
2886 	blk_mq_map_swqueue(q);
2887 
2888 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2889 		int ret;
2890 
2891 		ret = elevator_init_mq(q);
2892 		if (ret)
2893 			return ERR_PTR(ret);
2894 	}
2895 
2896 	return q;
2897 
2898 err_hctxs:
2899 	kfree(q->queue_hw_ctx);
2900 err_sys_init:
2901 	blk_mq_sysfs_deinit(q);
2902 err_exit:
2903 	q->mq_ops = NULL;
2904 	return ERR_PTR(-ENOMEM);
2905 }
2906 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2907 
2908 void blk_mq_free_queue(struct request_queue *q)
2909 {
2910 	struct blk_mq_tag_set	*set = q->tag_set;
2911 
2912 	blk_mq_del_queue_tag_set(q);
2913 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2914 }
2915 
2916 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2917 {
2918 	int i;
2919 
2920 	for (i = 0; i < set->nr_hw_queues; i++)
2921 		if (!__blk_mq_alloc_rq_map(set, i))
2922 			goto out_unwind;
2923 
2924 	return 0;
2925 
2926 out_unwind:
2927 	while (--i >= 0)
2928 		blk_mq_free_rq_map(set->tags[i]);
2929 
2930 	return -ENOMEM;
2931 }
2932 
2933 /*
2934  * Allocate the request maps associated with this tag_set. Note that this
2935  * may reduce the depth asked for, if memory is tight. set->queue_depth
2936  * will be updated to reflect the allocated depth.
2937  */
2938 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2939 {
2940 	unsigned int depth;
2941 	int err;
2942 
2943 	depth = set->queue_depth;
2944 	do {
2945 		err = __blk_mq_alloc_rq_maps(set);
2946 		if (!err)
2947 			break;
2948 
2949 		set->queue_depth >>= 1;
2950 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2951 			err = -ENOMEM;
2952 			break;
2953 		}
2954 	} while (set->queue_depth);
2955 
2956 	if (!set->queue_depth || err) {
2957 		pr_err("blk-mq: failed to allocate request map\n");
2958 		return -ENOMEM;
2959 	}
2960 
2961 	if (depth != set->queue_depth)
2962 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2963 						depth, set->queue_depth);
2964 
2965 	return 0;
2966 }
2967 
2968 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2969 {
2970 	if (set->ops->map_queues && !is_kdump_kernel()) {
2971 		int i;
2972 
2973 		/*
2974 		 * transport .map_queues is usually done in the following
2975 		 * way:
2976 		 *
2977 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2978 		 * 	mask = get_cpu_mask(queue)
2979 		 * 	for_each_cpu(cpu, mask)
2980 		 * 		set->map[x].mq_map[cpu] = queue;
2981 		 * }
2982 		 *
2983 		 * When we need to remap, the table has to be cleared for
2984 		 * killing stale mapping since one CPU may not be mapped
2985 		 * to any hw queue.
2986 		 */
2987 		for (i = 0; i < set->nr_maps; i++)
2988 			blk_mq_clear_mq_map(&set->map[i]);
2989 
2990 		return set->ops->map_queues(set);
2991 	} else {
2992 		BUG_ON(set->nr_maps > 1);
2993 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2994 	}
2995 }
2996 
2997 /*
2998  * Alloc a tag set to be associated with one or more request queues.
2999  * May fail with EINVAL for various error conditions. May adjust the
3000  * requested depth down, if it's too large. In that case, the set
3001  * value will be stored in set->queue_depth.
