xref: /linux/block/blk-mq.c (revision 46ff24efe04ac96a129dd01138640c3447a525e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266 	if (set->flags & BLK_MQ_F_BLOCKING)
267 		synchronize_srcu(set->srcu);
268 	else
269 		synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272 
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284 	blk_mq_quiesce_queue_nowait(q);
285 	/* nothing to wait for non-mq queues */
286 	if (queue_is_mq(q))
287 		blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290 
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300 	unsigned long flags;
301 	bool run_queue = false;
302 
303 	spin_lock_irqsave(&q->queue_lock, flags);
304 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305 		;
306 	} else if (!--q->quiesce_depth) {
307 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308 		run_queue = true;
309 	}
310 	spin_unlock_irqrestore(&q->queue_lock, flags);
311 
312 	/* dispatch requests which are inserted during quiescing */
313 	if (run_queue)
314 		blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317 
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320 	struct request_queue *q;
321 
322 	mutex_lock(&set->tag_list_lock);
323 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 		if (!blk_queue_skip_tagset_quiesce(q))
325 			blk_mq_quiesce_queue_nowait(q);
326 	}
327 	blk_mq_wait_quiesce_done(set);
328 	mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331 
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334 	struct request_queue *q;
335 
336 	mutex_lock(&set->tag_list_lock);
337 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 		if (!blk_queue_skip_tagset_quiesce(q))
339 			blk_mq_unquiesce_queue(q);
340 	}
341 	mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344 
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347 	struct blk_mq_hw_ctx *hctx;
348 	unsigned long i;
349 
350 	queue_for_each_hw_ctx(q, hctx, i)
351 		if (blk_mq_hw_queue_mapped(hctx))
352 			blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354 
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357 	memset(rq, 0, sizeof(*rq));
358 
359 	INIT_LIST_HEAD(&rq->queuelist);
360 	rq->q = q;
361 	rq->__sector = (sector_t) -1;
362 	INIT_HLIST_NODE(&rq->hash);
363 	RB_CLEAR_NODE(&rq->rb_node);
364 	rq->tag = BLK_MQ_NO_TAG;
365 	rq->internal_tag = BLK_MQ_NO_TAG;
366 	rq->start_time_ns = ktime_get_ns();
367 	rq->part = NULL;
368 	blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371 
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375 	struct blk_mq_ctx *ctx = data->ctx;
376 	struct blk_mq_hw_ctx *hctx = data->hctx;
377 	struct request_queue *q = data->q;
378 	struct request *rq = tags->static_rqs[tag];
379 
380 	rq->q = q;
381 	rq->mq_ctx = ctx;
382 	rq->mq_hctx = hctx;
383 	rq->cmd_flags = data->cmd_flags;
384 
385 	if (data->flags & BLK_MQ_REQ_PM)
386 		data->rq_flags |= RQF_PM;
387 	if (blk_queue_io_stat(q))
388 		data->rq_flags |= RQF_IO_STAT;
389 	rq->rq_flags = data->rq_flags;
390 
391 	if (!(data->rq_flags & RQF_ELV)) {
392 		rq->tag = tag;
393 		rq->internal_tag = BLK_MQ_NO_TAG;
394 	} else {
395 		rq->tag = BLK_MQ_NO_TAG;
396 		rq->internal_tag = tag;
397 	}
398 	rq->timeout = 0;
399 
400 	if (blk_mq_need_time_stamp(rq))
401 		rq->start_time_ns = ktime_get_ns();
402 	else
403 		rq->start_time_ns = 0;
404 	rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 	rq->alloc_time_ns = alloc_time_ns;
407 #endif
408 	rq->io_start_time_ns = 0;
409 	rq->stats_sectors = 0;
410 	rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 	rq->nr_integrity_segments = 0;
413 #endif
414 	rq->end_io = NULL;
415 	rq->end_io_data = NULL;
416 
417 	blk_crypto_rq_set_defaults(rq);
418 	INIT_LIST_HEAD(&rq->queuelist);
419 	/* tag was already set */
420 	WRITE_ONCE(rq->deadline, 0);
421 	req_ref_set(rq, 1);
422 
423 	if (rq->rq_flags & RQF_ELV) {
424 		struct elevator_queue *e = data->q->elevator;
425 
426 		INIT_HLIST_NODE(&rq->hash);
427 		RB_CLEAR_NODE(&rq->rb_node);
428 
429 		if (!op_is_flush(data->cmd_flags) &&
430 		    e->type->ops.prepare_request) {
431 			e->type->ops.prepare_request(rq);
432 			rq->rq_flags |= RQF_ELVPRIV;
433 		}
434 	}
435 
436 	return rq;
437 }
438 
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441 		u64 alloc_time_ns)
442 {
443 	unsigned int tag, tag_offset;
444 	struct blk_mq_tags *tags;
445 	struct request *rq;
446 	unsigned long tag_mask;
447 	int i, nr = 0;
448 
449 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 	if (unlikely(!tag_mask))
451 		return NULL;
452 
453 	tags = blk_mq_tags_from_data(data);
454 	for (i = 0; tag_mask; i++) {
455 		if (!(tag_mask & (1UL << i)))
456 			continue;
457 		tag = tag_offset + i;
458 		prefetch(tags->static_rqs[tag]);
459 		tag_mask &= ~(1UL << i);
460 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 		rq_list_add(data->cached_rq, rq);
462 		nr++;
463 	}
464 	/* caller already holds a reference, add for remainder */
465 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466 	data->nr_tags -= nr;
467 
468 	return rq_list_pop(data->cached_rq);
469 }
470 
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473 	struct request_queue *q = data->q;
474 	u64 alloc_time_ns = 0;
475 	struct request *rq;
476 	unsigned int tag;
477 
478 	/* alloc_time includes depth and tag waits */
479 	if (blk_queue_rq_alloc_time(q))
480 		alloc_time_ns = ktime_get_ns();
481 
482 	if (data->cmd_flags & REQ_NOWAIT)
483 		data->flags |= BLK_MQ_REQ_NOWAIT;
484 
485 	if (q->elevator) {
486 		struct elevator_queue *e = q->elevator;
487 
488 		data->rq_flags |= RQF_ELV;
489 
490 		/*
491 		 * Flush/passthrough requests are special and go directly to the
492 		 * dispatch list. Don't include reserved tags in the
493 		 * limiting, as it isn't useful.
494 		 */
495 		if (!op_is_flush(data->cmd_flags) &&
496 		    !blk_op_is_passthrough(data->cmd_flags) &&
497 		    e->type->ops.limit_depth &&
498 		    !(data->flags & BLK_MQ_REQ_RESERVED))
499 			e->type->ops.limit_depth(data->cmd_flags, data);
500 	}
501 
502 retry:
503 	data->ctx = blk_mq_get_ctx(q);
504 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 	if (!(data->rq_flags & RQF_ELV))
506 		blk_mq_tag_busy(data->hctx);
507 
508 	if (data->flags & BLK_MQ_REQ_RESERVED)
509 		data->rq_flags |= RQF_RESV;
510 
511 	/*
512 	 * Try batched alloc if we want more than 1 tag.
513 	 */
514 	if (data->nr_tags > 1) {
515 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516 		if (rq)
517 			return rq;
518 		data->nr_tags = 1;
519 	}
520 
521 	/*
522 	 * Waiting allocations only fail because of an inactive hctx.  In that
523 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 	 * should have migrated us to an online CPU by now.
525 	 */
526 	tag = blk_mq_get_tag(data);
527 	if (tag == BLK_MQ_NO_TAG) {
528 		if (data->flags & BLK_MQ_REQ_NOWAIT)
529 			return NULL;
530 		/*
531 		 * Give up the CPU and sleep for a random short time to
532 		 * ensure that thread using a realtime scheduling class
533 		 * are migrated off the CPU, and thus off the hctx that
534 		 * is going away.
535 		 */
536 		msleep(3);
537 		goto retry;
538 	}
539 
540 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541 					alloc_time_ns);
542 }
543 
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 					    struct blk_plug *plug,
546 					    blk_opf_t opf,
547 					    blk_mq_req_flags_t flags)
548 {
549 	struct blk_mq_alloc_data data = {
550 		.q		= q,
551 		.flags		= flags,
552 		.cmd_flags	= opf,
553 		.nr_tags	= plug->nr_ios,
554 		.cached_rq	= &plug->cached_rq,
555 	};
556 	struct request *rq;
557 
558 	if (blk_queue_enter(q, flags))
559 		return NULL;
560 
561 	plug->nr_ios = 1;
562 
563 	rq = __blk_mq_alloc_requests(&data);
564 	if (unlikely(!rq))
565 		blk_queue_exit(q);
566 	return rq;
567 }
568 
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570 						   blk_opf_t opf,
571 						   blk_mq_req_flags_t flags)
572 {
573 	struct blk_plug *plug = current->plug;
574 	struct request *rq;
575 
576 	if (!plug)
577 		return NULL;
578 
579 	if (rq_list_empty(plug->cached_rq)) {
580 		if (plug->nr_ios == 1)
581 			return NULL;
582 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583 		if (!rq)
584 			return NULL;
585 	} else {
586 		rq = rq_list_peek(&plug->cached_rq);
587 		if (!rq || rq->q != q)
588 			return NULL;
589 
590 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591 			return NULL;
592 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593 			return NULL;
594 
595 		plug->cached_rq = rq_list_next(rq);
596 	}
597 
598 	rq->cmd_flags = opf;
599 	INIT_LIST_HEAD(&rq->queuelist);
600 	return rq;
601 }
602 
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 		blk_mq_req_flags_t flags)
605 {
606 	struct request *rq;
607 
608 	rq = blk_mq_alloc_cached_request(q, opf, flags);
609 	if (!rq) {
610 		struct blk_mq_alloc_data data = {
611 			.q		= q,
612 			.flags		= flags,
613 			.cmd_flags	= opf,
614 			.nr_tags	= 1,
615 		};
616 		int ret;
617 
618 		ret = blk_queue_enter(q, flags);
619 		if (ret)
620 			return ERR_PTR(ret);
621 
622 		rq = __blk_mq_alloc_requests(&data);
623 		if (!rq)
624 			goto out_queue_exit;
625 	}
626 	rq->__data_len = 0;
627 	rq->__sector = (sector_t) -1;
628 	rq->bio = rq->biotail = NULL;
629 	return rq;
630 out_queue_exit:
631 	blk_queue_exit(q);
632 	return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635 
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639 	struct blk_mq_alloc_data data = {
640 		.q		= q,
641 		.flags		= flags,
642 		.cmd_flags	= opf,
643 		.nr_tags	= 1,
644 	};
645 	u64 alloc_time_ns = 0;
646 	struct request *rq;
647 	unsigned int cpu;
648 	unsigned int tag;
649 	int ret;
650 
651 	/* alloc_time includes depth and tag waits */
652 	if (blk_queue_rq_alloc_time(q))
653 		alloc_time_ns = ktime_get_ns();
654 
655 	/*
656 	 * If the tag allocator sleeps we could get an allocation for a
657 	 * different hardware context.  No need to complicate the low level
658 	 * allocator for this for the rare use case of a command tied to
659 	 * a specific queue.
660 	 */
661 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663 		return ERR_PTR(-EINVAL);
664 
665 	if (hctx_idx >= q->nr_hw_queues)
666 		return ERR_PTR(-EIO);
667 
668 	ret = blk_queue_enter(q, flags);
669 	if (ret)
670 		return ERR_PTR(ret);
671 
672 	/*
673 	 * Check if the hardware context is actually mapped to anything.
674 	 * If not tell the caller that it should skip this queue.
675 	 */
676 	ret = -EXDEV;
677 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
678 	if (!blk_mq_hw_queue_mapped(data.hctx))
679 		goto out_queue_exit;
680 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681 	if (cpu >= nr_cpu_ids)
682 		goto out_queue_exit;
683 	data.ctx = __blk_mq_get_ctx(q, cpu);
684 
685 	if (!q->elevator)
686 		blk_mq_tag_busy(data.hctx);
687 	else
688 		data.rq_flags |= RQF_ELV;
689 
690 	if (flags & BLK_MQ_REQ_RESERVED)
691 		data.rq_flags |= RQF_RESV;
692 
693 	ret = -EWOULDBLOCK;
694 	tag = blk_mq_get_tag(&data);
695 	if (tag == BLK_MQ_NO_TAG)
696 		goto out_queue_exit;
697 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698 					alloc_time_ns);
699 	rq->__data_len = 0;
700 	rq->__sector = (sector_t) -1;
701 	rq->bio = rq->biotail = NULL;
702 	return rq;
703 
704 out_queue_exit:
705 	blk_queue_exit(q);
706 	return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709 
710 static void __blk_mq_free_request(struct request *rq)
711 {
712 	struct request_queue *q = rq->q;
713 	struct blk_mq_ctx *ctx = rq->mq_ctx;
714 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715 	const int sched_tag = rq->internal_tag;
716 
717 	blk_crypto_free_request(rq);
718 	blk_pm_mark_last_busy(rq);
719 	rq->mq_hctx = NULL;
720 	if (rq->tag != BLK_MQ_NO_TAG)
721 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722 	if (sched_tag != BLK_MQ_NO_TAG)
723 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 	blk_mq_sched_restart(hctx);
725 	blk_queue_exit(q);
726 }
727 
728 void blk_mq_free_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732 
733 	if ((rq->rq_flags & RQF_ELVPRIV) &&
734 	    q->elevator->type->ops.finish_request)
735 		q->elevator->type->ops.finish_request(rq);
736 
737 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
738 		__blk_mq_dec_active_requests(hctx);
739 
740 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741 		laptop_io_completion(q->disk->bdi);
742 
743 	rq_qos_done(q, rq);
744 
745 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746 	if (req_ref_put_and_test(rq))
747 		__blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750 
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753 	struct request *rq;
754 
755 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756 		blk_mq_free_request(rq);
757 }
758 
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762 		rq->q->disk ? rq->q->disk->disk_name : "?",
763 		(__force unsigned long long) rq->cmd_flags);
764 
765 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766 	       (unsigned long long)blk_rq_pos(rq),
767 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772 
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774 			  unsigned int nbytes, blk_status_t error)
775 {
776 	if (unlikely(error)) {
777 		bio->bi_status = error;
778 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779 		/*
780 		 * Partial zone append completions cannot be supported as the
781 		 * BIO fragments may end up not being written sequentially.
782 		 */
783 		if (bio->bi_iter.bi_size != nbytes)
784 			bio->bi_status = BLK_STS_IOERR;
785 		else
786 			bio->bi_iter.bi_sector = rq->__sector;
787 	}
788 
789 	bio_advance(bio, nbytes);
790 
791 	if (unlikely(rq->rq_flags & RQF_QUIET))
792 		bio_set_flag(bio, BIO_QUIET);
793 	/* don't actually finish bio if it's part of flush sequence */
794 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795 		bio_endio(bio);
796 }
797 
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800 	if (req->part && blk_do_io_stat(req)) {
801 		const int sgrp = op_stat_group(req_op(req));
802 
803 		part_stat_lock();
804 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805 		part_stat_unlock();
806 	}
807 }
808 
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811 	printk_ratelimited(KERN_ERR
812 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813 		"phys_seg %u prio class %u\n",
814 		blk_status_to_str(status),
815 		req->q->disk ? req->q->disk->disk_name : "?",
816 		blk_rq_pos(req), (__force u32)req_op(req),
817 		blk_op_str(req_op(req)),
818 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819 		req->nr_phys_segments,
820 		IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822 
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830 	int total_bytes = blk_rq_bytes(req);
831 	struct bio *bio = req->bio;
832 
833 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834 
835 	if (!bio)
836 		return;
837 
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840 		req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842 
843 	blk_account_io_completion(req, total_bytes);
844 
845 	do {
846 		struct bio *next = bio->bi_next;
847 
848 		/* Completion has already been traced */
849 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850 
851 		if (req_op(req) == REQ_OP_ZONE_APPEND)
852 			bio->bi_iter.bi_sector = req->__sector;
853 
854 		if (!is_flush)
855 			bio_endio(bio);
856 		bio = next;
857 	} while (bio);
858 
859 	/*
860 	 * Reset counters so that the request stacking driver
861 	 * can find how many bytes remain in the request
862 	 * later.
