xref: /linux/block/blk-mq.c (revision 4cf421e55d69016989548e0fb8585e69f54bd283)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/delay.h>
25 #include <linux/crash_dump.h>
26 #include <linux/prefetch.h>
27 
28 #include <trace/events/block.h>
29 
30 #include <linux/blk-mq.h>
31 #include "blk.h"
32 #include "blk-mq.h"
33 #include "blk-mq-tag.h"
34 #include "blk-stat.h"
35 #include "blk-wbt.h"
36 #include "blk-mq-sched.h"
37 
38 static DEFINE_MUTEX(all_q_mutex);
39 static LIST_HEAD(all_q_list);
40 
41 /*
42  * Check if any of the ctx's have pending work in this hardware queue
43  */
44 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
45 {
46 	return sbitmap_any_bit_set(&hctx->ctx_map) ||
47 			!list_empty_careful(&hctx->dispatch) ||
48 			blk_mq_sched_has_work(hctx);
49 }
50 
51 /*
52  * Mark this ctx as having pending work in this hardware queue
53  */
54 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
55 				     struct blk_mq_ctx *ctx)
56 {
57 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
58 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
59 }
60 
61 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
62 				      struct blk_mq_ctx *ctx)
63 {
64 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
65 }
66 
67 void blk_mq_freeze_queue_start(struct request_queue *q)
68 {
69 	int freeze_depth;
70 
71 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
72 	if (freeze_depth == 1) {
73 		percpu_ref_kill(&q->q_usage_counter);
74 		blk_mq_run_hw_queues(q, false);
75 	}
76 }
77 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
78 
79 static void blk_mq_freeze_queue_wait(struct request_queue *q)
80 {
81 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
82 }
83 
84 /*
85  * Guarantee no request is in use, so we can change any data structure of
86  * the queue afterward.
87  */
88 void blk_freeze_queue(struct request_queue *q)
89 {
90 	/*
91 	 * In the !blk_mq case we are only calling this to kill the
92 	 * q_usage_counter, otherwise this increases the freeze depth
93 	 * and waits for it to return to zero.  For this reason there is
94 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
95 	 * exported to drivers as the only user for unfreeze is blk_mq.
96 	 */
97 	blk_mq_freeze_queue_start(q);
98 	blk_mq_freeze_queue_wait(q);
99 }
100 
101 void blk_mq_freeze_queue(struct request_queue *q)
102 {
103 	/*
104 	 * ...just an alias to keep freeze and unfreeze actions balanced
105 	 * in the blk_mq_* namespace
106 	 */
107 	blk_freeze_queue(q);
108 }
109 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
110 
111 void blk_mq_unfreeze_queue(struct request_queue *q)
112 {
113 	int freeze_depth;
114 
115 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
116 	WARN_ON_ONCE(freeze_depth < 0);
117 	if (!freeze_depth) {
118 		percpu_ref_reinit(&q->q_usage_counter);
119 		wake_up_all(&q->mq_freeze_wq);
120 	}
121 }
122 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
123 
124 /**
125  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
126  * @q: request queue.
127  *
128  * Note: this function does not prevent that the struct request end_io()
129  * callback function is invoked. Additionally, it is not prevented that
130  * new queue_rq() calls occur unless the queue has been stopped first.
131  */
132 void blk_mq_quiesce_queue(struct request_queue *q)
133 {
134 	struct blk_mq_hw_ctx *hctx;
135 	unsigned int i;
136 	bool rcu = false;
137 
138 	blk_mq_stop_hw_queues(q);
139 
140 	queue_for_each_hw_ctx(q, hctx, i) {
141 		if (hctx->flags & BLK_MQ_F_BLOCKING)
142 			synchronize_srcu(&hctx->queue_rq_srcu);
143 		else
144 			rcu = true;
145 	}
146 	if (rcu)
147 		synchronize_rcu();
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
150 
151 void blk_mq_wake_waiters(struct request_queue *q)
152 {
153 	struct blk_mq_hw_ctx *hctx;
154 	unsigned int i;
155 
156 	queue_for_each_hw_ctx(q, hctx, i)
157 		if (blk_mq_hw_queue_mapped(hctx))
158 			blk_mq_tag_wakeup_all(hctx->tags, true);
159 
160 	/*
161 	 * If we are called because the queue has now been marked as
162 	 * dying, we need to ensure that processes currently waiting on
163 	 * the queue are notified as well.
164 	 */
165 	wake_up_all(&q->mq_freeze_wq);
166 }
167 
168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
169 {
170 	return blk_mq_has_free_tags(hctx->tags);
171 }
172 EXPORT_SYMBOL(blk_mq_can_queue);
173 
174 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
175 			struct request *rq, unsigned int op)
176 {
177 	INIT_LIST_HEAD(&rq->queuelist);
178 	/* csd/requeue_work/fifo_time is initialized before use */
179 	rq->q = q;
180 	rq->mq_ctx = ctx;
181 	rq->cmd_flags = op;
182 	if (blk_queue_io_stat(q))
183 		rq->rq_flags |= RQF_IO_STAT;
184 	/* do not touch atomic flags, it needs atomic ops against the timer */
185 	rq->cpu = -1;
186 	INIT_HLIST_NODE(&rq->hash);
187 	RB_CLEAR_NODE(&rq->rb_node);
188 	rq->rq_disk = NULL;
189 	rq->part = NULL;
190 	rq->start_time = jiffies;
191 #ifdef CONFIG_BLK_CGROUP
192 	rq->rl = NULL;
193 	set_start_time_ns(rq);
194 	rq->io_start_time_ns = 0;
195 #endif
196 	rq->nr_phys_segments = 0;
197 #if defined(CONFIG_BLK_DEV_INTEGRITY)
198 	rq->nr_integrity_segments = 0;
199 #endif
200 	rq->special = NULL;
201 	/* tag was already set */
202 	rq->errors = 0;
203 	rq->extra_len = 0;
204 
205 	INIT_LIST_HEAD(&rq->timeout_list);
206 	rq->timeout = 0;
207 
208 	rq->end_io = NULL;
209 	rq->end_io_data = NULL;
210 	rq->next_rq = NULL;
211 
212 	ctx->rq_dispatched[op_is_sync(op)]++;
213 }
214 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
215 
216 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
217 				       unsigned int op)
218 {
219 	struct request *rq;
220 	unsigned int tag;
221 
222 	tag = blk_mq_get_tag(data);
223 	if (tag != BLK_MQ_TAG_FAIL) {
224 		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
225 
226 		rq = tags->static_rqs[tag];
227 
228 		if (data->flags & BLK_MQ_REQ_INTERNAL) {
229 			rq->tag = -1;
230 			rq->internal_tag = tag;
231 		} else {
232 			if (blk_mq_tag_busy(data->hctx)) {
233 				rq->rq_flags = RQF_MQ_INFLIGHT;
234 				atomic_inc(&data->hctx->nr_active);
235 			}
236 			rq->tag = tag;
237 			rq->internal_tag = -1;
238 		}
239 
240 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
241 		return rq;
242 	}
243 
244 	return NULL;
245 }
246 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
247 
248 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
249 		unsigned int flags)
250 {
251 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
252 	struct request *rq;
253 	int ret;
254 
255 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
256 	if (ret)
257 		return ERR_PTR(ret);
258 
259 	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
260 
261 	blk_mq_put_ctx(alloc_data.ctx);
262 	blk_queue_exit(q);
263 
264 	if (!rq)
265 		return ERR_PTR(-EWOULDBLOCK);
266 
267 	rq->__data_len = 0;
268 	rq->__sector = (sector_t) -1;
269 	rq->bio = rq->biotail = NULL;
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 		unsigned int flags, unsigned int hctx_idx)
276 {
277 	struct blk_mq_hw_ctx *hctx;
278 	struct blk_mq_ctx *ctx;
279 	struct request *rq;
280 	struct blk_mq_alloc_data alloc_data;
281 	int ret;
282 
283 	/*
284 	 * If the tag allocator sleeps we could get an allocation for a
285 	 * different hardware context.  No need to complicate the low level
286 	 * allocator for this for the rare use case of a command tied to
287 	 * a specific queue.
288 	 */
289 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 		return ERR_PTR(-EINVAL);
291 
292 	if (hctx_idx >= q->nr_hw_queues)
293 		return ERR_PTR(-EIO);
294 
295 	ret = blk_queue_enter(q, true);
296 	if (ret)
297 		return ERR_PTR(ret);
298 
299 	/*
300 	 * Check if the hardware context is actually mapped to anything.
301 	 * If not tell the caller that it should skip this queue.
302 	 */
303 	hctx = q->queue_hw_ctx[hctx_idx];
304 	if (!blk_mq_hw_queue_mapped(hctx)) {
305 		ret = -EXDEV;
306 		goto out_queue_exit;
307 	}
308 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
309 
310 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
311 	rq = __blk_mq_alloc_request(&alloc_data, rw);
312 	if (!rq) {
313 		ret = -EWOULDBLOCK;
314 		goto out_queue_exit;
315 	}
316 
317 	return rq;
318 
319 out_queue_exit:
320 	blk_queue_exit(q);
321 	return ERR_PTR(ret);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
324 
325 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
326 			     struct request *rq)
327 {
328 	const int sched_tag = rq->internal_tag;
329 	struct request_queue *q = rq->q;
330 
331 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
332 		atomic_dec(&hctx->nr_active);
333 
334 	wbt_done(q->rq_wb, &rq->issue_stat);
335 	rq->rq_flags = 0;
336 
337 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
338 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
339 	if (rq->tag != -1)
340 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
341 	if (sched_tag != -1)
342 		blk_mq_sched_completed_request(hctx, rq);
343 	blk_mq_sched_restart_queues(hctx);
344 	blk_queue_exit(q);
345 }
346 
347 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
348 				     struct request *rq)
349 {
350 	struct blk_mq_ctx *ctx = rq->mq_ctx;
351 
352 	ctx->rq_completed[rq_is_sync(rq)]++;
353 	__blk_mq_finish_request(hctx, ctx, rq);
354 }
355 
356 void blk_mq_finish_request(struct request *rq)
357 {
358 	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
359 }
360 
361 void blk_mq_free_request(struct request *rq)
362 {
363 	blk_mq_sched_put_request(rq);
364 }
365 EXPORT_SYMBOL_GPL(blk_mq_free_request);
366 
367 inline void __blk_mq_end_request(struct request *rq, int error)
368 {
369 	blk_account_io_done(rq);
370 
371 	if (rq->end_io) {
372 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
373 		rq->end_io(rq, error);
374 	} else {
375 		if (unlikely(blk_bidi_rq(rq)))
376 			blk_mq_free_request(rq->next_rq);
377 		blk_mq_free_request(rq);
378 	}
379 }
380 EXPORT_SYMBOL(__blk_mq_end_request);
381 
382 void blk_mq_end_request(struct request *rq, int error)
383 {
384 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
385 		BUG();
386 	__blk_mq_end_request(rq, error);
387 }
388 EXPORT_SYMBOL(blk_mq_end_request);
389 
390 static void __blk_mq_complete_request_remote(void *data)
391 {
392 	struct request *rq = data;
393 
394 	rq->q->softirq_done_fn(rq);
395 }
396 
397 static void blk_mq_ipi_complete_request(struct request *rq)
398 {
399 	struct blk_mq_ctx *ctx = rq->mq_ctx;
400 	bool shared = false;
401 	int cpu;
402 
403 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
404 		rq->q->softirq_done_fn(rq);
405 		return;
406 	}
407 
408 	cpu = get_cpu();
409 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
410 		shared = cpus_share_cache(cpu, ctx->cpu);
411 
412 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
413 		rq->csd.func = __blk_mq_complete_request_remote;
414 		rq->csd.info = rq;
415 		rq->csd.flags = 0;
416 		smp_call_function_single_async(ctx->cpu, &rq->csd);
417 	} else {
418 		rq->q->softirq_done_fn(rq);
419 	}
420 	put_cpu();
421 }
422 
423 static void blk_mq_stat_add(struct request *rq)
424 {
425 	if (rq->rq_flags & RQF_STATS) {
426 		/*
427 		 * We could rq->mq_ctx here, but there's less of a risk
428 		 * of races if we have the completion event add the stats
429 		 * to the local software queue.
