1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-pm.h" 37 #include "blk-stat.h" 38 #include "blk-mq-sched.h" 39 #include "blk-rq-qos.h" 40 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx, dispatch list or elevator 63 * have pending work in this hardware queue. 64 */ 65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 66 { 67 return !list_empty_careful(&hctx->dispatch) || 68 sbitmap_any_bit_set(&hctx->ctx_map) || 69 blk_mq_sched_has_work(hctx); 70 } 71 72 /* 73 * Mark this ctx as having pending work in this hardware queue 74 */ 75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 76 struct blk_mq_ctx *ctx) 77 { 78 const int bit = ctx->index_hw[hctx->type]; 79 80 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 81 sbitmap_set_bit(&hctx->ctx_map, bit); 82 } 83 84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 85 struct blk_mq_ctx *ctx) 86 { 87 const int bit = ctx->index_hw[hctx->type]; 88 89 sbitmap_clear_bit(&hctx->ctx_map, bit); 90 } 91 92 struct mq_inflight { 93 struct hd_struct *part; 94 unsigned int *inflight; 95 }; 96 97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 98 struct request *rq, void *priv, 99 bool reserved) 100 { 101 struct mq_inflight *mi = priv; 102 103 /* 104 * index[0] counts the specific partition that was asked for. 105 */ 106 if (rq->part == mi->part) 107 mi->inflight[0]++; 108 109 return true; 110 } 111 112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 113 { 114 unsigned inflight[2]; 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 120 return inflight[0]; 121 } 122 123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, 124 struct request *rq, void *priv, 125 bool reserved) 126 { 127 struct mq_inflight *mi = priv; 128 129 if (rq->part == mi->part) 130 mi->inflight[rq_data_dir(rq)]++; 131 132 return true; 133 } 134 135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 136 unsigned int inflight[2]) 137 { 138 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 139 140 inflight[0] = inflight[1] = 0; 141 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); 142 } 143 144 void blk_freeze_queue_start(struct request_queue *q) 145 { 146 int freeze_depth; 147 148 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 149 if (freeze_depth == 1) { 150 percpu_ref_kill(&q->q_usage_counter); 151 if (queue_is_mq(q)) 152 blk_mq_run_hw_queues(q, false); 153 } 154 } 155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 156 157 void blk_mq_freeze_queue_wait(struct request_queue *q) 158 { 159 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 160 } 161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 162 163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 164 unsigned long timeout) 165 { 166 return wait_event_timeout(q->mq_freeze_wq, 167 percpu_ref_is_zero(&q->q_usage_counter), 168 timeout); 169 } 170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 171 172 /* 173 * Guarantee no request is in use, so we can change any data structure of 174 * the queue afterward. 175 */ 176 void blk_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * In the !blk_mq case we are only calling this to kill the 180 * q_usage_counter, otherwise this increases the freeze depth 181 * and waits for it to return to zero. For this reason there is 182 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 183 * exported to drivers as the only user for unfreeze is blk_mq. 184 */ 185 blk_freeze_queue_start(q); 186 blk_mq_freeze_queue_wait(q); 187 } 188 189 void blk_mq_freeze_queue(struct request_queue *q) 190 { 191 /* 192 * ...just an alias to keep freeze and unfreeze actions balanced 193 * in the blk_mq_* namespace 194 */ 195 blk_freeze_queue(q); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 198 199 void blk_mq_unfreeze_queue(struct request_queue *q) 200 { 201 int freeze_depth; 202 203 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 204 WARN_ON_ONCE(freeze_depth < 0); 205 if (!freeze_depth) { 206 percpu_ref_resurrect(&q->q_usage_counter); 207 wake_up_all(&q->mq_freeze_wq); 208 } 209 } 210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 211 212 /* 213 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 214 * mpt3sas driver such that this function can be removed. 215 */ 216 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 217 { 218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 219 } 220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 221 222 /** 223 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 224 * @q: request queue. 225 * 226 * Note: this function does not prevent that the struct request end_io() 227 * callback function is invoked. Once this function is returned, we make 228 * sure no dispatch can happen until the queue is unquiesced via 229 * blk_mq_unquiesce_queue(). 230 */ 231 void blk_mq_quiesce_queue(struct request_queue *q) 232 { 233 struct blk_mq_hw_ctx *hctx; 234 unsigned int i; 235 bool rcu = false; 236 237 blk_mq_quiesce_queue_nowait(q); 238 239 queue_for_each_hw_ctx(q, hctx, i) { 240 if (hctx->flags & BLK_MQ_F_BLOCKING) 241 synchronize_srcu(hctx->srcu); 242 else 243 rcu = true; 244 } 245 if (rcu) 246 synchronize_rcu(); 247 } 248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 249 250 /* 251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 252 * @q: request queue. 253 * 254 * This function recovers queue into the state before quiescing 255 * which is done by blk_mq_quiesce_queue. 256 */ 257 void blk_mq_unquiesce_queue(struct request_queue *q) 258 { 259 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 260 261 /* dispatch requests which are inserted during quiescing */ 262 blk_mq_run_hw_queues(q, true); 263 } 264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 265 266 void blk_mq_wake_waiters(struct request_queue *q) 267 { 268 struct blk_mq_hw_ctx *hctx; 269 unsigned int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) 272 if (blk_mq_hw_queue_mapped(hctx)) 273 blk_mq_tag_wakeup_all(hctx->tags, true); 274 } 275 276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 277 { 278 return blk_mq_has_free_tags(hctx->tags); 279 } 280 EXPORT_SYMBOL(blk_mq_can_queue); 281 282 /* 283 * Only need start/end time stamping if we have stats enabled, or using 284 * an IO scheduler. 285 */ 286 static inline bool blk_mq_need_time_stamp(struct request *rq) 287 { 288 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator; 289 } 290 291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 292 unsigned int tag, unsigned int op) 293 { 294 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 295 struct request *rq = tags->static_rqs[tag]; 296 req_flags_t rq_flags = 0; 297 298 if (data->flags & BLK_MQ_REQ_INTERNAL) { 299 rq->tag = -1; 300 rq->internal_tag = tag; 301 } else { 302 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 303 rq_flags = RQF_MQ_INFLIGHT; 304 atomic_inc(&data->hctx->nr_active); 305 } 306 rq->tag = tag; 307 rq->internal_tag = -1; 308 data->hctx->tags->rqs[rq->tag] = rq; 309 } 310 311 /* csd/requeue_work/fifo_time is initialized before use */ 312 rq->q = data->q; 313 rq->mq_ctx = data->ctx; 314 rq->mq_hctx = data->hctx; 315 rq->rq_flags = rq_flags; 316 rq->cmd_flags = op; 317 if (data->flags & BLK_MQ_REQ_PREEMPT) 318 rq->rq_flags |= RQF_PREEMPT; 319 if (blk_queue_io_stat(data->q)) 320 rq->rq_flags |= RQF_IO_STAT; 321 INIT_LIST_HEAD(&rq->queuelist); 322 INIT_HLIST_NODE(&rq->hash); 323 RB_CLEAR_NODE(&rq->rb_node); 324 rq->rq_disk = NULL; 325 rq->part = NULL; 326 if (blk_mq_need_time_stamp(rq)) 327 rq->start_time_ns = ktime_get_ns(); 328 else 329 rq->start_time_ns = 0; 330 rq->io_start_time_ns = 0; 331 rq->nr_phys_segments = 0; 332 #if defined(CONFIG_BLK_DEV_INTEGRITY) 333 rq->nr_integrity_segments = 0; 334 #endif 335 /* tag was already set */ 336 rq->extra_len = 0; 337 WRITE_ONCE(rq->deadline, 0); 338 339 rq->timeout = 0; 340 341 rq->end_io = NULL; 342 rq->end_io_data = NULL; 343 344 data->ctx->rq_dispatched[op_is_sync(op)]++; 345 refcount_set(&rq->ref, 1); 346 return rq; 347 } 348 349 static struct request *blk_mq_get_request(struct request_queue *q, 350 struct bio *bio, 351 struct blk_mq_alloc_data *data) 352 { 353 struct elevator_queue *e = q->elevator; 354 struct request *rq; 355 unsigned int tag; 356 bool put_ctx_on_error = false; 357 358 blk_queue_enter_live(q); 359 data->q = q; 360 if (likely(!data->ctx)) { 361 data->ctx = blk_mq_get_ctx(q); 362 put_ctx_on_error = true; 363 } 364 if (likely(!data->hctx)) 365 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 366 data->ctx); 367 if (data->cmd_flags & REQ_NOWAIT) 368 data->flags |= BLK_MQ_REQ_NOWAIT; 369 370 if (e) { 371 data->flags |= BLK_MQ_REQ_INTERNAL; 372 373 /* 374 * Flush requests are special and go directly to the 375 * dispatch list. Don't include reserved tags in the 376 * limiting, as it isn't useful. 377 */ 378 if (!op_is_flush(data->cmd_flags) && 379 e->type->ops.limit_depth && 380 !(data->flags & BLK_MQ_REQ_RESERVED)) 381 e->type->ops.limit_depth(data->cmd_flags, data); 382 } else { 383 blk_mq_tag_busy(data->hctx); 384 } 385 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_TAG_FAIL) { 388 if (put_ctx_on_error) { 389 blk_mq_put_ctx(data->ctx); 390 data->ctx = NULL; 391 } 392 blk_queue_exit(q); 393 return NULL; 394 } 395 396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags); 397 if (!op_is_flush(data->cmd_flags)) { 398 rq->elv.icq = NULL; 399 if (e && e->type->ops.prepare_request) { 400 if (e->type->icq_cache) 401 blk_mq_sched_assign_ioc(rq); 402 403 e->type->ops.prepare_request(rq, bio); 404 rq->rq_flags |= RQF_ELVPRIV; 405 } 406 } 407 data->hctx->queued++; 408 return rq; 409 } 410 411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 412 blk_mq_req_flags_t flags) 413 { 414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 415 struct request *rq; 416 int ret; 417 418 ret = blk_queue_enter(q, flags); 419 if (ret) 420 return ERR_PTR(ret); 421 422 rq = blk_mq_get_request(q, NULL, &alloc_data); 423 blk_queue_exit(q); 424 425 if (!rq) 426 return ERR_PTR(-EWOULDBLOCK); 427 428 blk_mq_put_ctx(alloc_data.ctx); 429 430 rq->__data_len = 0; 431 rq->__sector = (sector_t) -1; 432 rq->bio = rq->biotail = NULL; 433 return rq; 434 } 435 EXPORT_SYMBOL(blk_mq_alloc_request); 436 437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 439 { 440 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 441 struct request *rq; 442 unsigned int cpu; 443 int ret; 444 445 /* 446 * If the tag allocator sleeps we could get an allocation for a 447 * different hardware context. No need to complicate the low level 448 * allocator for this for the rare use case of a command tied to 449 * a specific queue. 450 */ 451 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 452 return ERR_PTR(-EINVAL); 453 454 if (hctx_idx >= q->nr_hw_queues) 455 return ERR_PTR(-EIO); 456 457 ret = blk_queue_enter(q, flags); 458 if (ret) 459 return ERR_PTR(ret); 460 461 /* 462 * Check if the hardware context is actually mapped to anything. 463 * If not tell the caller that it should skip this queue. 