3002  */
3003 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3004 {
3005 	int i, ret;
3006 
3007 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3008 
3009 	if (!set->nr_hw_queues)
3010 		return -EINVAL;
3011 	if (!set->queue_depth)
3012 		return -EINVAL;
3013 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3014 		return -EINVAL;
3015 
3016 	if (!set->ops->queue_rq)
3017 		return -EINVAL;
3018 
3019 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3020 		return -EINVAL;
3021 
3022 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3023 		pr_info("blk-mq: reduced tag depth to %u\n",
3024 			BLK_MQ_MAX_DEPTH);
3025 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3026 	}
3027 
3028 	if (!set->nr_maps)
3029 		set->nr_maps = 1;
3030 	else if (set->nr_maps > HCTX_MAX_TYPES)
3031 		return -EINVAL;
3032 
3033 	/*
3034 	 * If a crashdump is active, then we are potentially in a very
3035 	 * memory constrained environment. Limit us to 1 queue and
3036 	 * 64 tags to prevent using too much memory.
3037 	 */
3038 	if (is_kdump_kernel()) {
3039 		set->nr_hw_queues = 1;
3040 		set->nr_maps = 1;
3041 		set->queue_depth = min(64U, set->queue_depth);
3042 	}
3043 	/*
3044 	 * There is no use for more h/w queues than cpus if we just have
3045 	 * a single map
3046 	 */
3047 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3048 		set->nr_hw_queues = nr_cpu_ids;
3049 
3050 	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3051 				 GFP_KERNEL, set->numa_node);
3052 	if (!set->tags)
3053 		return -ENOMEM;
3054 
3055 	ret = -ENOMEM;
3056 	for (i = 0; i < set->nr_maps; i++) {
3057 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3058 						  sizeof(set->map[i].mq_map[0]),
3059 						  GFP_KERNEL, set->numa_node);
3060 		if (!set->map[i].mq_map)
3061 			goto out_free_mq_map;
3062 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3063 	}
3064 
3065 	ret = blk_mq_update_queue_map(set);
3066 	if (ret)
3067 		goto out_free_mq_map;
3068 
3069 	ret = blk_mq_alloc_rq_maps(set);
3070 	if (ret)
3071 		goto out_free_mq_map;
3072 
3073 	mutex_init(&set->tag_list_lock);
3074 	INIT_LIST_HEAD(&set->tag_list);
3075 
3076 	return 0;
3077 
3078 out_free_mq_map:
3079 	for (i = 0; i < set->nr_maps; i++) {
3080 		kfree(set->map[i].mq_map);
3081 		set->map[i].mq_map = NULL;
3082 	}
3083 	kfree(set->tags);
3084 	set->tags = NULL;
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3088 
3089 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3090 {
3091 	int i, j;
3092 
3093 	for (i = 0; i < nr_hw_queues(set); i++)
3094 		blk_mq_free_map_and_requests(set, i);
3095 
3096 	for (j = 0; j < set->nr_maps; j++) {
3097 		kfree(set->map[j].mq_map);
3098 		set->map[j].mq_map = NULL;
3099 	}
3100 
3101 	kfree(set->tags);
3102 	set->tags = NULL;
3103 }
3104 EXPORT_SYMBOL(blk_mq_free_tag_set);
3105 
3106 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3107 {
3108 	struct blk_mq_tag_set *set = q->tag_set;
3109 	struct blk_mq_hw_ctx *hctx;
3110 	int i, ret;
3111 
3112 	if (!set)
3113 		return -EINVAL;
3114 
3115 	if (q->nr_requests == nr)
3116 		return 0;
3117 
3118 	blk_mq_freeze_queue(q);
3119 	blk_mq_quiesce_queue(q);
3120 
3121 	ret = 0;
3122 	queue_for_each_hw_ctx(q, hctx, i) {
3123 		if (!hctx->tags)
3124 			continue;
3125 		/*
3126 		 * If we're using an MQ scheduler, just update the scheduler
3127 		 * queue depth. This is similar to what the old code would do.
3128 		 */
3129 		if (!hctx->sched_tags) {
3130 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3131 							false);
3132 		} else {
3133 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3134 							nr, true);
3135 		}
3136 		if (ret)
3137 			break;
3138 	}
3139 
3140 	if (!ret)
3141 		q->nr_requests = nr;
3142 
3143 	blk_mq_unquiesce_queue(q);
3144 	blk_mq_unfreeze_queue(q);
3145 
3146 	return ret;
3147 }
3148 
3149 /*
3150  * request_queue and elevator_type pair.