430 		 */
431 		struct blk_mq_ctx *ctx;
432 
433 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
434 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
435 	}
436 }
437 
438 static void __blk_mq_complete_request(struct request *rq)
439 {
440 	struct request_queue *q = rq->q;
441 
442 	blk_mq_stat_add(rq);
443 
444 	if (!q->softirq_done_fn)
445 		blk_mq_end_request(rq, rq->errors);
446 	else
447 		blk_mq_ipi_complete_request(rq);
448 }
449 
450 /**
451  * blk_mq_complete_request - end I/O on a request
452  * @rq:		the request being processed
453  *
454  * Description:
455  *	Ends all I/O on a request. It does not handle partial completions.
456  *	The actual completion happens out-of-order, through a IPI handler.
457  **/
458 void blk_mq_complete_request(struct request *rq, int error)
459 {
460 	struct request_queue *q = rq->q;
461 
462 	if (unlikely(blk_should_fake_timeout(q)))
463 		return;
464 	if (!blk_mark_rq_complete(rq)) {
465 		rq->errors = error;
466 		__blk_mq_complete_request(rq);
467 	}
468 }
469 EXPORT_SYMBOL(blk_mq_complete_request);
470 
471 int blk_mq_request_started(struct request *rq)
472 {
473 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
474 }
475 EXPORT_SYMBOL_GPL(blk_mq_request_started);
476 
477 void blk_mq_start_request(struct request *rq)
478 {
479 	struct request_queue *q = rq->q;
480 
481 	blk_mq_sched_started_request(rq);
482 
483 	trace_block_rq_issue(q, rq);
484 
485 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
486 		blk_stat_set_issue_time(&rq->issue_stat);
487 		rq->rq_flags |= RQF_STATS;
488 		wbt_issue(q->rq_wb, &rq->issue_stat);
489 	}
490 
491 	blk_add_timer(rq);
492 
493 	/*
494 	 * Ensure that ->deadline is visible before set the started
495 	 * flag and clear the completed flag.
496 	 */
497 	smp_mb__before_atomic();
498 
499 	/*
500 	 * Mark us as started and clear complete. Complete might have been
501 	 * set if requeue raced with timeout, which then marked it as
502 	 * complete. So be sure to clear complete again when we start
503 	 * the request, otherwise we'll ignore the completion event.
504 	 */
505 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
506 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
507 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
508 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
509 
510 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
511 		/*
512 		 * Make sure space for the drain appears.  We know we can do
513 		 * this because max_hw_segments has been adjusted to be one
514 		 * fewer than the device can handle.
515 		 */
516 		rq->nr_phys_segments++;
517 	}
518 }
519 EXPORT_SYMBOL(blk_mq_start_request);
520 
521 static void __blk_mq_requeue_request(struct request *rq)
522 {
523 	struct request_queue *q = rq->q;
524 
525 	trace_block_rq_requeue(q, rq);
526 	wbt_requeue(q->rq_wb, &rq->issue_stat);
527 	blk_mq_sched_requeue_request(rq);
528 
529 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
530 		if (q->dma_drain_size && blk_rq_bytes(rq))
531 			rq->nr_phys_segments--;
532 	}
533 }
534 
535 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
536 {
537 	__blk_mq_requeue_request(rq);
538 
539 	BUG_ON(blk_queued_rq(rq));
540 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
541 }
542 EXPORT_SYMBOL(blk_mq_requeue_request);
543 
544 static void blk_mq_requeue_work(struct work_struct *work)
545 {
546 	struct request_queue *q =
547 		container_of(work, struct request_queue, requeue_work.work);
548 	LIST_HEAD(rq_list);
549 	struct request *rq, *next;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&q->requeue_lock, flags);
553 	list_splice_init(&q->requeue_list, &rq_list);
554 	spin_unlock_irqrestore(&q->requeue_lock, flags);
555 
556 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
557 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
558 			continue;
559 
560 		rq->rq_flags &= ~RQF_SOFTBARRIER;
561 		list_del_init(&rq->queuelist);
562 		blk_mq_sched_insert_request(rq, true, false, false, true);
563 	}
564 
565 	while (!list_empty(&rq_list)) {
566 		rq = list_entry(rq_list.next, struct request, queuelist);
567 		list_del_init(&rq->queuelist);
568 		blk_mq_sched_insert_request(rq, false, false, false, true);
569 	}
570 
571 	blk_mq_run_hw_queues(q, false);
572 }
573 
574 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
575 				bool kick_requeue_list)
576 {
577 	struct request_queue *q = rq->q;
578 	unsigned long flags;
579 
580 	/*
581 	 * We abuse this flag that is otherwise used by the I/O scheduler to
582 	 * request head insertation from the workqueue.
583 	 */
584 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
585 
586 	spin_lock_irqsave(&q->requeue_lock, flags);
587 	if (at_head) {
588 		rq->rq_flags |= RQF_SOFTBARRIER;
589 		list_add(&rq->queuelist, &q->requeue_list);
590 	} else {
591 		list_add_tail(&rq->queuelist, &q->requeue_list);
592 	}
593 	spin_unlock_irqrestore(&q->requeue_lock, flags);
594 
595 	if (kick_requeue_list)
596 		blk_mq_kick_requeue_list(q);
597 }
598 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
599 
600 void blk_mq_kick_requeue_list(struct request_queue *q)
601 {
602 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
603 }
604 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
605 
606 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
607 				    unsigned long msecs)
608 {
609 	kblockd_schedule_delayed_work(&q->requeue_work,
610 				      msecs_to_jiffies(msecs));
611 }
612 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
613 
614 void blk_mq_abort_requeue_list(struct request_queue *q)
615 {
616 	unsigned long flags;
617 	LIST_HEAD(rq_list);
618 
619 	spin_lock_irqsave(&q->requeue_lock, flags);
620 	list_splice_init(&q->requeue_list, &rq_list);
621 	spin_unlock_irqrestore(&q->requeue_lock, flags);
622 
623 	while (!list_empty(&rq_list)) {
624 		struct request *rq;
625 
626 		rq = list_first_entry(&rq_list, struct request, queuelist);
627 		list_del_init(&rq->queuelist);
628 		rq->errors = -EIO;
629 		blk_mq_end_request(rq, rq->errors);
630 	}
631 }
632 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
633 
634 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
635 {
636 	if (tag < tags->nr_tags) {
637 		prefetch(tags->rqs[tag]);
638 		return tags->rqs[tag];
639 	}
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL(blk_mq_tag_to_rq);
644 
645 struct blk_mq_timeout_data {
646 	unsigned long next;
647 	unsigned int next_set;
648 };
649 
650 void blk_mq_rq_timed_out(struct request *req, bool reserved)
651 {
652 	const struct blk_mq_ops *ops = req->q->mq_ops;
653 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
654 
655 	/*
656 	 * We know that complete is set at this point. If STARTED isn't set
657 	 * anymore, then the request isn't active and the "timeout" should
658 	 * just be ignored. This can happen due to the bitflag ordering.
659 	 * Timeout first checks if STARTED is set, and if it is, assumes
660 	 * the request is active. But if we race with completion, then
661 	 * we both flags will get cleared. So check here again, and ignore
662 	 * a timeout event with a request that isn't active.
663 	 */
664 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
665 		return;
666 
667 	if (ops->timeout)
668 		ret = ops->timeout(req, reserved);
669 
670 	switch (ret) {
671 	case BLK_EH_HANDLED:
672 		__blk_mq_complete_request(req);
673 		break;
674 	case BLK_EH_RESET_TIMER:
675 		blk_add_timer(req);
676 		blk_clear_rq_complete(req);
677 		break;
678 	case BLK_EH_NOT_HANDLED:
679 		break;
680 	default:
681 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
682 		break;
683 	}
684 }
685 
686 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
687 		struct request *rq, void *priv, bool reserved)
688 {
689 	struct blk_mq_timeout_data *data = priv;
690 
691 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
692 		/*
693 		 * If a request wasn't started before the queue was
694 		 * marked dying, kill it here or it'll go unnoticed.
695 		 */
696 		if (unlikely(blk_queue_dying(rq->q))) {
697 			rq->errors = -EIO;
698 			blk_mq_end_request(rq, rq->errors);
699 		}
700 		return;
701 	}
702 
703 	if (time_after_eq(jiffies, rq->deadline)) {
704 		if (!blk_mark_rq_complete(rq))
705 			blk_mq_rq_timed_out(rq, reserved);
706 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
707 		data->next = rq->deadline;
708 		data->next_set = 1;
709 	}
710 }
711 
712 static void blk_mq_timeout_work(struct work_struct *work)
713 {
714 	struct request_queue *q =
715 		container_of(work, struct request_queue, timeout_work);
716 	struct blk_mq_timeout_data data = {
717 		.next		= 0,
718 		.next_set	= 0,
719 	};
720 	int i;
721 
722 	/* A deadlock might occur if a request is stuck requiring a
723 	 * timeout at the same time a queue freeze is waiting
724 	 * completion, since the timeout code would not be able to
725 	 * acquire the queue reference here.
