xref: /linux/block/blk-mq.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
46 
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
48 
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
51 
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
53 {
54 	int ddir, sectors, bucket;
55 
56 	ddir = rq_data_dir(rq);
57 	sectors = blk_rq_stats_sectors(rq);
58 
59 	bucket = ddir + 2 * ilog2(sectors);
60 
61 	if (bucket < 0)
62 		return -1;
63 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
65 
66 	return bucket;
67 }
68 
69 #define BLK_QC_T_SHIFT		16
70 #define BLK_QC_T_INTERNAL	(1U << 31)
71 
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
73 		blk_qc_t qc)
74 {
75 	return xa_load(&q->hctx_table,
76 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
77 }
78 
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
80 		blk_qc_t qc)
81 {
82 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
83 
84 	if (qc & BLK_QC_T_INTERNAL)
85 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 	return blk_mq_tag_to_rq(hctx->tags, tag);
87 }
88 
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
90 {
91 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
92 		(rq->tag != -1 ?
93 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
94 }
95 
96 /*
97  * Check if any of the ctx, dispatch list or elevator
98  * have pending work in this hardware queue.
99  */
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
101 {
102 	return !list_empty_careful(&hctx->dispatch) ||
103 		sbitmap_any_bit_set(&hctx->ctx_map) ||
104 			blk_mq_sched_has_work(hctx);
105 }
106 
107 /*
108  * Mark this ctx as having pending work in this hardware queue
109  */
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 				     struct blk_mq_ctx *ctx)
112 {
113 	const int bit = ctx->index_hw[hctx->type];
114 
115 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 		sbitmap_set_bit(&hctx->ctx_map, bit);
117 }
118 
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 				      struct blk_mq_ctx *ctx)
121 {
122 	const int bit = ctx->index_hw[hctx->type];
123 
124 	sbitmap_clear_bit(&hctx->ctx_map, bit);
125 }
126 
127 struct mq_inflight {
128 	struct block_device *part;
129 	unsigned int inflight[2];
130 };
131 
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @set: tag_set to wait on
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started on or more of the request_queues of the tag_set.  This
261  * function only waits for the quiesce on those request_queues that had
262  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
263  */
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
265 {
266 	if (set->flags & BLK_MQ_F_BLOCKING)
267 		synchronize_srcu(set->srcu);
268 	else
269 		synchronize_rcu();
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
272 
273 /**
274  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
275  * @q: request queue.
276  *
277  * Note: this function does not prevent that the struct request end_io()
278  * callback function is invoked. Once this function is returned, we make
279  * sure no dispatch can happen until the queue is unquiesced via
280  * blk_mq_unquiesce_queue().
281  */
282 void blk_mq_quiesce_queue(struct request_queue *q)
283 {
284 	blk_mq_quiesce_queue_nowait(q);
285 	/* nothing to wait for non-mq queues */
286 	if (queue_is_mq(q))
287 		blk_mq_wait_quiesce_done(q->tag_set);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
290 
291 /*
292  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
293  * @q: request queue.
294  *
295  * This function recovers queue into the state before quiescing
296  * which is done by blk_mq_quiesce_queue.
297  */
298 void blk_mq_unquiesce_queue(struct request_queue *q)
299 {
300 	unsigned long flags;
301 	bool run_queue = false;
302 
303 	spin_lock_irqsave(&q->queue_lock, flags);
304 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
305 		;
306 	} else if (!--q->quiesce_depth) {
307 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
308 		run_queue = true;
309 	}
310 	spin_unlock_irqrestore(&q->queue_lock, flags);
311 
312 	/* dispatch requests which are inserted during quiescing */
313 	if (run_queue)
314 		blk_mq_run_hw_queues(q, true);
315 }
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
317 
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
319 {
320 	struct request_queue *q;
321 
322 	mutex_lock(&set->tag_list_lock);
323 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 		if (!blk_queue_skip_tagset_quiesce(q))
325 			blk_mq_quiesce_queue_nowait(q);
326 	}
327 	blk_mq_wait_quiesce_done(set);
328 	mutex_unlock(&set->tag_list_lock);
329 }
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
331 
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
333 {
334 	struct request_queue *q;
335 
336 	mutex_lock(&set->tag_list_lock);
337 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 		if (!blk_queue_skip_tagset_quiesce(q))
339 			blk_mq_unquiesce_queue(q);
340 	}
341 	mutex_unlock(&set->tag_list_lock);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
344 
345 void blk_mq_wake_waiters(struct request_queue *q)
346 {
347 	struct blk_mq_hw_ctx *hctx;
348 	unsigned long i;
349 
350 	queue_for_each_hw_ctx(q, hctx, i)
351 		if (blk_mq_hw_queue_mapped(hctx))
352 			blk_mq_tag_wakeup_all(hctx->tags, true);
353 }
354 
355 void blk_rq_init(struct request_queue *q, struct request *rq)
356 {
357 	memset(rq, 0, sizeof(*rq));
358 
359 	INIT_LIST_HEAD(&rq->queuelist);
360 	rq->q = q;
361 	rq->__sector = (sector_t) -1;
362 	INIT_HLIST_NODE(&rq->hash);
363 	RB_CLEAR_NODE(&rq->rb_node);
364 	rq->tag = BLK_MQ_NO_TAG;
365 	rq->internal_tag = BLK_MQ_NO_TAG;
366 	rq->start_time_ns = ktime_get_ns();
367 	rq->part = NULL;
368 	blk_crypto_rq_set_defaults(rq);
369 }
370 EXPORT_SYMBOL(blk_rq_init);
371 
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
374 {
375 	struct blk_mq_ctx *ctx = data->ctx;
376 	struct blk_mq_hw_ctx *hctx = data->hctx;
377 	struct request_queue *q = data->q;
378 	struct request *rq = tags->static_rqs[tag];
379 
380 	rq->q = q;
381 	rq->mq_ctx = ctx;
382 	rq->mq_hctx = hctx;
383 	rq->cmd_flags = data->cmd_flags;
384 
385 	if (data->flags & BLK_MQ_REQ_PM)
386 		data->rq_flags |= RQF_PM;
387 	if (blk_queue_io_stat(q))
388 		data->rq_flags |= RQF_IO_STAT;
389 	rq->rq_flags = data->rq_flags;
390 
391 	if (!(data->rq_flags & RQF_ELV)) {
392 		rq->tag = tag;
393 		rq->internal_tag = BLK_MQ_NO_TAG;
394 	} else {
395 		rq->tag = BLK_MQ_NO_TAG;
396 		rq->internal_tag = tag;
397 	}
398 	rq->timeout = 0;
399 
400 	if (blk_mq_need_time_stamp(rq))
401 		rq->start_time_ns = ktime_get_ns();
402 	else
403 		rq->start_time_ns = 0;
404 	rq->part = NULL;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 	rq->alloc_time_ns = alloc_time_ns;
407 #endif
408 	rq->io_start_time_ns = 0;
409 	rq->stats_sectors = 0;
410 	rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 	rq->nr_integrity_segments = 0;
413 #endif
414 	rq->end_io = NULL;
415 	rq->end_io_data = NULL;
416 
417 	blk_crypto_rq_set_defaults(rq);
418 	INIT_LIST_HEAD(&rq->queuelist);
419 	/* tag was already set */
420 	WRITE_ONCE(rq->deadline, 0);
421 	req_ref_set(rq, 1);
422 
423 	if (rq->rq_flags & RQF_ELV) {
424 		struct elevator_queue *e = data->q->elevator;
425 
426 		INIT_HLIST_NODE(&rq->hash);
427 		RB_CLEAR_NODE(&rq->rb_node);
428 
429 		if (!op_is_flush(data->cmd_flags) &&
430 		    e->type->ops.prepare_request) {
431 			e->type->ops.prepare_request(rq);
432 			rq->rq_flags |= RQF_ELVPRIV;
433 		}
434 	}
435 
436 	return rq;
437 }
438 
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
441 		u64 alloc_time_ns)
442 {
443 	unsigned int tag, tag_offset;
444 	struct blk_mq_tags *tags;
445 	struct request *rq;
446 	unsigned long tag_mask;
447 	int i, nr = 0;
448 
449 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 	if (unlikely(!tag_mask))
451 		return NULL;
452 
453 	tags = blk_mq_tags_from_data(data);
454 	for (i = 0; tag_mask; i++) {
455 		if (!(tag_mask & (1UL << i)))
456 			continue;
457 		tag = tag_offset + i;
458 		prefetch(tags->static_rqs[tag]);
459 		tag_mask &= ~(1UL << i);
460 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 		rq_list_add(data->cached_rq, rq);
462 		nr++;
463 	}
464 	/* caller already holds a reference, add for remainder */
465 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
466 	data->nr_tags -= nr;
467 
468 	return rq_list_pop(data->cached_rq);
469 }
470 
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
472 {
473 	struct request_queue *q = data->q;
474 	u64 alloc_time_ns = 0;
475 	struct request *rq;
476 	unsigned int tag;
477 
478 	/* alloc_time includes depth and tag waits */
479 	if (blk_queue_rq_alloc_time(q))
480 		alloc_time_ns = ktime_get_ns();
481 
482 	if (data->cmd_flags & REQ_NOWAIT)
483 		data->flags |= BLK_MQ_REQ_NOWAIT;
484 
485 	if (q->elevator) {
486 		struct elevator_queue *e = q->elevator;
487 
488 		data->rq_flags |= RQF_ELV;
489 
490 		/*
491 		 * Flush/passthrough requests are special and go directly to the
492 		 * dispatch list. Don't include reserved tags in the
493 		 * limiting, as it isn't useful.
494 		 */
495 		if (!op_is_flush(data->cmd_flags) &&
496 		    !blk_op_is_passthrough(data->cmd_flags) &&
497 		    e->type->ops.limit_depth &&
498 		    !(data->flags & BLK_MQ_REQ_RESERVED))
499 			e->type->ops.limit_depth(data->cmd_flags, data);
500 	}
501 
502 retry:
503 	data->ctx = blk_mq_get_ctx(q);
504 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 	if (!(data->rq_flags & RQF_ELV))
506 		blk_mq_tag_busy(data->hctx);
507 
508 	if (data->flags & BLK_MQ_REQ_RESERVED)
509 		data->rq_flags |= RQF_RESV;
510 
511 	/*
512 	 * Try batched alloc if we want more than 1 tag.
513 	 */
514 	if (data->nr_tags > 1) {
515 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
516 		if (rq)
517 			return rq;
518 		data->nr_tags = 1;
519 	}
520 
521 	/*
522 	 * Waiting allocations only fail because of an inactive hctx.  In that
523 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 	 * should have migrated us to an online CPU by now.
525 	 */
526 	tag = blk_mq_get_tag(data);
527 	if (tag == BLK_MQ_NO_TAG) {
528 		if (data->flags & BLK_MQ_REQ_NOWAIT)
529 			return NULL;
530 		/*
531 		 * Give up the CPU and sleep for a random short time to
532 		 * ensure that thread using a realtime scheduling class
533 		 * are migrated off the CPU, and thus off the hctx that
534 		 * is going away.
535 		 */
536 		msleep(3);
537 		goto retry;
538 	}
539 
540 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
541 					alloc_time_ns);
542 }
543 
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 					    struct blk_plug *plug,
546 					    blk_opf_t opf,
547 					    blk_mq_req_flags_t flags)
548 {
549 	struct blk_mq_alloc_data data = {
550 		.q		= q,
551 		.flags		= flags,
552 		.cmd_flags	= opf,
553 		.nr_tags	= plug->nr_ios,
554 		.cached_rq	= &plug->cached_rq,
555 	};
556 	struct request *rq;
557 
558 	if (blk_queue_enter(q, flags))
559 		return NULL;
560 
561 	plug->nr_ios = 1;
562 
563 	rq = __blk_mq_alloc_requests(&data);
564 	if (unlikely(!rq))
565 		blk_queue_exit(q);
566 	return rq;
567 }
568 
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
570 						   blk_opf_t opf,
571 						   blk_mq_req_flags_t flags)
572 {
573 	struct blk_plug *plug = current->plug;
574 	struct request *rq;
575 
576 	if (!plug)
577 		return NULL;
578 
579 	if (rq_list_empty(plug->cached_rq)) {
580 		if (plug->nr_ios == 1)
581 			return NULL;
582 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
583 		if (!rq)
584 			return NULL;
585 	} else {
586 		rq = rq_list_peek(&plug->cached_rq);
587 		if (!rq || rq->q != q)
588 			return NULL;
589 
590 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
591 			return NULL;
592 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
593 			return NULL;
594 
595 		plug->cached_rq = rq_list_next(rq);
596 	}
597 
598 	rq->cmd_flags = opf;
599 	INIT_LIST_HEAD(&rq->queuelist);
600 	return rq;
601 }
602 
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 		blk_mq_req_flags_t flags)
605 {
606 	struct request *rq;
607 
608 	rq = blk_mq_alloc_cached_request(q, opf, flags);
609 	if (!rq) {
610 		struct blk_mq_alloc_data data = {
611 			.q		= q,
612 			.flags		= flags,
613 			.cmd_flags	= opf,
614 			.nr_tags	= 1,
615 		};
616 		int ret;
617 
618 		ret = blk_queue_enter(q, flags);
619 		if (ret)
620 			return ERR_PTR(ret);
621 
622 		rq = __blk_mq_alloc_requests(&data);
623 		if (!rq)
624 			goto out_queue_exit;
625 	}
626 	rq->__data_len = 0;
627 	rq->__sector = (sector_t) -1;
628 	rq->bio = rq->biotail = NULL;
629 	return rq;
630 out_queue_exit:
631 	blk_queue_exit(q);
632 	return ERR_PTR(-EWOULDBLOCK);
633 }
634 EXPORT_SYMBOL(blk_mq_alloc_request);
635 
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
638 {
639 	struct blk_mq_alloc_data data = {
640 		.q		= q,
641 		.flags		= flags,
642 		.cmd_flags	= opf,
643 		.nr_tags	= 1,
644 	};
645 	u64 alloc_time_ns = 0;
646 	struct request *rq;
647 	unsigned int cpu;
648 	unsigned int tag;
649 	int ret;
650 
651 	/* alloc_time includes depth and tag waits */
652 	if (blk_queue_rq_alloc_time(q))
653 		alloc_time_ns = ktime_get_ns();
654 
655 	/*
656 	 * If the tag allocator sleeps we could get an allocation for a
657 	 * different hardware context.  No need to complicate the low level
658 	 * allocator for this for the rare use case of a command tied to
659 	 * a specific queue.
660 	 */
661 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663 		return ERR_PTR(-EINVAL);
664 
665 	if (hctx_idx >= q->nr_hw_queues)
666 		return ERR_PTR(-EIO);
667 
668 	ret = blk_queue_enter(q, flags);
669 	if (ret)
670 		return ERR_PTR(ret);
671 
672 	/*
673 	 * Check if the hardware context is actually mapped to anything.
674 	 * If not tell the caller that it should skip this queue.
675 	 */
676 	ret = -EXDEV;
677 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
678 	if (!blk_mq_hw_queue_mapped(data.hctx))
679 		goto out_queue_exit;
680 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681 	if (cpu >= nr_cpu_ids)
682 		goto out_queue_exit;
683 	data.ctx = __blk_mq_get_ctx(q, cpu);
684 
685 	if (!q->elevator)
686 		blk_mq_tag_busy(data.hctx);
687 	else
688 		data.rq_flags |= RQF_ELV;
689 
690 	if (flags & BLK_MQ_REQ_RESERVED)
691 		data.rq_flags |= RQF_RESV;
692 
693 	ret = -EWOULDBLOCK;
694 	tag = blk_mq_get_tag(&data);
695 	if (tag == BLK_MQ_NO_TAG)
696 		goto out_queue_exit;
697 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
698 					alloc_time_ns);
699 	rq->__data_len = 0;
700 	rq->__sector = (sector_t) -1;
701 	rq->bio = rq->biotail = NULL;
702 	return rq;
703 
704 out_queue_exit:
705 	blk_queue_exit(q);
706 	return ERR_PTR(ret);
707 }
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709 
710 static void __blk_mq_free_request(struct request *rq)
711 {
712 	struct request_queue *q = rq->q;
713 	struct blk_mq_ctx *ctx = rq->mq_ctx;
714 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715 	const int sched_tag = rq->internal_tag;
716 
717 	blk_crypto_free_request(rq);
718 	blk_pm_mark_last_busy(rq);
719 	rq->mq_hctx = NULL;
720 	if (rq->tag != BLK_MQ_NO_TAG)
721 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722 	if (sched_tag != BLK_MQ_NO_TAG)
723 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 	blk_mq_sched_restart(hctx);
725 	blk_queue_exit(q);
726 }
727 
728 void blk_mq_free_request(struct request *rq)
729 {
730 	struct request_queue *q = rq->q;
731 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732 
733 	if ((rq->rq_flags & RQF_ELVPRIV) &&
734 	    q->elevator->type->ops.finish_request)
735 		q->elevator->type->ops.finish_request(rq);
736 
737 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
738 		__blk_mq_dec_active_requests(hctx);
739 
740 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741 		laptop_io_completion(q->disk->bdi);
742 
743 	rq_qos_done(q, rq);
744 
745 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746 	if (req_ref_put_and_test(rq))
747 		__blk_mq_free_request(rq);
748 }
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750 
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
752 {
753 	struct request *rq;
754 
755 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756 		blk_mq_free_request(rq);
757 }
758 
759 void blk_dump_rq_flags(struct request *rq, char *msg)
760 {
761 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762 		rq->q->disk ? rq->q->disk->disk_name : "?",
763 		(__force unsigned long long) rq->cmd_flags);
764 
765 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
766 	       (unsigned long long)blk_rq_pos(rq),
767 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
769 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
770 }
771 EXPORT_SYMBOL(blk_dump_rq_flags);
772 
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774 			  unsigned int nbytes, blk_status_t error)
775 {
776 	if (unlikely(error)) {
777 		bio->bi_status = error;
778 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779 		/*
780 		 * Partial zone append completions cannot be supported as the
781 		 * BIO fragments may end up not being written sequentially.