464 */ 465 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 466 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 467 blk_queue_exit(q); 468 return ERR_PTR(-EXDEV); 469 } 470 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 471 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 472 473 rq = blk_mq_get_request(q, NULL, &alloc_data); 474 blk_queue_exit(q); 475 476 if (!rq) 477 return ERR_PTR(-EWOULDBLOCK); 478 479 return rq; 480 } 481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 482 483 static void __blk_mq_free_request(struct request *rq) 484 { 485 struct request_queue *q = rq->q; 486 struct blk_mq_ctx *ctx = rq->mq_ctx; 487 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 488 const int sched_tag = rq->internal_tag; 489 490 blk_pm_mark_last_busy(rq); 491 rq->mq_hctx = NULL; 492 if (rq->tag != -1) 493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 494 if (sched_tag != -1) 495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 496 blk_mq_sched_restart(hctx); 497 blk_queue_exit(q); 498 } 499 500 void blk_mq_free_request(struct request *rq) 501 { 502 struct request_queue *q = rq->q; 503 struct elevator_queue *e = q->elevator; 504 struct blk_mq_ctx *ctx = rq->mq_ctx; 505 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 506 507 if (rq->rq_flags & RQF_ELVPRIV) { 508 if (e && e->type->ops.finish_request) 509 e->type->ops.finish_request(rq); 510 if (rq->elv.icq) { 511 put_io_context(rq->elv.icq->ioc); 512 rq->elv.icq = NULL; 513 } 514 } 515 516 ctx->rq_completed[rq_is_sync(rq)]++; 517 if (rq->rq_flags & RQF_MQ_INFLIGHT) 518 atomic_dec(&hctx->nr_active); 519 520 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 521 laptop_io_completion(q->backing_dev_info); 522 523 rq_qos_done(q, rq); 524 525 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 526 if (refcount_dec_and_test(&rq->ref)) 527 __blk_mq_free_request(rq); 528 } 529 EXPORT_SYMBOL_GPL(blk_mq_free_request); 530 531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 532 { 533 u64 now = 0; 534 535 if (blk_mq_need_time_stamp(rq)) 536 now = ktime_get_ns(); 537 538 if (rq->rq_flags & RQF_STATS) { 539 blk_mq_poll_stats_start(rq->q); 540 blk_stat_add(rq, now); 541 } 542 543 if (rq->internal_tag != -1) 544 blk_mq_sched_completed_request(rq, now); 545 546 blk_account_io_done(rq, now); 547 548 if (rq->end_io) { 549 rq_qos_done(rq->q, rq); 550 rq->end_io(rq, error); 551 } else { 552 blk_mq_free_request(rq); 553 } 554 } 555 EXPORT_SYMBOL(__blk_mq_end_request); 556 557 void blk_mq_end_request(struct request *rq, blk_status_t error) 558 { 559 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 560 BUG(); 561 __blk_mq_end_request(rq, error); 562 } 563 EXPORT_SYMBOL(blk_mq_end_request); 564 565 static void __blk_mq_complete_request_remote(void *data) 566 { 567 struct request *rq = data; 568 struct request_queue *q = rq->q; 569 570 q->mq_ops->complete(rq); 571 } 572 573 static void __blk_mq_complete_request(struct request *rq) 574 { 575 struct blk_mq_ctx *ctx = rq->mq_ctx; 576 struct request_queue *q = rq->q; 577 bool shared = false; 578 int cpu; 579 580 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 581 /* 582 * Most of single queue controllers, there is only one irq vector 583 * for handling IO completion, and the only irq's affinity is set 584 * as all possible CPUs. On most of ARCHs, this affinity means the 585 * irq is handled on one specific CPU. 586 * 587 * So complete IO reqeust in softirq context in case of single queue 588 * for not degrading IO performance by irqsoff latency. 589 */ 590 if (q->nr_hw_queues == 1) { 591 __blk_complete_request(rq); 592 return; 593 } 594 595 /* 596 * For a polled request, always complete locallly, it's pointless 597 * to redirect the completion. 598 */ 599 if ((rq->cmd_flags & REQ_HIPRI) || 600 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 601 q->mq_ops->complete(rq); 602 return; 603 } 604 605 cpu = get_cpu(); 606 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 607 shared = cpus_share_cache(cpu, ctx->cpu); 608 609 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 610 rq->csd.func = __blk_mq_complete_request_remote; 611 rq->csd.info = rq; 612 rq->csd.flags = 0; 613 smp_call_function_single_async(ctx->cpu, &rq->csd); 614 } else { 615 q->mq_ops->complete(rq); 616 } 617 put_cpu(); 618 } 619 620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 621 __releases(hctx->srcu) 622 { 623 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 624 rcu_read_unlock(); 625 else 626 srcu_read_unlock(hctx->srcu, srcu_idx); 627 } 628 629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 630 __acquires(hctx->srcu) 631 { 632 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 633 /* shut up gcc false positive */ 634 *srcu_idx = 0; 635 rcu_read_lock(); 636 } else 637 *srcu_idx = srcu_read_lock(hctx->srcu); 638 } 639 640 /** 641 * blk_mq_complete_request - end I/O on a request 642 * @rq: the request being processed 643 * 644 * Description: 645 * Ends all I/O on a request. It does not handle partial completions. 646 * The actual completion happens out-of-order, through a IPI handler. 647 **/ 648 bool blk_mq_complete_request(struct request *rq) 649 { 650 if (unlikely(blk_should_fake_timeout(rq->q))) 651 return false; 652 __blk_mq_complete_request(rq); 653 return true; 654 } 655 EXPORT_SYMBOL(blk_mq_complete_request); 656 657 void blk_mq_complete_request_sync(struct request *rq) 658 { 659 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 660 rq->q->mq_ops->complete(rq); 661 } 662 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync); 663 664 int blk_mq_request_started(struct request *rq) 665 { 666 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 667 } 668 EXPORT_SYMBOL_GPL(blk_mq_request_started); 669 670 void blk_mq_start_request(struct request *rq) 671 { 672 struct request_queue *q = rq->q; 673 674 blk_mq_sched_started_request(rq); 675 676 trace_block_rq_issue(q, rq); 677 678 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 679 rq->io_start_time_ns = ktime_get_ns(); 680 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 681 rq->throtl_size = blk_rq_sectors(rq); 682 #endif 683 rq->rq_flags |= RQF_STATS; 684 rq_qos_issue(q, rq); 685 } 686 687 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 688 689 blk_add_timer(rq); 690 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 691 692 if (q->dma_drain_size && blk_rq_bytes(rq)) { 693 /* 694 * Make sure space for the drain appears. We know we can do 695 * this because max_hw_segments has been adjusted to be one 696 * fewer than the device can handle. 697 */ 698 rq->nr_phys_segments++; 699 } 700 } 701 EXPORT_SYMBOL(blk_mq_start_request); 702 703 static void __blk_mq_requeue_request(struct request *rq) 704 { 705 struct request_queue *q = rq->q; 706 707 blk_mq_put_driver_tag(rq); 708 709 trace_block_rq_requeue(q, rq); 710 rq_qos_requeue(q, rq); 711 712 if (blk_mq_request_started(rq)) { 713 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 714 rq->rq_flags &= ~RQF_TIMED_OUT; 715 if (q->dma_drain_size && blk_rq_bytes(rq)) 716 rq->nr_phys_segments--; 717 } 718 } 719 720 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 721 { 722 __blk_mq_requeue_request(rq); 723 724 /* this request will be re-inserted to io scheduler queue */ 725 blk_mq_sched_requeue_request(rq); 726 727 BUG_ON(!list_empty(&rq->queuelist)); 728 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 729 } 730 EXPORT_SYMBOL(blk_mq_requeue_request); 731 732 static void blk_mq_requeue_work(struct work_struct *work) 733 { 734 struct request_queue *q = 735 container_of(work, struct request_queue, requeue_work.work); 736 LIST_HEAD(rq_list); 737 struct request *rq, *next; 738 739 spin_lock_irq(&q->requeue_lock); 740 list_splice_init(&q->requeue_list, &rq_list); 741 spin_unlock_irq(&q->requeue_lock); 742 743 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 744 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 745 continue; 746 747 rq->rq_flags &= ~RQF_SOFTBARRIER; 748 list_del_init(&rq->queuelist); 749 /* 750 * If RQF_DONTPREP, rq has contained some driver specific 751 * data, so insert it to hctx dispatch list to avoid any 752 * merge. 753 */ 754 if (rq->rq_flags & RQF_DONTPREP) 755 blk_mq_request_bypass_insert(rq, false); 756 else 757 blk_mq_sched_insert_request(rq, true, false, false); 758 } 759 760 while (!list_empty(&rq_list)) { 761 rq = list_entry(rq_list.next, struct request, queuelist); 762 list_del_init(&rq->queuelist); 763 blk_mq_sched_insert_request(rq, false, false, false); 764 } 765 766 blk_mq_run_hw_queues(q, false); 767 } 768 769 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 770 bool kick_requeue_list) 771 { 772 struct request_queue *q = rq->q; 773 unsigned long flags; 774 775 /* 776 * We abuse this flag that is otherwise used by the I/O scheduler to 777 * request head insertion from the workqueue. 778 */ 779 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 780 781 spin_lock_irqsave(&q->requeue_lock, flags); 782 if (at_head) { 783 rq->rq_flags |= RQF_SOFTBARRIER; 784 list_add(&rq->queuelist, &q->requeue_list); 785 } else { 786 list_add_tail(&rq->queuelist, &q->requeue_list); 787 } 788 spin_unlock_irqrestore(&q->requeue_lock, flags); 789 790 if (kick_requeue_list) 791 blk_mq_kick_requeue_list(q); 792 } 793 794 void blk_mq_kick_requeue_list(struct request_queue *q) 795 { 796 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 797 } 798 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 799 800 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 801 unsigned long msecs) 802 { 803 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 804 msecs_to_jiffies(msecs)); 805 } 806 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 807 808 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 809 { 810 if (tag < tags->nr_tags) { 811 prefetch(tags->rqs[tag]); 812 return tags->rqs[tag]; 813 } 814 815 return NULL; 816 } 817 EXPORT_SYMBOL(blk_mq_tag_to_rq); 818 819 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 820 void *priv, bool reserved) 821 { 822 /* 823 * If we find a request that is inflight and the queue matches, 824 * we know the queue is busy. Return false to stop the iteration. 825 */ 826 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 827 bool *busy = priv; 828 829 *busy = true; 830 return false; 831 } 832 833 return true; 834 } 835 836 bool blk_mq_queue_inflight(struct request_queue *q) 837 { 838 bool busy = false; 839 840 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 841 return busy; 842 } 843 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 844 845 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 846 { 847 req->rq_flags |= RQF_TIMED_OUT; 848 if (req->q->mq_ops->timeout) { 849 enum blk_eh_timer_return ret; 850 851 ret = req->q->mq_ops->timeout(req, reserved); 852 if (ret == BLK_EH_DONE) 853 return; 854 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 855 } 856 857 blk_add_timer(req); 858 } 859 860 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 861 { 862 unsigned long deadline; 863 864 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 865 return false; 866 if (rq->rq_flags & RQF_TIMED_OUT) 867 return false; 868 869 deadline = READ_ONCE(rq->deadline); 870 if (time_after_eq(jiffies, deadline)) 871 return true; 872 873 if (*next == 0) 874 *next = deadline; 875 else if (time_after(*next, deadline)) 876 *next = deadline; 877 return false; 878 } 879 880 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 881 struct request *rq, void *priv, bool reserved) 882 { 883 unsigned long *next = priv; 884 885 /* 886 * Just do a quick check if it is expired before locking the request in 887 * so we're not unnecessarilly synchronizing across CPUs. 888 */ 889 if (!blk_mq_req_expired(rq, next)) 890 return true; 891 892 /* 893 * We have reason to believe the request may be expired. Take a 894 * reference on the request to lock this request lifetime into its 895 * currently allocated context to prevent it from being reallocated in 896 * the event the completion by-passes this timeout handler. 897 * 898 * If the reference was already released, then the driver beat the 899 * timeout handler to posting a natural completion. 900 */ 901 if (!refcount_inc_not_zero(&rq->ref)) 902 return true; 903 904 /* 905 * The request is now locked and cannot be reallocated underneath the 906 * timeout handler's processing. Re-verify this exact request is truly 907 * expired; if it is not expired, then the request was completed and 908 * reallocated as a new request. 