1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/delay.h> 25 #include <linux/crash_dump.h> 26 #include <linux/prefetch.h> 27 28 #include <trace/events/block.h> 29 30 #include <linux/blk-mq.h> 31 #include "blk.h" 32 #include "blk-mq.h" 33 #include "blk-mq-tag.h" 34 #include "blk-stat.h" 35 #include "blk-wbt.h" 36 #include "blk-mq-sched.h" 37 38 static DEFINE_MUTEX(all_q_mutex); 39 static LIST_HEAD(all_q_list); 40 41 /* 42 * Check if any of the ctx's have pending work in this hardware queue 43 */ 44 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 45 { 46 return sbitmap_any_bit_set(&hctx->ctx_map) || 47 !list_empty_careful(&hctx->dispatch) || 48 blk_mq_sched_has_work(hctx); 49 } 50 51 /* 52 * Mark this ctx as having pending work in this hardware queue 53 */ 54 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 55 struct blk_mq_ctx *ctx) 56 { 57 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 58 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 59 } 60 61 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 62 struct blk_mq_ctx *ctx) 63 { 64 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 65 } 66 67 void blk_mq_freeze_queue_start(struct request_queue *q) 68 { 69 int freeze_depth; 70 71 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 72 if (freeze_depth == 1) { 73 percpu_ref_kill(&q->q_usage_counter); 74 blk_mq_run_hw_queues(q, false); 75 } 76 } 77 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 78 79 static void blk_mq_freeze_queue_wait(struct request_queue *q) 80 { 81 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 82 } 83 84 /* 85 * Guarantee no request is in use, so we can change any data structure of 86 * the queue afterward. 87 */ 88 void blk_freeze_queue(struct request_queue *q) 89 { 90 /* 91 * In the !blk_mq case we are only calling this to kill the 92 * q_usage_counter, otherwise this increases the freeze depth 93 * and waits for it to return to zero. For this reason there is 94 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 95 * exported to drivers as the only user for unfreeze is blk_mq. 96 */ 97 blk_mq_freeze_queue_start(q); 98 blk_mq_freeze_queue_wait(q); 99 } 100 101 void blk_mq_freeze_queue(struct request_queue *q) 102 { 103 /* 104 * ...just an alias to keep freeze and unfreeze actions balanced 105 * in the blk_mq_* namespace 106 */ 107 blk_freeze_queue(q); 108 } 109 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 110 111 void blk_mq_unfreeze_queue(struct request_queue *q) 112 { 113 int freeze_depth; 114 115 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 116 WARN_ON_ONCE(freeze_depth < 0); 117 if (!freeze_depth) { 118 percpu_ref_reinit(&q->q_usage_counter); 119 wake_up_all(&q->mq_freeze_wq); 120 } 121 } 122 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 123 124 /** 125 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished 126 * @q: request queue. 127 * 128 * Note: this function does not prevent that the struct request end_io() 129 * callback function is invoked. Additionally, it is not prevented that 130 * new queue_rq() calls occur unless the queue has been stopped first. 131 */ 132 void blk_mq_quiesce_queue(struct request_queue *q) 133 { 134 struct blk_mq_hw_ctx *hctx; 135 unsigned int i; 136 bool rcu = false; 137 138 blk_mq_stop_hw_queues(q); 139 140 queue_for_each_hw_ctx(q, hctx, i) { 141 if (hctx->flags & BLK_MQ_F_BLOCKING) 142 synchronize_srcu(&hctx->queue_rq_srcu); 143 else 144 rcu = true; 145 } 146 if (rcu) 147 synchronize_rcu(); 148 } 149 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 150 151 void blk_mq_wake_waiters(struct request_queue *q) 152 { 153 struct blk_mq_hw_ctx *hctx; 154 unsigned int i; 155 156 queue_for_each_hw_ctx(q, hctx, i) 157 if (blk_mq_hw_queue_mapped(hctx)) 158 blk_mq_tag_wakeup_all(hctx->tags, true); 159 160 /* 161 * If we are called because the queue has now been marked as 162 * dying, we need to ensure that processes currently waiting on 163 * the queue are notified as well. 164 */ 165 wake_up_all(&q->mq_freeze_wq); 166 } 167 168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 169 { 170 return blk_mq_has_free_tags(hctx->tags); 171 } 172 EXPORT_SYMBOL(blk_mq_can_queue); 173 174 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 175 struct request *rq, unsigned int op) 176 { 177 INIT_LIST_HEAD(&rq->queuelist); 178 /* csd/requeue_work/fifo_time is initialized before use */ 179 rq->q = q; 180 rq->mq_ctx = ctx; 181 rq->cmd_flags = op; 182 if (blk_queue_io_stat(q)) 183 rq->rq_flags |= RQF_IO_STAT; 184 /* do not touch atomic flags, it needs atomic ops against the timer */ 185 rq->cpu = -1; 186 INIT_HLIST_NODE(&rq->hash); 187 RB_CLEAR_NODE(&rq->rb_node); 188 rq->rq_disk = NULL; 189 rq->part = NULL; 190 rq->start_time = jiffies; 191 #ifdef CONFIG_BLK_CGROUP 192 rq->rl = NULL; 193 set_start_time_ns(rq); 194 rq->io_start_time_ns = 0; 195 #endif 196 rq->nr_phys_segments = 0; 197 #if defined(CONFIG_BLK_DEV_INTEGRITY) 198 rq->nr_integrity_segments = 0; 199 #endif 200 rq->special = NULL; 201 /* tag was already set */ 202 rq->errors = 0; 203 rq->extra_len = 0; 204 205 INIT_LIST_HEAD(&rq->timeout_list); 206 rq->timeout = 0; 207 208 rq->end_io = NULL; 209 rq->end_io_data = NULL; 210 rq->next_rq = NULL; 211 212 ctx->rq_dispatched[op_is_sync(op)]++; 213 } 214 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init); 215 216 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data, 217 unsigned int op) 218 { 219 struct request *rq; 220 unsigned int tag; 221 222 tag = blk_mq_get_tag(data); 223 if (tag != BLK_MQ_TAG_FAIL) { 224 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 225 226 rq = tags->static_rqs[tag]; 227 228 if (data->flags & BLK_MQ_REQ_INTERNAL) { 229 rq->tag = -1; 230 rq->internal_tag = tag; 231 } else { 232 if (blk_mq_tag_busy(data->hctx)) { 233 rq->rq_flags = RQF_MQ_INFLIGHT; 234 atomic_inc(&data->hctx->nr_active); 235 } 236 rq->tag = tag; 237 rq->internal_tag = -1; 238 } 239 240 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op); 241 return rq; 242 } 243 244 return NULL; 245 } 246 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request); 247 248 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, 249 unsigned int flags) 250 { 251 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 252 struct request *rq; 253 int ret; 254 255 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT); 256 if (ret) 257 return ERR_PTR(ret); 258 259 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data); 260 261 blk_mq_put_ctx(alloc_data.ctx); 262 blk_queue_exit(q); 263 264 if (!rq) 265 return ERR_PTR(-EWOULDBLOCK); 266 267 rq->__data_len = 0; 268 rq->__sector = (sector_t) -1; 269 rq->bio = rq->biotail = NULL; 270 return rq; 271 } 272 EXPORT_SYMBOL(blk_mq_alloc_request); 273 274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw, 275 unsigned int flags, unsigned int hctx_idx) 276 { 277 struct blk_mq_hw_ctx *hctx; 278 struct blk_mq_ctx *ctx; 279 struct request *rq; 280 struct blk_mq_alloc_data alloc_data; 281 int ret; 282 283 /* 284 * If the tag allocator sleeps we could get an allocation for a 285 * different hardware context. No need to complicate the low level 286 * allocator for this for the rare use case of a command tied to 287 * a specific queue. 288 */ 289 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 290 return ERR_PTR(-EINVAL); 291 292 if (hctx_idx >= q->nr_hw_queues) 293 return ERR_PTR(-EIO); 294 295 ret = blk_queue_enter(q, true); 296 if (ret) 297 return ERR_PTR(ret); 298 299 /* 300 * Check if the hardware context is actually mapped to anything. 301 * If not tell the caller that it should skip this queue. 302 */ 303 hctx = q->queue_hw_ctx[hctx_idx]; 304 if (!blk_mq_hw_queue_mapped(hctx)) { 305 ret = -EXDEV; 306 goto out_queue_exit; 307 } 308 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask)); 309 310 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx); 311 rq = __blk_mq_alloc_request(&alloc_data, rw); 312 if (!rq) { 313 ret = -EWOULDBLOCK; 314 goto out_queue_exit; 315 } 316 317 return rq; 318 319 out_queue_exit: 320 blk_queue_exit(q); 321 return ERR_PTR(ret); 322 } 323 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 324 325 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 326 struct request *rq) 327 { 328 const int sched_tag = rq->internal_tag; 329 struct request_queue *q = rq->q; 330 331 if (rq->rq_flags & RQF_MQ_INFLIGHT) 332 atomic_dec(&hctx->nr_active); 333 334 wbt_done(q->rq_wb, &rq->issue_stat); 335 rq->rq_flags = 0; 336 337 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 338 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 339 if (rq->tag != -1) 340 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 341 if (sched_tag != -1) 342 blk_mq_sched_completed_request(hctx, rq); 343 blk_mq_sched_restart_queues(hctx); 344 blk_queue_exit(q); 345 } 346 347 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx, 348 struct request *rq) 349 { 350 struct blk_mq_ctx *ctx = rq->mq_ctx; 351 352 ctx->rq_completed[rq_is_sync(rq)]++; 353 __blk_mq_finish_request(hctx, ctx, rq); 354 } 355 356 void blk_mq_finish_request(struct request *rq) 357 { 358 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq); 359 } 360 361 void blk_mq_free_request(struct request *rq) 362 { 363 blk_mq_sched_put_request(rq); 364 } 365 EXPORT_SYMBOL_GPL(blk_mq_free_request); 366 367 inline void __blk_mq_end_request(struct request *rq, int error) 368 { 369 blk_account_io_done(rq); 370 371 if (rq->end_io) { 372 wbt_done(rq->q->rq_wb, &rq->issue_stat); 373 rq->end_io(rq, error); 374 } else { 375 if (unlikely(blk_bidi_rq(rq))) 376 blk_mq_free_request(rq->next_rq); 377 blk_mq_free_request(rq); 378 } 379 } 380 EXPORT_SYMBOL(__blk_mq_end_request); 381 382 void blk_mq_end_request(struct request *rq, int error) 383 { 384 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 385 BUG(); 386 __blk_mq_end_request(rq, error); 387 } 388 EXPORT_SYMBOL(blk_mq_end_request); 389 390 static void __blk_mq_complete_request_remote(void *data) 391 { 392 struct request *rq = data; 393 394 rq->q->softirq_done_fn(rq); 395 } 396 397 static void blk_mq_ipi_complete_request(struct request *rq) 398 { 399 struct blk_mq_ctx *ctx = rq->mq_ctx; 400 bool shared = false; 401 int cpu; 402 403 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 404 rq->q->softirq_done_fn(rq); 405 return; 406 } 407 408 cpu = get_cpu(); 409 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 410 shared = cpus_share_cache(cpu, ctx->cpu); 411 412 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 413 rq->csd.func = __blk_mq_complete_request_remote; 414 rq->csd.info = rq; 415 rq->csd.flags = 0; 416 smp_call_function_single_async(ctx->cpu, &rq->csd); 417 } else { 418 rq->q->softirq_done_fn(rq); 419 } 420 put_cpu(); 421 } 422 423 static void blk_mq_stat_add(struct request *rq) 424 { 425 if (rq->rq_flags & RQF_STATS) { 426 /* 427 * We could rq->mq_ctx here, but there's less of a risk 428 * of races if we have the completion event add the stats 429 * to the local software queue. 