863 	 */
864 	if (!req->end_io) {
865 		req->bio = NULL;
866 		req->__data_len = 0;
867 	}
868 }
869 
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893 		unsigned int nr_bytes)
894 {
895 	int total_bytes;
896 
897 	trace_block_rq_complete(req, error, nr_bytes);
898 
899 	if (!req->bio)
900 		return false;
901 
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904 	    error == BLK_STS_OK)
905 		req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907 
908 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 		     !(req->rq_flags & RQF_QUIET)) &&
910 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
911 		blk_print_req_error(req, error);
912 		trace_block_rq_error(req, error, nr_bytes);
913 	}
914 
915 	blk_account_io_completion(req, nr_bytes);
916 
917 	total_bytes = 0;
918 	while (req->bio) {
919 		struct bio *bio = req->bio;
920 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 
922 		if (bio_bytes == bio->bi_iter.bi_size)
923 			req->bio = bio->bi_next;
924 
925 		/* Completion has already been traced */
926 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 		req_bio_endio(req, bio, bio_bytes, error);
928 
929 		total_bytes += bio_bytes;
930 		nr_bytes -= bio_bytes;
931 
932 		if (!nr_bytes)
933 			break;
934 	}
935 
936 	/*
937 	 * completely done
938 	 */
939 	if (!req->bio) {
940 		/*
941 		 * Reset counters so that the request stacking driver
942 		 * can find how many bytes remain in the request
943 		 * later.
944 		 */
945 		req->__data_len = 0;
946 		return false;
947 	}
948 
949 	req->__data_len -= total_bytes;
950 
951 	/* update sector only for requests with clear definition of sector */
952 	if (!blk_rq_is_passthrough(req))
953 		req->__sector += total_bytes >> 9;
954 
955 	/* mixed attributes always follow the first bio */
956 	if (req->rq_flags & RQF_MIXED_MERGE) {
957 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 	}
960 
961 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 		/*
963 		 * If total number of sectors is less than the first segment
964 		 * size, something has gone terribly wrong.
965 		 */
966 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 			blk_dump_rq_flags(req, "request botched");
968 			req->__data_len = blk_rq_cur_bytes(req);
969 		}
970 
971 		/* recalculate the number of segments */
972 		req->nr_phys_segments = blk_recalc_rq_segments(req);
973 	}
974 
975 	return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978 
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981 	const int sgrp = op_stat_group(req_op(req));
982 
983 	part_stat_lock();
984 	update_io_ticks(req->part, jiffies, true);
985 	part_stat_inc(req->part, ios[sgrp]);
986 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987 	part_stat_unlock();
988 }
989 
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992 	/*
993 	 * Account IO completion.  flush_rq isn't accounted as a
994 	 * normal IO on queueing nor completion.  Accounting the
995 	 * containing request is enough.
996 	 */
997 	if (blk_do_io_stat(req) && req->part &&
998 	    !(req->rq_flags & RQF_FLUSH_SEQ))
999 		__blk_account_io_done(req, now);
1000 }
1001 
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004 	/*
1005 	 * All non-passthrough requests are created from a bio with one
1006 	 * exception: when a flush command that is part of a flush sequence
1007 	 * generated by the state machine in blk-flush.c is cloned onto the
1008 	 * lower device by dm-multipath we can get here without a bio.
1009 	 */
1010 	if (rq->bio)
1011 		rq->part = rq->bio->bi_bdev;
1012 	else
1013 		rq->part = rq->q->disk->part0;
1014 
1015 	part_stat_lock();
1016 	update_io_ticks(rq->part, jiffies, false);
1017 	part_stat_unlock();
1018 }
1019 
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022 	if (blk_do_io_stat(req))
1023 		__blk_account_io_start(req);
1024 }
1025 
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 	if (rq->rq_flags & RQF_STATS) {
1029 		blk_mq_poll_stats_start(rq->q);
1030 		blk_stat_add(rq, now);
1031 	}
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	if (rq->end_io) {
1043 		rq_qos_done(rq->q, rq);
1044 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 			blk_mq_free_request(rq);
1046 	} else {
1047 		blk_mq_free_request(rq);
1048 	}
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051 
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 		BUG();
1056 	__blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059 
1060 #define TAG_COMP_BATCH		32
1061 
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 					  int *tag_array, int nr_tags)
1064 {
1065 	struct request_queue *q = hctx->queue;
1066 
1067 	/*
1068 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 	 * update hctx->nr_active in batch
1070 	 */
1071 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 		__blk_mq_sub_active_requests(hctx, nr_tags);
1073 
1074 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077 
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 	struct request *rq;
1083 	u64 now = 0;
1084 
1085 	if (iob->need_ts)
1086 		now = ktime_get_ns();
1087 
1088 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 		prefetch(rq->bio);
1090 		prefetch(rq->rq_next);
1091 
1092 		blk_complete_request(rq);
1093 		if (iob->need_ts)
1094 			__blk_mq_end_request_acct(rq, now);
1095 
1096 		rq_qos_done(rq->q, rq);
1097 
1098 		/*
1099 		 * If end_io handler returns NONE, then it still has
1100 		 * ownership of the request.
1101 		 */
1102 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103 			continue;
1104 
1105 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106 		if (!req_ref_put_and_test(rq))
1107 			continue;
1108 
1109 		blk_crypto_free_request(rq);
1110 		blk_pm_mark_last_busy(rq);
1111 
1112 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113 			if (cur_hctx)
1114 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115 			nr_tags = 0;
1116 			cur_hctx = rq->mq_hctx;
1117 		}
1118 		tags[nr_tags++] = rq->tag;
1119 	}
1120 
1121 	if (nr_tags)
1122 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125 
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129 	struct request *rq, *next;
1130 
1131 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132 		rq->q->mq_ops->complete(rq);
1133 }
1134 
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139 
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143 	return 0;
1144 }
1145 
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150 
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153 	int cpu = raw_smp_processor_id();
1154 
1155 	if (!IS_ENABLED(CONFIG_SMP) ||
1156 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157 		return false;
1158 	/*
1159 	 * With force threaded interrupts enabled, raising softirq from an SMP
1160 	 * function call will always result in waking the ksoftirqd thread.
1161 	 * This is probably worse than completing the request on a different
1162 	 * cache domain.
1163 	 */
1164 	if (force_irqthreads())
1165 		return false;
1166 
1167 	/* same CPU or cache domain?  Complete locally */
1168 	if (cpu == rq->mq_ctx->cpu ||
1169 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171 		return false;
1172 
1173 	/* don't try to IPI to an offline CPU */
1174 	return cpu_online(rq->mq_ctx->cpu);
1175 }
1176 
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179 	struct llist_head *list;
1180 	unsigned int cpu;
1181 
1182 	cpu = rq->mq_ctx->cpu;
1183 	list = &per_cpu(blk_cpu_done, cpu);
1184 	if (llist_add(&rq->ipi_list, list)) {
1185 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186 		smp_call_function_single_async(cpu, &rq->csd);
1187 	}
1188 }
1189 
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 	struct llist_head *list;
1193 
1194 	preempt_disable();
1195 	list = this_cpu_ptr(&blk_cpu_done);
1196 	if (llist_add(&rq->ipi_list, list))
1197 		raise_softirq(BLOCK_SOFTIRQ);
1198 	preempt_enable();
1199 }
1200 
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204 
1205 	/*
1206 	 * For request which hctx has only one ctx mapping,
1207 	 * or a polled request, always complete locally,
1208 	 * it's pointless to redirect the completion.
1209 	 */
1210 	if (rq->mq_hctx->nr_ctx == 1 ||
1211 		rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305 		plug->has_elevator = true;
1306 	rq->rq_next = NULL;
1307 	rq_list_add(&plug->mq_list, rq);
1308 	plug->rq_count++;
1309 }
1310 
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:		request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 	WARN_ON(irqs_disabled());
1326 	WARN_ON(!blk_rq_is_passthrough(rq));
1327 
1328 	blk_account_io_start(rq);
1329 
1330 	/*
1331 	 * As plugging can be enabled for passthrough requests on a zoned
1332 	 * device, directly accessing the plug instead of using blk_mq_plug()
1333 	 * should not have any consequences.
1334 	 */
1335 	if (current->plug)
1336 		blk_add_rq_to_plug(current->plug, rq);
1337 	else
1338 		blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341 
1342 struct blk_rq_wait {
1343 	struct completion done;
1344 	blk_status_t ret;
1345 };
1346 
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349 	struct blk_rq_wait *wait = rq->end_io_data;
1350 
1351 	wait->ret = ret;
1352 	complete(&wait->done);
1353 	return RQ_END_IO_NONE;
1354 }
1355 
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358 	if (!rq->mq_hctx)
1359 		return false;
1360 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361 		return false;
1362 	if (WARN_ON_ONCE(!rq->bio))
1363 		return false;
1364 	return true;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1367 
1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1369 {
1370 	do {
1371 		bio_poll(rq->bio, NULL, 0);
1372 		cond_resched();
1373 	} while (!completion_done(wait));
1374 }
1375 
1376 /**
1377  * blk_execute_rq - insert a request into queue for execution
1378  * @rq:		request to insert
1379  * @at_head:    insert request at head or tail of queue
1380  *
1381  * Description:
1382  *    Insert a fully prepared request at the back of the I/O scheduler queue
1383  *    for execution and wait for completion.
1384  * Return: The blk_status_t result provided to blk_mq_end_request().
1385  */
1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1387 {
1388 	struct blk_rq_wait wait = {
1389 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1390 	};
1391 
1392 	WARN_ON(irqs_disabled());
1393 	WARN_ON(!blk_rq_is_passthrough(rq));
1394 
1395 	rq->end_io_data = &wait;
1396 	rq->end_io = blk_end_sync_rq;
1397 
1398 	blk_account_io_start(rq);
1399 	blk_mq_sched_insert_request(rq, at_head, true, false);
1400 
1401 	if (blk_rq_is_poll(rq)) {
1402 		blk_rq_poll_completion(rq, &wait.done);
1403 	} else {
1404 		/*
1405 		 * Prevent hang_check timer from firing at us during very long
1406 		 * I/O
1407 		 */
1408 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1409 
1410 		if (hang_check)
1411 			while (!wait_for_completion_io_timeout(&wait.done,
1412 					hang_check * (HZ/2)))
1413 				;
1414 		else
1415 			wait_for_completion_io(&wait.done);
1416 	}
1417 
1418 	return wait.ret;
1419 }
1420 EXPORT_SYMBOL(blk_execute_rq);
1421 
1422 static void __blk_mq_requeue_request(struct request *rq)
1423 {
1424 	struct request_queue *q = rq->q;
1425 
1426 	blk_mq_put_driver_tag(rq);
1427 
1428 	trace_block_rq_requeue(rq);
1429 	rq_qos_requeue(q, rq);
1430 
1431 	if (blk_mq_request_started(rq)) {
1432 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1433 		rq->rq_flags &= ~RQF_TIMED_OUT;
1434 	}
1435 }
1436 
1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1438 {
1439 	__blk_mq_requeue_request(rq);
1440 
1441 	/* this request will be re-inserted to io scheduler queue */
1442 	blk_mq_sched_requeue_request(rq);
1443 
1444 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1445 }
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1447 
1448 static void blk_mq_requeue_work(struct work_struct *work)
1449 {
1450 	struct request_queue *q =
1451 		container_of(work, struct request_queue, requeue_work.work);
1452 	LIST_HEAD(rq_list);
1453 	struct request *rq, *next;
1454 
1455 	spin_lock_irq(&q->requeue_lock);
1456 	list_splice_init(&q->requeue_list, &rq_list);
1457 	spin_unlock_irq(&q->requeue_lock);
1458 
1459 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1460 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1461 			continue;
1462 
1463 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1464 		list_del_init(&rq->queuelist);
1465 		/*
1466 		 * If RQF_DONTPREP, rq has contained some driver specific
1467 		 * data, so insert it to hctx dispatch list to avoid any
1468 		 * merge.
1469 		 */
1470 		if (rq->rq_flags & RQF_DONTPREP)
1471 			blk_mq_request_bypass_insert(rq, false, false);
1472 		else
1473 			blk_mq_sched_insert_request(rq, true, false, false);
1474 	}
1475 
1476 	while (!list_empty(&rq_list)) {
1477 		rq = list_entry(rq_list.next, struct request, queuelist);
1478 		list_del_init(&rq->queuelist);
1479 		blk_mq_sched_insert_request(rq, false, false, false);
1480 	}
1481 
1482 	blk_mq_run_hw_queues(q, false);
1483 }
1484 
1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1486 				bool kick_requeue_list)
1487 {
1488 	struct request_queue *q = rq->q;
1489 	unsigned long flags;
1490 
1491 	/*
1492 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1493 	 * request head insertion from the workqueue.
1494 	 */
1495 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1496 
1497 	spin_lock_irqsave(&q->requeue_lock, flags);
1498 	if (at_head) {
1499 		rq->rq_flags |= RQF_SOFTBARRIER;
1500 		list_add(&rq->queuelist, &q->requeue_list);
1501 	} else {
1502 		list_add_tail(&rq->queuelist, &q->requeue_list);
1503 	}
1504 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1505 
1506 	if (kick_requeue_list)
1507 		blk_mq_kick_requeue_list(q);
1508 }
1509 
1510 void blk_mq_kick_requeue_list(struct request_queue *q)
1511 {
1512 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1513 }
1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1515 
1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1517 				    unsigned long msecs)
1518 {
1519 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1520 				    msecs_to_jiffies(msecs));
1521 }
1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1523 
1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1525 {
1526 	/*
1527 	 * If we find a request that isn't idle we know the queue is busy
1528 	 * as it's checked in the iter.
1529 	 * Return false to stop the iteration.
1530 	 */
1531 	if (blk_mq_request_started(rq)) {
1532 		bool *busy = priv;
1533 
1534 		*busy = true;
1535 		return false;
1536 	}
1537 
1538 	return true;
1539 }
1540 
1541 bool blk_mq_queue_inflight(struct request_queue *q)
1542 {
1543 	bool busy = false;
1544 
1545 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1546 	return busy;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1549 
1550 static void blk_mq_rq_timed_out(struct request *req)
1551 {
1552 	req->rq_flags |= RQF_TIMED_OUT;
1553 	if (req->q->mq_ops->timeout) {
1554 		enum blk_eh_timer_return ret;
1555 
1556 		ret = req->q->mq_ops->timeout(req);
1557 		if (ret == BLK_EH_DONE)
1558 			return;
1559 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1560 	}
1561 
1562 	blk_add_timer(req);
1563 }
1564 
1565 struct blk_expired_data {
1566 	bool has_timedout_rq;
1567 	unsigned long next;
1568 	unsigned long timeout_start;
1569 };
1570 
1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1572 {
1573 	unsigned long deadline;
1574 
1575 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1576 		return false;
1577 	if (rq->rq_flags & RQF_TIMED_OUT)
1578 		return false;
1579 
1580 	deadline = READ_ONCE(rq->deadline);
1581 	if (time_after_eq(expired->timeout_start, deadline))
1582 		return true;
1583 
1584 	if (expired->next == 0)
1585 		expired->next = deadline;
1586 	else if (time_after(expired->next, deadline))
1587 		expired->next = deadline;
1588 	return false;
1589 }
1590 
1591 void blk_mq_put_rq_ref(struct request *rq)
1592 {
1593 	if (is_flush_rq(rq)) {
1594 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1595 			blk_mq_free_request(rq);
1596 	} else if (req_ref_put_and_test(rq)) {
1597 		__blk_mq_free_request(rq);
1598 	}
1599 }
1600 
1601 static bool blk_mq_check_expired(struct request *rq, void *priv)
1602 {
1603 	struct blk_expired_data *expired = priv;
1604 
1605 	/*
1606 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1607 	 * be reallocated underneath the timeout handler's processing, then
1608 	 * the expire check is reliable. If the request is not expired, then
1609 	 * it was completed and reallocated as a new request after returning
1610 	 * from blk_mq_check_expired().
