1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/sysctl.h> 25 #include <linux/sched/topology.h> 26 #include <linux/sched/signal.h> 27 #include <linux/delay.h> 28 #include <linux/crash_dump.h> 29 #include <linux/prefetch.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/part_stat.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/blk-mq.h> 36 #include <linux/t10-pi.h> 37 #include "blk.h" 38 #include "blk-mq.h" 39 #include "blk-mq-debugfs.h" 40 #include "blk-mq-tag.h" 41 #include "blk-pm.h" 42 #include "blk-stat.h" 43 #include "blk-mq-sched.h" 44 #include "blk-rq-qos.h" 45 #include "blk-ioprio.h" 46 47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 48 49 static void blk_mq_poll_stats_start(struct request_queue *q); 50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 51 52 static int blk_mq_poll_stats_bkt(const struct request *rq) 53 { 54 int ddir, sectors, bucket; 55 56 ddir = rq_data_dir(rq); 57 sectors = blk_rq_stats_sectors(rq); 58 59 bucket = ddir + 2 * ilog2(sectors); 60 61 if (bucket < 0) 62 return -1; 63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 65 66 return bucket; 67 } 68 69 #define BLK_QC_T_SHIFT 16 70 #define BLK_QC_T_INTERNAL (1U << 31) 71 72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q, 73 blk_qc_t qc) 74 { 75 return xa_load(&q->hctx_table, 76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT); 77 } 78 79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx, 80 blk_qc_t qc) 81 { 82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1); 83 84 if (qc & BLK_QC_T_INTERNAL) 85 return blk_mq_tag_to_rq(hctx->sched_tags, tag); 86 return blk_mq_tag_to_rq(hctx->tags, tag); 87 } 88 89 static inline blk_qc_t blk_rq_to_qc(struct request *rq) 90 { 91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) | 92 (rq->tag != -1 ? 93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL)); 94 } 95 96 /* 97 * Check if any of the ctx, dispatch list or elevator 98 * have pending work in this hardware queue. 99 */ 100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 101 { 102 return !list_empty_careful(&hctx->dispatch) || 103 sbitmap_any_bit_set(&hctx->ctx_map) || 104 blk_mq_sched_has_work(hctx); 105 } 106 107 /* 108 * Mark this ctx as having pending work in this hardware queue 109 */ 110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 111 struct blk_mq_ctx *ctx) 112 { 113 const int bit = ctx->index_hw[hctx->type]; 114 115 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 116 sbitmap_set_bit(&hctx->ctx_map, bit); 117 } 118 119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 120 struct blk_mq_ctx *ctx) 121 { 122 const int bit = ctx->index_hw[hctx->type]; 123 124 sbitmap_clear_bit(&hctx->ctx_map, bit); 125 } 126 127 struct mq_inflight { 128 struct block_device *part; 129 unsigned int inflight[2]; 130 }; 131 132 static bool blk_mq_check_inflight(struct request *rq, void *priv) 133 { 134 struct mq_inflight *mi = priv; 135 136 if (rq->part && blk_do_io_stat(rq) && 137 (!mi->part->bd_partno || rq->part == mi->part) && 138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 139 mi->inflight[rq_data_dir(rq)]++; 140 141 return true; 142 } 143 144 unsigned int blk_mq_in_flight(struct request_queue *q, 145 struct block_device *part) 146 { 147 struct mq_inflight mi = { .part = part }; 148 149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 150 151 return mi.inflight[0] + mi.inflight[1]; 152 } 153 154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 155 unsigned int inflight[2]) 156 { 157 struct mq_inflight mi = { .part = part }; 158 159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 160 inflight[0] = mi.inflight[0]; 161 inflight[1] = mi.inflight[1]; 162 } 163 164 void blk_freeze_queue_start(struct request_queue *q) 165 { 166 mutex_lock(&q->mq_freeze_lock); 167 if (++q->mq_freeze_depth == 1) { 168 percpu_ref_kill(&q->q_usage_counter); 169 mutex_unlock(&q->mq_freeze_lock); 170 if (queue_is_mq(q)) 171 blk_mq_run_hw_queues(q, false); 172 } else { 173 mutex_unlock(&q->mq_freeze_lock); 174 } 175 } 176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 177 178 void blk_mq_freeze_queue_wait(struct request_queue *q) 179 { 180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 181 } 182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 183 184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 185 unsigned long timeout) 186 { 187 return wait_event_timeout(q->mq_freeze_wq, 188 percpu_ref_is_zero(&q->q_usage_counter), 189 timeout); 190 } 191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 192 193 /* 194 * Guarantee no request is in use, so we can change any data structure of 195 * the queue afterward. 196 */ 197 void blk_freeze_queue(struct request_queue *q) 198 { 199 /* 200 * In the !blk_mq case we are only calling this to kill the 201 * q_usage_counter, otherwise this increases the freeze depth 202 * and waits for it to return to zero. For this reason there is 203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 204 * exported to drivers as the only user for unfreeze is blk_mq. 205 */ 206 blk_freeze_queue_start(q); 207 blk_mq_freeze_queue_wait(q); 208 } 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 /* 213 * ...just an alias to keep freeze and unfreeze actions balanced 214 * in the blk_mq_* namespace 215 */ 216 blk_freeze_queue(q); 217 } 218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 219 220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 221 { 222 mutex_lock(&q->mq_freeze_lock); 223 if (force_atomic) 224 q->q_usage_counter.data->force_atomic = true; 225 q->mq_freeze_depth--; 226 WARN_ON_ONCE(q->mq_freeze_depth < 0); 227 if (!q->mq_freeze_depth) { 228 percpu_ref_resurrect(&q->q_usage_counter); 229 wake_up_all(&q->mq_freeze_wq); 230 } 231 mutex_unlock(&q->mq_freeze_lock); 232 } 233 234 void blk_mq_unfreeze_queue(struct request_queue *q) 235 { 236 __blk_mq_unfreeze_queue(q, false); 237 } 238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 239 240 /* 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 242 * mpt3sas driver such that this function can be removed. 243 */ 244 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(&q->queue_lock, flags); 249 if (!q->quiesce_depth++) 250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 251 spin_unlock_irqrestore(&q->queue_lock, flags); 252 } 253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 254 255 /** 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 257 * @set: tag_set to wait on 258 * 259 * Note: it is driver's responsibility for making sure that quiesce has 260 * been started on or more of the request_queues of the tag_set. This 261 * function only waits for the quiesce on those request_queues that had 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 263 */ 264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 265 { 266 if (set->flags & BLK_MQ_F_BLOCKING) 267 synchronize_srcu(set->srcu); 268 else 269 synchronize_rcu(); 270 } 271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 272 273 /** 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 275 * @q: request queue. 276 * 277 * Note: this function does not prevent that the struct request end_io() 278 * callback function is invoked. Once this function is returned, we make 279 * sure no dispatch can happen until the queue is unquiesced via 280 * blk_mq_unquiesce_queue(). 281 */ 282 void blk_mq_quiesce_queue(struct request_queue *q) 283 { 284 blk_mq_quiesce_queue_nowait(q); 285 /* nothing to wait for non-mq queues */ 286 if (queue_is_mq(q)) 287 blk_mq_wait_quiesce_done(q->tag_set); 288 } 289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 290 291 /* 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 293 * @q: request queue. 294 * 295 * This function recovers queue into the state before quiescing 296 * which is done by blk_mq_quiesce_queue. 297 */ 298 void blk_mq_unquiesce_queue(struct request_queue *q) 299 { 300 unsigned long flags; 301 bool run_queue = false; 302 303 spin_lock_irqsave(&q->queue_lock, flags); 304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 305 ; 306 } else if (!--q->quiesce_depth) { 307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 308 run_queue = true; 309 } 310 spin_unlock_irqrestore(&q->queue_lock, flags); 311 312 /* dispatch requests which are inserted during quiescing */ 313 if (run_queue) 314 blk_mq_run_hw_queues(q, true); 315 } 316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 317 318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 319 { 320 struct request_queue *q; 321 322 mutex_lock(&set->tag_list_lock); 323 list_for_each_entry(q, &set->tag_list, tag_set_list) { 324 if (!blk_queue_skip_tagset_quiesce(q)) 325 blk_mq_quiesce_queue_nowait(q); 326 } 327 blk_mq_wait_quiesce_done(set); 328 mutex_unlock(&set->tag_list_lock); 329 } 330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 331 332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 333 { 334 struct request_queue *q; 335 336 mutex_lock(&set->tag_list_lock); 337 list_for_each_entry(q, &set->tag_list, tag_set_list) { 338 if (!blk_queue_skip_tagset_quiesce(q)) 339 blk_mq_unquiesce_queue(q); 340 } 341 mutex_unlock(&set->tag_list_lock); 342 } 343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 344 345 void blk_mq_wake_waiters(struct request_queue *q) 346 { 347 struct blk_mq_hw_ctx *hctx; 348 unsigned long i; 349 350 queue_for_each_hw_ctx(q, hctx, i) 351 if (blk_mq_hw_queue_mapped(hctx)) 352 blk_mq_tag_wakeup_all(hctx->tags, true); 353 } 354 355 void blk_rq_init(struct request_queue *q, struct request *rq) 356 { 357 memset(rq, 0, sizeof(*rq)); 358 359 INIT_LIST_HEAD(&rq->queuelist); 360 rq->q = q; 361 rq->__sector = (sector_t) -1; 362 INIT_HLIST_NODE(&rq->hash); 363 RB_CLEAR_NODE(&rq->rb_node); 364 rq->tag = BLK_MQ_NO_TAG; 365 rq->internal_tag = BLK_MQ_NO_TAG; 366 rq->start_time_ns = ktime_get_ns(); 367 rq->part = NULL; 368 blk_crypto_rq_set_defaults(rq); 369 } 370 EXPORT_SYMBOL(blk_rq_init); 371 372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns) 374 { 375 struct blk_mq_ctx *ctx = data->ctx; 376 struct blk_mq_hw_ctx *hctx = data->hctx; 377 struct request_queue *q = data->q; 378 struct request *rq = tags->static_rqs[tag]; 379 380 rq->q = q; 381 rq->mq_ctx = ctx; 382 rq->mq_hctx = hctx; 383 rq->cmd_flags = data->cmd_flags; 384 385 if (data->flags & BLK_MQ_REQ_PM) 386 data->rq_flags |= RQF_PM; 387 if (blk_queue_io_stat(q)) 388 data->rq_flags |= RQF_IO_STAT; 389 rq->rq_flags = data->rq_flags; 390 391 if (!(data->rq_flags & RQF_ELV)) { 392 rq->tag = tag; 393 rq->internal_tag = BLK_MQ_NO_TAG; 394 } else { 395 rq->tag = BLK_MQ_NO_TAG; 396 rq->internal_tag = tag; 397 } 398 rq->timeout = 0; 399 400 if (blk_mq_need_time_stamp(rq)) 401 rq->start_time_ns = ktime_get_ns(); 402 else 403 rq->start_time_ns = 0; 404 rq->part = NULL; 405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 406 rq->alloc_time_ns = alloc_time_ns; 407 #endif 408 rq->io_start_time_ns = 0; 409 rq->stats_sectors = 0; 410 rq->nr_phys_segments = 0; 411 #if defined(CONFIG_BLK_DEV_INTEGRITY) 412 rq->nr_integrity_segments = 0; 413 #endif 414 rq->end_io = NULL; 415 rq->end_io_data = NULL; 416 417 blk_crypto_rq_set_defaults(rq); 418 INIT_LIST_HEAD(&rq->queuelist); 419 /* tag was already set */ 420 WRITE_ONCE(rq->deadline, 0); 421 req_ref_set(rq, 1); 422 423 if (rq->rq_flags & RQF_ELV) { 424 struct elevator_queue *e = data->q->elevator; 425 426 INIT_HLIST_NODE(&rq->hash); 427 RB_CLEAR_NODE(&rq->rb_node); 428 429 if (!op_is_flush(data->cmd_flags) && 430 e->type->ops.prepare_request) { 431 e->type->ops.prepare_request(rq); 432 rq->rq_flags |= RQF_ELVPRIV; 433 } 434 } 435 436 return rq; 437 } 438 439 static inline struct request * 440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data, 441 u64 alloc_time_ns) 442 { 443 unsigned int tag, tag_offset; 444 struct blk_mq_tags *tags; 445 struct request *rq; 446 unsigned long tag_mask; 447 int i, nr = 0; 448 449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 450 if (unlikely(!tag_mask)) 451 return NULL; 452 453 tags = blk_mq_tags_from_data(data); 454 for (i = 0; tag_mask; i++) { 455 if (!(tag_mask & (1UL << i))) 456 continue; 457 tag = tag_offset + i; 458 prefetch(tags->static_rqs[tag]); 459 tag_mask &= ~(1UL << i); 460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns); 461 rq_list_add(data->cached_rq, rq); 462 nr++; 463 } 464 /* caller already holds a reference, add for remainder */ 465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 466 data->nr_tags -= nr; 467 468 return rq_list_pop(data->cached_rq); 469 } 470 471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 472 { 473 struct request_queue *q = data->q; 474 u64 alloc_time_ns = 0; 475 struct request *rq; 476 unsigned int tag; 477 478 /* alloc_time includes depth and tag waits */ 479 if (blk_queue_rq_alloc_time(q)) 480 alloc_time_ns = ktime_get_ns(); 481 482 if (data->cmd_flags & REQ_NOWAIT) 483 data->flags |= BLK_MQ_REQ_NOWAIT; 484 485 if (q->elevator) { 486 struct elevator_queue *e = q->elevator; 487 488 data->rq_flags |= RQF_ELV; 489 490 /* 491 * Flush/passthrough requests are special and go directly to the 492 * dispatch list. Don't include reserved tags in the 493 * limiting, as it isn't useful. 494 */ 495 if (!op_is_flush(data->cmd_flags) && 496 !blk_op_is_passthrough(data->cmd_flags) && 497 e->type->ops.limit_depth && 498 !(data->flags & BLK_MQ_REQ_RESERVED)) 499 e->type->ops.limit_depth(data->cmd_flags, data); 500 } 501 502 retry: 503 data->ctx = blk_mq_get_ctx(q); 504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 505 if (!