xref: /linux/block/blk-mq.c (revision 45de28e31a6e250cd9e17c8b9f9db5a439fb39b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if (rq->part == mi->part)
109 		mi->inflight[rq_data_dir(rq)]++;
110 
111 	return true;
112 }
113 
114 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115 {
116 	struct mq_inflight mi = { .part = part };
117 
118 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 
120 	return mi.inflight[0] + mi.inflight[1];
121 }
122 
123 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 			 unsigned int inflight[2])
125 {
126 	struct mq_inflight mi = { .part = part };
127 
128 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 	inflight[0] = mi.inflight[0];
130 	inflight[1] = mi.inflight[1];
131 }
132 
133 void blk_freeze_queue_start(struct request_queue *q)
134 {
135 	mutex_lock(&q->mq_freeze_lock);
136 	if (++q->mq_freeze_depth == 1) {
137 		percpu_ref_kill(&q->q_usage_counter);
138 		mutex_unlock(&q->mq_freeze_lock);
139 		if (queue_is_mq(q))
140 			blk_mq_run_hw_queues(q, false);
141 	} else {
142 		mutex_unlock(&q->mq_freeze_lock);
143 	}
144 }
145 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146 
147 void blk_mq_freeze_queue_wait(struct request_queue *q)
148 {
149 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152 
153 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 				     unsigned long timeout)
155 {
156 	return wait_event_timeout(q->mq_freeze_wq,
157 					percpu_ref_is_zero(&q->q_usage_counter),
158 					timeout);
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161 
162 /*
163  * Guarantee no request is in use, so we can change any data structure of
164  * the queue afterward.
165  */
166 void blk_freeze_queue(struct request_queue *q)
167 {
168 	/*
169 	 * In the !blk_mq case we are only calling this to kill the
170 	 * q_usage_counter, otherwise this increases the freeze depth
171 	 * and waits for it to return to zero.  For this reason there is
172 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 	 * exported to drivers as the only user for unfreeze is blk_mq.
174 	 */
175 	blk_freeze_queue_start(q);
176 	blk_mq_freeze_queue_wait(q);
177 }
178 
179 void blk_mq_freeze_queue(struct request_queue *q)
180 {
181 	/*
182 	 * ...just an alias to keep freeze and unfreeze actions balanced
183 	 * in the blk_mq_* namespace
184 	 */
185 	blk_freeze_queue(q);
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188 
189 void blk_mq_unfreeze_queue(struct request_queue *q)
190 {
191 	mutex_lock(&q->mq_freeze_lock);
192 	q->mq_freeze_depth--;
193 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 	if (!q->mq_freeze_depth) {
195 		percpu_ref_resurrect(&q->q_usage_counter);
196 		wake_up_all(&q->mq_freeze_wq);
197 	}
198 	mutex_unlock(&q->mq_freeze_lock);
199 }
200 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201 
202 /*
203  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204  * mpt3sas driver such that this function can be removed.
205  */
206 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 {
208 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211 
212 /**
213  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214  * @q: request queue.
215  *
216  * Note: this function does not prevent that the struct request end_io()
217  * callback function is invoked. Once this function is returned, we make
218  * sure no dispatch can happen until the queue is unquiesced via
219  * blk_mq_unquiesce_queue().
220  */
221 void blk_mq_quiesce_queue(struct request_queue *q)
222 {
223 	struct blk_mq_hw_ctx *hctx;
224 	unsigned int i;
225 	bool rcu = false;
226 
227 	blk_mq_quiesce_queue_nowait(q);
228 
229 	queue_for_each_hw_ctx(q, hctx, i) {
230 		if (hctx->flags & BLK_MQ_F_BLOCKING)
231 			synchronize_srcu(hctx->srcu);
232 		else
233 			rcu = true;
234 	}
235 	if (rcu)
236 		synchronize_rcu();
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239 
240 /*
241  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242  * @q: request queue.
243  *
244  * This function recovers queue into the state before quiescing
245  * which is done by blk_mq_quiesce_queue.
246  */
247 void blk_mq_unquiesce_queue(struct request_queue *q)
248 {
249 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250 
251 	/* dispatch requests which are inserted during quiescing */
252 	blk_mq_run_hw_queues(q, true);
253 }
254 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255 
256 void blk_mq_wake_waiters(struct request_queue *q)
257 {
258 	struct blk_mq_hw_ctx *hctx;
259 	unsigned int i;
260 
261 	queue_for_each_hw_ctx(q, hctx, i)
262 		if (blk_mq_hw_queue_mapped(hctx))
263 			blk_mq_tag_wakeup_all(hctx->tags, true);
264 }
265 
266 /*
267  * Only need start/end time stamping if we have iostat or
268  * blk stats enabled, or using an IO scheduler.
269  */
270 static inline bool blk_mq_need_time_stamp(struct request *rq)
271 {
272 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273 }
274 
275 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 		unsigned int tag, u64 alloc_time_ns)
277 {
278 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 	struct request *rq = tags->static_rqs[tag];
280 
281 	if (data->q->elevator) {
282 		rq->tag = BLK_MQ_NO_TAG;
283 		rq->internal_tag = tag;
284 	} else {
285 		rq->tag = tag;
286 		rq->internal_tag = BLK_MQ_NO_TAG;
287 	}
288 
289 	/* csd/requeue_work/fifo_time is initialized before use */
290 	rq->q = data->q;
291 	rq->mq_ctx = data->ctx;
292 	rq->mq_hctx = data->hctx;
293 	rq->rq_flags = 0;
294 	rq->cmd_flags = data->cmd_flags;
295 	if (data->flags & BLK_MQ_REQ_PREEMPT)
296 		rq->rq_flags |= RQF_PREEMPT;
297 	if (blk_queue_io_stat(data->q))
298 		rq->rq_flags |= RQF_IO_STAT;
299 	INIT_LIST_HEAD(&rq->queuelist);
300 	INIT_HLIST_NODE(&rq->hash);
301 	RB_CLEAR_NODE(&rq->rb_node);
302 	rq->rq_disk = NULL;
303 	rq->part = NULL;
304 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 	rq->alloc_time_ns = alloc_time_ns;
306 #endif
307 	if (blk_mq_need_time_stamp(rq))
308 		rq->start_time_ns = ktime_get_ns();
309 	else
310 		rq->start_time_ns = 0;
311 	rq->io_start_time_ns = 0;
312 	rq->stats_sectors = 0;
313 	rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 	rq->nr_integrity_segments = 0;
316 #endif
317 	blk_crypto_rq_set_defaults(rq);
318 	/* tag was already set */
319 	WRITE_ONCE(rq->deadline, 0);
320 
321 	rq->timeout = 0;
322 
323 	rq->end_io = NULL;
324 	rq->end_io_data = NULL;
325 
326 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 	refcount_set(&rq->ref, 1);
328 
329 	if (!op_is_flush(data->cmd_flags)) {
330 		struct elevator_queue *e = data->q->elevator;
331 
332 		rq->elv.icq = NULL;
333 		if (e && e->type->ops.prepare_request) {
334 			if (e->type->icq_cache)
335 				blk_mq_sched_assign_ioc(rq);
336 
337 			e->type->ops.prepare_request(rq);
338 			rq->rq_flags |= RQF_ELVPRIV;
339 		}
340 	}
341 
342 	data->hctx->queued++;
343 	return rq;
344 }
345 
346 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347 {
348 	struct request_queue *q = data->q;
349 	struct elevator_queue *e = q->elevator;
350 	u64 alloc_time_ns = 0;
351 	unsigned int tag;
352 
353 	/* alloc_time includes depth and tag waits */
354 	if (blk_queue_rq_alloc_time(q))
355 		alloc_time_ns = ktime_get_ns();
356 
357 	if (data->cmd_flags & REQ_NOWAIT)
358 		data->flags |= BLK_MQ_REQ_NOWAIT;
359 
360 	if (e) {
361 		/*
362 		 * Flush requests are special and go directly to the
363 		 * dispatch list. Don't include reserved tags in the
364 		 * limiting, as it isn't useful.
365 		 */
366 		if (!op_is_flush(data->cmd_flags) &&
367 		    e->type->ops.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.limit_depth(data->cmd_flags, data);
370 	}
371 
372 retry:
373 	data->ctx = blk_mq_get_ctx(q);
374 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 	if (!e)
376 		blk_mq_tag_busy(data->hctx);
377 
378 	/*
379 	 * Waiting allocations only fail because of an inactive hctx.  In that
380 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 	 * should have migrated us to an online CPU by now.
382 	 */
383 	tag = blk_mq_get_tag(data);
384 	if (tag == BLK_MQ_NO_TAG) {
385 		if (data->flags & BLK_MQ_REQ_NOWAIT)
386 			return NULL;
387 
388 		/*
389 		 * Give up the CPU and sleep for a random short time to ensure
390 		 * that thread using a realtime scheduling class are migrated
391 		 * off the CPU, and thus off the hctx that is going away.
392 		 */
393 		msleep(3);
394 		goto retry;
395 	}
396 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397 }
398 
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data data = {
403 		.q		= q,
404 		.flags		= flags,
405 		.cmd_flags	= op,
406 	};
407 	struct request *rq;
408 	int ret;
409 
410 	ret = blk_queue_enter(q, flags);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	rq = __blk_mq_alloc_request(&data);
415 	if (!rq)
416 		goto out_queue_exit;
417 	rq->__data_len = 0;
418 	rq->__sector = (sector_t) -1;
419 	rq->bio = rq->biotail = NULL;
420 	return rq;
421 out_queue_exit:
422 	blk_queue_exit(q);
423 	return ERR_PTR(-EWOULDBLOCK);
424 }
425 EXPORT_SYMBOL(blk_mq_alloc_request);
426 
427 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429 {
430 	struct blk_mq_alloc_data data = {
431 		.q		= q,
432 		.flags		= flags,
433 		.cmd_flags	= op,
434 	};
435 	u64 alloc_time_ns = 0;
436 	unsigned int cpu;
437 	unsigned int tag;
438 	int ret;
439 
440 	/* alloc_time includes depth and tag waits */
441 	if (blk_queue_rq_alloc_time(q))
442 		alloc_time_ns = ktime_get_ns();
443 
444 	/*
445 	 * If the tag allocator sleeps we could get an allocation for a
446 	 * different hardware context.  No need to complicate the low level
447 	 * allocator for this for the rare use case of a command tied to
448 	 * a specific queue.
449 	 */
450 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 		return ERR_PTR(-EINVAL);
452 
453 	if (hctx_idx >= q->nr_hw_queues)
454 		return ERR_PTR(-EIO);
455 
456 	ret = blk_queue_enter(q, flags);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	/*
461 	 * Check if the hardware context is actually mapped to anything.
462 	 * If not tell the caller that it should skip this queue.
463 	 */
464 	ret = -EXDEV;
465 	data.hctx = q->queue_hw_ctx[hctx_idx];
466 	if (!blk_mq_hw_queue_mapped(data.hctx))
467 		goto out_queue_exit;
468 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 	data.ctx = __blk_mq_get_ctx(q, cpu);
470 
471 	if (!q->elevator)
472 		blk_mq_tag_busy(data.hctx);
473 
474 	ret = -EWOULDBLOCK;
475 	tag = blk_mq_get_tag(&data);
476 	if (tag == BLK_MQ_NO_TAG)
477 		goto out_queue_exit;
478 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479 
480 out_queue_exit:
481 	blk_queue_exit(q);
482 	return ERR_PTR(ret);
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485 
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct blk_mq_ctx *ctx = rq->mq_ctx;
490 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 	const int sched_tag = rq->internal_tag;
492 
493 	blk_crypto_free_request(rq);
494 	blk_pm_mark_last_busy(rq);
495 	rq->mq_hctx = NULL;
496 	if (rq->tag != BLK_MQ_NO_TAG)
497 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 	if (sched_tag != BLK_MQ_NO_TAG)
499 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 	blk_mq_sched_restart(hctx);
501 	blk_queue_exit(q);
502 }
503 
504 void blk_mq_free_request(struct request *rq)
505 {
506 	struct request_queue *q = rq->q;
507 	struct elevator_queue *e = q->elevator;
508 	struct blk_mq_ctx *ctx = rq->mq_ctx;
509 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510 
511 	if (rq->rq_flags & RQF_ELVPRIV) {
512 		if (e && e->type->ops.finish_request)
513 			e->type->ops.finish_request(rq);
514 		if (rq->elv.icq) {
515 			put_io_context(rq->elv.icq->ioc);
516 			rq->elv.icq = NULL;
517 		}
518 	}
519 
520 	ctx->rq_completed[rq_is_sync(rq)]++;
521 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 		atomic_dec(&hctx->nr_active);
523 
524 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 		laptop_io_completion(q->backing_dev_info);
526 
527 	rq_qos_done(q, rq);
528 
529 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 	if (refcount_dec_and_test(&rq->ref))
531 		__blk_mq_free_request(rq);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_free_request);
534 
535 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536 {
537 	u64 now = 0;
538 
539 	if (blk_mq_need_time_stamp(rq))
540 		now = ktime_get_ns();
541 
542 	if (rq->rq_flags & RQF_STATS) {
543 		blk_mq_poll_stats_start(rq->q);
544 		blk_stat_add(rq, now);
545 	}
546 
547 	blk_mq_sched_completed_request(rq, now);
548 
549 	blk_account_io_done(rq, now);
550 
551 	if (rq->end_io) {
552 		rq_qos_done(rq->q, rq);
553 		rq->end_io(rq, error);
554 	} else {
555 		blk_mq_free_request(rq);
556 	}
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559 
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 		BUG();
564 	__blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567 
568 /*
569  * Softirq action handler - move entries to local list and loop over them
570  * while passing them to the queue registered handler.