430 */ 431 struct blk_mq_ctx *ctx; 432 433 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id()); 434 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq); 435 } 436 } 437 438 static void __blk_mq_complete_request(struct request *rq) 439 { 440 struct request_queue *q = rq->q; 441 442 blk_mq_stat_add(rq); 443 444 if (!q->softirq_done_fn) 445 blk_mq_end_request(rq, rq->errors); 446 else 447 blk_mq_ipi_complete_request(rq); 448 } 449 450 /** 451 * blk_mq_complete_request - end I/O on a request 452 * @rq: the request being processed 453 * 454 * Description: 455 * Ends all I/O on a request. It does not handle partial completions. 456 * The actual completion happens out-of-order, through a IPI handler. 457 **/ 458 void blk_mq_complete_request(struct request *rq, int error) 459 { 460 struct request_queue *q = rq->q; 461 462 if (unlikely(blk_should_fake_timeout(q))) 463 return; 464 if (!blk_mark_rq_complete(rq)) { 465 rq->errors = error; 466 __blk_mq_complete_request(rq); 467 } 468 } 469 EXPORT_SYMBOL(blk_mq_complete_request); 470 471 int blk_mq_request_started(struct request *rq) 472 { 473 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 474 } 475 EXPORT_SYMBOL_GPL(blk_mq_request_started); 476 477 void blk_mq_start_request(struct request *rq) 478 { 479 struct request_queue *q = rq->q; 480 481 blk_mq_sched_started_request(rq); 482 483 trace_block_rq_issue(q, rq); 484 485 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 486 blk_stat_set_issue_time(&rq->issue_stat); 487 rq->rq_flags |= RQF_STATS; 488 wbt_issue(q->rq_wb, &rq->issue_stat); 489 } 490 491 blk_add_timer(rq); 492 493 /* 494 * Ensure that ->deadline is visible before set the started 495 * flag and clear the completed flag. 496 */ 497 smp_mb__before_atomic(); 498 499 /* 500 * Mark us as started and clear complete. Complete might have been 501 * set if requeue raced with timeout, which then marked it as 502 * complete. So be sure to clear complete again when we start 503 * the request, otherwise we'll ignore the completion event. 504 */ 505 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 506 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 507 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 508 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 509 510 if (q->dma_drain_size && blk_rq_bytes(rq)) { 511 /* 512 * Make sure space for the drain appears. We know we can do 513 * this because max_hw_segments has been adjusted to be one 514 * fewer than the device can handle. 515 */ 516 rq->nr_phys_segments++; 517 } 518 } 519 EXPORT_SYMBOL(blk_mq_start_request); 520 521 static void __blk_mq_requeue_request(struct request *rq) 522 { 523 struct request_queue *q = rq->q; 524 525 trace_block_rq_requeue(q, rq); 526 wbt_requeue(q->rq_wb, &rq->issue_stat); 527 blk_mq_sched_requeue_request(rq); 528 529 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 530 if (q->dma_drain_size && blk_rq_bytes(rq)) 531 rq->nr_phys_segments--; 532 } 533 } 534 535 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 536 { 537 __blk_mq_requeue_request(rq); 538 539 BUG_ON(blk_queued_rq(rq)); 540 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 541 } 542 EXPORT_SYMBOL(blk_mq_requeue_request); 543 544 static void blk_mq_requeue_work(struct work_struct *work) 545 { 546 struct request_queue *q = 547 container_of(work, struct request_queue, requeue_work.work); 548 LIST_HEAD(rq_list); 549 struct request *rq, *next; 550 unsigned long flags; 551 552 spin_lock_irqsave(&q->requeue_lock, flags); 553 list_splice_init(&q->requeue_list, &rq_list); 554 spin_unlock_irqrestore(&q->requeue_lock, flags); 555 556 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 557 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 558 continue; 559 560 rq->rq_flags &= ~RQF_SOFTBARRIER; 561 list_del_init(&rq->queuelist); 562 blk_mq_sched_insert_request(rq, true, false, false, true); 563 } 564 565 while (!list_empty(&rq_list)) { 566 rq = list_entry(rq_list.next, struct request, queuelist); 567 list_del_init(&rq->queuelist); 568 blk_mq_sched_insert_request(rq, false, false, false, true); 569 } 570 571 blk_mq_run_hw_queues(q, false); 572 } 573 574 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 575 bool kick_requeue_list) 576 { 577 struct request_queue *q = rq->q; 578 unsigned long flags; 579 580 /* 581 * We abuse this flag that is otherwise used by the I/O scheduler to 582 * request head insertation from the workqueue. 583 */ 584 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 585 586 spin_lock_irqsave(&q->requeue_lock, flags); 587 if (at_head) { 588 rq->rq_flags |= RQF_SOFTBARRIER; 589 list_add(&rq->queuelist, &q->requeue_list); 590 } else { 591 list_add_tail(&rq->queuelist, &q->requeue_list); 592 } 593 spin_unlock_irqrestore(&q->requeue_lock, flags); 594 595 if (kick_requeue_list) 596 blk_mq_kick_requeue_list(q); 597 } 598 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 599 600 void blk_mq_kick_requeue_list(struct request_queue *q) 601 { 602 kblockd_schedule_delayed_work(&q->requeue_work, 0); 603 } 604 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 605 606 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 607 unsigned long msecs) 608 { 609 kblockd_schedule_delayed_work(&q->requeue_work, 610 msecs_to_jiffies(msecs)); 611 } 612 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 613 614 void blk_mq_abort_requeue_list(struct request_queue *q) 615 { 616 unsigned long flags; 617 LIST_HEAD(rq_list); 618 619 spin_lock_irqsave(&q->requeue_lock, flags); 620 list_splice_init(&q->requeue_list, &rq_list); 621 spin_unlock_irqrestore(&q->requeue_lock, flags); 622 623 while (!list_empty(&rq_list)) { 624 struct request *rq; 625 626 rq = list_first_entry(&rq_list, struct request, queuelist); 627 list_del_init(&rq->queuelist); 628 rq->errors = -EIO; 629 blk_mq_end_request(rq, rq->errors); 630 } 631 } 632 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 633 634 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 635 { 636 if (tag < tags->nr_tags) { 637 prefetch(tags->rqs[tag]); 638 return tags->rqs[tag]; 639 } 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(blk_mq_tag_to_rq); 644 645 struct blk_mq_timeout_data { 646 unsigned long next; 647 unsigned int next_set; 648 }; 649 650 void blk_mq_rq_timed_out(struct request *req, bool reserved) 651 { 652 const struct blk_mq_ops *ops = req->q->mq_ops; 653 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 654 655 /* 656 * We know that complete is set at this point. If STARTED isn't set 657 * anymore, then the request isn't active and the "timeout" should 658 * just be ignored. This can happen due to the bitflag ordering. 659 * Timeout first checks if STARTED is set, and if it is, assumes 660 * the request is active. But if we race with completion, then 661 * we both flags will get cleared. So check here again, and ignore 662 * a timeout event with a request that isn't active. 663 */ 664 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 665 return; 666 667 if (ops->timeout) 668 ret = ops->timeout(req, reserved); 669 670 switch (ret) { 671 case BLK_EH_HANDLED: 672 __blk_mq_complete_request(req); 673 break; 674 case BLK_EH_RESET_TIMER: 675 blk_add_timer(req); 676 blk_clear_rq_complete(req); 677 break; 678 case BLK_EH_NOT_HANDLED: 679 break; 680 default: 681 printk(KERN_ERR "block: bad eh return: %d\n", ret); 682 break; 683 } 684 } 685 686 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 687 struct request *rq, void *priv, bool reserved) 688 { 689 struct blk_mq_timeout_data *data = priv; 690 691 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 692 /* 693 * If a request wasn't started before the queue was 694 * marked dying, kill it here or it'll go unnoticed. 