726 	 *
727 	 * That's why we don't use blk_queue_enter here; instead, we use
728 	 * percpu_ref_tryget directly, because we need to be able to
729 	 * obtain a reference even in the short window between the queue
730 	 * starting to freeze, by dropping the first reference in
731 	 * blk_mq_freeze_queue_start, and the moment the last request is
732 	 * consumed, marked by the instant q_usage_counter reaches
733 	 * zero.
734 	 */
735 	if (!percpu_ref_tryget(&q->q_usage_counter))
736 		return;
737 
738 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739 
740 	if (data.next_set) {
741 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
742 		mod_timer(&q->timeout, data.next);
743 	} else {
744 		struct blk_mq_hw_ctx *hctx;
745 
746 		queue_for_each_hw_ctx(q, hctx, i) {
747 			/* the hctx may be unmapped, so check it here */
748 			if (blk_mq_hw_queue_mapped(hctx))
749 				blk_mq_tag_idle(hctx);
750 		}
751 	}
752 	blk_queue_exit(q);
753 }
754 
755 /*
756  * Reverse check our software queue for entries that we could potentially
757  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
758  * too much time checking for merges.
759  */
760 static bool blk_mq_attempt_merge(struct request_queue *q,
761 				 struct blk_mq_ctx *ctx, struct bio *bio)
762 {
763 	struct request *rq;
764 	int checked = 8;
765 
766 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
767 		bool merged = false;
768 
769 		if (!checked--)
770 			break;
771 
772 		if (!blk_rq_merge_ok(rq, bio))
773 			continue;
774 
775 		switch (blk_try_merge(rq, bio)) {
776 		case ELEVATOR_BACK_MERGE:
777 			if (blk_mq_sched_allow_merge(q, rq, bio))
778 				merged = bio_attempt_back_merge(q, rq, bio);
779 			break;
780 		case ELEVATOR_FRONT_MERGE:
781 			if (blk_mq_sched_allow_merge(q, rq, bio))
782 				merged = bio_attempt_front_merge(q, rq, bio);
783 			break;
784 		case ELEVATOR_DISCARD_MERGE:
785 			merged = bio_attempt_discard_merge(q, rq, bio);
786 			break;
787 		default:
788 			continue;
789 		}
790 
791 		if (merged)
792 			ctx->rq_merged++;
793 		return merged;
794 	}
795 
796 	return false;
797 }
798 
799 struct flush_busy_ctx_data {
800 	struct blk_mq_hw_ctx *hctx;
801 	struct list_head *list;
802 };
803 
804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 {
806 	struct flush_busy_ctx_data *flush_data = data;
807 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
808 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809 
810 	sbitmap_clear_bit(sb, bitnr);
811 	spin_lock(&ctx->lock);
812 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
813 	spin_unlock(&ctx->lock);
814 	return true;
815 }
816 
817 /*
818  * Process software queues that have been marked busy, splicing them
819  * to the for-dispatch
820  */
821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 {
823 	struct flush_busy_ctx_data data = {
824 		.hctx = hctx,
825 		.list = list,
826 	};
827 
828 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 }
830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831 
832 static inline unsigned int queued_to_index(unsigned int queued)
833 {
834 	if (!queued)
835 		return 0;
836 
837 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
838 }
839 
840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
841 			   bool wait)
842 {
843 	struct blk_mq_alloc_data data = {
844 		.q = rq->q,
845 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
846 		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
847 	};
848 
849 	if (rq->tag != -1) {
850 done:
851 		if (hctx)
852 			*hctx = data.hctx;
853 		return true;
854 	}
855 
856 	rq->tag = blk_mq_get_tag(&data);
857 	if (rq->tag >= 0) {
858 		if (blk_mq_tag_busy(data.hctx)) {
859 			rq->rq_flags |= RQF_MQ_INFLIGHT;
860 			atomic_inc(&data.hctx->nr_active);
861 		}
862 		data.hctx->tags->rqs[rq->tag] = rq;
863 		goto done;
864 	}
865 
866 	return false;
867 }
868 
869 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 				  struct request *rq)
871 {
872 	if (rq->tag == -1 || rq->internal_tag == -1)
873 		return;
874 
875 	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
876 	rq->tag = -1;
877 
878 	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
879 		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
880 		atomic_dec(&hctx->nr_active);
881 	}
882 }
883 
884 /*
885  * If we fail getting a driver tag because all the driver tags are already
886  * assigned and on the dispatch list, BUT the first entry does not have a
887  * tag, then we could deadlock. For that case, move entries with assigned
888  * driver tags to the front, leaving the set of tagged requests in the
889  * same order, and the untagged set in the same order.
890  */
891 static bool reorder_tags_to_front(struct list_head *list)
892 {
893 	struct request *rq, *tmp, *first = NULL;
894 
895 	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
896 		if (rq == first)
897 			break;
898 		if (rq->tag != -1) {
899 			list_move(&rq->queuelist, list);
900 			if (!first)
901 				first = rq;
902 		}
903 	}
904 
905 	return first != NULL;
906 }
907 
908 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
909 				void *key)
910 {
911 	struct blk_mq_hw_ctx *hctx;
912 
913 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
914 
915 	list_del(&wait->task_list);
916 	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
917 	blk_mq_run_hw_queue(hctx, true);
918 	return 1;
919 }
920 
921 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
922 {
923 	struct sbq_wait_state *ws;
924 
925 	/*
926 	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
927 	 * The thread which wins the race to grab this bit adds the hardware
928 	 * queue to the wait queue.
929 	 */
930 	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
931 	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
932 		return false;
933 
934 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
935 	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
936 
937 	/*
938 	 * As soon as this returns, it's no longer safe to fiddle with
939 	 * hctx->dispatch_wait, since a completion can wake up the wait queue
940 	 * and unlock the bit.
941 	 */
942 	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
943 	return true;
944 }
945 
946 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
947 {
948 	struct request_queue *q = hctx->queue;
949 	struct request *rq;
950 	LIST_HEAD(driver_list);
951 	struct list_head *dptr;
952 	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
953 
954 	/*
955 	 * Start off with dptr being NULL, so we start the first request
956 	 * immediately, even if we have more pending.
957 	 */
958 	dptr = NULL;
959 
960 	/*
961 	 * Now process all the entries, sending them to the driver.
962 	 */
963 	queued = 0;
964 	while (!list_empty(list)) {
965 		struct blk_mq_queue_data bd;
966 
967 		rq = list_first_entry(list, struct request, queuelist);
968 		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
969 			if (!queued && reorder_tags_to_front(list))
970 				continue;
971 
972 			/*
973 			 * The initial allocation attempt failed, so we need to
974 			 * rerun the hardware queue when a tag is freed.
975 			 */
976 			if (blk_mq_dispatch_wait_add(hctx)) {
977 				/*
978 				 * It's possible that a tag was freed in the
979 				 * window between the allocation failure and
980 				 * adding the hardware queue to the wait queue.
981 				 */
982 				if (!blk_mq_get_driver_tag(rq, &hctx, false))
983 					break;
984 			} else {
985 				break;
986 			}
987 		}
988 
989 		list_del_init(&rq->queuelist);
990 
991 		bd.rq = rq;
992 		bd.list = dptr;
993 		bd.last = list_empty(list);
994 
995 		ret = q->mq_ops->queue_rq(hctx, &bd);
996 		switch (ret) {
997 		case BLK_MQ_RQ_QUEUE_OK:
998 			queued++;
999 			break;
1000 		case BLK_MQ_RQ_QUEUE_BUSY:
1001 			blk_mq_put_driver_tag(hctx, rq);
1002 			list_add(&rq->queuelist, list);
1003 			__blk_mq_requeue_request(rq);
1004 			break;
1005 		default:
1006 			pr_err("blk-mq: bad return on queue: %d\n", ret);
1007 		case BLK_MQ_RQ_QUEUE_ERROR:
1008 			rq->errors = -EIO;
1009 			blk_mq_end_request(rq, rq->errors);
1010 			break;
1011 		}
1012 
1013 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1014 			break;
1015 
1016 		/*
1017 		 * We've done the first request. If we have more than 1
1018 		 * left in the list, set dptr to defer issue.
1019 		 */
1020 		if (!dptr && list->next != list->prev)
1021 			dptr = &driver_list;
1022 	}
1023 
1024 	hctx->dispatched[queued_to_index(queued)]++;
1025 
1026 	/*
1027 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1028 	 * that is where we will continue on next queue run.
1029 	 */
1030 	if (!list_empty(list)) {
1031 		spin_lock(&hctx->lock);
1032 		list_splice_init(list, &hctx->dispatch);
1033 		spin_unlock(&hctx->lock);
1034 
1035 		/*
1036 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1037 		 * it's possible the queue is stopped and restarted again
1038 		 * before this. Queue restart will dispatch requests. And since
1039 		 * requests in rq_list aren't added into hctx->dispatch yet,
1040 		 * the requests in rq_list might get lost.
1041 		 *
1042 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1043 		 *
1044 		 * If RESTART or TAG_WAITING is set, then let completion restart
1045 		 * the queue instead of potentially looping here.
1046 		 */
1047 		if (!blk_mq_sched_needs_restart(hctx) &&
1048 		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1049 			blk_mq_run_hw_queue(hctx, true);
1050 	}
1051 
1052 	return queued != 0;
1053 }
1054 
1055 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1056 {
1057 	int srcu_idx;
1058 
1059 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1060 		cpu_online(hctx->next_cpu));
1061 
1062 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1063 		rcu_read_lock();
1064 		blk_mq_sched_dispatch_requests(hctx);
1065 		rcu_read_unlock();
1066 	} else {
1067 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1068 		blk_mq_sched_dispatch_requests(hctx);
1069 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1070 	}
1071 }
1072 
1073 /*
1074  * It'd be great if the workqueue API had a way to pass
1075  * in a mask and had some smarts for more clever placement.
1076  * For now we just round-robin here, switching for every
1077  * BLK_MQ_CPU_WORK_BATCH queued items.