782 		 */
783 		if (bio->bi_iter.bi_size != nbytes)
784 			bio->bi_status = BLK_STS_IOERR;
785 		else
786 			bio->bi_iter.bi_sector = rq->__sector;
787 	}
788 
789 	bio_advance(bio, nbytes);
790 
791 	if (unlikely(rq->rq_flags & RQF_QUIET))
792 		bio_set_flag(bio, BIO_QUIET);
793 	/* don't actually finish bio if it's part of flush sequence */
794 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795 		bio_endio(bio);
796 }
797 
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 {
800 	if (req->part && blk_do_io_stat(req)) {
801 		const int sgrp = op_stat_group(req_op(req));
802 
803 		part_stat_lock();
804 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
805 		part_stat_unlock();
806 	}
807 }
808 
809 static void blk_print_req_error(struct request *req, blk_status_t status)
810 {
811 	printk_ratelimited(KERN_ERR
812 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813 		"phys_seg %u prio class %u\n",
814 		blk_status_to_str(status),
815 		req->q->disk ? req->q->disk->disk_name : "?",
816 		blk_rq_pos(req), (__force u32)req_op(req),
817 		blk_op_str(req_op(req)),
818 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819 		req->nr_phys_segments,
820 		IOPRIO_PRIO_CLASS(req->ioprio));
821 }
822 
823 /*
824  * Fully end IO on a request. Does not support partial completions, or
825  * errors.
826  */
827 static void blk_complete_request(struct request *req)
828 {
829 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830 	int total_bytes = blk_rq_bytes(req);
831 	struct bio *bio = req->bio;
832 
833 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
834 
835 	if (!bio)
836 		return;
837 
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840 		req->q->integrity.profile->complete_fn(req, total_bytes);
841 #endif
842 
843 	blk_account_io_completion(req, total_bytes);
844 
845 	do {
846 		struct bio *next = bio->bi_next;
847 
848 		/* Completion has already been traced */
849 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850 
851 		if (req_op(req) == REQ_OP_ZONE_APPEND)
852 			bio->bi_iter.bi_sector = req->__sector;
853 
854 		if (!is_flush)
855 			bio_endio(bio);
856 		bio = next;
857 	} while (bio);
858 
859 	/*
860 	 * Reset counters so that the request stacking driver
861 	 * can find how many bytes remain in the request
862 	 * later.
863 	 */
864 	if (!req->end_io) {
865 		req->bio = NULL;
866 		req->__data_len = 0;
867 	}
868 }
869 
870 /**
871  * blk_update_request - Complete multiple bytes without completing the request
872  * @req:      the request being processed
873  * @error:    block status code
874  * @nr_bytes: number of bytes to complete for @req
875  *
876  * Description:
877  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
878  *     the request structure even if @req doesn't have leftover.
879  *     If @req has leftover, sets it up for the next range of segments.
880  *
881  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882  *     %false return from this function.
883  *
884  * Note:
885  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886  *      except in the consistency check at the end of this function.
887  *
888  * Return:
889  *     %false - this request doesn't have any more data
890  *     %true  - this request has more data
891  **/
892 bool blk_update_request(struct request *req, blk_status_t error,
893 		unsigned int nr_bytes)
894 {
895 	int total_bytes;
896 
897 	trace_block_rq_complete(req, error, nr_bytes);
898 
899 	if (!req->bio)
900 		return false;
901 
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904 	    error == BLK_STS_OK)
905 		req->q->integrity.profile->complete_fn(req, nr_bytes);
906 #endif
907 
908 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 		     !(req->rq_flags & RQF_QUIET)) &&
910 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
911 		blk_print_req_error(req, error);
912 		trace_block_rq_error(req, error, nr_bytes);
913 	}
914 
915 	blk_account_io_completion(req, nr_bytes);
916 
917 	total_bytes = 0;
918 	while (req->bio) {
919 		struct bio *bio = req->bio;
920 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 
922 		if (bio_bytes == bio->bi_iter.bi_size)
923 			req->bio = bio->bi_next;
924 
925 		/* Completion has already been traced */
926 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 		req_bio_endio(req, bio, bio_bytes, error);
928 
929 		total_bytes += bio_bytes;
930 		nr_bytes -= bio_bytes;
931 
932 		if (!nr_bytes)
933 			break;
934 	}
935 
936 	/*
937 	 * completely done
938 	 */
939 	if (!req->bio) {
940 		/*
941 		 * Reset counters so that the request stacking driver
942 		 * can find how many bytes remain in the request
943 		 * later.
944 		 */
945 		req->__data_len = 0;
946 		return false;
947 	}
948 
949 	req->__data_len -= total_bytes;
950 
951 	/* update sector only for requests with clear definition of sector */
952 	if (!blk_rq_is_passthrough(req))
953 		req->__sector += total_bytes >> 9;
954 
955 	/* mixed attributes always follow the first bio */
956 	if (req->rq_flags & RQF_MIXED_MERGE) {
957 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
959 	}
960 
961 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 		/*
963 		 * If total number of sectors is less than the first segment
964 		 * size, something has gone terribly wrong.
965 		 */
966 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 			blk_dump_rq_flags(req, "request botched");
968 			req->__data_len = blk_rq_cur_bytes(req);
969 		}
970 
971 		/* recalculate the number of segments */
972 		req->nr_phys_segments = blk_recalc_rq_segments(req);
973 	}
974 
975 	return true;
976 }
977 EXPORT_SYMBOL_GPL(blk_update_request);
978 
979 static void __blk_account_io_done(struct request *req, u64 now)
980 {
981 	const int sgrp = op_stat_group(req_op(req));
982 
983 	part_stat_lock();
984 	update_io_ticks(req->part, jiffies, true);
985 	part_stat_inc(req->part, ios[sgrp]);
986 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
987 	part_stat_unlock();
988 }
989 
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992 	/*
993 	 * Account IO completion.  flush_rq isn't accounted as a
994 	 * normal IO on queueing nor completion.  Accounting the
995 	 * containing request is enough.
996 	 */
997 	if (blk_do_io_stat(req) && req->part &&
998 	    !(req->rq_flags & RQF_FLUSH_SEQ))
999 		__blk_account_io_done(req, now);
1000 }
1001 
1002 static void __blk_account_io_start(struct request *rq)
1003 {
1004 	/*
1005 	 * All non-passthrough requests are created from a bio with one
1006 	 * exception: when a flush command that is part of a flush sequence
1007 	 * generated by the state machine in blk-flush.c is cloned onto the
1008 	 * lower device by dm-multipath we can get here without a bio.
1009 	 */
1010 	if (rq->bio)
1011 		rq->part = rq->bio->bi_bdev;
1012 	else
1013 		rq->part = rq->q->disk->part0;
1014 
1015 	part_stat_lock();
1016 	update_io_ticks(rq->part, jiffies, false);
1017 	part_stat_unlock();
1018 }
1019 
1020 static inline void blk_account_io_start(struct request *req)
1021 {
1022 	if (blk_do_io_stat(req))
1023 		__blk_account_io_start(req);
1024 }
1025 
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 	if (rq->rq_flags & RQF_STATS) {
1029 		blk_mq_poll_stats_start(rq->q);
1030 		blk_stat_add(rq, now);
1031 	}
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	if (rq->end_io) {
1043 		rq_qos_done(rq->q, rq);
1044 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 			blk_mq_free_request(rq);
1046 	} else {
1047 		blk_mq_free_request(rq);
1048 	}
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051 
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 		BUG();
1056 	__blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059 
1060 #define TAG_COMP_BATCH		32
1061 
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 					  int *tag_array, int nr_tags)
1064 {
1065 	struct request_queue *q = hctx->queue;
1066 
1067 	/*
1068 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 	 * update hctx->nr_active in batch
1070 	 */
1071 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 		__blk_mq_sub_active_requests(hctx, nr_tags);
1073 
1074 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1076 }
1077 
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 {
1080 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1082 	struct request *rq;
1083 	u64 now = 0;
1084 
1085 	if (iob->need_ts)
1086 		now = ktime_get_ns();
1087 
1088 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 		prefetch(rq->bio);
1090 		prefetch(rq->rq_next);
1091 
1092 		blk_complete_request(rq);
1093 		if (iob->need_ts)
1094 			__blk_mq_end_request_acct(rq, now);
1095 
1096 		rq_qos_done(rq->q, rq);
1097 
1098 		/*
1099 		 * If end_io handler returns NONE, then it still has
1100 		 * ownership of the request.
1101 		 */
1102 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1103 			continue;
1104 
1105 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106 		if (!req_ref_put_and_test(rq))
1107 			continue;
1108 
1109 		blk_crypto_free_request(rq);
1110 		blk_pm_mark_last_busy(rq);
1111 
1112 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113 			if (cur_hctx)
1114 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115 			nr_tags = 0;
1116 			cur_hctx = rq->mq_hctx;
1117 		}
1118 		tags[nr_tags++] = rq->tag;
1119 	}
1120 
1121 	if (nr_tags)
1122 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 }
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125 
1126 static void blk_complete_reqs(struct llist_head *list)
1127 {
1128 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129 	struct request *rq, *next;
1130 
1131 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132 		rq->q->mq_ops->complete(rq);
1133 }
1134 
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 {
1137 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1138 }
1139 
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 {
1142 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1143 	return 0;
1144 }
1145 
1146 static void __blk_mq_complete_request_remote(void *data)
1147 {
1148 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1149 }
1150 
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 {
1153 	int cpu = raw_smp_processor_id();
1154 
1155 	if (!IS_ENABLED(CONFIG_SMP) ||
1156 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1157 		return false;
1158 	/*
1159 	 * With force threaded interrupts enabled, raising softirq from an SMP
1160 	 * function call will always result in waking the ksoftirqd thread.
1161 	 * This is probably worse than completing the request on a different
1162 	 * cache domain.
1163 	 */
1164 	if (force_irqthreads())
1165 		return false;
1166 
1167 	/* same CPU or cache domain?  Complete locally */
1168 	if (cpu == rq->mq_ctx->cpu ||
1169 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1171 		return false;
1172 
1173 	/* don't try to IPI to an offline CPU */
1174 	return cpu_online(rq->mq_ctx->cpu);
1175 }
1176 
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1178 {
1179 	struct llist_head *list;
1180 	unsigned int cpu;
1181 
1182 	cpu = rq->mq_ctx->cpu;
1183 	list = &per_cpu(blk_cpu_done, cpu);
1184 	if (llist_add(&rq->ipi_list, list)) {
1185 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186 		smp_call_function_single_async(cpu, &rq->csd);
1187 	}
1188 }
1189 
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 	struct llist_head *list;
1193 
1194 	preempt_disable();
1195 	list = this_cpu_ptr(&blk_cpu_done);
1196 	if (llist_add(&rq->ipi_list, list))
1197 		raise_softirq(BLOCK_SOFTIRQ);
1198 	preempt_enable();
1199 }
1200 
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204 
1205 	/*
1206 	 * For request which hctx has only one ctx mapping,
1207 	 * or a polled request, always complete locally,
1208 	 * it's pointless to redirect the completion.
1209 	 */
1210 	if (rq->mq_hctx->nr_ctx == 1 ||
1211 		rq->cmd_flags & REQ_POLLED)
1212 		return false;
1213 
1214 	if (blk_mq_complete_need_ipi(rq)) {
1215 		blk_mq_complete_send_ipi(rq);
1216 		return true;
1217 	}
1218 
1219 	if (rq->q->nr_hw_queues == 1) {
1220 		blk_mq_raise_softirq(rq);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1226 
1227 /**
1228  * blk_mq_complete_request - end I/O on a request
1229  * @rq:		the request being processed
1230  *
1231  * Description:
1232  *	Complete a request by scheduling the ->complete_rq operation.
1233  **/
1234 void blk_mq_complete_request(struct request *rq)
1235 {
1236 	if (!blk_mq_complete_request_remote(rq))
1237 		rq->q->mq_ops->complete(rq);
1238 }
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1240 
1241 /**
1242  * blk_mq_start_request - Start processing a request
1243  * @rq: Pointer to request to be started
1244  *
1245  * Function used by device drivers to notify the block layer that a request
1246  * is going to be processed now, so blk layer can do proper initializations
1247  * such as starting the timeout timer.
1248  */
1249 void blk_mq_start_request(struct request *rq)
1250 {
1251 	struct request_queue *q = rq->q;
1252 
1253 	trace_block_rq_issue(rq);
1254 
1255 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 		rq->io_start_time_ns = ktime_get_ns();
1257 		rq->stats_sectors = blk_rq_sectors(rq);
1258 		rq->rq_flags |= RQF_STATS;
1259 		rq_qos_issue(q, rq);
1260 	}
1261 
1262 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263 
1264 	blk_add_timer(rq);
1265 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 		q->integrity.profile->prepare_fn(rq);
1270 #endif
1271 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 }
1274 EXPORT_SYMBOL(blk_mq_start_request);
1275 
1276 /*
1277  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278  * queues. This is important for md arrays to benefit from merging
1279  * requests.
1280  */
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 {
1283 	if (plug->multiple_queues)
1284 		return BLK_MAX_REQUEST_COUNT * 2;
1285 	return BLK_MAX_REQUEST_COUNT;
1286 }
1287 
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 {
1290 	struct request *last = rq_list_peek(&plug->mq_list);
1291 
1292 	if (!plug->rq_count) {
1293 		trace_block_plug(rq->q);
1294 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 		   (!blk_queue_nomerges(rq->q) &&
1296 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 		blk_mq_flush_plug_list(plug, false);
1298 		last = NULL;
1299 		trace_block_plug(rq->q);
1300 	}
1301 
1302 	if (!plug->multiple_queues && last && last->q != rq->q)
1303 		plug->multiple_queues = true;
1304 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305 		plug->has_elevator = true;
1306 	rq->rq_next = NULL;
1307 	rq_list_add(&plug->mq_list, rq);
1308 	plug->rq_count++;
1309 }
1310 
1311 /**
1312  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313  * @rq:		request to insert
1314  * @at_head:    insert request at head or tail of queue
1315  *
1316  * Description:
1317  *    Insert a fully prepared request at the back of the I/O scheduler queue
1318  *    for execution.  Don't wait for completion.
1319  *
1320  * Note:
1321  *    This function will invoke @done directly if the queue is dead.
1322  */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 	WARN_ON(irqs_disabled());
1326 	WARN_ON(!blk_rq_is_passthrough(rq));
1327 
1328 	blk_account_io_start(rq);
1329 
1330 	/*
1331 	 * As plugging can be enabled for passthrough requests on a zoned
1332 	 * device, directly accessing the plug instead of using blk_mq_plug()
1333 	 * should not have any consequences.
1334 	 */
1335 	if (current->plug)
1336 		blk_add_rq_to_plug(current->plug, rq);
1337 	else
1338 		blk_mq_sched_insert_request(rq, at_head, true, false);
1339 }
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341 
1342 struct blk_rq_wait {
1343 	struct completion done;
1344 	blk_status_t ret;
1345 };
1346 
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 {
1349 	struct blk_rq_wait *wait = rq->end_io_data;
1350 
1351 	wait->ret = ret;
1352 	complete(&wait->done);
1353 	return RQ_END_IO_NONE;
1354 }
1355 
1356 bool blk_rq_is_poll(struct request *rq)
1357 {
1358 	if (!rq->mq_hctx)
1359 		return false;
1360 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361 		return false;
1362 	return true;
1363 }
1364 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1365 
1366 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1367 {
1368 	do {
1369 		blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1370 		cond_resched();
1371 	} while (!completion_done(wait));
1372 }
1373 
1374 /**
1375  * blk_execute_rq - insert a request into queue for execution
1376  * @rq:		request to insert
1377  * @at_head:    insert request at head or tail of queue
1378  *
1379  * Description:
1380  *    Insert a fully prepared request at the back of the I/O scheduler queue
1381  *    for execution and wait for completion.
1382  * Return: The blk_status_t result provided to blk_mq_end_request().
1383  */
1384 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1385 {
1386 	struct blk_rq_wait wait = {
1387 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388 	};
1389 
1390 	WARN_ON(irqs_disabled());
1391 	WARN_ON(!blk_rq_is_passthrough(rq));
1392 
1393 	rq->end_io_data = &wait;
1394 	rq->end_io = blk_end_sync_rq;
1395 
1396 	blk_account_io_start(rq);
1397 	blk_mq_sched_insert_request(rq, at_head, true, false);
1398 
1399 	if (blk_rq_is_poll(rq)) {
1400 		blk_rq_poll_completion(rq, &wait.done);
1401 	} else {
1402 		/*
1403 		 * Prevent hang_check timer from firing at us during very long
1404 		 * I/O
1405 		 */
1406 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1407 
1408 		if (hang_check)
1409 			while (!wait_for_completion_io_timeout(&wait.done,
1410 					hang_check * (HZ/2)))
1411 				;
1412 		else
1413 			wait_for_completion_io(&wait.done);
1414 	}
1415 
1416 	return wait.ret;
1417 }
1418 EXPORT_SYMBOL(blk_execute_rq);
1419 
1420 static void __blk_mq_requeue_request(struct request *rq)
1421 {
1422 	struct request_queue *q = rq->q;
1423 
1424 	blk_mq_put_driver_tag(rq);
1425 
1426 	trace_block_rq_requeue(rq);
1427 	rq_qos_requeue(q, rq);
1428 
1429 	if (blk_mq_request_started(rq)) {
1430 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1431 		rq->rq_flags &= ~RQF_TIMED_OUT;
1432 	}
1433 }
1434 
1435 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1436 {
1437 	__blk_mq_requeue_request(rq);
1438 
1439 	/* this request will be re-inserted to io scheduler queue */
1440 	blk_mq_sched_requeue_request(rq);
1441 
1442 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1443 }
1444 EXPORT_SYMBOL(blk_mq_requeue_request);
1445 
1446 static void blk_mq_requeue_work(struct work_struct *work)
1447 {
1448 	struct request_queue *q =
1449 		container_of(work, struct request_queue, requeue_work.work);
1450 	LIST_HEAD(rq_list);
1451 	struct request *rq, *next;
1452 
1453 	spin_lock_irq(&q->requeue_lock);
1454 	list_splice_init(&q->requeue_list, &rq_list);
1455 	spin_unlock_irq(&q->requeue_lock);
1456 
1457 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1458 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1459 			continue;
1460 
1461 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1462 		list_del_init(&rq->queuelist);
1463 		/*
1464 		 * If RQF_DONTPREP, rq has contained some driver specific
1465 		 * data, so insert it to hctx dispatch list to avoid any
1466 		 * merge.