(data->rq_flags & RQF_ELV)) 506 blk_mq_tag_busy(data->hctx); 507 508 if (data->flags & BLK_MQ_REQ_RESERVED) 509 data->rq_flags |= RQF_RESV; 510 511 /* 512 * Try batched alloc if we want more than 1 tag. 513 */ 514 if (data->nr_tags > 1) { 515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns); 516 if (rq) 517 return rq; 518 data->nr_tags = 1; 519 } 520 521 /* 522 * Waiting allocations only fail because of an inactive hctx. In that 523 * case just retry the hctx assignment and tag allocation as CPU hotplug 524 * should have migrated us to an online CPU by now. 525 */ 526 tag = blk_mq_get_tag(data); 527 if (tag == BLK_MQ_NO_TAG) { 528 if (data->flags & BLK_MQ_REQ_NOWAIT) 529 return NULL; 530 /* 531 * Give up the CPU and sleep for a random short time to 532 * ensure that thread using a realtime scheduling class 533 * are migrated off the CPU, and thus off the hctx that 534 * is going away. 535 */ 536 msleep(3); 537 goto retry; 538 } 539 540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag, 541 alloc_time_ns); 542 } 543 544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 545 struct blk_plug *plug, 546 blk_opf_t opf, 547 blk_mq_req_flags_t flags) 548 { 549 struct blk_mq_alloc_data data = { 550 .q = q, 551 .flags = flags, 552 .cmd_flags = opf, 553 .nr_tags = plug->nr_ios, 554 .cached_rq = &plug->cached_rq, 555 }; 556 struct request *rq; 557 558 if (blk_queue_enter(q, flags)) 559 return NULL; 560 561 plug->nr_ios = 1; 562 563 rq = __blk_mq_alloc_requests(&data); 564 if (unlikely(!rq)) 565 blk_queue_exit(q); 566 return rq; 567 } 568 569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 570 blk_opf_t opf, 571 blk_mq_req_flags_t flags) 572 { 573 struct blk_plug *plug = current->plug; 574 struct request *rq; 575 576 if (!plug) 577 return NULL; 578 579 if (rq_list_empty(plug->cached_rq)) { 580 if (plug->nr_ios == 1) 581 return NULL; 582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 583 if (!rq) 584 return NULL; 585 } else { 586 rq = rq_list_peek(&plug->cached_rq); 587 if (!rq || rq->q != q) 588 return NULL; 589 590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 591 return NULL; 592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 593 return NULL; 594 595 plug->cached_rq = rq_list_next(rq); 596 } 597 598 rq->cmd_flags = opf; 599 INIT_LIST_HEAD(&rq->queuelist); 600 return rq; 601 } 602 603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct request *rq; 607 608 rq = blk_mq_alloc_cached_request(q, opf, flags); 609 if (!rq) { 610 struct blk_mq_alloc_data data = { 611 .q = q, 612 .flags = flags, 613 .cmd_flags = opf, 614 .nr_tags = 1, 615 }; 616 int ret; 617 618 ret = blk_queue_enter(q, flags); 619 if (ret) 620 return ERR_PTR(ret); 621 622 rq = __blk_mq_alloc_requests(&data); 623 if (!rq) 624 goto out_queue_exit; 625 } 626 rq->__data_len = 0; 627 rq->__sector = (sector_t) -1; 628 rq->bio = rq->biotail = NULL; 629 return rq; 630 out_queue_exit: 631 blk_queue_exit(q); 632 return ERR_PTR(-EWOULDBLOCK); 633 } 634 EXPORT_SYMBOL(blk_mq_alloc_request); 635 636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 638 { 639 struct blk_mq_alloc_data data = { 640 .q = q, 641 .flags = flags, 642 .cmd_flags = opf, 643 .nr_tags = 1, 644 }; 645 u64 alloc_time_ns = 0; 646 struct request *rq; 647 unsigned int cpu; 648 unsigned int tag; 649 int ret; 650 651 /* alloc_time includes depth and tag waits */ 652 if (blk_queue_rq_alloc_time(q)) 653 alloc_time_ns = ktime_get_ns(); 654 655 /* 656 * If the tag allocator sleeps we could get an allocation for a 657 * different hardware context. No need to complicate the low level 658 * allocator for this for the rare use case of a command tied to 659 * a specific queue. 660 */ 661 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 662 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 663 return ERR_PTR(-EINVAL); 664 665 if (hctx_idx >= q->nr_hw_queues) 666 return ERR_PTR(-EIO); 667 668 ret = blk_queue_enter(q, flags); 669 if (ret) 670 return ERR_PTR(ret); 671 672 /* 673 * Check if the hardware context is actually mapped to anything. 674 * If not tell the caller that it should skip this queue. 675 */ 676 ret = -EXDEV; 677 data.hctx = xa_load(&q->hctx_table, hctx_idx); 678 if (!blk_mq_hw_queue_mapped(data.hctx)) 679 goto out_queue_exit; 680 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 681 if (cpu >= nr_cpu_ids) 682 goto out_queue_exit; 683 data.ctx = __blk_mq_get_ctx(q, cpu); 684 685 if (!q->elevator) 686 blk_mq_tag_busy(data.hctx); 687 else 688 data.rq_flags |= RQF_ELV; 689 690 if (flags & BLK_MQ_REQ_RESERVED) 691 data.rq_flags |= RQF_RESV; 692 693 ret = -EWOULDBLOCK; 694 tag = blk_mq_get_tag(&data); 695 if (tag == BLK_MQ_NO_TAG) 696 goto out_queue_exit; 697 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag, 698 alloc_time_ns); 699 rq->__data_len = 0; 700 rq->__sector = (sector_t) -1; 701 rq->bio = rq->biotail = NULL; 702 return rq; 703 704 out_queue_exit: 705 blk_queue_exit(q); 706 return ERR_PTR(ret); 707 } 708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 709 710 static void __blk_mq_free_request(struct request *rq) 711 { 712 struct request_queue *q = rq->q; 713 struct blk_mq_ctx *ctx = rq->mq_ctx; 714 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 715 const int sched_tag = rq->internal_tag; 716 717 blk_crypto_free_request(rq); 718 blk_pm_mark_last_busy(rq); 719 rq->mq_hctx = NULL; 720 if (rq->tag != BLK_MQ_NO_TAG) 721 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 722 if (sched_tag != BLK_MQ_NO_TAG) 723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 724 blk_mq_sched_restart(hctx); 725 blk_queue_exit(q); 726 } 727 728 void blk_mq_free_request(struct request *rq) 729 { 730 struct request_queue *q = rq->q; 731 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 732 733 if ((rq->rq_flags & RQF_ELVPRIV) && 734 q->elevator->type->ops.finish_request) 735 q->elevator->type->ops.finish_request(rq); 736 737 if (rq->rq_flags & RQF_MQ_INFLIGHT) 738 __blk_mq_dec_active_requests(hctx); 739 740 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 741 laptop_io_completion(q->disk->bdi); 742 743 rq_qos_done(q, rq); 744 745 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 746 if (req_ref_put_and_test(rq)) 747 __blk_mq_free_request(rq); 748 } 749 EXPORT_SYMBOL_GPL(blk_mq_free_request); 750 751 void blk_mq_free_plug_rqs(struct blk_plug *plug) 752 { 753 struct request *rq; 754 755 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL) 756 blk_mq_free_request(rq); 757 } 758 759 void blk_dump_rq_flags(struct request *rq, char *msg) 760 { 761 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 762 rq->q->disk ? rq->q->disk->disk_name : "?", 763 (__force unsigned long long) rq->cmd_flags); 764 765 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 766 (unsigned long long)blk_rq_pos(rq), 767 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 768 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 769 rq->bio, rq->biotail, blk_rq_bytes(rq)); 770 } 771 EXPORT_SYMBOL(blk_dump_rq_flags); 772 773 static void req_bio_endio(struct request *rq, struct bio *bio, 774 unsigned int nbytes, blk_status_t error) 775 { 776 if (unlikely(error)) { 777 bio->bi_status = error; 778 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) { 779 /* 780 * Partial zone append completions cannot be supported as the 781 * BIO fragments may end up not being written sequentially. 782 */ 783 if (bio->bi_iter.bi_size != nbytes) 784 bio->bi_status = BLK_STS_IOERR; 785 else 786 bio->bi_iter.bi_sector = rq->__sector; 787 } 788 789 bio_advance(bio, nbytes); 790 791 if (unlikely(rq->rq_flags & RQF_QUIET)) 792 bio_set_flag(bio, BIO_QUIET); 793 /* don't actually finish bio if it's part of flush sequence */ 794 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 795 bio_endio(bio); 796 } 797 798 static void blk_account_io_completion(struct request *req, unsigned int bytes) 799 { 800 if (req->part && blk_do_io_stat(req)) { 801 const int sgrp = op_stat_group(req_op(req)); 802 803 part_stat_lock(); 804 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 805 part_stat_unlock(); 806 } 807 } 808 809 static void blk_print_req_error(struct request *req, blk_status_t status) 810 { 811 printk_ratelimited(KERN_ERR 812 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 813 "phys_seg %u prio class %u\n", 814 blk_status_to_str(status), 815 req->q->disk ? req->q->disk->disk_name : "?", 816 blk_rq_pos(req), (__force u32)req_op(req), 817 blk_op_str(req_op(req)), 818 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 819 req->nr_phys_segments, 820 IOPRIO_PRIO_CLASS(req->ioprio)); 821 } 822 823 /* 824 * Fully end IO on a request. Does not support partial completions, or 825 * errors. 826 */ 827 static void blk_complete_request(struct request *req) 828 { 829 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 830 int total_bytes = blk_rq_bytes(req); 831 struct bio *bio = req->bio; 832 833 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 834 835 if (!bio) 836 return; 837 838 #ifdef CONFIG_BLK_DEV_INTEGRITY 839 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 840 req->q->integrity.profile->complete_fn(req, total_bytes); 841 #endif 842 843 blk_account_io_completion(req, total_bytes); 844 845 do { 846 struct bio *next = bio->bi_next; 847 848 /* Completion has already been traced */ 849 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 850 851 if (req_op(req) == REQ_OP_ZONE_APPEND) 852 bio->bi_iter.bi_sector = req->__sector; 853 854 if (!is_flush) 855 bio_endio(bio); 856 bio = next; 857 } while (bio); 858 859 /* 860 * Reset counters so that the request stacking driver 861 * can find how many bytes remain in the request 862 * later. 863 */ 864 if (!req->end_io) { 865 req->bio = NULL; 866 req->__data_len = 0; 867 } 868 } 869 870 /** 871 * blk_update_request - Complete multiple bytes without completing the request 872 * @req: the request being processed 873 * @error: block status code 874 * @nr_bytes: number of bytes to complete for @req 875 * 876 * Description: 877 * Ends I/O on a number of bytes attached to @req, but doesn't complete 878 * the request structure even if @req doesn't have leftover. 879 * If @req has leftover, sets it up for the next range of segments. 880 * 881 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 882 * %false return from this function. 883 * 884 * Note: 885 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 886 * except in the consistency check at the end of this function. 887 * 888 * Return: 889 * %false - this request doesn't have any more data 890 * %true - this request has more data 891 **/ 892 bool blk_update_request(struct request *req, blk_status_t error, 893 unsigned int nr_bytes) 894 { 895 int total_bytes; 896 897 trace_block_rq_complete(req, error, nr_bytes); 898 899 if (!req->bio) 900 return false; 901 902 #ifdef CONFIG_BLK_DEV_INTEGRITY 903 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 904 error == BLK_STS_OK) 905 req->q->integrity.profile->complete_fn(req, nr_bytes); 906 #endif 907 908 if (unlikely(error && !blk_rq_is_passthrough(req) && 909 !(req->rq_flags & RQF_QUIET)) && 910 !test_bit(GD_DEAD, &req->q->disk->state)) { 911 blk_print_req_error(req, error); 912 trace_block_rq_error(req, error, nr_bytes); 913 } 914 915 blk_account_io_completion(req, nr_bytes); 916 917 total_bytes = 0; 918 while (req->bio) { 919 struct bio *bio = req->bio; 920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 921 922 if (bio_bytes == bio->bi_iter.bi_size) 923 req->bio = bio->bi_next; 924 925 /* Completion has already been traced */ 926 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 927 req_bio_endio(req, bio, bio_bytes, error); 928 929 total_bytes += bio_bytes; 930 nr_bytes -= bio_bytes; 931 932 if (!nr_bytes) 933 break; 934 } 935 936 /* 937 * completely done 938 */ 939 if (!req->bio) { 940 /* 941 * Reset counters so that the request stacking driver 942 * can find how many bytes remain in the request 943 * later. 944 */ 945 req->__data_len = 0; 946 return false; 947 } 948 949 req->__data_len -= total_bytes; 950 951 /* update sector only for requests with clear definition of sector */ 952 if (!blk_rq_is_passthrough(req)) 953 req->__sector += total_bytes >> 9; 954 955 /* mixed attributes always follow the first bio */ 956 if (req->rq_flags & RQF_MIXED_MERGE) { 957 req->cmd_flags &= ~REQ_FAILFAST_MASK; 958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 959 } 960 961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 962 /* 963 * If total number of sectors is less than the first segment 964 * size, something has gone terribly wrong. 965 */ 966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 967 blk_dump_rq_flags(req, "request botched"); 968 req->__data_len = blk_rq_cur_bytes(req); 969 } 970 971 /* recalculate the number of segments */ 972 req->nr_phys_segments = blk_recalc_rq_segments(req); 973 } 974 975 return true; 976 } 977 EXPORT_SYMBOL_GPL(blk_update_request); 978 979 static void __blk_account_io_done(struct request *req, u64 now) 980 { 981 const int sgrp = op_stat_group(req_op(req)); 982 983 part_stat_lock(); 984 update_io_ticks(req->part, jiffies, true); 985 part_stat_inc(req->part, ios[sgrp]); 986 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 987 part_stat_unlock(); 988 } 989 990 static inline void blk_account_io_done(struct request *req, u64 now) 991 { 992 /* 993 * Account IO completion. flush_rq isn't accounted as a 994 * normal IO on queueing nor completion. Accounting the 995 * containing request is enough. 996 */ 997 if (blk_do_io_stat(req) && req->part && 998 !(req->rq_flags & RQF_FLUSH_SEQ)) 999 __blk_account_io_done(req, now); 1000 } 1001 1002 static void __blk_account_io_start(struct request *rq) 1003 { 1004 /* 1005 * All non-passthrough requests are created from a bio with one 1006 * exception: when a flush command that is part of a flush sequence 1007 * generated by the state machine in blk-flush.c is cloned onto the 1008 * lower device by dm-multipath we can get here without a bio. 1009 */ 1010 if (rq->bio) 1011 rq->part = rq->bio->bi_bdev; 1012 else 1013 rq->part = rq->q->disk->part0; 1014 1015 part_stat_lock(); 1016 update_io_ticks(rq->part, jiffies, false); 1017 part_stat_unlock(); 1018 } 1019 1020 static inline void blk_account_io_start(struct request *req) 1021 { 1022 if (blk_do_io_stat(req)) 1023 __blk_account_io_start(req); 1024 } 1025 1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1027 { 1028 if (rq->rq_flags & RQF_STATS) { 1029 blk_mq_poll_stats_start(rq->q); 1030 blk_stat_add(rq, now); 1031 } 1032 1033 blk_mq_sched_completed_request(rq, now); 1034 blk_account_io_done(rq, now); 1035 } 1036 1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1038 { 1039 if (blk_mq_need_time_stamp(rq)) 1040 __blk_mq_end_request_acct(rq, ktime_get_ns()); 1041 1042 if (rq->end_io) { 1043 rq_qos_done(rq->q, rq); 1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1045 blk_mq_free_request(rq); 1046 } else { 1047 blk_mq_free_request(rq); 1048 } 1049 } 1050 EXPORT_SYMBOL(__blk_mq_end_request); 1051 1052 void blk_mq_end_request(struct request *rq, blk_status_t error) 1053 { 1054 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1055 BUG(); 1056 __blk_mq_end_request(rq, error); 1057 } 1058 EXPORT_SYMBOL(blk_mq_end_request); 1059 1060 #define TAG_COMP_BATCH 32 1061 1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1063 int *tag_array, int nr_tags) 1064 { 1065 struct request_queue *q = hctx->queue; 1066 1067 /* 1068 * All requests should have been marked as RQF_MQ_INFLIGHT, so 1069 * update hctx->nr_active in batch 1070 */ 1071 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 1072 __blk_mq_sub_active_requests(hctx, nr_tags); 1073 1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1076 } 1077 1078 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1079 { 1080 int tags[TAG_COMP_BATCH], nr_tags = 0; 1081 struct blk_mq_hw_ctx *cur_hctx = NULL; 1082 struct request *rq; 1083 u64 now = 0; 1084 1085 if (iob->need_ts) 1086 now = ktime_get_ns(); 1087 1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1089 prefetch(rq->bio); 1090 prefetch(rq->rq_next); 1091 1092 blk_complete_request(rq); 1093 if (iob->need_ts) 1094 __blk_mq_end_request_acct(rq, now); 1095 1096 rq_qos_done(rq->q, rq); 1097 1098 /* 1099 * If end_io handler returns NONE, then it still has 1100 * ownership of the request. 