909 */ 910 if (blk_mq_req_expired(rq, next)) 911 blk_mq_rq_timed_out(rq, reserved); 912 if (refcount_dec_and_test(&rq->ref)) 913 __blk_mq_free_request(rq); 914 915 return true; 916 } 917 918 static void blk_mq_timeout_work(struct work_struct *work) 919 { 920 struct request_queue *q = 921 container_of(work, struct request_queue, timeout_work); 922 unsigned long next = 0; 923 struct blk_mq_hw_ctx *hctx; 924 int i; 925 926 /* A deadlock might occur if a request is stuck requiring a 927 * timeout at the same time a queue freeze is waiting 928 * completion, since the timeout code would not be able to 929 * acquire the queue reference here. 930 * 931 * That's why we don't use blk_queue_enter here; instead, we use 932 * percpu_ref_tryget directly, because we need to be able to 933 * obtain a reference even in the short window between the queue 934 * starting to freeze, by dropping the first reference in 935 * blk_freeze_queue_start, and the moment the last request is 936 * consumed, marked by the instant q_usage_counter reaches 937 * zero. 938 */ 939 if (!percpu_ref_tryget(&q->q_usage_counter)) 940 return; 941 942 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 943 944 if (next != 0) { 945 mod_timer(&q->timeout, next); 946 } else { 947 /* 948 * Request timeouts are handled as a forward rolling timer. If 949 * we end up here it means that no requests are pending and 950 * also that no request has been pending for a while. Mark 951 * each hctx as idle. 952 */ 953 queue_for_each_hw_ctx(q, hctx, i) { 954 /* the hctx may be unmapped, so check it here */ 955 if (blk_mq_hw_queue_mapped(hctx)) 956 blk_mq_tag_idle(hctx); 957 } 958 } 959 blk_queue_exit(q); 960 } 961 962 struct flush_busy_ctx_data { 963 struct blk_mq_hw_ctx *hctx; 964 struct list_head *list; 965 }; 966 967 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 968 { 969 struct flush_busy_ctx_data *flush_data = data; 970 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 971 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 972 enum hctx_type type = hctx->type; 973 974 spin_lock(&ctx->lock); 975 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 976 sbitmap_clear_bit(sb, bitnr); 977 spin_unlock(&ctx->lock); 978 return true; 979 } 980 981 /* 982 * Process software queues that have been marked busy, splicing them 983 * to the for-dispatch 984 */ 985 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 986 { 987 struct flush_busy_ctx_data data = { 988 .hctx = hctx, 989 .list = list, 990 }; 991 992 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 993 } 994 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 995 996 struct dispatch_rq_data { 997 struct blk_mq_hw_ctx *hctx; 998 struct request *rq; 999 }; 1000 1001 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1002 void *data) 1003 { 1004 struct dispatch_rq_data *dispatch_data = data; 1005 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1006 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1007 enum hctx_type type = hctx->type; 1008 1009 spin_lock(&ctx->lock); 1010 if (!list_empty(&ctx->rq_lists[type])) { 1011 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1012 list_del_init(&dispatch_data->rq->queuelist); 1013 if (list_empty(&ctx->rq_lists[type])) 1014 sbitmap_clear_bit(sb, bitnr); 1015 } 1016 spin_unlock(&ctx->lock); 1017 1018 return !dispatch_data->rq; 1019 } 1020 1021 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1022 struct blk_mq_ctx *start) 1023 { 1024 unsigned off = start ? start->index_hw[hctx->type] : 0; 1025 struct dispatch_rq_data data = { 1026 .hctx = hctx, 1027 .rq = NULL, 1028 }; 1029 1030 __sbitmap_for_each_set(&hctx->ctx_map, off, 1031 dispatch_rq_from_ctx, &data); 1032 1033 return data.rq; 1034 } 1035 1036 static inline unsigned int queued_to_index(unsigned int queued) 1037 { 1038 if (!queued) 1039 return 0; 1040 1041 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1042 } 1043 1044 bool blk_mq_get_driver_tag(struct request *rq) 1045 { 1046 struct blk_mq_alloc_data data = { 1047 .q = rq->q, 1048 .hctx = rq->mq_hctx, 1049 .flags = BLK_MQ_REQ_NOWAIT, 1050 .cmd_flags = rq->cmd_flags, 1051 }; 1052 bool shared; 1053 1054 if (rq->tag != -1) 1055 goto done; 1056 1057 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1058 data.flags |= BLK_MQ_REQ_RESERVED; 1059 1060 shared = blk_mq_tag_busy(data.hctx); 1061 rq->tag = blk_mq_get_tag(&data); 1062 if (rq->tag >= 0) { 1063 if (shared) { 1064 rq->rq_flags |= RQF_MQ_INFLIGHT; 1065 atomic_inc(&data.hctx->nr_active); 1066 } 1067 data.hctx->tags->rqs[rq->tag] = rq; 1068 } 1069 1070 done: 1071 return rq->tag != -1; 1072 } 1073 1074 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1075 int flags, void *key) 1076 { 1077 struct blk_mq_hw_ctx *hctx; 1078 1079 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1080 1081 spin_lock(&hctx->dispatch_wait_lock); 1082 if (!list_empty(&wait->entry)) { 1083 struct sbitmap_queue *sbq; 1084 1085 list_del_init(&wait->entry); 1086 sbq = &hctx->tags->bitmap_tags; 1087 atomic_dec(&sbq->ws_active); 1088 } 1089 spin_unlock(&hctx->dispatch_wait_lock); 1090 1091 blk_mq_run_hw_queue(hctx, true); 1092 return 1; 1093 } 1094 1095 /* 1096 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1097 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1098 * restart. For both cases, take care to check the condition again after 1099 * marking us as waiting. 1100 */ 1101 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1102 struct request *rq) 1103 { 1104 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1105 struct wait_queue_head *wq; 1106 wait_queue_entry_t *wait; 1107 bool ret; 1108 1109 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1110 blk_mq_sched_mark_restart_hctx(hctx); 1111 1112 /* 1113 * It's possible that a tag was freed in the window between the 1114 * allocation failure and adding the hardware queue to the wait 1115 * queue. 1116 * 1117 * Don't clear RESTART here, someone else could have set it. 1118 * At most this will cost an extra queue run. 1119 */ 1120 return blk_mq_get_driver_tag(rq); 1121 } 1122 1123 wait = &hctx->dispatch_wait; 1124 if (!list_empty_careful(&wait->entry)) 1125 return false; 1126 1127 wq = &bt_wait_ptr(sbq, hctx)->wait; 1128 1129 spin_lock_irq(&wq->lock); 1130 spin_lock(&hctx->dispatch_wait_lock); 1131 if (!list_empty(&wait->entry)) { 1132 spin_unlock(&hctx->dispatch_wait_lock); 1133 spin_unlock_irq(&wq->lock); 1134 return false; 1135 } 1136 1137 atomic_inc(&sbq->ws_active); 1138 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1139 __add_wait_queue(wq, wait); 1140 1141 /* 1142 * It's possible that a tag was freed in the window between the 1143 * allocation failure and adding the hardware queue to the wait 1144 * queue. 1145 */ 1146 ret = blk_mq_get_driver_tag(rq); 1147 if (!ret) { 1148 spin_unlock(&hctx->dispatch_wait_lock); 1149 spin_unlock_irq(&wq->lock); 1150 return false; 1151 } 1152 1153 /* 1154 * We got a tag, remove ourselves from the wait queue to ensure 1155 * someone else gets the wakeup. 1156 */ 1157 list_del_init(&wait->entry); 1158 atomic_dec(&sbq->ws_active); 1159 spin_unlock(&hctx->dispatch_wait_lock); 1160 spin_unlock_irq(&wq->lock); 1161 1162 return true; 1163 } 1164 1165 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1166 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1167 /* 1168 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1169 * - EWMA is one simple way to compute running average value 1170 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1171 * - take 4 as factor for avoiding to get too small(0) result, and this 1172 * factor doesn't matter because EWMA decreases exponentially 1173 */ 1174 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1175 { 1176 unsigned int ewma; 1177 1178 if (hctx->queue->elevator) 1179 return; 1180 1181 ewma = hctx->dispatch_busy; 1182 1183 if (!ewma && !busy) 1184 return; 1185 1186 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1187 if (busy) 1188 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1189 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1190 1191 hctx->dispatch_busy = ewma; 1192 } 1193 1194 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1195 1196 /* 1197 * Returns true if we did some work AND can potentially do more. 1198 */ 1199 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1200 bool got_budget) 1201 { 1202 struct blk_mq_hw_ctx *hctx; 1203 struct request *rq, *nxt; 1204 bool no_tag = false; 1205 int errors, queued; 1206 blk_status_t ret = BLK_STS_OK; 1207 1208 if (list_empty(list)) 1209 return false; 1210 1211 WARN_ON(!list_is_singular(list) && got_budget); 1212 1213 /* 1214 * Now process all the entries, sending them to the driver. 1215 */ 1216 errors = queued = 0; 1217 do { 1218 struct blk_mq_queue_data bd; 1219 1220 rq = list_first_entry(list, struct request, queuelist); 1221 1222 hctx = rq->mq_hctx; 1223 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1224 break; 1225 1226 if (!blk_mq_get_driver_tag(rq)) { 1227 /* 1228 * The initial allocation attempt failed, so we need to 1229 * rerun the hardware queue when a tag is freed. The 1230 * waitqueue takes care of that. If the queue is run 1231 * before we add this entry back on the dispatch list, 1232 * we'll re-run it below. 1233 */ 1234 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1235 blk_mq_put_dispatch_budget(hctx); 1236 /* 1237 * For non-shared tags, the RESTART check 1238 * will suffice. 1239 */ 1240 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1241 no_tag = true; 1242 break; 1243 } 1244 } 1245 1246 list_del_init(&rq->queuelist); 1247 1248 bd.rq = rq; 1249 1250 /* 1251 * Flag last if we have no more requests, or if we have more 1252 * but can't assign a driver tag to it. 1253 */ 1254 if (list_empty(list)) 1255 bd.last = true; 1256 else { 1257 nxt = list_first_entry(list, struct request, queuelist); 1258 bd.last = !blk_mq_get_driver_tag(nxt); 1259 } 1260 1261 ret = q->mq_ops->queue_rq(hctx, &bd); 1262 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1263 /* 1264 * If an I/O scheduler has been configured and we got a 1265 * driver tag for the next request already, free it 1266 * again. 1267 */ 1268 if (!list_empty(list)) { 1269 nxt = list_first_entry(list, struct request, queuelist); 1270 blk_mq_put_driver_tag(nxt); 1271 } 1272 list_add(&rq->queuelist, list); 1273 __blk_mq_requeue_request(rq); 1274 break; 1275 } 1276 1277 if (unlikely(ret != BLK_STS_OK)) { 1278 errors++; 1279 blk_mq_end_request(rq, BLK_STS_IOERR); 1280 continue; 1281 } 1282 1283 queued++; 1284 } while (!list_empty(list)); 1285 1286 hctx->dispatched[queued_to_index(queued)]++; 1287 1288 /* 1289 * Any items that need requeuing? Stuff them into hctx->dispatch, 1290 * that is where we will continue on next queue run. 1291 */ 1292 if (!list_empty(list)) { 1293 bool needs_restart; 1294 1295 /* 1296 * If we didn't flush the entire list, we could have told 1297 * the driver there was more coming, but that turned out to 1298 * be a lie. 1299 */ 1300 if (q->mq_ops->commit_rqs) 1301 q->mq_ops->commit_rqs(hctx); 1302 1303 spin_lock(&hctx->lock); 1304 list_splice_init(list, &hctx->dispatch); 1305 spin_unlock(&hctx->lock); 1306 1307 /* 1308 * If SCHED_RESTART was set by the caller of this function and 1309 * it is no longer set that means that it was cleared by another 1310 * thread and hence that a queue rerun is needed. 1311 * 1312 * If 'no_tag' is set, that means that we failed getting 1313 * a driver tag with an I/O scheduler attached. If our dispatch 1314 * waitqueue is no longer active, ensure that we run the queue 1315 * AFTER adding our entries back to the list. 1316 * 1317 * If no I/O scheduler has been configured it is possible that 1318 * the hardware queue got stopped and restarted before requests 1319 * were pushed back onto the dispatch list. Rerun the queue to 1320 * avoid starvation. Notes: 1321 * - blk_mq_run_hw_queue() checks whether or not a queue has 1322 * been stopped before rerunning a queue. 