1611 	 */
1612 	if (blk_mq_req_expired(rq, expired)) {
1613 		expired->has_timedout_rq = true;
1614 		return false;
1615 	}
1616 	return true;
1617 }
1618 
1619 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1620 {
1621 	struct blk_expired_data *expired = priv;
1622 
1623 	if (blk_mq_req_expired(rq, expired))
1624 		blk_mq_rq_timed_out(rq);
1625 	return true;
1626 }
1627 
1628 static void blk_mq_timeout_work(struct work_struct *work)
1629 {
1630 	struct request_queue *q =
1631 		container_of(work, struct request_queue, timeout_work);
1632 	struct blk_expired_data expired = {
1633 		.timeout_start = jiffies,
1634 	};
1635 	struct blk_mq_hw_ctx *hctx;
1636 	unsigned long i;
1637 
1638 	/* A deadlock might occur if a request is stuck requiring a
1639 	 * timeout at the same time a queue freeze is waiting
1640 	 * completion, since the timeout code would not be able to
1641 	 * acquire the queue reference here.
1642 	 *
1643 	 * That's why we don't use blk_queue_enter here; instead, we use
1644 	 * percpu_ref_tryget directly, because we need to be able to
1645 	 * obtain a reference even in the short window between the queue
1646 	 * starting to freeze, by dropping the first reference in
1647 	 * blk_freeze_queue_start, and the moment the last request is
1648 	 * consumed, marked by the instant q_usage_counter reaches
1649 	 * zero.
1650 	 */
1651 	if (!percpu_ref_tryget(&q->q_usage_counter))
1652 		return;
1653 
1654 	/* check if there is any timed-out request */
1655 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1656 	if (expired.has_timedout_rq) {
1657 		/*
1658 		 * Before walking tags, we must ensure any submit started
1659 		 * before the current time has finished. Since the submit
1660 		 * uses srcu or rcu, wait for a synchronization point to
1661 		 * ensure all running submits have finished
1662 		 */
1663 		blk_mq_wait_quiesce_done(q->tag_set);
1664 
1665 		expired.next = 0;
1666 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1667 	}
1668 
1669 	if (expired.next != 0) {
1670 		mod_timer(&q->timeout, expired.next);
1671 	} else {
1672 		/*
1673 		 * Request timeouts are handled as a forward rolling timer. If
1674 		 * we end up here it means that no requests are pending and
1675 		 * also that no request has been pending for a while. Mark
1676 		 * each hctx as idle.
1677 		 */
1678 		queue_for_each_hw_ctx(q, hctx, i) {
1679 			/* the hctx may be unmapped, so check it here */
1680 			if (blk_mq_hw_queue_mapped(hctx))
1681 				blk_mq_tag_idle(hctx);
1682 		}
1683 	}
1684 	blk_queue_exit(q);
1685 }
1686 
1687 struct flush_busy_ctx_data {
1688 	struct blk_mq_hw_ctx *hctx;
1689 	struct list_head *list;
1690 };
1691 
1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1693 {
1694 	struct flush_busy_ctx_data *flush_data = data;
1695 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1696 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1697 	enum hctx_type type = hctx->type;
1698 
1699 	spin_lock(&ctx->lock);
1700 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1701 	sbitmap_clear_bit(sb, bitnr);
1702 	spin_unlock(&ctx->lock);
1703 	return true;
1704 }
1705 
1706 /*
1707  * Process software queues that have been marked busy, splicing them
1708  * to the for-dispatch
1709  */
1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1711 {
1712 	struct flush_busy_ctx_data data = {
1713 		.hctx = hctx,
1714 		.list = list,
1715 	};
1716 
1717 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1718 }
1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1720 
1721 struct dispatch_rq_data {
1722 	struct blk_mq_hw_ctx *hctx;
1723 	struct request *rq;
1724 };
1725 
1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1727 		void *data)
1728 {
1729 	struct dispatch_rq_data *dispatch_data = data;
1730 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1731 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1732 	enum hctx_type type = hctx->type;
1733 
1734 	spin_lock(&ctx->lock);
1735 	if (!list_empty(&ctx->rq_lists[type])) {
1736 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1737 		list_del_init(&dispatch_data->rq->queuelist);
1738 		if (list_empty(&ctx->rq_lists[type]))
1739 			sbitmap_clear_bit(sb, bitnr);
1740 	}
1741 	spin_unlock(&ctx->lock);
1742 
1743 	return !dispatch_data->rq;
1744 }
1745 
1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1747 					struct blk_mq_ctx *start)
1748 {
1749 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1750 	struct dispatch_rq_data data = {
1751 		.hctx = hctx,
1752 		.rq   = NULL,
1753 	};
1754 
1755 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1756 			       dispatch_rq_from_ctx, &data);
1757 
1758 	return data.rq;
1759 }
1760 
1761 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1762 {
1763 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1764 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1765 	int tag;
1766 
1767 	blk_mq_tag_busy(rq->mq_hctx);
1768 
1769 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1770 		bt = &rq->mq_hctx->tags->breserved_tags;
1771 		tag_offset = 0;
1772 	} else {
1773 		if (!hctx_may_queue(rq->mq_hctx, bt))
1774 			return false;
1775 	}
1776 
1777 	tag = __sbitmap_queue_get(bt);
1778 	if (tag == BLK_MQ_NO_TAG)
1779 		return false;
1780 
1781 	rq->tag = tag + tag_offset;
1782 	return true;
1783 }
1784 
1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1786 {
1787 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1788 		return false;
1789 
1790 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1791 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1792 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1793 		__blk_mq_inc_active_requests(hctx);
1794 	}
1795 	hctx->tags->rqs[rq->tag] = rq;
1796 	return true;
1797 }
1798 
1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1800 				int flags, void *key)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 
1804 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1805 
1806 	spin_lock(&hctx->dispatch_wait_lock);
1807 	if (!list_empty(&wait->entry)) {
1808 		struct sbitmap_queue *sbq;
1809 
1810 		list_del_init(&wait->entry);
1811 		sbq = &hctx->tags->bitmap_tags;
1812 		atomic_dec(&sbq->ws_active);
1813 	}
1814 	spin_unlock(&hctx->dispatch_wait_lock);
1815 
1816 	blk_mq_run_hw_queue(hctx, true);
1817 	return 1;
1818 }
1819 
1820 /*
1821  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1822  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1823  * restart. For both cases, take care to check the condition again after
1824  * marking us as waiting.
1825  */
1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1827 				 struct request *rq)
1828 {
1829 	struct sbitmap_queue *sbq;
1830 	struct wait_queue_head *wq;
1831 	wait_queue_entry_t *wait;
1832 	bool ret;
1833 
1834 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1835 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1836 		blk_mq_sched_mark_restart_hctx(hctx);
1837 
1838 		/*
1839 		 * It's possible that a tag was freed in the window between the
1840 		 * allocation failure and adding the hardware queue to the wait
1841 		 * queue.
1842 		 *
1843 		 * Don't clear RESTART here, someone else could have set it.
1844 		 * At most this will cost an extra queue run.
1845 		 */
1846 		return blk_mq_get_driver_tag(rq);
1847 	}
1848 
1849 	wait = &hctx->dispatch_wait;
1850 	if (!list_empty_careful(&wait->entry))
1851 		return false;
1852 
1853 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1854 		sbq = &hctx->tags->breserved_tags;
1855 	else
1856 		sbq = &hctx->tags->bitmap_tags;
1857 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1858 
1859 	spin_lock_irq(&wq->lock);
1860 	spin_lock(&hctx->dispatch_wait_lock);
1861 	if (!list_empty(&wait->entry)) {
1862 		spin_unlock(&hctx->dispatch_wait_lock);
1863 		spin_unlock_irq(&wq->lock);
1864 		return false;
1865 	}
1866 
1867 	atomic_inc(&sbq->ws_active);
1868 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1869 	__add_wait_queue(wq, wait);
1870 
1871 	/*
1872 	 * It's possible that a tag was freed in the window between the
1873 	 * allocation failure and adding the hardware queue to the wait
1874 	 * queue.
1875 	 */
1876 	ret = blk_mq_get_driver_tag(rq);
1877 	if (!ret) {
1878 		spin_unlock(&hctx->dispatch_wait_lock);
1879 		spin_unlock_irq(&wq->lock);
1880 		return false;
1881 	}
1882 
1883 	/*
1884 	 * We got a tag, remove ourselves from the wait queue to ensure
1885 	 * someone else gets the wakeup.
1886 	 */
1887 	list_del_init(&wait->entry);
1888 	atomic_dec(&sbq->ws_active);
1889 	spin_unlock(&hctx->dispatch_wait_lock);
1890 	spin_unlock_irq(&wq->lock);
1891 
1892 	return true;
1893 }
1894 
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1897 /*
1898  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1899  * - EWMA is one simple way to compute running average value
1900  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1901  * - take 4 as factor for avoiding to get too small(0) result, and this
1902  *   factor doesn't matter because EWMA decreases exponentially
1903  */
1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1905 {
1906 	unsigned int ewma;
1907 
1908 	ewma = hctx->dispatch_busy;
1909 
1910 	if (!ewma && !busy)
1911 		return;
1912 
1913 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1914 	if (busy)
1915 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1916 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1917 
1918 	hctx->dispatch_busy = ewma;
1919 }
1920 
1921 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1922 
1923 static void blk_mq_handle_dev_resource(struct request *rq,
1924 				       struct list_head *list)
1925 {
1926 	list_add(&rq->queuelist, list);
1927 	__blk_mq_requeue_request(rq);
1928 }
1929 
1930 static void blk_mq_handle_zone_resource(struct request *rq,
1931 					struct list_head *zone_list)
1932 {
1933 	/*
1934 	 * If we end up here it is because we cannot dispatch a request to a
1935 	 * specific zone due to LLD level zone-write locking or other zone
1936 	 * related resource not being available. In this case, set the request
1937 	 * aside in zone_list for retrying it later.
1938 	 */
1939 	list_add(&rq->queuelist, zone_list);
1940 	__blk_mq_requeue_request(rq);
1941 }
1942 
1943 enum prep_dispatch {
1944 	PREP_DISPATCH_OK,
1945 	PREP_DISPATCH_NO_TAG,
1946 	PREP_DISPATCH_NO_BUDGET,
1947 };
1948 
1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1950 						  bool need_budget)
1951 {
1952 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1953 	int budget_token = -1;
1954 
1955 	if (need_budget) {
1956 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1957 		if (budget_token < 0) {
1958 			blk_mq_put_driver_tag(rq);
1959 			return PREP_DISPATCH_NO_BUDGET;
1960 		}
1961 		blk_mq_set_rq_budget_token(rq, budget_token);
1962 	}
1963 
1964 	if (!blk_mq_get_driver_tag(rq)) {
1965 		/*
1966 		 * The initial allocation attempt failed, so we need to
1967 		 * rerun the hardware queue when a tag is freed. The
1968 		 * waitqueue takes care of that. If the queue is run
1969 		 * before we add this entry back on the dispatch list,
1970 		 * we'll re-run it below.
1971 		 */
1972 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1973 			/*
1974 			 * All budgets not got from this function will be put
1975 			 * together during handling partial dispatch
1976 			 */
1977 			if (need_budget)
1978 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1979 			return PREP_DISPATCH_NO_TAG;
1980 		}
1981 	}
1982 
1983 	return PREP_DISPATCH_OK;
1984 }
1985 
1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1987 static void blk_mq_release_budgets(struct request_queue *q,
1988 		struct list_head *list)
1989 {
1990 	struct request *rq;
1991 
1992 	list_for_each_entry(rq, list, queuelist) {
1993 		int budget_token = blk_mq_get_rq_budget_token(rq);
1994 
1995 		if (budget_token >= 0)
1996 			blk_mq_put_dispatch_budget(q, budget_token);
1997 	}
1998 }
1999 
2000 /*
2001  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2002  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2003  * details)
2004  * Attention, we should explicitly call this in unusual cases:
2005  *  1) did not queue everything initially scheduled to queue
2006  *  2) the last attempt to queue a request failed
2007  */
2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2009 			      bool from_schedule)
2010 {
2011 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2012 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2013 		hctx->queue->mq_ops->commit_rqs(hctx);
2014 	}
2015 }
2016 
2017 /*
2018  * Returns true if we did some work AND can potentially do more.
2019  */
2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2021 			     unsigned int nr_budgets)
2022 {
2023 	enum prep_dispatch prep;
2024 	struct request_queue *q = hctx->queue;
2025 	struct request *rq;
2026 	int queued;
2027 	blk_status_t ret = BLK_STS_OK;
2028 	LIST_HEAD(zone_list);
2029 	bool needs_resource = false;
2030 
2031 	if (list_empty(list))
2032 		return false;
2033 
2034 	/*
2035 	 * Now process all the entries, sending them to the driver.
2036 	 */
2037 	queued = 0;
2038 	do {
2039 		struct blk_mq_queue_data bd;
2040 
2041 		rq = list_first_entry(list, struct request, queuelist);
2042 
2043 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2044 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2045 		if (prep != PREP_DISPATCH_OK)
2046 			break;
2047 
2048 		list_del_init(&rq->queuelist);
2049 
2050 		bd.rq = rq;
2051 		bd.last = list_empty(list);
2052 
2053 		/*
2054 		 * once the request is queued to lld, no need to cover the
2055 		 * budget any more
2056 		 */
2057 		if (nr_budgets)
2058 			nr_budgets--;
2059 		ret = q->mq_ops->queue_rq(hctx, &bd);
2060 		switch (ret) {
2061 		case BLK_STS_OK:
2062 			queued++;
2063 			break;
2064 		case BLK_STS_RESOURCE:
2065 			needs_resource = true;
2066 			fallthrough;
2067 		case BLK_STS_DEV_RESOURCE:
2068 			blk_mq_handle_dev_resource(rq, list);
2069 			goto out;
2070 		case BLK_STS_ZONE_RESOURCE:
2071 			/*
2072 			 * Move the request to zone_list and keep going through
2073 			 * the dispatch list to find more requests the drive can
2074 			 * accept.
2075 			 */
2076 			blk_mq_handle_zone_resource(rq, &zone_list);
2077 			needs_resource = true;
2078 			break;
2079 		default:
2080 			blk_mq_end_request(rq, ret);
2081 		}
2082 	} while (!list_empty(list));
2083 out:
2084 	if (!list_empty(&zone_list))
2085 		list_splice_tail_init(&zone_list, list);
2086 
2087 	/* If we didn't flush the entire list, we could have told the driver
2088 	 * there was more coming, but that turned out to be a lie.
2089 	 */
2090 	if (!list_empty(list) || ret != BLK_STS_OK)
2091 		blk_mq_commit_rqs(hctx, queued, false);
2092 
2093 	/*
2094 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2095 	 * that is where we will continue on next queue run.
2096 	 */
2097 	if (!list_empty(list)) {
2098 		bool needs_restart;
2099 		/* For non-shared tags, the RESTART check will suffice */
2100 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2101 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2102 			blk_mq_is_shared_tags(hctx->flags));
2103 
2104 		if (nr_budgets)
2105 			blk_mq_release_budgets(q, list);
2106 
2107 		spin_lock(&hctx->lock);
2108 		list_splice_tail_init(list, &hctx->dispatch);
2109 		spin_unlock(&hctx->lock);
2110 
2111 		/*
2112 		 * Order adding requests to hctx->dispatch and checking
2113 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2114 		 * in blk_mq_sched_restart(). Avoid restart code path to
2115 		 * miss the new added requests to hctx->dispatch, meantime
2116 		 * SCHED_RESTART is observed here.
2117 		 */
2118 		smp_mb();
2119 
2120 		/*
2121 		 * If SCHED_RESTART was set by the caller of this function and
2122 		 * it is no longer set that means that it was cleared by another
2123 		 * thread and hence that a queue rerun is needed.
2124 		 *
2125 		 * If 'no_tag' is set, that means that we failed getting
2126 		 * a driver tag with an I/O scheduler attached. If our dispatch
2127 		 * waitqueue is no longer active, ensure that we run the queue
2128 		 * AFTER adding our entries back to the list.