1101 */ 1102 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1103 continue; 1104 1105 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1106 if (!req_ref_put_and_test(rq)) 1107 continue; 1108 1109 blk_crypto_free_request(rq); 1110 blk_pm_mark_last_busy(rq); 1111 1112 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1113 if (cur_hctx) 1114 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1115 nr_tags = 0; 1116 cur_hctx = rq->mq_hctx; 1117 } 1118 tags[nr_tags++] = rq->tag; 1119 } 1120 1121 if (nr_tags) 1122 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1123 } 1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1125 1126 static void blk_complete_reqs(struct llist_head *list) 1127 { 1128 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1129 struct request *rq, *next; 1130 1131 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1132 rq->q->mq_ops->complete(rq); 1133 } 1134 1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 1136 { 1137 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1138 } 1139 1140 static int blk_softirq_cpu_dead(unsigned int cpu) 1141 { 1142 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1143 return 0; 1144 } 1145 1146 static void __blk_mq_complete_request_remote(void *data) 1147 { 1148 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1149 } 1150 1151 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1152 { 1153 int cpu = raw_smp_processor_id(); 1154 1155 if (!IS_ENABLED(CONFIG_SMP) || 1156 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1157 return false; 1158 /* 1159 * With force threaded interrupts enabled, raising softirq from an SMP 1160 * function call will always result in waking the ksoftirqd thread. 1161 * This is probably worse than completing the request on a different 1162 * cache domain. 1163 */ 1164 if (force_irqthreads()) 1165 return false; 1166 1167 /* same CPU or cache domain? Complete locally */ 1168 if (cpu == rq->mq_ctx->cpu || 1169 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1170 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 1171 return false; 1172 1173 /* don't try to IPI to an offline CPU */ 1174 return cpu_online(rq->mq_ctx->cpu); 1175 } 1176 1177 static void blk_mq_complete_send_ipi(struct request *rq) 1178 { 1179 struct llist_head *list; 1180 unsigned int cpu; 1181 1182 cpu = rq->mq_ctx->cpu; 1183 list = &per_cpu(blk_cpu_done, cpu); 1184 if (llist_add(&rq->ipi_list, list)) { 1185 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 1186 smp_call_function_single_async(cpu, &rq->csd); 1187 } 1188 } 1189 1190 static void blk_mq_raise_softirq(struct request *rq) 1191 { 1192 struct llist_head *list; 1193 1194 preempt_disable(); 1195 list = this_cpu_ptr(&blk_cpu_done); 1196 if (llist_add(&rq->ipi_list, list)) 1197 raise_softirq(BLOCK_SOFTIRQ); 1198 preempt_enable(); 1199 } 1200 1201 bool blk_mq_complete_request_remote(struct request *rq) 1202 { 1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1204 1205 /* 1206 * For request which hctx has only one ctx mapping, 1207 * or a polled request, always complete locally, 1208 * it's pointless to redirect the completion. 1209 */ 1210 if (rq->mq_hctx->nr_ctx == 1 || 1211 rq->cmd_flags & REQ_POLLED) 1212 return false; 1213 1214 if (blk_mq_complete_need_ipi(rq)) { 1215 blk_mq_complete_send_ipi(rq); 1216 return true; 1217 } 1218 1219 if (rq->q->nr_hw_queues == 1) { 1220 blk_mq_raise_softirq(rq); 1221 return true; 1222 } 1223 return false; 1224 } 1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1226 1227 /** 1228 * blk_mq_complete_request - end I/O on a request 1229 * @rq: the request being processed 1230 * 1231 * Description: 1232 * Complete a request by scheduling the ->complete_rq operation. 1233 **/ 1234 void blk_mq_complete_request(struct request *rq) 1235 { 1236 if (!blk_mq_complete_request_remote(rq)) 1237 rq->q->mq_ops->complete(rq); 1238 } 1239 EXPORT_SYMBOL(blk_mq_complete_request); 1240 1241 /** 1242 * blk_mq_start_request - Start processing a request 1243 * @rq: Pointer to request to be started 1244 * 1245 * Function used by device drivers to notify the block layer that a request 1246 * is going to be processed now, so blk layer can do proper initializations 1247 * such as starting the timeout timer. 1248 */ 1249 void blk_mq_start_request(struct request *rq) 1250 { 1251 struct request_queue *q = rq->q; 1252 1253 trace_block_rq_issue(rq); 1254 1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 1256 rq->io_start_time_ns = ktime_get_ns(); 1257 rq->stats_sectors = blk_rq_sectors(rq); 1258 rq->rq_flags |= RQF_STATS; 1259 rq_qos_issue(q, rq); 1260 } 1261 1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1263 1264 blk_add_timer(rq); 1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1266 1267 #ifdef CONFIG_BLK_DEV_INTEGRITY 1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1269 q->integrity.profile->prepare_fn(rq); 1270 #endif 1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1272 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq)); 1273 } 1274 EXPORT_SYMBOL(blk_mq_start_request); 1275 1276 /* 1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1278 * queues. This is important for md arrays to benefit from merging 1279 * requests. 1280 */ 1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1282 { 1283 if (plug->multiple_queues) 1284 return BLK_MAX_REQUEST_COUNT * 2; 1285 return BLK_MAX_REQUEST_COUNT; 1286 } 1287 1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1289 { 1290 struct request *last = rq_list_peek(&plug->mq_list); 1291 1292 if (!plug->rq_count) { 1293 trace_block_plug(rq->q); 1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1295 (!blk_queue_nomerges(rq->q) && 1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1297 blk_mq_flush_plug_list(plug, false); 1298 last = NULL; 1299 trace_block_plug(rq->q); 1300 } 1301 1302 if (!plug->multiple_queues && last && last->q != rq->q) 1303 plug->multiple_queues = true; 1304 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV)) 1305 plug->has_elevator = true; 1306 rq->rq_next = NULL; 1307 rq_list_add(&plug->mq_list, rq); 1308 plug->rq_count++; 1309 } 1310 1311 /** 1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1313 * @rq: request to insert 1314 * @at_head: insert request at head or tail of queue 1315 * 1316 * Description: 1317 * Insert a fully prepared request at the back of the I/O scheduler queue 1318 * for execution. Don't wait for completion. 1319 * 1320 * Note: 1321 * This function will invoke @done directly if the queue is dead. 1322 */ 1323 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1324 { 1325 WARN_ON(irqs_disabled()); 1326 WARN_ON(!blk_rq_is_passthrough(rq)); 1327 1328 blk_account_io_start(rq); 1329 1330 /* 1331 * As plugging can be enabled for passthrough requests on a zoned 1332 * device, directly accessing the plug instead of using blk_mq_plug() 1333 * should not have any consequences. 1334 */ 1335 if (current->plug) 1336 blk_add_rq_to_plug(current->plug, rq); 1337 else 1338 blk_mq_sched_insert_request(rq, at_head, true, false); 1339 } 1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1341 1342 struct blk_rq_wait { 1343 struct completion done; 1344 blk_status_t ret; 1345 }; 1346 1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1348 { 1349 struct blk_rq_wait *wait = rq->end_io_data; 1350 1351 wait->ret = ret; 1352 complete(&wait->done); 1353 return RQ_END_IO_NONE; 1354 } 1355 1356 bool blk_rq_is_poll(struct request *rq) 1357 { 1358 if (!rq->mq_hctx) 1359 return false; 1360 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1361 return false; 1362 return true; 1363 } 1364 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1365 1366 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1367 { 1368 do { 1369 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0); 1370 cond_resched(); 1371 } while (!completion_done(wait)); 1372 } 1373 1374 /** 1375 * blk_execute_rq - insert a request into queue for execution 1376 * @rq: request to insert 1377 * @at_head: insert request at head or tail of queue 1378 * 1379 * Description: 1380 * Insert a fully prepared request at the back of the I/O scheduler queue 1381 * for execution and wait for completion. 1382 * Return: The blk_status_t result provided to blk_mq_end_request(). 1383 */ 1384 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1385 { 1386 struct blk_rq_wait wait = { 1387 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1388 }; 1389 1390 WARN_ON(irqs_disabled()); 1391 WARN_ON(!blk_rq_is_passthrough(rq)); 1392 1393 rq->end_io_data = &wait; 1394 rq->end_io = blk_end_sync_rq; 1395 1396 blk_account_io_start(rq); 1397 blk_mq_sched_insert_request(rq, at_head, true, false); 1398 1399 if (blk_rq_is_poll(rq)) { 1400 blk_rq_poll_completion(rq, &wait.done); 1401 } else { 1402 /* 1403 * Prevent hang_check timer from firing at us during very long 1404 * I/O 1405 */ 1406 unsigned long hang_check = sysctl_hung_task_timeout_secs; 1407 1408 if (hang_check) 1409 while (!wait_for_completion_io_timeout(&wait.done, 1410 hang_check * (HZ/2))) 1411 ; 1412 else 1413 wait_for_completion_io(&wait.done); 1414 } 1415 1416 return wait.ret; 1417 } 1418 EXPORT_SYMBOL(blk_execute_rq); 1419 1420 static void __blk_mq_requeue_request(struct request *rq) 1421 { 1422 struct request_queue *q = rq->q; 1423 1424 blk_mq_put_driver_tag(rq); 1425 1426 trace_block_rq_requeue(rq); 1427 rq_qos_requeue(q, rq); 1428 1429 if (blk_mq_request_started(rq)) { 1430 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1431 rq->rq_flags &= ~RQF_TIMED_OUT; 1432 } 1433 } 1434 1435 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1436 { 1437 __blk_mq_requeue_request(rq); 1438 1439 /* this request will be re-inserted to io scheduler queue */ 1440 blk_mq_sched_requeue_request(rq); 1441 1442 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 1443 } 1444 EXPORT_SYMBOL(blk_mq_requeue_request); 1445 1446 static void blk_mq_requeue_work(struct work_struct *work) 1447 { 1448 struct request_queue *q = 1449 container_of(work, struct request_queue, requeue_work.work); 1450 LIST_HEAD(rq_list); 1451 struct request *rq, *next; 1452 1453 spin_lock_irq(&q->requeue_lock); 1454 list_splice_init(&q->requeue_list, &rq_list); 1455 spin_unlock_irq(&q->requeue_lock); 1456 1457 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 1458 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 1459 continue; 1460 1461 rq->rq_flags &= ~RQF_SOFTBARRIER; 1462 list_del_init(&rq->queuelist); 1463 /* 1464 * If RQF_DONTPREP, rq has contained some driver specific 1465 * data, so insert it to hctx dispatch list to avoid any 1466 * merge. 1467 */ 1468 if (rq->rq_flags & RQF_DONTPREP) 1469 blk_mq_request_bypass_insert(rq, false, false); 1470 else 1471 blk_mq_sched_insert_request(rq, true, false, false); 1472 } 1473 1474 while (!list_empty(&rq_list)) { 1475 rq = list_entry(rq_list.next, struct request, queuelist); 1476 list_del_init(&rq->queuelist); 1477 blk_mq_sched_insert_request(rq, false, false, false); 1478 } 1479 1480 blk_mq_run_hw_queues(q, false); 1481 } 1482 1483 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 1484 bool kick_requeue_list) 1485 { 1486 struct request_queue *q = rq->q; 1487 unsigned long flags; 1488 1489 /* 1490 * We abuse this flag that is otherwise used by the I/O scheduler to 1491 * request head insertion from the workqueue. 1492 */ 1493 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 1494 1495 spin_lock_irqsave(&q->requeue_lock, flags); 1496 if (at_head) { 1497 rq->rq_flags |= RQF_SOFTBARRIER; 1498 list_add(&rq->queuelist, &q->requeue_list); 1499 } else { 1500 list_add_tail(&rq->queuelist, &q->requeue_list); 1501 } 1502 spin_unlock_irqrestore(&q->requeue_lock, flags); 1503 1504 if (kick_requeue_list) 1505 blk_mq_kick_requeue_list(q); 1506 } 1507 1508 void blk_mq_kick_requeue_list(struct request_queue *q) 1509 { 1510 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1511 } 1512 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1513 1514 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1515 unsigned long msecs) 1516 { 1517 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1518 msecs_to_jiffies(msecs)); 1519 } 1520 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1521 1522 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1523 { 1524 /* 1525 * If we find a request that isn't idle we know the queue is busy 1526 * as it's checked in the iter. 1527 * Return false to stop the iteration. 