695 */ 696 if (unlikely(blk_queue_dying(rq->q))) { 697 rq->errors = -EIO; 698 blk_mq_end_request(rq, rq->errors); 699 } 700 return; 701 } 702 703 if (time_after_eq(jiffies, rq->deadline)) { 704 if (!blk_mark_rq_complete(rq)) 705 blk_mq_rq_timed_out(rq, reserved); 706 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 707 data->next = rq->deadline; 708 data->next_set = 1; 709 } 710 } 711 712 static void blk_mq_timeout_work(struct work_struct *work) 713 { 714 struct request_queue *q = 715 container_of(work, struct request_queue, timeout_work); 716 struct blk_mq_timeout_data data = { 717 .next = 0, 718 .next_set = 0, 719 }; 720 int i; 721 722 /* A deadlock might occur if a request is stuck requiring a 723 * timeout at the same time a queue freeze is waiting 724 * completion, since the timeout code would not be able to 725 * acquire the queue reference here. 726 * 727 * That's why we don't use blk_queue_enter here; instead, we use 728 * percpu_ref_tryget directly, because we need to be able to 729 * obtain a reference even in the short window between the queue 730 * starting to freeze, by dropping the first reference in 731 * blk_mq_freeze_queue_start, and the moment the last request is 732 * consumed, marked by the instant q_usage_counter reaches 733 * zero. 734 */ 735 if (!percpu_ref_tryget(&q->q_usage_counter)) 736 return; 737 738 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 739 740 if (data.next_set) { 741 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 742 mod_timer(&q->timeout, data.next); 743 } else { 744 struct blk_mq_hw_ctx *hctx; 745 746 queue_for_each_hw_ctx(q, hctx, i) { 747 /* the hctx may be unmapped, so check it here */ 748 if (blk_mq_hw_queue_mapped(hctx)) 749 blk_mq_tag_idle(hctx); 750 } 751 } 752 blk_queue_exit(q); 753 } 754 755 /* 756 * Reverse check our software queue for entries that we could potentially 757 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 758 * too much time checking for merges. 759 */ 760 static bool blk_mq_attempt_merge(struct request_queue *q, 761 struct blk_mq_ctx *ctx, struct bio *bio) 762 { 763 struct request *rq; 764 int checked = 8; 765 766 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 767 bool merged = false; 768 769 if (!checked--) 770 break; 771 772 if (!blk_rq_merge_ok(rq, bio)) 773 continue; 774 775 switch (blk_try_merge(rq, bio)) { 776 case ELEVATOR_BACK_MERGE: 777 if (blk_mq_sched_allow_merge(q, rq, bio)) 778 merged = bio_attempt_back_merge(q, rq, bio); 779 break; 780 case ELEVATOR_FRONT_MERGE: 781 if (blk_mq_sched_allow_merge(q, rq, bio)) 782 merged = bio_attempt_front_merge(q, rq, bio); 783 break; 784 case ELEVATOR_DISCARD_MERGE: 785 merged = bio_attempt_discard_merge(q, rq, bio); 786 break; 787 default: 788 continue; 789 } 790 791 if (merged) 792 ctx->rq_merged++; 793 return merged; 794 } 795 796 return false; 797 } 798 799 struct flush_busy_ctx_data { 800 struct blk_mq_hw_ctx *hctx; 801 struct list_head *list; 802 }; 803 804 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 805 { 806 struct flush_busy_ctx_data *flush_data = data; 807 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 808 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 809 810 sbitmap_clear_bit(sb, bitnr); 811 spin_lock(&ctx->lock); 812 list_splice_tail_init(&ctx->rq_list, flush_data->list); 813 spin_unlock(&ctx->lock); 814 return true; 815 } 816 817 /* 818 * Process software queues that have been marked busy, splicing them 819 * to the for-dispatch 820 */ 821 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 822 { 823 struct flush_busy_ctx_data data = { 824 .hctx = hctx, 825 .list = list, 826 }; 827 828 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 829 } 830 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 831 832 static inline unsigned int queued_to_index(unsigned int queued) 833 { 834 if (!queued) 835 return 0; 836 837 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 838 } 839 840 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 841 bool wait) 842 { 843 struct blk_mq_alloc_data data = { 844 .q = rq->q, 845 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 846 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 847 }; 848 849 if (rq->tag != -1) { 850 done: 851 if (hctx) 852 *hctx = data.hctx; 853 return true; 854 } 855 856 rq->tag = blk_mq_get_tag(&data); 857 if (rq->tag >= 0) { 858 if (blk_mq_tag_busy(data.hctx)) { 859 rq->rq_flags |= RQF_MQ_INFLIGHT; 860 atomic_inc(&data.hctx->nr_active); 861 } 862 data.hctx->tags->rqs[rq->tag] = rq; 863 goto done; 864 } 865 866 return false; 867 } 868 869 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx, 870 struct request *rq) 871 { 872 if (rq->tag == -1 || rq->internal_tag == -1) 873 return; 874 875 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag); 876 rq->tag = -1; 877 878 if (rq->rq_flags & RQF_MQ_INFLIGHT) { 879 rq->rq_flags &= ~RQF_MQ_INFLIGHT; 880 atomic_dec(&hctx->nr_active); 881 } 882 } 883 884 /* 885 * If we fail getting a driver tag because all the driver tags are already 886 * assigned and on the dispatch list, BUT the first entry does not have a 887 * tag, then we could deadlock. For that case, move entries with assigned 888 * driver tags to the front, leaving the set of tagged requests in the 889 * same order, and the untagged set in the same order. 890 */ 891 static bool reorder_tags_to_front(struct list_head *list) 892 { 893 struct request *rq, *tmp, *first = NULL; 894 895 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) { 896 if (rq == first) 897 break; 898 if (rq->tag != -1) { 899 list_move(&rq->queuelist, list); 900 if (!first) 901 first = rq; 902 } 903 } 904 905 return first != NULL; 906 } 907 908 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags, 909 void *key) 910 { 911 struct blk_mq_hw_ctx *hctx; 912 913 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 914 915 list_del(&wait->task_list); 916 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state); 917 blk_mq_run_hw_queue(hctx, true); 918 return 1; 919 } 920 921 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx) 922 { 923 struct sbq_wait_state *ws; 924 925 /* 926 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait. 927 * The thread which wins the race to grab this bit adds the hardware 928 * queue to the wait queue. 929 */ 930 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) || 931 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state)) 932 return false; 933 934 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 935 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx); 936 937 /* 938 * As soon as this returns, it's no longer safe to fiddle with 939 * hctx->dispatch_wait, since a completion can wake up the wait queue 940 * and unlock the bit. 941 */ 942 add_wait_queue(&ws->wait, &hctx->dispatch_wait); 943 return true; 944 } 945 946 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list) 947 { 948 struct request_queue *q = hctx->queue; 949 struct request *rq; 950 LIST_HEAD(driver_list); 951 struct list_head *dptr; 952 int queued, ret = BLK_MQ_RQ_QUEUE_OK; 953 954 /* 955 * Start off with dptr being NULL, so we start the first request 956 * immediately, even if we have more pending. 957 */ 958 dptr = NULL; 959 960 /* 961 * Now process all the entries, sending them to the driver. 962 */ 963 queued = 0; 964 while (!list_empty(list)) { 965 struct blk_mq_queue_data bd; 966 967 rq = list_first_entry(list, struct request, queuelist); 968 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 969 if (!queued && reorder_tags_to_front(list)) 970 continue; 971 972 /* 973 * The initial allocation attempt failed, so we need to 974 * rerun the hardware queue when a tag is freed. 975 */ 976 if (blk_mq_dispatch_wait_add(hctx)) { 977 /* 978 * It's possible that a tag was freed in the 979 * window between the allocation failure and 980 * adding the hardware queue to the wait queue. 981 */ 982 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 983 break; 984 } else { 985 break; 986 } 987 } 988 989 list_del_init(&rq->queuelist); 990 991 bd.rq = rq; 992 bd.list = dptr; 993 bd.last = list_empty(list); 994 995 ret = q->mq_ops->queue_rq(hctx, &bd); 996 switch (ret) { 997 case BLK_MQ_RQ_QUEUE_OK: 998 queued++; 999 break; 1000 case BLK_MQ_RQ_QUEUE_BUSY: 1001 blk_mq_put_driver_tag(hctx, rq); 1002 list_add(&rq->queuelist, list); 1003 __blk_mq_requeue_request(rq); 1004 break; 1005 default: 1006 pr_err("blk-mq: bad return on queue: %d\n", ret); 1007 case BLK_MQ_RQ_QUEUE_ERROR: 1008 rq->errors = -EIO; 1009 blk_mq_end_request(rq, rq->errors); 1010 break; 1011 } 1012 1013 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 1014 break; 1015 1016 /* 1017 * We've done the first request. If we have more than 1 1018 * left in the list, set dptr to defer issue. 1019 */ 1020 if (!dptr && list->next != list->prev) 1021 dptr = &driver_list; 1022 } 1023 1024 hctx->dispatched[queued_to_index(queued)]++; 1025 1026 /* 1027 * Any items that need requeuing? Stuff them into hctx->dispatch, 1028 * that is where we will continue on next queue run. 1029 */ 1030 if (!list_empty(list)) { 1031 spin_lock(&hctx->lock); 1032 list_splice_init(list, &hctx->dispatch); 1033 spin_unlock(&hctx->lock); 1034 1035 /* 1036 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 1037 * it's possible the queue is stopped and restarted again 1038 * before this. Queue restart will dispatch requests. And since 1039 * requests in rq_list aren't added into hctx->dispatch yet, 1040 * the requests in rq_list might get lost. 1041 * 1042 * blk_mq_run_hw_queue() already checks the STOPPED bit 1043 * 1044 * If RESTART or TAG_WAITING is set, then let completion restart 1045 * the queue instead of potentially looping here. 1046 */ 1047 if (!blk_mq_sched_needs_restart(hctx) && 1048 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) 1049 blk_mq_run_hw_queue(hctx, true); 1050 } 1051 1052 return queued != 0; 1053 } 1054 1055 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1056 { 1057 int srcu_idx; 1058 1059 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1060 cpu_online(hctx->next_cpu)); 1061 1062 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 1063 rcu_read_lock(); 1064 blk_mq_sched_dispatch_requests(hctx); 1065 rcu_read_unlock(); 1066 } else { 1067 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu); 1068 blk_mq_sched_dispatch_requests(hctx); 1069 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx); 1070 } 1071 } 1072 1073 /* 1074 * It'd be great if the workqueue API had a way to pass 1075 * in a mask and had some smarts for more clever placement. 