1323 * - Some but not all block drivers stop a queue before 1324 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1325 * and dm-rq. 1326 * 1327 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1328 * bit is set, run queue after a delay to avoid IO stalls 1329 * that could otherwise occur if the queue is idle. 1330 */ 1331 needs_restart = blk_mq_sched_needs_restart(hctx); 1332 if (!needs_restart || 1333 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1334 blk_mq_run_hw_queue(hctx, true); 1335 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1336 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1337 1338 blk_mq_update_dispatch_busy(hctx, true); 1339 return false; 1340 } else 1341 blk_mq_update_dispatch_busy(hctx, false); 1342 1343 /* 1344 * If the host/device is unable to accept more work, inform the 1345 * caller of that. 1346 */ 1347 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1348 return false; 1349 1350 return (queued + errors) != 0; 1351 } 1352 1353 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1354 { 1355 int srcu_idx; 1356 1357 /* 1358 * We should be running this queue from one of the CPUs that 1359 * are mapped to it. 1360 * 1361 * There are at least two related races now between setting 1362 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1363 * __blk_mq_run_hw_queue(): 1364 * 1365 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1366 * but later it becomes online, then this warning is harmless 1367 * at all 1368 * 1369 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1370 * but later it becomes offline, then the warning can't be 1371 * triggered, and we depend on blk-mq timeout handler to 1372 * handle dispatched requests to this hctx 1373 */ 1374 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1375 cpu_online(hctx->next_cpu)) { 1376 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1377 raw_smp_processor_id(), 1378 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1379 dump_stack(); 1380 } 1381 1382 /* 1383 * We can't run the queue inline with ints disabled. Ensure that 1384 * we catch bad users of this early. 1385 */ 1386 WARN_ON_ONCE(in_interrupt()); 1387 1388 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1389 1390 hctx_lock(hctx, &srcu_idx); 1391 blk_mq_sched_dispatch_requests(hctx); 1392 hctx_unlock(hctx, srcu_idx); 1393 } 1394 1395 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1396 { 1397 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1398 1399 if (cpu >= nr_cpu_ids) 1400 cpu = cpumask_first(hctx->cpumask); 1401 return cpu; 1402 } 1403 1404 /* 1405 * It'd be great if the workqueue API had a way to pass 1406 * in a mask and had some smarts for more clever placement. 1407 * For now we just round-robin here, switching for every 1408 * BLK_MQ_CPU_WORK_BATCH queued items. 1409 */ 1410 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1411 { 1412 bool tried = false; 1413 int next_cpu = hctx->next_cpu; 1414 1415 if (hctx->queue->nr_hw_queues == 1) 1416 return WORK_CPU_UNBOUND; 1417 1418 if (--hctx->next_cpu_batch <= 0) { 1419 select_cpu: 1420 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1421 cpu_online_mask); 1422 if (next_cpu >= nr_cpu_ids) 1423 next_cpu = blk_mq_first_mapped_cpu(hctx); 1424 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1425 } 1426 1427 /* 1428 * Do unbound schedule if we can't find a online CPU for this hctx, 1429 * and it should only happen in the path of handling CPU DEAD. 1430 */ 1431 if (!cpu_online(next_cpu)) { 1432 if (!tried) { 1433 tried = true; 1434 goto select_cpu; 1435 } 1436 1437 /* 1438 * Make sure to re-select CPU next time once after CPUs 1439 * in hctx->cpumask become online again. 1440 */ 1441 hctx->next_cpu = next_cpu; 1442 hctx->next_cpu_batch = 1; 1443 return WORK_CPU_UNBOUND; 1444 } 1445 1446 hctx->next_cpu = next_cpu; 1447 return next_cpu; 1448 } 1449 1450 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1451 unsigned long msecs) 1452 { 1453 if (unlikely(blk_mq_hctx_stopped(hctx))) 1454 return; 1455 1456 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1457 int cpu = get_cpu(); 1458 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1459 __blk_mq_run_hw_queue(hctx); 1460 put_cpu(); 1461 return; 1462 } 1463 1464 put_cpu(); 1465 } 1466 1467 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1468 msecs_to_jiffies(msecs)); 1469 } 1470 1471 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1472 { 1473 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1474 } 1475 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1476 1477 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1478 { 1479 int srcu_idx; 1480 bool need_run; 1481 1482 /* 1483 * When queue is quiesced, we may be switching io scheduler, or 1484 * updating nr_hw_queues, or other things, and we can't run queue 1485 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1486 * 1487 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1488 * quiesced. 1489 */ 1490 hctx_lock(hctx, &srcu_idx); 1491 need_run = !blk_queue_quiesced(hctx->queue) && 1492 blk_mq_hctx_has_pending(hctx); 1493 hctx_unlock(hctx, srcu_idx); 1494 1495 if (need_run) { 1496 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1497 return true; 1498 } 1499 1500 return false; 1501 } 1502 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1503 1504 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1505 { 1506 struct blk_mq_hw_ctx *hctx; 1507 int i; 1508 1509 queue_for_each_hw_ctx(q, hctx, i) { 1510 if (blk_mq_hctx_stopped(hctx)) 1511 continue; 1512 1513 blk_mq_run_hw_queue(hctx, async); 1514 } 1515 } 1516 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1517 1518 /** 1519 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1520 * @q: request queue. 1521 * 1522 * The caller is responsible for serializing this function against 1523 * blk_mq_{start,stop}_hw_queue(). 1524 */ 1525 bool blk_mq_queue_stopped(struct request_queue *q) 1526 { 1527 struct blk_mq_hw_ctx *hctx; 1528 int i; 1529 1530 queue_for_each_hw_ctx(q, hctx, i) 1531 if (blk_mq_hctx_stopped(hctx)) 1532 return true; 1533 1534 return false; 1535 } 1536 EXPORT_SYMBOL(blk_mq_queue_stopped); 1537 1538 /* 1539 * This function is often used for pausing .queue_rq() by driver when 1540 * there isn't enough resource or some conditions aren't satisfied, and 1541 * BLK_STS_RESOURCE is usually returned. 1542 * 1543 * We do not guarantee that dispatch can be drained or blocked 1544 * after blk_mq_stop_hw_queue() returns. Please use 1545 * blk_mq_quiesce_queue() for that requirement. 1546 */ 1547 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1548 { 1549 cancel_delayed_work(&hctx->run_work); 1550 1551 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1552 } 1553 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1554 1555 /* 1556 * This function is often used for pausing .queue_rq() by driver when 1557 * there isn't enough resource or some conditions aren't satisfied, and 1558 * BLK_STS_RESOURCE is usually returned. 1559 * 1560 * We do not guarantee that dispatch can be drained or blocked 1561 * after blk_mq_stop_hw_queues() returns. Please use 1562 * blk_mq_quiesce_queue() for that requirement. 1563 */ 1564 void blk_mq_stop_hw_queues(struct request_queue *q) 1565 { 1566 struct blk_mq_hw_ctx *hctx; 1567 int i; 1568 1569 queue_for_each_hw_ctx(q, hctx, i) 1570 blk_mq_stop_hw_queue(hctx); 1571 } 1572 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1573 1574 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1575 { 1576 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1577 1578 blk_mq_run_hw_queue(hctx, false); 1579 } 1580 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1581 1582 void blk_mq_start_hw_queues(struct request_queue *q) 1583 { 1584 struct blk_mq_hw_ctx *hctx; 1585 int i; 1586 1587 queue_for_each_hw_ctx(q, hctx, i) 1588 blk_mq_start_hw_queue(hctx); 1589 } 1590 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1591 1592 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1593 { 1594 if (!blk_mq_hctx_stopped(hctx)) 1595 return; 1596 1597 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1598 blk_mq_run_hw_queue(hctx, async); 1599 } 1600 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1601 1602 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1603 { 1604 struct blk_mq_hw_ctx *hctx; 1605 int i; 1606 1607 queue_for_each_hw_ctx(q, hctx, i) 1608 blk_mq_start_stopped_hw_queue(hctx, async); 1609 } 1610 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1611 1612 static void blk_mq_run_work_fn(struct work_struct *work) 1613 { 1614 struct blk_mq_hw_ctx *hctx; 1615 1616 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1617 1618 /* 1619 * If we are stopped, don't run the queue. 1620 */ 1621 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1622 return; 1623 1624 __blk_mq_run_hw_queue(hctx); 1625 } 1626 1627 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1628 struct request *rq, 1629 bool at_head) 1630 { 1631 struct blk_mq_ctx *ctx = rq->mq_ctx; 1632 enum hctx_type type = hctx->type; 1633 1634 lockdep_assert_held(&ctx->lock); 1635 1636 trace_block_rq_insert(hctx->queue, rq); 1637 1638 if (at_head) 1639 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1640 else 1641 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1642 } 1643 1644 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1645 bool at_head) 1646 { 1647 struct blk_mq_ctx *ctx = rq->mq_ctx; 1648 1649 lockdep_assert_held(&ctx->lock); 1650 1651 __blk_mq_insert_req_list(hctx, rq, at_head); 1652 blk_mq_hctx_mark_pending(hctx, ctx); 1653 } 1654 1655 /* 1656 * Should only be used carefully, when the caller knows we want to 1657 * bypass a potential IO scheduler on the target device. 1658 */ 1659 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1660 { 1661 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1662 1663 spin_lock(&hctx->lock); 1664 list_add_tail(&rq->queuelist, &hctx->dispatch); 1665 spin_unlock(&hctx->lock); 1666 1667 if (run_queue) 1668 blk_mq_run_hw_queue(hctx, false); 1669 } 1670 1671 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1672 struct list_head *list) 1673 1674 { 1675 struct request *rq; 1676 enum hctx_type type = hctx->type; 1677 1678 /* 1679 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1680 * offline now 1681 */ 1682 list_for_each_entry(rq, list, queuelist) { 1683 BUG_ON(rq->mq_ctx != ctx); 1684 trace_block_rq_insert(hctx->queue, rq); 1685 } 1686 1687 spin_lock(&ctx->lock); 1688 list_splice_tail_init(list, &ctx->rq_lists[type]); 1689 blk_mq_hctx_mark_pending(hctx, ctx); 1690 spin_unlock(&ctx->lock); 1691 } 1692 1693 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1694 { 1695 struct request *rqa = container_of(a, struct request, queuelist); 1696 struct request *rqb = container_of(b, struct request, queuelist); 1697 1698 if (rqa->mq_ctx < rqb->mq_ctx) 1699 return -1; 1700 else if (rqa->mq_ctx > rqb->mq_ctx) 1701 return 1; 1702 else if (rqa->mq_hctx < rqb->mq_hctx) 1703 return -1; 1704 else if (rqa->mq_hctx > rqb->mq_hctx) 1705 return 1; 1706 1707 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1708 } 1709 1710 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1711 { 1712 struct blk_mq_hw_ctx *this_hctx; 1713 struct blk_mq_ctx *this_ctx; 1714 struct request_queue *this_q; 1715 struct request *rq; 1716 LIST_HEAD(list); 1717 LIST_HEAD(rq_list); 1718 unsigned int depth; 1719 1720 list_splice_init(&plug->mq_list, &list); 1721 1722 if (plug->rq_count > 2 && plug->multiple_queues) 1723 list_sort(NULL, &list, plug_rq_cmp); 1724 1725 plug->rq_count = 0; 1726 1727 this_q = NULL; 1728 this_hctx = NULL; 1729 this_ctx = NULL; 1730 depth = 0; 1731 1732 while (!list_empty(&list)) { 1733 rq = list_entry_rq(list.next); 1734 list_del_init(&rq->queuelist); 1735 BUG_ON(!rq->q); 1736 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1737 if (this_hctx) { 1738 trace_block_unplug(this_q, depth, !from_schedule); 1739 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1740 &rq_list, 1741 from_schedule); 1742 } 1743 1744 this_q = rq->q; 1745 this_ctx = rq->mq_ctx; 1746 this_hctx = rq->mq_hctx; 1747 depth = 0; 1748 } 1749 1750 depth++; 1751 list_add_tail(&rq->queuelist, &rq_list); 1752 } 1753 1754 /* 1755 * If 'this_hctx' is set, we know we have entries to complete 1756 * on 'rq_list'. Do those. 