1528 */ 1529 if (blk_mq_request_started(rq)) { 1530 bool *busy = priv; 1531 1532 *busy = true; 1533 return false; 1534 } 1535 1536 return true; 1537 } 1538 1539 bool blk_mq_queue_inflight(struct request_queue *q) 1540 { 1541 bool busy = false; 1542 1543 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1544 return busy; 1545 } 1546 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1547 1548 static void blk_mq_rq_timed_out(struct request *req) 1549 { 1550 req->rq_flags |= RQF_TIMED_OUT; 1551 if (req->q->mq_ops->timeout) { 1552 enum blk_eh_timer_return ret; 1553 1554 ret = req->q->mq_ops->timeout(req); 1555 if (ret == BLK_EH_DONE) 1556 return; 1557 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1558 } 1559 1560 blk_add_timer(req); 1561 } 1562 1563 struct blk_expired_data { 1564 bool has_timedout_rq; 1565 unsigned long next; 1566 unsigned long timeout_start; 1567 }; 1568 1569 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1570 { 1571 unsigned long deadline; 1572 1573 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1574 return false; 1575 if (rq->rq_flags & RQF_TIMED_OUT) 1576 return false; 1577 1578 deadline = READ_ONCE(rq->deadline); 1579 if (time_after_eq(expired->timeout_start, deadline)) 1580 return true; 1581 1582 if (expired->next == 0) 1583 expired->next = deadline; 1584 else if (time_after(expired->next, deadline)) 1585 expired->next = deadline; 1586 return false; 1587 } 1588 1589 void blk_mq_put_rq_ref(struct request *rq) 1590 { 1591 if (is_flush_rq(rq)) { 1592 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1593 blk_mq_free_request(rq); 1594 } else if (req_ref_put_and_test(rq)) { 1595 __blk_mq_free_request(rq); 1596 } 1597 } 1598 1599 static bool blk_mq_check_expired(struct request *rq, void *priv) 1600 { 1601 struct blk_expired_data *expired = priv; 1602 1603 /* 1604 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1605 * be reallocated underneath the timeout handler's processing, then 1606 * the expire check is reliable. If the request is not expired, then 1607 * it was completed and reallocated as a new request after returning 1608 * from blk_mq_check_expired(). 1609 */ 1610 if (blk_mq_req_expired(rq, expired)) { 1611 expired->has_timedout_rq = true; 1612 return false; 1613 } 1614 return true; 1615 } 1616 1617 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1618 { 1619 struct blk_expired_data *expired = priv; 1620 1621 if (blk_mq_req_expired(rq, expired)) 1622 blk_mq_rq_timed_out(rq); 1623 return true; 1624 } 1625 1626 static void blk_mq_timeout_work(struct work_struct *work) 1627 { 1628 struct request_queue *q = 1629 container_of(work, struct request_queue, timeout_work); 1630 struct blk_expired_data expired = { 1631 .timeout_start = jiffies, 1632 }; 1633 struct blk_mq_hw_ctx *hctx; 1634 unsigned long i; 1635 1636 /* A deadlock might occur if a request is stuck requiring a 1637 * timeout at the same time a queue freeze is waiting 1638 * completion, since the timeout code would not be able to 1639 * acquire the queue reference here. 1640 * 1641 * That's why we don't use blk_queue_enter here; instead, we use 1642 * percpu_ref_tryget directly, because we need to be able to 1643 * obtain a reference even in the short window between the queue 1644 * starting to freeze, by dropping the first reference in 1645 * blk_freeze_queue_start, and the moment the last request is 1646 * consumed, marked by the instant q_usage_counter reaches 1647 * zero. 1648 */ 1649 if (!percpu_ref_tryget(&q->q_usage_counter)) 1650 return; 1651 1652 /* check if there is any timed-out request */ 1653 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1654 if (expired.has_timedout_rq) { 1655 /* 1656 * Before walking tags, we must ensure any submit started 1657 * before the current time has finished. Since the submit 1658 * uses srcu or rcu, wait for a synchronization point to 1659 * ensure all running submits have finished 1660 */ 1661 blk_mq_wait_quiesce_done(q->tag_set); 1662 1663 expired.next = 0; 1664 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1665 } 1666 1667 if (expired.next != 0) { 1668 mod_timer(&q->timeout, expired.next); 1669 } else { 1670 /* 1671 * Request timeouts are handled as a forward rolling timer. If 1672 * we end up here it means that no requests are pending and 1673 * also that no request has been pending for a while. Mark 1674 * each hctx as idle. 1675 */ 1676 queue_for_each_hw_ctx(q, hctx, i) { 1677 /* the hctx may be unmapped, so check it here */ 1678 if (blk_mq_hw_queue_mapped(hctx)) 1679 blk_mq_tag_idle(hctx); 1680 } 1681 } 1682 blk_queue_exit(q); 1683 } 1684 1685 struct flush_busy_ctx_data { 1686 struct blk_mq_hw_ctx *hctx; 1687 struct list_head *list; 1688 }; 1689 1690 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1691 { 1692 struct flush_busy_ctx_data *flush_data = data; 1693 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1694 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1695 enum hctx_type type = hctx->type; 1696 1697 spin_lock(&ctx->lock); 1698 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1699 sbitmap_clear_bit(sb, bitnr); 1700 spin_unlock(&ctx->lock); 1701 return true; 1702 } 1703 1704 /* 1705 * Process software queues that have been marked busy, splicing them 1706 * to the for-dispatch 1707 */ 1708 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1709 { 1710 struct flush_busy_ctx_data data = { 1711 .hctx = hctx, 1712 .list = list, 1713 }; 1714 1715 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1716 } 1717 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1718 1719 struct dispatch_rq_data { 1720 struct blk_mq_hw_ctx *hctx; 1721 struct request *rq; 1722 }; 1723 1724 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1725 void *data) 1726 { 1727 struct dispatch_rq_data *dispatch_data = data; 1728 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1729 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1730 enum hctx_type type = hctx->type; 1731 1732 spin_lock(&ctx->lock); 1733 if (!list_empty(&ctx->rq_lists[type])) { 1734 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1735 list_del_init(&dispatch_data->rq->queuelist); 1736 if (list_empty(&ctx->rq_lists[type])) 1737 sbitmap_clear_bit(sb, bitnr); 1738 } 1739 spin_unlock(&ctx->lock); 1740 1741 return !dispatch_data->rq; 1742 } 1743 1744 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1745 struct blk_mq_ctx *start) 1746 { 1747 unsigned off = start ? start->index_hw[hctx->type] : 0; 1748 struct dispatch_rq_data data = { 1749 .hctx = hctx, 1750 .rq = NULL, 1751 }; 1752 1753 __sbitmap_for_each_set(&hctx->ctx_map, off, 1754 dispatch_rq_from_ctx, &data); 1755 1756 return data.rq; 1757 } 1758 1759 static bool __blk_mq_alloc_driver_tag(struct request *rq) 1760 { 1761 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1762 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1763 int tag; 1764 1765 blk_mq_tag_busy(rq->mq_hctx); 1766 1767 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1768 bt = &rq->mq_hctx->tags->breserved_tags; 1769 tag_offset = 0; 1770 } else { 1771 if (!hctx_may_queue(rq->mq_hctx, bt)) 1772 return false; 1773 } 1774 1775 tag = __sbitmap_queue_get(bt); 1776 if (tag == BLK_MQ_NO_TAG) 1777 return false; 1778 1779 rq->tag = tag + tag_offset; 1780 return true; 1781 } 1782 1783 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq) 1784 { 1785 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq)) 1786 return false; 1787 1788 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1789 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1790 rq->rq_flags |= RQF_MQ_INFLIGHT; 1791 __blk_mq_inc_active_requests(hctx); 1792 } 1793 hctx->tags->rqs[rq->tag] = rq; 1794 return true; 1795 } 1796 1797 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1798 int flags, void *key) 1799 { 1800 struct blk_mq_hw_ctx *hctx; 1801 1802 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1803 1804 spin_lock(&hctx->dispatch_wait_lock); 1805 if (!list_empty(&wait->entry)) { 1806 struct sbitmap_queue *sbq; 1807 1808 list_del_init(&wait->entry); 1809 sbq = &hctx->tags->bitmap_tags; 1810 atomic_dec(&sbq->ws_active); 1811 } 1812 spin_unlock(&hctx->dispatch_wait_lock); 1813 1814 blk_mq_run_hw_queue(hctx, true); 1815 return 1; 1816 } 1817 1818 /* 1819 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1820 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1821 * restart. For both cases, take care to check the condition again after 1822 * marking us as waiting. 1823 */ 1824 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1825 struct request *rq) 1826 { 1827 struct sbitmap_queue *sbq; 1828 struct wait_queue_head *wq; 1829 wait_queue_entry_t *wait; 1830 bool ret; 1831 1832 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1833 !(blk_mq_is_shared_tags(hctx->flags))) { 1834 blk_mq_sched_mark_restart_hctx(hctx); 1835 1836 /* 1837 * It's possible that a tag was freed in the window between the 1838 * allocation failure and adding the hardware queue to the wait 1839 * queue. 1840 * 1841 * Don't clear RESTART here, someone else could have set it. 1842 * At most this will cost an extra queue run. 1843 */ 1844 return blk_mq_get_driver_tag(rq); 1845 } 1846 1847 wait = &hctx->dispatch_wait; 1848 if (!list_empty_careful(&wait->entry)) 1849 return false; 1850 1851 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1852 sbq = &hctx->tags->breserved_tags; 1853 else 1854 sbq = &hctx->tags->bitmap_tags; 1855 wq = &bt_wait_ptr(sbq, hctx)->wait; 1856 1857 spin_lock_irq(&wq->lock); 1858 spin_lock(&hctx->dispatch_wait_lock); 1859 if (!list_empty(&wait->entry)) { 1860 spin_unlock(&hctx->dispatch_wait_lock); 1861 spin_unlock_irq(&wq->lock); 1862 return false; 1863 } 1864 1865 atomic_inc(&sbq->ws_active); 1866 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1867 __add_wait_queue(wq, wait); 1868 1869 /* 1870 * It's possible that a tag was freed in the window between the 1871 * allocation failure and adding the hardware queue to the wait 1872 * queue. 1873 */ 1874 ret = blk_mq_get_driver_tag(rq); 1875 if (!ret) { 1876 spin_unlock(&hctx->dispatch_wait_lock); 1877 spin_unlock_irq(&wq->lock); 1878 return false; 1879 } 1880 1881 /* 1882 * We got a tag, remove ourselves from the wait queue to ensure 1883 * someone else gets the wakeup. 1884 */ 1885 list_del_init(&wait->entry); 1886 atomic_dec(&sbq->ws_active); 1887 spin_unlock(&hctx->dispatch_wait_lock); 1888 spin_unlock_irq(&wq->lock); 1889 1890 return true; 1891 } 1892 1893 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1894 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1895 /* 1896 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1897 * - EWMA is one simple way to compute running average value 1898 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1899 * - take 4 as factor for avoiding to get too small(0) result, and this 1900 * factor doesn't matter because EWMA decreases exponentially 1901 */ 1902 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1903 { 1904 unsigned int ewma; 1905 1906 ewma = hctx->dispatch_busy; 1907 1908 if (!ewma && !busy) 1909 return; 1910 1911 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1912 if (busy) 1913 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1914 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1915 1916 hctx->dispatch_busy = ewma; 1917 } 1918 1919 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1920 1921 static void blk_mq_handle_dev_resource(struct request *rq, 1922 struct list_head *list) 1923 { 1924 list_add(&rq->queuelist, list); 1925 __blk_mq_requeue_request(rq); 1926 } 1927 1928 static void blk_mq_handle_zone_resource(struct request *rq, 1929 struct list_head *zone_list) 1930 { 1931 /* 1932 * If we end up here it is because we cannot dispatch a request to a 1933 * specific zone due to LLD level zone-write locking or other zone 1934 * related resource not being available. In this case, set the request 1935 * aside in zone_list for retrying it later. 1936 */ 1937 list_add(&rq->queuelist, zone_list); 1938 __blk_mq_requeue_request(rq); 1939 } 1940 1941 enum prep_dispatch { 1942 PREP_DISPATCH_OK, 1943 PREP_DISPATCH_NO_TAG, 1944 PREP_DISPATCH_NO_BUDGET, 1945 }; 1946 1947 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1948 bool need_budget) 1949 { 1950 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1951 int budget_token = -1; 1952 1953 if (need_budget) { 1954 budget_token = blk_mq_get_dispatch_budget(rq->q); 1955 if (budget_token < 0) { 1956 blk_mq_put_driver_tag(rq); 1957 return PREP_DISPATCH_NO_BUDGET; 1958 } 1959 blk_mq_set_rq_budget_token(rq, budget_token); 1960 } 1961 1962 if (!blk_mq_get_driver_tag(rq)) { 1963 /* 1964 * The initial allocation attempt failed, so we need to 1965 * rerun the hardware queue when a tag is freed. The 1966 * waitqueue takes care of that. If the queue is run 1967 * before we add this entry back on the dispatch list, 1968 * we'll re-run it below. 1969 */ 1970 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1971 /* 1972 * All budgets not got from this function will be put 1973 * together during handling partial dispatch 1974 */ 1975 if (need_budget) 1976 blk_mq_put_dispatch_budget(rq->q, budget_token); 1977 return PREP_DISPATCH_NO_TAG; 1978 } 1979 } 1980 1981 return PREP_DISPATCH_OK; 1982 } 1983 1984 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1985 static void blk_mq_release_budgets(struct request_queue *q, 1986 struct list_head *list) 1987 { 1988 struct request *rq; 1989 1990 list_for_each_entry(rq, list, queuelist) { 1991 int budget_token = blk_mq_get_rq_budget_token(rq); 1992 1993 if (budget_token >= 0) 1994 blk_mq_put_dispatch_budget(q, budget_token); 1995 } 1996 } 1997 1998 /* 1999 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2000 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2001 * details) 2002 * Attention, we should explicitly call this in unusual cases: 2003 * 1) did not queue everything initially scheduled to queue 2004 * 2) the last attempt to queue a request failed 2005 */ 2006 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2007 bool from_schedule) 2008 { 2009 if (hctx->queue->mq_ops->commit_rqs && queued) { 2010 trace_block_unplug(hctx->queue, queued, !from_schedule); 2011 hctx->queue->mq_ops->commit_rqs(hctx); 2012 } 2013 } 2014 2015 /* 2016 * Returns true if we did some work AND can potentially do more. 2017 */ 2018 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2019 unsigned int nr_budgets) 2020 { 2021 enum prep_dispatch prep; 2022 struct request_queue *q = hctx->queue; 2023 struct request *rq; 2024 int queued; 2025 blk_status_t ret = BLK_STS_OK; 2026 LIST_HEAD(zone_list); 2027 bool needs_resource = false; 2028 2029 if (list_empty(list)) 2030 return false; 2031 2032 /* 2033 * Now process all the entries, sending them to the driver. 2034 */ 2035 queued = 0; 2036 do { 2037 struct blk_mq_queue_data bd; 2038 2039 rq = list_first_entry(list, struct request, queuelist); 2040 2041 WARN_ON_ONCE(hctx != rq->mq_hctx); 2042 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2043 if (prep != PREP_DISPATCH_OK) 2044 break; 2045 2046 list_del_init(&rq->queuelist); 2047 2048 bd.rq = rq; 2049 bd.last = list_empty(list); 2050 2051 /* 2052 * once the request is queued to lld, no need to cover the 2053 * budget any more 2054 */ 2055 if (nr_budgets) 2056 nr_budgets--; 2057 ret = q->mq_ops->queue_rq(hctx, &bd); 2058 switch (ret) { 2059 case BLK_STS_OK: 2060 queued++; 2061 break; 2062 case BLK_STS_RESOURCE: 2063 needs_resource = true; 2064 fallthrough; 2065 case BLK_STS_DEV_RESOURCE: 2066 blk_mq_handle_dev_resource(rq, list); 2067 goto out; 2068 case BLK_STS_ZONE_RESOURCE: 2069 /* 2070 * Move the request to zone_list and keep going through 2071 * the dispatch list to find more requests the drive can 2072 * accept. 