1078  */
1079 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1080 {
1081 	if (hctx->queue->nr_hw_queues == 1)
1082 		return WORK_CPU_UNBOUND;
1083 
1084 	if (--hctx->next_cpu_batch <= 0) {
1085 		int next_cpu;
1086 
1087 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1088 		if (next_cpu >= nr_cpu_ids)
1089 			next_cpu = cpumask_first(hctx->cpumask);
1090 
1091 		hctx->next_cpu = next_cpu;
1092 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1093 	}
1094 
1095 	return hctx->next_cpu;
1096 }
1097 
1098 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1099 {
1100 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
1101 		     !blk_mq_hw_queue_mapped(hctx)))
1102 		return;
1103 
1104 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105 		int cpu = get_cpu();
1106 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1107 			__blk_mq_run_hw_queue(hctx);
1108 			put_cpu();
1109 			return;
1110 		}
1111 
1112 		put_cpu();
1113 	}
1114 
1115 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1116 }
1117 
1118 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1119 {
1120 	struct blk_mq_hw_ctx *hctx;
1121 	int i;
1122 
1123 	queue_for_each_hw_ctx(q, hctx, i) {
1124 		if (!blk_mq_hctx_has_pending(hctx) ||
1125 		    blk_mq_hctx_stopped(hctx))
1126 			continue;
1127 
1128 		blk_mq_run_hw_queue(hctx, async);
1129 	}
1130 }
1131 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1132 
1133 /**
1134  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1135  * @q: request queue.
1136  *
1137  * The caller is responsible for serializing this function against
1138  * blk_mq_{start,stop}_hw_queue().
1139  */
1140 bool blk_mq_queue_stopped(struct request_queue *q)
1141 {
1142 	struct blk_mq_hw_ctx *hctx;
1143 	int i;
1144 
1145 	queue_for_each_hw_ctx(q, hctx, i)
1146 		if (blk_mq_hctx_stopped(hctx))
1147 			return true;
1148 
1149 	return false;
1150 }
1151 EXPORT_SYMBOL(blk_mq_queue_stopped);
1152 
1153 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1154 {
1155 	cancel_work(&hctx->run_work);
1156 	cancel_delayed_work(&hctx->delay_work);
1157 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1158 }
1159 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1160 
1161 void blk_mq_stop_hw_queues(struct request_queue *q)
1162 {
1163 	struct blk_mq_hw_ctx *hctx;
1164 	int i;
1165 
1166 	queue_for_each_hw_ctx(q, hctx, i)
1167 		blk_mq_stop_hw_queue(hctx);
1168 }
1169 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1170 
1171 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1172 {
1173 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1174 
1175 	blk_mq_run_hw_queue(hctx, false);
1176 }
1177 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1178 
1179 void blk_mq_start_hw_queues(struct request_queue *q)
1180 {
1181 	struct blk_mq_hw_ctx *hctx;
1182 	int i;
1183 
1184 	queue_for_each_hw_ctx(q, hctx, i)
1185 		blk_mq_start_hw_queue(hctx);
1186 }
1187 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1188 
1189 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1190 {
1191 	if (!blk_mq_hctx_stopped(hctx))
1192 		return;
1193 
1194 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1195 	blk_mq_run_hw_queue(hctx, async);
1196 }
1197 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1198 
1199 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1200 {
1201 	struct blk_mq_hw_ctx *hctx;
1202 	int i;
1203 
1204 	queue_for_each_hw_ctx(q, hctx, i)
1205 		blk_mq_start_stopped_hw_queue(hctx, async);
1206 }
1207 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1208 
1209 static void blk_mq_run_work_fn(struct work_struct *work)
1210 {
1211 	struct blk_mq_hw_ctx *hctx;
1212 
1213 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1214 
1215 	__blk_mq_run_hw_queue(hctx);
1216 }
1217 
1218 static void blk_mq_delay_work_fn(struct work_struct *work)
1219 {
1220 	struct blk_mq_hw_ctx *hctx;
1221 
1222 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1223 
1224 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1225 		__blk_mq_run_hw_queue(hctx);
1226 }
1227 
1228 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1229 {
1230 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1231 		return;
1232 
1233 	blk_mq_stop_hw_queue(hctx);
1234 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1235 			&hctx->delay_work, msecs_to_jiffies(msecs));
1236 }
1237 EXPORT_SYMBOL(blk_mq_delay_queue);
1238 
1239 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1240 					    struct request *rq,
1241 					    bool at_head)
1242 {
1243 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1244 
1245 	trace_block_rq_insert(hctx->queue, rq);
1246 
1247 	if (at_head)
1248 		list_add(&rq->queuelist, &ctx->rq_list);
1249 	else
1250 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1251 }
1252 
1253 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1254 			     bool at_head)
1255 {
1256 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1257 
1258 	__blk_mq_insert_req_list(hctx, rq, at_head);
1259 	blk_mq_hctx_mark_pending(hctx, ctx);
1260 }
1261 
1262 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1263 			    struct list_head *list)
1264 
1265 {
1266 	/*
1267 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1268 	 * offline now
1269 	 */
1270 	spin_lock(&ctx->lock);
1271 	while (!list_empty(list)) {
1272 		struct request *rq;
1273 
1274 		rq = list_first_entry(list, struct request, queuelist);
1275 		BUG_ON(rq->mq_ctx != ctx);
1276 		list_del_init(&rq->queuelist);
1277 		__blk_mq_insert_req_list(hctx, rq, false);
1278 	}
1279 	blk_mq_hctx_mark_pending(hctx, ctx);
1280 	spin_unlock(&ctx->lock);
1281 }
1282 
1283 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1284 {
1285 	struct request *rqa = container_of(a, struct request, queuelist);
1286 	struct request *rqb = container_of(b, struct request, queuelist);
1287 
1288 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1289 		 (rqa->mq_ctx == rqb->mq_ctx &&
1290 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1291 }
1292 
1293 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1294 {
1295 	struct blk_mq_ctx *this_ctx;
1296 	struct request_queue *this_q;
1297 	struct request *rq;
1298 	LIST_HEAD(list);
1299 	LIST_HEAD(ctx_list);
1300 	unsigned int depth;
1301 
1302 	list_splice_init(&plug->mq_list, &list);
1303 
1304 	list_sort(NULL, &list, plug_ctx_cmp);
1305 
1306 	this_q = NULL;
1307 	this_ctx = NULL;
1308 	depth = 0;
1309 
1310 	while (!list_empty(&list)) {
1311 		rq = list_entry_rq(list.next);
1312 		list_del_init(&rq->queuelist);
1313 		BUG_ON(!rq->q);
1314 		if (rq->mq_ctx != this_ctx) {
1315 			if (this_ctx) {
1316 				trace_block_unplug(this_q, depth, from_schedule);
1317 				blk_mq_sched_insert_requests(this_q, this_ctx,
1318 								&ctx_list,
1319 								from_schedule);
1320 			}
1321 
1322 			this_ctx = rq->mq_ctx;
1323 			this_q = rq->q;
1324 			depth = 0;
1325 		}
1326 
1327 		depth++;
1328 		list_add_tail(&rq->queuelist, &ctx_list);
1329 	}
1330 
1331 	/*
1332 	 * If 'this_ctx' is set, we know we have entries to complete
1333 	 * on 'ctx_list'. Do those.
1334 	 */
1335 	if (this_ctx) {
1336 		trace_block_unplug(this_q, depth, from_schedule);
1337 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1338 						from_schedule);
1339 	}
1340 }
1341 
1342 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1343 {
1344 	init_request_from_bio(rq, bio);
1345 
1346 	blk_account_io_start(rq, true);
1347 }
1348 
1349 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1350 {
1351 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1352 		!blk_queue_nomerges(hctx->queue);
1353 }
1354 
1355 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1356 					 struct blk_mq_ctx *ctx,
1357 					 struct request *rq, struct bio *bio)
1358 {
1359 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1360 		blk_mq_bio_to_request(rq, bio);
1361 		spin_lock(&ctx->lock);
1362 insert_rq:
1363 		__blk_mq_insert_request(hctx, rq, false);
1364 		spin_unlock(&ctx->lock);
1365 		return false;
1366 	} else {
1367 		struct request_queue *q = hctx->queue;
1368 
1369 		spin_lock(&ctx->lock);
1370 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1371 			blk_mq_bio_to_request(rq, bio);
1372 			goto insert_rq;
1373 		}
1374 
1375 		spin_unlock(&ctx->lock);
1376 		__blk_mq_finish_request(hctx, ctx, rq);
1377 		return true;
1378 	}
1379 }
1380 
1381 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1382 {
1383 	if (rq->tag != -1)
1384 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1385 
1386 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1387 }
1388 
1389 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1390 {
1391 	struct request_queue *q = rq->q;
1392 	struct blk_mq_queue_data bd = {
1393 		.rq = rq,
1394 		.list = NULL,
1395 		.last = 1
1396 	};
1397 	struct blk_mq_hw_ctx *hctx;
1398 	blk_qc_t new_cookie;
1399 	int ret;
1400 
1401 	if (q->elevator)
1402 		goto insert;
1403 
1404 	if (!blk_mq_get_driver_tag(rq, &hctx, false))
1405 		goto insert;
1406 
1407 	new_cookie = request_to_qc_t(hctx, rq);
1408 
1409 	/*
1410 	 * For OK queue, we are done. For error, kill it. Any other
1411 	 * error (busy), just add it to our list as we previously
1412 	 * would have done
1413 	 */
1414 	ret = q->mq_ops->queue_rq(hctx, &bd);
1415 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1416 		*cookie = new_cookie;
1417 		return;
1418 	}
1419 
1420 	__blk_mq_requeue_request(rq);
1421 
1422 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1423 		*cookie = BLK_QC_T_NONE;
1424 		rq->errors = -EIO;
1425 		blk_mq_end_request(rq, rq->errors);
1426 		return;
1427 	}
1428 
1429 insert:
1430 	blk_mq_sched_insert_request(rq, false, true, true, false);
1431 }
1432 
1433 /*
1434  * Multiple hardware queue variant. This will not use per-process plugs,
1435  * but will attempt to bypass the hctx queueing if we can go straight to
1436  * hardware for SYNC IO.
1437  */
1438 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1439 {
1440 	const int is_sync = op_is_sync(bio->bi_opf);
1441 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1442 	struct blk_mq_alloc_data data = { .flags = 0 };
1443 	struct request *rq;
1444 	unsigned int request_count = 0, srcu_idx;
1445 	struct blk_plug *plug;
1446 	struct request *same_queue_rq = NULL;
1447 	blk_qc_t cookie;
1448 	unsigned int wb_acct;
1449 
1450 	blk_queue_bounce(q, &bio);
1451 
1452 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1453 		bio_io_error(bio);
1454 		return BLK_QC_T_NONE;
1455 	}
1456 
1457 	blk_queue_split(q, &bio, q->bio_split);
1458 
1459 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1460 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1461 		return BLK_QC_T_NONE;
1462 
1463 	if (blk_mq_sched_bio_merge(q, bio))
1464 		return BLK_QC_T_NONE;
1465 
1466 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1467 
1468 	trace_block_getrq(q, bio, bio->bi_opf);
1469 
1470 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1471 	if (unlikely(!rq)) {
1472 		__wbt_done(q->rq_wb, wb_acct);
1473 		return BLK_QC_T_NONE;
1474 	}
1475 
1476 	wbt_track(&rq->issue_stat, wb_acct);
1477 
1478 	cookie = request_to_qc_t(data.hctx, rq);
1479 
1480 	if (unlikely(is_flush_fua)) {
1481 		if (q->elevator)
1482 			goto elv_insert;
1483 		blk_mq_bio_to_request(rq, bio);
1484 		blk_insert_flush(rq);
1485 		goto run_queue;
1486 	}
1487 
1488 	plug = current->plug;
1489 	/*
1490 	 * If the driver supports defer issued based on 'last', then
1491 	 * queue it up like normal since we can potentially save some
1492 	 * CPU this way.