1467 		 */
1468 		if (rq->rq_flags & RQF_DONTPREP)
1469 			blk_mq_request_bypass_insert(rq, false, false);
1470 		else
1471 			blk_mq_sched_insert_request(rq, true, false, false);
1472 	}
1473 
1474 	while (!list_empty(&rq_list)) {
1475 		rq = list_entry(rq_list.next, struct request, queuelist);
1476 		list_del_init(&rq->queuelist);
1477 		blk_mq_sched_insert_request(rq, false, false, false);
1478 	}
1479 
1480 	blk_mq_run_hw_queues(q, false);
1481 }
1482 
1483 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1484 				bool kick_requeue_list)
1485 {
1486 	struct request_queue *q = rq->q;
1487 	unsigned long flags;
1488 
1489 	/*
1490 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1491 	 * request head insertion from the workqueue.
1492 	 */
1493 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1494 
1495 	spin_lock_irqsave(&q->requeue_lock, flags);
1496 	if (at_head) {
1497 		rq->rq_flags |= RQF_SOFTBARRIER;
1498 		list_add(&rq->queuelist, &q->requeue_list);
1499 	} else {
1500 		list_add_tail(&rq->queuelist, &q->requeue_list);
1501 	}
1502 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1503 
1504 	if (kick_requeue_list)
1505 		blk_mq_kick_requeue_list(q);
1506 }
1507 
1508 void blk_mq_kick_requeue_list(struct request_queue *q)
1509 {
1510 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1511 }
1512 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1513 
1514 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1515 				    unsigned long msecs)
1516 {
1517 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1518 				    msecs_to_jiffies(msecs));
1519 }
1520 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1521 
1522 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1523 {
1524 	/*
1525 	 * If we find a request that isn't idle we know the queue is busy
1526 	 * as it's checked in the iter.
1527 	 * Return false to stop the iteration.
1528 	 */
1529 	if (blk_mq_request_started(rq)) {
1530 		bool *busy = priv;
1531 
1532 		*busy = true;
1533 		return false;
1534 	}
1535 
1536 	return true;
1537 }
1538 
1539 bool blk_mq_queue_inflight(struct request_queue *q)
1540 {
1541 	bool busy = false;
1542 
1543 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1544 	return busy;
1545 }
1546 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1547 
1548 static void blk_mq_rq_timed_out(struct request *req)
1549 {
1550 	req->rq_flags |= RQF_TIMED_OUT;
1551 	if (req->q->mq_ops->timeout) {
1552 		enum blk_eh_timer_return ret;
1553 
1554 		ret = req->q->mq_ops->timeout(req);
1555 		if (ret == BLK_EH_DONE)
1556 			return;
1557 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1558 	}
1559 
1560 	blk_add_timer(req);
1561 }
1562 
1563 struct blk_expired_data {
1564 	bool has_timedout_rq;
1565 	unsigned long next;
1566 	unsigned long timeout_start;
1567 };
1568 
1569 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1570 {
1571 	unsigned long deadline;
1572 
1573 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1574 		return false;
1575 	if (rq->rq_flags & RQF_TIMED_OUT)
1576 		return false;
1577 
1578 	deadline = READ_ONCE(rq->deadline);
1579 	if (time_after_eq(expired->timeout_start, deadline))
1580 		return true;
1581 
1582 	if (expired->next == 0)
1583 		expired->next = deadline;
1584 	else if (time_after(expired->next, deadline))
1585 		expired->next = deadline;
1586 	return false;
1587 }
1588 
1589 void blk_mq_put_rq_ref(struct request *rq)
1590 {
1591 	if (is_flush_rq(rq)) {
1592 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1593 			blk_mq_free_request(rq);
1594 	} else if (req_ref_put_and_test(rq)) {
1595 		__blk_mq_free_request(rq);
1596 	}
1597 }
1598 
1599 static bool blk_mq_check_expired(struct request *rq, void *priv)
1600 {
1601 	struct blk_expired_data *expired = priv;
1602 
1603 	/*
1604 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1605 	 * be reallocated underneath the timeout handler's processing, then
1606 	 * the expire check is reliable. If the request is not expired, then
1607 	 * it was completed and reallocated as a new request after returning
1608 	 * from blk_mq_check_expired().
1609 	 */
1610 	if (blk_mq_req_expired(rq, expired)) {
1611 		expired->has_timedout_rq = true;
1612 		return false;
1613 	}
1614 	return true;
1615 }
1616 
1617 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1618 {
1619 	struct blk_expired_data *expired = priv;
1620 
1621 	if (blk_mq_req_expired(rq, expired))
1622 		blk_mq_rq_timed_out(rq);
1623 	return true;
1624 }
1625 
1626 static void blk_mq_timeout_work(struct work_struct *work)
1627 {
1628 	struct request_queue *q =
1629 		container_of(work, struct request_queue, timeout_work);
1630 	struct blk_expired_data expired = {
1631 		.timeout_start = jiffies,
1632 	};
1633 	struct blk_mq_hw_ctx *hctx;
1634 	unsigned long i;
1635 
1636 	/* A deadlock might occur if a request is stuck requiring a
1637 	 * timeout at the same time a queue freeze is waiting
1638 	 * completion, since the timeout code would not be able to
1639 	 * acquire the queue reference here.
1640 	 *
1641 	 * That's why we don't use blk_queue_enter here; instead, we use
1642 	 * percpu_ref_tryget directly, because we need to be able to
1643 	 * obtain a reference even in the short window between the queue
1644 	 * starting to freeze, by dropping the first reference in
1645 	 * blk_freeze_queue_start, and the moment the last request is
1646 	 * consumed, marked by the instant q_usage_counter reaches
1647 	 * zero.
1648 	 */
1649 	if (!percpu_ref_tryget(&q->q_usage_counter))
1650 		return;
1651 
1652 	/* check if there is any timed-out request */
1653 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1654 	if (expired.has_timedout_rq) {
1655 		/*
1656 		 * Before walking tags, we must ensure any submit started
1657 		 * before the current time has finished. Since the submit
1658 		 * uses srcu or rcu, wait for a synchronization point to
1659 		 * ensure all running submits have finished
1660 		 */
1661 		blk_mq_wait_quiesce_done(q->tag_set);
1662 
1663 		expired.next = 0;
1664 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1665 	}
1666 
1667 	if (expired.next != 0) {
1668 		mod_timer(&q->timeout, expired.next);
1669 	} else {
1670 		/*
1671 		 * Request timeouts are handled as a forward rolling timer. If
1672 		 * we end up here it means that no requests are pending and
1673 		 * also that no request has been pending for a while. Mark
1674 		 * each hctx as idle.
1675 		 */
1676 		queue_for_each_hw_ctx(q, hctx, i) {
1677 			/* the hctx may be unmapped, so check it here */
1678 			if (blk_mq_hw_queue_mapped(hctx))
1679 				blk_mq_tag_idle(hctx);
1680 		}
1681 	}
1682 	blk_queue_exit(q);
1683 }
1684 
1685 struct flush_busy_ctx_data {
1686 	struct blk_mq_hw_ctx *hctx;
1687 	struct list_head *list;
1688 };
1689 
1690 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1691 {
1692 	struct flush_busy_ctx_data *flush_data = data;
1693 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1694 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1695 	enum hctx_type type = hctx->type;
1696 
1697 	spin_lock(&ctx->lock);
1698 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1699 	sbitmap_clear_bit(sb, bitnr);
1700 	spin_unlock(&ctx->lock);
1701 	return true;
1702 }
1703 
1704 /*
1705  * Process software queues that have been marked busy, splicing them
1706  * to the for-dispatch
1707  */
1708 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1709 {
1710 	struct flush_busy_ctx_data data = {
1711 		.hctx = hctx,
1712 		.list = list,
1713 	};
1714 
1715 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1716 }
1717 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1718 
1719 struct dispatch_rq_data {
1720 	struct blk_mq_hw_ctx *hctx;
1721 	struct request *rq;
1722 };
1723 
1724 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1725 		void *data)
1726 {
1727 	struct dispatch_rq_data *dispatch_data = data;
1728 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1729 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1730 	enum hctx_type type = hctx->type;
1731 
1732 	spin_lock(&ctx->lock);
1733 	if (!list_empty(&ctx->rq_lists[type])) {
1734 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1735 		list_del_init(&dispatch_data->rq->queuelist);
1736 		if (list_empty(&ctx->rq_lists[type]))
1737 			sbitmap_clear_bit(sb, bitnr);
1738 	}
1739 	spin_unlock(&ctx->lock);
1740 
1741 	return !dispatch_data->rq;
1742 }
1743 
1744 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1745 					struct blk_mq_ctx *start)
1746 {
1747 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1748 	struct dispatch_rq_data data = {
1749 		.hctx = hctx,
1750 		.rq   = NULL,
1751 	};
1752 
1753 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1754 			       dispatch_rq_from_ctx, &data);
1755 
1756 	return data.rq;
1757 }
1758 
1759 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1760 {
1761 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1762 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1763 	int tag;
1764 
1765 	blk_mq_tag_busy(rq->mq_hctx);
1766 
1767 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1768 		bt = &rq->mq_hctx->tags->breserved_tags;
1769 		tag_offset = 0;
1770 	} else {
1771 		if (!hctx_may_queue(rq->mq_hctx, bt))
1772 			return false;
1773 	}
1774 
1775 	tag = __sbitmap_queue_get(bt);
1776 	if (tag == BLK_MQ_NO_TAG)
1777 		return false;
1778 
1779 	rq->tag = tag + tag_offset;
1780 	return true;
1781 }
1782 
1783 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1784 {
1785 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1786 		return false;
1787 
1788 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1789 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1790 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1791 		__blk_mq_inc_active_requests(hctx);
1792 	}
1793 	hctx->tags->rqs[rq->tag] = rq;
1794 	return true;
1795 }
1796 
1797 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1798 				int flags, void *key)
1799 {
1800 	struct blk_mq_hw_ctx *hctx;
1801 
1802 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1803 
1804 	spin_lock(&hctx->dispatch_wait_lock);
1805 	if (!list_empty(&wait->entry)) {
1806 		struct sbitmap_queue *sbq;
1807 
1808 		list_del_init(&wait->entry);
1809 		sbq = &hctx->tags->bitmap_tags;
1810 		atomic_dec(&sbq->ws_active);
1811 	}
1812 	spin_unlock(&hctx->dispatch_wait_lock);
1813 
1814 	blk_mq_run_hw_queue(hctx, true);
1815 	return 1;
1816 }
1817 
1818 /*
1819  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1820  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1821  * restart. For both cases, take care to check the condition again after
1822  * marking us as waiting.
1823  */
1824 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1825 				 struct request *rq)
1826 {
1827 	struct sbitmap_queue *sbq;
1828 	struct wait_queue_head *wq;
1829 	wait_queue_entry_t *wait;
1830 	bool ret;
1831 
1832 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1833 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1834 		blk_mq_sched_mark_restart_hctx(hctx);
1835 
1836 		/*
1837 		 * It's possible that a tag was freed in the window between the
1838 		 * allocation failure and adding the hardware queue to the wait
1839 		 * queue.
1840 		 *
1841 		 * Don't clear RESTART here, someone else could have set it.
1842 		 * At most this will cost an extra queue run.
1843 		 */
1844 		return blk_mq_get_driver_tag(rq);
1845 	}
1846 
1847 	wait = &hctx->dispatch_wait;
1848 	if (!list_empty_careful(&wait->entry))
1849 		return false;
1850 
1851 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1852 		sbq = &hctx->tags->breserved_tags;
1853 	else
1854 		sbq = &hctx->tags->bitmap_tags;
1855 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1856 
1857 	spin_lock_irq(&wq->lock);
1858 	spin_lock(&hctx->dispatch_wait_lock);
1859 	if (!list_empty(&wait->entry)) {
1860 		spin_unlock(&hctx->dispatch_wait_lock);
1861 		spin_unlock_irq(&wq->lock);
1862 		return false;
1863 	}
1864 
1865 	atomic_inc(&sbq->ws_active);
1866 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1867 	__add_wait_queue(wq, wait);
1868 
1869 	/*
1870 	 * It's possible that a tag was freed in the window between the
1871 	 * allocation failure and adding the hardware queue to the wait
1872 	 * queue.
1873 	 */
1874 	ret = blk_mq_get_driver_tag(rq);
1875 	if (!ret) {
1876 		spin_unlock(&hctx->dispatch_wait_lock);
1877 		spin_unlock_irq(&wq->lock);
1878 		return false;
1879 	}
1880 
1881 	/*
1882 	 * We got a tag, remove ourselves from the wait queue to ensure
1883 	 * someone else gets the wakeup.
1884 	 */
1885 	list_del_init(&wait->entry);
1886 	atomic_dec(&sbq->ws_active);
1887 	spin_unlock(&hctx->dispatch_wait_lock);
1888 	spin_unlock_irq(&wq->lock);
1889 
1890 	return true;
1891 }
1892 
1893 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1895 /*
1896  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1897  * - EWMA is one simple way to compute running average value
1898  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1899  * - take 4 as factor for avoiding to get too small(0) result, and this
1900  *   factor doesn't matter because EWMA decreases exponentially
1901  */
1902 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1903 {
1904 	unsigned int ewma;
1905 
1906 	ewma = hctx->dispatch_busy;
1907 
1908 	if (!ewma && !busy)
1909 		return;
1910 
1911 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1912 	if (busy)
1913 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1914 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1915 
1916 	hctx->dispatch_busy = ewma;
1917 }
1918 
1919 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1920 
1921 static void blk_mq_handle_dev_resource(struct request *rq,
1922 				       struct list_head *list)
1923 {
1924 	list_add(&rq->queuelist, list);
1925 	__blk_mq_requeue_request(rq);
1926 }
1927 
1928 static void blk_mq_handle_zone_resource(struct request *rq,
1929 					struct list_head *zone_list)
1930 {
1931 	/*
1932 	 * If we end up here it is because we cannot dispatch a request to a
1933 	 * specific zone due to LLD level zone-write locking or other zone
1934 	 * related resource not being available. In this case, set the request
1935 	 * aside in zone_list for retrying it later.
1936 	 */
1937 	list_add(&rq->queuelist, zone_list);
1938 	__blk_mq_requeue_request(rq);
1939 }
1940 
1941 enum prep_dispatch {
1942 	PREP_DISPATCH_OK,
1943 	PREP_DISPATCH_NO_TAG,
1944 	PREP_DISPATCH_NO_BUDGET,
1945 };
1946 
1947 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948 						  bool need_budget)
1949 {
1950 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951 	int budget_token = -1;
1952 
1953 	if (need_budget) {
1954 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1955 		if (budget_token < 0) {
1956 			blk_mq_put_driver_tag(rq);
1957 			return PREP_DISPATCH_NO_BUDGET;
1958 		}
1959 		blk_mq_set_rq_budget_token(rq, budget_token);
1960 	}
1961 
1962 	if (!blk_mq_get_driver_tag(rq)) {
1963 		/*
1964 		 * The initial allocation attempt failed, so we need to
1965 		 * rerun the hardware queue when a tag is freed. The
1966 		 * waitqueue takes care of that. If the queue is run
1967 		 * before we add this entry back on the dispatch list,
1968 		 * we'll re-run it below.
1969 		 */
1970 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971 			/*
1972 			 * All budgets not got from this function will be put
1973 			 * together during handling partial dispatch
1974 			 */
1975 			if (need_budget)
1976 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1977 			return PREP_DISPATCH_NO_TAG;
1978 		}
1979 	}
1980 
1981 	return PREP_DISPATCH_OK;
1982 }
1983 
1984 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985 static void blk_mq_release_budgets(struct request_queue *q,
1986 		struct list_head *list)
1987 {
1988 	struct request *rq;
1989 
1990 	list_for_each_entry(rq, list, queuelist) {
1991 		int budget_token = blk_mq_get_rq_budget_token(rq);
1992 
1993 		if (budget_token >= 0)
1994 			blk_mq_put_dispatch_budget(q, budget_token);
1995 	}
1996 }
1997 
1998 /*
1999  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2000  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2001  * details)
2002  * Attention, we should explicitly call this in unusual cases:
2003  *  1) did not queue everything initially scheduled to queue
2004  *  2) the last attempt to queue a request failed
2005  */
2006 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2007 			      bool from_schedule)
2008 {
2009 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2010 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2011 		hctx->queue->mq_ops->commit_rqs(hctx);
2012 	}
2013 }
2014 
2015 /*
2016  * Returns true if we did some work AND can potentially do more.