2073 */ 2074 blk_mq_handle_zone_resource(rq, &zone_list); 2075 needs_resource = true; 2076 break; 2077 default: 2078 blk_mq_end_request(rq, ret); 2079 } 2080 } while (!list_empty(list)); 2081 out: 2082 if (!list_empty(&zone_list)) 2083 list_splice_tail_init(&zone_list, list); 2084 2085 /* If we didn't flush the entire list, we could have told the driver 2086 * there was more coming, but that turned out to be a lie. 2087 */ 2088 if (!list_empty(list) || ret != BLK_STS_OK) 2089 blk_mq_commit_rqs(hctx, queued, false); 2090 2091 /* 2092 * Any items that need requeuing? Stuff them into hctx->dispatch, 2093 * that is where we will continue on next queue run. 2094 */ 2095 if (!list_empty(list)) { 2096 bool needs_restart; 2097 /* For non-shared tags, the RESTART check will suffice */ 2098 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2099 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2100 blk_mq_is_shared_tags(hctx->flags)); 2101 2102 if (nr_budgets) 2103 blk_mq_release_budgets(q, list); 2104 2105 spin_lock(&hctx->lock); 2106 list_splice_tail_init(list, &hctx->dispatch); 2107 spin_unlock(&hctx->lock); 2108 2109 /* 2110 * Order adding requests to hctx->dispatch and checking 2111 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2112 * in blk_mq_sched_restart(). Avoid restart code path to 2113 * miss the new added requests to hctx->dispatch, meantime 2114 * SCHED_RESTART is observed here. 2115 */ 2116 smp_mb(); 2117 2118 /* 2119 * If SCHED_RESTART was set by the caller of this function and 2120 * it is no longer set that means that it was cleared by another 2121 * thread and hence that a queue rerun is needed. 2122 * 2123 * If 'no_tag' is set, that means that we failed getting 2124 * a driver tag with an I/O scheduler attached. If our dispatch 2125 * waitqueue is no longer active, ensure that we run the queue 2126 * AFTER adding our entries back to the list. 2127 * 2128 * If no I/O scheduler has been configured it is possible that 2129 * the hardware queue got stopped and restarted before requests 2130 * were pushed back onto the dispatch list. Rerun the queue to 2131 * avoid starvation. Notes: 2132 * - blk_mq_run_hw_queue() checks whether or not a queue has 2133 * been stopped before rerunning a queue. 2134 * - Some but not all block drivers stop a queue before 2135 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2136 * and dm-rq. 2137 * 2138 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2139 * bit is set, run queue after a delay to avoid IO stalls 2140 * that could otherwise occur if the queue is idle. We'll do 2141 * similar if we couldn't get budget or couldn't lock a zone 2142 * and SCHED_RESTART is set. 2143 */ 2144 needs_restart = blk_mq_sched_needs_restart(hctx); 2145 if (prep == PREP_DISPATCH_NO_BUDGET) 2146 needs_resource = true; 2147 if (!needs_restart || 2148 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2149 blk_mq_run_hw_queue(hctx, true); 2150 else if (needs_resource) 2151 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2152 2153 blk_mq_update_dispatch_busy(hctx, true); 2154 return false; 2155 } 2156 2157 blk_mq_update_dispatch_busy(hctx, false); 2158 return true; 2159 } 2160 2161 /** 2162 * __blk_mq_run_hw_queue - Run a hardware queue. 2163 * @hctx: Pointer to the hardware queue to run. 2164 * 2165 * Send pending requests to the hardware. 2166 */ 2167 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 2168 { 2169 /* 2170 * We can't run the queue inline with ints disabled. Ensure that 2171 * we catch bad users of this early. 2172 */ 2173 WARN_ON_ONCE(in_interrupt()); 2174 2175 blk_mq_run_dispatch_ops(hctx->queue, 2176 blk_mq_sched_dispatch_requests(hctx)); 2177 } 2178 2179 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2180 { 2181 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2182 2183 if (cpu >= nr_cpu_ids) 2184 cpu = cpumask_first(hctx->cpumask); 2185 return cpu; 2186 } 2187 2188 /* 2189 * It'd be great if the workqueue API had a way to pass 2190 * in a mask and had some smarts for more clever placement. 2191 * For now we just round-robin here, switching for every 2192 * BLK_MQ_CPU_WORK_BATCH queued items. 2193 */ 2194 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2195 { 2196 bool tried = false; 2197 int next_cpu = hctx->next_cpu; 2198 2199 if (hctx->queue->nr_hw_queues == 1) 2200 return WORK_CPU_UNBOUND; 2201 2202 if (--hctx->next_cpu_batch <= 0) { 2203 select_cpu: 2204 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2205 cpu_online_mask); 2206 if (next_cpu >= nr_cpu_ids) 2207 next_cpu = blk_mq_first_mapped_cpu(hctx); 2208 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2209 } 2210 2211 /* 2212 * Do unbound schedule if we can't find a online CPU for this hctx, 2213 * and it should only happen in the path of handling CPU DEAD. 2214 */ 2215 if (!cpu_online(next_cpu)) { 2216 if (!tried) { 2217 tried = true; 2218 goto select_cpu; 2219 } 2220 2221 /* 2222 * Make sure to re-select CPU next time once after CPUs 2223 * in hctx->cpumask become online again. 2224 */ 2225 hctx->next_cpu = next_cpu; 2226 hctx->next_cpu_batch = 1; 2227 return WORK_CPU_UNBOUND; 2228 } 2229 2230 hctx->next_cpu = next_cpu; 2231 return next_cpu; 2232 } 2233 2234 /** 2235 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 2236 * @hctx: Pointer to the hardware queue to run. 2237 * @async: If we want to run the queue asynchronously. 2238 * @msecs: Milliseconds of delay to wait before running the queue. 2239 * 2240 * If !@async, try to run the queue now. Else, run the queue asynchronously and 2241 * with a delay of @msecs. 2242 */ 2243 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 2244 unsigned long msecs) 2245 { 2246 if (unlikely(blk_mq_hctx_stopped(hctx))) 2247 return; 2248 2249 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 2250 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2251 __blk_mq_run_hw_queue(hctx); 2252 return; 2253 } 2254 } 2255 2256 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2257 msecs_to_jiffies(msecs)); 2258 } 2259 2260 /** 2261 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2262 * @hctx: Pointer to the hardware queue to run. 2263 * @msecs: Milliseconds of delay to wait before running the queue. 2264 * 2265 * Run a hardware queue asynchronously with a delay of @msecs. 2266 */ 2267 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2268 { 2269 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 2270 } 2271 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2272 2273 /** 2274 * blk_mq_run_hw_queue - Start to run a hardware queue. 2275 * @hctx: Pointer to the hardware queue to run. 2276 * @async: If we want to run the queue asynchronously. 2277 * 2278 * Check if the request queue is not in a quiesced state and if there are 2279 * pending requests to be sent. If this is true, run the queue to send requests 2280 * to hardware. 2281 */ 2282 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2283 { 2284 bool need_run; 2285 2286 /* 2287 * When queue is quiesced, we may be switching io scheduler, or 2288 * updating nr_hw_queues, or other things, and we can't run queue 2289 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 2290 * 2291 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2292 * quiesced. 2293 */ 2294 __blk_mq_run_dispatch_ops(hctx->queue, false, 2295 need_run = !blk_queue_quiesced(hctx->queue) && 2296 blk_mq_hctx_has_pending(hctx)); 2297 2298 if (need_run) 2299 __blk_mq_delay_run_hw_queue(hctx, async, 0); 2300 } 2301 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2302 2303 /* 2304 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2305 * scheduler. 2306 */ 2307 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2308 { 2309 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2310 /* 2311 * If the IO scheduler does not respect hardware queues when 2312 * dispatching, we just don't bother with multiple HW queues and 2313 * dispatch from hctx for the current CPU since running multiple queues 2314 * just causes lock contention inside the scheduler and pointless cache 2315 * bouncing. 2316 */ 2317 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2318 2319 if (!blk_mq_hctx_stopped(hctx)) 2320 return hctx; 2321 return NULL; 2322 } 2323 2324 /** 2325 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2326 * @q: Pointer to the request queue to run. 2327 * @async: If we want to run the queue asynchronously. 2328 */ 2329 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2330 { 2331 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2332 unsigned long i; 2333 2334 sq_hctx = NULL; 2335 if (blk_queue_sq_sched(q)) 2336 sq_hctx = blk_mq_get_sq_hctx(q); 2337 queue_for_each_hw_ctx(q, hctx, i) { 2338 if (blk_mq_hctx_stopped(hctx)) 2339 continue; 2340 /* 2341 * Dispatch from this hctx either if there's no hctx preferred 2342 * by IO scheduler or if it has requests that bypass the 2343 * scheduler. 2344 */ 2345 if (!sq_hctx || sq_hctx == hctx || 2346 !list_empty_careful(&hctx->dispatch)) 2347 blk_mq_run_hw_queue(hctx, async); 2348 } 2349 } 2350 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2351 2352 /** 2353 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2354 * @q: Pointer to the request queue to run. 2355 * @msecs: Milliseconds of delay to wait before running the queues. 2356 */ 2357 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2358 { 2359 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2360 unsigned long i; 2361 2362 sq_hctx = NULL; 2363 if (blk_queue_sq_sched(q)) 2364 sq_hctx = blk_mq_get_sq_hctx(q); 2365 queue_for_each_hw_ctx(q, hctx, i) { 2366 if (blk_mq_hctx_stopped(hctx)) 2367 continue; 2368 /* 2369 * If there is already a run_work pending, leave the 2370 * pending delay untouched. Otherwise, a hctx can stall 2371 * if another hctx is re-delaying the other's work 2372 * before the work executes. 2373 */ 2374 if (delayed_work_pending(&hctx->run_work)) 2375 continue; 2376 /* 2377 * Dispatch from this hctx either if there's no hctx preferred 2378 * by IO scheduler or if it has requests that bypass the 2379 * scheduler. 2380 */ 2381 if (!sq_hctx || sq_hctx == hctx || 2382 !list_empty_careful(&hctx->dispatch)) 2383 blk_mq_delay_run_hw_queue(hctx, msecs); 2384 } 2385 } 2386 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2387 2388 /* 2389 * This function is often used for pausing .queue_rq() by driver when 2390 * there isn't enough resource or some conditions aren't satisfied, and 2391 * BLK_STS_RESOURCE is usually returned. 2392 * 2393 * We do not guarantee that dispatch can be drained or blocked 2394 * after blk_mq_stop_hw_queue() returns. Please use 2395 * blk_mq_quiesce_queue() for that requirement. 2396 */ 2397 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2398 { 2399 cancel_delayed_work(&hctx->run_work); 2400 2401 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2402 } 2403 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2404 2405 /* 2406 * This function is often used for pausing .queue_rq() by driver when 2407 * there isn't enough resource or some conditions aren't satisfied, and 2408 * BLK_STS_RESOURCE is usually returned. 2409 * 2410 * We do not guarantee that dispatch can be drained or blocked 2411 * after blk_mq_stop_hw_queues() returns. Please use 2412 * blk_mq_quiesce_queue() for that requirement. 2413 */ 2414 void blk_mq_stop_hw_queues(struct request_queue *q) 2415 { 2416 struct blk_mq_hw_ctx *hctx; 2417 unsigned long i; 2418 2419 queue_for_each_hw_ctx(q, hctx, i) 2420 blk_mq_stop_hw_queue(hctx); 2421 } 2422 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2423 2424 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2425 { 2426 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2427 2428 blk_mq_run_hw_queue(hctx, false); 2429 } 2430 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2431 2432 void blk_mq_start_hw_queues(struct request_queue *q) 2433 { 2434 struct blk_mq_hw_ctx *hctx; 2435 unsigned long i; 2436 2437 queue_for_each_hw_ctx(q, hctx, i) 2438 blk_mq_start_hw_queue(hctx); 2439 } 2440 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2441 2442 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2443 { 2444 if (!blk_mq_hctx_stopped(hctx)) 2445 return; 2446 2447 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2448 blk_mq_run_hw_queue(hctx, async); 2449 } 2450 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2451 2452 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2453 { 2454 struct blk_mq_hw_ctx *hctx; 2455 unsigned long i; 2456 2457 queue_for_each_hw_ctx(q, hctx, i) 2458 blk_mq_start_stopped_hw_queue(hctx, async); 2459 } 2460 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2461 2462 static void blk_mq_run_work_fn(struct work_struct *work) 2463 { 2464 struct blk_mq_hw_ctx *hctx; 2465 2466 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 2467 2468 /* 2469 * If we are stopped, don't run the queue. 2470 */ 2471 if (blk_mq_hctx_stopped(hctx)) 2472 return; 2473 2474 __blk_mq_run_hw_queue(hctx); 2475 } 2476 2477 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 2478 struct request *rq, 2479 bool at_head) 2480 { 2481 struct blk_mq_ctx *ctx = rq->mq_ctx; 2482 enum hctx_type type = hctx->type; 2483 2484 lockdep_assert_held(&ctx->lock); 2485 2486 trace_block_rq_insert(rq); 2487 2488 if (at_head) 2489 list_add(&rq->queuelist, &ctx->rq_lists[type]); 2490 else 2491 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 2492 } 2493 2494 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 2495 bool at_head) 2496 { 2497 struct blk_mq_ctx *ctx = rq->mq_ctx; 2498 2499 lockdep_assert_held(&ctx->lock); 2500 2501 __blk_mq_insert_req_list(hctx, rq, at_head); 2502 blk_mq_hctx_mark_pending(hctx, ctx); 2503 } 2504 2505 /** 2506 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2507 * @rq: Pointer to request to be inserted. 2508 * @at_head: true if the request should be inserted at the head of the list. 2509 * @run_queue: If we should run the hardware queue after inserting the request. 