571  */
572 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573 {
574 	struct list_head *cpu_list, local_list;
575 
576 	local_irq_disable();
577 	cpu_list = this_cpu_ptr(&blk_cpu_done);
578 	list_replace_init(cpu_list, &local_list);
579 	local_irq_enable();
580 
581 	while (!list_empty(&local_list)) {
582 		struct request *rq;
583 
584 		rq = list_entry(local_list.next, struct request, ipi_list);
585 		list_del_init(&rq->ipi_list);
586 		rq->q->mq_ops->complete(rq);
587 	}
588 }
589 
590 static void blk_mq_trigger_softirq(struct request *rq)
591 {
592 	struct list_head *list;
593 	unsigned long flags;
594 
595 	local_irq_save(flags);
596 	list = this_cpu_ptr(&blk_cpu_done);
597 	list_add_tail(&rq->ipi_list, list);
598 
599 	/*
600 	 * If the list only contains our just added request, signal a raise of
601 	 * the softirq.  If there are already entries there, someone already
602 	 * raised the irq but it hasn't run yet.
603 	 */
604 	if (list->next == &rq->ipi_list)
605 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 	local_irq_restore(flags);
607 }
608 
609 static int blk_softirq_cpu_dead(unsigned int cpu)
610 {
611 	/*
612 	 * If a CPU goes away, splice its entries to the current CPU
613 	 * and trigger a run of the softirq
614 	 */
615 	local_irq_disable();
616 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 			 this_cpu_ptr(&blk_cpu_done));
618 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 	local_irq_enable();
620 
621 	return 0;
622 }
623 
624 
625 static void __blk_mq_complete_request_remote(void *data)
626 {
627 	struct request *rq = data;
628 
629 	/*
630 	 * For most of single queue controllers, there is only one irq vector
631 	 * for handling I/O completion, and the only irq's affinity is set
632 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
633 	 * is handled on one specific CPU.
634 	 *
635 	 * So complete I/O requests in softirq context in case of single queue
636 	 * devices to avoid degrading I/O performance due to irqsoff latency.
637 	 */
638 	if (rq->q->nr_hw_queues == 1)
639 		blk_mq_trigger_softirq(rq);
640 	else
641 		rq->q->mq_ops->complete(rq);
642 }
643 
644 static inline bool blk_mq_complete_need_ipi(struct request *rq)
645 {
646 	int cpu = raw_smp_processor_id();
647 
648 	if (!IS_ENABLED(CONFIG_SMP) ||
649 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 		return false;
651 
652 	/* same CPU or cache domain?  Complete locally */
653 	if (cpu == rq->mq_ctx->cpu ||
654 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 		return false;
657 
658 	/* don't try to IPI to an offline CPU */
659 	return cpu_online(rq->mq_ctx->cpu);
660 }
661 
662 bool blk_mq_complete_request_remote(struct request *rq)
663 {
664 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665 
666 	/*
667 	 * For a polled request, always complete locallly, it's pointless
668 	 * to redirect the completion.
669 	 */
670 	if (rq->cmd_flags & REQ_HIPRI)
671 		return false;
672 
673 	if (blk_mq_complete_need_ipi(rq)) {
674 		rq->csd.func = __blk_mq_complete_request_remote;
675 		rq->csd.info = rq;
676 		rq->csd.flags = 0;
677 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 	} else {
679 		if (rq->q->nr_hw_queues > 1)
680 			return false;
681 		blk_mq_trigger_softirq(rq);
682 	}
683 
684 	return true;
685 }
686 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687 
688 /**
689  * blk_mq_complete_request - end I/O on a request
690  * @rq:		the request being processed
691  *
692  * Description:
693  *	Complete a request by scheduling the ->complete_rq operation.
694  **/
695 void blk_mq_complete_request(struct request *rq)
696 {
697 	if (!blk_mq_complete_request_remote(rq))
698 		rq->q->mq_ops->complete(rq);
699 }
700 EXPORT_SYMBOL(blk_mq_complete_request);
701 
702 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 	__releases(hctx->srcu)
704 {
705 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 		rcu_read_unlock();
707 	else
708 		srcu_read_unlock(hctx->srcu, srcu_idx);
709 }
710 
711 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 	__acquires(hctx->srcu)
713 {
714 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 		/* shut up gcc false positive */
716 		*srcu_idx = 0;
717 		rcu_read_lock();
718 	} else
719 		*srcu_idx = srcu_read_lock(hctx->srcu);
720 }
721 
722 /**
723  * blk_mq_start_request - Start processing a request
724  * @rq: Pointer to request to be started
725  *
726  * Function used by device drivers to notify the block layer that a request
727  * is going to be processed now, so blk layer can do proper initializations
728  * such as starting the timeout timer.
729  */
730 void blk_mq_start_request(struct request *rq)
731 {
732 	struct request_queue *q = rq->q;
733 
734 	trace_block_rq_issue(q, rq);
735 
736 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 		rq->io_start_time_ns = ktime_get_ns();
738 		rq->stats_sectors = blk_rq_sectors(rq);
739 		rq->rq_flags |= RQF_STATS;
740 		rq_qos_issue(q, rq);
741 	}
742 
743 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744 
745 	blk_add_timer(rq);
746 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747 
748 #ifdef CONFIG_BLK_DEV_INTEGRITY
749 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 		q->integrity.profile->prepare_fn(rq);
751 #endif
752 }
753 EXPORT_SYMBOL(blk_mq_start_request);
754 
755 static void __blk_mq_requeue_request(struct request *rq)
756 {
757 	struct request_queue *q = rq->q;
758 
759 	blk_mq_put_driver_tag(rq);
760 
761 	trace_block_rq_requeue(q, rq);
762 	rq_qos_requeue(q, rq);
763 
764 	if (blk_mq_request_started(rq)) {
765 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 		rq->rq_flags &= ~RQF_TIMED_OUT;
767 	}
768 }
769 
770 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771 {
772 	__blk_mq_requeue_request(rq);
773 
774 	/* this request will be re-inserted to io scheduler queue */
775 	blk_mq_sched_requeue_request(rq);
776 
777 	BUG_ON(!list_empty(&rq->queuelist));
778 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779 }
780 EXPORT_SYMBOL(blk_mq_requeue_request);
781 
782 static void blk_mq_requeue_work(struct work_struct *work)
783 {
784 	struct request_queue *q =
785 		container_of(work, struct request_queue, requeue_work.work);
786 	LIST_HEAD(rq_list);
787 	struct request *rq, *next;
788 
789 	spin_lock_irq(&q->requeue_lock);
790 	list_splice_init(&q->requeue_list, &rq_list);
791 	spin_unlock_irq(&q->requeue_lock);
792 
793 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 			continue;
796 
797 		rq->rq_flags &= ~RQF_SOFTBARRIER;
798 		list_del_init(&rq->queuelist);
799 		/*
800 		 * If RQF_DONTPREP, rq has contained some driver specific
801 		 * data, so insert it to hctx dispatch list to avoid any
802 		 * merge.
803 		 */
804 		if (rq->rq_flags & RQF_DONTPREP)
805 			blk_mq_request_bypass_insert(rq, false, false);
806 		else
807 			blk_mq_sched_insert_request(rq, true, false, false);
808 	}
809 
810 	while (!list_empty(&rq_list)) {
811 		rq = list_entry(rq_list.next, struct request, queuelist);
812 		list_del_init(&rq->queuelist);
813 		blk_mq_sched_insert_request(rq, false, false, false);
814 	}
815 
816 	blk_mq_run_hw_queues(q, false);
817 }
818 
819 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 				bool kick_requeue_list)
821 {
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	/*
826 	 * We abuse this flag that is otherwise used by the I/O scheduler to
827 	 * request head insertion from the workqueue.
828 	 */
829 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830 
831 	spin_lock_irqsave(&q->requeue_lock, flags);
832 	if (at_head) {
833 		rq->rq_flags |= RQF_SOFTBARRIER;
834 		list_add(&rq->queuelist, &q->requeue_list);
835 	} else {
836 		list_add_tail(&rq->queuelist, &q->requeue_list);
837 	}
838 	spin_unlock_irqrestore(&q->requeue_lock, flags);
839 
840 	if (kick_requeue_list)
841 		blk_mq_kick_requeue_list(q);
842 }
843 
844 void blk_mq_kick_requeue_list(struct request_queue *q)
845 {
846 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847 }
848 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849 
850 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 				    unsigned long msecs)
852 {
853 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 				    msecs_to_jiffies(msecs));
855 }
856 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857 
858 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859 {
860 	if (tag < tags->nr_tags) {
861 		prefetch(tags->rqs[tag]);
862 		return tags->rqs[tag];
863 	}
864 
865 	return NULL;
866 }
867 EXPORT_SYMBOL(blk_mq_tag_to_rq);
868 
869 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 			       void *priv, bool reserved)
871 {
872 	/*
873 	 * If we find a request that isn't idle and the queue matches,
874 	 * we know the queue is busy. Return false to stop the iteration.
875 	 */
876 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 		bool *busy = priv;
878 
879 		*busy = true;
880 		return false;
881 	}
882 
883 	return true;
884 }
885 
886 bool blk_mq_queue_inflight(struct request_queue *q)
887 {
888 	bool busy = false;
889 
890 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 	return busy;
892 }
893 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894 
895 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896 {
897 	req->rq_flags |= RQF_TIMED_OUT;
898 	if (req->q->mq_ops->timeout) {
899 		enum blk_eh_timer_return ret;
900 
901 		ret = req->q->mq_ops->timeout(req, reserved);
902 		if (ret == BLK_EH_DONE)
903 			return;
904 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 	}
906 
907 	blk_add_timer(req);
908 }
909 
910 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911 {
912 	unsigned long deadline;
913 
914 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 		return false;
916 	if (rq->rq_flags & RQF_TIMED_OUT)
917 		return false;
918 
919 	deadline = READ_ONCE(rq->deadline);
920 	if (time_after_eq(jiffies, deadline))
921 		return true;
922 
923 	if (*next == 0)
924 		*next = deadline;
925 	else if (time_after(*next, deadline))
926 		*next = deadline;
927 	return false;
928 }
929 
930 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 		struct request *rq, void *priv, bool reserved)
932 {
933 	unsigned long *next = priv;
934 
935 	/*
936 	 * Just do a quick check if it is expired before locking the request in
937 	 * so we're not unnecessarilly synchronizing across CPUs.
938 	 */
939 	if (!blk_mq_req_expired(rq, next))
940 		return true;
941 
942 	/*
943 	 * We have reason to believe the request may be expired. Take a
944 	 * reference on the request to lock this request lifetime into its
945 	 * currently allocated context to prevent it from being reallocated in
946 	 * the event the completion by-passes this timeout handler.
947 	 *
948 	 * If the reference was already released, then the driver beat the
949 	 * timeout handler to posting a natural completion.
950 	 */
951 	if (!refcount_inc_not_zero(&rq->ref))
952 		return true;
953 
954 	/*
955 	 * The request is now locked and cannot be reallocated underneath the
956 	 * timeout handler's processing. Re-verify this exact request is truly
957 	 * expired; if it is not expired, then the request was completed and
958 	 * reallocated as a new request.
959 	 */
960 	if (blk_mq_req_expired(rq, next))
961 		blk_mq_rq_timed_out(rq, reserved);
962 
963 	if (is_flush_rq(rq, hctx))
964 		rq->end_io(rq, 0);
965 	else if (refcount_dec_and_test(&rq->ref))
966 		__blk_mq_free_request(rq);
967 
968 	return true;
969 }
970 
971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 	struct request_queue *q =
974 		container_of(work, struct request_queue, timeout_work);
975 	unsigned long next = 0;
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	/* A deadlock might occur if a request is stuck requiring a
980 	 * timeout at the same time a queue freeze is waiting
981 	 * completion, since the timeout code would not be able to
982 	 * acquire the queue reference here.
983 	 *
984 	 * That's why we don't use blk_queue_enter here; instead, we use
985 	 * percpu_ref_tryget directly, because we need to be able to
986 	 * obtain a reference even in the short window between the queue
987 	 * starting to freeze, by dropping the first reference in
988 	 * blk_freeze_queue_start, and the moment the last request is
989 	 * consumed, marked by the instant q_usage_counter reaches
990 	 * zero.
991 	 */
992 	if (!percpu_ref_tryget(&q->q_usage_counter))
993 		return;
994 
995 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996 
997 	if (next != 0) {
998 		mod_timer(&q->timeout, next);
999 	} else {
1000 		/*
1001 		 * Request timeouts are handled as a forward rolling timer. If
1002 		 * we end up here it means that no requests are pending and
1003 		 * also that no request has been pending for a while. Mark
1004 		 * each hctx as idle.