1076 * For now we just round-robin here, switching for every 1077 * BLK_MQ_CPU_WORK_BATCH queued items. 1078 */ 1079 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1080 { 1081 if (hctx->queue->nr_hw_queues == 1) 1082 return WORK_CPU_UNBOUND; 1083 1084 if (--hctx->next_cpu_batch <= 0) { 1085 int next_cpu; 1086 1087 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 1088 if (next_cpu >= nr_cpu_ids) 1089 next_cpu = cpumask_first(hctx->cpumask); 1090 1091 hctx->next_cpu = next_cpu; 1092 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1093 } 1094 1095 return hctx->next_cpu; 1096 } 1097 1098 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1099 { 1100 if (unlikely(blk_mq_hctx_stopped(hctx) || 1101 !blk_mq_hw_queue_mapped(hctx))) 1102 return; 1103 1104 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1105 int cpu = get_cpu(); 1106 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1107 __blk_mq_run_hw_queue(hctx); 1108 put_cpu(); 1109 return; 1110 } 1111 1112 put_cpu(); 1113 } 1114 1115 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work); 1116 } 1117 1118 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1119 { 1120 struct blk_mq_hw_ctx *hctx; 1121 int i; 1122 1123 queue_for_each_hw_ctx(q, hctx, i) { 1124 if (!blk_mq_hctx_has_pending(hctx) || 1125 blk_mq_hctx_stopped(hctx)) 1126 continue; 1127 1128 blk_mq_run_hw_queue(hctx, async); 1129 } 1130 } 1131 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1132 1133 /** 1134 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1135 * @q: request queue. 1136 * 1137 * The caller is responsible for serializing this function against 1138 * blk_mq_{start,stop}_hw_queue(). 1139 */ 1140 bool blk_mq_queue_stopped(struct request_queue *q) 1141 { 1142 struct blk_mq_hw_ctx *hctx; 1143 int i; 1144 1145 queue_for_each_hw_ctx(q, hctx, i) 1146 if (blk_mq_hctx_stopped(hctx)) 1147 return true; 1148 1149 return false; 1150 } 1151 EXPORT_SYMBOL(blk_mq_queue_stopped); 1152 1153 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1154 { 1155 cancel_work(&hctx->run_work); 1156 cancel_delayed_work(&hctx->delay_work); 1157 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1158 } 1159 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1160 1161 void blk_mq_stop_hw_queues(struct request_queue *q) 1162 { 1163 struct blk_mq_hw_ctx *hctx; 1164 int i; 1165 1166 queue_for_each_hw_ctx(q, hctx, i) 1167 blk_mq_stop_hw_queue(hctx); 1168 } 1169 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1170 1171 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1172 { 1173 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1174 1175 blk_mq_run_hw_queue(hctx, false); 1176 } 1177 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1178 1179 void blk_mq_start_hw_queues(struct request_queue *q) 1180 { 1181 struct blk_mq_hw_ctx *hctx; 1182 int i; 1183 1184 queue_for_each_hw_ctx(q, hctx, i) 1185 blk_mq_start_hw_queue(hctx); 1186 } 1187 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1188 1189 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1190 { 1191 if (!blk_mq_hctx_stopped(hctx)) 1192 return; 1193 1194 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1195 blk_mq_run_hw_queue(hctx, async); 1196 } 1197 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1198 1199 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1200 { 1201 struct blk_mq_hw_ctx *hctx; 1202 int i; 1203 1204 queue_for_each_hw_ctx(q, hctx, i) 1205 blk_mq_start_stopped_hw_queue(hctx, async); 1206 } 1207 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1208 1209 static void blk_mq_run_work_fn(struct work_struct *work) 1210 { 1211 struct blk_mq_hw_ctx *hctx; 1212 1213 hctx = container_of(work, struct blk_mq_hw_ctx, run_work); 1214 1215 __blk_mq_run_hw_queue(hctx); 1216 } 1217 1218 static void blk_mq_delay_work_fn(struct work_struct *work) 1219 { 1220 struct blk_mq_hw_ctx *hctx; 1221 1222 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1223 1224 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1225 __blk_mq_run_hw_queue(hctx); 1226 } 1227 1228 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1229 { 1230 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1231 return; 1232 1233 blk_mq_stop_hw_queue(hctx); 1234 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1235 &hctx->delay_work, msecs_to_jiffies(msecs)); 1236 } 1237 EXPORT_SYMBOL(blk_mq_delay_queue); 1238 1239 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1240 struct request *rq, 1241 bool at_head) 1242 { 1243 struct blk_mq_ctx *ctx = rq->mq_ctx; 1244 1245 trace_block_rq_insert(hctx->queue, rq); 1246 1247 if (at_head) 1248 list_add(&rq->queuelist, &ctx->rq_list); 1249 else 1250 list_add_tail(&rq->queuelist, &ctx->rq_list); 1251 } 1252 1253 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1254 bool at_head) 1255 { 1256 struct blk_mq_ctx *ctx = rq->mq_ctx; 1257 1258 __blk_mq_insert_req_list(hctx, rq, at_head); 1259 blk_mq_hctx_mark_pending(hctx, ctx); 1260 } 1261 1262 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1263 struct list_head *list) 1264 1265 { 1266 /* 1267 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1268 * offline now 1269 */ 1270 spin_lock(&ctx->lock); 1271 while (!list_empty(list)) { 1272 struct request *rq; 1273 1274 rq = list_first_entry(list, struct request, queuelist); 1275 BUG_ON(rq->mq_ctx != ctx); 1276 list_del_init(&rq->queuelist); 1277 __blk_mq_insert_req_list(hctx, rq, false); 1278 } 1279 blk_mq_hctx_mark_pending(hctx, ctx); 1280 spin_unlock(&ctx->lock); 1281 } 1282 1283 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1284 { 1285 struct request *rqa = container_of(a, struct request, queuelist); 1286 struct request *rqb = container_of(b, struct request, queuelist); 1287 1288 return !(rqa->mq_ctx < rqb->mq_ctx || 1289 (rqa->mq_ctx == rqb->mq_ctx && 1290 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1291 } 1292 1293 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1294 { 1295 struct blk_mq_ctx *this_ctx; 1296 struct request_queue *this_q; 1297 struct request *rq; 1298 LIST_HEAD(list); 1299 LIST_HEAD(ctx_list); 1300 unsigned int depth; 1301 1302 list_splice_init(&plug->mq_list, &list); 1303 1304 list_sort(NULL, &list, plug_ctx_cmp); 1305 1306 this_q = NULL; 1307 this_ctx = NULL; 1308 depth = 0; 1309 1310 while (!list_empty(&list)) { 1311 rq = list_entry_rq(list.next); 1312 list_del_init(&rq->queuelist); 1313 BUG_ON(!rq->q); 1314 if (rq->mq_ctx != this_ctx) { 1315 if (this_ctx) { 1316 trace_block_unplug(this_q, depth, from_schedule); 1317 blk_mq_sched_insert_requests(this_q, this_ctx, 1318 &ctx_list, 1319 from_schedule); 1320 } 1321 1322 this_ctx = rq->mq_ctx; 1323 this_q = rq->q; 1324 depth = 0; 1325 } 1326 1327 depth++; 1328 list_add_tail(&rq->queuelist, &ctx_list); 1329 } 1330 1331 /* 1332 * If 'this_ctx' is set, we know we have entries to complete 1333 * on 'ctx_list'. Do those. 1334 */ 1335 if (this_ctx) { 1336 trace_block_unplug(this_q, depth, from_schedule); 1337 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1338 from_schedule); 1339 } 1340 } 1341 1342 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1343 { 1344 init_request_from_bio(rq, bio); 1345 1346 blk_account_io_start(rq, true); 1347 } 1348 1349 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1350 { 1351 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1352 !blk_queue_nomerges(hctx->queue); 1353 } 1354 1355 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1356 struct blk_mq_ctx *ctx, 1357 struct request *rq, struct bio *bio) 1358 { 1359 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) { 1360 blk_mq_bio_to_request(rq, bio); 1361 spin_lock(&ctx->lock); 1362 insert_rq: 1363 __blk_mq_insert_request(hctx, rq, false); 1364 spin_unlock(&ctx->lock); 1365 return false; 1366 } else { 1367 struct request_queue *q = hctx->queue; 1368 1369 spin_lock(&ctx->lock); 1370 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1371 blk_mq_bio_to_request(rq, bio); 1372 goto insert_rq; 1373 } 1374 1375 spin_unlock(&ctx->lock); 1376 __blk_mq_finish_request(hctx, ctx, rq); 1377 return true; 1378 } 1379 } 1380 1381 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1382 { 1383 if (rq->tag != -1) 1384 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1385 1386 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1387 } 1388 1389 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie) 1390 { 1391 struct request_queue *q = rq->q; 1392 struct blk_mq_queue_data bd = { 1393 .rq = rq, 1394 .list = NULL, 1395 .last = 1 1396 }; 1397 struct blk_mq_hw_ctx *hctx; 1398 blk_qc_t new_cookie; 1399 int ret; 1400 1401 if (q->elevator) 1402 goto insert; 1403 1404 if (!blk_mq_get_driver_tag(rq, &hctx, false)) 1405 goto insert; 1406 1407 new_cookie = request_to_qc_t(hctx, rq); 1408 1409 /* 1410 * For OK queue, we are done. For error, kill it. Any other 1411 * error (busy), just add it to our list as we previously 1412 * would have done 1413 */ 1414 ret = q->mq_ops->queue_rq(hctx, &bd); 1415 if (ret == BLK_MQ_RQ_QUEUE_OK) { 1416 *cookie = new_cookie; 1417 return; 1418 } 1419 1420 __blk_mq_requeue_request(rq); 1421 1422 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1423 *cookie = BLK_QC_T_NONE; 1424 rq->errors = -EIO; 1425 blk_mq_end_request(rq, rq->errors); 1426 return; 1427 } 1428 1429 insert: 1430 blk_mq_sched_insert_request(rq, false, true, true, false); 1431 } 1432 1433 /* 1434 * Multiple hardware queue variant. This will not use per-process plugs, 1435 * but will attempt to bypass the hctx queueing if we can go straight to 1436 * hardware for SYNC IO. 1437 */ 1438 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1439 { 1440 const int is_sync = op_is_sync(bio->bi_opf); 1441 const int is_flush_fua = op_is_flush(bio->bi_opf); 