2129 		 *
2130 		 * If no I/O scheduler has been configured it is possible that
2131 		 * the hardware queue got stopped and restarted before requests
2132 		 * were pushed back onto the dispatch list. Rerun the queue to
2133 		 * avoid starvation. Notes:
2134 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2135 		 *   been stopped before rerunning a queue.
2136 		 * - Some but not all block drivers stop a queue before
2137 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2138 		 *   and dm-rq.
2139 		 *
2140 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2141 		 * bit is set, run queue after a delay to avoid IO stalls
2142 		 * that could otherwise occur if the queue is idle.  We'll do
2143 		 * similar if we couldn't get budget or couldn't lock a zone
2144 		 * and SCHED_RESTART is set.
2145 		 */
2146 		needs_restart = blk_mq_sched_needs_restart(hctx);
2147 		if (prep == PREP_DISPATCH_NO_BUDGET)
2148 			needs_resource = true;
2149 		if (!needs_restart ||
2150 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2151 			blk_mq_run_hw_queue(hctx, true);
2152 		else if (needs_resource)
2153 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2154 
2155 		blk_mq_update_dispatch_busy(hctx, true);
2156 		return false;
2157 	}
2158 
2159 	blk_mq_update_dispatch_busy(hctx, false);
2160 	return true;
2161 }
2162 
2163 /**
2164  * __blk_mq_run_hw_queue - Run a hardware queue.
2165  * @hctx: Pointer to the hardware queue to run.
2166  *
2167  * Send pending requests to the hardware.
2168  */
2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2170 {
2171 	/*
2172 	 * We can't run the queue inline with ints disabled. Ensure that
2173 	 * we catch bad users of this early.
2174 	 */
2175 	WARN_ON_ONCE(in_interrupt());
2176 
2177 	blk_mq_run_dispatch_ops(hctx->queue,
2178 			blk_mq_sched_dispatch_requests(hctx));
2179 }
2180 
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2182 {
2183 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2184 
2185 	if (cpu >= nr_cpu_ids)
2186 		cpu = cpumask_first(hctx->cpumask);
2187 	return cpu;
2188 }
2189 
2190 /*
2191  * It'd be great if the workqueue API had a way to pass
2192  * in a mask and had some smarts for more clever placement.
2193  * For now we just round-robin here, switching for every
2194  * BLK_MQ_CPU_WORK_BATCH queued items.
2195  */
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2197 {
2198 	bool tried = false;
2199 	int next_cpu = hctx->next_cpu;
2200 
2201 	if (hctx->queue->nr_hw_queues == 1)
2202 		return WORK_CPU_UNBOUND;
2203 
2204 	if (--hctx->next_cpu_batch <= 0) {
2205 select_cpu:
2206 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2207 				cpu_online_mask);
2208 		if (next_cpu >= nr_cpu_ids)
2209 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2210 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211 	}
2212 
2213 	/*
2214 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2215 	 * and it should only happen in the path of handling CPU DEAD.
2216 	 */
2217 	if (!cpu_online(next_cpu)) {
2218 		if (!tried) {
2219 			tried = true;
2220 			goto select_cpu;
2221 		}
2222 
2223 		/*
2224 		 * Make sure to re-select CPU next time once after CPUs
2225 		 * in hctx->cpumask become online again.
2226 		 */
2227 		hctx->next_cpu = next_cpu;
2228 		hctx->next_cpu_batch = 1;
2229 		return WORK_CPU_UNBOUND;
2230 	}
2231 
2232 	hctx->next_cpu = next_cpu;
2233 	return next_cpu;
2234 }
2235 
2236 /**
2237  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2238  * @hctx: Pointer to the hardware queue to run.
2239  * @async: If we want to run the queue asynchronously.
2240  * @msecs: Milliseconds of delay to wait before running the queue.
2241  *
2242  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2243  * with a delay of @msecs.
2244  */
2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2246 					unsigned long msecs)
2247 {
2248 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2249 		return;
2250 
2251 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2252 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2253 			__blk_mq_run_hw_queue(hctx);
2254 			return;
2255 		}
2256 	}
2257 
2258 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2259 				    msecs_to_jiffies(msecs));
2260 }
2261 
2262 /**
2263  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2264  * @hctx: Pointer to the hardware queue to run.
2265  * @msecs: Milliseconds of delay to wait before running the queue.
2266  *
2267  * Run a hardware queue asynchronously with a delay of @msecs.
2268  */
2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2270 {
2271 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2272 }
2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2274 
2275 /**
2276  * blk_mq_run_hw_queue - Start to run a hardware queue.
2277  * @hctx: Pointer to the hardware queue to run.
2278  * @async: If we want to run the queue asynchronously.
2279  *
2280  * Check if the request queue is not in a quiesced state and if there are
2281  * pending requests to be sent. If this is true, run the queue to send requests
2282  * to hardware.
2283  */
2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2285 {
2286 	bool need_run;
2287 
2288 	/*
2289 	 * When queue is quiesced, we may be switching io scheduler, or
2290 	 * updating nr_hw_queues, or other things, and we can't run queue
2291 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2292 	 *
2293 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2294 	 * quiesced.
2295 	 */
2296 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2297 		need_run = !blk_queue_quiesced(hctx->queue) &&
2298 		blk_mq_hctx_has_pending(hctx));
2299 
2300 	if (need_run)
2301 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2302 }
2303 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2304 
2305 /*
2306  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2307  * scheduler.
2308  */
2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2310 {
2311 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2312 	/*
2313 	 * If the IO scheduler does not respect hardware queues when
2314 	 * dispatching, we just don't bother with multiple HW queues and
2315 	 * dispatch from hctx for the current CPU since running multiple queues
2316 	 * just causes lock contention inside the scheduler and pointless cache
2317 	 * bouncing.
2318 	 */
2319 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2320 
2321 	if (!blk_mq_hctx_stopped(hctx))
2322 		return hctx;
2323 	return NULL;
2324 }
2325 
2326 /**
2327  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2328  * @q: Pointer to the request queue to run.
2329  * @async: If we want to run the queue asynchronously.
2330  */
2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2332 {
2333 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334 	unsigned long i;
2335 
2336 	sq_hctx = NULL;
2337 	if (blk_queue_sq_sched(q))
2338 		sq_hctx = blk_mq_get_sq_hctx(q);
2339 	queue_for_each_hw_ctx(q, hctx, i) {
2340 		if (blk_mq_hctx_stopped(hctx))
2341 			continue;
2342 		/*
2343 		 * Dispatch from this hctx either if there's no hctx preferred
2344 		 * by IO scheduler or if it has requests that bypass the
2345 		 * scheduler.
2346 		 */
2347 		if (!sq_hctx || sq_hctx == hctx ||
2348 		    !list_empty_careful(&hctx->dispatch))
2349 			blk_mq_run_hw_queue(hctx, async);
2350 	}
2351 }
2352 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2353 
2354 /**
2355  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2356  * @q: Pointer to the request queue to run.
2357  * @msecs: Milliseconds of delay to wait before running the queues.
2358  */
2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2360 {
2361 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2362 	unsigned long i;
2363 
2364 	sq_hctx = NULL;
2365 	if (blk_queue_sq_sched(q))
2366 		sq_hctx = blk_mq_get_sq_hctx(q);
2367 	queue_for_each_hw_ctx(q, hctx, i) {
2368 		if (blk_mq_hctx_stopped(hctx))
2369 			continue;
2370 		/*
2371 		 * If there is already a run_work pending, leave the
2372 		 * pending delay untouched. Otherwise, a hctx can stall
2373 		 * if another hctx is re-delaying the other's work
2374 		 * before the work executes.
2375 		 */
2376 		if (delayed_work_pending(&hctx->run_work))
2377 			continue;
2378 		/*
2379 		 * Dispatch from this hctx either if there's no hctx preferred
2380 		 * by IO scheduler or if it has requests that bypass the
2381 		 * scheduler.
2382 		 */
2383 		if (!sq_hctx || sq_hctx == hctx ||
2384 		    !list_empty_careful(&hctx->dispatch))
2385 			blk_mq_delay_run_hw_queue(hctx, msecs);
2386 	}
2387 }
2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2389 
2390 /*
2391  * This function is often used for pausing .queue_rq() by driver when
2392  * there isn't enough resource or some conditions aren't satisfied, and
2393  * BLK_STS_RESOURCE is usually returned.
2394  *
2395  * We do not guarantee that dispatch can be drained or blocked
2396  * after blk_mq_stop_hw_queue() returns. Please use
2397  * blk_mq_quiesce_queue() for that requirement.
2398  */
2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2400 {
2401 	cancel_delayed_work(&hctx->run_work);
2402 
2403 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2404 }
2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2406 
2407 /*
2408  * This function is often used for pausing .queue_rq() by driver when
2409  * there isn't enough resource or some conditions aren't satisfied, and
2410  * BLK_STS_RESOURCE is usually returned.
2411  *
2412  * We do not guarantee that dispatch can be drained or blocked
2413  * after blk_mq_stop_hw_queues() returns. Please use
2414  * blk_mq_quiesce_queue() for that requirement.
2415  */
2416 void blk_mq_stop_hw_queues(struct request_queue *q)
2417 {
2418 	struct blk_mq_hw_ctx *hctx;
2419 	unsigned long i;
2420 
2421 	queue_for_each_hw_ctx(q, hctx, i)
2422 		blk_mq_stop_hw_queue(hctx);
2423 }
2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2425 
2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2427 {
2428 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2429 
2430 	blk_mq_run_hw_queue(hctx, false);
2431 }
2432 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2433 
2434 void blk_mq_start_hw_queues(struct request_queue *q)
2435 {
2436 	struct blk_mq_hw_ctx *hctx;
2437 	unsigned long i;
2438 
2439 	queue_for_each_hw_ctx(q, hctx, i)
2440 		blk_mq_start_hw_queue(hctx);
2441 }
2442 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2443 
2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2445 {
2446 	if (!blk_mq_hctx_stopped(hctx))
2447 		return;
2448 
2449 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2450 	blk_mq_run_hw_queue(hctx, async);
2451 }
2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2453 
2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2455 {
2456 	struct blk_mq_hw_ctx *hctx;
2457 	unsigned long i;
2458 
2459 	queue_for_each_hw_ctx(q, hctx, i)
2460 		blk_mq_start_stopped_hw_queue(hctx, async);
2461 }
2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2463 
2464 static void blk_mq_run_work_fn(struct work_struct *work)
2465 {
2466 	struct blk_mq_hw_ctx *hctx;
2467 
2468 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2469 
2470 	/*
2471 	 * If we are stopped, don't run the queue.
2472 	 */
2473 	if (blk_mq_hctx_stopped(hctx))
2474 		return;
2475 
2476 	__blk_mq_run_hw_queue(hctx);
2477 }
2478 
2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2480 					    struct request *rq,
2481 					    bool at_head)
2482 {
2483 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2484 	enum hctx_type type = hctx->type;
2485 
2486 	lockdep_assert_held(&ctx->lock);
2487 
2488 	trace_block_rq_insert(rq);
2489 
2490 	if (at_head)
2491 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2492 	else
2493 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2494 }
2495 
2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2497 			     bool at_head)
2498 {
2499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2500 
2501 	lockdep_assert_held(&ctx->lock);
2502 
2503 	__blk_mq_insert_req_list(hctx, rq, at_head);
2504 	blk_mq_hctx_mark_pending(hctx, ctx);
2505 }
2506 
2507 /**
2508  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2509  * @rq: Pointer to request to be inserted.
2510  * @at_head: true if the request should be inserted at the head of the list.
2511  * @run_queue: If we should run the hardware queue after inserting the request.
2512  *
2513  * Should only be used carefully, when the caller knows we want to
2514  * bypass a potential IO scheduler on the target device.
2515  */
2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2517 				  bool run_queue)
2518 {
2519 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2520 
2521 	spin_lock(&hctx->lock);
2522 	if (at_head)
2523 		list_add(&rq->queuelist, &hctx->dispatch);
2524 	else
2525 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2526 	spin_unlock(&hctx->lock);
2527 
2528 	if (run_queue)
2529 		blk_mq_run_hw_queue(hctx, false);
2530 }
2531 
2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2533 			    struct list_head *list)
2534 
2535 {
2536 	struct request *rq;
2537 	enum hctx_type type = hctx->type;
2538 
2539 	/*
2540 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2541 	 * offline now
2542 	 */
2543 	list_for_each_entry(rq, list, queuelist) {
2544 		BUG_ON(rq->mq_ctx != ctx);
2545 		trace_block_rq_insert(rq);
2546 	}
2547 
2548 	spin_lock(&ctx->lock);
2549 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2550 	blk_mq_hctx_mark_pending(hctx, ctx);
2551 	spin_unlock(&ctx->lock);
2552 }
2553 
2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2555 		unsigned int nr_segs)
2556 {
2557 	int err;
2558 
2559 	if (bio->bi_opf & REQ_RAHEAD)
2560 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2561 
2562 	rq->__sector = bio->bi_iter.bi_sector;
2563 	blk_rq_bio_prep(rq, bio, nr_segs);
2564 
2565 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2566 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2567 	WARN_ON_ONCE(err);
2568 
2569 	blk_account_io_start(rq);
2570 }
2571 
2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2573 					    struct request *rq, bool last)
2574 {
2575 	struct request_queue *q = rq->q;
2576 	struct blk_mq_queue_data bd = {
2577 		.rq = rq,
2578 		.last = last,
2579 	};
2580 	blk_status_t ret;
2581 
2582 	/*
2583 	 * For OK queue, we are done. For error, caller may kill it.
2584 	 * Any other error (busy), just add it to our list as we
2585 	 * previously would have done.
2586 	 */
2587 	ret = q->mq_ops->queue_rq(hctx, &bd);
2588 	switch (ret) {
2589 	case BLK_STS_OK:
2590 		blk_mq_update_dispatch_busy(hctx, false);
2591 		break;
2592 	case BLK_STS_RESOURCE:
2593 	case BLK_STS_DEV_RESOURCE:
2594 		blk_mq_update_dispatch_busy(hctx, true);
2595 		__blk_mq_requeue_request(rq);
2596 		break;
2597 	default:
2598 		blk_mq_update_dispatch_busy(hctx, false);
2599 		break;
2600 	}
2601 
2602 	return ret;
2603 }
2604 
2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2606 						struct request *rq,
2607 						bool bypass_insert, bool last)
2608 {
2609 	struct request_queue *q = rq->q;
2610 	bool run_queue = true;
2611 	int budget_token;
2612 
2613 	/*
2614 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2615 	 *
2616 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2617 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2618 	 * and avoid driver to try to dispatch again.
2619 	 */
2620 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2621 		run_queue = false;
2622 		bypass_insert = false;
2623 		goto insert;
2624 	}
2625 
2626 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2627 		goto insert;
2628 
2629 	budget_token = blk_mq_get_dispatch_budget(q);
2630 	if (budget_token < 0)
2631 		goto insert;
2632 
2633 	blk_mq_set_rq_budget_token(rq, budget_token);
2634 
2635 	if (!blk_mq_get_driver_tag(rq)) {
2636 		blk_mq_put_dispatch_budget(q, budget_token);
2637 		goto insert;
2638 	}
2639 
2640 	return __blk_mq_issue_directly(hctx, rq, last);
2641 insert:
2642 	if (bypass_insert)
2643 		return BLK_STS_RESOURCE;
2644 
2645 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2646 
2647 	return BLK_STS_OK;
2648 }
2649 
2650 /**
2651  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2652  * @hctx: Pointer of the associated hardware queue.
2653  * @rq: Pointer to request to be sent.
2654  *
2655  * If the device has enough resources to accept a new request now, send the
2656  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2657  * we can try send it another time in the future. Requests inserted at this
2658  * queue have higher priority.