1005 		 */
1006 		queue_for_each_hw_ctx(q, hctx, i) {
1007 			/* the hctx may be unmapped, so check it here */
1008 			if (blk_mq_hw_queue_mapped(hctx))
1009 				blk_mq_tag_idle(hctx);
1010 		}
1011 	}
1012 	blk_queue_exit(q);
1013 }
1014 
1015 struct flush_busy_ctx_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct list_head *list;
1018 };
1019 
1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 	struct flush_busy_ctx_data *flush_data = data;
1023 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 	enum hctx_type type = hctx->type;
1026 
1027 	spin_lock(&ctx->lock);
1028 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 	sbitmap_clear_bit(sb, bitnr);
1030 	spin_unlock(&ctx->lock);
1031 	return true;
1032 }
1033 
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 	struct flush_busy_ctx_data data = {
1041 		.hctx = hctx,
1042 		.list = list,
1043 	};
1044 
1045 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048 
1049 struct dispatch_rq_data {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct request *rq;
1052 };
1053 
1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 		void *data)
1056 {
1057 	struct dispatch_rq_data *dispatch_data = data;
1058 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 	enum hctx_type type = hctx->type;
1061 
1062 	spin_lock(&ctx->lock);
1063 	if (!list_empty(&ctx->rq_lists[type])) {
1064 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 		list_del_init(&dispatch_data->rq->queuelist);
1066 		if (list_empty(&ctx->rq_lists[type]))
1067 			sbitmap_clear_bit(sb, bitnr);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	return !dispatch_data->rq;
1072 }
1073 
1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 					struct blk_mq_ctx *start)
1076 {
1077 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 	struct dispatch_rq_data data = {
1079 		.hctx = hctx,
1080 		.rq   = NULL,
1081 	};
1082 
1083 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084 			       dispatch_rq_from_ctx, &data);
1085 
1086 	return data.rq;
1087 }
1088 
1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 	if (!queued)
1092 		return 0;
1093 
1094 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096 
1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1100 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 	int tag;
1102 
1103 	blk_mq_tag_busy(rq->mq_hctx);
1104 
1105 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 		bt = &rq->mq_hctx->tags->breserved_tags;
1107 		tag_offset = 0;
1108 	}
1109 
1110 	if (!hctx_may_queue(rq->mq_hctx, bt))
1111 		return false;
1112 	tag = __sbitmap_queue_get(bt);
1113 	if (tag == BLK_MQ_NO_TAG)
1114 		return false;
1115 
1116 	rq->tag = tag + tag_offset;
1117 	return true;
1118 }
1119 
1120 static bool blk_mq_get_driver_tag(struct request *rq)
1121 {
1122 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1123 
1124 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1125 		return false;
1126 
1127 	if ((hctx->flags & BLK_MQ_F_TAG_SHARED) &&
1128 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1129 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1130 		atomic_inc(&hctx->nr_active);
1131 	}
1132 	hctx->tags->rqs[rq->tag] = rq;
1133 	return true;
1134 }
1135 
1136 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1137 				int flags, void *key)
1138 {
1139 	struct blk_mq_hw_ctx *hctx;
1140 
1141 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1142 
1143 	spin_lock(&hctx->dispatch_wait_lock);
1144 	if (!list_empty(&wait->entry)) {
1145 		struct sbitmap_queue *sbq;
1146 
1147 		list_del_init(&wait->entry);
1148 		sbq = &hctx->tags->bitmap_tags;
1149 		atomic_dec(&sbq->ws_active);
1150 	}
1151 	spin_unlock(&hctx->dispatch_wait_lock);
1152 
1153 	blk_mq_run_hw_queue(hctx, true);
1154 	return 1;
1155 }
1156 
1157 /*
1158  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1160  * restart. For both cases, take care to check the condition again after
1161  * marking us as waiting.
1162  */
1163 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164 				 struct request *rq)
1165 {
1166 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1167 	struct wait_queue_head *wq;
1168 	wait_queue_entry_t *wait;
1169 	bool ret;
1170 
1171 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1172 		blk_mq_sched_mark_restart_hctx(hctx);
1173 
1174 		/*
1175 		 * It's possible that a tag was freed in the window between the
1176 		 * allocation failure and adding the hardware queue to the wait
1177 		 * queue.
1178 		 *
1179 		 * Don't clear RESTART here, someone else could have set it.
1180 		 * At most this will cost an extra queue run.
1181 		 */
1182 		return blk_mq_get_driver_tag(rq);
1183 	}
1184 
1185 	wait = &hctx->dispatch_wait;
1186 	if (!list_empty_careful(&wait->entry))
1187 		return false;
1188 
1189 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1190 
1191 	spin_lock_irq(&wq->lock);
1192 	spin_lock(&hctx->dispatch_wait_lock);
1193 	if (!list_empty(&wait->entry)) {
1194 		spin_unlock(&hctx->dispatch_wait_lock);
1195 		spin_unlock_irq(&wq->lock);
1196 		return false;
1197 	}
1198 
1199 	atomic_inc(&sbq->ws_active);
1200 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1201 	__add_wait_queue(wq, wait);
1202 
1203 	/*
1204 	 * It's possible that a tag was freed in the window between the
1205 	 * allocation failure and adding the hardware queue to the wait
1206 	 * queue.
1207 	 */
1208 	ret = blk_mq_get_driver_tag(rq);
1209 	if (!ret) {
1210 		spin_unlock(&hctx->dispatch_wait_lock);
1211 		spin_unlock_irq(&wq->lock);
1212 		return false;
1213 	}
1214 
1215 	/*
1216 	 * We got a tag, remove ourselves from the wait queue to ensure
1217 	 * someone else gets the wakeup.
1218 	 */
1219 	list_del_init(&wait->entry);
1220 	atomic_dec(&sbq->ws_active);
1221 	spin_unlock(&hctx->dispatch_wait_lock);
1222 	spin_unlock_irq(&wq->lock);
1223 
1224 	return true;
1225 }
1226 
1227 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1229 /*
1230  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1231  * - EWMA is one simple way to compute running average value
1232  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1233  * - take 4 as factor for avoiding to get too small(0) result, and this
1234  *   factor doesn't matter because EWMA decreases exponentially
1235  */
1236 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1237 {
1238 	unsigned int ewma;
1239 
1240 	if (hctx->queue->elevator)
1241 		return;
1242 
1243 	ewma = hctx->dispatch_busy;
1244 
1245 	if (!ewma && !busy)
1246 		return;
1247 
1248 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249 	if (busy)
1250 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252 
1253 	hctx->dispatch_busy = ewma;
1254 }
1255 
1256 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1257 
1258 static void blk_mq_handle_dev_resource(struct request *rq,
1259 				       struct list_head *list)
1260 {
1261 	struct request *next =
1262 		list_first_entry_or_null(list, struct request, queuelist);
1263 
1264 	/*
1265 	 * If an I/O scheduler has been configured and we got a driver tag for
1266 	 * the next request already, free it.
1267 	 */
1268 	if (next)
1269 		blk_mq_put_driver_tag(next);
1270 
1271 	list_add(&rq->queuelist, list);
1272 	__blk_mq_requeue_request(rq);
1273 }
1274 
1275 static void blk_mq_handle_zone_resource(struct request *rq,
1276 					struct list_head *zone_list)
1277 {
1278 	/*
1279 	 * If we end up here it is because we cannot dispatch a request to a
1280 	 * specific zone due to LLD level zone-write locking or other zone
1281 	 * related resource not being available. In this case, set the request
1282 	 * aside in zone_list for retrying it later.
1283 	 */
1284 	list_add(&rq->queuelist, zone_list);
1285 	__blk_mq_requeue_request(rq);
1286 }
1287 
1288 enum prep_dispatch {
1289 	PREP_DISPATCH_OK,
1290 	PREP_DISPATCH_NO_TAG,
1291 	PREP_DISPATCH_NO_BUDGET,
1292 };
1293 
1294 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295 						  bool need_budget)
1296 {
1297 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298 
1299 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300 		blk_mq_put_driver_tag(rq);
1301 		return PREP_DISPATCH_NO_BUDGET;
1302 	}
1303 
1304 	if (!blk_mq_get_driver_tag(rq)) {
1305 		/*
1306 		 * The initial allocation attempt failed, so we need to
1307 		 * rerun the hardware queue when a tag is freed. The
1308 		 * waitqueue takes care of that. If the queue is run
1309 		 * before we add this entry back on the dispatch list,
1310 		 * we'll re-run it below.
1311 		 */
1312 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313 			/*
1314 			 * All budgets not got from this function will be put
1315 			 * together during handling partial dispatch
1316 			 */
1317 			if (need_budget)
1318 				blk_mq_put_dispatch_budget(rq->q);
1319 			return PREP_DISPATCH_NO_TAG;
1320 		}
1321 	}
1322 
1323 	return PREP_DISPATCH_OK;
1324 }
1325 
1326 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1327 static void blk_mq_release_budgets(struct request_queue *q,
1328 		unsigned int nr_budgets)
1329 {
1330 	int i;
1331 
1332 	for (i = 0; i < nr_budgets; i++)
1333 		blk_mq_put_dispatch_budget(q);
1334 }
1335 
1336 /*
1337  * Returns true if we did some work AND can potentially do more.
1338  */
1339 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340 			     unsigned int nr_budgets)
1341 {
1342 	enum prep_dispatch prep;
1343 	struct request_queue *q = hctx->queue;
1344 	struct request *rq, *nxt;
1345 	int errors, queued;
1346 	blk_status_t ret = BLK_STS_OK;
1347 	LIST_HEAD(zone_list);
1348 
1349 	if (list_empty(list))
1350 		return false;
1351 
1352 	/*
1353 	 * Now process all the entries, sending them to the driver.
1354 	 */
1355 	errors = queued = 0;
1356 	do {
1357 		struct blk_mq_queue_data bd;
1358 
1359 		rq = list_first_entry(list, struct request, queuelist);
1360 
1361 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1362 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363 		if (prep != PREP_DISPATCH_OK)
1364 			break;
1365 
1366 		list_del_init(&rq->queuelist);
1367 
1368 		bd.rq = rq;
1369 
1370 		/*
1371 		 * Flag last if we have no more requests, or if we have more
1372 		 * but can't assign a driver tag to it.
1373 		 */
1374 		if (list_empty(list))
1375 			bd.last = true;
1376 		else {
1377 			nxt = list_first_entry(list, struct request, queuelist);
1378 			bd.last = !blk_mq_get_driver_tag(nxt);
1379 		}
1380 
1381 		/*
1382 		 * once the request is queued to lld, no need to cover the
1383 		 * budget any more
1384 		 */
1385 		if (nr_budgets)
1386 			nr_budgets--;
1387 		ret = q->mq_ops->queue_rq(hctx, &bd);
1388 		switch (ret) {
1389 		case BLK_STS_OK:
1390 			queued++;
1391 			break;
1392 		case BLK_STS_RESOURCE:
1393 		case BLK_STS_DEV_RESOURCE:
1394 			blk_mq_handle_dev_resource(rq, list);
1395 			goto out;
1396 		case BLK_STS_ZONE_RESOURCE:
1397 			/*
1398 			 * Move the request to zone_list and keep going through
1399 			 * the dispatch list to find more requests the drive can
1400 			 * accept.
1401 			 */
1402 			blk_mq_handle_zone_resource(rq, &zone_list);
1403 			break;
1404 		default:
1405 			errors++;
1406 			blk_mq_end_request(rq, BLK_STS_IOERR);
1407 		}
1408 	} while (!list_empty(list));
1409 out:
1410 	if (!list_empty(&zone_list))
1411 		list_splice_tail_init(&zone_list, list);
1412 
1413 	hctx->dispatched[queued_to_index(queued)]++;
1414 
1415 	/*
1416 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1417 	 * that is where we will continue on next queue run.
1418 	 */
1419 	if (!list_empty(list)) {
1420 		bool needs_restart;
1421 		/* For non-shared tags, the RESTART check will suffice */
1422 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1423                         (hctx->flags & BLK_MQ_F_TAG_SHARED);
1424 		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1425 
1426 		blk_mq_release_budgets(q, nr_budgets);
1427 
1428 		/*
1429 		 * If we didn't flush the entire list, we could have told
1430 		 * the driver there was more coming, but that turned out to
1431 		 * be a lie.
1432 		 */
1433 		if (q->mq_ops->commit_rqs && queued)
1434 			q->mq_ops->commit_rqs(hctx);
1435 
1436 		spin_lock(&hctx->lock);
1437 		list_splice_tail_init(list, &hctx->dispatch);
1438 		spin_unlock(&hctx->lock);
1439 
1440 		/*
1441 		 * If SCHED_RESTART was set by the caller of this function and
1442 		 * it is no longer set that means that it was cleared by another
1443 		 * thread and hence that a queue rerun is needed.
1444 		 *
1445 		 * If 'no_tag' is set, that means that we failed getting
1446 		 * a driver tag with an I/O scheduler attached. If our dispatch
1447 		 * waitqueue is no longer active, ensure that we run the queue
1448 		 * AFTER adding our entries back to the list.
1449 		 *
1450 		 * If no I/O scheduler has been configured it is possible that
1451 		 * the hardware queue got stopped and restarted before requests
1452 		 * were pushed back onto the dispatch list. Rerun the queue to
1453 		 * avoid starvation. Notes:
1454 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1455 		 *   been stopped before rerunning a queue.
1456 		 * - Some but not all block drivers stop a queue before
1457 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1458 		 *   and dm-rq.
1459 		 *
1460 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1461 		 * bit is set, run queue after a delay to avoid IO stalls
1462 		 * that could otherwise occur if the queue is idle.  We'll do
1463 		 * similar if we couldn't get budget and SCHED_RESTART is set.
1464 		 */
1465 		needs_restart = blk_mq_sched_needs_restart(hctx);
1466 		if (!needs_restart ||
1467 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1468 			blk_mq_run_hw_queue(hctx, true);
1469 		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1470 					   no_budget_avail))
1471 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1472 
1473 		blk_mq_update_dispatch_busy(hctx, true);
1474 		return false;
1475 	} else
1476 		blk_mq_update_dispatch_busy(hctx, false);
1477 
1478 	return (queued + errors) != 0;
1479 }
1480 
1481 /**
1482  * __blk_mq_run_hw_queue - Run a hardware queue.
1483  * @hctx: Pointer to the hardware queue to run.
1484  *
1485  * Send pending requests to the hardware.
1486  */
1487 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1488 {
1489 	int srcu_idx;
1490 
1491 	/*
1492 	 * We should be running this queue from one of the CPUs that
1493 	 * are mapped to it.
1494 	 *
1495 	 * There are at least two related races now between setting
1496 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1497 	 * __blk_mq_run_hw_queue():
1498 	 *
1499 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1500 	 *   but later it becomes online, then this warning is harmless
1501 	 *   at all
1502 	 *
1503 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1504 	 *   but later it becomes offline, then the warning can't be
1505 	 *   triggered, and we depend on blk-mq timeout handler to
1506 	 *   handle dispatched requests to this hctx
1507 	 */
1508 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1509 		cpu_online(hctx->next_cpu)) {
1510 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1511 			raw_smp_processor_id(),
1512 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1513 		dump_stack();
1514 	}
1515 
1516 	/*
1517 	 * We can't run the queue inline with ints disabled. Ensure that
1518 	 * we catch bad users of this early.
1519 	 */
1520 	WARN_ON_ONCE(in_interrupt());
1521 
1522 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1523 
1524 	hctx_lock(hctx, &srcu_idx);
1525 	blk_mq_sched_dispatch_requests(hctx);
1526 	hctx_unlock(hctx, srcu_idx);
1527 }
1528 
1529 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1530 {
1531 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1532 
1533 	if (cpu >= nr_cpu_ids)
1534 		cpu = cpumask_first(hctx->cpumask);
1535 	return cpu;
1536 }
1537 
1538 /*
1539  * It'd be great if the workqueue API had a way to pass
1540  * in a mask and had some smarts for more clever placement.