2017  */
2018 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2019 			     unsigned int nr_budgets)
2020 {
2021 	enum prep_dispatch prep;
2022 	struct request_queue *q = hctx->queue;
2023 	struct request *rq;
2024 	int queued;
2025 	blk_status_t ret = BLK_STS_OK;
2026 	LIST_HEAD(zone_list);
2027 	bool needs_resource = false;
2028 
2029 	if (list_empty(list))
2030 		return false;
2031 
2032 	/*
2033 	 * Now process all the entries, sending them to the driver.
2034 	 */
2035 	queued = 0;
2036 	do {
2037 		struct blk_mq_queue_data bd;
2038 
2039 		rq = list_first_entry(list, struct request, queuelist);
2040 
2041 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2042 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2043 		if (prep != PREP_DISPATCH_OK)
2044 			break;
2045 
2046 		list_del_init(&rq->queuelist);
2047 
2048 		bd.rq = rq;
2049 		bd.last = list_empty(list);
2050 
2051 		/*
2052 		 * once the request is queued to lld, no need to cover the
2053 		 * budget any more
2054 		 */
2055 		if (nr_budgets)
2056 			nr_budgets--;
2057 		ret = q->mq_ops->queue_rq(hctx, &bd);
2058 		switch (ret) {
2059 		case BLK_STS_OK:
2060 			queued++;
2061 			break;
2062 		case BLK_STS_RESOURCE:
2063 			needs_resource = true;
2064 			fallthrough;
2065 		case BLK_STS_DEV_RESOURCE:
2066 			blk_mq_handle_dev_resource(rq, list);
2067 			goto out;
2068 		case BLK_STS_ZONE_RESOURCE:
2069 			/*
2070 			 * Move the request to zone_list and keep going through
2071 			 * the dispatch list to find more requests the drive can
2072 			 * accept.
2073 			 */
2074 			blk_mq_handle_zone_resource(rq, &zone_list);
2075 			needs_resource = true;
2076 			break;
2077 		default:
2078 			blk_mq_end_request(rq, ret);
2079 		}
2080 	} while (!list_empty(list));
2081 out:
2082 	if (!list_empty(&zone_list))
2083 		list_splice_tail_init(&zone_list, list);
2084 
2085 	/* If we didn't flush the entire list, we could have told the driver
2086 	 * there was more coming, but that turned out to be a lie.
2087 	 */
2088 	if (!list_empty(list) || ret != BLK_STS_OK)
2089 		blk_mq_commit_rqs(hctx, queued, false);
2090 
2091 	/*
2092 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093 	 * that is where we will continue on next queue run.
2094 	 */
2095 	if (!list_empty(list)) {
2096 		bool needs_restart;
2097 		/* For non-shared tags, the RESTART check will suffice */
2098 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2100 			blk_mq_is_shared_tags(hctx->flags));
2101 
2102 		if (nr_budgets)
2103 			blk_mq_release_budgets(q, list);
2104 
2105 		spin_lock(&hctx->lock);
2106 		list_splice_tail_init(list, &hctx->dispatch);
2107 		spin_unlock(&hctx->lock);
2108 
2109 		/*
2110 		 * Order adding requests to hctx->dispatch and checking
2111 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2112 		 * in blk_mq_sched_restart(). Avoid restart code path to
2113 		 * miss the new added requests to hctx->dispatch, meantime
2114 		 * SCHED_RESTART is observed here.
2115 		 */
2116 		smp_mb();
2117 
2118 		/*
2119 		 * If SCHED_RESTART was set by the caller of this function and
2120 		 * it is no longer set that means that it was cleared by another
2121 		 * thread and hence that a queue rerun is needed.
2122 		 *
2123 		 * If 'no_tag' is set, that means that we failed getting
2124 		 * a driver tag with an I/O scheduler attached. If our dispatch
2125 		 * waitqueue is no longer active, ensure that we run the queue
2126 		 * AFTER adding our entries back to the list.
2127 		 *
2128 		 * If no I/O scheduler has been configured it is possible that
2129 		 * the hardware queue got stopped and restarted before requests
2130 		 * were pushed back onto the dispatch list. Rerun the queue to
2131 		 * avoid starvation. Notes:
2132 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2133 		 *   been stopped before rerunning a queue.
2134 		 * - Some but not all block drivers stop a queue before
2135 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2136 		 *   and dm-rq.
2137 		 *
2138 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2139 		 * bit is set, run queue after a delay to avoid IO stalls
2140 		 * that could otherwise occur if the queue is idle.  We'll do
2141 		 * similar if we couldn't get budget or couldn't lock a zone
2142 		 * and SCHED_RESTART is set.
2143 		 */
2144 		needs_restart = blk_mq_sched_needs_restart(hctx);
2145 		if (prep == PREP_DISPATCH_NO_BUDGET)
2146 			needs_resource = true;
2147 		if (!needs_restart ||
2148 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2149 			blk_mq_run_hw_queue(hctx, true);
2150 		else if (needs_resource)
2151 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152 
2153 		blk_mq_update_dispatch_busy(hctx, true);
2154 		return false;
2155 	}
2156 
2157 	blk_mq_update_dispatch_busy(hctx, false);
2158 	return true;
2159 }
2160 
2161 /**
2162  * __blk_mq_run_hw_queue - Run a hardware queue.
2163  * @hctx: Pointer to the hardware queue to run.
2164  *
2165  * Send pending requests to the hardware.
2166  */
2167 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2168 {
2169 	/*
2170 	 * We can't run the queue inline with ints disabled. Ensure that
2171 	 * we catch bad users of this early.
2172 	 */
2173 	WARN_ON_ONCE(in_interrupt());
2174 
2175 	blk_mq_run_dispatch_ops(hctx->queue,
2176 			blk_mq_sched_dispatch_requests(hctx));
2177 }
2178 
2179 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2180 {
2181 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2182 
2183 	if (cpu >= nr_cpu_ids)
2184 		cpu = cpumask_first(hctx->cpumask);
2185 	return cpu;
2186 }
2187 
2188 /*
2189  * It'd be great if the workqueue API had a way to pass
2190  * in a mask and had some smarts for more clever placement.
2191  * For now we just round-robin here, switching for every
2192  * BLK_MQ_CPU_WORK_BATCH queued items.
2193  */
2194 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2195 {
2196 	bool tried = false;
2197 	int next_cpu = hctx->next_cpu;
2198 
2199 	if (hctx->queue->nr_hw_queues == 1)
2200 		return WORK_CPU_UNBOUND;
2201 
2202 	if (--hctx->next_cpu_batch <= 0) {
2203 select_cpu:
2204 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2205 				cpu_online_mask);
2206 		if (next_cpu >= nr_cpu_ids)
2207 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2208 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2209 	}
2210 
2211 	/*
2212 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2213 	 * and it should only happen in the path of handling CPU DEAD.
2214 	 */
2215 	if (!cpu_online(next_cpu)) {
2216 		if (!tried) {
2217 			tried = true;
2218 			goto select_cpu;
2219 		}
2220 
2221 		/*
2222 		 * Make sure to re-select CPU next time once after CPUs
2223 		 * in hctx->cpumask become online again.
2224 		 */
2225 		hctx->next_cpu = next_cpu;
2226 		hctx->next_cpu_batch = 1;
2227 		return WORK_CPU_UNBOUND;
2228 	}
2229 
2230 	hctx->next_cpu = next_cpu;
2231 	return next_cpu;
2232 }
2233 
2234 /**
2235  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2236  * @hctx: Pointer to the hardware queue to run.
2237  * @async: If we want to run the queue asynchronously.
2238  * @msecs: Milliseconds of delay to wait before running the queue.
2239  *
2240  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2241  * with a delay of @msecs.
2242  */
2243 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2244 					unsigned long msecs)
2245 {
2246 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2247 		return;
2248 
2249 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2250 		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2251 			__blk_mq_run_hw_queue(hctx);
2252 			return;
2253 		}
2254 	}
2255 
2256 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2257 				    msecs_to_jiffies(msecs));
2258 }
2259 
2260 /**
2261  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2262  * @hctx: Pointer to the hardware queue to run.
2263  * @msecs: Milliseconds of delay to wait before running the queue.
2264  *
2265  * Run a hardware queue asynchronously with a delay of @msecs.
2266  */
2267 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2268 {
2269 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2270 }
2271 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2272 
2273 /**
2274  * blk_mq_run_hw_queue - Start to run a hardware queue.
2275  * @hctx: Pointer to the hardware queue to run.
2276  * @async: If we want to run the queue asynchronously.
2277  *
2278  * Check if the request queue is not in a quiesced state and if there are
2279  * pending requests to be sent. If this is true, run the queue to send requests
2280  * to hardware.
2281  */
2282 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2283 {
2284 	bool need_run;
2285 
2286 	/*
2287 	 * When queue is quiesced, we may be switching io scheduler, or
2288 	 * updating nr_hw_queues, or other things, and we can't run queue
2289 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2290 	 *
2291 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2292 	 * quiesced.
2293 	 */
2294 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2295 		need_run = !blk_queue_quiesced(hctx->queue) &&
2296 		blk_mq_hctx_has_pending(hctx));
2297 
2298 	if (need_run)
2299 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2300 }
2301 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2302 
2303 /*
2304  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2305  * scheduler.
2306  */
2307 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2308 {
2309 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2310 	/*
2311 	 * If the IO scheduler does not respect hardware queues when
2312 	 * dispatching, we just don't bother with multiple HW queues and
2313 	 * dispatch from hctx for the current CPU since running multiple queues
2314 	 * just causes lock contention inside the scheduler and pointless cache
2315 	 * bouncing.
2316 	 */
2317 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2318 
2319 	if (!blk_mq_hctx_stopped(hctx))
2320 		return hctx;
2321 	return NULL;
2322 }
2323 
2324 /**
2325  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2326  * @q: Pointer to the request queue to run.
2327  * @async: If we want to run the queue asynchronously.
2328  */
2329 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2330 {
2331 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2332 	unsigned long i;
2333 
2334 	sq_hctx = NULL;
2335 	if (blk_queue_sq_sched(q))
2336 		sq_hctx = blk_mq_get_sq_hctx(q);
2337 	queue_for_each_hw_ctx(q, hctx, i) {
2338 		if (blk_mq_hctx_stopped(hctx))
2339 			continue;
2340 		/*
2341 		 * Dispatch from this hctx either if there's no hctx preferred
2342 		 * by IO scheduler or if it has requests that bypass the
2343 		 * scheduler.
2344 		 */
2345 		if (!sq_hctx || sq_hctx == hctx ||
2346 		    !list_empty_careful(&hctx->dispatch))
2347 			blk_mq_run_hw_queue(hctx, async);
2348 	}
2349 }
2350 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2351 
2352 /**
2353  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2354  * @q: Pointer to the request queue to run.
2355  * @msecs: Milliseconds of delay to wait before running the queues.
2356  */
2357 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2358 {
2359 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2360 	unsigned long i;
2361 
2362 	sq_hctx = NULL;
2363 	if (blk_queue_sq_sched(q))
2364 		sq_hctx = blk_mq_get_sq_hctx(q);
2365 	queue_for_each_hw_ctx(q, hctx, i) {
2366 		if (blk_mq_hctx_stopped(hctx))
2367 			continue;
2368 		/*
2369 		 * If there is already a run_work pending, leave the
2370 		 * pending delay untouched. Otherwise, a hctx can stall
2371 		 * if another hctx is re-delaying the other's work
2372 		 * before the work executes.
2373 		 */
2374 		if (delayed_work_pending(&hctx->run_work))
2375 			continue;
2376 		/*
2377 		 * Dispatch from this hctx either if there's no hctx preferred
2378 		 * by IO scheduler or if it has requests that bypass the
2379 		 * scheduler.
2380 		 */
2381 		if (!sq_hctx || sq_hctx == hctx ||
2382 		    !list_empty_careful(&hctx->dispatch))
2383 			blk_mq_delay_run_hw_queue(hctx, msecs);
2384 	}
2385 }
2386 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2387 
2388 /*
2389  * This function is often used for pausing .queue_rq() by driver when
2390  * there isn't enough resource or some conditions aren't satisfied, and
2391  * BLK_STS_RESOURCE is usually returned.
2392  *
2393  * We do not guarantee that dispatch can be drained or blocked
2394  * after blk_mq_stop_hw_queue() returns. Please use
2395  * blk_mq_quiesce_queue() for that requirement.
2396  */
2397 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2398 {
2399 	cancel_delayed_work(&hctx->run_work);
2400 
2401 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402 }
2403 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2404 
2405 /*
2406  * This function is often used for pausing .queue_rq() by driver when
2407  * there isn't enough resource or some conditions aren't satisfied, and
2408  * BLK_STS_RESOURCE is usually returned.
2409  *
2410  * We do not guarantee that dispatch can be drained or blocked
2411  * after blk_mq_stop_hw_queues() returns. Please use
2412  * blk_mq_quiesce_queue() for that requirement.
2413  */
2414 void blk_mq_stop_hw_queues(struct request_queue *q)
2415 {
2416 	struct blk_mq_hw_ctx *hctx;
2417 	unsigned long i;
2418 
2419 	queue_for_each_hw_ctx(q, hctx, i)
2420 		blk_mq_stop_hw_queue(hctx);
2421 }
2422 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2423 
2424 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2425 {
2426 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2427 
2428 	blk_mq_run_hw_queue(hctx, false);
2429 }
2430 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2431 
2432 void blk_mq_start_hw_queues(struct request_queue *q)
2433 {
2434 	struct blk_mq_hw_ctx *hctx;
2435 	unsigned long i;
2436 
2437 	queue_for_each_hw_ctx(q, hctx, i)
2438 		blk_mq_start_hw_queue(hctx);
2439 }
2440 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2441 
2442 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2443 {
2444 	if (!blk_mq_hctx_stopped(hctx))
2445 		return;
2446 
2447 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2448 	blk_mq_run_hw_queue(hctx, async);
2449 }
2450 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2451 
2452 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2453 {
2454 	struct blk_mq_hw_ctx *hctx;
2455 	unsigned long i;
2456 
2457 	queue_for_each_hw_ctx(q, hctx, i)
2458 		blk_mq_start_stopped_hw_queue(hctx, async);
2459 }
2460 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2461 
2462 static void blk_mq_run_work_fn(struct work_struct *work)
2463 {
2464 	struct blk_mq_hw_ctx *hctx;
2465 
2466 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2467 
2468 	/*
2469 	 * If we are stopped, don't run the queue.
2470 	 */
2471 	if (blk_mq_hctx_stopped(hctx))
2472 		return;
2473 
2474 	__blk_mq_run_hw_queue(hctx);
2475 }
2476 
2477 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2478 					    struct request *rq,
2479 					    bool at_head)
2480 {
2481 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2482 	enum hctx_type type = hctx->type;
2483 
2484 	lockdep_assert_held(&ctx->lock);
2485 
2486 	trace_block_rq_insert(rq);
2487 
2488 	if (at_head)
2489 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2490 	else
2491 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2492 }
2493 
2494 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2495 			     bool at_head)
2496 {
2497 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2498 
2499 	lockdep_assert_held(&ctx->lock);
2500 
2501 	__blk_mq_insert_req_list(hctx, rq, at_head);
2502 	blk_mq_hctx_mark_pending(hctx, ctx);
2503 }
2504 
2505 /**
2506  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2507  * @rq: Pointer to request to be inserted.
2508  * @at_head: true if the request should be inserted at the head of the list.
2509  * @run_queue: If we should run the hardware queue after inserting the request.
2510  *
2511  * Should only be used carefully, when the caller knows we want to
2512  * bypass a potential IO scheduler on the target device.
2513  */
2514 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2515 				  bool run_queue)
2516 {
2517 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2518 
2519 	spin_lock(&hctx->lock);
2520 	if (at_head)
2521 		list_add(&rq->queuelist, &hctx->dispatch);
2522 	else
2523 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2524 	spin_unlock(&hctx->lock);
2525 
2526 	if (run_queue)
2527 		blk_mq_run_hw_queue(hctx, false);
2528 }
2529 
2530 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2531 			    struct list_head *list)
2532 
2533 {
2534 	struct request *rq;
2535 	enum hctx_type type = hctx->type;
2536 
2537 	/*
2538 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2539 	 * offline now
2540 	 */
2541 	list_for_each_entry(rq, list, queuelist) {
2542 		BUG_ON(rq->mq_ctx != ctx);
2543 		trace_block_rq_insert(rq);
2544 	}
2545 
2546 	spin_lock(&ctx->lock);
2547 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2548 	blk_mq_hctx_mark_pending(hctx, ctx);
2549 	spin_unlock(&ctx->lock);
2550 }
2551 
2552 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2553 		unsigned int nr_segs)
2554 {
2555 	int err;
2556 
2557 	if (bio->bi_opf & REQ_RAHEAD)
2558 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2559 
2560 	rq->__sector = bio->bi_iter.bi_sector;
2561 	blk_rq_bio_prep(rq, bio, nr_segs);
2562 
2563 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2564 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2565 	WARN_ON_ONCE(err);
2566 
2567 	blk_account_io_start(rq);
2568 }
2569 
2570 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2571 					    struct request *rq, bool last)
2572 {
2573 	struct request_queue *q = rq->q;
2574 	struct blk_mq_queue_data bd = {
2575 		.rq = rq,
2576 		.last = last,
2577 	};
2578 	blk_status_t ret;
2579 
2580 	/*
2581 	 * For OK queue, we are done. For error, caller may kill it.
2582 	 * Any other error (busy), just add it to our list as we
2583 	 * previously would have done.