2659  */
2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2661 		struct request *rq)
2662 {
2663 	blk_status_t ret =
2664 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2665 
2666 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2667 		blk_mq_request_bypass_insert(rq, false, true);
2668 	else if (ret != BLK_STS_OK)
2669 		blk_mq_end_request(rq, ret);
2670 }
2671 
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2673 {
2674 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2675 }
2676 
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2678 {
2679 	struct blk_mq_hw_ctx *hctx = NULL;
2680 	struct request *rq;
2681 	int queued = 0;
2682 	blk_status_t ret = BLK_STS_OK;
2683 
2684 	while ((rq = rq_list_pop(&plug->mq_list))) {
2685 		bool last = rq_list_empty(plug->mq_list);
2686 
2687 		if (hctx != rq->mq_hctx) {
2688 			if (hctx) {
2689 				blk_mq_commit_rqs(hctx, queued, false);
2690 				queued = 0;
2691 			}
2692 			hctx = rq->mq_hctx;
2693 		}
2694 
2695 		ret = blk_mq_request_issue_directly(rq, last);
2696 		switch (ret) {
2697 		case BLK_STS_OK:
2698 			queued++;
2699 			break;
2700 		case BLK_STS_RESOURCE:
2701 		case BLK_STS_DEV_RESOURCE:
2702 			blk_mq_request_bypass_insert(rq, false, true);
2703 			goto out;
2704 		default:
2705 			blk_mq_end_request(rq, ret);
2706 			break;
2707 		}
2708 	}
2709 
2710 out:
2711 	if (ret != BLK_STS_OK)
2712 		blk_mq_commit_rqs(hctx, queued, false);
2713 }
2714 
2715 static void __blk_mq_flush_plug_list(struct request_queue *q,
2716 				     struct blk_plug *plug)
2717 {
2718 	if (blk_queue_quiesced(q))
2719 		return;
2720 	q->mq_ops->queue_rqs(&plug->mq_list);
2721 }
2722 
2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2724 {
2725 	struct blk_mq_hw_ctx *this_hctx = NULL;
2726 	struct blk_mq_ctx *this_ctx = NULL;
2727 	struct request *requeue_list = NULL;
2728 	unsigned int depth = 0;
2729 	LIST_HEAD(list);
2730 
2731 	do {
2732 		struct request *rq = rq_list_pop(&plug->mq_list);
2733 
2734 		if (!this_hctx) {
2735 			this_hctx = rq->mq_hctx;
2736 			this_ctx = rq->mq_ctx;
2737 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2738 			rq_list_add(&requeue_list, rq);
2739 			continue;
2740 		}
2741 		list_add_tail(&rq->queuelist, &list);
2742 		depth++;
2743 	} while (!rq_list_empty(plug->mq_list));
2744 
2745 	plug->mq_list = requeue_list;
2746 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2747 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2748 }
2749 
2750 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2751 {
2752 	struct request *rq;
2753 
2754 	if (rq_list_empty(plug->mq_list))
2755 		return;
2756 	plug->rq_count = 0;
2757 
2758 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2759 		struct request_queue *q;
2760 
2761 		rq = rq_list_peek(&plug->mq_list);
2762 		q = rq->q;
2763 
2764 		/*
2765 		 * Peek first request and see if we have a ->queue_rqs() hook.
2766 		 * If we do, we can dispatch the whole plug list in one go. We
2767 		 * already know at this point that all requests belong to the
2768 		 * same queue, caller must ensure that's the case.
2769 		 *
2770 		 * Since we pass off the full list to the driver at this point,
2771 		 * we do not increment the active request count for the queue.
2772 		 * Bypass shared tags for now because of that.
2773 		 */
2774 		if (q->mq_ops->queue_rqs &&
2775 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2776 			blk_mq_run_dispatch_ops(q,
2777 				__blk_mq_flush_plug_list(q, plug));
2778 			if (rq_list_empty(plug->mq_list))
2779 				return;
2780 		}
2781 
2782 		blk_mq_run_dispatch_ops(q,
2783 				blk_mq_plug_issue_direct(plug));
2784 		if (rq_list_empty(plug->mq_list))
2785 			return;
2786 	}
2787 
2788 	do {
2789 		blk_mq_dispatch_plug_list(plug, from_schedule);
2790 	} while (!rq_list_empty(plug->mq_list));
2791 }
2792 
2793 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2794 		struct list_head *list)
2795 {
2796 	int queued = 0;
2797 	blk_status_t ret = BLK_STS_OK;
2798 
2799 	while (!list_empty(list)) {
2800 		struct request *rq = list_first_entry(list, struct request,
2801 				queuelist);
2802 
2803 		list_del_init(&rq->queuelist);
2804 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2805 		switch (ret) {
2806 		case BLK_STS_OK:
2807 			queued++;
2808 			break;
2809 		case BLK_STS_RESOURCE:
2810 		case BLK_STS_DEV_RESOURCE:
2811 			blk_mq_request_bypass_insert(rq, false,
2812 						     list_empty(list));
2813 			goto out;
2814 		default:
2815 			blk_mq_end_request(rq, ret);
2816 			break;
2817 		}
2818 	}
2819 
2820 out:
2821 	if (ret != BLK_STS_OK)
2822 		blk_mq_commit_rqs(hctx, queued, false);
2823 }
2824 
2825 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2826 				     struct bio *bio, unsigned int nr_segs)
2827 {
2828 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2829 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2830 			return true;
2831 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2832 			return true;
2833 	}
2834 	return false;
2835 }
2836 
2837 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2838 					       struct blk_plug *plug,
2839 					       struct bio *bio,
2840 					       unsigned int nsegs)
2841 {
2842 	struct blk_mq_alloc_data data = {
2843 		.q		= q,
2844 		.nr_tags	= 1,
2845 		.cmd_flags	= bio->bi_opf,
2846 	};
2847 	struct request *rq;
2848 
2849 	if (unlikely(bio_queue_enter(bio)))
2850 		return NULL;
2851 
2852 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2853 		goto queue_exit;
2854 
2855 	rq_qos_throttle(q, bio);
2856 
2857 	if (plug) {
2858 		data.nr_tags = plug->nr_ios;
2859 		plug->nr_ios = 1;
2860 		data.cached_rq = &plug->cached_rq;
2861 	}
2862 
2863 	rq = __blk_mq_alloc_requests(&data);
2864 	if (rq)
2865 		return rq;
2866 	rq_qos_cleanup(q, bio);
2867 	if (bio->bi_opf & REQ_NOWAIT)
2868 		bio_wouldblock_error(bio);
2869 queue_exit:
2870 	blk_queue_exit(q);
2871 	return NULL;
2872 }
2873 
2874 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2875 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2876 {
2877 	struct request *rq;
2878 	enum hctx_type type, hctx_type;
2879 
2880 	if (!plug)
2881 		return NULL;
2882 
2883 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2884 		*bio = NULL;
2885 		return NULL;
2886 	}
2887 
2888 	rq = rq_list_peek(&plug->cached_rq);
2889 	if (!rq || rq->q != q)
2890 		return NULL;
2891 
2892 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2893 	hctx_type = rq->mq_hctx->type;
2894 	if (type != hctx_type &&
2895 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2896 		return NULL;
2897 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2898 		return NULL;
2899 
2900 	/*
2901 	 * If any qos ->throttle() end up blocking, we will have flushed the
2902 	 * plug and hence killed the cached_rq list as well. Pop this entry
2903 	 * before we throttle.
2904 	 */
2905 	plug->cached_rq = rq_list_next(rq);
2906 	rq_qos_throttle(q, *bio);
2907 
2908 	rq->cmd_flags = (*bio)->bi_opf;
2909 	INIT_LIST_HEAD(&rq->queuelist);
2910 	return rq;
2911 }
2912 
2913 static void bio_set_ioprio(struct bio *bio)
2914 {
2915 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2916 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2917 		bio->bi_ioprio = get_current_ioprio();
2918 	blkcg_set_ioprio(bio);
2919 }
2920 
2921 /**
2922  * blk_mq_submit_bio - Create and send a request to block device.
2923  * @bio: Bio pointer.
2924  *
2925  * Builds up a request structure from @q and @bio and send to the device. The
2926  * request may not be queued directly to hardware if:
2927  * * This request can be merged with another one
2928  * * We want to place request at plug queue for possible future merging
2929  * * There is an IO scheduler active at this queue
2930  *
2931  * It will not queue the request if there is an error with the bio, or at the
2932  * request creation.
2933  */
2934 void blk_mq_submit_bio(struct bio *bio)
2935 {
2936 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2937 	struct blk_plug *plug = blk_mq_plug(bio);
2938 	const int is_sync = op_is_sync(bio->bi_opf);
2939 	struct request *rq;
2940 	unsigned int nr_segs = 1;
2941 	blk_status_t ret;
2942 
2943 	bio = blk_queue_bounce(bio, q);
2944 	if (bio_may_exceed_limits(bio, &q->limits)) {
2945 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2946 		if (!bio)
2947 			return;
2948 	}
2949 
2950 	if (!bio_integrity_prep(bio))
2951 		return;
2952 
2953 	bio_set_ioprio(bio);
2954 
2955 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2956 	if (!rq) {
2957 		if (!bio)
2958 			return;
2959 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2960 		if (unlikely(!rq))
2961 			return;
2962 	}
2963 
2964 	trace_block_getrq(bio);
2965 
2966 	rq_qos_track(q, rq, bio);
2967 
2968 	blk_mq_bio_to_request(rq, bio, nr_segs);
2969 
2970 	ret = blk_crypto_init_request(rq);
2971 	if (ret != BLK_STS_OK) {
2972 		bio->bi_status = ret;
2973 		bio_endio(bio);
2974 		blk_mq_free_request(rq);
2975 		return;
2976 	}
2977 
2978 	if (op_is_flush(bio->bi_opf)) {
2979 		blk_insert_flush(rq);
2980 		return;
2981 	}
2982 
2983 	if (plug)
2984 		blk_add_rq_to_plug(plug, rq);
2985 	else if ((rq->rq_flags & RQF_ELV) ||
2986 		 (rq->mq_hctx->dispatch_busy &&
2987 		  (q->nr_hw_queues == 1 || !is_sync)))
2988 		blk_mq_sched_insert_request(rq, false, true, true);
2989 	else
2990 		blk_mq_run_dispatch_ops(rq->q,
2991 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2992 }
2993 
2994 #ifdef CONFIG_BLK_MQ_STACKING
2995 /**
2996  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2997  * @rq: the request being queued
2998  */
2999 blk_status_t blk_insert_cloned_request(struct request *rq)
3000 {
3001 	struct request_queue *q = rq->q;
3002 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3003 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3004 	blk_status_t ret;
3005 
3006 	if (blk_rq_sectors(rq) > max_sectors) {
3007 		/*
3008 		 * SCSI device does not have a good way to return if
3009 		 * Write Same/Zero is actually supported. If a device rejects
3010 		 * a non-read/write command (discard, write same,etc.) the
3011 		 * low-level device driver will set the relevant queue limit to
3012 		 * 0 to prevent blk-lib from issuing more of the offending
3013 		 * operations. Commands queued prior to the queue limit being
3014 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3015 		 * errors being propagated to upper layers.
3016 		 */
3017 		if (max_sectors == 0)
3018 			return BLK_STS_NOTSUPP;
3019 
3020 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3021 			__func__, blk_rq_sectors(rq), max_sectors);
3022 		return BLK_STS_IOERR;
3023 	}
3024 
3025 	/*
3026 	 * The queue settings related to segment counting may differ from the
3027 	 * original queue.
3028 	 */
3029 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3030 	if (rq->nr_phys_segments > max_segments) {
3031 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3032 			__func__, rq->nr_phys_segments, max_segments);
3033 		return BLK_STS_IOERR;
3034 	}
3035 
3036 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3037 		return BLK_STS_IOERR;
3038 
3039 	if (blk_crypto_insert_cloned_request(rq))
3040 		return BLK_STS_IOERR;
3041 
3042 	blk_account_io_start(rq);
3043 
3044 	/*
3045 	 * Since we have a scheduler attached on the top device,
3046 	 * bypass a potential scheduler on the bottom device for
3047 	 * insert.
3048 	 */
3049 	blk_mq_run_dispatch_ops(q,
3050 			ret = blk_mq_request_issue_directly(rq, true));
3051 	if (ret)
3052 		blk_account_io_done(rq, ktime_get_ns());
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056 
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066 	struct bio *bio;
3067 
3068 	while ((bio = rq->bio) != NULL) {
3069 		rq->bio = bio->bi_next;
3070 
3071 		bio_put(bio);
3072 	}
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075 
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094 		      struct bio_set *bs, gfp_t gfp_mask,
3095 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3096 		      void *data)
3097 {
3098 	struct bio *bio, *bio_src;
3099 
3100 	if (!bs)
3101 		bs = &fs_bio_set;
3102 
3103 	__rq_for_each_bio(bio_src, rq_src) {
3104 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105 				      bs);
3106 		if (!bio)
3107 			goto free_and_out;
3108 
3109 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3110 			goto free_and_out;
3111 
3112 		if (rq->bio) {
3113 			rq->biotail->bi_next = bio;
3114 			rq->biotail = bio;
3115 		} else {
3116 			rq->bio = rq->biotail = bio;
3117 		}
3118 		bio = NULL;
3119 	}
3120 
3121 	/* Copy attributes of the original request to the clone request. */
3122 	rq->__sector = blk_rq_pos(rq_src);
3123 	rq->__data_len = blk_rq_bytes(rq_src);
3124 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126 		rq->special_vec = rq_src->special_vec;
3127 	}
3128 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3129 	rq->ioprio = rq_src->ioprio;
3130 
3131 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132 		goto free_and_out;
3133 
3134 	return 0;
3135 
3136 free_and_out:
3137 	if (bio)
3138 		bio_put(bio);
3139 	blk_rq_unprep_clone(rq);
3140 
3141 	return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145 
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152 	if (rq->bio) {
3153 		if (list->tail)
3154 			list->tail->bi_next = rq->bio;
3155 		else
3156 			list->head = rq->bio;
3157 		list->tail = rq->biotail;
3158 
3159 		rq->bio = NULL;
3160 		rq->biotail = NULL;
3161 	}
3162 
3163 	rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166 
3167 static size_t order_to_size(unsigned int order)
3168 {
3169 	return (size_t)PAGE_SIZE << order;
3170 }
3171 
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174 				    struct blk_mq_tags *tags)
3175 {
3176 	struct page *page;
3177 	unsigned long flags;
3178 
3179 	/*
3180 	 * There is no need to clear mapping if driver tags is not initialized
3181 	 * or the mapping belongs to the driver tags.
3182 	 */
3183 	if (!drv_tags || drv_tags == tags)
3184 		return;
3185 
3186 	list_for_each_entry(page, &tags->page_list, lru) {
3187 		unsigned long start = (unsigned long)page_address(page);
3188 		unsigned long end = start + order_to_size(page->private);
3189 		int i;
3190 
3191 		for (i = 0; i < drv_tags->nr_tags; i++) {
3192 			struct request *rq = drv_tags->rqs[i];
3193 			unsigned long rq_addr = (unsigned long)rq;
3194 
3195 			if (rq_addr >= start && rq_addr < end) {
3196 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3197 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198 			}
3199 		}
3200 	}
3201 
3202 	/*
3203 	 * Wait until all pending iteration is done.
3204 	 *
3205 	 * Request reference is cleared and it is guaranteed to be observed
3206 	 * after the ->lock is released.
3207 	 */
3208 	spin_lock_irqsave(&drv_tags->lock, flags);
3209 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211 
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213 		     unsigned int hctx_idx)
3214 {
3215 	struct blk_mq_tags *drv_tags;
3216 	struct page *page;
3217 
3218 	if (list_empty(&tags->page_list))
3219 		return;
3220 
3221 	if (blk_mq_is_shared_tags(set->flags))
3222 		drv_tags = set->shared_tags;
3223 	else
3224 		drv_tags = set->tags[hctx_idx];
3225 
3226 	if (tags->static_rqs && set->ops->exit_request) {
3227 		int i;
3228 
3229 		for (i = 0; i < tags->nr_tags; i++) {
3230 			struct request *rq = tags->static_rqs[i];
3231 
3232 			if (!rq)
3233 				continue;
3234 			set->ops->exit_request(set, rq, hctx_idx);
3235 			tags->static_rqs[i] = NULL;
3236 		}
3237 	}
3238 
3239 	blk_mq_clear_rq_mapping(drv_tags, tags);
3240 
3241 	while (!list_empty(&tags->page_list)) {
3242 		page = list_first_entry(&tags->page_list, struct page, lru);
3243 		list_del_init(&page->lru);
3244 		/*
3245 		 * Remove kmemleak object previously allocated in
3246 		 * blk_mq_alloc_rqs().