3151  * It is just used by __blk_mq_update_nr_hw_queues to cache
3152  * the elevator_type associated with a request_queue.
3153  */
3154 struct blk_mq_qe_pair {
3155 	struct list_head node;
3156 	struct request_queue *q;
3157 	struct elevator_type *type;
3158 };
3159 
3160 /*
3161  * Cache the elevator_type in qe pair list and switch the
3162  * io scheduler to 'none'
3163  */
3164 static bool blk_mq_elv_switch_none(struct list_head *head,
3165 		struct request_queue *q)
3166 {
3167 	struct blk_mq_qe_pair *qe;
3168 
3169 	if (!q->elevator)
3170 		return true;
3171 
3172 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3173 	if (!qe)
3174 		return false;
3175 
3176 	INIT_LIST_HEAD(&qe->node);
3177 	qe->q = q;
3178 	qe->type = q->elevator->type;
3179 	list_add(&qe->node, head);
3180 
3181 	mutex_lock(&q->sysfs_lock);
3182 	/*
3183 	 * After elevator_switch_mq, the previous elevator_queue will be
3184 	 * released by elevator_release. The reference of the io scheduler
3185 	 * module get by elevator_get will also be put. So we need to get
3186 	 * a reference of the io scheduler module here to prevent it to be
3187 	 * removed.
3188 	 */
3189 	__module_get(qe->type->elevator_owner);
3190 	elevator_switch_mq(q, NULL);
3191 	mutex_unlock(&q->sysfs_lock);
3192 
3193 	return true;
3194 }
3195 
3196 static void blk_mq_elv_switch_back(struct list_head *head,
3197 		struct request_queue *q)
3198 {
3199 	struct blk_mq_qe_pair *qe;
3200 	struct elevator_type *t = NULL;
3201 
3202 	list_for_each_entry(qe, head, node)
3203 		if (qe->q == q) {
3204 			t = qe->type;
3205 			break;
3206 		}
3207 
3208 	if (!t)
3209 		return;
3210 
3211 	list_del(&qe->node);
3212 	kfree(qe);
3213 
3214 	mutex_lock(&q->sysfs_lock);
3215 	elevator_switch_mq(q, t);
3216 	mutex_unlock(&q->sysfs_lock);
3217 }
3218 
3219 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3220 							int nr_hw_queues)
3221 {
3222 	struct request_queue *q;
3223 	LIST_HEAD(head);
3224 	int prev_nr_hw_queues;
3225 
3226 	lockdep_assert_held(&set->tag_list_lock);
3227 
3228 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3229 		nr_hw_queues = nr_cpu_ids;
3230 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3231 		return;
3232 
3233 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3234 		blk_mq_freeze_queue(q);
3235 	/*
3236 	 * Sync with blk_mq_queue_tag_busy_iter.
3237 	 */
3238 	synchronize_rcu();
3239 	/*
3240 	 * Switch IO scheduler to 'none', cleaning up the data associated
3241 	 * with the previous scheduler. We will switch back once we are done
3242 	 * updating the new sw to hw queue mappings.