1541  * For now we just round-robin here, switching for every
1542  * BLK_MQ_CPU_WORK_BATCH queued items.
1543  */
1544 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1545 {
1546 	bool tried = false;
1547 	int next_cpu = hctx->next_cpu;
1548 
1549 	if (hctx->queue->nr_hw_queues == 1)
1550 		return WORK_CPU_UNBOUND;
1551 
1552 	if (--hctx->next_cpu_batch <= 0) {
1553 select_cpu:
1554 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1555 				cpu_online_mask);
1556 		if (next_cpu >= nr_cpu_ids)
1557 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1558 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1559 	}
1560 
1561 	/*
1562 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1563 	 * and it should only happen in the path of handling CPU DEAD.
1564 	 */
1565 	if (!cpu_online(next_cpu)) {
1566 		if (!tried) {
1567 			tried = true;
1568 			goto select_cpu;
1569 		}
1570 
1571 		/*
1572 		 * Make sure to re-select CPU next time once after CPUs
1573 		 * in hctx->cpumask become online again.
1574 		 */
1575 		hctx->next_cpu = next_cpu;
1576 		hctx->next_cpu_batch = 1;
1577 		return WORK_CPU_UNBOUND;
1578 	}
1579 
1580 	hctx->next_cpu = next_cpu;
1581 	return next_cpu;
1582 }
1583 
1584 /**
1585  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1586  * @hctx: Pointer to the hardware queue to run.
1587  * @async: If we want to run the queue asynchronously.
1588  * @msecs: Microseconds of delay to wait before running the queue.
1589  *
1590  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1591  * with a delay of @msecs.
1592  */
1593 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1594 					unsigned long msecs)
1595 {
1596 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1597 		return;
1598 
1599 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1600 		int cpu = get_cpu();
1601 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1602 			__blk_mq_run_hw_queue(hctx);
1603 			put_cpu();
1604 			return;
1605 		}
1606 
1607 		put_cpu();
1608 	}
1609 
1610 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1611 				    msecs_to_jiffies(msecs));
1612 }
1613 
1614 /**
1615  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1616  * @hctx: Pointer to the hardware queue to run.
1617  * @msecs: Microseconds of delay to wait before running the queue.
1618  *
1619  * Run a hardware queue asynchronously with a delay of @msecs.
1620  */
1621 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1622 {
1623 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1624 }
1625 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1626 
1627 /**
1628  * blk_mq_run_hw_queue - Start to run a hardware queue.
1629  * @hctx: Pointer to the hardware queue to run.
1630  * @async: If we want to run the queue asynchronously.
1631  *
1632  * Check if the request queue is not in a quiesced state and if there are
1633  * pending requests to be sent. If this is true, run the queue to send requests
1634  * to hardware.
1635  */
1636 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1637 {
1638 	int srcu_idx;
1639 	bool need_run;
1640 
1641 	/*
1642 	 * When queue is quiesced, we may be switching io scheduler, or
1643 	 * updating nr_hw_queues, or other things, and we can't run queue
1644 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1645 	 *
1646 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1647 	 * quiesced.
1648 	 */
1649 	hctx_lock(hctx, &srcu_idx);
1650 	need_run = !blk_queue_quiesced(hctx->queue) &&
1651 		blk_mq_hctx_has_pending(hctx);
1652 	hctx_unlock(hctx, srcu_idx);
1653 
1654 	if (need_run)
1655 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1656 }
1657 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1658 
1659 /**
1660  * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1661  * @q: Pointer to the request queue to run.
1662  * @async: If we want to run the queue asynchronously.
1663  */
1664 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1665 {
1666 	struct blk_mq_hw_ctx *hctx;
1667 	int i;
1668 
1669 	queue_for_each_hw_ctx(q, hctx, i) {
1670 		if (blk_mq_hctx_stopped(hctx))
1671 			continue;
1672 
1673 		blk_mq_run_hw_queue(hctx, async);
1674 	}
1675 }
1676 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1677 
1678 /**
1679  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1680  * @q: Pointer to the request queue to run.
1681  * @msecs: Microseconds of delay to wait before running the queues.
1682  */
1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1684 {
1685 	struct blk_mq_hw_ctx *hctx;
1686 	int i;
1687 
1688 	queue_for_each_hw_ctx(q, hctx, i) {
1689 		if (blk_mq_hctx_stopped(hctx))
1690 			continue;
1691 
1692 		blk_mq_delay_run_hw_queue(hctx, msecs);
1693 	}
1694 }
1695 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1696 
1697 /**
1698  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1699  * @q: request queue.
1700  *
1701  * The caller is responsible for serializing this function against
1702  * blk_mq_{start,stop}_hw_queue().
1703  */
1704 bool blk_mq_queue_stopped(struct request_queue *q)
1705 {
1706 	struct blk_mq_hw_ctx *hctx;
1707 	int i;
1708 
1709 	queue_for_each_hw_ctx(q, hctx, i)
1710 		if (blk_mq_hctx_stopped(hctx))
1711 			return true;
1712 
1713 	return false;
1714 }
1715 EXPORT_SYMBOL(blk_mq_queue_stopped);
1716 
1717 /*
1718  * This function is often used for pausing .queue_rq() by driver when
1719  * there isn't enough resource or some conditions aren't satisfied, and
1720  * BLK_STS_RESOURCE is usually returned.
1721  *
1722  * We do not guarantee that dispatch can be drained or blocked
1723  * after blk_mq_stop_hw_queue() returns. Please use
1724  * blk_mq_quiesce_queue() for that requirement.
1725  */
1726 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1727 {
1728 	cancel_delayed_work(&hctx->run_work);
1729 
1730 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1731 }
1732 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1733 
1734 /*
1735  * This function is often used for pausing .queue_rq() by driver when
1736  * there isn't enough resource or some conditions aren't satisfied, and
1737  * BLK_STS_RESOURCE is usually returned.
1738  *
1739  * We do not guarantee that dispatch can be drained or blocked
1740  * after blk_mq_stop_hw_queues() returns. Please use
1741  * blk_mq_quiesce_queue() for that requirement.
1742  */
1743 void blk_mq_stop_hw_queues(struct request_queue *q)
1744 {
1745 	struct blk_mq_hw_ctx *hctx;
1746 	int i;
1747 
1748 	queue_for_each_hw_ctx(q, hctx, i)
1749 		blk_mq_stop_hw_queue(hctx);
1750 }
1751 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1752 
1753 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1754 {
1755 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1756 
1757 	blk_mq_run_hw_queue(hctx, false);
1758 }
1759 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1760 
1761 void blk_mq_start_hw_queues(struct request_queue *q)
1762 {
1763 	struct blk_mq_hw_ctx *hctx;
1764 	int i;
1765 
1766 	queue_for_each_hw_ctx(q, hctx, i)
1767 		blk_mq_start_hw_queue(hctx);
1768 }
1769 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1770 
1771 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1772 {
1773 	if (!blk_mq_hctx_stopped(hctx))
1774 		return;
1775 
1776 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1777 	blk_mq_run_hw_queue(hctx, async);
1778 }
1779 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1780 
1781 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1782 {
1783 	struct blk_mq_hw_ctx *hctx;
1784 	int i;
1785 
1786 	queue_for_each_hw_ctx(q, hctx, i)
1787 		blk_mq_start_stopped_hw_queue(hctx, async);
1788 }
1789 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1790 
1791 static void blk_mq_run_work_fn(struct work_struct *work)
1792 {
1793 	struct blk_mq_hw_ctx *hctx;
1794 
1795 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1796 
1797 	/*
1798 	 * If we are stopped, don't run the queue.
1799 	 */
1800 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1801 		return;
1802 
1803 	__blk_mq_run_hw_queue(hctx);
1804 }
1805 
1806 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1807 					    struct request *rq,
1808 					    bool at_head)
1809 {
1810 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1811 	enum hctx_type type = hctx->type;
1812 
1813 	lockdep_assert_held(&ctx->lock);
1814 
1815 	trace_block_rq_insert(hctx->queue, rq);
1816 
1817 	if (at_head)
1818 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1819 	else
1820 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1821 }
1822 
1823 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1824 			     bool at_head)
1825 {
1826 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1827 
1828 	lockdep_assert_held(&ctx->lock);
1829 
1830 	__blk_mq_insert_req_list(hctx, rq, at_head);
1831 	blk_mq_hctx_mark_pending(hctx, ctx);
1832 }
1833 
1834 /**
1835  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1836  * @rq: Pointer to request to be inserted.
1837  * @run_queue: If we should run the hardware queue after inserting the request.
1838  *
1839  * Should only be used carefully, when the caller knows we want to
1840  * bypass a potential IO scheduler on the target device.
1841  */
1842 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1843 				  bool run_queue)
1844 {
1845 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1846 
1847 	spin_lock(&hctx->lock);
1848 	if (at_head)
1849 		list_add(&rq->queuelist, &hctx->dispatch);
1850 	else
1851 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1852 	spin_unlock(&hctx->lock);
1853 
1854 	if (run_queue)
1855 		blk_mq_run_hw_queue(hctx, false);
1856 }
1857 
1858 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1859 			    struct list_head *list)
1860 
1861 {
1862 	struct request *rq;
1863 	enum hctx_type type = hctx->type;
1864 
1865 	/*
1866 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1867 	 * offline now
1868 	 */
1869 	list_for_each_entry(rq, list, queuelist) {
1870 		BUG_ON(rq->mq_ctx != ctx);
1871 		trace_block_rq_insert(hctx->queue, rq);
1872 	}
1873 
1874 	spin_lock(&ctx->lock);
1875 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1876 	blk_mq_hctx_mark_pending(hctx, ctx);
1877 	spin_unlock(&ctx->lock);
1878 }
1879 
1880 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1881 {
1882 	struct request *rqa = container_of(a, struct request, queuelist);
1883 	struct request *rqb = container_of(b, struct request, queuelist);
1884 
1885 	if (rqa->mq_ctx != rqb->mq_ctx)
1886 		return rqa->mq_ctx > rqb->mq_ctx;
1887 	if (rqa->mq_hctx != rqb->mq_hctx)
1888 		return rqa->mq_hctx > rqb->mq_hctx;
1889 
1890 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1891 }
1892 
1893 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1894 {
1895 	LIST_HEAD(list);
1896 
1897 	if (list_empty(&plug->mq_list))
1898 		return;
1899 	list_splice_init(&plug->mq_list, &list);
1900 
1901 	if (plug->rq_count > 2 && plug->multiple_queues)
1902 		list_sort(NULL, &list, plug_rq_cmp);
1903 
1904 	plug->rq_count = 0;
1905 
1906 	do {
1907 		struct list_head rq_list;
1908 		struct request *rq, *head_rq = list_entry_rq(list.next);
1909 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1910 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1911 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1912 		unsigned int depth = 1;
1913 
1914 		list_for_each_continue(pos, &list) {
1915 			rq = list_entry_rq(pos);
1916 			BUG_ON(!rq->q);
1917 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1918 				break;
1919 			depth++;
1920 		}
1921 
1922 		list_cut_before(&rq_list, &list, pos);
1923 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1924 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1925 						from_schedule);
1926 	} while(!list_empty(&list));
1927 }
1928 
1929 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1930 		unsigned int nr_segs)
1931 {
1932 	if (bio->bi_opf & REQ_RAHEAD)
1933 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1934 
1935 	rq->__sector = bio->bi_iter.bi_sector;
1936 	rq->write_hint = bio->bi_write_hint;
1937 	blk_rq_bio_prep(rq, bio, nr_segs);
1938 	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1939 
1940 	blk_account_io_start(rq);
1941 }
1942 
1943 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1944 					    struct request *rq,
1945 					    blk_qc_t *cookie, bool last)
1946 {
1947 	struct request_queue *q = rq->q;
1948 	struct blk_mq_queue_data bd = {
1949 		.rq = rq,
1950 		.last = last,
1951 	};
1952 	blk_qc_t new_cookie;
1953 	blk_status_t ret;
1954 
1955 	new_cookie = request_to_qc_t(hctx, rq);
1956 
1957 	/*
1958 	 * For OK queue, we are done. For error, caller may kill it.
1959 	 * Any other error (busy), just add it to our list as we
1960 	 * previously would have done.
1961 	 */
1962 	ret = q->mq_ops->queue_rq(hctx, &bd);
1963 	switch (ret) {
1964 	case BLK_STS_OK:
1965 		blk_mq_update_dispatch_busy(hctx, false);
1966 		*cookie = new_cookie;
1967 		break;
1968 	case BLK_STS_RESOURCE:
1969 	case BLK_STS_DEV_RESOURCE:
1970 		blk_mq_update_dispatch_busy(hctx, true);
1971 		__blk_mq_requeue_request(rq);
1972 		break;
1973 	default:
1974 		blk_mq_update_dispatch_busy(hctx, false);
1975 		*cookie = BLK_QC_T_NONE;
1976 		break;
1977 	}
1978 
1979 	return ret;
1980 }
1981 
1982 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1983 						struct request *rq,
1984 						blk_qc_t *cookie,
1985 						bool bypass_insert, bool last)
1986 {
1987 	struct request_queue *q = rq->q;
1988 	bool run_queue = true;
1989 
1990 	/*
1991 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1992 	 *
1993 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1994 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1995 	 * and avoid driver to try to dispatch again.
1996 	 */
1997 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1998 		run_queue = false;
1999 		bypass_insert = false;
2000 		goto insert;
2001 	}
2002 
2003 	if (q->elevator && !bypass_insert)
2004 		goto insert;
2005 
2006 	if (!blk_mq_get_dispatch_budget(q))
2007 		goto insert;
2008 
2009 	if (!blk_mq_get_driver_tag(rq)) {
2010 		blk_mq_put_dispatch_budget(q);
2011 		goto insert;
2012 	}
2013 
2014 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2015 insert:
2016 	if (bypass_insert)
2017 		return BLK_STS_RESOURCE;
2018 
2019 	blk_mq_request_bypass_insert(rq, false, run_queue);
2020 	return BLK_STS_OK;
2021 }
2022 
2023 /**
2024  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2025  * @hctx: Pointer of the associated hardware queue.