3247 		 */
3248 		kmemleak_free(page_address(page));
3249 		__free_pages(page, page->private);
3250 	}
3251 }
3252 
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255 	kfree(tags->rqs);
3256 	tags->rqs = NULL;
3257 	kfree(tags->static_rqs);
3258 	tags->static_rqs = NULL;
3259 
3260 	blk_mq_free_tags(tags);
3261 }
3262 
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264 		unsigned int hctx_idx)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < set->nr_maps; i++) {
3269 		unsigned int start = set->map[i].queue_offset;
3270 		unsigned int end = start + set->map[i].nr_queues;
3271 
3272 		if (hctx_idx >= start && hctx_idx < end)
3273 			break;
3274 	}
3275 
3276 	if (i >= set->nr_maps)
3277 		i = HCTX_TYPE_DEFAULT;
3278 
3279 	return i;
3280 }
3281 
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283 		unsigned int hctx_idx)
3284 {
3285 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286 
3287 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289 
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291 					       unsigned int hctx_idx,
3292 					       unsigned int nr_tags,
3293 					       unsigned int reserved_tags)
3294 {
3295 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3296 	struct blk_mq_tags *tags;
3297 
3298 	if (node == NUMA_NO_NODE)
3299 		node = set->numa_node;
3300 
3301 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303 	if (!tags)
3304 		return NULL;
3305 
3306 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308 				 node);
3309 	if (!tags->rqs)
3310 		goto err_free_tags;
3311 
3312 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314 					node);
3315 	if (!tags->static_rqs)
3316 		goto err_free_rqs;
3317 
3318 	return tags;
3319 
3320 err_free_rqs:
3321 	kfree(tags->rqs);
3322 err_free_tags:
3323 	blk_mq_free_tags(tags);
3324 	return NULL;
3325 }
3326 
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328 			       unsigned int hctx_idx, int node)
3329 {
3330 	int ret;
3331 
3332 	if (set->ops->init_request) {
3333 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3334 		if (ret)
3335 			return ret;
3336 	}
3337 
3338 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339 	return 0;
3340 }
3341 
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343 			    struct blk_mq_tags *tags,
3344 			    unsigned int hctx_idx, unsigned int depth)
3345 {
3346 	unsigned int i, j, entries_per_page, max_order = 4;
3347 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3348 	size_t rq_size, left;
3349 
3350 	if (node == NUMA_NO_NODE)
3351 		node = set->numa_node;
3352 
3353 	INIT_LIST_HEAD(&tags->page_list);
3354 
3355 	/*
3356 	 * rq_size is the size of the request plus driver payload, rounded
3357 	 * to the cacheline size
3358 	 */
3359 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360 				cache_line_size());
3361 	left = rq_size * depth;
3362 
3363 	for (i = 0; i < depth; ) {
3364 		int this_order = max_order;
3365 		struct page *page;
3366 		int to_do;
3367 		void *p;
3368 
3369 		while (this_order && left < order_to_size(this_order - 1))
3370 			this_order--;
3371 
3372 		do {
3373 			page = alloc_pages_node(node,
3374 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375 				this_order);
3376 			if (page)
3377 				break;
3378 			if (!this_order--)
3379 				break;
3380 			if (order_to_size(this_order) < rq_size)
3381 				break;
3382 		} while (1);
3383 
3384 		if (!page)
3385 			goto fail;
3386 
3387 		page->private = this_order;
3388 		list_add_tail(&page->lru, &tags->page_list);
3389 
3390 		p = page_address(page);
3391 		/*
3392 		 * Allow kmemleak to scan these pages as they contain pointers
3393 		 * to additional allocations like via ops->init_request().
3394 		 */
3395 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396 		entries_per_page = order_to_size(this_order) / rq_size;
3397 		to_do = min(entries_per_page, depth - i);
3398 		left -= to_do * rq_size;
3399 		for (j = 0; j < to_do; j++) {
3400 			struct request *rq = p;
3401 
3402 			tags->static_rqs[i] = rq;
3403 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404 				tags->static_rqs[i] = NULL;
3405 				goto fail;
3406 			}
3407 
3408 			p += rq_size;
3409 			i++;
3410 		}
3411 	}
3412 	return 0;
3413 
3414 fail:
3415 	blk_mq_free_rqs(set, tags, hctx_idx);
3416 	return -ENOMEM;
3417 }
3418 
3419 struct rq_iter_data {
3420 	struct blk_mq_hw_ctx *hctx;
3421 	bool has_rq;
3422 };
3423 
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426 	struct rq_iter_data *iter_data = data;
3427 
3428 	if (rq->mq_hctx != iter_data->hctx)
3429 		return true;
3430 	iter_data->has_rq = true;
3431 	return false;
3432 }
3433 
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436 	struct blk_mq_tags *tags = hctx->sched_tags ?
3437 			hctx->sched_tags : hctx->tags;
3438 	struct rq_iter_data data = {
3439 		.hctx	= hctx,
3440 	};
3441 
3442 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443 	return data.has_rq;
3444 }
3445 
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447 		struct blk_mq_hw_ctx *hctx)
3448 {
3449 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450 		return false;
3451 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452 		return false;
3453 	return true;
3454 }
3455 
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459 			struct blk_mq_hw_ctx, cpuhp_online);
3460 
3461 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463 		return 0;
3464 
3465 	/*
3466 	 * Prevent new request from being allocated on the current hctx.
3467 	 *
3468 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3469 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470 	 * seen once we return from the tag allocator.
3471 	 */
3472 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473 	smp_mb__after_atomic();
3474 
3475 	/*
3476 	 * Try to grab a reference to the queue and wait for any outstanding
3477 	 * requests.  If we could not grab a reference the queue has been
3478 	 * frozen and there are no requests.
3479 	 */
3480 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481 		while (blk_mq_hctx_has_requests(hctx))
3482 			msleep(5);
3483 		percpu_ref_put(&hctx->queue->q_usage_counter);
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492 			struct blk_mq_hw_ctx, cpuhp_online);
3493 
3494 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3495 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496 	return 0;
3497 }
3498 
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506 	struct blk_mq_hw_ctx *hctx;
3507 	struct blk_mq_ctx *ctx;
3508 	LIST_HEAD(tmp);
3509 	enum hctx_type type;
3510 
3511 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513 		return 0;
3514 
3515 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516 	type = hctx->type;
3517 
3518 	spin_lock(&ctx->lock);
3519 	if (!list_empty(&ctx->rq_lists[type])) {
3520 		list_splice_init(&ctx->rq_lists[type], &tmp);
3521 		blk_mq_hctx_clear_pending(hctx, ctx);
3522 	}
3523 	spin_unlock(&ctx->lock);
3524 
3525 	if (list_empty(&tmp))
3526 		return 0;
3527 
3528 	spin_lock(&hctx->lock);
3529 	list_splice_tail_init(&tmp, &hctx->dispatch);
3530 	spin_unlock(&hctx->lock);
3531 
3532 	blk_mq_run_hw_queue(hctx, true);
3533 	return 0;
3534 }
3535 
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3539 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540 						    &hctx->cpuhp_online);
3541 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542 					    &hctx->cpuhp_dead);
3543 }
3544 
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550 		unsigned int queue_depth, struct request *flush_rq)
3551 {
3552 	int i;
3553 	unsigned long flags;
3554 
3555 	/* The hw queue may not be mapped yet */
3556 	if (!tags)
3557 		return;
3558 
3559 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560 
3561 	for (i = 0; i < queue_depth; i++)
3562 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563 
3564 	/*
3565 	 * Wait until all pending iteration is done.
3566 	 *
3567 	 * Request reference is cleared and it is guaranteed to be observed
3568 	 * after the ->lock is released.
3569 	 */
3570 	spin_lock_irqsave(&tags->lock, flags);
3571 	spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573 
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576 		struct blk_mq_tag_set *set,
3577 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579 	struct request *flush_rq = hctx->fq->flush_rq;
3580 
3581 	if (blk_mq_hw_queue_mapped(hctx))
3582 		blk_mq_tag_idle(hctx);
3583 
3584 	if (blk_queue_init_done(q))
3585 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586 				set->queue_depth, flush_rq);
3587 	if (set->ops->exit_request)
3588 		set->ops->exit_request(set, flush_rq, hctx_idx);
3589 
3590 	if (set->ops->exit_hctx)
3591 		set->ops->exit_hctx(hctx, hctx_idx);
3592 
3593 	blk_mq_remove_cpuhp(hctx);
3594 
3595 	xa_erase(&q->hctx_table, hctx_idx);
3596 
3597 	spin_lock(&q->unused_hctx_lock);
3598 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599 	spin_unlock(&q->unused_hctx_lock);
3600 }
3601 
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603 		struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605 	struct blk_mq_hw_ctx *hctx;
3606 	unsigned long i;
3607 
3608 	queue_for_each_hw_ctx(q, hctx, i) {
3609 		if (i == nr_queue)
3610 			break;
3611 		blk_mq_exit_hctx(q, set, hctx, i);
3612 	}
3613 }
3614 
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616 		struct blk_mq_tag_set *set,
3617 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619 	hctx->queue_num = hctx_idx;
3620 
3621 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3622 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623 				&hctx->cpuhp_online);
3624 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625 
3626 	hctx->tags = set->tags[hctx_idx];
3627 
3628 	if (set->ops->init_hctx &&
3629 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630 		goto unregister_cpu_notifier;
3631 
3632 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633 				hctx->numa_node))
3634 		goto exit_hctx;
3635 
3636 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637 		goto exit_flush_rq;
3638 
3639 	return 0;
3640 
3641  exit_flush_rq:
3642 	if (set->ops->exit_request)
3643 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645 	if (set->ops->exit_hctx)
3646 		set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648 	blk_mq_remove_cpuhp(hctx);
3649 	return -1;
3650 }
3651 
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654 		int node)
3655 {
3656 	struct blk_mq_hw_ctx *hctx;
3657 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658 
3659 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660 	if (!hctx)
3661 		goto fail_alloc_hctx;
3662 
3663 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664 		goto free_hctx;
3665 
3666 	atomic_set(&hctx->nr_active, 0);
3667 	if (node == NUMA_NO_NODE)
3668 		node = set->numa_node;
3669 	hctx->numa_node = node;
3670 
3671 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672 	spin_lock_init(&hctx->lock);
3673 	INIT_LIST_HEAD(&hctx->dispatch);
3674 	hctx->queue = q;
3675 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676 
3677 	INIT_LIST_HEAD(&hctx->hctx_list);
3678 
3679 	/*
3680 	 * Allocate space for all possible cpus to avoid allocation at
3681 	 * runtime
3682 	 */
3683 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684 			gfp, node);
3685 	if (!hctx->ctxs)
3686 		goto free_cpumask;
3687 
3688 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689 				gfp, node, false, false))
3690 		goto free_ctxs;
3691 	hctx->nr_ctx = 0;
3692 
3693 	spin_lock_init(&hctx->dispatch_wait_lock);
3694 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696 
3697 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698 	if (!hctx->fq)
3699 		goto free_bitmap;
3700 
3701 	blk_mq_hctx_kobj_init(hctx);
3702 
3703 	return hctx;
3704 
3705  free_bitmap:
3706 	sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708 	kfree(hctx->ctxs);
3709  free_cpumask:
3710 	free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712 	kfree(hctx);
3713  fail_alloc_hctx:
3714 	return NULL;
3715 }
3716 
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718 				   unsigned int nr_hw_queues)
3719 {
3720 	struct blk_mq_tag_set *set = q->tag_set;
3721 	unsigned int i, j;
3722 
3723 	for_each_possible_cpu(i) {
3724 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725 		struct blk_mq_hw_ctx *hctx;
3726 		int k;
3727 
3728 		__ctx->cpu = i;
3729 		spin_lock_init(&__ctx->lock);
3730 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732 
3733 		__ctx->queue = q;
3734 
3735 		/*
3736 		 * Set local node, IFF we have more than one hw queue. If
3737 		 * not, we remain on the home node of the device
3738 		 */
3739 		for (j = 0; j < set->nr_maps; j++) {
3740 			hctx = blk_mq_map_queue_type(q, j, i);
3741 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742 				hctx->numa_node = cpu_to_node(i);
3743 		}
3744 	}
3745 }
3746 
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748 					     unsigned int hctx_idx,
3749 					     unsigned int depth)
3750 {
3751 	struct blk_mq_tags *tags;
3752 	int ret;
3753 
3754 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755 	if (!tags)
3756 		return NULL;
3757 
3758 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759 	if (ret) {
3760 		blk_mq_free_rq_map(tags);
3761 		return NULL;
3762 	}
3763 
3764 	return tags;
3765 }
3766 
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768 				       int hctx_idx)
3769 {
3770 	if (blk_mq_is_shared_tags(set->flags)) {
3771 		set->tags[hctx_idx] = set->shared_tags;
3772 
3773 		return true;
3774 	}
3775 
3776 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777 						       set->queue_depth);
3778 
3779 	return set->tags[hctx_idx];
3780 }
3781 
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783 			     struct blk_mq_tags *tags,
3784 			     unsigned int hctx_idx)
3785 {
3786 	if (tags) {
3787 		blk_mq_free_rqs(set, tags, hctx_idx);
3788 		blk_mq_free_rq_map(tags);
3789 	}
3790 }
3791 
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793 				      unsigned int hctx_idx)
3794 {
3795 	if (!blk_mq_is_shared_tags(set->flags))
3796 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797 
3798 	set->tags[hctx_idx] = NULL;
3799 }
3800 
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803 	unsigned int j, hctx_idx;
3804 	unsigned long i;
3805 	struct blk_mq_hw_ctx *hctx;
3806 	struct blk_mq_ctx *ctx;
3807 	struct blk_mq_tag_set *set = q->tag_set;
3808 
3809 	queue_for_each_hw_ctx(q, hctx, i) {
3810 		cpumask_clear(hctx->cpumask);
3811 		hctx->nr_ctx = 0;
3812 		hctx->dispatch_from = NULL;
3813 	}
3814 
3815 	/*
3816 	 * Map software to hardware queues.
3817 	 *
3818 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3819 	 */
3820 	for_each_possible_cpu(i) {
3821 
3822 		ctx = per_cpu_ptr(q->queue_ctx, i);
3823 		for (j = 0; j < set->nr_maps; j++) {
3824 			if (!set->map[j].nr_queues) {
3825 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826 						HCTX_TYPE_DEFAULT, i);
3827 				continue;
3828 			}
3829 			hctx_idx = set->map[j].mq_map[i];
3830 			/* unmapped hw queue can be remapped after CPU topo changed */
3831 			if (!set->tags[hctx_idx] &&
3832 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833 				/*
3834 				 * If tags initialization fail for some hctx,
3835 				 * that hctx won't be brought online.  In this
3836 				 * case, remap the current ctx to hctx[0] which
3837 				 * is guaranteed to always have tags allocated
3838 				 */
3839 				set->map[j].mq_map[i] = 0;
3840 			}
3841 
3842 			hctx = blk_mq_map_queue_type(q, j, i);
3843 			ctx->hctxs[j] = hctx;
3844 			/*
3845 			 * If the CPU is already set in the mask, then we've
3846 			 * mapped this one already. This can happen if
3847 			 * devices share queues across queue maps.
3848 			 */
3849 			if (cpumask_test_cpu(i, hctx->cpumask))
3850 				continue;
3851 
3852 			cpumask_set_cpu(i, hctx->cpumask);
3853 			hctx->type = j;
3854 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3856 
3857 			/*
3858 			 * If the nr_ctx type overflows, we have exceeded the
3859 			 * amount of sw queues we can support.