2584 	 */
2585 	ret = q->mq_ops->queue_rq(hctx, &bd);
2586 	switch (ret) {
2587 	case BLK_STS_OK:
2588 		blk_mq_update_dispatch_busy(hctx, false);
2589 		break;
2590 	case BLK_STS_RESOURCE:
2591 	case BLK_STS_DEV_RESOURCE:
2592 		blk_mq_update_dispatch_busy(hctx, true);
2593 		__blk_mq_requeue_request(rq);
2594 		break;
2595 	default:
2596 		blk_mq_update_dispatch_busy(hctx, false);
2597 		break;
2598 	}
2599 
2600 	return ret;
2601 }
2602 
2603 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2604 						struct request *rq,
2605 						bool bypass_insert, bool last)
2606 {
2607 	struct request_queue *q = rq->q;
2608 	bool run_queue = true;
2609 	int budget_token;
2610 
2611 	/*
2612 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2613 	 *
2614 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2615 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2616 	 * and avoid driver to try to dispatch again.
2617 	 */
2618 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2619 		run_queue = false;
2620 		bypass_insert = false;
2621 		goto insert;
2622 	}
2623 
2624 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2625 		goto insert;
2626 
2627 	budget_token = blk_mq_get_dispatch_budget(q);
2628 	if (budget_token < 0)
2629 		goto insert;
2630 
2631 	blk_mq_set_rq_budget_token(rq, budget_token);
2632 
2633 	if (!blk_mq_get_driver_tag(rq)) {
2634 		blk_mq_put_dispatch_budget(q, budget_token);
2635 		goto insert;
2636 	}
2637 
2638 	return __blk_mq_issue_directly(hctx, rq, last);
2639 insert:
2640 	if (bypass_insert)
2641 		return BLK_STS_RESOURCE;
2642 
2643 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2644 
2645 	return BLK_STS_OK;
2646 }
2647 
2648 /**
2649  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2650  * @hctx: Pointer of the associated hardware queue.
2651  * @rq: Pointer to request to be sent.
2652  *
2653  * If the device has enough resources to accept a new request now, send the
2654  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2655  * we can try send it another time in the future. Requests inserted at this
2656  * queue have higher priority.
2657  */
2658 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2659 		struct request *rq)
2660 {
2661 	blk_status_t ret =
2662 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2663 
2664 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2665 		blk_mq_request_bypass_insert(rq, false, true);
2666 	else if (ret != BLK_STS_OK)
2667 		blk_mq_end_request(rq, ret);
2668 }
2669 
2670 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2671 {
2672 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2673 }
2674 
2675 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2676 {
2677 	struct blk_mq_hw_ctx *hctx = NULL;
2678 	struct request *rq;
2679 	int queued = 0;
2680 	blk_status_t ret = BLK_STS_OK;
2681 
2682 	while ((rq = rq_list_pop(&plug->mq_list))) {
2683 		bool last = rq_list_empty(plug->mq_list);
2684 
2685 		if (hctx != rq->mq_hctx) {
2686 			if (hctx) {
2687 				blk_mq_commit_rqs(hctx, queued, false);
2688 				queued = 0;
2689 			}
2690 			hctx = rq->mq_hctx;
2691 		}
2692 
2693 		ret = blk_mq_request_issue_directly(rq, last);
2694 		switch (ret) {
2695 		case BLK_STS_OK:
2696 			queued++;
2697 			break;
2698 		case BLK_STS_RESOURCE:
2699 		case BLK_STS_DEV_RESOURCE:
2700 			blk_mq_request_bypass_insert(rq, false, true);
2701 			goto out;
2702 		default:
2703 			blk_mq_end_request(rq, ret);
2704 			break;
2705 		}
2706 	}
2707 
2708 out:
2709 	if (ret != BLK_STS_OK)
2710 		blk_mq_commit_rqs(hctx, queued, false);
2711 }
2712 
2713 static void __blk_mq_flush_plug_list(struct request_queue *q,
2714 				     struct blk_plug *plug)
2715 {
2716 	if (blk_queue_quiesced(q))
2717 		return;
2718 	q->mq_ops->queue_rqs(&plug->mq_list);
2719 }
2720 
2721 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2722 {
2723 	struct blk_mq_hw_ctx *this_hctx = NULL;
2724 	struct blk_mq_ctx *this_ctx = NULL;
2725 	struct request *requeue_list = NULL;
2726 	struct request **requeue_lastp = &requeue_list;
2727 	unsigned int depth = 0;
2728 	LIST_HEAD(list);
2729 
2730 	do {
2731 		struct request *rq = rq_list_pop(&plug->mq_list);
2732 
2733 		if (!this_hctx) {
2734 			this_hctx = rq->mq_hctx;
2735 			this_ctx = rq->mq_ctx;
2736 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2737 			rq_list_add_tail(&requeue_lastp, rq);
2738 			continue;
2739 		}
2740 		list_add(&rq->queuelist, &list);
2741 		depth++;
2742 	} while (!rq_list_empty(plug->mq_list));
2743 
2744 	plug->mq_list = requeue_list;
2745 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2746 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2747 }
2748 
2749 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2750 {
2751 	struct request *rq;
2752 
2753 	if (rq_list_empty(plug->mq_list))
2754 		return;
2755 	plug->rq_count = 0;
2756 
2757 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2758 		struct request_queue *q;
2759 
2760 		rq = rq_list_peek(&plug->mq_list);
2761 		q = rq->q;
2762 
2763 		/*
2764 		 * Peek first request and see if we have a ->queue_rqs() hook.
2765 		 * If we do, we can dispatch the whole plug list in one go. We
2766 		 * already know at this point that all requests belong to the
2767 		 * same queue, caller must ensure that's the case.
2768 		 *
2769 		 * Since we pass off the full list to the driver at this point,
2770 		 * we do not increment the active request count for the queue.
2771 		 * Bypass shared tags for now because of that.
2772 		 */
2773 		if (q->mq_ops->queue_rqs &&
2774 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2775 			blk_mq_run_dispatch_ops(q,
2776 				__blk_mq_flush_plug_list(q, plug));
2777 			if (rq_list_empty(plug->mq_list))
2778 				return;
2779 		}
2780 
2781 		blk_mq_run_dispatch_ops(q,
2782 				blk_mq_plug_issue_direct(plug));
2783 		if (rq_list_empty(plug->mq_list))
2784 			return;
2785 	}
2786 
2787 	do {
2788 		blk_mq_dispatch_plug_list(plug, from_schedule);
2789 	} while (!rq_list_empty(plug->mq_list));
2790 }
2791 
2792 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2793 		struct list_head *list)
2794 {
2795 	int queued = 0;
2796 	blk_status_t ret = BLK_STS_OK;
2797 
2798 	while (!list_empty(list)) {
2799 		struct request *rq = list_first_entry(list, struct request,
2800 				queuelist);
2801 
2802 		list_del_init(&rq->queuelist);
2803 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2804 		switch (ret) {
2805 		case BLK_STS_OK:
2806 			queued++;
2807 			break;
2808 		case BLK_STS_RESOURCE:
2809 		case BLK_STS_DEV_RESOURCE:
2810 			blk_mq_request_bypass_insert(rq, false,
2811 						     list_empty(list));
2812 			goto out;
2813 		default:
2814 			blk_mq_end_request(rq, ret);
2815 			break;
2816 		}
2817 	}
2818 
2819 out:
2820 	if (ret != BLK_STS_OK)
2821 		blk_mq_commit_rqs(hctx, queued, false);
2822 }
2823 
2824 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2825 				     struct bio *bio, unsigned int nr_segs)
2826 {
2827 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2828 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2829 			return true;
2830 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2831 			return true;
2832 	}
2833 	return false;
2834 }
2835 
2836 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2837 					       struct blk_plug *plug,
2838 					       struct bio *bio,
2839 					       unsigned int nsegs)
2840 {
2841 	struct blk_mq_alloc_data data = {
2842 		.q		= q,
2843 		.nr_tags	= 1,
2844 		.cmd_flags	= bio->bi_opf,
2845 	};
2846 	struct request *rq;
2847 
2848 	if (unlikely(bio_queue_enter(bio)))
2849 		return NULL;
2850 
2851 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2852 		goto queue_exit;
2853 
2854 	rq_qos_throttle(q, bio);
2855 
2856 	if (plug) {
2857 		data.nr_tags = plug->nr_ios;
2858 		plug->nr_ios = 1;
2859 		data.cached_rq = &plug->cached_rq;
2860 	}
2861 
2862 	rq = __blk_mq_alloc_requests(&data);
2863 	if (rq)
2864 		return rq;
2865 	rq_qos_cleanup(q, bio);
2866 	if (bio->bi_opf & REQ_NOWAIT)
2867 		bio_wouldblock_error(bio);
2868 queue_exit:
2869 	blk_queue_exit(q);
2870 	return NULL;
2871 }
2872 
2873 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2874 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2875 {
2876 	struct request *rq;
2877 	enum hctx_type type, hctx_type;
2878 
2879 	if (!plug)
2880 		return NULL;
2881 
2882 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2883 		*bio = NULL;
2884 		return NULL;
2885 	}
2886 
2887 	rq = rq_list_peek(&plug->cached_rq);
2888 	if (!rq || rq->q != q)
2889 		return NULL;
2890 
2891 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2892 	hctx_type = rq->mq_hctx->type;
2893 	if (type != hctx_type &&
2894 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2895 		return NULL;
2896 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2897 		return NULL;
2898 
2899 	/*
2900 	 * If any qos ->throttle() end up blocking, we will have flushed the
2901 	 * plug and hence killed the cached_rq list as well. Pop this entry
2902 	 * before we throttle.
2903 	 */
2904 	plug->cached_rq = rq_list_next(rq);
2905 	rq_qos_throttle(q, *bio);
2906 
2907 	rq->cmd_flags = (*bio)->bi_opf;
2908 	INIT_LIST_HEAD(&rq->queuelist);
2909 	return rq;
2910 }
2911 
2912 static void bio_set_ioprio(struct bio *bio)
2913 {
2914 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2915 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2916 		bio->bi_ioprio = get_current_ioprio();
2917 	blkcg_set_ioprio(bio);
2918 }
2919 
2920 /**
2921  * blk_mq_submit_bio - Create and send a request to block device.
2922  * @bio: Bio pointer.
2923  *
2924  * Builds up a request structure from @q and @bio and send to the device. The
2925  * request may not be queued directly to hardware if:
2926  * * This request can be merged with another one
2927  * * We want to place request at plug queue for possible future merging
2928  * * There is an IO scheduler active at this queue
2929  *
2930  * It will not queue the request if there is an error with the bio, or at the
2931  * request creation.
2932  */
2933 void blk_mq_submit_bio(struct bio *bio)
2934 {
2935 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2936 	struct blk_plug *plug = blk_mq_plug(bio);
2937 	const int is_sync = op_is_sync(bio->bi_opf);
2938 	struct request *rq;
2939 	unsigned int nr_segs = 1;
2940 	blk_status_t ret;
2941 
2942 	bio = blk_queue_bounce(bio, q);
2943 	if (bio_may_exceed_limits(bio, &q->limits)) {
2944 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2945 		if (!bio)
2946 			return;
2947 	}
2948 
2949 	if (!bio_integrity_prep(bio))
2950 		return;
2951 
2952 	bio_set_ioprio(bio);
2953 
2954 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2955 	if (!rq) {
2956 		if (!bio)
2957 			return;
2958 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2959 		if (unlikely(!rq))
2960 			return;
2961 	}
2962 
2963 	trace_block_getrq(bio);
2964 
2965 	rq_qos_track(q, rq, bio);
2966 
2967 	blk_mq_bio_to_request(rq, bio, nr_segs);
2968 
2969 	ret = blk_crypto_init_request(rq);
2970 	if (ret != BLK_STS_OK) {
2971 		bio->bi_status = ret;
2972 		bio_endio(bio);
2973 		blk_mq_free_request(rq);
2974 		return;
2975 	}
2976 
2977 	if (op_is_flush(bio->bi_opf)) {
2978 		blk_insert_flush(rq);
2979 		return;
2980 	}
2981 
2982 	if (plug)
2983 		blk_add_rq_to_plug(plug, rq);
2984 	else if ((rq->rq_flags & RQF_ELV) ||
2985 		 (rq->mq_hctx->dispatch_busy &&
2986 		  (q->nr_hw_queues == 1 || !is_sync)))
2987 		blk_mq_sched_insert_request(rq, false, true, true);
2988 	else
2989 		blk_mq_run_dispatch_ops(rq->q,
2990 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2991 }
2992 
2993 #ifdef CONFIG_BLK_MQ_STACKING
2994 /**
2995  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2996  * @rq: the request being queued
2997  */
2998 blk_status_t blk_insert_cloned_request(struct request *rq)
2999 {
3000 	struct request_queue *q = rq->q;
3001 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3002 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3003 	blk_status_t ret;
3004 
3005 	if (blk_rq_sectors(rq) > max_sectors) {
3006 		/*
3007 		 * SCSI device does not have a good way to return if
3008 		 * Write Same/Zero is actually supported. If a device rejects
3009 		 * a non-read/write command (discard, write same,etc.) the
3010 		 * low-level device driver will set the relevant queue limit to
3011 		 * 0 to prevent blk-lib from issuing more of the offending
3012 		 * operations. Commands queued prior to the queue limit being
3013 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014 		 * errors being propagated to upper layers.
3015 		 */
3016 		if (max_sectors == 0)
3017 			return BLK_STS_NOTSUPP;
3018 
3019 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020 			__func__, blk_rq_sectors(rq), max_sectors);
3021 		return BLK_STS_IOERR;
3022 	}
3023 
3024 	/*
3025 	 * The queue settings related to segment counting may differ from the
3026 	 * original queue.
3027 	 */
3028 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029 	if (rq->nr_phys_segments > max_segments) {
3030 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3031 			__func__, rq->nr_phys_segments, max_segments);
3032 		return BLK_STS_IOERR;
3033 	}
3034 
3035 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036 		return BLK_STS_IOERR;
3037 
3038 	if (blk_crypto_insert_cloned_request(rq))
3039 		return BLK_STS_IOERR;
3040 
3041 	blk_account_io_start(rq);
3042 
3043 	/*
3044 	 * Since we have a scheduler attached on the top device,
3045 	 * bypass a potential scheduler on the bottom device for
3046 	 * insert.
3047 	 */
3048 	blk_mq_run_dispatch_ops(q,
3049 			ret = blk_mq_request_issue_directly(rq, true));
3050 	if (ret)
3051 		blk_account_io_done(rq, ktime_get_ns());
3052 	return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3055 
3056 /**
3057  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3058  * @rq: the clone request to be cleaned up
3059  *
3060  * Description:
3061  *     Free all bios in @rq for a cloned request.
3062  */
3063 void blk_rq_unprep_clone(struct request *rq)
3064 {
3065 	struct bio *bio;
3066 
3067 	while ((bio = rq->bio) != NULL) {
3068 		rq->bio = bio->bi_next;
3069 
3070 		bio_put(bio);
3071 	}
3072 }
3073 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3074 
3075 /**
3076  * blk_rq_prep_clone - Helper function to setup clone request
3077  * @rq: the request to be setup
3078  * @rq_src: original request to be cloned
3079  * @bs: bio_set that bios for clone are allocated from
3080  * @gfp_mask: memory allocation mask for bio
3081  * @bio_ctr: setup function to be called for each clone bio.
3082  *           Returns %0 for success, non %0 for failure.
3083  * @data: private data to be passed to @bio_ctr
3084  *
3085  * Description:
3086  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087  *     Also, pages which the original bios are pointing to are not copied
3088  *     and the cloned bios just point same pages.
3089  *     So cloned bios must be completed before original bios, which means
3090  *     the caller must complete @rq before @rq_src.
3091  */
3092 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3093 		      struct bio_set *bs, gfp_t gfp_mask,
3094 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3095 		      void *data)
3096 {
3097 	struct bio *bio, *bio_src;
3098 
3099 	if (!bs)
3100 		bs = &fs_bio_set;
3101 
3102 	__rq_for_each_bio(bio_src, rq_src) {
3103 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3104 				      bs);
3105 		if (!bio)
3106 			goto free_and_out;
3107 
3108 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3109 			goto free_and_out;
3110 
3111 		if (rq->bio) {
3112 			rq->biotail->bi_next = bio;
3113 			rq->biotail = bio;
3114 		} else {
3115 			rq->bio = rq->biotail = bio;
3116 		}
3117 		bio = NULL;
3118 	}
3119 
3120 	/* Copy attributes of the original request to the clone request. */
3121 	rq->__sector = blk_rq_pos(rq_src);
3122 	rq->__data_len = blk_rq_bytes(rq_src);
3123 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3124 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3125 		rq->special_vec = rq_src->special_vec;
3126 	}
3127 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3128 	rq->ioprio = rq_src->ioprio;
3129 
3130 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3131 		goto free_and_out;
3132 
3133 	return 0;
3134 
3135 free_and_out:
3136 	if (bio)
3137 		bio_put(bio);
3138 	blk_rq_unprep_clone(rq);
3139 
3140 	return -ENOMEM;
3141 }
3142 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3143 #endif /* CONFIG_BLK_MQ_STACKING */
3144 
3145 /*
3146  * Steal bios from a request and add them to a bio list.
3147  * The request must not have been partially completed before.
3148  */
3149 void blk_steal_bios(struct bio_list *list, struct request *rq)
3150 {
3151 	if (rq->bio) {
3152 		if (list->tail)
3153 			list->tail->bi_next = rq->bio;
3154 		else
3155 			list->head = rq->bio;
3156 		list->tail = rq->biotail;
3157 
3158 		rq->bio = NULL;
3159 		rq->biotail = NULL;
3160 	}
3161 
3162 	rq->__data_len = 0;
3163 }
3164 EXPORT_SYMBOL_GPL(blk_steal_bios);
3165 
3166 static size_t order_to_size(unsigned int order)
3167 {
3168 	return (size_t)PAGE_SIZE << order;
3169 }
3170 
3171 /* called before freeing request pool in @tags */
3172 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3173 				    struct blk_mq_tags *tags)
3174 {
3175 	struct page *page;
3176 	unsigned long flags;
3177 
3178 	/*
3179 	 * There is no need to clear mapping if driver tags is not initialized
3180 	 * or the mapping belongs to the driver tags.