1757 */ 1758 if (this_hctx) { 1759 trace_block_unplug(this_q, depth, !from_schedule); 1760 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1761 from_schedule); 1762 } 1763 } 1764 1765 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1766 { 1767 blk_init_request_from_bio(rq, bio); 1768 1769 blk_account_io_start(rq, true); 1770 } 1771 1772 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1773 struct request *rq, 1774 blk_qc_t *cookie, bool last) 1775 { 1776 struct request_queue *q = rq->q; 1777 struct blk_mq_queue_data bd = { 1778 .rq = rq, 1779 .last = last, 1780 }; 1781 blk_qc_t new_cookie; 1782 blk_status_t ret; 1783 1784 new_cookie = request_to_qc_t(hctx, rq); 1785 1786 /* 1787 * For OK queue, we are done. For error, caller may kill it. 1788 * Any other error (busy), just add it to our list as we 1789 * previously would have done. 1790 */ 1791 ret = q->mq_ops->queue_rq(hctx, &bd); 1792 switch (ret) { 1793 case BLK_STS_OK: 1794 blk_mq_update_dispatch_busy(hctx, false); 1795 *cookie = new_cookie; 1796 break; 1797 case BLK_STS_RESOURCE: 1798 case BLK_STS_DEV_RESOURCE: 1799 blk_mq_update_dispatch_busy(hctx, true); 1800 __blk_mq_requeue_request(rq); 1801 break; 1802 default: 1803 blk_mq_update_dispatch_busy(hctx, false); 1804 *cookie = BLK_QC_T_NONE; 1805 break; 1806 } 1807 1808 return ret; 1809 } 1810 1811 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1812 struct request *rq, 1813 blk_qc_t *cookie, 1814 bool bypass_insert, bool last) 1815 { 1816 struct request_queue *q = rq->q; 1817 bool run_queue = true; 1818 1819 /* 1820 * RCU or SRCU read lock is needed before checking quiesced flag. 1821 * 1822 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1823 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1824 * and avoid driver to try to dispatch again. 1825 */ 1826 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1827 run_queue = false; 1828 bypass_insert = false; 1829 goto insert; 1830 } 1831 1832 if (q->elevator && !bypass_insert) 1833 goto insert; 1834 1835 if (!blk_mq_get_dispatch_budget(hctx)) 1836 goto insert; 1837 1838 if (!blk_mq_get_driver_tag(rq)) { 1839 blk_mq_put_dispatch_budget(hctx); 1840 goto insert; 1841 } 1842 1843 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1844 insert: 1845 if (bypass_insert) 1846 return BLK_STS_RESOURCE; 1847 1848 blk_mq_request_bypass_insert(rq, run_queue); 1849 return BLK_STS_OK; 1850 } 1851 1852 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1853 struct request *rq, blk_qc_t *cookie) 1854 { 1855 blk_status_t ret; 1856 int srcu_idx; 1857 1858 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1859 1860 hctx_lock(hctx, &srcu_idx); 1861 1862 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1863 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1864 blk_mq_request_bypass_insert(rq, true); 1865 else if (ret != BLK_STS_OK) 1866 blk_mq_end_request(rq, ret); 1867 1868 hctx_unlock(hctx, srcu_idx); 1869 } 1870 1871 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1872 { 1873 blk_status_t ret; 1874 int srcu_idx; 1875 blk_qc_t unused_cookie; 1876 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1877 1878 hctx_lock(hctx, &srcu_idx); 1879 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1880 hctx_unlock(hctx, srcu_idx); 1881 1882 return ret; 1883 } 1884 1885 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1886 struct list_head *list) 1887 { 1888 while (!list_empty(list)) { 1889 blk_status_t ret; 1890 struct request *rq = list_first_entry(list, struct request, 1891 queuelist); 1892 1893 list_del_init(&rq->queuelist); 1894 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1895 if (ret != BLK_STS_OK) { 1896 if (ret == BLK_STS_RESOURCE || 1897 ret == BLK_STS_DEV_RESOURCE) { 1898 blk_mq_request_bypass_insert(rq, 1899 list_empty(list)); 1900 break; 1901 } 1902 blk_mq_end_request(rq, ret); 1903 } 1904 } 1905 1906 /* 1907 * If we didn't flush the entire list, we could have told 1908 * the driver there was more coming, but that turned out to 1909 * be a lie. 1910 */ 1911 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1912 hctx->queue->mq_ops->commit_rqs(hctx); 1913 } 1914 1915 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1916 { 1917 list_add_tail(&rq->queuelist, &plug->mq_list); 1918 plug->rq_count++; 1919 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1920 struct request *tmp; 1921 1922 tmp = list_first_entry(&plug->mq_list, struct request, 1923 queuelist); 1924 if (tmp->q != rq->q) 1925 plug->multiple_queues = true; 1926 } 1927 } 1928 1929 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1930 { 1931 const int is_sync = op_is_sync(bio->bi_opf); 1932 const int is_flush_fua = op_is_flush(bio->bi_opf); 1933 struct blk_mq_alloc_data data = { .flags = 0}; 1934 struct request *rq; 1935 struct blk_plug *plug; 1936 struct request *same_queue_rq = NULL; 1937 blk_qc_t cookie; 1938 1939 blk_queue_bounce(q, &bio); 1940 1941 blk_queue_split(q, &bio); 1942 1943 if (!bio_integrity_prep(bio)) 1944 return BLK_QC_T_NONE; 1945 1946 if (!is_flush_fua && !blk_queue_nomerges(q) && 1947 blk_attempt_plug_merge(q, bio, &same_queue_rq)) 1948 return BLK_QC_T_NONE; 1949 1950 if (blk_mq_sched_bio_merge(q, bio)) 1951 return BLK_QC_T_NONE; 1952 1953 rq_qos_throttle(q, bio); 1954 1955 data.cmd_flags = bio->bi_opf; 1956 rq = blk_mq_get_request(q, bio, &data); 1957 if (unlikely(!rq)) { 1958 rq_qos_cleanup(q, bio); 1959 if (bio->bi_opf & REQ_NOWAIT) 1960 bio_wouldblock_error(bio); 1961 return BLK_QC_T_NONE; 1962 } 1963 1964 trace_block_getrq(q, bio, bio->bi_opf); 1965 1966 rq_qos_track(q, rq, bio); 1967 1968 cookie = request_to_qc_t(data.hctx, rq); 1969 1970 plug = current->plug; 1971 if (unlikely(is_flush_fua)) { 1972 blk_mq_put_ctx(data.ctx); 1973 blk_mq_bio_to_request(rq, bio); 1974 1975 /* bypass scheduler for flush rq */ 1976 blk_insert_flush(rq); 1977 blk_mq_run_hw_queue(data.hctx, true); 1978 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) { 1979 /* 1980 * Use plugging if we have a ->commit_rqs() hook as well, as 1981 * we know the driver uses bd->last in a smart fashion. 1982 */ 1983 unsigned int request_count = plug->rq_count; 1984 struct request *last = NULL; 1985 1986 blk_mq_put_ctx(data.ctx); 1987 blk_mq_bio_to_request(rq, bio); 1988 1989 if (!request_count) 1990 trace_block_plug(q); 1991 else 1992 last = list_entry_rq(plug->mq_list.prev); 1993 1994 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1995 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1996 blk_flush_plug_list(plug, false); 1997 trace_block_plug(q); 1998 } 1999 2000 blk_add_rq_to_plug(plug, rq); 2001 } else if (plug && !blk_queue_nomerges(q)) { 2002 blk_mq_bio_to_request(rq, bio); 2003 2004 /* 2005 * We do limited plugging. If the bio can be merged, do that. 2006 * Otherwise the existing request in the plug list will be 2007 * issued. So the plug list will have one request at most 2008 * The plug list might get flushed before this. If that happens, 2009 * the plug list is empty, and same_queue_rq is invalid. 2010 */ 2011 if (list_empty(&plug->mq_list)) 2012 same_queue_rq = NULL; 2013 if (same_queue_rq) { 2014 list_del_init(&same_queue_rq->queuelist); 2015 plug->rq_count--; 2016 } 2017 blk_add_rq_to_plug(plug, rq); 2018 trace_block_plug(q); 2019 2020 blk_mq_put_ctx(data.ctx); 2021 2022 if (same_queue_rq) { 2023 data.hctx = same_queue_rq->mq_hctx; 2024 trace_block_unplug(q, 1, true); 2025 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2026 &cookie); 2027 } 2028 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && 2029 !data.hctx->dispatch_busy)) { 2030 blk_mq_put_ctx(data.ctx); 2031 blk_mq_bio_to_request(rq, bio); 2032 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2033 } else { 2034 blk_mq_put_ctx(data.ctx); 2035 blk_mq_bio_to_request(rq, bio); 2036 blk_mq_sched_insert_request(rq, false, true, true); 2037 } 2038 2039 return cookie; 2040 } 2041 2042 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2043 unsigned int hctx_idx) 2044 { 2045 struct page *page; 2046 2047 if (tags->rqs && set->ops->exit_request) { 2048 int i; 2049 2050 for (i = 0; i < tags->nr_tags; i++) { 2051 struct request *rq = tags->static_rqs[i]; 2052 2053 if (!rq) 2054 continue; 2055 set->ops->exit_request(set, rq, hctx_idx); 2056 tags->static_rqs[i] = NULL; 2057 } 2058 } 2059 2060 while (!list_empty(&tags->page_list)) { 2061 page = list_first_entry(&tags->page_list, struct page, lru); 2062 list_del_init(&page->lru); 2063 /* 2064 * Remove kmemleak object previously allocated in 2065 * blk_mq_init_rq_map(). 2066 */ 2067 kmemleak_free(page_address(page)); 2068 __free_pages(page, page->private); 2069 } 2070 } 2071 2072 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2073 { 2074 kfree(tags->rqs); 2075 tags->rqs = NULL; 2076 kfree(tags->static_rqs); 2077 tags->static_rqs = NULL; 2078 2079 blk_mq_free_tags(tags); 2080 } 2081 2082 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2083 unsigned int hctx_idx, 2084 unsigned int nr_tags, 2085 unsigned int reserved_tags) 2086 { 2087 struct blk_mq_tags *tags; 2088 int node; 2089 2090 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2091 if (node == NUMA_NO_NODE) 2092 node = set->numa_node; 2093 2094 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2095 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2096 if (!tags) 2097 return NULL; 2098 2099 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2100 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2101 node); 2102 if (!tags->rqs) { 2103 blk_mq_free_tags(tags); 2104 return NULL; 2105 } 2106 2107 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2108 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2109 node); 2110 if (!tags->static_rqs) { 2111 kfree(tags->rqs); 2112 blk_mq_free_tags(tags); 2113 return NULL; 2114 } 2115 2116 return tags; 2117 } 2118 2119 static size_t order_to_size(unsigned int order) 2120 { 2121 return (size_t)PAGE_SIZE << order; 2122 } 2123 2124 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2125 unsigned int hctx_idx, int node) 2126 { 2127 int ret; 2128 2129 if (set->ops->init_request) { 2130 ret = set->ops->init_request(set, rq, hctx_idx, node); 2131 if (ret) 2132 return ret; 2133 } 2134 2135 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2136 return 0; 2137 } 2138 2139 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2140 unsigned int hctx_idx, unsigned int depth) 2141 { 2142 unsigned int i, j, entries_per_page, max_order = 4; 2143 size_t rq_size, left; 2144 int node; 2145 2146 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2147 if (node == NUMA_NO_NODE) 2148 node = set->numa_node; 2149 2150 INIT_LIST_HEAD(&tags->page_list); 2151 2152 /* 2153 * rq_size is the size of the request plus driver payload, rounded 2154 * to the cacheline size 2155 */ 2156 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2157 cache_line_size()); 2158 left = rq_size * depth; 2159 2160 for (i = 0; i < depth; ) { 2161 int this_order = max_order; 2162 struct page *page; 2163 int to_do; 2164 void *p; 2165 2166 while (this_order && left < order_to_size(this_order - 1)) 2167 this_order--; 2168 2169 do { 2170 page = alloc_pages_node(node, 2171 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2172 this_order); 2173 if (page) 2174 break; 2175 if (!this_order--) 2176 break; 2177 if (order_to_size(this_order) < rq_size) 2178 break; 2179 } while (1); 2180 2181 if (!page) 2182 goto fail; 2183 2184 page->private = this_order; 2185 list_add_tail(&page->lru, &tags->page_list); 2186 2187 p = page_address(page); 2188 /* 2189 * Allow kmemleak to scan these pages as they contain pointers 2190 * to additional allocations like via ops->init_request(). 