3860 			 */
3861 			BUG_ON(!hctx->nr_ctx);
3862 		}
3863 
3864 		for (; j < HCTX_MAX_TYPES; j++)
3865 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866 					HCTX_TYPE_DEFAULT, i);
3867 	}
3868 
3869 	queue_for_each_hw_ctx(q, hctx, i) {
3870 		/*
3871 		 * If no software queues are mapped to this hardware queue,
3872 		 * disable it and free the request entries.
3873 		 */
3874 		if (!hctx->nr_ctx) {
3875 			/* Never unmap queue 0.  We need it as a
3876 			 * fallback in case of a new remap fails
3877 			 * allocation
3878 			 */
3879 			if (i)
3880 				__blk_mq_free_map_and_rqs(set, i);
3881 
3882 			hctx->tags = NULL;
3883 			continue;
3884 		}
3885 
3886 		hctx->tags = set->tags[i];
3887 		WARN_ON(!hctx->tags);
3888 
3889 		/*
3890 		 * Set the map size to the number of mapped software queues.
3891 		 * This is more accurate and more efficient than looping
3892 		 * over all possibly mapped software queues.
3893 		 */
3894 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895 
3896 		/*
3897 		 * Initialize batch roundrobin counts
3898 		 */
3899 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901 	}
3902 }
3903 
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910 	struct blk_mq_hw_ctx *hctx;
3911 	unsigned long i;
3912 
3913 	queue_for_each_hw_ctx(q, hctx, i) {
3914 		if (shared) {
3915 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916 		} else {
3917 			blk_mq_tag_idle(hctx);
3918 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919 		}
3920 	}
3921 }
3922 
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924 					 bool shared)
3925 {
3926 	struct request_queue *q;
3927 
3928 	lockdep_assert_held(&set->tag_list_lock);
3929 
3930 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931 		blk_mq_freeze_queue(q);
3932 		queue_set_hctx_shared(q, shared);
3933 		blk_mq_unfreeze_queue(q);
3934 	}
3935 }
3936 
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939 	struct blk_mq_tag_set *set = q->tag_set;
3940 
3941 	mutex_lock(&set->tag_list_lock);
3942 	list_del(&q->tag_set_list);
3943 	if (list_is_singular(&set->tag_list)) {
3944 		/* just transitioned to unshared */
3945 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946 		/* update existing queue */
3947 		blk_mq_update_tag_set_shared(set, false);
3948 	}
3949 	mutex_unlock(&set->tag_list_lock);
3950 	INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952 
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954 				     struct request_queue *q)
3955 {
3956 	mutex_lock(&set->tag_list_lock);
3957 
3958 	/*
3959 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960 	 */
3961 	if (!list_empty(&set->tag_list) &&
3962 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964 		/* update existing queue */
3965 		blk_mq_update_tag_set_shared(set, true);
3966 	}
3967 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968 		queue_set_hctx_shared(q, true);
3969 	list_add_tail(&q->tag_set_list, &set->tag_list);
3970 
3971 	mutex_unlock(&set->tag_list_lock);
3972 }
3973 
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977 	struct blk_mq_ctxs *ctxs;
3978 	int cpu;
3979 
3980 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981 	if (!ctxs)
3982 		return -ENOMEM;
3983 
3984 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985 	if (!ctxs->queue_ctx)
3986 		goto fail;
3987 
3988 	for_each_possible_cpu(cpu) {
3989 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990 		ctx->ctxs = ctxs;
3991 	}
3992 
3993 	q->mq_kobj = &ctxs->kobj;
3994 	q->queue_ctx = ctxs->queue_ctx;
3995 
3996 	return 0;
3997  fail:
3998 	kfree(ctxs);
3999 	return -ENOMEM;
4000 }
4001 
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010 	struct blk_mq_hw_ctx *hctx, *next;
4011 	unsigned long i;
4012 
4013 	queue_for_each_hw_ctx(q, hctx, i)
4014 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015 
4016 	/* all hctx are in .unused_hctx_list now */
4017 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018 		list_del_init(&hctx->hctx_list);
4019 		kobject_put(&hctx->kobj);
4020 	}
4021 
4022 	xa_destroy(&q->hctx_table);
4023 
4024 	/*
4025 	 * release .mq_kobj and sw queue's kobject now because
4026 	 * both share lifetime with request queue.
4027 	 */
4028 	blk_mq_sysfs_deinit(q);
4029 }
4030 
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032 		void *queuedata)
4033 {
4034 	struct request_queue *q;
4035 	int ret;
4036 
4037 	q = blk_alloc_queue(set->numa_node);
4038 	if (!q)
4039 		return ERR_PTR(-ENOMEM);
4040 	q->queuedata = queuedata;
4041 	ret = blk_mq_init_allocated_queue(set, q);
4042 	if (ret) {
4043 		blk_put_queue(q);
4044 		return ERR_PTR(ret);
4045 	}
4046 	return q;
4047 }
4048 
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051 	return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054 
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4060  * requests will be failed with -ENODEV. The caller is responsible for dropping
4061  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062  *
4063  * Context: can sleep
4064  */
4065 void blk_mq_destroy_queue(struct request_queue *q)
4066 {
4067 	WARN_ON_ONCE(!queue_is_mq(q));
4068 	WARN_ON_ONCE(blk_queue_registered(q));
4069 
4070 	might_sleep();
4071 
4072 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4073 	blk_queue_start_drain(q);
4074 	blk_mq_freeze_queue_wait(q);
4075 
4076 	blk_sync_queue(q);
4077 	blk_mq_cancel_work_sync(q);
4078 	blk_mq_exit_queue(q);
4079 }
4080 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081 
4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4083 		struct lock_class_key *lkclass)
4084 {
4085 	struct request_queue *q;
4086 	struct gendisk *disk;
4087 
4088 	q = blk_mq_init_queue_data(set, queuedata);
4089 	if (IS_ERR(q))
4090 		return ERR_CAST(q);
4091 
4092 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093 	if (!disk) {
4094 		blk_mq_destroy_queue(q);
4095 		blk_put_queue(q);
4096 		return ERR_PTR(-ENOMEM);
4097 	}
4098 	set_bit(GD_OWNS_QUEUE, &disk->state);
4099 	return disk;
4100 }
4101 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102 
4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4104 		struct lock_class_key *lkclass)
4105 {
4106 	struct gendisk *disk;
4107 
4108 	if (!blk_get_queue(q))
4109 		return NULL;
4110 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4111 	if (!disk)
4112 		blk_put_queue(q);
4113 	return disk;
4114 }
4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116 
4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4118 		struct blk_mq_tag_set *set, struct request_queue *q,
4119 		int hctx_idx, int node)
4120 {
4121 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122 
4123 	/* reuse dead hctx first */
4124 	spin_lock(&q->unused_hctx_lock);
4125 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4126 		if (tmp->numa_node == node) {
4127 			hctx = tmp;
4128 			break;
4129 		}
4130 	}
4131 	if (hctx)
4132 		list_del_init(&hctx->hctx_list);
4133 	spin_unlock(&q->unused_hctx_lock);
4134 
4135 	if (!hctx)
4136 		hctx = blk_mq_alloc_hctx(q, set, node);
4137 	if (!hctx)
4138 		goto fail;
4139 
4140 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141 		goto free_hctx;
4142 
4143 	return hctx;
4144 
4145  free_hctx:
4146 	kobject_put(&hctx->kobj);
4147  fail:
4148 	return NULL;
4149 }
4150 
4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4152 						struct request_queue *q)
4153 {
4154 	struct blk_mq_hw_ctx *hctx;
4155 	unsigned long i, j;
4156 
4157 	/* protect against switching io scheduler  */
4158 	mutex_lock(&q->sysfs_lock);
4159 	for (i = 0; i < set->nr_hw_queues; i++) {
4160 		int old_node;
4161 		int node = blk_mq_get_hctx_node(set, i);
4162 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4163 
4164 		if (old_hctx) {
4165 			old_node = old_hctx->numa_node;
4166 			blk_mq_exit_hctx(q, set, old_hctx, i);
4167 		}
4168 
4169 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4170 			if (!old_hctx)
4171 				break;
4172 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173 					node, old_node);
4174 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4175 			WARN_ON_ONCE(!hctx);
4176 		}
4177 	}
4178 	/*
4179 	 * Increasing nr_hw_queues fails. Free the newly allocated
4180 	 * hctxs and keep the previous q->nr_hw_queues.
4181 	 */
4182 	if (i != set->nr_hw_queues) {
4183 		j = q->nr_hw_queues;
4184 	} else {
4185 		j = i;
4186 		q->nr_hw_queues = set->nr_hw_queues;
4187 	}
4188 
4189 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4190 		blk_mq_exit_hctx(q, set, hctx, j);
4191 	mutex_unlock(&q->sysfs_lock);
4192 }
4193 
4194 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 {
4196 	struct blk_mq_tag_set *set = q->tag_set;
4197 
4198 	if (set->nr_maps > HCTX_TYPE_POLL &&
4199 	    set->map[HCTX_TYPE_POLL].nr_queues)
4200 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201 	else
4202 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4203 }
4204 
4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4206 		struct request_queue *q)
4207 {
4208 	/* mark the queue as mq asap */
4209 	q->mq_ops = set->ops;
4210 
4211 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4212 					     blk_mq_poll_stats_bkt,
4213 					     BLK_MQ_POLL_STATS_BKTS, q);
4214 	if (!q->poll_cb)
4215 		goto err_exit;
4216 
4217 	if (blk_mq_alloc_ctxs(q))
4218 		goto err_poll;
4219 
4220 	/* init q->mq_kobj and sw queues' kobjects */
4221 	blk_mq_sysfs_init(q);
4222 
4223 	INIT_LIST_HEAD(&q->unused_hctx_list);
4224 	spin_lock_init(&q->unused_hctx_lock);
4225 
4226 	xa_init(&q->hctx_table);
4227 
4228 	blk_mq_realloc_hw_ctxs(set, q);
4229 	if (!q->nr_hw_queues)
4230 		goto err_hctxs;
4231 
4232 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4233 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4234 
4235 	q->tag_set = set;
4236 
4237 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4238 	blk_mq_update_poll_flag(q);
4239 
4240 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4241 	INIT_LIST_HEAD(&q->requeue_list);
4242 	spin_lock_init(&q->requeue_lock);
4243 
4244 	q->nr_requests = set->queue_depth;
4245 
4246 	/*
4247 	 * Default to classic polling
4248 	 */
4249 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4250 
4251 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4252 	blk_mq_add_queue_tag_set(set, q);
4253 	blk_mq_map_swqueue(q);
4254 	return 0;
4255 
4256 err_hctxs:
4257 	blk_mq_release(q);
4258 err_poll:
4259 	blk_stat_free_callback(q->poll_cb);
4260 	q->poll_cb = NULL;
4261 err_exit:
4262 	q->mq_ops = NULL;
4263 	return -ENOMEM;
4264 }
4265 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4266 
4267 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4268 void blk_mq_exit_queue(struct request_queue *q)
4269 {
4270 	struct blk_mq_tag_set *set = q->tag_set;
4271 
4272 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4273 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4274 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4275 	blk_mq_del_queue_tag_set(q);
4276 }
4277 
4278 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4279 {
4280 	int i;
4281 
4282 	if (blk_mq_is_shared_tags(set->flags)) {
4283 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4284 						BLK_MQ_NO_HCTX_IDX,
4285 						set->queue_depth);
4286 		if (!set->shared_tags)
4287 			return -ENOMEM;
4288 	}
4289 
4290 	for (i = 0; i < set->nr_hw_queues; i++) {
4291 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4292 			goto out_unwind;
4293 		cond_resched();
4294 	}
4295 
4296 	return 0;
4297 
4298 out_unwind:
4299 	while (--i >= 0)
4300 		__blk_mq_free_map_and_rqs(set, i);
4301 
4302 	if (blk_mq_is_shared_tags(set->flags)) {
4303 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4304 					BLK_MQ_NO_HCTX_IDX);
4305 	}
4306 
4307 	return -ENOMEM;
4308 }
4309 
4310 /*
4311  * Allocate the request maps associated with this tag_set. Note that this
4312  * may reduce the depth asked for, if memory is tight. set->queue_depth
4313  * will be updated to reflect the allocated depth.
4314  */
4315 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4316 {
4317 	unsigned int depth;
4318 	int err;
4319 
4320 	depth = set->queue_depth;
4321 	do {
4322 		err = __blk_mq_alloc_rq_maps(set);
4323 		if (!err)
4324 			break;
4325 
4326 		set->queue_depth >>= 1;
4327 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4328 			err = -ENOMEM;
4329 			break;
4330 		}
4331 	} while (set->queue_depth);
4332 
4333 	if (!set->queue_depth || err) {
4334 		pr_err("blk-mq: failed to allocate request map\n");
4335 		return -ENOMEM;
4336 	}
4337 
4338 	if (depth != set->queue_depth)
4339 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4340 						depth, set->queue_depth);
4341 
4342 	return 0;
4343 }
4344 
4345 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4346 {
4347 	/*
4348 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4349 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4350 	 * number of hardware queues.
4351 	 */
4352 	if (set->nr_maps == 1)
4353 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4354 
4355 	if (set->ops->map_queues && !is_kdump_kernel()) {
4356 		int i;
4357 
4358 		/*
4359 		 * transport .map_queues is usually done in the following
4360 		 * way:
4361 		 *
4362 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4363 		 * 	mask = get_cpu_mask(queue)
4364 		 * 	for_each_cpu(cpu, mask)
4365 		 * 		set->map[x].mq_map[cpu] = queue;
4366 		 * }
4367 		 *
4368 		 * When we need to remap, the table has to be cleared for
4369 		 * killing stale mapping since one CPU may not be mapped
4370 		 * to any hw queue.
4371 		 */
4372 		for (i = 0; i < set->nr_maps; i++)
4373 			blk_mq_clear_mq_map(&set->map[i]);
4374 
4375 		set->ops->map_queues(set);
4376 	} else {
4377 		BUG_ON(set->nr_maps > 1);
4378 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4379 	}
4380 }
4381 
4382 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4383 				       int new_nr_hw_queues)
4384 {
4385 	struct blk_mq_tags **new_tags;
4386 
4387 	if (set->nr_hw_queues >= new_nr_hw_queues)
4388 		goto done;
4389 
4390 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4391 				GFP_KERNEL, set->numa_node);
4392 	if (!new_tags)
4393 		return -ENOMEM;
4394 
4395 	if (set->tags)
4396 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4397 		       sizeof(*set->tags));
4398 	kfree(set->tags);
4399 	set->tags = new_tags;
4400 done:
4401 	set->nr_hw_queues = new_nr_hw_queues;
4402 	return 0;
4403 }
4404 
4405 /*
4406  * Alloc a tag set to be associated with one or more request queues.
4407  * May fail with EINVAL for various error conditions. May adjust the
4408  * requested depth down, if it's too large. In that case, the set
4409  * value will be stored in set->queue_depth.
4410  */
4411 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4412 {
4413 	int i, ret;
4414 
4415 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4416 
4417 	if (!set->nr_hw_queues)
4418 		return -EINVAL;
4419 	if (!set->queue_depth)
4420 		return -EINVAL;
4421 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4422 		return -EINVAL;
4423 
4424 	if (!set->ops->queue_rq)
4425 		return -EINVAL;
4426 
4427 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4428 		return -EINVAL;
4429 
4430 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4431 		pr_info("blk-mq: reduced tag depth to %u\n",
4432 			BLK_MQ_MAX_DEPTH);
4433 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4434 	}
4435 
4436 	if (!set->nr_maps)
4437 		set->nr_maps = 1;
4438 	else if (set->nr_maps > HCTX_MAX_TYPES)
4439 		return -EINVAL;
4440 
4441 	/*
4442 	 * If a crashdump is active, then we are potentially in a very
4443 	 * memory constrained environment. Limit us to 1 queue and
4444 	 * 64 tags to prevent using too much memory.