3181 	 */
3182 	if (!drv_tags || drv_tags == tags)
3183 		return;
3184 
3185 	list_for_each_entry(page, &tags->page_list, lru) {
3186 		unsigned long start = (unsigned long)page_address(page);
3187 		unsigned long end = start + order_to_size(page->private);
3188 		int i;
3189 
3190 		for (i = 0; i < drv_tags->nr_tags; i++) {
3191 			struct request *rq = drv_tags->rqs[i];
3192 			unsigned long rq_addr = (unsigned long)rq;
3193 
3194 			if (rq_addr >= start && rq_addr < end) {
3195 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3196 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3197 			}
3198 		}
3199 	}
3200 
3201 	/*
3202 	 * Wait until all pending iteration is done.
3203 	 *
3204 	 * Request reference is cleared and it is guaranteed to be observed
3205 	 * after the ->lock is released.
3206 	 */
3207 	spin_lock_irqsave(&drv_tags->lock, flags);
3208 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3209 }
3210 
3211 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3212 		     unsigned int hctx_idx)
3213 {
3214 	struct blk_mq_tags *drv_tags;
3215 	struct page *page;
3216 
3217 	if (list_empty(&tags->page_list))
3218 		return;
3219 
3220 	if (blk_mq_is_shared_tags(set->flags))
3221 		drv_tags = set->shared_tags;
3222 	else
3223 		drv_tags = set->tags[hctx_idx];
3224 
3225 	if (tags->static_rqs && set->ops->exit_request) {
3226 		int i;
3227 
3228 		for (i = 0; i < tags->nr_tags; i++) {
3229 			struct request *rq = tags->static_rqs[i];
3230 
3231 			if (!rq)
3232 				continue;
3233 			set->ops->exit_request(set, rq, hctx_idx);
3234 			tags->static_rqs[i] = NULL;
3235 		}
3236 	}
3237 
3238 	blk_mq_clear_rq_mapping(drv_tags, tags);
3239 
3240 	while (!list_empty(&tags->page_list)) {
3241 		page = list_first_entry(&tags->page_list, struct page, lru);
3242 		list_del_init(&page->lru);
3243 		/*
3244 		 * Remove kmemleak object previously allocated in
3245 		 * blk_mq_alloc_rqs().
3246 		 */
3247 		kmemleak_free(page_address(page));
3248 		__free_pages(page, page->private);
3249 	}
3250 }
3251 
3252 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3253 {
3254 	kfree(tags->rqs);
3255 	tags->rqs = NULL;
3256 	kfree(tags->static_rqs);
3257 	tags->static_rqs = NULL;
3258 
3259 	blk_mq_free_tags(tags);
3260 }
3261 
3262 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3263 		unsigned int hctx_idx)
3264 {
3265 	int i;
3266 
3267 	for (i = 0; i < set->nr_maps; i++) {
3268 		unsigned int start = set->map[i].queue_offset;
3269 		unsigned int end = start + set->map[i].nr_queues;
3270 
3271 		if (hctx_idx >= start && hctx_idx < end)
3272 			break;
3273 	}
3274 
3275 	if (i >= set->nr_maps)
3276 		i = HCTX_TYPE_DEFAULT;
3277 
3278 	return i;
3279 }
3280 
3281 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3282 		unsigned int hctx_idx)
3283 {
3284 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3285 
3286 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3287 }
3288 
3289 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3290 					       unsigned int hctx_idx,
3291 					       unsigned int nr_tags,
3292 					       unsigned int reserved_tags)
3293 {
3294 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3295 	struct blk_mq_tags *tags;
3296 
3297 	if (node == NUMA_NO_NODE)
3298 		node = set->numa_node;
3299 
3300 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3301 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3302 	if (!tags)
3303 		return NULL;
3304 
3305 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3306 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3307 				 node);
3308 	if (!tags->rqs)
3309 		goto err_free_tags;
3310 
3311 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3312 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3313 					node);
3314 	if (!tags->static_rqs)
3315 		goto err_free_rqs;
3316 
3317 	return tags;
3318 
3319 err_free_rqs:
3320 	kfree(tags->rqs);
3321 err_free_tags:
3322 	blk_mq_free_tags(tags);
3323 	return NULL;
3324 }
3325 
3326 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3327 			       unsigned int hctx_idx, int node)
3328 {
3329 	int ret;
3330 
3331 	if (set->ops->init_request) {
3332 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3333 		if (ret)
3334 			return ret;
3335 	}
3336 
3337 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3338 	return 0;
3339 }
3340 
3341 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3342 			    struct blk_mq_tags *tags,
3343 			    unsigned int hctx_idx, unsigned int depth)
3344 {
3345 	unsigned int i, j, entries_per_page, max_order = 4;
3346 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3347 	size_t rq_size, left;
3348 
3349 	if (node == NUMA_NO_NODE)
3350 		node = set->numa_node;
3351 
3352 	INIT_LIST_HEAD(&tags->page_list);
3353 
3354 	/*
3355 	 * rq_size is the size of the request plus driver payload, rounded
3356 	 * to the cacheline size
3357 	 */
3358 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3359 				cache_line_size());
3360 	left = rq_size * depth;
3361 
3362 	for (i = 0; i < depth; ) {
3363 		int this_order = max_order;
3364 		struct page *page;
3365 		int to_do;
3366 		void *p;
3367 
3368 		while (this_order && left < order_to_size(this_order - 1))
3369 			this_order--;
3370 
3371 		do {
3372 			page = alloc_pages_node(node,
3373 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3374 				this_order);
3375 			if (page)
3376 				break;
3377 			if (!this_order--)
3378 				break;
3379 			if (order_to_size(this_order) < rq_size)
3380 				break;
3381 		} while (1);
3382 
3383 		if (!page)
3384 			goto fail;
3385 
3386 		page->private = this_order;
3387 		list_add_tail(&page->lru, &tags->page_list);
3388 
3389 		p = page_address(page);
3390 		/*
3391 		 * Allow kmemleak to scan these pages as they contain pointers
3392 		 * to additional allocations like via ops->init_request().
3393 		 */
3394 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3395 		entries_per_page = order_to_size(this_order) / rq_size;
3396 		to_do = min(entries_per_page, depth - i);
3397 		left -= to_do * rq_size;
3398 		for (j = 0; j < to_do; j++) {
3399 			struct request *rq = p;
3400 
3401 			tags->static_rqs[i] = rq;
3402 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3403 				tags->static_rqs[i] = NULL;
3404 				goto fail;
3405 			}
3406 
3407 			p += rq_size;
3408 			i++;
3409 		}
3410 	}
3411 	return 0;
3412 
3413 fail:
3414 	blk_mq_free_rqs(set, tags, hctx_idx);
3415 	return -ENOMEM;
3416 }
3417 
3418 struct rq_iter_data {
3419 	struct blk_mq_hw_ctx *hctx;
3420 	bool has_rq;
3421 };
3422 
3423 static bool blk_mq_has_request(struct request *rq, void *data)
3424 {
3425 	struct rq_iter_data *iter_data = data;
3426 
3427 	if (rq->mq_hctx != iter_data->hctx)
3428 		return true;
3429 	iter_data->has_rq = true;
3430 	return false;
3431 }
3432 
3433 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3434 {
3435 	struct blk_mq_tags *tags = hctx->sched_tags ?
3436 			hctx->sched_tags : hctx->tags;
3437 	struct rq_iter_data data = {
3438 		.hctx	= hctx,
3439 	};
3440 
3441 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3442 	return data.has_rq;
3443 }
3444 
3445 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3446 		struct blk_mq_hw_ctx *hctx)
3447 {
3448 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3449 		return false;
3450 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3451 		return false;
3452 	return true;
3453 }
3454 
3455 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3456 {
3457 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3458 			struct blk_mq_hw_ctx, cpuhp_online);
3459 
3460 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3461 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3462 		return 0;
3463 
3464 	/*
3465 	 * Prevent new request from being allocated on the current hctx.
3466 	 *
3467 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3468 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3469 	 * seen once we return from the tag allocator.
3470 	 */
3471 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3472 	smp_mb__after_atomic();
3473 
3474 	/*
3475 	 * Try to grab a reference to the queue and wait for any outstanding
3476 	 * requests.  If we could not grab a reference the queue has been
3477 	 * frozen and there are no requests.
3478 	 */
3479 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3480 		while (blk_mq_hctx_has_requests(hctx))
3481 			msleep(5);
3482 		percpu_ref_put(&hctx->queue->q_usage_counter);
3483 	}
3484 
3485 	return 0;
3486 }
3487 
3488 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3489 {
3490 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3491 			struct blk_mq_hw_ctx, cpuhp_online);
3492 
3493 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3494 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3495 	return 0;
3496 }
3497 
3498 /*
3499  * 'cpu' is going away. splice any existing rq_list entries from this
3500  * software queue to the hw queue dispatch list, and ensure that it
3501  * gets run.
3502  */
3503 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3504 {
3505 	struct blk_mq_hw_ctx *hctx;
3506 	struct blk_mq_ctx *ctx;
3507 	LIST_HEAD(tmp);
3508 	enum hctx_type type;
3509 
3510 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3511 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3512 		return 0;
3513 
3514 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3515 	type = hctx->type;
3516 
3517 	spin_lock(&ctx->lock);
3518 	if (!list_empty(&ctx->rq_lists[type])) {
3519 		list_splice_init(&ctx->rq_lists[type], &tmp);
3520 		blk_mq_hctx_clear_pending(hctx, ctx);
3521 	}
3522 	spin_unlock(&ctx->lock);
3523 
3524 	if (list_empty(&tmp))
3525 		return 0;
3526 
3527 	spin_lock(&hctx->lock);
3528 	list_splice_tail_init(&tmp, &hctx->dispatch);
3529 	spin_unlock(&hctx->lock);
3530 
3531 	blk_mq_run_hw_queue(hctx, true);
3532 	return 0;
3533 }
3534 
3535 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3536 {
3537 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3538 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3539 						    &hctx->cpuhp_online);
3540 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3541 					    &hctx->cpuhp_dead);
3542 }
3543 
3544 /*
3545  * Before freeing hw queue, clearing the flush request reference in
3546  * tags->rqs[] for avoiding potential UAF.
3547  */
3548 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3549 		unsigned int queue_depth, struct request *flush_rq)
3550 {
3551 	int i;
3552 	unsigned long flags;
3553 
3554 	/* The hw queue may not be mapped yet */
3555 	if (!tags)
3556 		return;
3557 
3558 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3559 
3560 	for (i = 0; i < queue_depth; i++)
3561 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3562 
3563 	/*
3564 	 * Wait until all pending iteration is done.
3565 	 *
3566 	 * Request reference is cleared and it is guaranteed to be observed
3567 	 * after the ->lock is released.
3568 	 */
3569 	spin_lock_irqsave(&tags->lock, flags);
3570 	spin_unlock_irqrestore(&tags->lock, flags);
3571 }
3572 
3573 /* hctx->ctxs will be freed in queue's release handler */
3574 static void blk_mq_exit_hctx(struct request_queue *q,
3575 		struct blk_mq_tag_set *set,
3576 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3577 {
3578 	struct request *flush_rq = hctx->fq->flush_rq;
3579 
3580 	if (blk_mq_hw_queue_mapped(hctx))
3581 		blk_mq_tag_idle(hctx);
3582 
3583 	if (blk_queue_init_done(q))
3584 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3585 				set->queue_depth, flush_rq);
3586 	if (set->ops->exit_request)
3587 		set->ops->exit_request(set, flush_rq, hctx_idx);
3588 
3589 	if (set->ops->exit_hctx)
3590 		set->ops->exit_hctx(hctx, hctx_idx);
3591 
3592 	blk_mq_remove_cpuhp(hctx);
3593 
3594 	xa_erase(&q->hctx_table, hctx_idx);
3595 
3596 	spin_lock(&q->unused_hctx_lock);
3597 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3598 	spin_unlock(&q->unused_hctx_lock);
3599 }
3600 
3601 static void blk_mq_exit_hw_queues(struct request_queue *q,
3602 		struct blk_mq_tag_set *set, int nr_queue)
3603 {
3604 	struct blk_mq_hw_ctx *hctx;
3605 	unsigned long i;
3606 
3607 	queue_for_each_hw_ctx(q, hctx, i) {
3608 		if (i == nr_queue)
3609 			break;
3610 		blk_mq_exit_hctx(q, set, hctx, i);
3611 	}
3612 }
3613 
3614 static int blk_mq_init_hctx(struct request_queue *q,
3615 		struct blk_mq_tag_set *set,
3616 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3617 {
3618 	hctx->queue_num = hctx_idx;
3619 
3620 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3621 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3622 				&hctx->cpuhp_online);
3623 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3624 
3625 	hctx->tags = set->tags[hctx_idx];
3626 
3627 	if (set->ops->init_hctx &&
3628 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3629 		goto unregister_cpu_notifier;
3630 
3631 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3632 				hctx->numa_node))
3633 		goto exit_hctx;
3634 
3635 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3636 		goto exit_flush_rq;
3637 
3638 	return 0;
3639 
3640  exit_flush_rq:
3641 	if (set->ops->exit_request)
3642 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3643  exit_hctx:
3644 	if (set->ops->exit_hctx)
3645 		set->ops->exit_hctx(hctx, hctx_idx);
3646  unregister_cpu_notifier:
3647 	blk_mq_remove_cpuhp(hctx);
3648 	return -1;
3649 }
3650 
3651 static struct blk_mq_hw_ctx *
3652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3653 		int node)
3654 {
3655 	struct blk_mq_hw_ctx *hctx;
3656 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3657 
3658 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3659 	if (!hctx)
3660 		goto fail_alloc_hctx;
3661 
3662 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3663 		goto free_hctx;
3664 
3665 	atomic_set(&hctx->nr_active, 0);
3666 	if (node == NUMA_NO_NODE)
3667 		node = set->numa_node;
3668 	hctx->numa_node = node;
3669 
3670 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3671 	spin_lock_init(&hctx->lock);
3672 	INIT_LIST_HEAD(&hctx->dispatch);
3673 	hctx->queue = q;
3674 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3675 
3676 	INIT_LIST_HEAD(&hctx->hctx_list);
3677 
3678 	/*
3679 	 * Allocate space for all possible cpus to avoid allocation at
3680 	 * runtime
3681 	 */
3682 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3683 			gfp, node);
3684 	if (!hctx->ctxs)
3685 		goto free_cpumask;
3686 
3687 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3688 				gfp, node, false, false))
3689 		goto free_ctxs;
3690 	hctx->nr_ctx = 0;
3691 
3692 	spin_lock_init(&hctx->dispatch_wait_lock);
3693 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3694 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3695 
3696 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3697 	if (!hctx->fq)
3698 		goto free_bitmap;
3699 
3700 	blk_mq_hctx_kobj_init(hctx);
3701 
3702 	return hctx;
3703 
3704  free_bitmap:
3705 	sbitmap_free(&hctx->ctx_map);
3706  free_ctxs:
3707 	kfree(hctx->ctxs);
3708  free_cpumask:
3709 	free_cpumask_var(hctx->cpumask);
3710  free_hctx:
3711 	kfree(hctx);
3712  fail_alloc_hctx:
3713 	return NULL;
3714 }
3715 
3716 static void blk_mq_init_cpu_queues(struct request_queue *q,
3717 				   unsigned int nr_hw_queues)
3718 {
3719 	struct blk_mq_tag_set *set = q->tag_set;
3720 	unsigned int i, j;
3721 
3722 	for_each_possible_cpu(i) {
3723 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3724 		struct blk_mq_hw_ctx *hctx;
3725 		int k;
3726 
3727 		__ctx->cpu = i;
3728 		spin_lock_init(&__ctx->lock);
3729 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3730 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3731 
3732 		__ctx->queue = q;
3733 
3734 		/*
3735 		 * Set local node, IFF we have more than one hw queue. If
3736 		 * not, we remain on the home node of the device
3737 		 */
3738 		for (j = 0; j < set->nr_maps; j++) {
3739 			hctx = blk_mq_map_queue_type(q, j, i);
3740 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3741 				hctx->numa_node = cpu_to_node(i);
3742 		}
3743 	}
3744 }
3745 
3746 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3747 					     unsigned int hctx_idx,
3748 					     unsigned int depth)
3749 {
3750 	struct blk_mq_tags *tags;
3751 	int ret;
3752 
3753 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3754 	if (!tags)
3755 		return NULL;
3756 
3757 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3758 	if (ret) {
3759 		blk_mq_free_rq_map(tags);
3760 		return NULL;
3761 	}
3762 
3763 	return tags;
3764 }
3765 
3766 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3767 				       int hctx_idx)
3768 {
3769 	if (blk_mq_is_shared_tags(set->flags)) {
3770 		set->tags[hctx_idx] = set->shared_tags;
3771 
3772 		return true;
3773 	}
3774 
3775 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3776 						       set->queue_depth);
3777 
3778 	return set->tags[hctx_idx];
3779 }
3780 
3781 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3782 			     struct blk_mq_tags *tags,
3783 			     unsigned int hctx_idx)
3784 {
3785 	if (tags) {
3786 		blk_mq_free_rqs(set, tags, hctx_idx);
3787 		blk_mq_free_rq_map(tags);
3788 	}
3789 }
3790 
3791 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3792 				      unsigned int hctx_idx)
3793 {
3794 	if (!blk_mq_is_shared_tags(set->flags))
3795 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3796 
3797 	set->tags[hctx_idx] = NULL;
3798 }
3799 
3800 static void blk_mq_map_swqueue(struct request_queue *q)
3801 {
3802 	unsigned int j, hctx_idx;
3803 	unsigned long i;
3804 	struct blk_mq_hw_ctx *hctx;
3805 	struct blk_mq_ctx *ctx;
3806 	struct blk_mq_tag_set *set = q->tag_set;
3807 
3808 	queue_for_each_hw_ctx(q, hctx, i) {
3809 		cpumask_clear(hctx->cpumask);
3810 		hctx->nr_ctx = 0;
3811 		hctx->dispatch_from = NULL;
3812 	}
3813 
3814 	/*
3815 	 * Map software to hardware queues.