2510 * 2511 * Should only be used carefully, when the caller knows we want to 2512 * bypass a potential IO scheduler on the target device. 2513 */ 2514 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 2515 bool run_queue) 2516 { 2517 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2518 2519 spin_lock(&hctx->lock); 2520 if (at_head) 2521 list_add(&rq->queuelist, &hctx->dispatch); 2522 else 2523 list_add_tail(&rq->queuelist, &hctx->dispatch); 2524 spin_unlock(&hctx->lock); 2525 2526 if (run_queue) 2527 blk_mq_run_hw_queue(hctx, false); 2528 } 2529 2530 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 2531 struct list_head *list) 2532 2533 { 2534 struct request *rq; 2535 enum hctx_type type = hctx->type; 2536 2537 /* 2538 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2539 * offline now 2540 */ 2541 list_for_each_entry(rq, list, queuelist) { 2542 BUG_ON(rq->mq_ctx != ctx); 2543 trace_block_rq_insert(rq); 2544 } 2545 2546 spin_lock(&ctx->lock); 2547 list_splice_tail_init(list, &ctx->rq_lists[type]); 2548 blk_mq_hctx_mark_pending(hctx, ctx); 2549 spin_unlock(&ctx->lock); 2550 } 2551 2552 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2553 unsigned int nr_segs) 2554 { 2555 int err; 2556 2557 if (bio->bi_opf & REQ_RAHEAD) 2558 rq->cmd_flags |= REQ_FAILFAST_MASK; 2559 2560 rq->__sector = bio->bi_iter.bi_sector; 2561 blk_rq_bio_prep(rq, bio, nr_segs); 2562 2563 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2564 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2565 WARN_ON_ONCE(err); 2566 2567 blk_account_io_start(rq); 2568 } 2569 2570 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2571 struct request *rq, bool last) 2572 { 2573 struct request_queue *q = rq->q; 2574 struct blk_mq_queue_data bd = { 2575 .rq = rq, 2576 .last = last, 2577 }; 2578 blk_status_t ret; 2579 2580 /* 2581 * For OK queue, we are done. For error, caller may kill it. 2582 * Any other error (busy), just add it to our list as we 2583 * previously would have done. 2584 */ 2585 ret = q->mq_ops->queue_rq(hctx, &bd); 2586 switch (ret) { 2587 case BLK_STS_OK: 2588 blk_mq_update_dispatch_busy(hctx, false); 2589 break; 2590 case BLK_STS_RESOURCE: 2591 case BLK_STS_DEV_RESOURCE: 2592 blk_mq_update_dispatch_busy(hctx, true); 2593 __blk_mq_requeue_request(rq); 2594 break; 2595 default: 2596 blk_mq_update_dispatch_busy(hctx, false); 2597 break; 2598 } 2599 2600 return ret; 2601 } 2602 2603 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2604 struct request *rq, 2605 bool bypass_insert, bool last) 2606 { 2607 struct request_queue *q = rq->q; 2608 bool run_queue = true; 2609 int budget_token; 2610 2611 /* 2612 * RCU or SRCU read lock is needed before checking quiesced flag. 2613 * 2614 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2615 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2616 * and avoid driver to try to dispatch again. 2617 */ 2618 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2619 run_queue = false; 2620 bypass_insert = false; 2621 goto insert; 2622 } 2623 2624 if ((rq->rq_flags & RQF_ELV) && !bypass_insert) 2625 goto insert; 2626 2627 budget_token = blk_mq_get_dispatch_budget(q); 2628 if (budget_token < 0) 2629 goto insert; 2630 2631 blk_mq_set_rq_budget_token(rq, budget_token); 2632 2633 if (!blk_mq_get_driver_tag(rq)) { 2634 blk_mq_put_dispatch_budget(q, budget_token); 2635 goto insert; 2636 } 2637 2638 return __blk_mq_issue_directly(hctx, rq, last); 2639 insert: 2640 if (bypass_insert) 2641 return BLK_STS_RESOURCE; 2642 2643 blk_mq_sched_insert_request(rq, false, run_queue, false); 2644 2645 return BLK_STS_OK; 2646 } 2647 2648 /** 2649 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2650 * @hctx: Pointer of the associated hardware queue. 2651 * @rq: Pointer to request to be sent. 2652 * 2653 * If the device has enough resources to accept a new request now, send the 2654 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2655 * we can try send it another time in the future. Requests inserted at this 2656 * queue have higher priority. 2657 */ 2658 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2659 struct request *rq) 2660 { 2661 blk_status_t ret = 2662 __blk_mq_try_issue_directly(hctx, rq, false, true); 2663 2664 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2665 blk_mq_request_bypass_insert(rq, false, true); 2666 else if (ret != BLK_STS_OK) 2667 blk_mq_end_request(rq, ret); 2668 } 2669 2670 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2671 { 2672 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last); 2673 } 2674 2675 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2676 { 2677 struct blk_mq_hw_ctx *hctx = NULL; 2678 struct request *rq; 2679 int queued = 0; 2680 blk_status_t ret = BLK_STS_OK; 2681 2682 while ((rq = rq_list_pop(&plug->mq_list))) { 2683 bool last = rq_list_empty(plug->mq_list); 2684 2685 if (hctx != rq->mq_hctx) { 2686 if (hctx) { 2687 blk_mq_commit_rqs(hctx, queued, false); 2688 queued = 0; 2689 } 2690 hctx = rq->mq_hctx; 2691 } 2692 2693 ret = blk_mq_request_issue_directly(rq, last); 2694 switch (ret) { 2695 case BLK_STS_OK: 2696 queued++; 2697 break; 2698 case BLK_STS_RESOURCE: 2699 case BLK_STS_DEV_RESOURCE: 2700 blk_mq_request_bypass_insert(rq, false, true); 2701 goto out; 2702 default: 2703 blk_mq_end_request(rq, ret); 2704 break; 2705 } 2706 } 2707 2708 out: 2709 if (ret != BLK_STS_OK) 2710 blk_mq_commit_rqs(hctx, queued, false); 2711 } 2712 2713 static void __blk_mq_flush_plug_list(struct request_queue *q, 2714 struct blk_plug *plug) 2715 { 2716 if (blk_queue_quiesced(q)) 2717 return; 2718 q->mq_ops->queue_rqs(&plug->mq_list); 2719 } 2720 2721 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2722 { 2723 struct blk_mq_hw_ctx *this_hctx = NULL; 2724 struct blk_mq_ctx *this_ctx = NULL; 2725 struct request *requeue_list = NULL; 2726 struct request **requeue_lastp = &requeue_list; 2727 unsigned int depth = 0; 2728 LIST_HEAD(list); 2729 2730 do { 2731 struct request *rq = rq_list_pop(&plug->mq_list); 2732 2733 if (!this_hctx) { 2734 this_hctx = rq->mq_hctx; 2735 this_ctx = rq->mq_ctx; 2736 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) { 2737 rq_list_add_tail(&requeue_lastp, rq); 2738 continue; 2739 } 2740 list_add(&rq->queuelist, &list); 2741 depth++; 2742 } while (!rq_list_empty(plug->mq_list)); 2743 2744 plug->mq_list = requeue_list; 2745 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2746 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched); 2747 } 2748 2749 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2750 { 2751 struct request *rq; 2752 2753 if (rq_list_empty(plug->mq_list)) 2754 return; 2755 plug->rq_count = 0; 2756 2757 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2758 struct request_queue *q; 2759 2760 rq = rq_list_peek(&plug->mq_list); 2761 q = rq->q; 2762 2763 /* 2764 * Peek first request and see if we have a ->queue_rqs() hook. 2765 * If we do, we can dispatch the whole plug list in one go. We 2766 * already know at this point that all requests belong to the 2767 * same queue, caller must ensure that's the case. 2768 * 2769 * Since we pass off the full list to the driver at this point, 2770 * we do not increment the active request count for the queue. 2771 * Bypass shared tags for now because of that. 2772 */ 2773 if (q->mq_ops->queue_rqs && 2774 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 2775 blk_mq_run_dispatch_ops(q, 2776 __blk_mq_flush_plug_list(q, plug)); 2777 if (rq_list_empty(plug->mq_list)) 2778 return; 2779 } 2780 2781 blk_mq_run_dispatch_ops(q, 2782 blk_mq_plug_issue_direct(plug)); 2783 if (rq_list_empty(plug->mq_list)) 2784 return; 2785 } 2786 2787 do { 2788 blk_mq_dispatch_plug_list(plug, from_schedule); 2789 } while (!rq_list_empty(plug->mq_list)); 2790 } 2791 2792 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2793 struct list_head *list) 2794 { 2795 int queued = 0; 2796 blk_status_t ret = BLK_STS_OK; 2797 2798 while (!list_empty(list)) { 2799 struct request *rq = list_first_entry(list, struct request, 2800 queuelist); 2801 2802 list_del_init(&rq->queuelist); 2803 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2804 switch (ret) { 2805 case BLK_STS_OK: 2806 queued++; 2807 break; 2808 case BLK_STS_RESOURCE: 2809 case BLK_STS_DEV_RESOURCE: 2810 blk_mq_request_bypass_insert(rq, false, 2811 list_empty(list)); 2812 goto out; 2813 default: 2814 blk_mq_end_request(rq, ret); 2815 break; 2816 } 2817 } 2818 2819 out: 2820 if (ret != BLK_STS_OK) 2821 blk_mq_commit_rqs(hctx, queued, false); 2822 } 2823 2824 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2825 struct bio *bio, unsigned int nr_segs) 2826 { 2827 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2828 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2829 return true; 2830 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2837 struct blk_plug *plug, 2838 struct bio *bio, 2839 unsigned int nsegs) 2840 { 2841 struct blk_mq_alloc_data data = { 2842 .q = q, 2843 .nr_tags = 1, 2844 .cmd_flags = bio->bi_opf, 2845 }; 2846 struct request *rq; 2847 2848 if (unlikely(bio_queue_enter(bio))) 2849 return NULL; 2850 2851 if (blk_mq_attempt_bio_merge(q, bio, nsegs)) 2852 goto queue_exit; 2853 2854 rq_qos_throttle(q, bio); 2855 2856 if (plug) { 2857 data.nr_tags = plug->nr_ios; 2858 plug->nr_ios = 1; 2859 data.cached_rq = &plug->cached_rq; 2860 } 2861 2862 rq = __blk_mq_alloc_requests(&data); 2863 if (rq) 2864 return rq; 2865 rq_qos_cleanup(q, bio); 2866 if (bio->bi_opf & REQ_NOWAIT) 2867 bio_wouldblock_error(bio); 2868 queue_exit: 2869 blk_queue_exit(q); 2870 return NULL; 2871 } 2872 2873 static inline struct request *blk_mq_get_cached_request(struct request_queue *q, 2874 struct blk_plug *plug, struct bio **bio, unsigned int nsegs) 2875 { 2876 struct request *rq; 2877 enum hctx_type type, hctx_type; 2878 2879 if (!plug) 2880 return NULL; 2881 2882 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) { 2883 *bio = NULL; 2884 return NULL; 2885 } 2886 2887 rq = rq_list_peek(&plug->cached_rq); 2888 if (!rq || rq->q != q) 2889 return NULL; 2890 2891 type = blk_mq_get_hctx_type((*bio)->bi_opf); 2892 hctx_type = rq->mq_hctx->type; 2893 if (type != hctx_type && 2894 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT)) 2895 return NULL; 2896 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf)) 2897 return NULL; 2898 2899 /* 2900 * If any qos ->throttle() end up blocking, we will have flushed the 2901 * plug and hence killed the cached_rq list as well. Pop this entry 2902 * before we throttle. 2903 */ 2904 plug->cached_rq = rq_list_next(rq); 2905 rq_qos_throttle(q, *bio); 2906 2907 rq->cmd_flags = (*bio)->bi_opf; 2908 INIT_LIST_HEAD(&rq->queuelist); 2909 return rq; 2910 } 2911 2912 static void bio_set_ioprio(struct bio *bio) 2913 { 2914 /* Nobody set ioprio so far? Initialize it based on task's nice value */ 2915 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE) 2916 bio->bi_ioprio = get_current_ioprio(); 2917 blkcg_set_ioprio(bio); 2918 } 2919 2920 /** 2921 * blk_mq_submit_bio - Create and send a request to block device. 2922 * @bio: Bio pointer. 2923 * 2924 * Builds up a request structure from @q and @bio and send to the device. The 2925 * request may not be queued directly to hardware if: 2926 * * This request can be merged with another one 2927 * * We want to place request at plug queue for possible future merging 2928 * * There is an IO scheduler active at this queue 2929 * 2930 * It will not queue the request if there is an error with the bio, or at the 2931 * request creation. 2932 */ 2933 void blk_mq_submit_bio(struct bio *bio) 2934 { 2935 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2936 struct blk_plug *plug = blk_mq_plug(bio); 2937 const int is_sync = op_is_sync(bio->bi_opf); 2938 struct request *rq; 2939 unsigned int nr_segs = 1; 2940 blk_status_t ret; 2941 2942 bio = blk_queue_bounce(bio, q); 2943 if (bio_may_exceed_limits(bio, &q->limits)) { 2944 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 2945 if (!bio) 2946 return; 2947 } 2948 2949 if (!bio_integrity_prep(bio)) 2950 return; 2951 2952 bio_set_ioprio(bio); 2953 2954 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs); 2955 if (!rq) { 2956 if (!bio) 2957 return; 2958 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 2959 if (unlikely(!rq)) 2960 return; 2961 } 2962 2963 trace_block_getrq(bio); 2964 2965 rq_qos_track(q, rq, bio); 2966 2967 blk_mq_bio_to_request(rq, bio, nr_segs); 2968 2969 ret = blk_crypto_init_request(rq); 2970 if (ret != BLK_STS_OK) { 2971 bio->bi_status = ret; 2972 bio_endio(bio); 2973 blk_mq_free_request(rq); 2974 return; 2975 } 2976 2977 if (op_is_flush(bio->bi_opf)) { 2978 blk_insert_flush(rq); 2979 return; 2980 } 2981 2982 if (plug) 2983 blk_add_rq_to_plug(plug, rq); 2984 else if ((rq->rq_flags & RQF_ELV) || 2985 (rq->mq_hctx->dispatch_busy && 2986 (q->nr_hw_queues == 1 || !is_sync))) 2987 blk_mq_sched_insert_request(rq, false, true, true); 2988 else 2989 blk_mq_run_dispatch_ops(rq->q, 2990 blk_mq_try_issue_directly(rq->mq_hctx, rq)); 2991 } 2992 2993 #ifdef CONFIG_BLK_MQ_STACKING 2994 /** 2995 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2996 * @rq: the request being queued 2997 */ 2998 blk_status_t blk_insert_cloned_request(struct request *rq) 2999 { 3000 struct request_queue *q = rq->q; 3001 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 3002 unsigned int max_segments = blk_rq_get_max_segments(rq); 3003 blk_status_t ret; 3004 3005 if (blk_rq_sectors(rq) > max_sectors) { 3006 /* 3007 * SCSI device does not have a good way to return if 3008 * Write Same/Zero is actually supported. If a device rejects 3009 * a non-read/write command (discard, write same,etc.) the 3010 * low-level device driver will set the relevant queue limit to 3011 * 0 to prevent blk-lib from issuing more of the offending 3012 * operations. Commands queued prior to the queue limit being 3013 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3014 * errors being propagated to upper layers. 3015 */ 3016 if (max_sectors == 0) 3017 return BLK_STS_NOTSUPP; 3018 3019 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3020 __func__, blk_rq_sectors(rq), max_sectors); 3021 return BLK_STS_IOERR; 3022 } 3023 3024 /* 3025 * The queue settings related to segment counting may differ from the 3026 * original queue. 