3243 	 */
3244 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3245 		if (!blk_mq_elv_switch_none(&head, q))
3246 			goto switch_back;
3247 
3248 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3249 		blk_mq_debugfs_unregister_hctxs(q);
3250 		blk_mq_sysfs_unregister(q);
3251 	}
3252 
3253 	prev_nr_hw_queues = set->nr_hw_queues;
3254 	set->nr_hw_queues = nr_hw_queues;
3255 	blk_mq_update_queue_map(set);
3256 fallback:
3257 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3258 		blk_mq_realloc_hw_ctxs(set, q);
3259 		if (q->nr_hw_queues != set->nr_hw_queues) {
3260 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3261 					nr_hw_queues, prev_nr_hw_queues);
3262 			set->nr_hw_queues = prev_nr_hw_queues;
3263 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3264 			goto fallback;
3265 		}
3266 		blk_mq_map_swqueue(q);
3267 	}
3268 
3269 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3270 		blk_mq_sysfs_register(q);
3271 		blk_mq_debugfs_register_hctxs(q);
3272 	}
3273 
3274 switch_back:
3275 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3276 		blk_mq_elv_switch_back(&head, q);
3277 
3278 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3279 		blk_mq_unfreeze_queue(q);
3280 }
3281 
3282 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3283 {
3284 	mutex_lock(&set->tag_list_lock);
3285 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3286 	mutex_unlock(&set->tag_list_lock);
3287 }
3288 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3289 
3290 /* Enable polling stats and return whether they were already enabled. */
3291 static bool blk_poll_stats_enable(struct request_queue *q)
3292 {
3293 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3294 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3295 		return true;
3296 	blk_stat_add_callback(q, q->poll_cb);
3297 	return false;
3298 }
3299 
3300 static void blk_mq_poll_stats_start(struct request_queue *q)
3301 {
3302 	/*
3303 	 * We don't arm the callback if polling stats are not enabled or the
3304 	 * callback is already active.
3305 	 */
3306 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3307 	    blk_stat_is_active(q->poll_cb))
3308 		return;
3309 
3310 	blk_stat_activate_msecs(q->poll_cb, 100);
3311 }
3312 
3313 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3314 {
3315 	struct request_queue *q = cb->data;
3316 	int bucket;
3317 
3318 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3319 		if (cb->stat[bucket].nr_samples)
3320 			q->poll_stat[bucket] = cb->stat[bucket];
3321 	}
3322 }
3323 
3324 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3325 				       struct blk_mq_hw_ctx *hctx,
3326 				       struct request *rq)
3327 {
3328 	unsigned long ret = 0;
3329 	int bucket;
3330 
3331 	/*
3332 	 * If stats collection isn't on, don't sleep but turn it on for
3333 	 * future users
3334 	 */
3335 	if (!blk_poll_stats_enable(q))
3336 		return 0;
3337 
3338 	/*
3339 	 * As an optimistic guess, use half of the mean service time
3340 	 * for this type of request. We can (and should) make this smarter.
3341 	 * For instance, if the completion latencies are tight, we can
3342 	 * get closer than just half the mean. This is especially
3343 	 * important on devices where the completion latencies are longer
3344 	 * than ~10 usec. We do use the stats for the relevant IO size
3345 	 * if available which does lead to better estimates.
3346 	 */
3347 	bucket = blk_mq_poll_stats_bkt(rq);
3348 	if (bucket < 0)
3349 		return ret;
3350 
3351 	if (q->poll_stat[bucket].nr_samples)
3352 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3353 
3354 	return ret;
3355 }
3356 
3357 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3358 				     struct blk_mq_hw_ctx *hctx,
3359 				     struct request *rq)
3360 {
3361 	struct hrtimer_sleeper hs;
3362 	enum hrtimer_mode mode;
3363 	unsigned int nsecs;
3364 	ktime_t kt;
3365 
3366 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3367 		return false;
3368 
3369 	/*
3370 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3371 	 *
3372 	 *  0:	use half of prev avg
3373 	 * >0:	use this specific value
3374 	 */
3375 	if (q->poll_nsec > 0)
3376 		nsecs = q->poll_nsec;
3377 	else
3378 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3379 
3380 	if (!nsecs)
3381 		return false;
3382 
3383 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3384 
3385 	/*
3386 	 * This will be replaced with the stats tracking code, using
3387 	 * 'avg_completion_time / 2' as the pre-sleep target.