3816 	 *
3817 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3818 	 */
3819 	for_each_possible_cpu(i) {
3820 
3821 		ctx = per_cpu_ptr(q->queue_ctx, i);
3822 		for (j = 0; j < set->nr_maps; j++) {
3823 			if (!set->map[j].nr_queues) {
3824 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3825 						HCTX_TYPE_DEFAULT, i);
3826 				continue;
3827 			}
3828 			hctx_idx = set->map[j].mq_map[i];
3829 			/* unmapped hw queue can be remapped after CPU topo changed */
3830 			if (!set->tags[hctx_idx] &&
3831 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3832 				/*
3833 				 * If tags initialization fail for some hctx,
3834 				 * that hctx won't be brought online.  In this
3835 				 * case, remap the current ctx to hctx[0] which
3836 				 * is guaranteed to always have tags allocated
3837 				 */
3838 				set->map[j].mq_map[i] = 0;
3839 			}
3840 
3841 			hctx = blk_mq_map_queue_type(q, j, i);
3842 			ctx->hctxs[j] = hctx;
3843 			/*
3844 			 * If the CPU is already set in the mask, then we've
3845 			 * mapped this one already. This can happen if
3846 			 * devices share queues across queue maps.
3847 			 */
3848 			if (cpumask_test_cpu(i, hctx->cpumask))
3849 				continue;
3850 
3851 			cpumask_set_cpu(i, hctx->cpumask);
3852 			hctx->type = j;
3853 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3854 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3855 
3856 			/*
3857 			 * If the nr_ctx type overflows, we have exceeded the
3858 			 * amount of sw queues we can support.
3859 			 */
3860 			BUG_ON(!hctx->nr_ctx);
3861 		}
3862 
3863 		for (; j < HCTX_MAX_TYPES; j++)
3864 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3865 					HCTX_TYPE_DEFAULT, i);
3866 	}
3867 
3868 	queue_for_each_hw_ctx(q, hctx, i) {
3869 		/*
3870 		 * If no software queues are mapped to this hardware queue,
3871 		 * disable it and free the request entries.
3872 		 */
3873 		if (!hctx->nr_ctx) {
3874 			/* Never unmap queue 0.  We need it as a
3875 			 * fallback in case of a new remap fails
3876 			 * allocation
3877 			 */
3878 			if (i)
3879 				__blk_mq_free_map_and_rqs(set, i);
3880 
3881 			hctx->tags = NULL;
3882 			continue;
3883 		}
3884 
3885 		hctx->tags = set->tags[i];
3886 		WARN_ON(!hctx->tags);
3887 
3888 		/*
3889 		 * Set the map size to the number of mapped software queues.
3890 		 * This is more accurate and more efficient than looping
3891 		 * over all possibly mapped software queues.
3892 		 */
3893 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3894 
3895 		/*
3896 		 * Initialize batch roundrobin counts
3897 		 */
3898 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3899 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3900 	}
3901 }
3902 
3903 /*
3904  * Caller needs to ensure that we're either frozen/quiesced, or that
3905  * the queue isn't live yet.
3906  */
3907 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3908 {
3909 	struct blk_mq_hw_ctx *hctx;
3910 	unsigned long i;
3911 
3912 	queue_for_each_hw_ctx(q, hctx, i) {
3913 		if (shared) {
3914 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3915 		} else {
3916 			blk_mq_tag_idle(hctx);
3917 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3918 		}
3919 	}
3920 }
3921 
3922 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3923 					 bool shared)
3924 {
3925 	struct request_queue *q;
3926 
3927 	lockdep_assert_held(&set->tag_list_lock);
3928 
3929 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3930 		blk_mq_freeze_queue(q);
3931 		queue_set_hctx_shared(q, shared);
3932 		blk_mq_unfreeze_queue(q);
3933 	}
3934 }
3935 
3936 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3937 {
3938 	struct blk_mq_tag_set *set = q->tag_set;
3939 
3940 	mutex_lock(&set->tag_list_lock);
3941 	list_del(&q->tag_set_list);
3942 	if (list_is_singular(&set->tag_list)) {
3943 		/* just transitioned to unshared */
3944 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3945 		/* update existing queue */
3946 		blk_mq_update_tag_set_shared(set, false);
3947 	}
3948 	mutex_unlock(&set->tag_list_lock);
3949 	INIT_LIST_HEAD(&q->tag_set_list);
3950 }
3951 
3952 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3953 				     struct request_queue *q)
3954 {
3955 	mutex_lock(&set->tag_list_lock);
3956 
3957 	/*
3958 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3959 	 */
3960 	if (!list_empty(&set->tag_list) &&
3961 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3962 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3963 		/* update existing queue */
3964 		blk_mq_update_tag_set_shared(set, true);
3965 	}
3966 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3967 		queue_set_hctx_shared(q, true);
3968 	list_add_tail(&q->tag_set_list, &set->tag_list);
3969 
3970 	mutex_unlock(&set->tag_list_lock);
3971 }
3972 
3973 /* All allocations will be freed in release handler of q->mq_kobj */
3974 static int blk_mq_alloc_ctxs(struct request_queue *q)
3975 {
3976 	struct blk_mq_ctxs *ctxs;
3977 	int cpu;
3978 
3979 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3980 	if (!ctxs)
3981 		return -ENOMEM;
3982 
3983 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3984 	if (!ctxs->queue_ctx)
3985 		goto fail;
3986 
3987 	for_each_possible_cpu(cpu) {
3988 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3989 		ctx->ctxs = ctxs;
3990 	}
3991 
3992 	q->mq_kobj = &ctxs->kobj;
3993 	q->queue_ctx = ctxs->queue_ctx;
3994 
3995 	return 0;
3996  fail:
3997 	kfree(ctxs);
3998 	return -ENOMEM;
3999 }
4000 
4001 /*
4002  * It is the actual release handler for mq, but we do it from
4003  * request queue's release handler for avoiding use-after-free
4004  * and headache because q->mq_kobj shouldn't have been introduced,
4005  * but we can't group ctx/kctx kobj without it.
4006  */
4007 void blk_mq_release(struct request_queue *q)
4008 {
4009 	struct blk_mq_hw_ctx *hctx, *next;
4010 	unsigned long i;
4011 
4012 	queue_for_each_hw_ctx(q, hctx, i)
4013 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4014 
4015 	/* all hctx are in .unused_hctx_list now */
4016 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4017 		list_del_init(&hctx->hctx_list);
4018 		kobject_put(&hctx->kobj);
4019 	}
4020 
4021 	xa_destroy(&q->hctx_table);
4022 
4023 	/*
4024 	 * release .mq_kobj and sw queue's kobject now because
4025 	 * both share lifetime with request queue.
4026 	 */
4027 	blk_mq_sysfs_deinit(q);
4028 }
4029 
4030 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4031 		void *queuedata)
4032 {
4033 	struct request_queue *q;
4034 	int ret;
4035 
4036 	q = blk_alloc_queue(set->numa_node);
4037 	if (!q)
4038 		return ERR_PTR(-ENOMEM);
4039 	q->queuedata = queuedata;
4040 	ret = blk_mq_init_allocated_queue(set, q);
4041 	if (ret) {
4042 		blk_put_queue(q);
4043 		return ERR_PTR(ret);
4044 	}
4045 	return q;
4046 }
4047 
4048 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4049 {
4050 	return blk_mq_init_queue_data(set, NULL);
4051 }
4052 EXPORT_SYMBOL(blk_mq_init_queue);
4053 
4054 /**
4055  * blk_mq_destroy_queue - shutdown a request queue
4056  * @q: request queue to shutdown
4057  *
4058  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4059  * requests will be failed with -ENODEV. The caller is responsible for dropping
4060  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4061  *
4062  * Context: can sleep
4063  */
4064 void blk_mq_destroy_queue(struct request_queue *q)
4065 {
4066 	WARN_ON_ONCE(!queue_is_mq(q));
4067 	WARN_ON_ONCE(blk_queue_registered(q));
4068 
4069 	might_sleep();
4070 
4071 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4072 	blk_queue_start_drain(q);
4073 	blk_mq_freeze_queue_wait(q);
4074 
4075 	blk_sync_queue(q);
4076 	blk_mq_cancel_work_sync(q);
4077 	blk_mq_exit_queue(q);
4078 }
4079 EXPORT_SYMBOL(blk_mq_destroy_queue);
4080 
4081 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4082 		struct lock_class_key *lkclass)
4083 {
4084 	struct request_queue *q;
4085 	struct gendisk *disk;
4086 
4087 	q = blk_mq_init_queue_data(set, queuedata);
4088 	if (IS_ERR(q))
4089 		return ERR_CAST(q);
4090 
4091 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4092 	if (!disk) {
4093 		blk_mq_destroy_queue(q);
4094 		blk_put_queue(q);
4095 		return ERR_PTR(-ENOMEM);
4096 	}
4097 	set_bit(GD_OWNS_QUEUE, &disk->state);
4098 	return disk;
4099 }
4100 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4101 
4102 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4103 		struct lock_class_key *lkclass)
4104 {
4105 	struct gendisk *disk;
4106 
4107 	if (!blk_get_queue(q))
4108 		return NULL;
4109 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4110 	if (!disk)
4111 		blk_put_queue(q);
4112 	return disk;
4113 }
4114 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4115 
4116 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4117 		struct blk_mq_tag_set *set, struct request_queue *q,
4118 		int hctx_idx, int node)
4119 {
4120 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4121 
4122 	/* reuse dead hctx first */
4123 	spin_lock(&q->unused_hctx_lock);
4124 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4125 		if (tmp->numa_node == node) {
4126 			hctx = tmp;
4127 			break;
4128 		}
4129 	}
4130 	if (hctx)
4131 		list_del_init(&hctx->hctx_list);
4132 	spin_unlock(&q->unused_hctx_lock);
4133 
4134 	if (!hctx)
4135 		hctx = blk_mq_alloc_hctx(q, set, node);
4136 	if (!hctx)
4137 		goto fail;
4138 
4139 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4140 		goto free_hctx;
4141 
4142 	return hctx;
4143 
4144  free_hctx:
4145 	kobject_put(&hctx->kobj);
4146  fail:
4147 	return NULL;
4148 }
4149 
4150 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4151 						struct request_queue *q)
4152 {
4153 	struct blk_mq_hw_ctx *hctx;
4154 	unsigned long i, j;
4155 
4156 	/* protect against switching io scheduler  */
4157 	mutex_lock(&q->sysfs_lock);
4158 	for (i = 0; i < set->nr_hw_queues; i++) {
4159 		int old_node;
4160 		int node = blk_mq_get_hctx_node(set, i);
4161 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4162 
4163 		if (old_hctx) {
4164 			old_node = old_hctx->numa_node;
4165 			blk_mq_exit_hctx(q, set, old_hctx, i);
4166 		}
4167 
4168 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4169 			if (!old_hctx)
4170 				break;
4171 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4172 					node, old_node);
4173 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4174 			WARN_ON_ONCE(!hctx);
4175 		}
4176 	}
4177 	/*
4178 	 * Increasing nr_hw_queues fails. Free the newly allocated
4179 	 * hctxs and keep the previous q->nr_hw_queues.
4180 	 */
4181 	if (i != set->nr_hw_queues) {
4182 		j = q->nr_hw_queues;
4183 	} else {
4184 		j = i;
4185 		q->nr_hw_queues = set->nr_hw_queues;
4186 	}
4187 
4188 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4189 		blk_mq_exit_hctx(q, set, hctx, j);
4190 	mutex_unlock(&q->sysfs_lock);
4191 }
4192 
4193 static void blk_mq_update_poll_flag(struct request_queue *q)
4194 {
4195 	struct blk_mq_tag_set *set = q->tag_set;
4196 
4197 	if (set->nr_maps > HCTX_TYPE_POLL &&
4198 	    set->map[HCTX_TYPE_POLL].nr_queues)
4199 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4200 	else
4201 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4202 }
4203 
4204 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4205 		struct request_queue *q)
4206 {
4207 	/* mark the queue as mq asap */
4208 	q->mq_ops = set->ops;
4209 
4210 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4211 					     blk_mq_poll_stats_bkt,
4212 					     BLK_MQ_POLL_STATS_BKTS, q);
4213 	if (!q->poll_cb)
4214 		goto err_exit;
4215 
4216 	if (blk_mq_alloc_ctxs(q))
4217 		goto err_poll;
4218 
4219 	/* init q->mq_kobj and sw queues' kobjects */
4220 	blk_mq_sysfs_init(q);
4221 
4222 	INIT_LIST_HEAD(&q->unused_hctx_list);
4223 	spin_lock_init(&q->unused_hctx_lock);
4224 
4225 	xa_init(&q->hctx_table);
4226 
4227 	blk_mq_realloc_hw_ctxs(set, q);
4228 	if (!q->nr_hw_queues)
4229 		goto err_hctxs;
4230 
4231 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4232 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4233 
4234 	q->tag_set = set;
4235 
4236 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4237 	blk_mq_update_poll_flag(q);
4238 
4239 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4240 	INIT_LIST_HEAD(&q->requeue_list);
4241 	spin_lock_init(&q->requeue_lock);
4242 
4243 	q->nr_requests = set->queue_depth;
4244 
4245 	/*
4246 	 * Default to classic polling
4247 	 */
4248 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4249 
4250 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4251 	blk_mq_add_queue_tag_set(set, q);
4252 	blk_mq_map_swqueue(q);
4253 	return 0;
4254 
4255 err_hctxs:
4256 	blk_mq_release(q);
4257 err_poll:
4258 	blk_stat_free_callback(q->poll_cb);
4259 	q->poll_cb = NULL;
4260 err_exit:
4261 	q->mq_ops = NULL;
4262 	return -ENOMEM;
4263 }
4264 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4265 
4266 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4267 void blk_mq_exit_queue(struct request_queue *q)
4268 {
4269 	struct blk_mq_tag_set *set = q->tag_set;
4270 
4271 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4272 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4273 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4274 	blk_mq_del_queue_tag_set(q);
4275 }
4276 
4277 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4278 {
4279 	int i;
4280 
4281 	if (blk_mq_is_shared_tags(set->flags)) {
4282 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4283 						BLK_MQ_NO_HCTX_IDX,
4284 						set->queue_depth);
4285 		if (!set->shared_tags)
4286 			return -ENOMEM;
4287 	}
4288 
4289 	for (i = 0; i < set->nr_hw_queues; i++) {
4290 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4291 			goto out_unwind;
4292 		cond_resched();
4293 	}
4294 
4295 	return 0;
4296 
4297 out_unwind:
4298 	while (--i >= 0)
4299 		__blk_mq_free_map_and_rqs(set, i);
4300 
4301 	if (blk_mq_is_shared_tags(set->flags)) {
4302 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4303 					BLK_MQ_NO_HCTX_IDX);
4304 	}
4305 
4306 	return -ENOMEM;
4307 }
4308 
4309 /*
4310  * Allocate the request maps associated with this tag_set. Note that this
4311  * may reduce the depth asked for, if memory is tight. set->queue_depth
4312  * will be updated to reflect the allocated depth.
4313  */
4314 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4315 {
4316 	unsigned int depth;
4317 	int err;
4318 
4319 	depth = set->queue_depth;
4320 	do {
4321 		err = __blk_mq_alloc_rq_maps(set);
4322 		if (!err)
4323 			break;
4324 
4325 		set->queue_depth >>= 1;
4326 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4327 			err = -ENOMEM;
4328 			break;
4329 		}
4330 	} while (set->queue_depth);
4331 
4332 	if (!set->queue_depth || err) {
4333 		pr_err("blk-mq: failed to allocate request map\n");
4334 		return -ENOMEM;
4335 	}
4336 
4337 	if (depth != set->queue_depth)
4338 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4339 						depth, set->queue_depth);
4340 
4341 	return 0;
4342 }
4343 
4344 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4345 {
4346 	/*
4347 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4348 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4349 	 * number of hardware queues.
4350 	 */
4351 	if (set->nr_maps == 1)
4352 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4353 
4354 	if (set->ops->map_queues && !is_kdump_kernel()) {
4355 		int i;
4356 
4357 		/*
4358 		 * transport .map_queues is usually done in the following
4359 		 * way:
4360 		 *
4361 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4362 		 * 	mask = get_cpu_mask(queue)
4363 		 * 	for_each_cpu(cpu, mask)
4364 		 * 		set->map[x].mq_map[cpu] = queue;
4365 		 * }
4366 		 *
4367 		 * When we need to remap, the table has to be cleared for
4368 		 * killing stale mapping since one CPU may not be mapped
4369 		 * to any hw queue.
4370 		 */
4371 		for (i = 0; i < set->nr_maps; i++)
4372 			blk_mq_clear_mq_map(&set->map[i]);
4373 
4374 		set->ops->map_queues(set);
4375 	} else {
4376 		BUG_ON(set->nr_maps > 1);
4377 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4378 	}
4379 }
4380 
4381 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4382 				       int new_nr_hw_queues)
4383 {
4384 	struct blk_mq_tags **new_tags;
4385 
4386 	if (set->nr_hw_queues >= new_nr_hw_queues)
4387 		goto done;
4388 
4389 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4390 				GFP_KERNEL, set->numa_node);
4391 	if (!new_tags)
4392 		return -ENOMEM;
4393 
4394 	if (set->tags)
4395 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4396 		       sizeof(*set->tags));
4397 	kfree(set->tags);
4398 	set->tags = new_tags;
4399 done:
4400 	set->nr_hw_queues = new_nr_hw_queues;
4401 	return 0;
4402 }
4403 
4404 /*
4405  * Alloc a tag set to be associated with one or more request queues.