1442 struct blk_mq_alloc_data data = { .flags = 0 }; 1443 struct request *rq; 1444 unsigned int request_count = 0, srcu_idx; 1445 struct blk_plug *plug; 1446 struct request *same_queue_rq = NULL; 1447 blk_qc_t cookie; 1448 unsigned int wb_acct; 1449 1450 blk_queue_bounce(q, &bio); 1451 1452 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1453 bio_io_error(bio); 1454 return BLK_QC_T_NONE; 1455 } 1456 1457 blk_queue_split(q, &bio, q->bio_split); 1458 1459 if (!is_flush_fua && !blk_queue_nomerges(q) && 1460 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1461 return BLK_QC_T_NONE; 1462 1463 if (blk_mq_sched_bio_merge(q, bio)) 1464 return BLK_QC_T_NONE; 1465 1466 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1467 1468 trace_block_getrq(q, bio, bio->bi_opf); 1469 1470 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1471 if (unlikely(!rq)) { 1472 __wbt_done(q->rq_wb, wb_acct); 1473 return BLK_QC_T_NONE; 1474 } 1475 1476 wbt_track(&rq->issue_stat, wb_acct); 1477 1478 cookie = request_to_qc_t(data.hctx, rq); 1479 1480 if (unlikely(is_flush_fua)) { 1481 if (q->elevator) 1482 goto elv_insert; 1483 blk_mq_bio_to_request(rq, bio); 1484 blk_insert_flush(rq); 1485 goto run_queue; 1486 } 1487 1488 plug = current->plug; 1489 /* 1490 * If the driver supports defer issued based on 'last', then 1491 * queue it up like normal since we can potentially save some 1492 * CPU this way. 1493 */ 1494 if (((plug && !blk_queue_nomerges(q)) || is_sync) && 1495 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1496 struct request *old_rq = NULL; 1497 1498 blk_mq_bio_to_request(rq, bio); 1499 1500 /* 1501 * We do limited plugging. If the bio can be merged, do that. 1502 * Otherwise the existing request in the plug list will be 1503 * issued. So the plug list will have one request at most 1504 */ 1505 if (plug) { 1506 /* 1507 * The plug list might get flushed before this. If that 1508 * happens, same_queue_rq is invalid and plug list is 1509 * empty 1510 */ 1511 if (same_queue_rq && !list_empty(&plug->mq_list)) { 1512 old_rq = same_queue_rq; 1513 list_del_init(&old_rq->queuelist); 1514 } 1515 list_add_tail(&rq->queuelist, &plug->mq_list); 1516 } else /* is_sync */ 1517 old_rq = rq; 1518 blk_mq_put_ctx(data.ctx); 1519 if (!old_rq) 1520 goto done; 1521 1522 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) { 1523 rcu_read_lock(); 1524 blk_mq_try_issue_directly(old_rq, &cookie); 1525 rcu_read_unlock(); 1526 } else { 1527 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu); 1528 blk_mq_try_issue_directly(old_rq, &cookie); 1529 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx); 1530 } 1531 goto done; 1532 } 1533 1534 if (q->elevator) { 1535 elv_insert: 1536 blk_mq_put_ctx(data.ctx); 1537 blk_mq_bio_to_request(rq, bio); 1538 blk_mq_sched_insert_request(rq, false, true, 1539 !is_sync || is_flush_fua, true); 1540 goto done; 1541 } 1542 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1543 /* 1544 * For a SYNC request, send it to the hardware immediately. For 1545 * an ASYNC request, just ensure that we run it later on. The 1546 * latter allows for merging opportunities and more efficient 1547 * dispatching. 1548 */ 1549 run_queue: 1550 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1551 } 1552 blk_mq_put_ctx(data.ctx); 1553 done: 1554 return cookie; 1555 } 1556 1557 /* 1558 * Single hardware queue variant. This will attempt to use any per-process 1559 * plug for merging and IO deferral. 1560 */ 1561 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio) 1562 { 1563 const int is_sync = op_is_sync(bio->bi_opf); 1564 const int is_flush_fua = op_is_flush(bio->bi_opf); 1565 struct blk_plug *plug; 1566 unsigned int request_count = 0; 1567 struct blk_mq_alloc_data data = { .flags = 0 }; 1568 struct request *rq; 1569 blk_qc_t cookie; 1570 unsigned int wb_acct; 1571 1572 blk_queue_bounce(q, &bio); 1573 1574 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1575 bio_io_error(bio); 1576 return BLK_QC_T_NONE; 1577 } 1578 1579 blk_queue_split(q, &bio, q->bio_split); 1580 1581 if (!is_flush_fua && !blk_queue_nomerges(q)) { 1582 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1583 return BLK_QC_T_NONE; 1584 } else 1585 request_count = blk_plug_queued_count(q); 1586 1587 if (blk_mq_sched_bio_merge(q, bio)) 1588 return BLK_QC_T_NONE; 1589 1590 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1591 1592 trace_block_getrq(q, bio, bio->bi_opf); 1593 1594 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data); 1595 if (unlikely(!rq)) { 1596 __wbt_done(q->rq_wb, wb_acct); 1597 return BLK_QC_T_NONE; 1598 } 1599 1600 wbt_track(&rq->issue_stat, wb_acct); 1601 1602 cookie = request_to_qc_t(data.hctx, rq); 1603 1604 if (unlikely(is_flush_fua)) { 1605 if (q->elevator) 1606 goto elv_insert; 1607 blk_mq_bio_to_request(rq, bio); 1608 blk_insert_flush(rq); 1609 goto run_queue; 1610 } 1611 1612 /* 1613 * A task plug currently exists. Since this is completely lockless, 1614 * utilize that to temporarily store requests until the task is 1615 * either done or scheduled away. 1616 */ 1617 plug = current->plug; 1618 if (plug) { 1619 struct request *last = NULL; 1620 1621 blk_mq_bio_to_request(rq, bio); 1622 1623 /* 1624 * @request_count may become stale because of schedule 1625 * out, so check the list again. 1626 */ 1627 if (list_empty(&plug->mq_list)) 1628 request_count = 0; 1629 if (!request_count) 1630 trace_block_plug(q); 1631 else 1632 last = list_entry_rq(plug->mq_list.prev); 1633 1634 blk_mq_put_ctx(data.ctx); 1635 1636 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1637 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1638 blk_flush_plug_list(plug, false); 1639 trace_block_plug(q); 1640 } 1641 1642 list_add_tail(&rq->queuelist, &plug->mq_list); 1643 return cookie; 1644 } 1645 1646 if (q->elevator) { 1647 elv_insert: 1648 blk_mq_put_ctx(data.ctx); 1649 blk_mq_bio_to_request(rq, bio); 1650 blk_mq_sched_insert_request(rq, false, true, 1651 !is_sync || is_flush_fua, true); 1652 goto done; 1653 } 1654 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1655 /* 1656 * For a SYNC request, send it to the hardware immediately. For 1657 * an ASYNC request, just ensure that we run it later on. The 1658 * latter allows for merging opportunities and more efficient 1659 * dispatching. 1660 */ 1661 run_queue: 1662 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1663 } 1664 1665 blk_mq_put_ctx(data.ctx); 1666 done: 1667 return cookie; 1668 } 1669 1670 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1671 unsigned int hctx_idx) 1672 { 1673 struct page *page; 1674 1675 if (tags->rqs && set->ops->exit_request) { 1676 int i; 1677 1678 for (i = 0; i < tags->nr_tags; i++) { 1679 struct request *rq = tags->static_rqs[i]; 1680 1681 if (!rq) 1682 continue; 1683 set->ops->exit_request(set->driver_data, rq, 1684 hctx_idx, i); 1685 tags->static_rqs[i] = NULL; 1686 } 1687 } 1688 1689 while (!list_empty(&tags->page_list)) { 1690 page = list_first_entry(&tags->page_list, struct page, lru); 1691 list_del_init(&page->lru); 1692 /* 1693 * Remove kmemleak object previously allocated in 1694 * blk_mq_init_rq_map(). 1695 */ 1696 kmemleak_free(page_address(page)); 1697 __free_pages(page, page->private); 1698 } 1699 } 1700 1701 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 1702 { 1703 kfree(tags->rqs); 1704 tags->rqs = NULL; 1705 kfree(tags->static_rqs); 1706 tags->static_rqs = NULL; 1707 1708 blk_mq_free_tags(tags); 1709 } 1710 1711 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 1712 unsigned int hctx_idx, 1713 unsigned int nr_tags, 1714 unsigned int reserved_tags) 1715 { 1716 struct blk_mq_tags *tags; 1717 1718 tags = blk_mq_init_tags(nr_tags, reserved_tags, 1719 set->numa_node, 1720 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1721 if (!tags) 1722 return NULL; 1723 1724 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1725 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1726 set->numa_node); 1727 if (!tags->rqs) { 1728 blk_mq_free_tags(tags); 1729 return NULL; 1730 } 1731 1732 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 1733 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 1734 set->numa_node); 1735 if (!tags->static_rqs) { 1736 kfree(tags->rqs); 1737 blk_mq_free_tags(tags); 1738 return NULL; 1739 } 1740 1741 return tags; 1742 } 1743 1744 static size_t order_to_size(unsigned int order) 1745 { 1746 return (size_t)PAGE_SIZE << order; 1747 } 1748 1749 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1750 unsigned int hctx_idx, unsigned int depth) 1751 { 1752 unsigned int i, j, entries_per_page, max_order = 4; 1753 size_t rq_size, left; 1754 1755 INIT_LIST_HEAD(&tags->page_list); 1756 1757 /* 1758 * rq_size is the size of the request plus driver payload, rounded 1759 * to the cacheline size 1760 */ 1761 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1762 cache_line_size()); 1763 left = rq_size * depth; 1764 1765 for (i = 0; i < depth; ) { 1766 int this_order = max_order; 1767 struct page *page; 1768 int to_do; 1769 void *p; 1770 1771 while (this_order && left < order_to_size(this_order - 1)) 1772 this_order--; 1773 1774 do { 1775 page = alloc_pages_node(set->numa_node, 1776 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1777 this_order); 1778 if (page) 1779 break; 1780 if (!this_order--) 1781 break; 1782 if (order_to_size(this_order) < rq_size) 1783 break; 1784 } while (1); 1785 1786 if (!page) 1787 goto fail; 1788 1789 page->private = this_order; 1790 list_add_tail(&page->lru, &tags->page_list); 1791 1792 p = page_address(page); 1793 /* 1794 * Allow kmemleak to scan these pages as they contain pointers 1795 * to additional allocations like via ops->init_request(). 