2191 */ 2192 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2193 entries_per_page = order_to_size(this_order) / rq_size; 2194 to_do = min(entries_per_page, depth - i); 2195 left -= to_do * rq_size; 2196 for (j = 0; j < to_do; j++) { 2197 struct request *rq = p; 2198 2199 tags->static_rqs[i] = rq; 2200 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2201 tags->static_rqs[i] = NULL; 2202 goto fail; 2203 } 2204 2205 p += rq_size; 2206 i++; 2207 } 2208 } 2209 return 0; 2210 2211 fail: 2212 blk_mq_free_rqs(set, tags, hctx_idx); 2213 return -ENOMEM; 2214 } 2215 2216 /* 2217 * 'cpu' is going away. splice any existing rq_list entries from this 2218 * software queue to the hw queue dispatch list, and ensure that it 2219 * gets run. 2220 */ 2221 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2222 { 2223 struct blk_mq_hw_ctx *hctx; 2224 struct blk_mq_ctx *ctx; 2225 LIST_HEAD(tmp); 2226 enum hctx_type type; 2227 2228 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2229 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2230 type = hctx->type; 2231 2232 spin_lock(&ctx->lock); 2233 if (!list_empty(&ctx->rq_lists[type])) { 2234 list_splice_init(&ctx->rq_lists[type], &tmp); 2235 blk_mq_hctx_clear_pending(hctx, ctx); 2236 } 2237 spin_unlock(&ctx->lock); 2238 2239 if (list_empty(&tmp)) 2240 return 0; 2241 2242 spin_lock(&hctx->lock); 2243 list_splice_tail_init(&tmp, &hctx->dispatch); 2244 spin_unlock(&hctx->lock); 2245 2246 blk_mq_run_hw_queue(hctx, true); 2247 return 0; 2248 } 2249 2250 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2251 { 2252 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2253 &hctx->cpuhp_dead); 2254 } 2255 2256 /* hctx->ctxs will be freed in queue's release handler */ 2257 static void blk_mq_exit_hctx(struct request_queue *q, 2258 struct blk_mq_tag_set *set, 2259 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2260 { 2261 if (blk_mq_hw_queue_mapped(hctx)) 2262 blk_mq_tag_idle(hctx); 2263 2264 if (set->ops->exit_request) 2265 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2266 2267 if (set->ops->exit_hctx) 2268 set->ops->exit_hctx(hctx, hctx_idx); 2269 2270 if (hctx->flags & BLK_MQ_F_BLOCKING) 2271 cleanup_srcu_struct(hctx->srcu); 2272 2273 blk_mq_remove_cpuhp(hctx); 2274 blk_free_flush_queue(hctx->fq); 2275 sbitmap_free(&hctx->ctx_map); 2276 } 2277 2278 static void blk_mq_exit_hw_queues(struct request_queue *q, 2279 struct blk_mq_tag_set *set, int nr_queue) 2280 { 2281 struct blk_mq_hw_ctx *hctx; 2282 unsigned int i; 2283 2284 queue_for_each_hw_ctx(q, hctx, i) { 2285 if (i == nr_queue) 2286 break; 2287 blk_mq_debugfs_unregister_hctx(hctx); 2288 blk_mq_exit_hctx(q, set, hctx, i); 2289 } 2290 } 2291 2292 static int blk_mq_init_hctx(struct request_queue *q, 2293 struct blk_mq_tag_set *set, 2294 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2295 { 2296 int node; 2297 2298 node = hctx->numa_node; 2299 if (node == NUMA_NO_NODE) 2300 node = hctx->numa_node = set->numa_node; 2301 2302 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2303 spin_lock_init(&hctx->lock); 2304 INIT_LIST_HEAD(&hctx->dispatch); 2305 hctx->queue = q; 2306 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2307 2308 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2309 2310 hctx->tags = set->tags[hctx_idx]; 2311 2312 /* 2313 * Allocate space for all possible cpus to avoid allocation at 2314 * runtime 2315 */ 2316 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2317 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); 2318 if (!hctx->ctxs) 2319 goto unregister_cpu_notifier; 2320 2321 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2322 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node)) 2323 goto free_ctxs; 2324 2325 hctx->nr_ctx = 0; 2326 2327 spin_lock_init(&hctx->dispatch_wait_lock); 2328 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2329 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2330 2331 if (set->ops->init_hctx && 2332 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2333 goto free_bitmap; 2334 2335 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2336 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 2337 if (!hctx->fq) 2338 goto exit_hctx; 2339 2340 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2341 goto free_fq; 2342 2343 if (hctx->flags & BLK_MQ_F_BLOCKING) 2344 init_srcu_struct(hctx->srcu); 2345 2346 return 0; 2347 2348 free_fq: 2349 blk_free_flush_queue(hctx->fq); 2350 exit_hctx: 2351 if (set->ops->exit_hctx) 2352 set->ops->exit_hctx(hctx, hctx_idx); 2353 free_bitmap: 2354 sbitmap_free(&hctx->ctx_map); 2355 free_ctxs: 2356 kfree(hctx->ctxs); 2357 unregister_cpu_notifier: 2358 blk_mq_remove_cpuhp(hctx); 2359 return -1; 2360 } 2361 2362 static void blk_mq_init_cpu_queues(struct request_queue *q, 2363 unsigned int nr_hw_queues) 2364 { 2365 struct blk_mq_tag_set *set = q->tag_set; 2366 unsigned int i, j; 2367 2368 for_each_possible_cpu(i) { 2369 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2370 struct blk_mq_hw_ctx *hctx; 2371 int k; 2372 2373 __ctx->cpu = i; 2374 spin_lock_init(&__ctx->lock); 2375 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2376 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2377 2378 __ctx->queue = q; 2379 2380 /* 2381 * Set local node, IFF we have more than one hw queue. If 2382 * not, we remain on the home node of the device 2383 */ 2384 for (j = 0; j < set->nr_maps; j++) { 2385 hctx = blk_mq_map_queue_type(q, j, i); 2386 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2387 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2388 } 2389 } 2390 } 2391 2392 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2393 { 2394 int ret = 0; 2395 2396 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2397 set->queue_depth, set->reserved_tags); 2398 if (!set->tags[hctx_idx]) 2399 return false; 2400 2401 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2402 set->queue_depth); 2403 if (!ret) 2404 return true; 2405 2406 blk_mq_free_rq_map(set->tags[hctx_idx]); 2407 set->tags[hctx_idx] = NULL; 2408 return false; 2409 } 2410 2411 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2412 unsigned int hctx_idx) 2413 { 2414 if (set->tags && set->tags[hctx_idx]) { 2415 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2416 blk_mq_free_rq_map(set->tags[hctx_idx]); 2417 set->tags[hctx_idx] = NULL; 2418 } 2419 } 2420 2421 static void blk_mq_map_swqueue(struct request_queue *q) 2422 { 2423 unsigned int i, j, hctx_idx; 2424 struct blk_mq_hw_ctx *hctx; 2425 struct blk_mq_ctx *ctx; 2426 struct blk_mq_tag_set *set = q->tag_set; 2427 2428 /* 2429 * Avoid others reading imcomplete hctx->cpumask through sysfs 2430 */ 2431 mutex_lock(&q->sysfs_lock); 2432 2433 queue_for_each_hw_ctx(q, hctx, i) { 2434 cpumask_clear(hctx->cpumask); 2435 hctx->nr_ctx = 0; 2436 hctx->dispatch_from = NULL; 2437 } 2438 2439 /* 2440 * Map software to hardware queues. 2441 * 2442 * If the cpu isn't present, the cpu is mapped to first hctx. 2443 */ 2444 for_each_possible_cpu(i) { 2445 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2446 /* unmapped hw queue can be remapped after CPU topo changed */ 2447 if (!set->tags[hctx_idx] && 2448 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2449 /* 2450 * If tags initialization fail for some hctx, 2451 * that hctx won't be brought online. In this 2452 * case, remap the current ctx to hctx[0] which 2453 * is guaranteed to always have tags allocated 2454 */ 2455 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2456 } 2457 2458 ctx = per_cpu_ptr(q->queue_ctx, i); 2459 for (j = 0; j < set->nr_maps; j++) { 2460 if (!set->map[j].nr_queues) { 2461 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2462 HCTX_TYPE_DEFAULT, i); 2463 continue; 2464 } 2465 2466 hctx = blk_mq_map_queue_type(q, j, i); 2467 ctx->hctxs[j] = hctx; 2468 /* 2469 * If the CPU is already set in the mask, then we've 2470 * mapped this one already. This can happen if 2471 * devices share queues across queue maps. 2472 */ 2473 if (cpumask_test_cpu(i, hctx->cpumask)) 2474 continue; 2475 2476 cpumask_set_cpu(i, hctx->cpumask); 2477 hctx->type = j; 2478 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2479 hctx->ctxs[hctx->nr_ctx++] = ctx; 2480 2481 /* 2482 * If the nr_ctx type overflows, we have exceeded the 2483 * amount of sw queues we can support. 2484 */ 2485 BUG_ON(!hctx->nr_ctx); 2486 } 2487 2488 for (; j < HCTX_MAX_TYPES; j++) 2489 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2490 HCTX_TYPE_DEFAULT, i); 2491 } 2492 2493 mutex_unlock(&q->sysfs_lock); 2494 2495 queue_for_each_hw_ctx(q, hctx, i) { 2496 /* 2497 * If no software queues are mapped to this hardware queue, 2498 * disable it and free the request entries. 2499 */ 2500 if (!hctx->nr_ctx) { 2501 /* Never unmap queue 0. We need it as a 2502 * fallback in case of a new remap fails 2503 * allocation 2504 */ 2505 if (i && set->tags[i]) 2506 blk_mq_free_map_and_requests(set, i); 2507 2508 hctx->tags = NULL; 2509 continue; 2510 } 2511 2512 hctx->tags = set->tags[i]; 2513 WARN_ON(!hctx->tags); 2514 2515 /* 2516 * Set the map size to the number of mapped software queues. 2517 * This is more accurate and more efficient than looping 2518 * over all possibly mapped software queues. 2519 */ 2520 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2521 2522 /* 2523 * Initialize batch roundrobin counts 2524 */ 2525 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2526 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2527 } 2528 } 2529 2530 /* 2531 * Caller needs to ensure that we're either frozen/quiesced, or that 2532 * the queue isn't live yet. 2533 */ 2534 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2535 { 2536 struct blk_mq_hw_ctx *hctx; 2537 int i; 2538 2539 queue_for_each_hw_ctx(q, hctx, i) { 2540 if (shared) 2541 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2542 else 2543 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2544 } 2545 } 2546 2547 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2548 bool shared) 2549 { 2550 struct request_queue *q; 2551 2552 lockdep_assert_held(&set->tag_list_lock); 2553 2554 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2555 blk_mq_freeze_queue(q); 2556 queue_set_hctx_shared(q, shared); 2557 blk_mq_unfreeze_queue(q); 2558 } 2559 } 2560 2561 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2562 { 2563 struct blk_mq_tag_set *set = q->tag_set; 2564 2565 mutex_lock(&set->tag_list_lock); 2566 list_del_rcu(&q->tag_set_list); 2567 if (list_is_singular(&set->tag_list)) { 2568 /* just transitioned to unshared */ 2569 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2570 /* update existing queue */ 2571 blk_mq_update_tag_set_depth(set, false); 2572 } 2573 mutex_unlock(&set->tag_list_lock); 2574 INIT_LIST_HEAD(&q->tag_set_list); 2575 } 2576 2577 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2578 struct request_queue *q) 2579 { 2580 mutex_lock(&set->tag_list_lock); 2581 2582 /* 2583 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2584 */ 2585 if (!list_empty(&set->tag_list) && 2586 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2587 set->flags |= BLK_MQ_F_TAG_SHARED; 2588 /* update existing queue */ 2589 blk_mq_update_tag_set_depth(set, true); 2590 } 2591 if (set->flags & BLK_MQ_F_TAG_SHARED) 2592 queue_set_hctx_shared(q, true); 2593 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2594 2595 mutex_unlock(&set->tag_list_lock); 2596 } 2597 2598 /* All allocations will be freed in release handler of q->mq_kobj */ 2599 static int blk_mq_alloc_ctxs(struct request_queue *q) 2600 { 2601 struct blk_mq_ctxs *ctxs; 2602 int cpu; 2603 2604 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2605 if (!ctxs) 2606 return -ENOMEM; 2607 2608 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2609 if (!ctxs->queue_ctx) 2610 goto fail; 2611 2612 for_each_possible_cpu(cpu) { 2613 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2614 ctx->ctxs = ctxs; 2615 } 2616 2617 q->mq_kobj = &ctxs->kobj; 2618 q->queue_ctx = ctxs->queue_ctx; 2619 2620 return 0; 2621 fail: 2622 kfree(ctxs); 2623 return -ENOMEM; 2624 } 2625 2626 /* 2627 * It is the actual release handler for mq, but we do it from 2628 * request queue's release handler for avoiding use-after-free 2629 * and headache because q->mq_kobj shouldn't have been introduced, 2630 * but we can't group ctx/kctx kobj without it. 2631 */ 2632 void blk_mq_release(struct request_queue *q) 2633 { 2634 struct blk_mq_hw_ctx *hctx; 2635 unsigned int i; 2636 2637 /* hctx kobj stays in hctx */ 2638 queue_for_each_hw_ctx(q, hctx, i) { 2639 if (!hctx) 2640 continue; 2641 kobject_put(&hctx->kobj); 2642 } 2643 2644 kfree(q->queue_hw_ctx); 2645 2646 /* 2647 * release .mq_kobj and sw queue's kobject now because 2648 * both share lifetime with request queue. 