2026  * @rq: Pointer to request to be sent.
2027  * @cookie: Request queue cookie.
2028  *
2029  * If the device has enough resources to accept a new request now, send the
2030  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2031  * we can try send it another time in the future. Requests inserted at this
2032  * queue have higher priority.
2033  */
2034 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2035 		struct request *rq, blk_qc_t *cookie)
2036 {
2037 	blk_status_t ret;
2038 	int srcu_idx;
2039 
2040 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2041 
2042 	hctx_lock(hctx, &srcu_idx);
2043 
2044 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2045 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2046 		blk_mq_request_bypass_insert(rq, false, true);
2047 	else if (ret != BLK_STS_OK)
2048 		blk_mq_end_request(rq, ret);
2049 
2050 	hctx_unlock(hctx, srcu_idx);
2051 }
2052 
2053 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2054 {
2055 	blk_status_t ret;
2056 	int srcu_idx;
2057 	blk_qc_t unused_cookie;
2058 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2059 
2060 	hctx_lock(hctx, &srcu_idx);
2061 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2062 	hctx_unlock(hctx, srcu_idx);
2063 
2064 	return ret;
2065 }
2066 
2067 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2068 		struct list_head *list)
2069 {
2070 	int queued = 0;
2071 
2072 	while (!list_empty(list)) {
2073 		blk_status_t ret;
2074 		struct request *rq = list_first_entry(list, struct request,
2075 				queuelist);
2076 
2077 		list_del_init(&rq->queuelist);
2078 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2079 		if (ret != BLK_STS_OK) {
2080 			if (ret == BLK_STS_RESOURCE ||
2081 					ret == BLK_STS_DEV_RESOURCE) {
2082 				blk_mq_request_bypass_insert(rq, false,
2083 							list_empty(list));
2084 				break;
2085 			}
2086 			blk_mq_end_request(rq, ret);
2087 		} else
2088 			queued++;
2089 	}
2090 
2091 	/*
2092 	 * If we didn't flush the entire list, we could have told
2093 	 * the driver there was more coming, but that turned out to
2094 	 * be a lie.
2095 	 */
2096 	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2097 		hctx->queue->mq_ops->commit_rqs(hctx);
2098 }
2099 
2100 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2101 {
2102 	list_add_tail(&rq->queuelist, &plug->mq_list);
2103 	plug->rq_count++;
2104 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2105 		struct request *tmp;
2106 
2107 		tmp = list_first_entry(&plug->mq_list, struct request,
2108 						queuelist);
2109 		if (tmp->q != rq->q)
2110 			plug->multiple_queues = true;
2111 	}
2112 }
2113 
2114 /**
2115  * blk_mq_submit_bio - Create and send a request to block device.
2116  * @bio: Bio pointer.
2117  *
2118  * Builds up a request structure from @q and @bio and send to the device. The
2119  * request may not be queued directly to hardware if:
2120  * * This request can be merged with another one
2121  * * We want to place request at plug queue for possible future merging
2122  * * There is an IO scheduler active at this queue
2123  *
2124  * It will not queue the request if there is an error with the bio, or at the
2125  * request creation.
2126  *
2127  * Returns: Request queue cookie.
2128  */
2129 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2130 {
2131 	struct request_queue *q = bio->bi_disk->queue;
2132 	const int is_sync = op_is_sync(bio->bi_opf);
2133 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2134 	struct blk_mq_alloc_data data = {
2135 		.q		= q,
2136 	};
2137 	struct request *rq;
2138 	struct blk_plug *plug;
2139 	struct request *same_queue_rq = NULL;
2140 	unsigned int nr_segs;
2141 	blk_qc_t cookie;
2142 	blk_status_t ret;
2143 
2144 	blk_queue_bounce(q, &bio);
2145 	__blk_queue_split(&bio, &nr_segs);
2146 
2147 	if (!bio_integrity_prep(bio))
2148 		goto queue_exit;
2149 
2150 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2151 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2152 		goto queue_exit;
2153 
2154 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2155 		goto queue_exit;
2156 
2157 	rq_qos_throttle(q, bio);
2158 
2159 	data.cmd_flags = bio->bi_opf;
2160 	rq = __blk_mq_alloc_request(&data);
2161 	if (unlikely(!rq)) {
2162 		rq_qos_cleanup(q, bio);
2163 		if (bio->bi_opf & REQ_NOWAIT)
2164 			bio_wouldblock_error(bio);
2165 		goto queue_exit;
2166 	}
2167 
2168 	trace_block_getrq(q, bio, bio->bi_opf);
2169 
2170 	rq_qos_track(q, rq, bio);
2171 
2172 	cookie = request_to_qc_t(data.hctx, rq);
2173 
2174 	blk_mq_bio_to_request(rq, bio, nr_segs);
2175 
2176 	ret = blk_crypto_init_request(rq);
2177 	if (ret != BLK_STS_OK) {
2178 		bio->bi_status = ret;
2179 		bio_endio(bio);
2180 		blk_mq_free_request(rq);
2181 		return BLK_QC_T_NONE;
2182 	}
2183 
2184 	plug = blk_mq_plug(q, bio);
2185 	if (unlikely(is_flush_fua)) {
2186 		/* Bypass scheduler for flush requests */
2187 		blk_insert_flush(rq);
2188 		blk_mq_run_hw_queue(data.hctx, true);
2189 	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2190 				!blk_queue_nonrot(q))) {
2191 		/*
2192 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2193 		 * we know the driver uses bd->last in a smart fashion.
2194 		 *
2195 		 * Use normal plugging if this disk is slow HDD, as sequential
2196 		 * IO may benefit a lot from plug merging.
2197 		 */
2198 		unsigned int request_count = plug->rq_count;
2199 		struct request *last = NULL;
2200 
2201 		if (!request_count)
2202 			trace_block_plug(q);
2203 		else
2204 			last = list_entry_rq(plug->mq_list.prev);
2205 
2206 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2207 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2208 			blk_flush_plug_list(plug, false);
2209 			trace_block_plug(q);
2210 		}
2211 
2212 		blk_add_rq_to_plug(plug, rq);
2213 	} else if (q->elevator) {
2214 		/* Insert the request at the IO scheduler queue */
2215 		blk_mq_sched_insert_request(rq, false, true, true);
2216 	} else if (plug && !blk_queue_nomerges(q)) {
2217 		/*
2218 		 * We do limited plugging. If the bio can be merged, do that.
2219 		 * Otherwise the existing request in the plug list will be
2220 		 * issued. So the plug list will have one request at most
2221 		 * The plug list might get flushed before this. If that happens,
2222 		 * the plug list is empty, and same_queue_rq is invalid.
2223 		 */
2224 		if (list_empty(&plug->mq_list))
2225 			same_queue_rq = NULL;
2226 		if (same_queue_rq) {
2227 			list_del_init(&same_queue_rq->queuelist);
2228 			plug->rq_count--;
2229 		}
2230 		blk_add_rq_to_plug(plug, rq);
2231 		trace_block_plug(q);
2232 
2233 		if (same_queue_rq) {
2234 			data.hctx = same_queue_rq->mq_hctx;
2235 			trace_block_unplug(q, 1, true);
2236 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2237 					&cookie);
2238 		}
2239 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2240 			!data.hctx->dispatch_busy) {
2241 		/*
2242 		 * There is no scheduler and we can try to send directly
2243 		 * to the hardware.
2244 		 */
2245 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2246 	} else {
2247 		/* Default case. */
2248 		blk_mq_sched_insert_request(rq, false, true, true);
2249 	}
2250 
2251 	return cookie;
2252 queue_exit:
2253 	blk_queue_exit(q);
2254 	return BLK_QC_T_NONE;
2255 }
2256 EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2257 
2258 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2259 		     unsigned int hctx_idx)
2260 {
2261 	struct page *page;
2262 
2263 	if (tags->rqs && set->ops->exit_request) {
2264 		int i;
2265 
2266 		for (i = 0; i < tags->nr_tags; i++) {
2267 			struct request *rq = tags->static_rqs[i];
2268 
2269 			if (!rq)
2270 				continue;
2271 			set->ops->exit_request(set, rq, hctx_idx);
2272 			tags->static_rqs[i] = NULL;
2273 		}
2274 	}
2275 
2276 	while (!list_empty(&tags->page_list)) {
2277 		page = list_first_entry(&tags->page_list, struct page, lru);
2278 		list_del_init(&page->lru);
2279 		/*
2280 		 * Remove kmemleak object previously allocated in
2281 		 * blk_mq_alloc_rqs().
2282 		 */
2283 		kmemleak_free(page_address(page));
2284 		__free_pages(page, page->private);
2285 	}
2286 }
2287 
2288 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2289 {
2290 	kfree(tags->rqs);
2291 	tags->rqs = NULL;
2292 	kfree(tags->static_rqs);
2293 	tags->static_rqs = NULL;
2294 
2295 	blk_mq_free_tags(tags);
2296 }
2297 
2298 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2299 					unsigned int hctx_idx,
2300 					unsigned int nr_tags,
2301 					unsigned int reserved_tags)
2302 {
2303 	struct blk_mq_tags *tags;
2304 	int node;
2305 
2306 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2307 	if (node == NUMA_NO_NODE)
2308 		node = set->numa_node;
2309 
2310 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2311 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2312 	if (!tags)
2313 		return NULL;
2314 
2315 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2316 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2317 				 node);
2318 	if (!tags->rqs) {
2319 		blk_mq_free_tags(tags);
2320 		return NULL;
2321 	}
2322 
2323 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2324 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2325 					node);
2326 	if (!tags->static_rqs) {
2327 		kfree(tags->rqs);
2328 		blk_mq_free_tags(tags);
2329 		return NULL;
2330 	}
2331 
2332 	return tags;
2333 }
2334 
2335 static size_t order_to_size(unsigned int order)
2336 {
2337 	return (size_t)PAGE_SIZE << order;
2338 }
2339 
2340 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2341 			       unsigned int hctx_idx, int node)
2342 {
2343 	int ret;
2344 
2345 	if (set->ops->init_request) {
2346 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2347 		if (ret)
2348 			return ret;
2349 	}
2350 
2351 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2352 	return 0;
2353 }
2354 
2355 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2356 		     unsigned int hctx_idx, unsigned int depth)
2357 {
2358 	unsigned int i, j, entries_per_page, max_order = 4;
2359 	size_t rq_size, left;
2360 	int node;
2361 
2362 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2363 	if (node == NUMA_NO_NODE)
2364 		node = set->numa_node;
2365 
2366 	INIT_LIST_HEAD(&tags->page_list);
2367 
2368 	/*
2369 	 * rq_size is the size of the request plus driver payload, rounded
2370 	 * to the cacheline size
2371 	 */
2372 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2373 				cache_line_size());
2374 	left = rq_size * depth;
2375 
2376 	for (i = 0; i < depth; ) {
2377 		int this_order = max_order;
2378 		struct page *page;
2379 		int to_do;
2380 		void *p;
2381 
2382 		while (this_order && left < order_to_size(this_order - 1))
2383 			this_order--;
2384 
2385 		do {
2386 			page = alloc_pages_node(node,
2387 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2388 				this_order);
2389 			if (page)
2390 				break;
2391 			if (!this_order--)
2392 				break;
2393 			if (order_to_size(this_order) < rq_size)
2394 				break;
2395 		} while (1);
2396 
2397 		if (!page)
2398 			goto fail;
2399 
2400 		page->private = this_order;
2401 		list_add_tail(&page->lru, &tags->page_list);
2402 
2403 		p = page_address(page);
2404 		/*
2405 		 * Allow kmemleak to scan these pages as they contain pointers
2406 		 * to additional allocations like via ops->init_request().
2407 		 */
2408 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2409 		entries_per_page = order_to_size(this_order) / rq_size;
2410 		to_do = min(entries_per_page, depth - i);
2411 		left -= to_do * rq_size;
2412 		for (j = 0; j < to_do; j++) {
2413 			struct request *rq = p;
2414 
2415 			tags->static_rqs[i] = rq;
2416 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2417 				tags->static_rqs[i] = NULL;
2418 				goto fail;
2419 			}
2420 
2421 			p += rq_size;
2422 			i++;
2423 		}
2424 	}
2425 	return 0;
2426 
2427 fail:
2428 	blk_mq_free_rqs(set, tags, hctx_idx);
2429 	return -ENOMEM;
2430 }
2431 
2432 struct rq_iter_data {
2433 	struct blk_mq_hw_ctx *hctx;
2434 	bool has_rq;
2435 };
2436 
2437 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2438 {
2439 	struct rq_iter_data *iter_data = data;
2440 
2441 	if (rq->mq_hctx != iter_data->hctx)
2442 		return true;
2443 	iter_data->has_rq = true;
2444 	return false;
2445 }
2446 
2447 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2448 {
2449 	struct blk_mq_tags *tags = hctx->sched_tags ?
2450 			hctx->sched_tags : hctx->tags;
2451 	struct rq_iter_data data = {
2452 		.hctx	= hctx,
2453 	};
2454 
2455 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2456 	return data.has_rq;
2457 }
2458 
2459 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2460 		struct blk_mq_hw_ctx *hctx)
2461 {
2462 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2463 		return false;
2464 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2465 		return false;
2466 	return true;
2467 }
2468 
2469 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2470 {
2471 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2472 			struct blk_mq_hw_ctx, cpuhp_online);
2473 
2474 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2475 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2476 		return 0;
2477 
2478 	/*
2479 	 * Prevent new request from being allocated on the current hctx.
2480 	 *
2481 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2482 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2483 	 * seen once we return from the tag allocator.
2484 	 */
2485 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2486 	smp_mb__after_atomic();
2487 
2488 	/*
2489 	 * Try to grab a reference to the queue and wait for any outstanding
2490 	 * requests.  If we could not grab a reference the queue has been
2491 	 * frozen and there are no requests.