1796 */ 1797 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 1798 entries_per_page = order_to_size(this_order) / rq_size; 1799 to_do = min(entries_per_page, depth - i); 1800 left -= to_do * rq_size; 1801 for (j = 0; j < to_do; j++) { 1802 struct request *rq = p; 1803 1804 tags->static_rqs[i] = rq; 1805 if (set->ops->init_request) { 1806 if (set->ops->init_request(set->driver_data, 1807 rq, hctx_idx, i, 1808 set->numa_node)) { 1809 tags->static_rqs[i] = NULL; 1810 goto fail; 1811 } 1812 } 1813 1814 p += rq_size; 1815 i++; 1816 } 1817 } 1818 return 0; 1819 1820 fail: 1821 blk_mq_free_rqs(set, tags, hctx_idx); 1822 return -ENOMEM; 1823 } 1824 1825 /* 1826 * 'cpu' is going away. splice any existing rq_list entries from this 1827 * software queue to the hw queue dispatch list, and ensure that it 1828 * gets run. 1829 */ 1830 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 1831 { 1832 struct blk_mq_hw_ctx *hctx; 1833 struct blk_mq_ctx *ctx; 1834 LIST_HEAD(tmp); 1835 1836 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 1837 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 1838 1839 spin_lock(&ctx->lock); 1840 if (!list_empty(&ctx->rq_list)) { 1841 list_splice_init(&ctx->rq_list, &tmp); 1842 blk_mq_hctx_clear_pending(hctx, ctx); 1843 } 1844 spin_unlock(&ctx->lock); 1845 1846 if (list_empty(&tmp)) 1847 return 0; 1848 1849 spin_lock(&hctx->lock); 1850 list_splice_tail_init(&tmp, &hctx->dispatch); 1851 spin_unlock(&hctx->lock); 1852 1853 blk_mq_run_hw_queue(hctx, true); 1854 return 0; 1855 } 1856 1857 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 1858 { 1859 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 1860 &hctx->cpuhp_dead); 1861 } 1862 1863 /* hctx->ctxs will be freed in queue's release handler */ 1864 static void blk_mq_exit_hctx(struct request_queue *q, 1865 struct blk_mq_tag_set *set, 1866 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1867 { 1868 unsigned flush_start_tag = set->queue_depth; 1869 1870 blk_mq_tag_idle(hctx); 1871 1872 if (set->ops->exit_request) 1873 set->ops->exit_request(set->driver_data, 1874 hctx->fq->flush_rq, hctx_idx, 1875 flush_start_tag + hctx_idx); 1876 1877 if (set->ops->exit_hctx) 1878 set->ops->exit_hctx(hctx, hctx_idx); 1879 1880 if (hctx->flags & BLK_MQ_F_BLOCKING) 1881 cleanup_srcu_struct(&hctx->queue_rq_srcu); 1882 1883 blk_mq_remove_cpuhp(hctx); 1884 blk_free_flush_queue(hctx->fq); 1885 sbitmap_free(&hctx->ctx_map); 1886 } 1887 1888 static void blk_mq_exit_hw_queues(struct request_queue *q, 1889 struct blk_mq_tag_set *set, int nr_queue) 1890 { 1891 struct blk_mq_hw_ctx *hctx; 1892 unsigned int i; 1893 1894 queue_for_each_hw_ctx(q, hctx, i) { 1895 if (i == nr_queue) 1896 break; 1897 blk_mq_exit_hctx(q, set, hctx, i); 1898 } 1899 } 1900 1901 static void blk_mq_free_hw_queues(struct request_queue *q, 1902 struct blk_mq_tag_set *set) 1903 { 1904 struct blk_mq_hw_ctx *hctx; 1905 unsigned int i; 1906 1907 queue_for_each_hw_ctx(q, hctx, i) 1908 free_cpumask_var(hctx->cpumask); 1909 } 1910 1911 static int blk_mq_init_hctx(struct request_queue *q, 1912 struct blk_mq_tag_set *set, 1913 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1914 { 1915 int node; 1916 unsigned flush_start_tag = set->queue_depth; 1917 1918 node = hctx->numa_node; 1919 if (node == NUMA_NO_NODE) 1920 node = hctx->numa_node = set->numa_node; 1921 1922 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn); 1923 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1924 spin_lock_init(&hctx->lock); 1925 INIT_LIST_HEAD(&hctx->dispatch); 1926 hctx->queue = q; 1927 hctx->queue_num = hctx_idx; 1928 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 1929 1930 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 1931 1932 hctx->tags = set->tags[hctx_idx]; 1933 1934 /* 1935 * Allocate space for all possible cpus to avoid allocation at 1936 * runtime 1937 */ 1938 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1939 GFP_KERNEL, node); 1940 if (!hctx->ctxs) 1941 goto unregister_cpu_notifier; 1942 1943 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 1944 node)) 1945 goto free_ctxs; 1946 1947 hctx->nr_ctx = 0; 1948 1949 if (set->ops->init_hctx && 1950 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1951 goto free_bitmap; 1952 1953 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1954 if (!hctx->fq) 1955 goto exit_hctx; 1956 1957 if (set->ops->init_request && 1958 set->ops->init_request(set->driver_data, 1959 hctx->fq->flush_rq, hctx_idx, 1960 flush_start_tag + hctx_idx, node)) 1961 goto free_fq; 1962 1963 if (hctx->flags & BLK_MQ_F_BLOCKING) 1964 init_srcu_struct(&hctx->queue_rq_srcu); 1965 1966 return 0; 1967 1968 free_fq: 1969 kfree(hctx->fq); 1970 exit_hctx: 1971 if (set->ops->exit_hctx) 1972 set->ops->exit_hctx(hctx, hctx_idx); 1973 free_bitmap: 1974 sbitmap_free(&hctx->ctx_map); 1975 free_ctxs: 1976 kfree(hctx->ctxs); 1977 unregister_cpu_notifier: 1978 blk_mq_remove_cpuhp(hctx); 1979 return -1; 1980 } 1981 1982 static void blk_mq_init_cpu_queues(struct request_queue *q, 1983 unsigned int nr_hw_queues) 1984 { 1985 unsigned int i; 1986 1987 for_each_possible_cpu(i) { 1988 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1989 struct blk_mq_hw_ctx *hctx; 1990 1991 memset(__ctx, 0, sizeof(*__ctx)); 1992 __ctx->cpu = i; 1993 spin_lock_init(&__ctx->lock); 1994 INIT_LIST_HEAD(&__ctx->rq_list); 1995 __ctx->queue = q; 1996 blk_stat_init(&__ctx->stat[BLK_STAT_READ]); 1997 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]); 1998 1999 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2000 if (!cpu_online(i)) 2001 continue; 2002 2003 hctx = blk_mq_map_queue(q, i); 2004 2005 /* 2006 * Set local node, IFF we have more than one hw queue. If 2007 * not, we remain on the home node of the device 2008 */ 2009 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2010 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2011 } 2012 } 2013 2014 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2015 { 2016 int ret = 0; 2017 2018 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2019 set->queue_depth, set->reserved_tags); 2020 if (!set->tags[hctx_idx]) 2021 return false; 2022 2023 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2024 set->queue_depth); 2025 if (!ret) 2026 return true; 2027 2028 blk_mq_free_rq_map(set->tags[hctx_idx]); 2029 set->tags[hctx_idx] = NULL; 2030 return false; 2031 } 2032 2033 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2034 unsigned int hctx_idx) 2035 { 2036 if (set->tags[hctx_idx]) { 2037 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2038 blk_mq_free_rq_map(set->tags[hctx_idx]); 2039 set->tags[hctx_idx] = NULL; 2040 } 2041 } 2042 2043 static void blk_mq_map_swqueue(struct request_queue *q, 2044 const struct cpumask *online_mask) 2045 { 2046 unsigned int i, hctx_idx; 2047 struct blk_mq_hw_ctx *hctx; 2048 struct blk_mq_ctx *ctx; 2049 struct blk_mq_tag_set *set = q->tag_set; 2050 2051 /* 2052 * Avoid others reading imcomplete hctx->cpumask through sysfs 2053 */ 2054 mutex_lock(&q->sysfs_lock); 2055 2056 queue_for_each_hw_ctx(q, hctx, i) { 2057 cpumask_clear(hctx->cpumask); 2058 hctx->nr_ctx = 0; 2059 } 2060 2061 /* 2062 * Map software to hardware queues 2063 */ 2064 for_each_possible_cpu(i) { 2065 /* If the cpu isn't online, the cpu is mapped to first hctx */ 2066 if (!cpumask_test_cpu(i, online_mask)) 2067 continue; 2068 2069 hctx_idx = q->mq_map[i]; 2070 /* unmapped hw queue can be remapped after CPU topo changed */ 2071 if (!set->tags[hctx_idx] && 2072 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2073 /* 2074 * If tags initialization fail for some hctx, 2075 * that hctx won't be brought online. In this 2076 * case, remap the current ctx to hctx[0] which 2077 * is guaranteed to always have tags allocated 2078 */ 2079 q->mq_map[i] = 0; 2080 } 2081 2082 ctx = per_cpu_ptr(q->queue_ctx, i); 2083 hctx = blk_mq_map_queue(q, i); 2084 2085 cpumask_set_cpu(i, hctx->cpumask); 2086 ctx->index_hw = hctx->nr_ctx; 2087 hctx->ctxs[hctx->nr_ctx++] = ctx; 2088 } 2089 2090 mutex_unlock(&q->sysfs_lock); 2091 2092 queue_for_each_hw_ctx(q, hctx, i) { 2093 /* 2094 * If no software queues are mapped to this hardware queue, 2095 * disable it and free the request entries. 2096 */ 2097 if (!hctx->nr_ctx) { 2098 /* Never unmap queue 0. We need it as a 2099 * fallback in case of a new remap fails 2100 * allocation 2101 */ 2102 if (i && set->tags[i]) 2103 blk_mq_free_map_and_requests(set, i); 2104 2105 hctx->tags = NULL; 2106 continue; 2107 } 2108 2109 hctx->tags = set->tags[i]; 2110 WARN_ON(!hctx->tags); 2111 2112 /* 2113 * Set the map size to the number of mapped software queues. 2114 * This is more accurate and more efficient than looping 2115 * over all possibly mapped software queues. 