2649 */ 2650 blk_mq_sysfs_deinit(q); 2651 } 2652 2653 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2654 { 2655 struct request_queue *uninit_q, *q; 2656 2657 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2658 if (!uninit_q) 2659 return ERR_PTR(-ENOMEM); 2660 2661 q = blk_mq_init_allocated_queue(set, uninit_q); 2662 if (IS_ERR(q)) 2663 blk_cleanup_queue(uninit_q); 2664 2665 return q; 2666 } 2667 EXPORT_SYMBOL(blk_mq_init_queue); 2668 2669 /* 2670 * Helper for setting up a queue with mq ops, given queue depth, and 2671 * the passed in mq ops flags. 2672 */ 2673 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2674 const struct blk_mq_ops *ops, 2675 unsigned int queue_depth, 2676 unsigned int set_flags) 2677 { 2678 struct request_queue *q; 2679 int ret; 2680 2681 memset(set, 0, sizeof(*set)); 2682 set->ops = ops; 2683 set->nr_hw_queues = 1; 2684 set->nr_maps = 1; 2685 set->queue_depth = queue_depth; 2686 set->numa_node = NUMA_NO_NODE; 2687 set->flags = set_flags; 2688 2689 ret = blk_mq_alloc_tag_set(set); 2690 if (ret) 2691 return ERR_PTR(ret); 2692 2693 q = blk_mq_init_queue(set); 2694 if (IS_ERR(q)) { 2695 blk_mq_free_tag_set(set); 2696 return q; 2697 } 2698 2699 return q; 2700 } 2701 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2702 2703 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2704 { 2705 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2706 2707 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2708 __alignof__(struct blk_mq_hw_ctx)) != 2709 sizeof(struct blk_mq_hw_ctx)); 2710 2711 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2712 hw_ctx_size += sizeof(struct srcu_struct); 2713 2714 return hw_ctx_size; 2715 } 2716 2717 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2718 struct blk_mq_tag_set *set, struct request_queue *q, 2719 int hctx_idx, int node) 2720 { 2721 struct blk_mq_hw_ctx *hctx; 2722 2723 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), 2724 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2725 node); 2726 if (!hctx) 2727 return NULL; 2728 2729 if (!zalloc_cpumask_var_node(&hctx->cpumask, 2730 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2731 node)) { 2732 kfree(hctx); 2733 return NULL; 2734 } 2735 2736 atomic_set(&hctx->nr_active, 0); 2737 hctx->numa_node = node; 2738 hctx->queue_num = hctx_idx; 2739 2740 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) { 2741 free_cpumask_var(hctx->cpumask); 2742 kfree(hctx); 2743 return NULL; 2744 } 2745 blk_mq_hctx_kobj_init(hctx); 2746 2747 return hctx; 2748 } 2749 2750 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2751 struct request_queue *q) 2752 { 2753 int i, j, end; 2754 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2755 2756 /* protect against switching io scheduler */ 2757 mutex_lock(&q->sysfs_lock); 2758 for (i = 0; i < set->nr_hw_queues; i++) { 2759 int node; 2760 struct blk_mq_hw_ctx *hctx; 2761 2762 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2763 /* 2764 * If the hw queue has been mapped to another numa node, 2765 * we need to realloc the hctx. If allocation fails, fallback 2766 * to use the previous one. 2767 */ 2768 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2769 continue; 2770 2771 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2772 if (hctx) { 2773 if (hctxs[i]) { 2774 blk_mq_exit_hctx(q, set, hctxs[i], i); 2775 kobject_put(&hctxs[i]->kobj); 2776 } 2777 hctxs[i] = hctx; 2778 } else { 2779 if (hctxs[i]) 2780 pr_warn("Allocate new hctx on node %d fails,\ 2781 fallback to previous one on node %d\n", 2782 node, hctxs[i]->numa_node); 2783 else 2784 break; 2785 } 2786 } 2787 /* 2788 * Increasing nr_hw_queues fails. Free the newly allocated 2789 * hctxs and keep the previous q->nr_hw_queues. 2790 */ 2791 if (i != set->nr_hw_queues) { 2792 j = q->nr_hw_queues; 2793 end = i; 2794 } else { 2795 j = i; 2796 end = q->nr_hw_queues; 2797 q->nr_hw_queues = set->nr_hw_queues; 2798 } 2799 2800 for (; j < end; j++) { 2801 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2802 2803 if (hctx) { 2804 if (hctx->tags) 2805 blk_mq_free_map_and_requests(set, j); 2806 blk_mq_exit_hctx(q, set, hctx, j); 2807 kobject_put(&hctx->kobj); 2808 hctxs[j] = NULL; 2809 2810 } 2811 } 2812 mutex_unlock(&q->sysfs_lock); 2813 } 2814 2815 /* 2816 * Maximum number of hardware queues we support. For single sets, we'll never 2817 * have more than the CPUs (software queues). For multiple sets, the tag_set 2818 * user may have set ->nr_hw_queues larger. 2819 */ 2820 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set) 2821 { 2822 if (set->nr_maps == 1) 2823 return nr_cpu_ids; 2824 2825 return max(set->nr_hw_queues, nr_cpu_ids); 2826 } 2827 2828 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2829 struct request_queue *q) 2830 { 2831 /* mark the queue as mq asap */ 2832 q->mq_ops = set->ops; 2833 2834 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2835 blk_mq_poll_stats_bkt, 2836 BLK_MQ_POLL_STATS_BKTS, q); 2837 if (!q->poll_cb) 2838 goto err_exit; 2839 2840 if (blk_mq_alloc_ctxs(q)) 2841 goto err_exit; 2842 2843 /* init q->mq_kobj and sw queues' kobjects */ 2844 blk_mq_sysfs_init(q); 2845 2846 q->nr_queues = nr_hw_queues(set); 2847 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)), 2848 GFP_KERNEL, set->numa_node); 2849 if (!q->queue_hw_ctx) 2850 goto err_sys_init; 2851 2852 blk_mq_realloc_hw_ctxs(set, q); 2853 if (!q->nr_hw_queues) 2854 goto err_hctxs; 2855 2856 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2857 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2858 2859 q->tag_set = set; 2860 2861 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2862 if (set->nr_maps > HCTX_TYPE_POLL && 2863 set->map[HCTX_TYPE_POLL].nr_queues) 2864 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2865 2866 q->sg_reserved_size = INT_MAX; 2867 2868 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2869 INIT_LIST_HEAD(&q->requeue_list); 2870 spin_lock_init(&q->requeue_lock); 2871 2872 blk_queue_make_request(q, blk_mq_make_request); 2873 2874 /* 2875 * Do this after blk_queue_make_request() overrides it... 2876 */ 2877 q->nr_requests = set->queue_depth; 2878 2879 /* 2880 * Default to classic polling 2881 */ 2882 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2883 2884 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2885 blk_mq_add_queue_tag_set(set, q); 2886 blk_mq_map_swqueue(q); 2887 2888 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2889 int ret; 2890 2891 ret = elevator_init_mq(q); 2892 if (ret) 2893 return ERR_PTR(ret); 2894 } 2895 2896 return q; 2897 2898 err_hctxs: 2899 kfree(q->queue_hw_ctx); 2900 err_sys_init: 2901 blk_mq_sysfs_deinit(q); 2902 err_exit: 2903 q->mq_ops = NULL; 2904 return ERR_PTR(-ENOMEM); 2905 } 2906 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2907 2908 void blk_mq_free_queue(struct request_queue *q) 2909 { 2910 struct blk_mq_tag_set *set = q->tag_set; 2911 2912 blk_mq_del_queue_tag_set(q); 2913 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2914 } 2915 2916 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2917 { 2918 int i; 2919 2920 for (i = 0; i < set->nr_hw_queues; i++) 2921 if (!__blk_mq_alloc_rq_map(set, i)) 2922 goto out_unwind; 2923 2924 return 0; 2925 2926 out_unwind: 2927 while (--i >= 0) 2928 blk_mq_free_rq_map(set->tags[i]); 2929 2930 return -ENOMEM; 2931 } 2932 2933 /* 2934 * Allocate the request maps associated with this tag_set. Note that this 2935 * may reduce the depth asked for, if memory is tight. set->queue_depth 2936 * will be updated to reflect the allocated depth. 2937 */ 2938 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2939 { 2940 unsigned int depth; 2941 int err; 2942 2943 depth = set->queue_depth; 2944 do { 2945 err = __blk_mq_alloc_rq_maps(set); 2946 if (!err) 2947 break; 2948 2949 set->queue_depth >>= 1; 2950 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2951 err = -ENOMEM; 2952 break; 2953 } 2954 } while (set->queue_depth); 2955 2956 if (!set->queue_depth || err) { 2957 pr_err("blk-mq: failed to allocate request map\n"); 2958 return -ENOMEM; 2959 } 2960 2961 if (depth != set->queue_depth) 2962 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2963 depth, set->queue_depth); 2964 2965 return 0; 2966 } 2967 2968 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2969 { 2970 if (set->ops->map_queues && !is_kdump_kernel()) { 2971 int i; 2972 2973 /* 2974 * transport .map_queues is usually done in the following 2975 * way: 2976 * 2977 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2978 * mask = get_cpu_mask(queue) 2979 * for_each_cpu(cpu, mask) 2980 * set->map[x].mq_map[cpu] = queue; 2981 * } 2982 * 2983 * When we need to remap, the table has to be cleared for 2984 * killing stale mapping since one CPU may not be mapped 2985 * to any hw queue. 2986 */ 2987 for (i = 0; i < set->nr_maps; i++) 2988 blk_mq_clear_mq_map(&set->map[i]); 2989 2990 return set->ops->map_queues(set); 2991 } else { 2992 BUG_ON(set->nr_maps > 1); 2993 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2994 } 2995 } 2996 2997 /* 2998 * Alloc a tag set to be associated with one or more request queues. 2999 * May fail with EINVAL for various error conditions. May adjust the 3000 * requested depth down, if it's too large. In that case, the set 3001 * value will be stored in set->queue_depth. 3002 */ 3003 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3004 { 3005 int i, ret; 3006 3007 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3008 3009 if (!set->nr_hw_queues) 3010 return -EINVAL; 3011 if (!set->queue_depth) 3012 return -EINVAL; 3013 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3014 return -EINVAL; 3015 3016 if (!set->ops->queue_rq) 3017 return -EINVAL; 3018 3019 if (!set->ops->get_budget ^ !set->ops->put_budget) 3020 return -EINVAL; 3021 3022 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3023 pr_info("blk-mq: reduced tag depth to %u\n", 3024 BLK_MQ_MAX_DEPTH); 3025 set->queue_depth = BLK_MQ_MAX_DEPTH; 3026 } 3027 3028 if (!set->nr_maps) 3029 set->nr_maps = 1; 3030 else if (set->nr_maps > HCTX_MAX_TYPES) 3031 return -EINVAL; 3032 3033 /* 3034 * If a crashdump is active, then we are potentially in a very 3035 * memory constrained environment. Limit us to 1 queue and 3036 * 64 tags to prevent using too much memory. 