2492 	 */
2493 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2494 		while (blk_mq_hctx_has_requests(hctx))
2495 			msleep(5);
2496 		percpu_ref_put(&hctx->queue->q_usage_counter);
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2503 {
2504 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2505 			struct blk_mq_hw_ctx, cpuhp_online);
2506 
2507 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2508 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2509 	return 0;
2510 }
2511 
2512 /*
2513  * 'cpu' is going away. splice any existing rq_list entries from this
2514  * software queue to the hw queue dispatch list, and ensure that it
2515  * gets run.
2516  */
2517 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2518 {
2519 	struct blk_mq_hw_ctx *hctx;
2520 	struct blk_mq_ctx *ctx;
2521 	LIST_HEAD(tmp);
2522 	enum hctx_type type;
2523 
2524 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2525 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2526 		return 0;
2527 
2528 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2529 	type = hctx->type;
2530 
2531 	spin_lock(&ctx->lock);
2532 	if (!list_empty(&ctx->rq_lists[type])) {
2533 		list_splice_init(&ctx->rq_lists[type], &tmp);
2534 		blk_mq_hctx_clear_pending(hctx, ctx);
2535 	}
2536 	spin_unlock(&ctx->lock);
2537 
2538 	if (list_empty(&tmp))
2539 		return 0;
2540 
2541 	spin_lock(&hctx->lock);
2542 	list_splice_tail_init(&tmp, &hctx->dispatch);
2543 	spin_unlock(&hctx->lock);
2544 
2545 	blk_mq_run_hw_queue(hctx, true);
2546 	return 0;
2547 }
2548 
2549 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2550 {
2551 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2552 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2553 						    &hctx->cpuhp_online);
2554 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2555 					    &hctx->cpuhp_dead);
2556 }
2557 
2558 /* hctx->ctxs will be freed in queue's release handler */
2559 static void blk_mq_exit_hctx(struct request_queue *q,
2560 		struct blk_mq_tag_set *set,
2561 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2562 {
2563 	if (blk_mq_hw_queue_mapped(hctx))
2564 		blk_mq_tag_idle(hctx);
2565 
2566 	if (set->ops->exit_request)
2567 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2568 
2569 	if (set->ops->exit_hctx)
2570 		set->ops->exit_hctx(hctx, hctx_idx);
2571 
2572 	blk_mq_remove_cpuhp(hctx);
2573 
2574 	spin_lock(&q->unused_hctx_lock);
2575 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2576 	spin_unlock(&q->unused_hctx_lock);
2577 }
2578 
2579 static void blk_mq_exit_hw_queues(struct request_queue *q,
2580 		struct blk_mq_tag_set *set, int nr_queue)
2581 {
2582 	struct blk_mq_hw_ctx *hctx;
2583 	unsigned int i;
2584 
2585 	queue_for_each_hw_ctx(q, hctx, i) {
2586 		if (i == nr_queue)
2587 			break;
2588 		blk_mq_debugfs_unregister_hctx(hctx);
2589 		blk_mq_exit_hctx(q, set, hctx, i);
2590 	}
2591 }
2592 
2593 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2594 {
2595 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2596 
2597 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2598 			   __alignof__(struct blk_mq_hw_ctx)) !=
2599 		     sizeof(struct blk_mq_hw_ctx));
2600 
2601 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2602 		hw_ctx_size += sizeof(struct srcu_struct);
2603 
2604 	return hw_ctx_size;
2605 }
2606 
2607 static int blk_mq_init_hctx(struct request_queue *q,
2608 		struct blk_mq_tag_set *set,
2609 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2610 {
2611 	hctx->queue_num = hctx_idx;
2612 
2613 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2614 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2615 				&hctx->cpuhp_online);
2616 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2617 
2618 	hctx->tags = set->tags[hctx_idx];
2619 
2620 	if (set->ops->init_hctx &&
2621 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2622 		goto unregister_cpu_notifier;
2623 
2624 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2625 				hctx->numa_node))
2626 		goto exit_hctx;
2627 	return 0;
2628 
2629  exit_hctx:
2630 	if (set->ops->exit_hctx)
2631 		set->ops->exit_hctx(hctx, hctx_idx);
2632  unregister_cpu_notifier:
2633 	blk_mq_remove_cpuhp(hctx);
2634 	return -1;
2635 }
2636 
2637 static struct blk_mq_hw_ctx *
2638 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2639 		int node)
2640 {
2641 	struct blk_mq_hw_ctx *hctx;
2642 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2643 
2644 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2645 	if (!hctx)
2646 		goto fail_alloc_hctx;
2647 
2648 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2649 		goto free_hctx;
2650 
2651 	atomic_set(&hctx->nr_active, 0);
2652 	if (node == NUMA_NO_NODE)
2653 		node = set->numa_node;
2654 	hctx->numa_node = node;
2655 
2656 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2657 	spin_lock_init(&hctx->lock);
2658 	INIT_LIST_HEAD(&hctx->dispatch);
2659 	hctx->queue = q;
2660 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2661 
2662 	INIT_LIST_HEAD(&hctx->hctx_list);
2663 
2664 	/*
2665 	 * Allocate space for all possible cpus to avoid allocation at
2666 	 * runtime
2667 	 */
2668 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2669 			gfp, node);
2670 	if (!hctx->ctxs)
2671 		goto free_cpumask;
2672 
2673 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2674 				gfp, node))
2675 		goto free_ctxs;
2676 	hctx->nr_ctx = 0;
2677 
2678 	spin_lock_init(&hctx->dispatch_wait_lock);
2679 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2680 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2681 
2682 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2683 	if (!hctx->fq)
2684 		goto free_bitmap;
2685 
2686 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2687 		init_srcu_struct(hctx->srcu);
2688 	blk_mq_hctx_kobj_init(hctx);
2689 
2690 	return hctx;
2691 
2692  free_bitmap:
2693 	sbitmap_free(&hctx->ctx_map);
2694  free_ctxs:
2695 	kfree(hctx->ctxs);
2696  free_cpumask:
2697 	free_cpumask_var(hctx->cpumask);
2698  free_hctx:
2699 	kfree(hctx);
2700  fail_alloc_hctx:
2701 	return NULL;
2702 }
2703 
2704 static void blk_mq_init_cpu_queues(struct request_queue *q,
2705 				   unsigned int nr_hw_queues)
2706 {
2707 	struct blk_mq_tag_set *set = q->tag_set;
2708 	unsigned int i, j;
2709 
2710 	for_each_possible_cpu(i) {
2711 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2712 		struct blk_mq_hw_ctx *hctx;
2713 		int k;
2714 
2715 		__ctx->cpu = i;
2716 		spin_lock_init(&__ctx->lock);
2717 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2718 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2719 
2720 		__ctx->queue = q;
2721 
2722 		/*
2723 		 * Set local node, IFF we have more than one hw queue. If
2724 		 * not, we remain on the home node of the device
2725 		 */
2726 		for (j = 0; j < set->nr_maps; j++) {
2727 			hctx = blk_mq_map_queue_type(q, j, i);
2728 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2729 				hctx->numa_node = local_memory_node(cpu_to_node(i));
2730 		}
2731 	}
2732 }
2733 
2734 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2735 					int hctx_idx)
2736 {
2737 	int ret = 0;
2738 
2739 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2740 					set->queue_depth, set->reserved_tags);
2741 	if (!set->tags[hctx_idx])
2742 		return false;
2743 
2744 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2745 				set->queue_depth);
2746 	if (!ret)
2747 		return true;
2748 
2749 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2750 	set->tags[hctx_idx] = NULL;
2751 	return false;
2752 }
2753 
2754 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2755 					 unsigned int hctx_idx)
2756 {
2757 	if (set->tags && set->tags[hctx_idx]) {
2758 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2759 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2760 		set->tags[hctx_idx] = NULL;
2761 	}
2762 }
2763 
2764 static void blk_mq_map_swqueue(struct request_queue *q)
2765 {
2766 	unsigned int i, j, hctx_idx;
2767 	struct blk_mq_hw_ctx *hctx;
2768 	struct blk_mq_ctx *ctx;
2769 	struct blk_mq_tag_set *set = q->tag_set;
2770 
2771 	queue_for_each_hw_ctx(q, hctx, i) {
2772 		cpumask_clear(hctx->cpumask);
2773 		hctx->nr_ctx = 0;
2774 		hctx->dispatch_from = NULL;
2775 	}
2776 
2777 	/*
2778 	 * Map software to hardware queues.
2779 	 *
2780 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2781 	 */
2782 	for_each_possible_cpu(i) {
2783 
2784 		ctx = per_cpu_ptr(q->queue_ctx, i);
2785 		for (j = 0; j < set->nr_maps; j++) {
2786 			if (!set->map[j].nr_queues) {
2787 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2788 						HCTX_TYPE_DEFAULT, i);
2789 				continue;
2790 			}
2791 			hctx_idx = set->map[j].mq_map[i];
2792 			/* unmapped hw queue can be remapped after CPU topo changed */
2793 			if (!set->tags[hctx_idx] &&
2794 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2795 				/*
2796 				 * If tags initialization fail for some hctx,
2797 				 * that hctx won't be brought online.  In this
2798 				 * case, remap the current ctx to hctx[0] which
2799 				 * is guaranteed to always have tags allocated
2800 				 */
2801 				set->map[j].mq_map[i] = 0;
2802 			}
2803 
2804 			hctx = blk_mq_map_queue_type(q, j, i);
2805 			ctx->hctxs[j] = hctx;
2806 			/*
2807 			 * If the CPU is already set in the mask, then we've
2808 			 * mapped this one already. This can happen if
2809 			 * devices share queues across queue maps.
2810 			 */
2811 			if (cpumask_test_cpu(i, hctx->cpumask))
2812 				continue;
2813 
2814 			cpumask_set_cpu(i, hctx->cpumask);
2815 			hctx->type = j;
2816 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2817 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2818 
2819 			/*
2820 			 * If the nr_ctx type overflows, we have exceeded the
2821 			 * amount of sw queues we can support.
2822 			 */
2823 			BUG_ON(!hctx->nr_ctx);
2824 		}
2825 
2826 		for (; j < HCTX_MAX_TYPES; j++)
2827 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2828 					HCTX_TYPE_DEFAULT, i);
2829 	}
2830 
2831 	queue_for_each_hw_ctx(q, hctx, i) {
2832 		/*
2833 		 * If no software queues are mapped to this hardware queue,
2834 		 * disable it and free the request entries.
2835 		 */
2836 		if (!hctx->nr_ctx) {
2837 			/* Never unmap queue 0.  We need it as a
2838 			 * fallback in case of a new remap fails
2839 			 * allocation
2840 			 */
2841 			if (i && set->tags[i])
2842 				blk_mq_free_map_and_requests(set, i);
2843 
2844 			hctx->tags = NULL;
2845 			continue;
2846 		}
2847 
2848 		hctx->tags = set->tags[i];
2849 		WARN_ON(!hctx->tags);
2850 
2851 		/*
2852 		 * Set the map size to the number of mapped software queues.
2853 		 * This is more accurate and more efficient than looping
2854 		 * over all possibly mapped software queues.
2855 		 */
2856 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2857 
2858 		/*
2859 		 * Initialize batch roundrobin counts
2860 		 */
2861 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2862 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2863 	}
2864 }
2865 
2866 /*
2867  * Caller needs to ensure that we're either frozen/quiesced, or that
2868  * the queue isn't live yet.
2869  */
2870 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2871 {
2872 	struct blk_mq_hw_ctx *hctx;
2873 	int i;
2874 
2875 	queue_for_each_hw_ctx(q, hctx, i) {
2876 		if (shared)
2877 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2878 		else
2879 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2880 	}
2881 }
2882 
2883 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2884 					bool shared)
2885 {
2886 	struct request_queue *q;
2887 
2888 	lockdep_assert_held(&set->tag_list_lock);
2889 
2890 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2891 		blk_mq_freeze_queue(q);
2892 		queue_set_hctx_shared(q, shared);
2893 		blk_mq_unfreeze_queue(q);
2894 	}
2895 }
2896 
2897 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2898 {
2899 	struct blk_mq_tag_set *set = q->tag_set;
2900 
2901 	mutex_lock(&set->tag_list_lock);
2902 	list_del(&q->tag_set_list);
2903 	if (list_is_singular(&set->tag_list)) {
2904 		/* just transitioned to unshared */
2905 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2906 		/* update existing queue */
2907 		blk_mq_update_tag_set_depth(set, false);
2908 	}
2909 	mutex_unlock(&set->tag_list_lock);
2910 	INIT_LIST_HEAD(&q->tag_set_list);
2911 }
2912 
2913 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2914 				     struct request_queue *q)
2915 {
2916 	mutex_lock(&set->tag_list_lock);
2917 
2918 	/*
2919 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2920 	 */
2921 	if (!list_empty(&set->tag_list) &&
2922 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2923 		set->flags |= BLK_MQ_F_TAG_SHARED;
2924 		/* update existing queue */
2925 		blk_mq_update_tag_set_depth(set, true);
2926 	}
2927 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2928 		queue_set_hctx_shared(q, true);
2929 	list_add_tail(&q->tag_set_list, &set->tag_list);
2930 
2931 	mutex_unlock(&set->tag_list_lock);
2932 }
2933 
2934 /* All allocations will be freed in release handler of q->mq_kobj */
2935 static int blk_mq_alloc_ctxs(struct request_queue *q)
2936 {
2937 	struct blk_mq_ctxs *ctxs;
2938 	int cpu;
2939 
2940 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2941 	if (!ctxs)
2942 		return -ENOMEM;
2943 
2944 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2945 	if (!ctxs->queue_ctx)
2946 		goto fail;
2947 
2948 	for_each_possible_cpu(cpu) {
2949 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2950 		ctx->ctxs = ctxs;
2951 	}
2952 
2953 	q->mq_kobj = &ctxs->kobj;
2954 	q->queue_ctx = ctxs->queue_ctx;
2955 
2956 	return 0;
2957  fail:
2958 	kfree(ctxs);
2959 	return -ENOMEM;
2960 }
2961 
2962 /*
2963  * It is the actual release handler for mq, but we do it from
2964  * request queue's release handler for avoiding use-after-free
2965  * and headache because q->mq_kobj shouldn't have been introduced,
2966  * but we can't group ctx/kctx kobj without it.