1493 	 */
1494 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1495 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1496 		struct request *old_rq = NULL;
1497 
1498 		blk_mq_bio_to_request(rq, bio);
1499 
1500 		/*
1501 		 * We do limited plugging. If the bio can be merged, do that.
1502 		 * Otherwise the existing request in the plug list will be
1503 		 * issued. So the plug list will have one request at most
1504 		 */
1505 		if (plug) {
1506 			/*
1507 			 * The plug list might get flushed before this. If that
1508 			 * happens, same_queue_rq is invalid and plug list is
1509 			 * empty
1510 			 */
1511 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1512 				old_rq = same_queue_rq;
1513 				list_del_init(&old_rq->queuelist);
1514 			}
1515 			list_add_tail(&rq->queuelist, &plug->mq_list);
1516 		} else /* is_sync */
1517 			old_rq = rq;
1518 		blk_mq_put_ctx(data.ctx);
1519 		if (!old_rq)
1520 			goto done;
1521 
1522 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1523 			rcu_read_lock();
1524 			blk_mq_try_issue_directly(old_rq, &cookie);
1525 			rcu_read_unlock();
1526 		} else {
1527 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1528 			blk_mq_try_issue_directly(old_rq, &cookie);
1529 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1530 		}
1531 		goto done;
1532 	}
1533 
1534 	if (q->elevator) {
1535 elv_insert:
1536 		blk_mq_put_ctx(data.ctx);
1537 		blk_mq_bio_to_request(rq, bio);
1538 		blk_mq_sched_insert_request(rq, false, true,
1539 						!is_sync || is_flush_fua, true);
1540 		goto done;
1541 	}
1542 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1543 		/*
1544 		 * For a SYNC request, send it to the hardware immediately. For
1545 		 * an ASYNC request, just ensure that we run it later on. The
1546 		 * latter allows for merging opportunities and more efficient
1547 		 * dispatching.
1548 		 */
1549 run_queue:
1550 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1551 	}
1552 	blk_mq_put_ctx(data.ctx);
1553 done:
1554 	return cookie;
1555 }
1556 
1557 /*
1558  * Single hardware queue variant. This will attempt to use any per-process
1559  * plug for merging and IO deferral.
1560  */
1561 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1562 {
1563 	const int is_sync = op_is_sync(bio->bi_opf);
1564 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1565 	struct blk_plug *plug;
1566 	unsigned int request_count = 0;
1567 	struct blk_mq_alloc_data data = { .flags = 0 };
1568 	struct request *rq;
1569 	blk_qc_t cookie;
1570 	unsigned int wb_acct;
1571 
1572 	blk_queue_bounce(q, &bio);
1573 
1574 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1575 		bio_io_error(bio);
1576 		return BLK_QC_T_NONE;
1577 	}
1578 
1579 	blk_queue_split(q, &bio, q->bio_split);
1580 
1581 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1582 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1583 			return BLK_QC_T_NONE;
1584 	} else
1585 		request_count = blk_plug_queued_count(q);
1586 
1587 	if (blk_mq_sched_bio_merge(q, bio))
1588 		return BLK_QC_T_NONE;
1589 
1590 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1591 
1592 	trace_block_getrq(q, bio, bio->bi_opf);
1593 
1594 	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1595 	if (unlikely(!rq)) {
1596 		__wbt_done(q->rq_wb, wb_acct);
1597 		return BLK_QC_T_NONE;
1598 	}
1599 
1600 	wbt_track(&rq->issue_stat, wb_acct);
1601 
1602 	cookie = request_to_qc_t(data.hctx, rq);
1603 
1604 	if (unlikely(is_flush_fua)) {
1605 		if (q->elevator)
1606 			goto elv_insert;
1607 		blk_mq_bio_to_request(rq, bio);
1608 		blk_insert_flush(rq);
1609 		goto run_queue;
1610 	}
1611 
1612 	/*
1613 	 * A task plug currently exists. Since this is completely lockless,
1614 	 * utilize that to temporarily store requests until the task is
1615 	 * either done or scheduled away.
1616 	 */
1617 	plug = current->plug;
1618 	if (plug) {
1619 		struct request *last = NULL;
1620 
1621 		blk_mq_bio_to_request(rq, bio);
1622 
1623 		/*
1624 		 * @request_count may become stale because of schedule
1625 		 * out, so check the list again.
1626 		 */
1627 		if (list_empty(&plug->mq_list))
1628 			request_count = 0;
1629 		if (!request_count)
1630 			trace_block_plug(q);
1631 		else
1632 			last = list_entry_rq(plug->mq_list.prev);
1633 
1634 		blk_mq_put_ctx(data.ctx);
1635 
1636 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1637 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1638 			blk_flush_plug_list(plug, false);
1639 			trace_block_plug(q);
1640 		}
1641 
1642 		list_add_tail(&rq->queuelist, &plug->mq_list);
1643 		return cookie;
1644 	}
1645 
1646 	if (q->elevator) {
1647 elv_insert:
1648 		blk_mq_put_ctx(data.ctx);
1649 		blk_mq_bio_to_request(rq, bio);
1650 		blk_mq_sched_insert_request(rq, false, true,
1651 						!is_sync || is_flush_fua, true);
1652 		goto done;
1653 	}
1654 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1655 		/*
1656 		 * For a SYNC request, send it to the hardware immediately. For
1657 		 * an ASYNC request, just ensure that we run it later on. The
1658 		 * latter allows for merging opportunities and more efficient
1659 		 * dispatching.
1660 		 */
1661 run_queue:
1662 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1663 	}
1664 
1665 	blk_mq_put_ctx(data.ctx);
1666 done:
1667 	return cookie;
1668 }
1669 
1670 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1671 		     unsigned int hctx_idx)
1672 {
1673 	struct page *page;
1674 
1675 	if (tags->rqs && set->ops->exit_request) {
1676 		int i;
1677 
1678 		for (i = 0; i < tags->nr_tags; i++) {
1679 			struct request *rq = tags->static_rqs[i];
1680 
1681 			if (!rq)
1682 				continue;
1683 			set->ops->exit_request(set->driver_data, rq,
1684 						hctx_idx, i);
1685 			tags->static_rqs[i] = NULL;
1686 		}
1687 	}
1688 
1689 	while (!list_empty(&tags->page_list)) {
1690 		page = list_first_entry(&tags->page_list, struct page, lru);
1691 		list_del_init(&page->lru);
1692 		/*
1693 		 * Remove kmemleak object previously allocated in
1694 		 * blk_mq_init_rq_map().
1695 		 */
1696 		kmemleak_free(page_address(page));
1697 		__free_pages(page, page->private);
1698 	}
1699 }
1700 
1701 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1702 {
1703 	kfree(tags->rqs);
1704 	tags->rqs = NULL;
1705 	kfree(tags->static_rqs);
1706 	tags->static_rqs = NULL;
1707 
1708 	blk_mq_free_tags(tags);
1709 }
1710 
1711 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1712 					unsigned int hctx_idx,
1713 					unsigned int nr_tags,
1714 					unsigned int reserved_tags)
1715 {
1716 	struct blk_mq_tags *tags;
1717 
1718 	tags = blk_mq_init_tags(nr_tags, reserved_tags,
1719 				set->numa_node,
1720 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1721 	if (!tags)
1722 		return NULL;
1723 
1724 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1725 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1726 				 set->numa_node);
1727 	if (!tags->rqs) {
1728 		blk_mq_free_tags(tags);
1729 		return NULL;
1730 	}
1731 
1732 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1733 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1734 				 set->numa_node);
1735 	if (!tags->static_rqs) {
1736 		kfree(tags->rqs);
1737 		blk_mq_free_tags(tags);
1738 		return NULL;
1739 	}
1740 
1741 	return tags;
1742 }
1743 
1744 static size_t order_to_size(unsigned int order)
1745 {
1746 	return (size_t)PAGE_SIZE << order;
1747 }
1748 
1749 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1750 		     unsigned int hctx_idx, unsigned int depth)
1751 {
1752 	unsigned int i, j, entries_per_page, max_order = 4;
1753 	size_t rq_size, left;
1754 
1755 	INIT_LIST_HEAD(&tags->page_list);
1756 
1757 	/*
1758 	 * rq_size is the size of the request plus driver payload, rounded
1759 	 * to the cacheline size
1760 	 */
1761 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1762 				cache_line_size());
1763 	left = rq_size * depth;
1764 
1765 	for (i = 0; i < depth; ) {
1766 		int this_order = max_order;
1767 		struct page *page;
1768 		int to_do;
1769 		void *p;
1770 
1771 		while (this_order && left < order_to_size(this_order - 1))
1772 			this_order--;
1773 
1774 		do {
1775 			page = alloc_pages_node(set->numa_node,
1776 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1777 				this_order);
1778 			if (page)
1779 				break;
1780 			if (!this_order--)
1781 				break;
1782 			if (order_to_size(this_order) < rq_size)
1783 				break;
1784 		} while (1);
1785 
1786 		if (!page)
1787 			goto fail;
1788 
1789 		page->private = this_order;
1790 		list_add_tail(&page->lru, &tags->page_list);
1791 
1792 		p = page_address(page);
1793 		/*
1794 		 * Allow kmemleak to scan these pages as they contain pointers
1795 		 * to additional allocations like via ops->init_request().
1796 		 */
1797 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1798 		entries_per_page = order_to_size(this_order) / rq_size;
1799 		to_do = min(entries_per_page, depth - i);
1800 		left -= to_do * rq_size;
1801 		for (j = 0; j < to_do; j++) {
1802 			struct request *rq = p;
1803 
1804 			tags->static_rqs[i] = rq;
1805 			if (set->ops->init_request) {
1806 				if (set->ops->init_request(set->driver_data,
1807 						rq, hctx_idx, i,
1808 						set->numa_node)) {
1809 					tags->static_rqs[i] = NULL;
1810 					goto fail;
1811 				}
1812 			}
1813 
1814 			p += rq_size;
1815 			i++;
1816 		}
1817 	}
1818 	return 0;
1819 
1820 fail:
1821 	blk_mq_free_rqs(set, tags, hctx_idx);
1822 	return -ENOMEM;
1823 }
1824 
1825 /*
1826  * 'cpu' is going away. splice any existing rq_list entries from this
1827  * software queue to the hw queue dispatch list, and ensure that it
1828  * gets run.