2116 */ 2117 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2118 2119 /* 2120 * Initialize batch roundrobin counts 2121 */ 2122 hctx->next_cpu = cpumask_first(hctx->cpumask); 2123 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2124 } 2125 } 2126 2127 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2128 { 2129 struct blk_mq_hw_ctx *hctx; 2130 int i; 2131 2132 queue_for_each_hw_ctx(q, hctx, i) { 2133 if (shared) 2134 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2135 else 2136 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2137 } 2138 } 2139 2140 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared) 2141 { 2142 struct request_queue *q; 2143 2144 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2145 blk_mq_freeze_queue(q); 2146 queue_set_hctx_shared(q, shared); 2147 blk_mq_unfreeze_queue(q); 2148 } 2149 } 2150 2151 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2152 { 2153 struct blk_mq_tag_set *set = q->tag_set; 2154 2155 mutex_lock(&set->tag_list_lock); 2156 list_del_init(&q->tag_set_list); 2157 if (list_is_singular(&set->tag_list)) { 2158 /* just transitioned to unshared */ 2159 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2160 /* update existing queue */ 2161 blk_mq_update_tag_set_depth(set, false); 2162 } 2163 mutex_unlock(&set->tag_list_lock); 2164 } 2165 2166 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2167 struct request_queue *q) 2168 { 2169 q->tag_set = set; 2170 2171 mutex_lock(&set->tag_list_lock); 2172 2173 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */ 2174 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2175 set->flags |= BLK_MQ_F_TAG_SHARED; 2176 /* update existing queue */ 2177 blk_mq_update_tag_set_depth(set, true); 2178 } 2179 if (set->flags & BLK_MQ_F_TAG_SHARED) 2180 queue_set_hctx_shared(q, true); 2181 list_add_tail(&q->tag_set_list, &set->tag_list); 2182 2183 mutex_unlock(&set->tag_list_lock); 2184 } 2185 2186 /* 2187 * It is the actual release handler for mq, but we do it from 2188 * request queue's release handler for avoiding use-after-free 2189 * and headache because q->mq_kobj shouldn't have been introduced, 2190 * but we can't group ctx/kctx kobj without it. 2191 */ 2192 void blk_mq_release(struct request_queue *q) 2193 { 2194 struct blk_mq_hw_ctx *hctx; 2195 unsigned int i; 2196 2197 blk_mq_sched_teardown(q); 2198 2199 /* hctx kobj stays in hctx */ 2200 queue_for_each_hw_ctx(q, hctx, i) { 2201 if (!hctx) 2202 continue; 2203 kfree(hctx->ctxs); 2204 kfree(hctx); 2205 } 2206 2207 q->mq_map = NULL; 2208 2209 kfree(q->queue_hw_ctx); 2210 2211 /* ctx kobj stays in queue_ctx */ 2212 free_percpu(q->queue_ctx); 2213 } 2214 2215 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2216 { 2217 struct request_queue *uninit_q, *q; 2218 2219 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2220 if (!uninit_q) 2221 return ERR_PTR(-ENOMEM); 2222 2223 q = blk_mq_init_allocated_queue(set, uninit_q); 2224 if (IS_ERR(q)) 2225 blk_cleanup_queue(uninit_q); 2226 2227 return q; 2228 } 2229 EXPORT_SYMBOL(blk_mq_init_queue); 2230 2231 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2232 struct request_queue *q) 2233 { 2234 int i, j; 2235 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2236 2237 blk_mq_sysfs_unregister(q); 2238 for (i = 0; i < set->nr_hw_queues; i++) { 2239 int node; 2240 2241 if (hctxs[i]) 2242 continue; 2243 2244 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2245 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 2246 GFP_KERNEL, node); 2247 if (!hctxs[i]) 2248 break; 2249 2250 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2251 node)) { 2252 kfree(hctxs[i]); 2253 hctxs[i] = NULL; 2254 break; 2255 } 2256 2257 atomic_set(&hctxs[i]->nr_active, 0); 2258 hctxs[i]->numa_node = node; 2259 hctxs[i]->queue_num = i; 2260 2261 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2262 free_cpumask_var(hctxs[i]->cpumask); 2263 kfree(hctxs[i]); 2264 hctxs[i] = NULL; 2265 break; 2266 } 2267 blk_mq_hctx_kobj_init(hctxs[i]); 2268 } 2269 for (j = i; j < q->nr_hw_queues; j++) { 2270 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2271 2272 if (hctx) { 2273 if (hctx->tags) 2274 blk_mq_free_map_and_requests(set, j); 2275 blk_mq_exit_hctx(q, set, hctx, j); 2276 free_cpumask_var(hctx->cpumask); 2277 kobject_put(&hctx->kobj); 2278 kfree(hctx->ctxs); 2279 kfree(hctx); 2280 hctxs[j] = NULL; 2281 2282 } 2283 } 2284 q->nr_hw_queues = i; 2285 blk_mq_sysfs_register(q); 2286 } 2287 2288 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2289 struct request_queue *q) 2290 { 2291 /* mark the queue as mq asap */ 2292 q->mq_ops = set->ops; 2293 2294 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2295 if (!q->queue_ctx) 2296 goto err_exit; 2297 2298 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2299 GFP_KERNEL, set->numa_node); 2300 if (!q->queue_hw_ctx) 2301 goto err_percpu; 2302 2303 q->mq_map = set->mq_map; 2304 2305 blk_mq_realloc_hw_ctxs(set, q); 2306 if (!q->nr_hw_queues) 2307 goto err_hctxs; 2308 2309 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2310 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2311 2312 q->nr_queues = nr_cpu_ids; 2313 2314 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2315 2316 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2317 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 2318 2319 q->sg_reserved_size = INT_MAX; 2320 2321 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2322 INIT_LIST_HEAD(&q->requeue_list); 2323 spin_lock_init(&q->requeue_lock); 2324 2325 if (q->nr_hw_queues > 1) 2326 blk_queue_make_request(q, blk_mq_make_request); 2327 else 2328 blk_queue_make_request(q, blk_sq_make_request); 2329 2330 /* 2331 * Do this after blk_queue_make_request() overrides it... 2332 */ 2333 q->nr_requests = set->queue_depth; 2334 2335 /* 2336 * Default to classic polling 2337 */ 2338 q->poll_nsec = -1; 2339 2340 if (set->ops->complete) 2341 blk_queue_softirq_done(q, set->ops->complete); 2342 2343 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2344 2345 get_online_cpus(); 2346 mutex_lock(&all_q_mutex); 2347 2348 list_add_tail(&q->all_q_node, &all_q_list); 2349 blk_mq_add_queue_tag_set(set, q); 2350 blk_mq_map_swqueue(q, cpu_online_mask); 2351 2352 mutex_unlock(&all_q_mutex); 2353 put_online_cpus(); 2354 2355 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2356 int ret; 2357 2358 ret = blk_mq_sched_init(q); 2359 if (ret) 2360 return ERR_PTR(ret); 2361 } 2362 2363 return q; 2364 2365 err_hctxs: 2366 kfree(q->queue_hw_ctx); 2367 err_percpu: 2368 free_percpu(q->queue_ctx); 2369 err_exit: 2370 q->mq_ops = NULL; 2371 return ERR_PTR(-ENOMEM); 2372 } 2373 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2374 2375 void blk_mq_free_queue(struct request_queue *q) 2376 { 2377 struct blk_mq_tag_set *set = q->tag_set; 2378 2379 mutex_lock(&all_q_mutex); 2380 list_del_init(&q->all_q_node); 2381 mutex_unlock(&all_q_mutex); 2382 2383 wbt_exit(q); 2384 2385 blk_mq_del_queue_tag_set(q); 2386 2387 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2388 blk_mq_free_hw_queues(q, set); 2389 } 2390 2391 /* Basically redo blk_mq_init_queue with queue frozen */ 2392 static void blk_mq_queue_reinit(struct request_queue *q, 2393 const struct cpumask *online_mask) 2394 { 2395 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2396 2397 blk_mq_sysfs_unregister(q); 2398 2399 /* 2400 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2401 * we should change hctx numa_node according to new topology (this 2402 * involves free and re-allocate memory, worthy doing?) 2403 */ 2404 2405 blk_mq_map_swqueue(q, online_mask); 2406 2407 blk_mq_sysfs_register(q); 2408 } 2409 2410 /* 2411 * New online cpumask which is going to be set in this hotplug event. 2412 * Declare this cpumasks as global as cpu-hotplug operation is invoked 2413 * one-by-one and dynamically allocating this could result in a failure. 2414 */ 2415 static struct cpumask cpuhp_online_new; 2416 2417 static void blk_mq_queue_reinit_work(void) 2418 { 2419 struct request_queue *q; 2420 2421 mutex_lock(&all_q_mutex); 2422 /* 2423 * We need to freeze and reinit all existing queues. Freezing 2424 * involves synchronous wait for an RCU grace period and doing it 2425 * one by one may take a long time. Start freezing all queues in 2426 * one swoop and then wait for the completions so that freezing can 2427 * take place in parallel. 2428 */ 2429 list_for_each_entry(q, &all_q_list, all_q_node) 2430 blk_mq_freeze_queue_start(q); 2431 list_for_each_entry(q, &all_q_list, all_q_node) 2432 blk_mq_freeze_queue_wait(q); 2433 2434 list_for_each_entry(q, &all_q_list, all_q_node) 2435 blk_mq_queue_reinit(q, &cpuhp_online_new); 2436 2437 list_for_each_entry(q, &all_q_list, all_q_node) 2438 blk_mq_unfreeze_queue(q); 2439 2440 mutex_unlock(&all_q_mutex); 2441 } 2442 2443 static int blk_mq_queue_reinit_dead(unsigned int cpu) 2444 { 2445 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2446 blk_mq_queue_reinit_work(); 2447 return 0; 2448 } 2449 2450 /* 2451 * Before hotadded cpu starts handling requests, new mappings must be 2452 * established. Otherwise, these requests in hw queue might never be 2453 * dispatched. 2454 * 2455 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0 2456 * for CPU0, and ctx1 for CPU1). 2457 * 2458 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list 2459 * and set bit0 in pending bitmap as ctx1->index_hw is still zero. 2460 * 2461 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set 2462 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list. 2463 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is 2464 * ignored. 2465 */ 2466 static int blk_mq_queue_reinit_prepare(unsigned int cpu) 2467 { 2468 cpumask_copy(&cpuhp_online_new, cpu_online_mask); 2469 cpumask_set_cpu(cpu, &cpuhp_online_new); 2470 blk_mq_queue_reinit_work(); 2471 return 0; 2472 } 2473 2474 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2475 { 2476 int i; 2477 2478 for (i = 0; i < set->nr_hw_queues; i++) 2479 if (!__blk_mq_alloc_rq_map(set, i)) 2480 goto out_unwind; 2481 2482 return 0; 2483 2484 out_unwind: 2485 while (--i >= 0) 2486 blk_mq_free_rq_map(set->tags[i]); 2487 2488 return -ENOMEM; 2489 } 2490 2491 /* 2492 * Allocate the request maps associated with this tag_set. Note that this 2493 * may reduce the depth asked for, if memory is tight. set->queue_depth 2494 * will be updated to reflect the allocated depth. 2495 */ 2496 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2497 { 2498 unsigned int depth; 2499 int err; 2500 2501 depth = set->queue_depth; 2502 do { 2503 err = __blk_mq_alloc_rq_maps(set); 2504 if (!err) 2505 break; 2506 2507 set->queue_depth >>= 1; 2508 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2509 err = -ENOMEM; 2510 break; 2511 } 2512 } while (set->queue_depth); 2513 2514 if (!set->queue_depth || err) { 2515 pr_err("blk-mq: failed to allocate request map\n"); 2516 return -ENOMEM; 2517 } 2518 2519 if (depth != set->queue_depth) 2520 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2521 depth, set->queue_depth); 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * Alloc a tag set to be associated with one or more request queues. 