2967  */
2968 void blk_mq_release(struct request_queue *q)
2969 {
2970 	struct blk_mq_hw_ctx *hctx, *next;
2971 	int i;
2972 
2973 	queue_for_each_hw_ctx(q, hctx, i)
2974 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2975 
2976 	/* all hctx are in .unused_hctx_list now */
2977 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2978 		list_del_init(&hctx->hctx_list);
2979 		kobject_put(&hctx->kobj);
2980 	}
2981 
2982 	kfree(q->queue_hw_ctx);
2983 
2984 	/*
2985 	 * release .mq_kobj and sw queue's kobject now because
2986 	 * both share lifetime with request queue.
2987 	 */
2988 	blk_mq_sysfs_deinit(q);
2989 }
2990 
2991 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2992 		void *queuedata)
2993 {
2994 	struct request_queue *uninit_q, *q;
2995 
2996 	uninit_q = blk_alloc_queue(set->numa_node);
2997 	if (!uninit_q)
2998 		return ERR_PTR(-ENOMEM);
2999 	uninit_q->queuedata = queuedata;
3000 
3001 	/*
3002 	 * Initialize the queue without an elevator. device_add_disk() will do
3003 	 * the initialization.
3004 	 */
3005 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3006 	if (IS_ERR(q))
3007 		blk_cleanup_queue(uninit_q);
3008 
3009 	return q;
3010 }
3011 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3012 
3013 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3014 {
3015 	return blk_mq_init_queue_data(set, NULL);
3016 }
3017 EXPORT_SYMBOL(blk_mq_init_queue);
3018 
3019 /*
3020  * Helper for setting up a queue with mq ops, given queue depth, and
3021  * the passed in mq ops flags.
3022  */
3023 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3024 					   const struct blk_mq_ops *ops,
3025 					   unsigned int queue_depth,
3026 					   unsigned int set_flags)
3027 {
3028 	struct request_queue *q;
3029 	int ret;
3030 
3031 	memset(set, 0, sizeof(*set));
3032 	set->ops = ops;
3033 	set->nr_hw_queues = 1;
3034 	set->nr_maps = 1;
3035 	set->queue_depth = queue_depth;
3036 	set->numa_node = NUMA_NO_NODE;
3037 	set->flags = set_flags;
3038 
3039 	ret = blk_mq_alloc_tag_set(set);
3040 	if (ret)
3041 		return ERR_PTR(ret);
3042 
3043 	q = blk_mq_init_queue(set);
3044 	if (IS_ERR(q)) {
3045 		blk_mq_free_tag_set(set);
3046 		return q;
3047 	}
3048 
3049 	return q;
3050 }
3051 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3052 
3053 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3054 		struct blk_mq_tag_set *set, struct request_queue *q,
3055 		int hctx_idx, int node)
3056 {
3057 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3058 
3059 	/* reuse dead hctx first */
3060 	spin_lock(&q->unused_hctx_lock);
3061 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3062 		if (tmp->numa_node == node) {
3063 			hctx = tmp;
3064 			break;
3065 		}
3066 	}
3067 	if (hctx)
3068 		list_del_init(&hctx->hctx_list);
3069 	spin_unlock(&q->unused_hctx_lock);
3070 
3071 	if (!hctx)
3072 		hctx = blk_mq_alloc_hctx(q, set, node);
3073 	if (!hctx)
3074 		goto fail;
3075 
3076 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3077 		goto free_hctx;
3078 
3079 	return hctx;
3080 
3081  free_hctx:
3082 	kobject_put(&hctx->kobj);
3083  fail:
3084 	return NULL;
3085 }
3086 
3087 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3088 						struct request_queue *q)
3089 {
3090 	int i, j, end;
3091 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3092 
3093 	if (q->nr_hw_queues < set->nr_hw_queues) {
3094 		struct blk_mq_hw_ctx **new_hctxs;
3095 
3096 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3097 				       sizeof(*new_hctxs), GFP_KERNEL,
3098 				       set->numa_node);
3099 		if (!new_hctxs)
3100 			return;
3101 		if (hctxs)
3102 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3103 			       sizeof(*hctxs));
3104 		q->queue_hw_ctx = new_hctxs;
3105 		kfree(hctxs);
3106 		hctxs = new_hctxs;
3107 	}
3108 
3109 	/* protect against switching io scheduler  */
3110 	mutex_lock(&q->sysfs_lock);
3111 	for (i = 0; i < set->nr_hw_queues; i++) {
3112 		int node;
3113 		struct blk_mq_hw_ctx *hctx;
3114 
3115 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3116 		/*
3117 		 * If the hw queue has been mapped to another numa node,
3118 		 * we need to realloc the hctx. If allocation fails, fallback
3119 		 * to use the previous one.
3120 		 */
3121 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3122 			continue;
3123 
3124 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3125 		if (hctx) {
3126 			if (hctxs[i])
3127 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3128 			hctxs[i] = hctx;
3129 		} else {
3130 			if (hctxs[i])
3131 				pr_warn("Allocate new hctx on node %d fails,\
3132 						fallback to previous one on node %d\n",
3133 						node, hctxs[i]->numa_node);
3134 			else
3135 				break;
3136 		}
3137 	}
3138 	/*
3139 	 * Increasing nr_hw_queues fails. Free the newly allocated
3140 	 * hctxs and keep the previous q->nr_hw_queues.
3141 	 */
3142 	if (i != set->nr_hw_queues) {
3143 		j = q->nr_hw_queues;
3144 		end = i;
3145 	} else {
3146 		j = i;
3147 		end = q->nr_hw_queues;
3148 		q->nr_hw_queues = set->nr_hw_queues;
3149 	}
3150 
3151 	for (; j < end; j++) {
3152 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3153 
3154 		if (hctx) {
3155 			if (hctx->tags)
3156 				blk_mq_free_map_and_requests(set, j);
3157 			blk_mq_exit_hctx(q, set, hctx, j);
3158 			hctxs[j] = NULL;
3159 		}
3160 	}
3161 	mutex_unlock(&q->sysfs_lock);
3162 }
3163 
3164 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3165 						  struct request_queue *q,
3166 						  bool elevator_init)
3167 {
3168 	/* mark the queue as mq asap */
3169 	q->mq_ops = set->ops;
3170 
3171 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3172 					     blk_mq_poll_stats_bkt,
3173 					     BLK_MQ_POLL_STATS_BKTS, q);
3174 	if (!q->poll_cb)
3175 		goto err_exit;
3176 
3177 	if (blk_mq_alloc_ctxs(q))
3178 		goto err_poll;
3179 
3180 	/* init q->mq_kobj and sw queues' kobjects */
3181 	blk_mq_sysfs_init(q);
3182 
3183 	INIT_LIST_HEAD(&q->unused_hctx_list);
3184 	spin_lock_init(&q->unused_hctx_lock);
3185 
3186 	blk_mq_realloc_hw_ctxs(set, q);
3187 	if (!q->nr_hw_queues)
3188 		goto err_hctxs;
3189 
3190 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3191 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3192 
3193 	q->tag_set = set;
3194 
3195 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3196 	if (set->nr_maps > HCTX_TYPE_POLL &&
3197 	    set->map[HCTX_TYPE_POLL].nr_queues)
3198 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3199 
3200 	q->sg_reserved_size = INT_MAX;
3201 
3202 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3203 	INIT_LIST_HEAD(&q->requeue_list);
3204 	spin_lock_init(&q->requeue_lock);
3205 
3206 	q->nr_requests = set->queue_depth;
3207 
3208 	/*
3209 	 * Default to classic polling
3210 	 */
3211 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3212 
3213 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3214 	blk_mq_add_queue_tag_set(set, q);
3215 	blk_mq_map_swqueue(q);
3216 
3217 	if (elevator_init)
3218 		elevator_init_mq(q);
3219 
3220 	return q;
3221 
3222 err_hctxs:
3223 	kfree(q->queue_hw_ctx);
3224 	q->nr_hw_queues = 0;
3225 	blk_mq_sysfs_deinit(q);
3226 err_poll:
3227 	blk_stat_free_callback(q->poll_cb);
3228 	q->poll_cb = NULL;
3229 err_exit:
3230 	q->mq_ops = NULL;
3231 	return ERR_PTR(-ENOMEM);
3232 }
3233 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3234 
3235 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3236 void blk_mq_exit_queue(struct request_queue *q)
3237 {
3238 	struct blk_mq_tag_set	*set = q->tag_set;
3239 
3240 	blk_mq_del_queue_tag_set(q);
3241 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3242 }
3243 
3244 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3245 {
3246 	int i;
3247 
3248 	for (i = 0; i < set->nr_hw_queues; i++)
3249 		if (!__blk_mq_alloc_map_and_request(set, i))
3250 			goto out_unwind;
3251 
3252 	return 0;
3253 
3254 out_unwind:
3255 	while (--i >= 0)
3256 		blk_mq_free_map_and_requests(set, i);
3257 
3258 	return -ENOMEM;
3259 }
3260 
3261 /*
3262  * Allocate the request maps associated with this tag_set. Note that this
3263  * may reduce the depth asked for, if memory is tight. set->queue_depth
3264  * will be updated to reflect the allocated depth.
3265  */
3266 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3267 {
3268 	unsigned int depth;
3269 	int err;
3270 
3271 	depth = set->queue_depth;
3272 	do {
3273 		err = __blk_mq_alloc_rq_maps(set);
3274 		if (!err)
3275 			break;
3276 
3277 		set->queue_depth >>= 1;
3278 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3279 			err = -ENOMEM;
3280 			break;
3281 		}
3282 	} while (set->queue_depth);
3283 
3284 	if (!set->queue_depth || err) {
3285 		pr_err("blk-mq: failed to allocate request map\n");
3286 		return -ENOMEM;
3287 	}
3288 
3289 	if (depth != set->queue_depth)
3290 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3291 						depth, set->queue_depth);
3292 
3293 	return 0;
3294 }
3295 
3296 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3297 {
3298 	/*
3299 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3300 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3301 	 * number of hardware queues.
3302 	 */
3303 	if (set->nr_maps == 1)
3304 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3305 
3306 	if (set->ops->map_queues && !is_kdump_kernel()) {
3307 		int i;
3308 
3309 		/*
3310 		 * transport .map_queues is usually done in the following
3311 		 * way:
3312 		 *
3313 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3314 		 * 	mask = get_cpu_mask(queue)
3315 		 * 	for_each_cpu(cpu, mask)
3316 		 * 		set->map[x].mq_map[cpu] = queue;
3317 		 * }
3318 		 *
3319 		 * When we need to remap, the table has to be cleared for
3320 		 * killing stale mapping since one CPU may not be mapped
3321 		 * to any hw queue.
3322 		 */
3323 		for (i = 0; i < set->nr_maps; i++)
3324 			blk_mq_clear_mq_map(&set->map[i]);
3325 
3326 		return set->ops->map_queues(set);
3327 	} else {
3328 		BUG_ON(set->nr_maps > 1);
3329 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3330 	}
3331 }
3332 
3333 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3334 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3335 {
3336 	struct blk_mq_tags **new_tags;
3337 
3338 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3339 		return 0;
3340 
3341 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3342 				GFP_KERNEL, set->numa_node);
3343 	if (!new_tags)
3344 		return -ENOMEM;
3345 
3346 	if (set->tags)
3347 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3348 		       sizeof(*set->tags));
3349 	kfree(set->tags);
3350 	set->tags = new_tags;
3351 	set->nr_hw_queues = new_nr_hw_queues;
3352 
3353 	return 0;
3354 }
3355 
3356 /*
3357  * Alloc a tag set to be associated with one or more request queues.
3358  * May fail with EINVAL for various error conditions. May adjust the
3359  * requested depth down, if it's too large. In that case, the set
3360  * value will be stored in set->queue_depth.
3361  */
3362 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3363 {
3364 	int i, ret;
3365 
3366 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3367 
3368 	if (!set->nr_hw_queues)
3369 		return -EINVAL;
3370 	if (!set->queue_depth)
3371 		return -EINVAL;
3372 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3373 		return -EINVAL;
3374 
3375 	if (!set->ops->queue_rq)
3376 		return -EINVAL;
3377 
3378 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3379 		return -EINVAL;
3380 
3381 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3382 		pr_info("blk-mq: reduced tag depth to %u\n",
3383 			BLK_MQ_MAX_DEPTH);
3384 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3385 	}
3386 
3387 	if (!set->nr_maps)
3388 		set->nr_maps = 1;
3389 	else if (set->nr_maps > HCTX_MAX_TYPES)
3390 		return -EINVAL;
3391 
3392 	/*
3393 	 * If a crashdump is active, then we are potentially in a very
3394 	 * memory constrained environment. Limit us to 1 queue and
3395 	 * 64 tags to prevent using too much memory.