4445 	 */
4446 	if (is_kdump_kernel()) {
4447 		set->nr_hw_queues = 1;
4448 		set->nr_maps = 1;
4449 		set->queue_depth = min(64U, set->queue_depth);
4450 	}
4451 	/*
4452 	 * There is no use for more h/w queues than cpus if we just have
4453 	 * a single map
4454 	 */
4455 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4456 		set->nr_hw_queues = nr_cpu_ids;
4457 
4458 	if (set->flags & BLK_MQ_F_BLOCKING) {
4459 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4460 		if (!set->srcu)
4461 			return -ENOMEM;
4462 		ret = init_srcu_struct(set->srcu);
4463 		if (ret)
4464 			goto out_free_srcu;
4465 	}
4466 
4467 	ret = -ENOMEM;
4468 	set->tags = kcalloc_node(set->nr_hw_queues,
4469 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4470 				 set->numa_node);
4471 	if (!set->tags)
4472 		goto out_cleanup_srcu;
4473 
4474 	for (i = 0; i < set->nr_maps; i++) {
4475 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4476 						  sizeof(set->map[i].mq_map[0]),
4477 						  GFP_KERNEL, set->numa_node);
4478 		if (!set->map[i].mq_map)
4479 			goto out_free_mq_map;
4480 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4481 	}
4482 
4483 	blk_mq_update_queue_map(set);
4484 
4485 	ret = blk_mq_alloc_set_map_and_rqs(set);
4486 	if (ret)
4487 		goto out_free_mq_map;
4488 
4489 	mutex_init(&set->tag_list_lock);
4490 	INIT_LIST_HEAD(&set->tag_list);
4491 
4492 	return 0;
4493 
4494 out_free_mq_map:
4495 	for (i = 0; i < set->nr_maps; i++) {
4496 		kfree(set->map[i].mq_map);
4497 		set->map[i].mq_map = NULL;
4498 	}
4499 	kfree(set->tags);
4500 	set->tags = NULL;
4501 out_cleanup_srcu:
4502 	if (set->flags & BLK_MQ_F_BLOCKING)
4503 		cleanup_srcu_struct(set->srcu);
4504 out_free_srcu:
4505 	if (set->flags & BLK_MQ_F_BLOCKING)
4506 		kfree(set->srcu);
4507 	return ret;
4508 }
4509 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4510 
4511 /* allocate and initialize a tagset for a simple single-queue device */
4512 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4513 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4514 		unsigned int set_flags)
4515 {
4516 	memset(set, 0, sizeof(*set));
4517 	set->ops = ops;
4518 	set->nr_hw_queues = 1;
4519 	set->nr_maps = 1;
4520 	set->queue_depth = queue_depth;
4521 	set->numa_node = NUMA_NO_NODE;
4522 	set->flags = set_flags;
4523 	return blk_mq_alloc_tag_set(set);
4524 }
4525 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4526 
4527 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4528 {
4529 	int i, j;
4530 
4531 	for (i = 0; i < set->nr_hw_queues; i++)
4532 		__blk_mq_free_map_and_rqs(set, i);
4533 
4534 	if (blk_mq_is_shared_tags(set->flags)) {
4535 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4536 					BLK_MQ_NO_HCTX_IDX);
4537 	}
4538 
4539 	for (j = 0; j < set->nr_maps; j++) {
4540 		kfree(set->map[j].mq_map);
4541 		set->map[j].mq_map = NULL;
4542 	}
4543 
4544 	kfree(set->tags);
4545 	set->tags = NULL;
4546 	if (set->flags & BLK_MQ_F_BLOCKING) {
4547 		cleanup_srcu_struct(set->srcu);
4548 		kfree(set->srcu);
4549 	}
4550 }
4551 EXPORT_SYMBOL(blk_mq_free_tag_set);
4552 
4553 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4554 {
4555 	struct blk_mq_tag_set *set = q->tag_set;
4556 	struct blk_mq_hw_ctx *hctx;
4557 	int ret;
4558 	unsigned long i;
4559 
4560 	if (!set)
4561 		return -EINVAL;
4562 
4563 	if (q->nr_requests == nr)
4564 		return 0;
4565 
4566 	blk_mq_freeze_queue(q);
4567 	blk_mq_quiesce_queue(q);
4568 
4569 	ret = 0;
4570 	queue_for_each_hw_ctx(q, hctx, i) {
4571 		if (!hctx->tags)
4572 			continue;
4573 		/*
4574 		 * If we're using an MQ scheduler, just update the scheduler
4575 		 * queue depth. This is similar to what the old code would do.
4576 		 */
4577 		if (hctx->sched_tags) {
4578 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4579 						      nr, true);
4580 		} else {
4581 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4582 						      false);
4583 		}
4584 		if (ret)
4585 			break;
4586 		if (q->elevator && q->elevator->type->ops.depth_updated)
4587 			q->elevator->type->ops.depth_updated(hctx);
4588 	}
4589 	if (!ret) {
4590 		q->nr_requests = nr;
4591 		if (blk_mq_is_shared_tags(set->flags)) {
4592 			if (q->elevator)
4593 				blk_mq_tag_update_sched_shared_tags(q);
4594 			else
4595 				blk_mq_tag_resize_shared_tags(set, nr);
4596 		}
4597 	}
4598 
4599 	blk_mq_unquiesce_queue(q);
4600 	blk_mq_unfreeze_queue(q);
4601 
4602 	return ret;
4603 }
4604 
4605 /*
4606  * request_queue and elevator_type pair.
4607  * It is just used by __blk_mq_update_nr_hw_queues to cache
4608  * the elevator_type associated with a request_queue.
4609  */
4610 struct blk_mq_qe_pair {
4611 	struct list_head node;
4612 	struct request_queue *q;
4613 	struct elevator_type *type;
4614 };
4615 
4616 /*
4617  * Cache the elevator_type in qe pair list and switch the
4618  * io scheduler to 'none'
4619  */
4620 static bool blk_mq_elv_switch_none(struct list_head *head,
4621 		struct request_queue *q)
4622 {
4623 	struct blk_mq_qe_pair *qe;
4624 
4625 	if (!q->elevator)
4626 		return true;
4627 
4628 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4629 	if (!qe)
4630 		return false;
4631 
4632 	/* q->elevator needs protection from ->sysfs_lock */
4633 	mutex_lock(&q->sysfs_lock);
4634 
4635 	INIT_LIST_HEAD(&qe->node);
4636 	qe->q = q;
4637 	qe->type = q->elevator->type;
4638 	/* keep a reference to the elevator module as we'll switch back */
4639 	__elevator_get(qe->type);
4640 	list_add(&qe->node, head);
4641 	elevator_disable(q);
4642 	mutex_unlock(&q->sysfs_lock);
4643 
4644 	return true;
4645 }
4646 
4647 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4648 						struct request_queue *q)
4649 {
4650 	struct blk_mq_qe_pair *qe;
4651 
4652 	list_for_each_entry(qe, head, node)
4653 		if (qe->q == q)
4654 			return qe;
4655 
4656 	return NULL;
4657 }
4658 
4659 static void blk_mq_elv_switch_back(struct list_head *head,
4660 				  struct request_queue *q)
4661 {
4662 	struct blk_mq_qe_pair *qe;
4663 	struct elevator_type *t;
4664 
4665 	qe = blk_lookup_qe_pair(head, q);
4666 	if (!qe)
4667 		return;
4668 	t = qe->type;
4669 	list_del(&qe->node);
4670 	kfree(qe);
4671 
4672 	mutex_lock(&q->sysfs_lock);
4673 	elevator_switch(q, t);
4674 	/* drop the reference acquired in blk_mq_elv_switch_none */
4675 	elevator_put(t);
4676 	mutex_unlock(&q->sysfs_lock);
4677 }
4678 
4679 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4680 							int nr_hw_queues)
4681 {
4682 	struct request_queue *q;
4683 	LIST_HEAD(head);
4684 	int prev_nr_hw_queues;
4685 
4686 	lockdep_assert_held(&set->tag_list_lock);
4687 
4688 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4689 		nr_hw_queues = nr_cpu_ids;
4690 	if (nr_hw_queues < 1)
4691 		return;
4692 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4693 		return;
4694 
4695 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4696 		blk_mq_freeze_queue(q);
4697 	/*
4698 	 * Switch IO scheduler to 'none', cleaning up the data associated
4699 	 * with the previous scheduler. We will switch back once we are done
4700 	 * updating the new sw to hw queue mappings.
4701 	 */
4702 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4703 		if (!blk_mq_elv_switch_none(&head, q))
4704 			goto switch_back;
4705 
4706 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4707 		blk_mq_debugfs_unregister_hctxs(q);
4708 		blk_mq_sysfs_unregister_hctxs(q);
4709 	}
4710 
4711 	prev_nr_hw_queues = set->nr_hw_queues;
4712 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4713 		goto reregister;
4714 
4715 fallback:
4716 	blk_mq_update_queue_map(set);
4717 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4718 		blk_mq_realloc_hw_ctxs(set, q);
4719 		blk_mq_update_poll_flag(q);
4720 		if (q->nr_hw_queues != set->nr_hw_queues) {
4721 			int i = prev_nr_hw_queues;
4722 
4723 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4724 					nr_hw_queues, prev_nr_hw_queues);
4725 			for (; i < set->nr_hw_queues; i++)
4726 				__blk_mq_free_map_and_rqs(set, i);
4727 
4728 			set->nr_hw_queues = prev_nr_hw_queues;
4729 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4730 			goto fallback;
4731 		}
4732 		blk_mq_map_swqueue(q);
4733 	}
4734 
4735 reregister:
4736 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4737 		blk_mq_sysfs_register_hctxs(q);
4738 		blk_mq_debugfs_register_hctxs(q);
4739 	}
4740 
4741 switch_back:
4742 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4743 		blk_mq_elv_switch_back(&head, q);
4744 
4745 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4746 		blk_mq_unfreeze_queue(q);
4747 }
4748 
4749 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4750 {
4751 	mutex_lock(&set->tag_list_lock);
4752 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4753 	mutex_unlock(&set->tag_list_lock);
4754 }
4755 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4756 
4757 /* Enable polling stats and return whether they were already enabled. */
4758 static bool blk_poll_stats_enable(struct request_queue *q)
4759 {
4760 	if (q->poll_stat)
4761 		return true;
4762 
4763 	return blk_stats_alloc_enable(q);
4764 }
4765 
4766 static void blk_mq_poll_stats_start(struct request_queue *q)
4767 {
4768 	/*
4769 	 * We don't arm the callback if polling stats are not enabled or the
4770 	 * callback is already active.
4771 	 */
4772 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4773 		return;
4774 
4775 	blk_stat_activate_msecs(q->poll_cb, 100);
4776 }
4777 
4778 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4779 {
4780 	struct request_queue *q = cb->data;
4781 	int bucket;
4782 
4783 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4784 		if (cb->stat[bucket].nr_samples)
4785 			q->poll_stat[bucket] = cb->stat[bucket];
4786 	}
4787 }
4788 
4789 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4790 				       struct request *rq)
4791 {
4792 	unsigned long ret = 0;
4793 	int bucket;
4794 
4795 	/*
4796 	 * If stats collection isn't on, don't sleep but turn it on for
4797 	 * future users
4798 	 */
4799 	if (!blk_poll_stats_enable(q))
4800 		return 0;
4801 
4802 	/*
4803 	 * As an optimistic guess, use half of the mean service time
4804 	 * for this type of request. We can (and should) make this smarter.
4805 	 * For instance, if the completion latencies are tight, we can
4806 	 * get closer than just half the mean. This is especially
4807 	 * important on devices where the completion latencies are longer
4808 	 * than ~10 usec. We do use the stats for the relevant IO size
4809 	 * if available which does lead to better estimates.
4810 	 */
4811 	bucket = blk_mq_poll_stats_bkt(rq);
4812 	if (bucket < 0)
4813 		return ret;
4814 
4815 	if (q->poll_stat[bucket].nr_samples)
4816 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4817 
4818 	return ret;
4819 }
4820 
4821 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4822 {
4823 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4824 	struct request *rq = blk_qc_to_rq(hctx, qc);
4825 	struct hrtimer_sleeper hs;
4826 	enum hrtimer_mode mode;
4827 	unsigned int nsecs;
4828 	ktime_t kt;
4829 
4830 	/*
4831 	 * If a request has completed on queue that uses an I/O scheduler, we
4832 	 * won't get back a request from blk_qc_to_rq.
4833 	 */
4834 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4835 		return false;
4836 
4837 	/*
4838 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4839 	 *
4840 	 *  0:	use half of prev avg
4841 	 * >0:	use this specific value
4842 	 */
4843 	if (q->poll_nsec > 0)
4844 		nsecs = q->poll_nsec;
4845 	else
4846 		nsecs = blk_mq_poll_nsecs(q, rq);
4847 
4848 	if (!nsecs)
4849 		return false;
4850 
4851 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4852 
4853 	/*
4854 	 * This will be replaced with the stats tracking code, using
4855 	 * 'avg_completion_time / 2' as the pre-sleep target.
4856 	 */
4857 	kt = nsecs;
4858 
4859 	mode = HRTIMER_MODE_REL;
4860 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4861 	hrtimer_set_expires(&hs.timer, kt);
4862 
4863 	do {
4864 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4865 			break;
4866 		set_current_state(TASK_UNINTERRUPTIBLE);
4867 		hrtimer_sleeper_start_expires(&hs, mode);
4868 		if (hs.task)
4869 			io_schedule();
4870 		hrtimer_cancel(&hs.timer);
4871 		mode = HRTIMER_MODE_ABS;
4872 	} while (hs.task && !signal_pending(current));
4873 
4874 	__set_current_state(TASK_RUNNING);
4875 	destroy_hrtimer_on_stack(&hs.timer);
4876 
4877 	/*
4878 	 * If we sleep, have the caller restart the poll loop to reset the
4879 	 * state.  Like for the other success return cases, the caller is
4880 	 * responsible for checking if the IO completed.  If the IO isn't
4881 	 * complete, we'll get called again and will go straight to the busy
4882 	 * poll loop.
4883 	 */
4884 	return true;
4885 }
4886 
4887 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4888 			       struct io_comp_batch *iob, unsigned int flags)
4889 {
4890 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4891 	long state = get_current_state();
4892 	int ret;
4893 
4894 	do {
4895 		ret = q->mq_ops->poll(hctx, iob);
4896 		if (ret > 0) {
4897 			__set_current_state(TASK_RUNNING);
4898 			return ret;
4899 		}
4900 
4901 		if (signal_pending_state(state, current))
4902 			__set_current_state(TASK_RUNNING);
4903 		if (task_is_running(current))
4904 			return 1;
4905 
4906 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4907 			break;
4908 		cpu_relax();
4909 	} while (!need_resched());
4910 
4911 	__set_current_state(TASK_RUNNING);
4912 	return 0;
4913 }
4914 
4915 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4916 		unsigned int flags)
4917 {
4918 	if (!(flags & BLK_POLL_NOSLEEP) &&
4919 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4920 		if (blk_mq_poll_hybrid(q, cookie))
4921 			return 1;
4922 	}
4923 	return blk_mq_poll_classic(q, cookie, iob, flags);
4924 }
4925 
4926 unsigned int blk_mq_rq_cpu(struct request *rq)
4927 {
4928 	return rq->mq_ctx->cpu;
4929 }
4930 EXPORT_SYMBOL(blk_mq_rq_cpu);
4931 
4932 void blk_mq_cancel_work_sync(struct request_queue *q)
4933 {
4934 	struct blk_mq_hw_ctx *hctx;
4935 	unsigned long i;
4936 
4937 	cancel_delayed_work_sync(&q->requeue_work);
4938 
4939 	queue_for_each_hw_ctx(q, hctx, i)
4940 		cancel_delayed_work_sync(&hctx->run_work);
4941 }
4942 
4943 static int __init blk_mq_init(void)
4944 {
4945 	int i;
4946 
4947 	for_each_possible_cpu(i)
4948 		init_llist_head(&per_cpu(blk_cpu_done, i));
4949 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4950 
4951 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4952 				  "block/softirq:dead", NULL,
4953 				  blk_softirq_cpu_dead);
4954 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4955 				blk_mq_hctx_notify_dead);
4956 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4957 				blk_mq_hctx_notify_online,
4958 				blk_mq_hctx_notify_offline);
4959 	return 0;
4960 }
4961 subsys_initcall(blk_mq_init);
4962