1829  */
1830 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1831 {
1832 	struct blk_mq_hw_ctx *hctx;
1833 	struct blk_mq_ctx *ctx;
1834 	LIST_HEAD(tmp);
1835 
1836 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1837 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1838 
1839 	spin_lock(&ctx->lock);
1840 	if (!list_empty(&ctx->rq_list)) {
1841 		list_splice_init(&ctx->rq_list, &tmp);
1842 		blk_mq_hctx_clear_pending(hctx, ctx);
1843 	}
1844 	spin_unlock(&ctx->lock);
1845 
1846 	if (list_empty(&tmp))
1847 		return 0;
1848 
1849 	spin_lock(&hctx->lock);
1850 	list_splice_tail_init(&tmp, &hctx->dispatch);
1851 	spin_unlock(&hctx->lock);
1852 
1853 	blk_mq_run_hw_queue(hctx, true);
1854 	return 0;
1855 }
1856 
1857 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1858 {
1859 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1860 					    &hctx->cpuhp_dead);
1861 }
1862 
1863 /* hctx->ctxs will be freed in queue's release handler */
1864 static void blk_mq_exit_hctx(struct request_queue *q,
1865 		struct blk_mq_tag_set *set,
1866 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1867 {
1868 	unsigned flush_start_tag = set->queue_depth;
1869 
1870 	blk_mq_tag_idle(hctx);
1871 
1872 	if (set->ops->exit_request)
1873 		set->ops->exit_request(set->driver_data,
1874 				       hctx->fq->flush_rq, hctx_idx,
1875 				       flush_start_tag + hctx_idx);
1876 
1877 	if (set->ops->exit_hctx)
1878 		set->ops->exit_hctx(hctx, hctx_idx);
1879 
1880 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1881 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1882 
1883 	blk_mq_remove_cpuhp(hctx);
1884 	blk_free_flush_queue(hctx->fq);
1885 	sbitmap_free(&hctx->ctx_map);
1886 }
1887 
1888 static void blk_mq_exit_hw_queues(struct request_queue *q,
1889 		struct blk_mq_tag_set *set, int nr_queue)
1890 {
1891 	struct blk_mq_hw_ctx *hctx;
1892 	unsigned int i;
1893 
1894 	queue_for_each_hw_ctx(q, hctx, i) {
1895 		if (i == nr_queue)
1896 			break;
1897 		blk_mq_exit_hctx(q, set, hctx, i);
1898 	}
1899 }
1900 
1901 static void blk_mq_free_hw_queues(struct request_queue *q,
1902 		struct blk_mq_tag_set *set)
1903 {
1904 	struct blk_mq_hw_ctx *hctx;
1905 	unsigned int i;
1906 
1907 	queue_for_each_hw_ctx(q, hctx, i)
1908 		free_cpumask_var(hctx->cpumask);
1909 }
1910 
1911 static int blk_mq_init_hctx(struct request_queue *q,
1912 		struct blk_mq_tag_set *set,
1913 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1914 {
1915 	int node;
1916 	unsigned flush_start_tag = set->queue_depth;
1917 
1918 	node = hctx->numa_node;
1919 	if (node == NUMA_NO_NODE)
1920 		node = hctx->numa_node = set->numa_node;
1921 
1922 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1923 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1924 	spin_lock_init(&hctx->lock);
1925 	INIT_LIST_HEAD(&hctx->dispatch);
1926 	hctx->queue = q;
1927 	hctx->queue_num = hctx_idx;
1928 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1929 
1930 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1931 
1932 	hctx->tags = set->tags[hctx_idx];
1933 
1934 	/*
1935 	 * Allocate space for all possible cpus to avoid allocation at
1936 	 * runtime
1937 	 */
1938 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1939 					GFP_KERNEL, node);
1940 	if (!hctx->ctxs)
1941 		goto unregister_cpu_notifier;
1942 
1943 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1944 			      node))
1945 		goto free_ctxs;
1946 
1947 	hctx->nr_ctx = 0;
1948 
1949 	if (set->ops->init_hctx &&
1950 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1951 		goto free_bitmap;
1952 
1953 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1954 	if (!hctx->fq)
1955 		goto exit_hctx;
1956 
1957 	if (set->ops->init_request &&
1958 	    set->ops->init_request(set->driver_data,
1959 				   hctx->fq->flush_rq, hctx_idx,
1960 				   flush_start_tag + hctx_idx, node))
1961 		goto free_fq;
1962 
1963 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1964 		init_srcu_struct(&hctx->queue_rq_srcu);
1965 
1966 	return 0;
1967 
1968  free_fq:
1969 	kfree(hctx->fq);
1970  exit_hctx:
1971 	if (set->ops->exit_hctx)
1972 		set->ops->exit_hctx(hctx, hctx_idx);
1973  free_bitmap:
1974 	sbitmap_free(&hctx->ctx_map);
1975  free_ctxs:
1976 	kfree(hctx->ctxs);
1977  unregister_cpu_notifier:
1978 	blk_mq_remove_cpuhp(hctx);
1979 	return -1;
1980 }
1981 
1982 static void blk_mq_init_cpu_queues(struct request_queue *q,
1983 				   unsigned int nr_hw_queues)
1984 {
1985 	unsigned int i;
1986 
1987 	for_each_possible_cpu(i) {
1988 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1989 		struct blk_mq_hw_ctx *hctx;
1990 
1991 		memset(__ctx, 0, sizeof(*__ctx));
1992 		__ctx->cpu = i;
1993 		spin_lock_init(&__ctx->lock);
1994 		INIT_LIST_HEAD(&__ctx->rq_list);
1995 		__ctx->queue = q;
1996 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1997 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1998 
1999 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2000 		if (!cpu_online(i))
2001 			continue;
2002 
2003 		hctx = blk_mq_map_queue(q, i);
2004 
2005 		/*
2006 		 * Set local node, IFF we have more than one hw queue. If
2007 		 * not, we remain on the home node of the device
2008 		 */
2009 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2010 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2011 	}
2012 }
2013 
2014 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2015 {
2016 	int ret = 0;
2017 
2018 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2019 					set->queue_depth, set->reserved_tags);
2020 	if (!set->tags[hctx_idx])
2021 		return false;
2022 
2023 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2024 				set->queue_depth);
2025 	if (!ret)
2026 		return true;
2027 
2028 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2029 	set->tags[hctx_idx] = NULL;
2030 	return false;
2031 }
2032 
2033 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2034 					 unsigned int hctx_idx)
2035 {
2036 	if (set->tags[hctx_idx]) {
2037 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2038 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2039 		set->tags[hctx_idx] = NULL;
2040 	}
2041 }
2042 
2043 static void blk_mq_map_swqueue(struct request_queue *q,
2044 			       const struct cpumask *online_mask)
2045 {
2046 	unsigned int i, hctx_idx;
2047 	struct blk_mq_hw_ctx *hctx;
2048 	struct blk_mq_ctx *ctx;
2049 	struct blk_mq_tag_set *set = q->tag_set;
2050 
2051 	/*
2052 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2053 	 */
2054 	mutex_lock(&q->sysfs_lock);
2055 
2056 	queue_for_each_hw_ctx(q, hctx, i) {
2057 		cpumask_clear(hctx->cpumask);
2058 		hctx->nr_ctx = 0;
2059 	}
2060 
2061 	/*
2062 	 * Map software to hardware queues
2063 	 */
2064 	for_each_possible_cpu(i) {
2065 		/* If the cpu isn't online, the cpu is mapped to first hctx */
2066 		if (!cpumask_test_cpu(i, online_mask))
2067 			continue;
2068 
2069 		hctx_idx = q->mq_map[i];
2070 		/* unmapped hw queue can be remapped after CPU topo changed */
2071 		if (!set->tags[hctx_idx] &&
2072 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2073 			/*
2074 			 * If tags initialization fail for some hctx,
2075 			 * that hctx won't be brought online.  In this
2076 			 * case, remap the current ctx to hctx[0] which
2077 			 * is guaranteed to always have tags allocated
2078 			 */
2079 			q->mq_map[i] = 0;
2080 		}
2081 
2082 		ctx = per_cpu_ptr(q->queue_ctx, i);
2083 		hctx = blk_mq_map_queue(q, i);
2084 
2085 		cpumask_set_cpu(i, hctx->cpumask);
2086 		ctx->index_hw = hctx->nr_ctx;
2087 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2088 	}
2089 
2090 	mutex_unlock(&q->sysfs_lock);
2091 
2092 	queue_for_each_hw_ctx(q, hctx, i) {
2093 		/*
2094 		 * If no software queues are mapped to this hardware queue,
2095 		 * disable it and free the request entries.
2096 		 */
2097 		if (!hctx->nr_ctx) {
2098 			/* Never unmap queue 0.  We need it as a
2099 			 * fallback in case of a new remap fails
2100 			 * allocation
2101 			 */
2102 			if (i && set->tags[i])
2103 				blk_mq_free_map_and_requests(set, i);
2104 
2105 			hctx->tags = NULL;
2106 			continue;
2107 		}
2108 
2109 		hctx->tags = set->tags[i];
2110 		WARN_ON(!hctx->tags);
2111 
2112 		/*
2113 		 * Set the map size to the number of mapped software queues.
2114 		 * This is more accurate and more efficient than looping
2115 		 * over all possibly mapped software queues.
2116 		 */
2117 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2118 
2119 		/*
2120 		 * Initialize batch roundrobin counts
2121 		 */
2122 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2123 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2124 	}
2125 }
2126 
2127 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2128 {
2129 	struct blk_mq_hw_ctx *hctx;
2130 	int i;
2131 
2132 	queue_for_each_hw_ctx(q, hctx, i) {
2133 		if (shared)
2134 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2135 		else
2136 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2137 	}
2138 }
2139 
2140 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2141 {
2142 	struct request_queue *q;
2143 
2144 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2145 		blk_mq_freeze_queue(q);
2146 		queue_set_hctx_shared(q, shared);
2147 		blk_mq_unfreeze_queue(q);
2148 	}
2149 }
2150 
2151 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2152 {
2153 	struct blk_mq_tag_set *set = q->tag_set;
2154 
2155 	mutex_lock(&set->tag_list_lock);
2156 	list_del_init(&q->tag_set_list);
2157 	if (list_is_singular(&set->tag_list)) {
2158 		/* just transitioned to unshared */
2159 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2160 		/* update existing queue */
2161 		blk_mq_update_tag_set_depth(set, false);
2162 	}
2163 	mutex_unlock(&set->tag_list_lock);
2164 }
2165 
2166 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2167 				     struct request_queue *q)
2168 {
2169 	q->tag_set = set;
2170 
2171 	mutex_lock(&set->tag_list_lock);
2172 
2173 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2174 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2175 		set->flags |= BLK_MQ_F_TAG_SHARED;
2176 		/* update existing queue */
2177 		blk_mq_update_tag_set_depth(set, true);
2178 	}
2179 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2180 		queue_set_hctx_shared(q, true);
2181 	list_add_tail(&q->tag_set_list, &set->tag_list);
2182 
2183 	mutex_unlock(&set->tag_list_lock);
2184 }
2185 
2186 /*
2187  * It is the actual release handler for mq, but we do it from
2188  * request queue's release handler for avoiding use-after-free
2189  * and headache because q->mq_kobj shouldn't have been introduced,
2190  * but we can't group ctx/kctx kobj without it.