2528 * May fail with EINVAL for various error conditions. May adjust the 2529 * requested depth down, if if it too large. In that case, the set 2530 * value will be stored in set->queue_depth. 2531 */ 2532 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2533 { 2534 int ret; 2535 2536 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2537 2538 if (!set->nr_hw_queues) 2539 return -EINVAL; 2540 if (!set->queue_depth) 2541 return -EINVAL; 2542 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2543 return -EINVAL; 2544 2545 if (!set->ops->queue_rq) 2546 return -EINVAL; 2547 2548 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2549 pr_info("blk-mq: reduced tag depth to %u\n", 2550 BLK_MQ_MAX_DEPTH); 2551 set->queue_depth = BLK_MQ_MAX_DEPTH; 2552 } 2553 2554 /* 2555 * If a crashdump is active, then we are potentially in a very 2556 * memory constrained environment. Limit us to 1 queue and 2557 * 64 tags to prevent using too much memory. 2558 */ 2559 if (is_kdump_kernel()) { 2560 set->nr_hw_queues = 1; 2561 set->queue_depth = min(64U, set->queue_depth); 2562 } 2563 /* 2564 * There is no use for more h/w queues than cpus. 2565 */ 2566 if (set->nr_hw_queues > nr_cpu_ids) 2567 set->nr_hw_queues = nr_cpu_ids; 2568 2569 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2570 GFP_KERNEL, set->numa_node); 2571 if (!set->tags) 2572 return -ENOMEM; 2573 2574 ret = -ENOMEM; 2575 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2576 GFP_KERNEL, set->numa_node); 2577 if (!set->mq_map) 2578 goto out_free_tags; 2579 2580 if (set->ops->map_queues) 2581 ret = set->ops->map_queues(set); 2582 else 2583 ret = blk_mq_map_queues(set); 2584 if (ret) 2585 goto out_free_mq_map; 2586 2587 ret = blk_mq_alloc_rq_maps(set); 2588 if (ret) 2589 goto out_free_mq_map; 2590 2591 mutex_init(&set->tag_list_lock); 2592 INIT_LIST_HEAD(&set->tag_list); 2593 2594 return 0; 2595 2596 out_free_mq_map: 2597 kfree(set->mq_map); 2598 set->mq_map = NULL; 2599 out_free_tags: 2600 kfree(set->tags); 2601 set->tags = NULL; 2602 return ret; 2603 } 2604 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2605 2606 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2607 { 2608 int i; 2609 2610 for (i = 0; i < nr_cpu_ids; i++) 2611 blk_mq_free_map_and_requests(set, i); 2612 2613 kfree(set->mq_map); 2614 set->mq_map = NULL; 2615 2616 kfree(set->tags); 2617 set->tags = NULL; 2618 } 2619 EXPORT_SYMBOL(blk_mq_free_tag_set); 2620 2621 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2622 { 2623 struct blk_mq_tag_set *set = q->tag_set; 2624 struct blk_mq_hw_ctx *hctx; 2625 int i, ret; 2626 2627 if (!set) 2628 return -EINVAL; 2629 2630 blk_mq_freeze_queue(q); 2631 blk_mq_quiesce_queue(q); 2632 2633 ret = 0; 2634 queue_for_each_hw_ctx(q, hctx, i) { 2635 if (!hctx->tags) 2636 continue; 2637 /* 2638 * If we're using an MQ scheduler, just update the scheduler 2639 * queue depth. This is similar to what the old code would do. 2640 */ 2641 if (!hctx->sched_tags) { 2642 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, 2643 min(nr, set->queue_depth), 2644 false); 2645 } else { 2646 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2647 nr, true); 2648 } 2649 if (ret) 2650 break; 2651 } 2652 2653 if (!ret) 2654 q->nr_requests = nr; 2655 2656 blk_mq_unfreeze_queue(q); 2657 blk_mq_start_stopped_hw_queues(q, true); 2658 2659 return ret; 2660 } 2661 2662 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2663 { 2664 struct request_queue *q; 2665 2666 if (nr_hw_queues > nr_cpu_ids) 2667 nr_hw_queues = nr_cpu_ids; 2668 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2669 return; 2670 2671 list_for_each_entry(q, &set->tag_list, tag_set_list) 2672 blk_mq_freeze_queue(q); 2673 2674 set->nr_hw_queues = nr_hw_queues; 2675 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2676 blk_mq_realloc_hw_ctxs(set, q); 2677 2678 /* 2679 * Manually set the make_request_fn as blk_queue_make_request 2680 * resets a lot of the queue settings. 2681 */ 2682 if (q->nr_hw_queues > 1) 2683 q->make_request_fn = blk_mq_make_request; 2684 else 2685 q->make_request_fn = blk_sq_make_request; 2686 2687 blk_mq_queue_reinit(q, cpu_online_mask); 2688 } 2689 2690 list_for_each_entry(q, &set->tag_list, tag_set_list) 2691 blk_mq_unfreeze_queue(q); 2692 } 2693 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2694 2695 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 2696 struct blk_mq_hw_ctx *hctx, 2697 struct request *rq) 2698 { 2699 struct blk_rq_stat stat[2]; 2700 unsigned long ret = 0; 2701 2702 /* 2703 * If stats collection isn't on, don't sleep but turn it on for 2704 * future users 2705 */ 2706 if (!blk_stat_enable(q)) 2707 return 0; 2708 2709 /* 2710 * We don't have to do this once per IO, should optimize this 2711 * to just use the current window of stats until it changes 2712 */ 2713 memset(&stat, 0, sizeof(stat)); 2714 blk_hctx_stat_get(hctx, stat); 2715 2716 /* 2717 * As an optimistic guess, use half of the mean service time 2718 * for this type of request. We can (and should) make this smarter. 2719 * For instance, if the completion latencies are tight, we can 2720 * get closer than just half the mean. This is especially 2721 * important on devices where the completion latencies are longer 2722 * than ~10 usec. 2723 */ 2724 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples) 2725 ret = (stat[BLK_STAT_READ].mean + 1) / 2; 2726 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples) 2727 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2; 2728 2729 return ret; 2730 } 2731 2732 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 2733 struct blk_mq_hw_ctx *hctx, 2734 struct request *rq) 2735 { 2736 struct hrtimer_sleeper hs; 2737 enum hrtimer_mode mode; 2738 unsigned int nsecs; 2739 ktime_t kt; 2740 2741 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags)) 2742 return false; 2743 2744 /* 2745 * poll_nsec can be: 2746 * 2747 * -1: don't ever hybrid sleep 2748 * 0: use half of prev avg 2749 * >0: use this specific value 2750 */ 2751 if (q->poll_nsec == -1) 2752 return false; 2753 else if (q->poll_nsec > 0) 2754 nsecs = q->poll_nsec; 2755 else 2756 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 2757 2758 if (!nsecs) 2759 return false; 2760 2761 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags); 2762 2763 /* 2764 * This will be replaced with the stats tracking code, using 2765 * 'avg_completion_time / 2' as the pre-sleep target. 2766 */ 2767 kt = nsecs; 2768 2769 mode = HRTIMER_MODE_REL; 2770 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 2771 hrtimer_set_expires(&hs.timer, kt); 2772 2773 hrtimer_init_sleeper(&hs, current); 2774 do { 2775 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 2776 break; 2777 set_current_state(TASK_UNINTERRUPTIBLE); 2778 hrtimer_start_expires(&hs.timer, mode); 2779 if (hs.task) 2780 io_schedule(); 2781 hrtimer_cancel(&hs.timer); 2782 mode = HRTIMER_MODE_ABS; 2783 } while (hs.task && !signal_pending(current)); 2784 2785 __set_current_state(TASK_RUNNING); 2786 destroy_hrtimer_on_stack(&hs.timer); 2787 return true; 2788 } 2789 2790 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 2791 { 2792 struct request_queue *q = hctx->queue; 2793 long state; 2794 2795 /* 2796 * If we sleep, have the caller restart the poll loop to reset 2797 * the state. Like for the other success return cases, the 2798 * caller is responsible for checking if the IO completed. If 2799 * the IO isn't complete, we'll get called again and will go 2800 * straight to the busy poll loop. 2801 */ 2802 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 2803 return true; 2804 2805 hctx->poll_considered++; 2806 2807 state = current->state; 2808 while (!need_resched()) { 2809 int ret; 2810 2811 hctx->poll_invoked++; 2812 2813 ret = q->mq_ops->poll(hctx, rq->tag); 2814 if (ret > 0) { 2815 hctx->poll_success++; 2816 set_current_state(TASK_RUNNING); 2817 return true; 2818 } 2819 2820 if (signal_pending_state(state, current)) 2821 set_current_state(TASK_RUNNING); 2822 2823 if (current->state == TASK_RUNNING) 2824 return true; 2825 if (ret < 0) 2826 break; 2827 cpu_relax(); 2828 } 2829 2830 return false; 2831 } 2832 2833 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 2834 { 2835 struct blk_mq_hw_ctx *hctx; 2836 struct blk_plug *plug; 2837 struct request *rq; 2838 2839 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 2840 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 2841 return false; 2842 2843 plug = current->plug; 2844 if (plug) 2845 blk_flush_plug_list(plug, false); 2846 2847 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 2848 if (!blk_qc_t_is_internal(cookie)) 2849 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 2850 else 2851 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 2852 2853 return __blk_mq_poll(hctx, rq); 2854 } 2855 EXPORT_SYMBOL_GPL(blk_mq_poll); 2856 2857 void blk_mq_disable_hotplug(void) 2858 { 2859 mutex_lock(&all_q_mutex); 2860 } 2861 2862 void blk_mq_enable_hotplug(void) 2863 { 2864 mutex_unlock(&all_q_mutex); 2865 } 2866 2867 static int __init blk_mq_init(void) 2868 { 2869 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 2870 blk_mq_hctx_notify_dead); 2871 2872 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare", 2873 blk_mq_queue_reinit_prepare, 2874 blk_mq_queue_reinit_dead); 2875 return 0; 2876 } 2877 subsys_initcall(blk_mq_init); 2878