3388 	 */
3389 	kt = nsecs;
3390 
3391 	mode = HRTIMER_MODE_REL;
3392 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3393 	hrtimer_set_expires(&hs.timer, kt);
3394 
3395 	hrtimer_init_sleeper(&hs, current);
3396 	do {
3397 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3398 			break;
3399 		set_current_state(TASK_UNINTERRUPTIBLE);
3400 		hrtimer_start_expires(&hs.timer, mode);
3401 		if (hs.task)
3402 			io_schedule();
3403 		hrtimer_cancel(&hs.timer);
3404 		mode = HRTIMER_MODE_ABS;
3405 	} while (hs.task && !signal_pending(current));
3406 
3407 	__set_current_state(TASK_RUNNING);
3408 	destroy_hrtimer_on_stack(&hs.timer);
3409 	return true;
3410 }
3411 
3412 static bool blk_mq_poll_hybrid(struct request_queue *q,
3413 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3414 {
3415 	struct request *rq;
3416 
3417 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3418 		return false;
3419 
3420 	if (!blk_qc_t_is_internal(cookie))
3421 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3422 	else {
3423 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3424 		/*
3425 		 * With scheduling, if the request has completed, we'll
3426 		 * get a NULL return here, as we clear the sched tag when
3427 		 * that happens. The request still remains valid, like always,
3428 		 * so we should be safe with just the NULL check.
3429 		 */
3430 		if (!rq)
3431 			return false;
3432 	}
3433 
3434 	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3435 }
3436 
3437 /**
3438  * blk_poll - poll for IO completions
3439  * @q:  the queue
3440  * @cookie: cookie passed back at IO submission time
3441  * @spin: whether to spin for completions
3442  *
3443  * Description:
3444  *    Poll for completions on the passed in queue. Returns number of
3445  *    completed entries found. If @spin is true, then blk_poll will continue
3446  *    looping until at least one completion is found, unless the task is
3447  *    otherwise marked running (or we need to reschedule).
3448  */
3449 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3450 {
3451 	struct blk_mq_hw_ctx *hctx;
3452 	long state;
3453 
3454 	if (!blk_qc_t_valid(cookie) ||
3455 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3456 		return 0;
3457 
3458 	if (current->plug)
3459 		blk_flush_plug_list(current->plug, false);
3460 
3461 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3462 
3463 	/*
3464 	 * If we sleep, have the caller restart the poll loop to reset
3465 	 * the state. Like for the other success return cases, the
3466 	 * caller is responsible for checking if the IO completed. If
3467 	 * the IO isn't complete, we'll get called again and will go
3468 	 * straight to the busy poll loop.
3469 	 */
3470 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3471 		return 1;
3472 
3473 	hctx->poll_considered++;
3474 
3475 	state = current->state;
3476 	do {
3477 		int ret;
3478 
3479 		hctx->poll_invoked++;
3480 
3481 		ret = q->mq_ops->poll(hctx);
3482 		if (ret > 0) {
3483 			hctx->poll_success++;
3484 			__set_current_state(TASK_RUNNING);
3485 			return ret;
3486 		}
3487 
3488 		if (signal_pending_state(state, current))
3489 			__set_current_state(TASK_RUNNING);
3490 
3491 		if (current->state == TASK_RUNNING)
3492 			return 1;
3493 		if (ret < 0 || !spin)
3494 			break;
3495 		cpu_relax();
3496 	} while (!need_resched());
3497 
3498 	__set_current_state(TASK_RUNNING);
3499 	return 0;
3500 }
3501 EXPORT_SYMBOL_GPL(blk_poll);
3502 
3503 unsigned int blk_mq_rq_cpu(struct request *rq)
3504 {
3505 	return rq->mq_ctx->cpu;
3506 }
3507 EXPORT_SYMBOL(blk_mq_rq_cpu);
3508 
3509 static int __init blk_mq_init(void)
3510 {
3511 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3512 				blk_mq_hctx_notify_dead);
3513 	return 0;
3514 }
3515 subsys_initcall(blk_mq_init);
3516