3037 */ 3038 if (is_kdump_kernel()) { 3039 set->nr_hw_queues = 1; 3040 set->nr_maps = 1; 3041 set->queue_depth = min(64U, set->queue_depth); 3042 } 3043 /* 3044 * There is no use for more h/w queues than cpus if we just have 3045 * a single map 3046 */ 3047 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3048 set->nr_hw_queues = nr_cpu_ids; 3049 3050 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *), 3051 GFP_KERNEL, set->numa_node); 3052 if (!set->tags) 3053 return -ENOMEM; 3054 3055 ret = -ENOMEM; 3056 for (i = 0; i < set->nr_maps; i++) { 3057 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3058 sizeof(set->map[i].mq_map[0]), 3059 GFP_KERNEL, set->numa_node); 3060 if (!set->map[i].mq_map) 3061 goto out_free_mq_map; 3062 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3063 } 3064 3065 ret = blk_mq_update_queue_map(set); 3066 if (ret) 3067 goto out_free_mq_map; 3068 3069 ret = blk_mq_alloc_rq_maps(set); 3070 if (ret) 3071 goto out_free_mq_map; 3072 3073 mutex_init(&set->tag_list_lock); 3074 INIT_LIST_HEAD(&set->tag_list); 3075 3076 return 0; 3077 3078 out_free_mq_map: 3079 for (i = 0; i < set->nr_maps; i++) { 3080 kfree(set->map[i].mq_map); 3081 set->map[i].mq_map = NULL; 3082 } 3083 kfree(set->tags); 3084 set->tags = NULL; 3085 return ret; 3086 } 3087 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3088 3089 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3090 { 3091 int i, j; 3092 3093 for (i = 0; i < nr_hw_queues(set); i++) 3094 blk_mq_free_map_and_requests(set, i); 3095 3096 for (j = 0; j < set->nr_maps; j++) { 3097 kfree(set->map[j].mq_map); 3098 set->map[j].mq_map = NULL; 3099 } 3100 3101 kfree(set->tags); 3102 set->tags = NULL; 3103 } 3104 EXPORT_SYMBOL(blk_mq_free_tag_set); 3105 3106 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3107 { 3108 struct blk_mq_tag_set *set = q->tag_set; 3109 struct blk_mq_hw_ctx *hctx; 3110 int i, ret; 3111 3112 if (!set) 3113 return -EINVAL; 3114 3115 if (q->nr_requests == nr) 3116 return 0; 3117 3118 blk_mq_freeze_queue(q); 3119 blk_mq_quiesce_queue(q); 3120 3121 ret = 0; 3122 queue_for_each_hw_ctx(q, hctx, i) { 3123 if (!hctx->tags) 3124 continue; 3125 /* 3126 * If we're using an MQ scheduler, just update the scheduler 3127 * queue depth. This is similar to what the old code would do. 3128 */ 3129 if (!hctx->sched_tags) { 3130 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3131 false); 3132 } else { 3133 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3134 nr, true); 3135 } 3136 if (ret) 3137 break; 3138 } 3139 3140 if (!ret) 3141 q->nr_requests = nr; 3142 3143 blk_mq_unquiesce_queue(q); 3144 blk_mq_unfreeze_queue(q); 3145 3146 return ret; 3147 } 3148 3149 /* 3150 * request_queue and elevator_type pair. 3151 * It is just used by __blk_mq_update_nr_hw_queues to cache 3152 * the elevator_type associated with a request_queue. 3153 */ 3154 struct blk_mq_qe_pair { 3155 struct list_head node; 3156 struct request_queue *q; 3157 struct elevator_type *type; 3158 }; 3159 3160 /* 3161 * Cache the elevator_type in qe pair list and switch the 3162 * io scheduler to 'none' 3163 */ 3164 static bool blk_mq_elv_switch_none(struct list_head *head, 3165 struct request_queue *q) 3166 { 3167 struct blk_mq_qe_pair *qe; 3168 3169 if (!q->elevator) 3170 return true; 3171 3172 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3173 if (!qe) 3174 return false; 3175 3176 INIT_LIST_HEAD(&qe->node); 3177 qe->q = q; 3178 qe->type = q->elevator->type; 3179 list_add(&qe->node, head); 3180 3181 mutex_lock(&q->sysfs_lock); 3182 /* 3183 * After elevator_switch_mq, the previous elevator_queue will be 3184 * released by elevator_release. The reference of the io scheduler 3185 * module get by elevator_get will also be put. So we need to get 3186 * a reference of the io scheduler module here to prevent it to be 3187 * removed. 3188 */ 3189 __module_get(qe->type->elevator_owner); 3190 elevator_switch_mq(q, NULL); 3191 mutex_unlock(&q->sysfs_lock); 3192 3193 return true; 3194 } 3195 3196 static void blk_mq_elv_switch_back(struct list_head *head, 3197 struct request_queue *q) 3198 { 3199 struct blk_mq_qe_pair *qe; 3200 struct elevator_type *t = NULL; 3201 3202 list_for_each_entry(qe, head, node) 3203 if (qe->q == q) { 3204 t = qe->type; 3205 break; 3206 } 3207 3208 if (!t) 3209 return; 3210 3211 list_del(&qe->node); 3212 kfree(qe); 3213 3214 mutex_lock(&q->sysfs_lock); 3215 elevator_switch_mq(q, t); 3216 mutex_unlock(&q->sysfs_lock); 3217 } 3218 3219 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3220 int nr_hw_queues) 3221 { 3222 struct request_queue *q; 3223 LIST_HEAD(head); 3224 int prev_nr_hw_queues; 3225 3226 lockdep_assert_held(&set->tag_list_lock); 3227 3228 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3229 nr_hw_queues = nr_cpu_ids; 3230 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3231 return; 3232 3233 list_for_each_entry(q, &set->tag_list, tag_set_list) 3234 blk_mq_freeze_queue(q); 3235 /* 3236 * Sync with blk_mq_queue_tag_busy_iter. 3237 */ 3238 synchronize_rcu(); 3239 /* 3240 * Switch IO scheduler to 'none', cleaning up the data associated 3241 * with the previous scheduler. We will switch back once we are done 3242 * updating the new sw to hw queue mappings. 3243 */ 3244 list_for_each_entry(q, &set->tag_list, tag_set_list) 3245 if (!blk_mq_elv_switch_none(&head, q)) 3246 goto switch_back; 3247 3248 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3249 blk_mq_debugfs_unregister_hctxs(q); 3250 blk_mq_sysfs_unregister(q); 3251 } 3252 3253 prev_nr_hw_queues = set->nr_hw_queues; 3254 set->nr_hw_queues = nr_hw_queues; 3255 blk_mq_update_queue_map(set); 3256 fallback: 3257 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3258 blk_mq_realloc_hw_ctxs(set, q); 3259 if (q->nr_hw_queues != set->nr_hw_queues) { 3260 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3261 nr_hw_queues, prev_nr_hw_queues); 3262 set->nr_hw_queues = prev_nr_hw_queues; 3263 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3264 goto fallback; 3265 } 3266 blk_mq_map_swqueue(q); 3267 } 3268 3269 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3270 blk_mq_sysfs_register(q); 3271 blk_mq_debugfs_register_hctxs(q); 3272 } 3273 3274 switch_back: 3275 list_for_each_entry(q, &set->tag_list, tag_set_list) 3276 blk_mq_elv_switch_back(&head, q); 3277 3278 list_for_each_entry(q, &set->tag_list, tag_set_list) 3279 blk_mq_unfreeze_queue(q); 3280 } 3281 3282 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3283 { 3284 mutex_lock(&set->tag_list_lock); 3285 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3286 mutex_unlock(&set->tag_list_lock); 3287 } 3288 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3289 3290 /* Enable polling stats and return whether they were already enabled. */ 3291 static bool blk_poll_stats_enable(struct request_queue *q) 3292 { 3293 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3294 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3295 return true; 3296 blk_stat_add_callback(q, q->poll_cb); 3297 return false; 3298 } 3299 3300 static void blk_mq_poll_stats_start(struct request_queue *q) 3301 { 3302 /* 3303 * We don't arm the callback if polling stats are not enabled or the 3304 * callback is already active. 3305 */ 3306 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3307 blk_stat_is_active(q->poll_cb)) 3308 return; 3309 3310 blk_stat_activate_msecs(q->poll_cb, 100); 3311 } 3312 3313 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3314 { 3315 struct request_queue *q = cb->data; 3316 int bucket; 3317 3318 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3319 if (cb->stat[bucket].nr_samples) 3320 q->poll_stat[bucket] = cb->stat[bucket]; 3321 } 3322 } 3323 3324 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3325 struct blk_mq_hw_ctx *hctx, 3326 struct request *rq) 3327 { 3328 unsigned long ret = 0; 3329 int bucket; 3330 3331 /* 3332 * If stats collection isn't on, don't sleep but turn it on for 3333 * future users 3334 */ 3335 if (!blk_poll_stats_enable(q)) 3336 return 0; 3337 3338 /* 3339 * As an optimistic guess, use half of the mean service time 3340 * for this type of request. We can (and should) make this smarter. 3341 * For instance, if the completion latencies are tight, we can 3342 * get closer than just half the mean. This is especially 3343 * important on devices where the completion latencies are longer 3344 * than ~10 usec. We do use the stats for the relevant IO size 3345 * if available which does lead to better estimates. 3346 */ 3347 bucket = blk_mq_poll_stats_bkt(rq); 3348 if (bucket < 0) 3349 return ret; 3350 3351 if (q->poll_stat[bucket].nr_samples) 3352 ret = (q->poll_stat[bucket].mean + 1) / 2; 3353 3354 return ret; 3355 } 3356 3357 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3358 struct blk_mq_hw_ctx *hctx, 3359 struct request *rq) 3360 { 3361 struct hrtimer_sleeper hs; 3362 enum hrtimer_mode mode; 3363 unsigned int nsecs; 3364 ktime_t kt; 3365 3366 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3367 return false; 3368 3369 /* 3370 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3371 * 3372 * 0: use half of prev avg 3373 * >0: use this specific value 3374 */ 3375 if (q->poll_nsec > 0) 3376 nsecs = q->poll_nsec; 3377 else 3378 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3379 3380 if (!nsecs) 3381 return false; 3382 3383 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3384 3385 /* 3386 * This will be replaced with the stats tracking code, using 3387 * 'avg_completion_time / 2' as the pre-sleep target. 3388 */ 3389 kt = nsecs; 3390 3391 mode = HRTIMER_MODE_REL; 3392 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3393 hrtimer_set_expires(&hs.timer, kt); 3394 3395 hrtimer_init_sleeper(&hs, current); 3396 do { 3397 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3398 break; 3399 set_current_state(TASK_UNINTERRUPTIBLE); 3400 hrtimer_start_expires(&hs.timer, mode); 3401 if (hs.task) 3402 io_schedule(); 3403 hrtimer_cancel(&hs.timer); 3404 mode = HRTIMER_MODE_ABS; 3405 } while (hs.task && !signal_pending(current)); 3406 3407 __set_current_state(TASK_RUNNING); 3408 destroy_hrtimer_on_stack(&hs.timer); 3409 return true; 3410 } 3411 3412 static bool blk_mq_poll_hybrid(struct request_queue *q, 3413 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3414 { 3415 struct request *rq; 3416 3417 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3418 return false; 3419 3420 if (!blk_qc_t_is_internal(cookie)) 3421 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3422 else { 3423 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3424 /* 3425 * With scheduling, if the request has completed, we'll 3426 * get a NULL return here, as we clear the sched tag when 3427 * that happens. The request still remains valid, like always, 3428 * so we should be safe with just the NULL check. 3429 */ 3430 if (!rq) 3431 return false; 3432 } 3433 3434 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3435 } 3436 3437 /** 3438 * blk_poll - poll for IO completions 3439 * @q: the queue 3440 * @cookie: cookie passed back at IO submission time 3441 * @spin: whether to spin for completions 3442 * 3443 * Description: 3444 * Poll for completions on the passed in queue. Returns number of 3445 * completed entries found. If @spin is true, then blk_poll will continue 3446 * looping until at least one completion is found, unless the task is 3447 * otherwise marked running (or we need to reschedule). 3448 */ 3449 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3450 { 3451 struct blk_mq_hw_ctx *hctx; 3452 long state; 3453 3454 if (!blk_qc_t_valid(cookie) || 3455 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3456 return 0; 3457 3458 if (current->plug) 3459 blk_flush_plug_list(current->plug, false); 3460 3461 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3462 3463 /* 3464 * If we sleep, have the caller restart the poll loop to reset 3465 * the state. Like for the other success return cases, the 3466 * caller is responsible for checking if the IO completed. If 3467 * the IO isn't complete, we'll get called again and will go 3468 * straight to the busy poll loop. 3469 */ 3470 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3471 return 1; 3472 3473 hctx->poll_considered++; 3474 3475 state = current->state; 3476 do { 3477 int ret; 3478 3479 hctx->poll_invoked++; 3480 3481 ret = q->mq_ops->poll(hctx); 3482 if (ret > 0) { 3483 hctx->poll_success++; 3484 __set_current_state(TASK_RUNNING); 3485 return ret; 3486 } 3487 3488 if (signal_pending_state(state, current)) 3489 __set_current_state(TASK_RUNNING); 3490 3491 if (current->state == TASK_RUNNING) 3492 return 1; 3493 if (ret < 0 || !spin) 3494 break; 3495 cpu_relax(); 3496 } while (!need_resched()); 3497 3498 __set_current_state(TASK_RUNNING); 3499 return 0; 3500 } 3501 EXPORT_SYMBOL_GPL(blk_poll); 3502 3503 unsigned int blk_mq_rq_cpu(struct request *rq) 3504 { 3505 return rq->mq_ctx->cpu; 3506 } 3507 EXPORT_SYMBOL(blk_mq_rq_cpu); 3508 3509 static int __init blk_mq_init(void) 3510 { 3511 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3512 blk_mq_hctx_notify_dead); 3513 return 0; 3514 } 3515 subsys_initcall(blk_mq_init); 3516