3027 */ 3028 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3029 if (rq->nr_phys_segments > max_segments) { 3030 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3031 __func__, rq->nr_phys_segments, max_segments); 3032 return BLK_STS_IOERR; 3033 } 3034 3035 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3036 return BLK_STS_IOERR; 3037 3038 if (blk_crypto_insert_cloned_request(rq)) 3039 return BLK_STS_IOERR; 3040 3041 blk_account_io_start(rq); 3042 3043 /* 3044 * Since we have a scheduler attached on the top device, 3045 * bypass a potential scheduler on the bottom device for 3046 * insert. 3047 */ 3048 blk_mq_run_dispatch_ops(q, 3049 ret = blk_mq_request_issue_directly(rq, true)); 3050 if (ret) 3051 blk_account_io_done(rq, ktime_get_ns()); 3052 return ret; 3053 } 3054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3055 3056 /** 3057 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3058 * @rq: the clone request to be cleaned up 3059 * 3060 * Description: 3061 * Free all bios in @rq for a cloned request. 3062 */ 3063 void blk_rq_unprep_clone(struct request *rq) 3064 { 3065 struct bio *bio; 3066 3067 while ((bio = rq->bio) != NULL) { 3068 rq->bio = bio->bi_next; 3069 3070 bio_put(bio); 3071 } 3072 } 3073 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3074 3075 /** 3076 * blk_rq_prep_clone - Helper function to setup clone request 3077 * @rq: the request to be setup 3078 * @rq_src: original request to be cloned 3079 * @bs: bio_set that bios for clone are allocated from 3080 * @gfp_mask: memory allocation mask for bio 3081 * @bio_ctr: setup function to be called for each clone bio. 3082 * Returns %0 for success, non %0 for failure. 3083 * @data: private data to be passed to @bio_ctr 3084 * 3085 * Description: 3086 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3087 * Also, pages which the original bios are pointing to are not copied 3088 * and the cloned bios just point same pages. 3089 * So cloned bios must be completed before original bios, which means 3090 * the caller must complete @rq before @rq_src. 3091 */ 3092 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3093 struct bio_set *bs, gfp_t gfp_mask, 3094 int (*bio_ctr)(struct bio *, struct bio *, void *), 3095 void *data) 3096 { 3097 struct bio *bio, *bio_src; 3098 3099 if (!bs) 3100 bs = &fs_bio_set; 3101 3102 __rq_for_each_bio(bio_src, rq_src) { 3103 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3104 bs); 3105 if (!bio) 3106 goto free_and_out; 3107 3108 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3109 goto free_and_out; 3110 3111 if (rq->bio) { 3112 rq->biotail->bi_next = bio; 3113 rq->biotail = bio; 3114 } else { 3115 rq->bio = rq->biotail = bio; 3116 } 3117 bio = NULL; 3118 } 3119 3120 /* Copy attributes of the original request to the clone request. */ 3121 rq->__sector = blk_rq_pos(rq_src); 3122 rq->__data_len = blk_rq_bytes(rq_src); 3123 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3124 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3125 rq->special_vec = rq_src->special_vec; 3126 } 3127 rq->nr_phys_segments = rq_src->nr_phys_segments; 3128 rq->ioprio = rq_src->ioprio; 3129 3130 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3131 goto free_and_out; 3132 3133 return 0; 3134 3135 free_and_out: 3136 if (bio) 3137 bio_put(bio); 3138 blk_rq_unprep_clone(rq); 3139 3140 return -ENOMEM; 3141 } 3142 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3143 #endif /* CONFIG_BLK_MQ_STACKING */ 3144 3145 /* 3146 * Steal bios from a request and add them to a bio list. 3147 * The request must not have been partially completed before. 3148 */ 3149 void blk_steal_bios(struct bio_list *list, struct request *rq) 3150 { 3151 if (rq->bio) { 3152 if (list->tail) 3153 list->tail->bi_next = rq->bio; 3154 else 3155 list->head = rq->bio; 3156 list->tail = rq->biotail; 3157 3158 rq->bio = NULL; 3159 rq->biotail = NULL; 3160 } 3161 3162 rq->__data_len = 0; 3163 } 3164 EXPORT_SYMBOL_GPL(blk_steal_bios); 3165 3166 static size_t order_to_size(unsigned int order) 3167 { 3168 return (size_t)PAGE_SIZE << order; 3169 } 3170 3171 /* called before freeing request pool in @tags */ 3172 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3173 struct blk_mq_tags *tags) 3174 { 3175 struct page *page; 3176 unsigned long flags; 3177 3178 /* 3179 * There is no need to clear mapping if driver tags is not initialized 3180 * or the mapping belongs to the driver tags. 3181 */ 3182 if (!drv_tags || drv_tags == tags) 3183 return; 3184 3185 list_for_each_entry(page, &tags->page_list, lru) { 3186 unsigned long start = (unsigned long)page_address(page); 3187 unsigned long end = start + order_to_size(page->private); 3188 int i; 3189 3190 for (i = 0; i < drv_tags->nr_tags; i++) { 3191 struct request *rq = drv_tags->rqs[i]; 3192 unsigned long rq_addr = (unsigned long)rq; 3193 3194 if (rq_addr >= start && rq_addr < end) { 3195 WARN_ON_ONCE(req_ref_read(rq) != 0); 3196 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3197 } 3198 } 3199 } 3200 3201 /* 3202 * Wait until all pending iteration is done. 3203 * 3204 * Request reference is cleared and it is guaranteed to be observed 3205 * after the ->lock is released. 3206 */ 3207 spin_lock_irqsave(&drv_tags->lock, flags); 3208 spin_unlock_irqrestore(&drv_tags->lock, flags); 3209 } 3210 3211 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3212 unsigned int hctx_idx) 3213 { 3214 struct blk_mq_tags *drv_tags; 3215 struct page *page; 3216 3217 if (list_empty(&tags->page_list)) 3218 return; 3219 3220 if (blk_mq_is_shared_tags(set->flags)) 3221 drv_tags = set->shared_tags; 3222 else 3223 drv_tags = set->tags[hctx_idx]; 3224 3225 if (tags->static_rqs && set->ops->exit_request) { 3226 int i; 3227 3228 for (i = 0; i < tags->nr_tags; i++) { 3229 struct request *rq = tags->static_rqs[i]; 3230 3231 if (!rq) 3232 continue; 3233 set->ops->exit_request(set, rq, hctx_idx); 3234 tags->static_rqs[i] = NULL; 3235 } 3236 } 3237 3238 blk_mq_clear_rq_mapping(drv_tags, tags); 3239 3240 while (!list_empty(&tags->page_list)) { 3241 page = list_first_entry(&tags->page_list, struct page, lru); 3242 list_del_init(&page->lru); 3243 /* 3244 * Remove kmemleak object previously allocated in 3245 * blk_mq_alloc_rqs(). 3246 */ 3247 kmemleak_free(page_address(page)); 3248 __free_pages(page, page->private); 3249 } 3250 } 3251 3252 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3253 { 3254 kfree(tags->rqs); 3255 tags->rqs = NULL; 3256 kfree(tags->static_rqs); 3257 tags->static_rqs = NULL; 3258 3259 blk_mq_free_tags(tags); 3260 } 3261 3262 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3263 unsigned int hctx_idx) 3264 { 3265 int i; 3266 3267 for (i = 0; i < set->nr_maps; i++) { 3268 unsigned int start = set->map[i].queue_offset; 3269 unsigned int end = start + set->map[i].nr_queues; 3270 3271 if (hctx_idx >= start && hctx_idx < end) 3272 break; 3273 } 3274 3275 if (i >= set->nr_maps) 3276 i = HCTX_TYPE_DEFAULT; 3277 3278 return i; 3279 } 3280 3281 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3282 unsigned int hctx_idx) 3283 { 3284 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3285 3286 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3287 } 3288 3289 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3290 unsigned int hctx_idx, 3291 unsigned int nr_tags, 3292 unsigned int reserved_tags) 3293 { 3294 int node = blk_mq_get_hctx_node(set, hctx_idx); 3295 struct blk_mq_tags *tags; 3296 3297 if (node == NUMA_NO_NODE) 3298 node = set->numa_node; 3299 3300 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3301 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3302 if (!tags) 3303 return NULL; 3304 3305 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3306 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3307 node); 3308 if (!tags->rqs) 3309 goto err_free_tags; 3310 3311 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3312 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3313 node); 3314 if (!tags->static_rqs) 3315 goto err_free_rqs; 3316 3317 return tags; 3318 3319 err_free_rqs: 3320 kfree(tags->rqs); 3321 err_free_tags: 3322 blk_mq_free_tags(tags); 3323 return NULL; 3324 } 3325 3326 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3327 unsigned int hctx_idx, int node) 3328 { 3329 int ret; 3330 3331 if (set->ops->init_request) { 3332 ret = set->ops->init_request(set, rq, hctx_idx, node); 3333 if (ret) 3334 return ret; 3335 } 3336 3337 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3338 return 0; 3339 } 3340 3341 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3342 struct blk_mq_tags *tags, 3343 unsigned int hctx_idx, unsigned int depth) 3344 { 3345 unsigned int i, j, entries_per_page, max_order = 4; 3346 int node = blk_mq_get_hctx_node(set, hctx_idx); 3347 size_t rq_size, left; 3348 3349 if (node == NUMA_NO_NODE) 3350 node = set->numa_node; 3351 3352 INIT_LIST_HEAD(&tags->page_list); 3353 3354 /* 3355 * rq_size is the size of the request plus driver payload, rounded 3356 * to the cacheline size 3357 */ 3358 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3359 cache_line_size()); 3360 left = rq_size * depth; 3361 3362 for (i = 0; i < depth; ) { 3363 int this_order = max_order; 3364 struct page *page; 3365 int to_do; 3366 void *p; 3367 3368 while (this_order && left < order_to_size(this_order - 1)) 3369 this_order--; 3370 3371 do { 3372 page = alloc_pages_node(node, 3373 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3374 this_order); 3375 if (page) 3376 break; 3377 if (!this_order--) 3378 break; 3379 if (order_to_size(this_order) < rq_size) 3380 break; 3381 } while (1); 3382 3383 if (!page) 3384 goto fail; 3385 3386 page->private = this_order; 3387 list_add_tail(&page->lru, &tags->page_list); 3388 3389 p = page_address(page); 3390 /* 3391 * Allow kmemleak to scan these pages as they contain pointers 3392 * to additional allocations like via ops->init_request(). 3393 */ 3394 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3395 entries_per_page = order_to_size(this_order) / rq_size; 3396 to_do = min(entries_per_page, depth - i); 3397 left -= to_do * rq_size; 3398 for (j = 0; j < to_do; j++) { 3399 struct request *rq = p; 3400 3401 tags->static_rqs[i] = rq; 3402 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3403 tags->static_rqs[i] = NULL; 3404 goto fail; 3405 } 3406 3407 p += rq_size; 3408 i++; 3409 } 3410 } 3411 return 0; 3412 3413 fail: 3414 blk_mq_free_rqs(set, tags, hctx_idx); 3415 return -ENOMEM; 3416 } 3417 3418 struct rq_iter_data { 3419 struct blk_mq_hw_ctx *hctx; 3420 bool has_rq; 3421 }; 3422 3423 static bool blk_mq_has_request(struct request *rq, void *data) 3424 { 3425 struct rq_iter_data *iter_data = data; 3426 3427 if (rq->mq_hctx != iter_data->hctx) 3428 return true; 3429 iter_data->has_rq = true; 3430 return false; 3431 } 3432 3433 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3434 { 3435 struct blk_mq_tags *tags = hctx->sched_tags ? 3436 hctx->sched_tags : hctx->tags; 3437 struct rq_iter_data data = { 3438 .hctx = hctx, 3439 }; 3440 3441 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3442 return data.has_rq; 3443 } 3444 3445 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 3446 struct blk_mq_hw_ctx *hctx) 3447 { 3448 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu) 3449 return false; 3450 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 3451 return false; 3452 return true; 3453 } 3454 3455 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3456 { 3457 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3458 struct blk_mq_hw_ctx, cpuhp_online); 3459 3460 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 3461 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 3462 return 0; 3463 3464 /* 3465 * Prevent new request from being allocated on the current hctx. 3466 * 3467 * The smp_mb__after_atomic() Pairs with the implied barrier in 3468 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3469 * seen once we return from the tag allocator. 3470 */ 3471 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3472 smp_mb__after_atomic(); 3473 3474 /* 3475 * Try to grab a reference to the queue and wait for any outstanding 3476 * requests. If we could not grab a reference the queue has been 3477 * frozen and there are no requests. 3478 */ 3479 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3480 while (blk_mq_hctx_has_requests(hctx)) 3481 msleep(5); 3482 percpu_ref_put(&hctx->queue->q_usage_counter); 3483 } 3484 3485 return 0; 3486 } 3487 3488 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3489 { 3490 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3491 struct blk_mq_hw_ctx, cpuhp_online); 3492 3493 if (cpumask_test_cpu(cpu, hctx->cpumask)) 3494 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3495 return 0; 3496 } 3497 3498 /* 3499 * 'cpu' is going away. splice any existing rq_list entries from this 3500 * software queue to the hw queue dispatch list, and ensure that it 3501 * gets run. 3502 */ 3503 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3504 { 3505 struct blk_mq_hw_ctx *hctx; 3506 struct blk_mq_ctx *ctx; 3507 LIST_HEAD(tmp); 3508 enum hctx_type type; 3509 3510 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3511 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 3512 return 0; 3513 3514 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3515 type = hctx->type; 3516 3517 spin_lock(&ctx->lock); 3518 if (!list_empty(&ctx->rq_lists[type])) { 3519 list_splice_init(&ctx->rq_lists[type], &tmp); 3520 blk_mq_hctx_clear_pending(hctx, ctx); 3521 } 3522 spin_unlock(&ctx->lock); 3523 3524 if (list_empty(&tmp)) 3525 return 0; 3526 3527 spin_lock(&hctx->lock); 3528 list_splice_tail_init(&tmp, &hctx->dispatch); 3529 spin_unlock(&hctx->lock); 3530 3531 blk_mq_run_hw_queue(hctx, true); 3532 return 0; 3533 } 3534 3535 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3536 { 3537 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3538 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3539 &hctx->cpuhp_online); 3540 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3541 &hctx->cpuhp_dead); 3542 } 3543 3544 /* 3545 * Before freeing hw queue, clearing the flush request reference in 3546 * tags->rqs[] for avoiding potential UAF. 3547 */ 3548 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3549 unsigned int queue_depth, struct request *flush_rq) 3550 { 3551 int i; 3552 unsigned long flags; 3553 3554 /* The hw queue may not be mapped yet */ 3555 if (!tags) 3556 return; 3557 3558 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3559 3560 for (i = 0; i < queue_depth; i++) 3561 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3562 3563 /* 3564 * Wait until all pending iteration is done. 3565 * 3566 * Request reference is cleared and it is guaranteed to be observed 3567 * after the ->lock is released. 