3396 	 */
3397 	if (is_kdump_kernel()) {
3398 		set->nr_hw_queues = 1;
3399 		set->nr_maps = 1;
3400 		set->queue_depth = min(64U, set->queue_depth);
3401 	}
3402 	/*
3403 	 * There is no use for more h/w queues than cpus if we just have
3404 	 * a single map
3405 	 */
3406 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3407 		set->nr_hw_queues = nr_cpu_ids;
3408 
3409 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3410 		return -ENOMEM;
3411 
3412 	ret = -ENOMEM;
3413 	for (i = 0; i < set->nr_maps; i++) {
3414 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3415 						  sizeof(set->map[i].mq_map[0]),
3416 						  GFP_KERNEL, set->numa_node);
3417 		if (!set->map[i].mq_map)
3418 			goto out_free_mq_map;
3419 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3420 	}
3421 
3422 	ret = blk_mq_update_queue_map(set);
3423 	if (ret)
3424 		goto out_free_mq_map;
3425 
3426 	ret = blk_mq_alloc_map_and_requests(set);
3427 	if (ret)
3428 		goto out_free_mq_map;
3429 
3430 	mutex_init(&set->tag_list_lock);
3431 	INIT_LIST_HEAD(&set->tag_list);
3432 
3433 	return 0;
3434 
3435 out_free_mq_map:
3436 	for (i = 0; i < set->nr_maps; i++) {
3437 		kfree(set->map[i].mq_map);
3438 		set->map[i].mq_map = NULL;
3439 	}
3440 	kfree(set->tags);
3441 	set->tags = NULL;
3442 	return ret;
3443 }
3444 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3445 
3446 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3447 {
3448 	int i, j;
3449 
3450 	for (i = 0; i < set->nr_hw_queues; i++)
3451 		blk_mq_free_map_and_requests(set, i);
3452 
3453 	for (j = 0; j < set->nr_maps; j++) {
3454 		kfree(set->map[j].mq_map);
3455 		set->map[j].mq_map = NULL;
3456 	}
3457 
3458 	kfree(set->tags);
3459 	set->tags = NULL;
3460 }
3461 EXPORT_SYMBOL(blk_mq_free_tag_set);
3462 
3463 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3464 {
3465 	struct blk_mq_tag_set *set = q->tag_set;
3466 	struct blk_mq_hw_ctx *hctx;
3467 	int i, ret;
3468 
3469 	if (!set)
3470 		return -EINVAL;
3471 
3472 	if (q->nr_requests == nr)
3473 		return 0;
3474 
3475 	blk_mq_freeze_queue(q);
3476 	blk_mq_quiesce_queue(q);
3477 
3478 	ret = 0;
3479 	queue_for_each_hw_ctx(q, hctx, i) {
3480 		if (!hctx->tags)
3481 			continue;
3482 		/*
3483 		 * If we're using an MQ scheduler, just update the scheduler
3484 		 * queue depth. This is similar to what the old code would do.
3485 		 */
3486 		if (!hctx->sched_tags) {
3487 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3488 							false);
3489 		} else {
3490 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3491 							nr, true);
3492 		}
3493 		if (ret)
3494 			break;
3495 		if (q->elevator && q->elevator->type->ops.depth_updated)
3496 			q->elevator->type->ops.depth_updated(hctx);
3497 	}
3498 
3499 	if (!ret)
3500 		q->nr_requests = nr;
3501 
3502 	blk_mq_unquiesce_queue(q);
3503 	blk_mq_unfreeze_queue(q);
3504 
3505 	return ret;
3506 }
3507 
3508 /*
3509  * request_queue and elevator_type pair.
3510  * It is just used by __blk_mq_update_nr_hw_queues to cache
3511  * the elevator_type associated with a request_queue.
3512  */
3513 struct blk_mq_qe_pair {
3514 	struct list_head node;
3515 	struct request_queue *q;
3516 	struct elevator_type *type;
3517 };
3518 
3519 /*
3520  * Cache the elevator_type in qe pair list and switch the
3521  * io scheduler to 'none'
3522  */
3523 static bool blk_mq_elv_switch_none(struct list_head *head,
3524 		struct request_queue *q)
3525 {
3526 	struct blk_mq_qe_pair *qe;
3527 
3528 	if (!q->elevator)
3529 		return true;
3530 
3531 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3532 	if (!qe)
3533 		return false;
3534 
3535 	INIT_LIST_HEAD(&qe->node);
3536 	qe->q = q;
3537 	qe->type = q->elevator->type;
3538 	list_add(&qe->node, head);
3539 
3540 	mutex_lock(&q->sysfs_lock);
3541 	/*
3542 	 * After elevator_switch_mq, the previous elevator_queue will be
3543 	 * released by elevator_release. The reference of the io scheduler
3544 	 * module get by elevator_get will also be put. So we need to get
3545 	 * a reference of the io scheduler module here to prevent it to be
3546 	 * removed.
3547 	 */
3548 	__module_get(qe->type->elevator_owner);
3549 	elevator_switch_mq(q, NULL);
3550 	mutex_unlock(&q->sysfs_lock);
3551 
3552 	return true;
3553 }
3554 
3555 static void blk_mq_elv_switch_back(struct list_head *head,
3556 		struct request_queue *q)
3557 {
3558 	struct blk_mq_qe_pair *qe;
3559 	struct elevator_type *t = NULL;
3560 
3561 	list_for_each_entry(qe, head, node)
3562 		if (qe->q == q) {
3563 			t = qe->type;
3564 			break;
3565 		}
3566 
3567 	if (!t)
3568 		return;
3569 
3570 	list_del(&qe->node);
3571 	kfree(qe);
3572 
3573 	mutex_lock(&q->sysfs_lock);
3574 	elevator_switch_mq(q, t);
3575 	mutex_unlock(&q->sysfs_lock);
3576 }
3577 
3578 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3579 							int nr_hw_queues)
3580 {
3581 	struct request_queue *q;
3582 	LIST_HEAD(head);
3583 	int prev_nr_hw_queues;
3584 
3585 	lockdep_assert_held(&set->tag_list_lock);
3586 
3587 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3588 		nr_hw_queues = nr_cpu_ids;
3589 	if (nr_hw_queues < 1)
3590 		return;
3591 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3592 		return;
3593 
3594 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3595 		blk_mq_freeze_queue(q);
3596 	/*
3597 	 * Switch IO scheduler to 'none', cleaning up the data associated
3598 	 * with the previous scheduler. We will switch back once we are done
3599 	 * updating the new sw to hw queue mappings.
3600 	 */
3601 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3602 		if (!blk_mq_elv_switch_none(&head, q))
3603 			goto switch_back;
3604 
3605 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3606 		blk_mq_debugfs_unregister_hctxs(q);
3607 		blk_mq_sysfs_unregister(q);
3608 	}
3609 
3610 	prev_nr_hw_queues = set->nr_hw_queues;
3611 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3612 	    0)
3613 		goto reregister;
3614 
3615 	set->nr_hw_queues = nr_hw_queues;
3616 fallback:
3617 	blk_mq_update_queue_map(set);
3618 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3619 		blk_mq_realloc_hw_ctxs(set, q);
3620 		if (q->nr_hw_queues != set->nr_hw_queues) {
3621 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3622 					nr_hw_queues, prev_nr_hw_queues);
3623 			set->nr_hw_queues = prev_nr_hw_queues;
3624 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3625 			goto fallback;
3626 		}
3627 		blk_mq_map_swqueue(q);
3628 	}
3629 
3630 reregister:
3631 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3632 		blk_mq_sysfs_register(q);
3633 		blk_mq_debugfs_register_hctxs(q);
3634 	}
3635 
3636 switch_back:
3637 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3638 		blk_mq_elv_switch_back(&head, q);
3639 
3640 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3641 		blk_mq_unfreeze_queue(q);
3642 }
3643 
3644 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3645 {
3646 	mutex_lock(&set->tag_list_lock);
3647 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3648 	mutex_unlock(&set->tag_list_lock);
3649 }
3650 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3651 
3652 /* Enable polling stats and return whether they were already enabled. */
3653 static bool blk_poll_stats_enable(struct request_queue *q)
3654 {
3655 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3656 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3657 		return true;
3658 	blk_stat_add_callback(q, q->poll_cb);
3659 	return false;
3660 }
3661 
3662 static void blk_mq_poll_stats_start(struct request_queue *q)
3663 {
3664 	/*
3665 	 * We don't arm the callback if polling stats are not enabled or the
3666 	 * callback is already active.
3667 	 */
3668 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3669 	    blk_stat_is_active(q->poll_cb))
3670 		return;
3671 
3672 	blk_stat_activate_msecs(q->poll_cb, 100);
3673 }
3674 
3675 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3676 {
3677 	struct request_queue *q = cb->data;
3678 	int bucket;
3679 
3680 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3681 		if (cb->stat[bucket].nr_samples)
3682 			q->poll_stat[bucket] = cb->stat[bucket];
3683 	}
3684 }
3685 
3686 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3687 				       struct request *rq)
3688 {
3689 	unsigned long ret = 0;
3690 	int bucket;
3691 
3692 	/*
3693 	 * If stats collection isn't on, don't sleep but turn it on for
3694 	 * future users
3695 	 */
3696 	if (!blk_poll_stats_enable(q))
3697 		return 0;
3698 
3699 	/*
3700 	 * As an optimistic guess, use half of the mean service time
3701 	 * for this type of request. We can (and should) make this smarter.
3702 	 * For instance, if the completion latencies are tight, we can
3703 	 * get closer than just half the mean. This is especially
3704 	 * important on devices where the completion latencies are longer
3705 	 * than ~10 usec. We do use the stats for the relevant IO size
3706 	 * if available which does lead to better estimates.
3707 	 */
3708 	bucket = blk_mq_poll_stats_bkt(rq);
3709 	if (bucket < 0)
3710 		return ret;
3711 
3712 	if (q->poll_stat[bucket].nr_samples)
3713 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3714 
3715 	return ret;
3716 }
3717 
3718 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3719 				     struct request *rq)
3720 {
3721 	struct hrtimer_sleeper hs;
3722 	enum hrtimer_mode mode;
3723 	unsigned int nsecs;
3724 	ktime_t kt;
3725 
3726 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3727 		return false;
3728 
3729 	/*
3730 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3731 	 *
3732 	 *  0:	use half of prev avg
3733 	 * >0:	use this specific value
3734 	 */
3735 	if (q->poll_nsec > 0)
3736 		nsecs = q->poll_nsec;
3737 	else
3738 		nsecs = blk_mq_poll_nsecs(q, rq);
3739 
3740 	if (!nsecs)
3741 		return false;
3742 
3743 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3744 
3745 	/*
3746 	 * This will be replaced with the stats tracking code, using
3747 	 * 'avg_completion_time / 2' as the pre-sleep target.
3748 	 */
3749 	kt = nsecs;
3750 
3751 	mode = HRTIMER_MODE_REL;
3752 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3753 	hrtimer_set_expires(&hs.timer, kt);
3754 
3755 	do {
3756 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3757 			break;
3758 		set_current_state(TASK_UNINTERRUPTIBLE);
3759 		hrtimer_sleeper_start_expires(&hs, mode);
3760 		if (hs.task)
3761 			io_schedule();
3762 		hrtimer_cancel(&hs.timer);
3763 		mode = HRTIMER_MODE_ABS;
3764 	} while (hs.task && !signal_pending(current));
3765 
3766 	__set_current_state(TASK_RUNNING);
3767 	destroy_hrtimer_on_stack(&hs.timer);
3768 	return true;
3769 }
3770 
3771 static bool blk_mq_poll_hybrid(struct request_queue *q,
3772 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3773 {
3774 	struct request *rq;
3775 
3776 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3777 		return false;
3778 
3779 	if (!blk_qc_t_is_internal(cookie))
3780 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3781 	else {
3782 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3783 		/*
3784 		 * With scheduling, if the request has completed, we'll
3785 		 * get a NULL return here, as we clear the sched tag when
3786 		 * that happens. The request still remains valid, like always,
3787 		 * so we should be safe with just the NULL check.
3788 		 */
3789 		if (!rq)
3790 			return false;
3791 	}
3792 
3793 	return blk_mq_poll_hybrid_sleep(q, rq);
3794 }
3795 
3796 /**
3797  * blk_poll - poll for IO completions
3798  * @q:  the queue
3799  * @cookie: cookie passed back at IO submission time
3800  * @spin: whether to spin for completions
3801  *
3802  * Description:
3803  *    Poll for completions on the passed in queue. Returns number of
3804  *    completed entries found. If @spin is true, then blk_poll will continue
3805  *    looping until at least one completion is found, unless the task is
3806  *    otherwise marked running (or we need to reschedule).
3807  */
3808 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3809 {
3810 	struct blk_mq_hw_ctx *hctx;
3811 	long state;
3812 
3813 	if (!blk_qc_t_valid(cookie) ||
3814 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3815 		return 0;
3816 
3817 	if (current->plug)
3818 		blk_flush_plug_list(current->plug, false);
3819 
3820 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3821 
3822 	/*
3823 	 * If we sleep, have the caller restart the poll loop to reset
3824 	 * the state. Like for the other success return cases, the
3825 	 * caller is responsible for checking if the IO completed. If
3826 	 * the IO isn't complete, we'll get called again and will go
3827 	 * straight to the busy poll loop.
3828 	 */
3829 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3830 		return 1;
3831 
3832 	hctx->poll_considered++;
3833 
3834 	state = current->state;
3835 	do {
3836 		int ret;
3837 
3838 		hctx->poll_invoked++;
3839 
3840 		ret = q->mq_ops->poll(hctx);
3841 		if (ret > 0) {
3842 			hctx->poll_success++;
3843 			__set_current_state(TASK_RUNNING);
3844 			return ret;
3845 		}
3846 
3847 		if (signal_pending_state(state, current))
3848 			__set_current_state(TASK_RUNNING);
3849 
3850 		if (current->state == TASK_RUNNING)
3851 			return 1;
3852 		if (ret < 0 || !spin)
3853 			break;
3854 		cpu_relax();
3855 	} while (!need_resched());
3856 
3857 	__set_current_state(TASK_RUNNING);
3858 	return 0;
3859 }
3860 EXPORT_SYMBOL_GPL(blk_poll);
3861 
3862 unsigned int blk_mq_rq_cpu(struct request *rq)
3863 {
3864 	return rq->mq_ctx->cpu;
3865 }
3866 EXPORT_SYMBOL(blk_mq_rq_cpu);
3867 
3868 static int __init blk_mq_init(void)
3869 {
3870 	int i;
3871 
3872 	for_each_possible_cpu(i)
3873 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3874 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3875 
3876 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3877 				  "block/softirq:dead", NULL,
3878 				  blk_softirq_cpu_dead);
3879 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3880 				blk_mq_hctx_notify_dead);
3881 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3882 				blk_mq_hctx_notify_online,
3883 				blk_mq_hctx_notify_offline);
3884 	return 0;
3885 }
3886 subsys_initcall(blk_mq_init);
3887