2191  */
2192 void blk_mq_release(struct request_queue *q)
2193 {
2194 	struct blk_mq_hw_ctx *hctx;
2195 	unsigned int i;
2196 
2197 	blk_mq_sched_teardown(q);
2198 
2199 	/* hctx kobj stays in hctx */
2200 	queue_for_each_hw_ctx(q, hctx, i) {
2201 		if (!hctx)
2202 			continue;
2203 		kfree(hctx->ctxs);
2204 		kfree(hctx);
2205 	}
2206 
2207 	q->mq_map = NULL;
2208 
2209 	kfree(q->queue_hw_ctx);
2210 
2211 	/* ctx kobj stays in queue_ctx */
2212 	free_percpu(q->queue_ctx);
2213 }
2214 
2215 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2216 {
2217 	struct request_queue *uninit_q, *q;
2218 
2219 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2220 	if (!uninit_q)
2221 		return ERR_PTR(-ENOMEM);
2222 
2223 	q = blk_mq_init_allocated_queue(set, uninit_q);
2224 	if (IS_ERR(q))
2225 		blk_cleanup_queue(uninit_q);
2226 
2227 	return q;
2228 }
2229 EXPORT_SYMBOL(blk_mq_init_queue);
2230 
2231 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2232 						struct request_queue *q)
2233 {
2234 	int i, j;
2235 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2236 
2237 	blk_mq_sysfs_unregister(q);
2238 	for (i = 0; i < set->nr_hw_queues; i++) {
2239 		int node;
2240 
2241 		if (hctxs[i])
2242 			continue;
2243 
2244 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2245 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2246 					GFP_KERNEL, node);
2247 		if (!hctxs[i])
2248 			break;
2249 
2250 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2251 						node)) {
2252 			kfree(hctxs[i]);
2253 			hctxs[i] = NULL;
2254 			break;
2255 		}
2256 
2257 		atomic_set(&hctxs[i]->nr_active, 0);
2258 		hctxs[i]->numa_node = node;
2259 		hctxs[i]->queue_num = i;
2260 
2261 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2262 			free_cpumask_var(hctxs[i]->cpumask);
2263 			kfree(hctxs[i]);
2264 			hctxs[i] = NULL;
2265 			break;
2266 		}
2267 		blk_mq_hctx_kobj_init(hctxs[i]);
2268 	}
2269 	for (j = i; j < q->nr_hw_queues; j++) {
2270 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2271 
2272 		if (hctx) {
2273 			if (hctx->tags)
2274 				blk_mq_free_map_and_requests(set, j);
2275 			blk_mq_exit_hctx(q, set, hctx, j);
2276 			free_cpumask_var(hctx->cpumask);
2277 			kobject_put(&hctx->kobj);
2278 			kfree(hctx->ctxs);
2279 			kfree(hctx);
2280 			hctxs[j] = NULL;
2281 
2282 		}
2283 	}
2284 	q->nr_hw_queues = i;
2285 	blk_mq_sysfs_register(q);
2286 }
2287 
2288 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2289 						  struct request_queue *q)
2290 {
2291 	/* mark the queue as mq asap */
2292 	q->mq_ops = set->ops;
2293 
2294 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2295 	if (!q->queue_ctx)
2296 		goto err_exit;
2297 
2298 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2299 						GFP_KERNEL, set->numa_node);
2300 	if (!q->queue_hw_ctx)
2301 		goto err_percpu;
2302 
2303 	q->mq_map = set->mq_map;
2304 
2305 	blk_mq_realloc_hw_ctxs(set, q);
2306 	if (!q->nr_hw_queues)
2307 		goto err_hctxs;
2308 
2309 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2310 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2311 
2312 	q->nr_queues = nr_cpu_ids;
2313 
2314 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2315 
2316 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2317 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2318 
2319 	q->sg_reserved_size = INT_MAX;
2320 
2321 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2322 	INIT_LIST_HEAD(&q->requeue_list);
2323 	spin_lock_init(&q->requeue_lock);
2324 
2325 	if (q->nr_hw_queues > 1)
2326 		blk_queue_make_request(q, blk_mq_make_request);
2327 	else
2328 		blk_queue_make_request(q, blk_sq_make_request);
2329 
2330 	/*
2331 	 * Do this after blk_queue_make_request() overrides it...
2332 	 */
2333 	q->nr_requests = set->queue_depth;
2334 
2335 	/*
2336 	 * Default to classic polling
2337 	 */
2338 	q->poll_nsec = -1;
2339 
2340 	if (set->ops->complete)
2341 		blk_queue_softirq_done(q, set->ops->complete);
2342 
2343 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2344 
2345 	get_online_cpus();
2346 	mutex_lock(&all_q_mutex);
2347 
2348 	list_add_tail(&q->all_q_node, &all_q_list);
2349 	blk_mq_add_queue_tag_set(set, q);
2350 	blk_mq_map_swqueue(q, cpu_online_mask);
2351 
2352 	mutex_unlock(&all_q_mutex);
2353 	put_online_cpus();
2354 
2355 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2356 		int ret;
2357 
2358 		ret = blk_mq_sched_init(q);
2359 		if (ret)
2360 			return ERR_PTR(ret);
2361 	}
2362 
2363 	return q;
2364 
2365 err_hctxs:
2366 	kfree(q->queue_hw_ctx);
2367 err_percpu:
2368 	free_percpu(q->queue_ctx);
2369 err_exit:
2370 	q->mq_ops = NULL;
2371 	return ERR_PTR(-ENOMEM);
2372 }
2373 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2374 
2375 void blk_mq_free_queue(struct request_queue *q)
2376 {
2377 	struct blk_mq_tag_set	*set = q->tag_set;
2378 
2379 	mutex_lock(&all_q_mutex);
2380 	list_del_init(&q->all_q_node);
2381 	mutex_unlock(&all_q_mutex);
2382 
2383 	wbt_exit(q);
2384 
2385 	blk_mq_del_queue_tag_set(q);
2386 
2387 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2388 	blk_mq_free_hw_queues(q, set);
2389 }
2390 
2391 /* Basically redo blk_mq_init_queue with queue frozen */
2392 static void blk_mq_queue_reinit(struct request_queue *q,
2393 				const struct cpumask *online_mask)
2394 {
2395 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2396 
2397 	blk_mq_sysfs_unregister(q);
2398 
2399 	/*
2400 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2401 	 * we should change hctx numa_node according to new topology (this
2402 	 * involves free and re-allocate memory, worthy doing?)
2403 	 */
2404 
2405 	blk_mq_map_swqueue(q, online_mask);
2406 
2407 	blk_mq_sysfs_register(q);
2408 }
2409 
2410 /*
2411  * New online cpumask which is going to be set in this hotplug event.
2412  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2413  * one-by-one and dynamically allocating this could result in a failure.
2414  */
2415 static struct cpumask cpuhp_online_new;
2416 
2417 static void blk_mq_queue_reinit_work(void)
2418 {
2419 	struct request_queue *q;
2420 
2421 	mutex_lock(&all_q_mutex);
2422 	/*
2423 	 * We need to freeze and reinit all existing queues.  Freezing
2424 	 * involves synchronous wait for an RCU grace period and doing it
2425 	 * one by one may take a long time.  Start freezing all queues in
2426 	 * one swoop and then wait for the completions so that freezing can
2427 	 * take place in parallel.
2428 	 */
2429 	list_for_each_entry(q, &all_q_list, all_q_node)
2430 		blk_mq_freeze_queue_start(q);
2431 	list_for_each_entry(q, &all_q_list, all_q_node)
2432 		blk_mq_freeze_queue_wait(q);
2433 
2434 	list_for_each_entry(q, &all_q_list, all_q_node)
2435 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2436 
2437 	list_for_each_entry(q, &all_q_list, all_q_node)
2438 		blk_mq_unfreeze_queue(q);
2439 
2440 	mutex_unlock(&all_q_mutex);
2441 }
2442 
2443 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2444 {
2445 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2446 	blk_mq_queue_reinit_work();
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Before hotadded cpu starts handling requests, new mappings must be
2452  * established.  Otherwise, these requests in hw queue might never be
2453  * dispatched.
2454  *
2455  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2456  * for CPU0, and ctx1 for CPU1).
2457  *
2458  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2459  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2460  *
2461  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2462  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2463  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2464  * ignored.
2465  */
2466 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2467 {
2468 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2469 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2470 	blk_mq_queue_reinit_work();
2471 	return 0;
2472 }
2473 
2474 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2475 {
2476 	int i;
2477 
2478 	for (i = 0; i < set->nr_hw_queues; i++)
2479 		if (!__blk_mq_alloc_rq_map(set, i))
2480 			goto out_unwind;
2481 
2482 	return 0;
2483 
2484 out_unwind:
2485 	while (--i >= 0)
2486 		blk_mq_free_rq_map(set->tags[i]);
2487 
2488 	return -ENOMEM;
2489 }
2490 
2491 /*
2492  * Allocate the request maps associated with this tag_set. Note that this
2493  * may reduce the depth asked for, if memory is tight. set->queue_depth
2494  * will be updated to reflect the allocated depth.
2495  */
2496 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2497 {
2498 	unsigned int depth;
2499 	int err;
2500 
2501 	depth = set->queue_depth;
2502 	do {
2503 		err = __blk_mq_alloc_rq_maps(set);
2504 		if (!err)
2505 			break;
2506 
2507 		set->queue_depth >>= 1;
2508 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2509 			err = -ENOMEM;
2510 			break;
2511 		}
2512 	} while (set->queue_depth);
2513 
2514 	if (!set->queue_depth || err) {
2515 		pr_err("blk-mq: failed to allocate request map\n");
2516 		return -ENOMEM;
2517 	}
2518 
2519 	if (depth != set->queue_depth)
2520 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2521 						depth, set->queue_depth);
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * Alloc a tag set to be associated with one or more request queues.