4406  * May fail with EINVAL for various error conditions. May adjust the
4407  * requested depth down, if it's too large. In that case, the set
4408  * value will be stored in set->queue_depth.
4409  */
4410 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4411 {
4412 	int i, ret;
4413 
4414 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4415 
4416 	if (!set->nr_hw_queues)
4417 		return -EINVAL;
4418 	if (!set->queue_depth)
4419 		return -EINVAL;
4420 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4421 		return -EINVAL;
4422 
4423 	if (!set->ops->queue_rq)
4424 		return -EINVAL;
4425 
4426 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4427 		return -EINVAL;
4428 
4429 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4430 		pr_info("blk-mq: reduced tag depth to %u\n",
4431 			BLK_MQ_MAX_DEPTH);
4432 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4433 	}
4434 
4435 	if (!set->nr_maps)
4436 		set->nr_maps = 1;
4437 	else if (set->nr_maps > HCTX_MAX_TYPES)
4438 		return -EINVAL;
4439 
4440 	/*
4441 	 * If a crashdump is active, then we are potentially in a very
4442 	 * memory constrained environment. Limit us to 1 queue and
4443 	 * 64 tags to prevent using too much memory.
4444 	 */
4445 	if (is_kdump_kernel()) {
4446 		set->nr_hw_queues = 1;
4447 		set->nr_maps = 1;
4448 		set->queue_depth = min(64U, set->queue_depth);
4449 	}
4450 	/*
4451 	 * There is no use for more h/w queues than cpus if we just have
4452 	 * a single map
4453 	 */
4454 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4455 		set->nr_hw_queues = nr_cpu_ids;
4456 
4457 	if (set->flags & BLK_MQ_F_BLOCKING) {
4458 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4459 		if (!set->srcu)
4460 			return -ENOMEM;
4461 		ret = init_srcu_struct(set->srcu);
4462 		if (ret)
4463 			goto out_free_srcu;
4464 	}
4465 
4466 	ret = -ENOMEM;
4467 	set->tags = kcalloc_node(set->nr_hw_queues,
4468 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4469 				 set->numa_node);
4470 	if (!set->tags)
4471 		goto out_cleanup_srcu;
4472 
4473 	for (i = 0; i < set->nr_maps; i++) {
4474 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4475 						  sizeof(set->map[i].mq_map[0]),
4476 						  GFP_KERNEL, set->numa_node);
4477 		if (!set->map[i].mq_map)
4478 			goto out_free_mq_map;
4479 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4480 	}
4481 
4482 	blk_mq_update_queue_map(set);
4483 
4484 	ret = blk_mq_alloc_set_map_and_rqs(set);
4485 	if (ret)
4486 		goto out_free_mq_map;
4487 
4488 	mutex_init(&set->tag_list_lock);
4489 	INIT_LIST_HEAD(&set->tag_list);
4490 
4491 	return 0;
4492 
4493 out_free_mq_map:
4494 	for (i = 0; i < set->nr_maps; i++) {
4495 		kfree(set->map[i].mq_map);
4496 		set->map[i].mq_map = NULL;
4497 	}
4498 	kfree(set->tags);
4499 	set->tags = NULL;
4500 out_cleanup_srcu:
4501 	if (set->flags & BLK_MQ_F_BLOCKING)
4502 		cleanup_srcu_struct(set->srcu);
4503 out_free_srcu:
4504 	if (set->flags & BLK_MQ_F_BLOCKING)
4505 		kfree(set->srcu);
4506 	return ret;
4507 }
4508 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4509 
4510 /* allocate and initialize a tagset for a simple single-queue device */
4511 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4512 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4513 		unsigned int set_flags)
4514 {
4515 	memset(set, 0, sizeof(*set));
4516 	set->ops = ops;
4517 	set->nr_hw_queues = 1;
4518 	set->nr_maps = 1;
4519 	set->queue_depth = queue_depth;
4520 	set->numa_node = NUMA_NO_NODE;
4521 	set->flags = set_flags;
4522 	return blk_mq_alloc_tag_set(set);
4523 }
4524 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4525 
4526 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4527 {
4528 	int i, j;
4529 
4530 	for (i = 0; i < set->nr_hw_queues; i++)
4531 		__blk_mq_free_map_and_rqs(set, i);
4532 
4533 	if (blk_mq_is_shared_tags(set->flags)) {
4534 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4535 					BLK_MQ_NO_HCTX_IDX);
4536 	}
4537 
4538 	for (j = 0; j < set->nr_maps; j++) {
4539 		kfree(set->map[j].mq_map);
4540 		set->map[j].mq_map = NULL;
4541 	}
4542 
4543 	kfree(set->tags);
4544 	set->tags = NULL;
4545 	if (set->flags & BLK_MQ_F_BLOCKING) {
4546 		cleanup_srcu_struct(set->srcu);
4547 		kfree(set->srcu);
4548 	}
4549 }
4550 EXPORT_SYMBOL(blk_mq_free_tag_set);
4551 
4552 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4553 {
4554 	struct blk_mq_tag_set *set = q->tag_set;
4555 	struct blk_mq_hw_ctx *hctx;
4556 	int ret;
4557 	unsigned long i;
4558 
4559 	if (!set)
4560 		return -EINVAL;
4561 
4562 	if (q->nr_requests == nr)
4563 		return 0;
4564 
4565 	blk_mq_freeze_queue(q);
4566 	blk_mq_quiesce_queue(q);
4567 
4568 	ret = 0;
4569 	queue_for_each_hw_ctx(q, hctx, i) {
4570 		if (!hctx->tags)
4571 			continue;
4572 		/*
4573 		 * If we're using an MQ scheduler, just update the scheduler
4574 		 * queue depth. This is similar to what the old code would do.
4575 		 */
4576 		if (hctx->sched_tags) {
4577 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4578 						      nr, true);
4579 		} else {
4580 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4581 						      false);
4582 		}
4583 		if (ret)
4584 			break;
4585 		if (q->elevator && q->elevator->type->ops.depth_updated)
4586 			q->elevator->type->ops.depth_updated(hctx);
4587 	}
4588 	if (!ret) {
4589 		q->nr_requests = nr;
4590 		if (blk_mq_is_shared_tags(set->flags)) {
4591 			if (q->elevator)
4592 				blk_mq_tag_update_sched_shared_tags(q);
4593 			else
4594 				blk_mq_tag_resize_shared_tags(set, nr);
4595 		}
4596 	}
4597 
4598 	blk_mq_unquiesce_queue(q);
4599 	blk_mq_unfreeze_queue(q);
4600 
4601 	return ret;
4602 }
4603 
4604 /*
4605  * request_queue and elevator_type pair.
4606  * It is just used by __blk_mq_update_nr_hw_queues to cache
4607  * the elevator_type associated with a request_queue.
4608  */
4609 struct blk_mq_qe_pair {
4610 	struct list_head node;
4611 	struct request_queue *q;
4612 	struct elevator_type *type;
4613 };
4614 
4615 /*
4616  * Cache the elevator_type in qe pair list and switch the
4617  * io scheduler to 'none'
4618  */
4619 static bool blk_mq_elv_switch_none(struct list_head *head,
4620 		struct request_queue *q)
4621 {
4622 	struct blk_mq_qe_pair *qe;
4623 
4624 	if (!q->elevator)
4625 		return true;
4626 
4627 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4628 	if (!qe)
4629 		return false;
4630 
4631 	/* q->elevator needs protection from ->sysfs_lock */
4632 	mutex_lock(&q->sysfs_lock);
4633 
4634 	INIT_LIST_HEAD(&qe->node);
4635 	qe->q = q;
4636 	qe->type = q->elevator->type;
4637 	/* keep a reference to the elevator module as we'll switch back */
4638 	__elevator_get(qe->type);
4639 	list_add(&qe->node, head);
4640 	elevator_disable(q);
4641 	mutex_unlock(&q->sysfs_lock);
4642 
4643 	return true;
4644 }
4645 
4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4647 						struct request_queue *q)
4648 {
4649 	struct blk_mq_qe_pair *qe;
4650 
4651 	list_for_each_entry(qe, head, node)
4652 		if (qe->q == q)
4653 			return qe;
4654 
4655 	return NULL;
4656 }
4657 
4658 static void blk_mq_elv_switch_back(struct list_head *head,
4659 				  struct request_queue *q)
4660 {
4661 	struct blk_mq_qe_pair *qe;
4662 	struct elevator_type *t;
4663 
4664 	qe = blk_lookup_qe_pair(head, q);
4665 	if (!qe)
4666 		return;
4667 	t = qe->type;
4668 	list_del(&qe->node);
4669 	kfree(qe);
4670 
4671 	mutex_lock(&q->sysfs_lock);
4672 	elevator_switch(q, t);
4673 	/* drop the reference acquired in blk_mq_elv_switch_none */
4674 	elevator_put(t);
4675 	mutex_unlock(&q->sysfs_lock);
4676 }
4677 
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4679 							int nr_hw_queues)
4680 {
4681 	struct request_queue *q;
4682 	LIST_HEAD(head);
4683 	int prev_nr_hw_queues;
4684 
4685 	lockdep_assert_held(&set->tag_list_lock);
4686 
4687 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688 		nr_hw_queues = nr_cpu_ids;
4689 	if (nr_hw_queues < 1)
4690 		return;
4691 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4692 		return;
4693 
4694 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4695 		blk_mq_freeze_queue(q);
4696 	/*
4697 	 * Switch IO scheduler to 'none', cleaning up the data associated
4698 	 * with the previous scheduler. We will switch back once we are done
4699 	 * updating the new sw to hw queue mappings.
4700 	 */
4701 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4702 		if (!blk_mq_elv_switch_none(&head, q))
4703 			goto switch_back;
4704 
4705 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706 		blk_mq_debugfs_unregister_hctxs(q);
4707 		blk_mq_sysfs_unregister_hctxs(q);
4708 	}
4709 
4710 	prev_nr_hw_queues = set->nr_hw_queues;
4711 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4712 		goto reregister;
4713 
4714 fallback:
4715 	blk_mq_update_queue_map(set);
4716 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4717 		blk_mq_realloc_hw_ctxs(set, q);
4718 		blk_mq_update_poll_flag(q);
4719 		if (q->nr_hw_queues != set->nr_hw_queues) {
4720 			int i = prev_nr_hw_queues;
4721 
4722 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4723 					nr_hw_queues, prev_nr_hw_queues);
4724 			for (; i < set->nr_hw_queues; i++)
4725 				__blk_mq_free_map_and_rqs(set, i);
4726 
4727 			set->nr_hw_queues = prev_nr_hw_queues;
4728 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4729 			goto fallback;
4730 		}
4731 		blk_mq_map_swqueue(q);
4732 	}
4733 
4734 reregister:
4735 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736 		blk_mq_sysfs_register_hctxs(q);
4737 		blk_mq_debugfs_register_hctxs(q);
4738 	}
4739 
4740 switch_back:
4741 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4742 		blk_mq_elv_switch_back(&head, q);
4743 
4744 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4745 		blk_mq_unfreeze_queue(q);
4746 }
4747 
4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4749 {
4750 	mutex_lock(&set->tag_list_lock);
4751 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4752 	mutex_unlock(&set->tag_list_lock);
4753 }
4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4755 
4756 /* Enable polling stats and return whether they were already enabled. */
4757 static bool blk_poll_stats_enable(struct request_queue *q)
4758 {
4759 	if (q->poll_stat)
4760 		return true;
4761 
4762 	return blk_stats_alloc_enable(q);
4763 }
4764 
4765 static void blk_mq_poll_stats_start(struct request_queue *q)
4766 {
4767 	/*
4768 	 * We don't arm the callback if polling stats are not enabled or the
4769 	 * callback is already active.
4770 	 */
4771 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4772 		return;
4773 
4774 	blk_stat_activate_msecs(q->poll_cb, 100);
4775 }
4776 
4777 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4778 {
4779 	struct request_queue *q = cb->data;
4780 	int bucket;
4781 
4782 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4783 		if (cb->stat[bucket].nr_samples)
4784 			q->poll_stat[bucket] = cb->stat[bucket];
4785 	}
4786 }
4787 
4788 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4789 				       struct request *rq)
4790 {
4791 	unsigned long ret = 0;
4792 	int bucket;
4793 
4794 	/*
4795 	 * If stats collection isn't on, don't sleep but turn it on for
4796 	 * future users
4797 	 */
4798 	if (!blk_poll_stats_enable(q))
4799 		return 0;
4800 
4801 	/*
4802 	 * As an optimistic guess, use half of the mean service time
4803 	 * for this type of request. We can (and should) make this smarter.
4804 	 * For instance, if the completion latencies are tight, we can
4805 	 * get closer than just half the mean. This is especially
4806 	 * important on devices where the completion latencies are longer
4807 	 * than ~10 usec. We do use the stats for the relevant IO size
4808 	 * if available which does lead to better estimates.
4809 	 */
4810 	bucket = blk_mq_poll_stats_bkt(rq);
4811 	if (bucket < 0)
4812 		return ret;
4813 
4814 	if (q->poll_stat[bucket].nr_samples)
4815 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4816 
4817 	return ret;
4818 }
4819 
4820 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4821 {
4822 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4823 	struct request *rq = blk_qc_to_rq(hctx, qc);
4824 	struct hrtimer_sleeper hs;
4825 	enum hrtimer_mode mode;
4826 	unsigned int nsecs;
4827 	ktime_t kt;
4828 
4829 	/*
4830 	 * If a request has completed on queue that uses an I/O scheduler, we
4831 	 * won't get back a request from blk_qc_to_rq.
4832 	 */
4833 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4834 		return false;
4835 
4836 	/*
4837 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4838 	 *
4839 	 *  0:	use half of prev avg
4840 	 * >0:	use this specific value
4841 	 */
4842 	if (q->poll_nsec > 0)
4843 		nsecs = q->poll_nsec;
4844 	else
4845 		nsecs = blk_mq_poll_nsecs(q, rq);
4846 
4847 	if (!nsecs)
4848 		return false;
4849 
4850 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4851 
4852 	/*
4853 	 * This will be replaced with the stats tracking code, using
4854 	 * 'avg_completion_time / 2' as the pre-sleep target.
4855 	 */
4856 	kt = nsecs;
4857 
4858 	mode = HRTIMER_MODE_REL;
4859 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4860 	hrtimer_set_expires(&hs.timer, kt);
4861 
4862 	do {
4863 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4864 			break;
4865 		set_current_state(TASK_UNINTERRUPTIBLE);
4866 		hrtimer_sleeper_start_expires(&hs, mode);
4867 		if (hs.task)
4868 			io_schedule();
4869 		hrtimer_cancel(&hs.timer);
4870 		mode = HRTIMER_MODE_ABS;
4871 	} while (hs.task && !signal_pending(current));
4872 
4873 	__set_current_state(TASK_RUNNING);
4874 	destroy_hrtimer_on_stack(&hs.timer);
4875 
4876 	/*
4877 	 * If we sleep, have the caller restart the poll loop to reset the
4878 	 * state.  Like for the other success return cases, the caller is
4879 	 * responsible for checking if the IO completed.  If the IO isn't
4880 	 * complete, we'll get called again and will go straight to the busy
4881 	 * poll loop.
4882 	 */
4883 	return true;
4884 }
4885 
4886 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4887 			       struct io_comp_batch *iob, unsigned int flags)
4888 {
4889 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4890 	long state = get_current_state();
4891 	int ret;
4892 
4893 	do {
4894 		ret = q->mq_ops->poll(hctx, iob);
4895 		if (ret > 0) {
4896 			__set_current_state(TASK_RUNNING);
4897 			return ret;
4898 		}
4899 
4900 		if (signal_pending_state(state, current))
4901 			__set_current_state(TASK_RUNNING);
4902 		if (task_is_running(current))
4903 			return 1;
4904 
4905 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4906 			break;
4907 		cpu_relax();
4908 	} while (!need_resched());
4909 
4910 	__set_current_state(TASK_RUNNING);
4911 	return 0;
4912 }
4913 
4914 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4915 		unsigned int flags)
4916 {
4917 	if (!(flags & BLK_POLL_NOSLEEP) &&
4918 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4919 		if (blk_mq_poll_hybrid(q, cookie))
4920 			return 1;
4921 	}
4922 	return blk_mq_poll_classic(q, cookie, iob, flags);
4923 }
4924 
4925 unsigned int blk_mq_rq_cpu(struct request *rq)
4926 {
4927 	return rq->mq_ctx->cpu;
4928 }
4929 EXPORT_SYMBOL(blk_mq_rq_cpu);
4930 
4931 void blk_mq_cancel_work_sync(struct request_queue *q)
4932 {
4933 	struct blk_mq_hw_ctx *hctx;
4934 	unsigned long i;
4935 
4936 	cancel_delayed_work_sync(&q->requeue_work);
4937 
4938 	queue_for_each_hw_ctx(q, hctx, i)
4939 		cancel_delayed_work_sync(&hctx->run_work);
4940 }
4941 
4942 static int __init blk_mq_init(void)
4943 {
4944 	int i;
4945 
4946 	for_each_possible_cpu(i)
4947 		init_llist_head(&per_cpu(blk_cpu_done, i));
4948 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4949 
4950 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4951 				  "block/softirq:dead", NULL,
4952 				  blk_softirq_cpu_dead);
4953 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4954 				blk_mq_hctx_notify_dead);
4955 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4956 				blk_mq_hctx_notify_online,
4957 				blk_mq_hctx_notify_offline);
4958 	return 0;
4959 }
4960 subsys_initcall(blk_mq_init);
4961