2528  * May fail with EINVAL for various error conditions. May adjust the
2529  * requested depth down, if if it too large. In that case, the set
2530  * value will be stored in set->queue_depth.
2531  */
2532 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2533 {
2534 	int ret;
2535 
2536 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2537 
2538 	if (!set->nr_hw_queues)
2539 		return -EINVAL;
2540 	if (!set->queue_depth)
2541 		return -EINVAL;
2542 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2543 		return -EINVAL;
2544 
2545 	if (!set->ops->queue_rq)
2546 		return -EINVAL;
2547 
2548 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2549 		pr_info("blk-mq: reduced tag depth to %u\n",
2550 			BLK_MQ_MAX_DEPTH);
2551 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2552 	}
2553 
2554 	/*
2555 	 * If a crashdump is active, then we are potentially in a very
2556 	 * memory constrained environment. Limit us to 1 queue and
2557 	 * 64 tags to prevent using too much memory.
2558 	 */
2559 	if (is_kdump_kernel()) {
2560 		set->nr_hw_queues = 1;
2561 		set->queue_depth = min(64U, set->queue_depth);
2562 	}
2563 	/*
2564 	 * There is no use for more h/w queues than cpus.
2565 	 */
2566 	if (set->nr_hw_queues > nr_cpu_ids)
2567 		set->nr_hw_queues = nr_cpu_ids;
2568 
2569 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2570 				 GFP_KERNEL, set->numa_node);
2571 	if (!set->tags)
2572 		return -ENOMEM;
2573 
2574 	ret = -ENOMEM;
2575 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2576 			GFP_KERNEL, set->numa_node);
2577 	if (!set->mq_map)
2578 		goto out_free_tags;
2579 
2580 	if (set->ops->map_queues)
2581 		ret = set->ops->map_queues(set);
2582 	else
2583 		ret = blk_mq_map_queues(set);
2584 	if (ret)
2585 		goto out_free_mq_map;
2586 
2587 	ret = blk_mq_alloc_rq_maps(set);
2588 	if (ret)
2589 		goto out_free_mq_map;
2590 
2591 	mutex_init(&set->tag_list_lock);
2592 	INIT_LIST_HEAD(&set->tag_list);
2593 
2594 	return 0;
2595 
2596 out_free_mq_map:
2597 	kfree(set->mq_map);
2598 	set->mq_map = NULL;
2599 out_free_tags:
2600 	kfree(set->tags);
2601 	set->tags = NULL;
2602 	return ret;
2603 }
2604 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2605 
2606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2607 {
2608 	int i;
2609 
2610 	for (i = 0; i < nr_cpu_ids; i++)
2611 		blk_mq_free_map_and_requests(set, i);
2612 
2613 	kfree(set->mq_map);
2614 	set->mq_map = NULL;
2615 
2616 	kfree(set->tags);
2617 	set->tags = NULL;
2618 }
2619 EXPORT_SYMBOL(blk_mq_free_tag_set);
2620 
2621 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2622 {
2623 	struct blk_mq_tag_set *set = q->tag_set;
2624 	struct blk_mq_hw_ctx *hctx;
2625 	int i, ret;
2626 
2627 	if (!set)
2628 		return -EINVAL;
2629 
2630 	blk_mq_freeze_queue(q);
2631 	blk_mq_quiesce_queue(q);
2632 
2633 	ret = 0;
2634 	queue_for_each_hw_ctx(q, hctx, i) {
2635 		if (!hctx->tags)
2636 			continue;
2637 		/*
2638 		 * If we're using an MQ scheduler, just update the scheduler
2639 		 * queue depth. This is similar to what the old code would do.
2640 		 */
2641 		if (!hctx->sched_tags) {
2642 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2643 							min(nr, set->queue_depth),
2644 							false);
2645 		} else {
2646 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2647 							nr, true);
2648 		}
2649 		if (ret)
2650 			break;
2651 	}
2652 
2653 	if (!ret)
2654 		q->nr_requests = nr;
2655 
2656 	blk_mq_unfreeze_queue(q);
2657 	blk_mq_start_stopped_hw_queues(q, true);
2658 
2659 	return ret;
2660 }
2661 
2662 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2663 {
2664 	struct request_queue *q;
2665 
2666 	if (nr_hw_queues > nr_cpu_ids)
2667 		nr_hw_queues = nr_cpu_ids;
2668 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2669 		return;
2670 
2671 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2672 		blk_mq_freeze_queue(q);
2673 
2674 	set->nr_hw_queues = nr_hw_queues;
2675 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2676 		blk_mq_realloc_hw_ctxs(set, q);
2677 
2678 		/*
2679 		 * Manually set the make_request_fn as blk_queue_make_request
2680 		 * resets a lot of the queue settings.
2681 		 */
2682 		if (q->nr_hw_queues > 1)
2683 			q->make_request_fn = blk_mq_make_request;
2684 		else
2685 			q->make_request_fn = blk_sq_make_request;
2686 
2687 		blk_mq_queue_reinit(q, cpu_online_mask);
2688 	}
2689 
2690 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2691 		blk_mq_unfreeze_queue(q);
2692 }
2693 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2694 
2695 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2696 				       struct blk_mq_hw_ctx *hctx,
2697 				       struct request *rq)
2698 {
2699 	struct blk_rq_stat stat[2];
2700 	unsigned long ret = 0;
2701 
2702 	/*
2703 	 * If stats collection isn't on, don't sleep but turn it on for
2704 	 * future users
2705 	 */
2706 	if (!blk_stat_enable(q))
2707 		return 0;
2708 
2709 	/*
2710 	 * We don't have to do this once per IO, should optimize this
2711 	 * to just use the current window of stats until it changes
2712 	 */
2713 	memset(&stat, 0, sizeof(stat));
2714 	blk_hctx_stat_get(hctx, stat);
2715 
2716 	/*
2717 	 * As an optimistic guess, use half of the mean service time
2718 	 * for this type of request. We can (and should) make this smarter.
2719 	 * For instance, if the completion latencies are tight, we can
2720 	 * get closer than just half the mean. This is especially
2721 	 * important on devices where the completion latencies are longer
2722 	 * than ~10 usec.
2723 	 */
2724 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2725 		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2726 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2727 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2728 
2729 	return ret;
2730 }
2731 
2732 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2733 				     struct blk_mq_hw_ctx *hctx,
2734 				     struct request *rq)
2735 {
2736 	struct hrtimer_sleeper hs;
2737 	enum hrtimer_mode mode;
2738 	unsigned int nsecs;
2739 	ktime_t kt;
2740 
2741 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2742 		return false;
2743 
2744 	/*
2745 	 * poll_nsec can be:
2746 	 *
2747 	 * -1:	don't ever hybrid sleep
2748 	 *  0:	use half of prev avg
2749 	 * >0:	use this specific value
2750 	 */
2751 	if (q->poll_nsec == -1)
2752 		return false;
2753 	else if (q->poll_nsec > 0)
2754 		nsecs = q->poll_nsec;
2755 	else
2756 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2757 
2758 	if (!nsecs)
2759 		return false;
2760 
2761 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2762 
2763 	/*
2764 	 * This will be replaced with the stats tracking code, using
2765 	 * 'avg_completion_time / 2' as the pre-sleep target.
2766 	 */
2767 	kt = nsecs;
2768 
2769 	mode = HRTIMER_MODE_REL;
2770 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2771 	hrtimer_set_expires(&hs.timer, kt);
2772 
2773 	hrtimer_init_sleeper(&hs, current);
2774 	do {
2775 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2776 			break;
2777 		set_current_state(TASK_UNINTERRUPTIBLE);
2778 		hrtimer_start_expires(&hs.timer, mode);
2779 		if (hs.task)
2780 			io_schedule();
2781 		hrtimer_cancel(&hs.timer);
2782 		mode = HRTIMER_MODE_ABS;
2783 	} while (hs.task && !signal_pending(current));
2784 
2785 	__set_current_state(TASK_RUNNING);
2786 	destroy_hrtimer_on_stack(&hs.timer);
2787 	return true;
2788 }
2789 
2790 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2791 {
2792 	struct request_queue *q = hctx->queue;
2793 	long state;
2794 
2795 	/*
2796 	 * If we sleep, have the caller restart the poll loop to reset
2797 	 * the state. Like for the other success return cases, the
2798 	 * caller is responsible for checking if the IO completed. If
2799 	 * the IO isn't complete, we'll get called again and will go
2800 	 * straight to the busy poll loop.
2801 	 */
2802 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2803 		return true;
2804 
2805 	hctx->poll_considered++;
2806 
2807 	state = current->state;
2808 	while (!need_resched()) {
2809 		int ret;
2810 
2811 		hctx->poll_invoked++;
2812 
2813 		ret = q->mq_ops->poll(hctx, rq->tag);
2814 		if (ret > 0) {
2815 			hctx->poll_success++;
2816 			set_current_state(TASK_RUNNING);
2817 			return true;
2818 		}
2819 
2820 		if (signal_pending_state(state, current))
2821 			set_current_state(TASK_RUNNING);
2822 
2823 		if (current->state == TASK_RUNNING)
2824 			return true;
2825 		if (ret < 0)
2826 			break;
2827 		cpu_relax();
2828 	}
2829 
2830 	return false;
2831 }
2832 
2833 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2834 {
2835 	struct blk_mq_hw_ctx *hctx;
2836 	struct blk_plug *plug;
2837 	struct request *rq;
2838 
2839 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2840 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2841 		return false;
2842 
2843 	plug = current->plug;
2844 	if (plug)
2845 		blk_flush_plug_list(plug, false);
2846 
2847 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2848 	if (!blk_qc_t_is_internal(cookie))
2849 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2850 	else
2851 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2852 
2853 	return __blk_mq_poll(hctx, rq);
2854 }
2855 EXPORT_SYMBOL_GPL(blk_mq_poll);
2856 
2857 void blk_mq_disable_hotplug(void)
2858 {
2859 	mutex_lock(&all_q_mutex);
2860 }
2861 
2862 void blk_mq_enable_hotplug(void)
2863 {
2864 	mutex_unlock(&all_q_mutex);
2865 }
2866 
2867 static int __init blk_mq_init(void)
2868 {
2869 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2870 				blk_mq_hctx_notify_dead);
2871 
2872 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2873 				  blk_mq_queue_reinit_prepare,
2874 				  blk_mq_queue_reinit_dead);
2875 	return 0;
2876 }
2877 subsys_initcall(blk_mq_init);
2878