3568 */ 3569 spin_lock_irqsave(&tags->lock, flags); 3570 spin_unlock_irqrestore(&tags->lock, flags); 3571 } 3572 3573 /* hctx->ctxs will be freed in queue's release handler */ 3574 static void blk_mq_exit_hctx(struct request_queue *q, 3575 struct blk_mq_tag_set *set, 3576 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3577 { 3578 struct request *flush_rq = hctx->fq->flush_rq; 3579 3580 if (blk_mq_hw_queue_mapped(hctx)) 3581 blk_mq_tag_idle(hctx); 3582 3583 if (blk_queue_init_done(q)) 3584 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3585 set->queue_depth, flush_rq); 3586 if (set->ops->exit_request) 3587 set->ops->exit_request(set, flush_rq, hctx_idx); 3588 3589 if (set->ops->exit_hctx) 3590 set->ops->exit_hctx(hctx, hctx_idx); 3591 3592 blk_mq_remove_cpuhp(hctx); 3593 3594 xa_erase(&q->hctx_table, hctx_idx); 3595 3596 spin_lock(&q->unused_hctx_lock); 3597 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3598 spin_unlock(&q->unused_hctx_lock); 3599 } 3600 3601 static void blk_mq_exit_hw_queues(struct request_queue *q, 3602 struct blk_mq_tag_set *set, int nr_queue) 3603 { 3604 struct blk_mq_hw_ctx *hctx; 3605 unsigned long i; 3606 3607 queue_for_each_hw_ctx(q, hctx, i) { 3608 if (i == nr_queue) 3609 break; 3610 blk_mq_exit_hctx(q, set, hctx, i); 3611 } 3612 } 3613 3614 static int blk_mq_init_hctx(struct request_queue *q, 3615 struct blk_mq_tag_set *set, 3616 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3617 { 3618 hctx->queue_num = hctx_idx; 3619 3620 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3621 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3622 &hctx->cpuhp_online); 3623 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3624 3625 hctx->tags = set->tags[hctx_idx]; 3626 3627 if (set->ops->init_hctx && 3628 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3629 goto unregister_cpu_notifier; 3630 3631 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3632 hctx->numa_node)) 3633 goto exit_hctx; 3634 3635 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3636 goto exit_flush_rq; 3637 3638 return 0; 3639 3640 exit_flush_rq: 3641 if (set->ops->exit_request) 3642 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3643 exit_hctx: 3644 if (set->ops->exit_hctx) 3645 set->ops->exit_hctx(hctx, hctx_idx); 3646 unregister_cpu_notifier: 3647 blk_mq_remove_cpuhp(hctx); 3648 return -1; 3649 } 3650 3651 static struct blk_mq_hw_ctx * 3652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3653 int node) 3654 { 3655 struct blk_mq_hw_ctx *hctx; 3656 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3657 3658 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3659 if (!hctx) 3660 goto fail_alloc_hctx; 3661 3662 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3663 goto free_hctx; 3664 3665 atomic_set(&hctx->nr_active, 0); 3666 if (node == NUMA_NO_NODE) 3667 node = set->numa_node; 3668 hctx->numa_node = node; 3669 3670 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3671 spin_lock_init(&hctx->lock); 3672 INIT_LIST_HEAD(&hctx->dispatch); 3673 hctx->queue = q; 3674 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3675 3676 INIT_LIST_HEAD(&hctx->hctx_list); 3677 3678 /* 3679 * Allocate space for all possible cpus to avoid allocation at 3680 * runtime 3681 */ 3682 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3683 gfp, node); 3684 if (!hctx->ctxs) 3685 goto free_cpumask; 3686 3687 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3688 gfp, node, false, false)) 3689 goto free_ctxs; 3690 hctx->nr_ctx = 0; 3691 3692 spin_lock_init(&hctx->dispatch_wait_lock); 3693 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3694 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3695 3696 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3697 if (!hctx->fq) 3698 goto free_bitmap; 3699 3700 blk_mq_hctx_kobj_init(hctx); 3701 3702 return hctx; 3703 3704 free_bitmap: 3705 sbitmap_free(&hctx->ctx_map); 3706 free_ctxs: 3707 kfree(hctx->ctxs); 3708 free_cpumask: 3709 free_cpumask_var(hctx->cpumask); 3710 free_hctx: 3711 kfree(hctx); 3712 fail_alloc_hctx: 3713 return NULL; 3714 } 3715 3716 static void blk_mq_init_cpu_queues(struct request_queue *q, 3717 unsigned int nr_hw_queues) 3718 { 3719 struct blk_mq_tag_set *set = q->tag_set; 3720 unsigned int i, j; 3721 3722 for_each_possible_cpu(i) { 3723 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3724 struct blk_mq_hw_ctx *hctx; 3725 int k; 3726 3727 __ctx->cpu = i; 3728 spin_lock_init(&__ctx->lock); 3729 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3730 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3731 3732 __ctx->queue = q; 3733 3734 /* 3735 * Set local node, IFF we have more than one hw queue. If 3736 * not, we remain on the home node of the device 3737 */ 3738 for (j = 0; j < set->nr_maps; j++) { 3739 hctx = blk_mq_map_queue_type(q, j, i); 3740 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3741 hctx->numa_node = cpu_to_node(i); 3742 } 3743 } 3744 } 3745 3746 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3747 unsigned int hctx_idx, 3748 unsigned int depth) 3749 { 3750 struct blk_mq_tags *tags; 3751 int ret; 3752 3753 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3754 if (!tags) 3755 return NULL; 3756 3757 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3758 if (ret) { 3759 blk_mq_free_rq_map(tags); 3760 return NULL; 3761 } 3762 3763 return tags; 3764 } 3765 3766 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3767 int hctx_idx) 3768 { 3769 if (blk_mq_is_shared_tags(set->flags)) { 3770 set->tags[hctx_idx] = set->shared_tags; 3771 3772 return true; 3773 } 3774 3775 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3776 set->queue_depth); 3777 3778 return set->tags[hctx_idx]; 3779 } 3780 3781 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3782 struct blk_mq_tags *tags, 3783 unsigned int hctx_idx) 3784 { 3785 if (tags) { 3786 blk_mq_free_rqs(set, tags, hctx_idx); 3787 blk_mq_free_rq_map(tags); 3788 } 3789 } 3790 3791 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3792 unsigned int hctx_idx) 3793 { 3794 if (!blk_mq_is_shared_tags(set->flags)) 3795 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 3796 3797 set->tags[hctx_idx] = NULL; 3798 } 3799 3800 static void blk_mq_map_swqueue(struct request_queue *q) 3801 { 3802 unsigned int j, hctx_idx; 3803 unsigned long i; 3804 struct blk_mq_hw_ctx *hctx; 3805 struct blk_mq_ctx *ctx; 3806 struct blk_mq_tag_set *set = q->tag_set; 3807 3808 queue_for_each_hw_ctx(q, hctx, i) { 3809 cpumask_clear(hctx->cpumask); 3810 hctx->nr_ctx = 0; 3811 hctx->dispatch_from = NULL; 3812 } 3813 3814 /* 3815 * Map software to hardware queues. 3816 * 3817 * If the cpu isn't present, the cpu is mapped to first hctx. 3818 */ 3819 for_each_possible_cpu(i) { 3820 3821 ctx = per_cpu_ptr(q->queue_ctx, i); 3822 for (j = 0; j < set->nr_maps; j++) { 3823 if (!set->map[j].nr_queues) { 3824 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3825 HCTX_TYPE_DEFAULT, i); 3826 continue; 3827 } 3828 hctx_idx = set->map[j].mq_map[i]; 3829 /* unmapped hw queue can be remapped after CPU topo changed */ 3830 if (!set->tags[hctx_idx] && 3831 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 3832 /* 3833 * If tags initialization fail for some hctx, 3834 * that hctx won't be brought online. In this 3835 * case, remap the current ctx to hctx[0] which 3836 * is guaranteed to always have tags allocated 3837 */ 3838 set->map[j].mq_map[i] = 0; 3839 } 3840 3841 hctx = blk_mq_map_queue_type(q, j, i); 3842 ctx->hctxs[j] = hctx; 3843 /* 3844 * If the CPU is already set in the mask, then we've 3845 * mapped this one already. This can happen if 3846 * devices share queues across queue maps. 3847 */ 3848 if (cpumask_test_cpu(i, hctx->cpumask)) 3849 continue; 3850 3851 cpumask_set_cpu(i, hctx->cpumask); 3852 hctx->type = j; 3853 ctx->index_hw[hctx->type] = hctx->nr_ctx; 3854 hctx->ctxs[hctx->nr_ctx++] = ctx; 3855 3856 /* 3857 * If the nr_ctx type overflows, we have exceeded the 3858 * amount of sw queues we can support. 3859 */ 3860 BUG_ON(!hctx->nr_ctx); 3861 } 3862 3863 for (; j < HCTX_MAX_TYPES; j++) 3864 ctx->hctxs[j] = blk_mq_map_queue_type(q, 3865 HCTX_TYPE_DEFAULT, i); 3866 } 3867 3868 queue_for_each_hw_ctx(q, hctx, i) { 3869 /* 3870 * If no software queues are mapped to this hardware queue, 3871 * disable it and free the request entries. 3872 */ 3873 if (!hctx->nr_ctx) { 3874 /* Never unmap queue 0. We need it as a 3875 * fallback in case of a new remap fails 3876 * allocation 3877 */ 3878 if (i) 3879 __blk_mq_free_map_and_rqs(set, i); 3880 3881 hctx->tags = NULL; 3882 continue; 3883 } 3884 3885 hctx->tags = set->tags[i]; 3886 WARN_ON(!hctx->tags); 3887 3888 /* 3889 * Set the map size to the number of mapped software queues. 3890 * This is more accurate and more efficient than looping 3891 * over all possibly mapped software queues. 3892 */ 3893 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 3894 3895 /* 3896 * Initialize batch roundrobin counts 3897 */ 3898 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 3899 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 3900 } 3901 } 3902 3903 /* 3904 * Caller needs to ensure that we're either frozen/quiesced, or that 3905 * the queue isn't live yet. 3906 */ 3907 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 3908 { 3909 struct blk_mq_hw_ctx *hctx; 3910 unsigned long i; 3911 3912 queue_for_each_hw_ctx(q, hctx, i) { 3913 if (shared) { 3914 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3915 } else { 3916 blk_mq_tag_idle(hctx); 3917 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3918 } 3919 } 3920 } 3921 3922 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3923 bool shared) 3924 { 3925 struct request_queue *q; 3926 3927 lockdep_assert_held(&set->tag_list_lock); 3928 3929 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3930 blk_mq_freeze_queue(q); 3931 queue_set_hctx_shared(q, shared); 3932 blk_mq_unfreeze_queue(q); 3933 } 3934 } 3935 3936 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3937 { 3938 struct blk_mq_tag_set *set = q->tag_set; 3939 3940 mutex_lock(&set->tag_list_lock); 3941 list_del(&q->tag_set_list); 3942 if (list_is_singular(&set->tag_list)) { 3943 /* just transitioned to unshared */ 3944 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3945 /* update existing queue */ 3946 blk_mq_update_tag_set_shared(set, false); 3947 } 3948 mutex_unlock(&set->tag_list_lock); 3949 INIT_LIST_HEAD(&q->tag_set_list); 3950 } 3951 3952 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3953 struct request_queue *q) 3954 { 3955 mutex_lock(&set->tag_list_lock); 3956 3957 /* 3958 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3959 */ 3960 if (!list_empty(&set->tag_list) && 3961 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3962 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3963 /* update existing queue */ 3964 blk_mq_update_tag_set_shared(set, true); 3965 } 3966 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3967 queue_set_hctx_shared(q, true); 3968 list_add_tail(&q->tag_set_list, &set->tag_list); 3969 3970 mutex_unlock(&set->tag_list_lock); 3971 } 3972 3973 /* All allocations will be freed in release handler of q->mq_kobj */ 3974 static int blk_mq_alloc_ctxs(struct request_queue *q) 3975 { 3976 struct blk_mq_ctxs *ctxs; 3977 int cpu; 3978 3979 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3980 if (!ctxs) 3981 return -ENOMEM; 3982 3983 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3984 if (!ctxs->queue_ctx) 3985 goto fail; 3986 3987 for_each_possible_cpu(cpu) { 3988 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3989 ctx->ctxs = ctxs; 3990 } 3991 3992 q->mq_kobj = &ctxs->kobj; 3993 q->queue_ctx = ctxs->queue_ctx; 3994 3995 return 0; 3996 fail: 3997 kfree(ctxs); 3998 return -ENOMEM; 3999 } 4000 4001 /* 4002 * It is the actual release handler for mq, but we do it from 4003 * request queue's release handler for avoiding use-after-free 4004 * and headache because q->mq_kobj shouldn't have been introduced, 4005 * but we can't group ctx/kctx kobj without it. 4006 */ 4007 void blk_mq_release(struct request_queue *q) 4008 { 4009 struct blk_mq_hw_ctx *hctx, *next; 4010 unsigned long i; 4011 4012 queue_for_each_hw_ctx(q, hctx, i) 4013 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4014 4015 /* all hctx are in .unused_hctx_list now */ 4016 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4017 list_del_init(&hctx->hctx_list); 4018 kobject_put(&hctx->kobj); 4019 } 4020 4021 xa_destroy(&q->hctx_table); 4022 4023 /* 4024 * release .mq_kobj and sw queue's kobject now because 4025 * both share lifetime with request queue. 4026 */ 4027 blk_mq_sysfs_deinit(q); 4028 } 4029 4030 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 4031 void *queuedata) 4032 { 4033 struct request_queue *q; 4034 int ret; 4035 4036 q = blk_alloc_queue(set->numa_node); 4037 if (!q) 4038 return ERR_PTR(-ENOMEM); 4039 q->queuedata = queuedata; 4040 ret = blk_mq_init_allocated_queue(set, q); 4041 if (ret) { 4042 blk_put_queue(q); 4043 return ERR_PTR(ret); 4044 } 4045 return q; 4046 } 4047 4048 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 4049 { 4050 return blk_mq_init_queue_data(set, NULL); 4051 } 4052 EXPORT_SYMBOL(blk_mq_init_queue); 4053 4054 /** 4055 * blk_mq_destroy_queue - shutdown a request queue 4056 * @q: request queue to shutdown 4057 * 4058 * This shuts down a request queue allocated by blk_mq_init_queue(). All future 4059 * requests will be failed with -ENODEV. The caller is responsible for dropping 4060 * the reference from blk_mq_init_queue() by calling blk_put_queue(). 4061 * 4062 * Context: can sleep 4063 */ 4064 void blk_mq_destroy_queue(struct request_queue *q) 4065 { 4066 WARN_ON_ONCE(!queue_is_mq(q)); 4067 WARN_ON_ONCE(blk_queue_registered(q)); 4068 4069 might_sleep(); 4070 4071 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4072 blk_queue_start_drain(q); 4073 blk_mq_freeze_queue_wait(q); 4074 4075 blk_sync_queue(q); 4076 blk_mq_cancel_work_sync(q); 4077 blk_mq_exit_queue(q); 4078 } 4079 EXPORT_SYMBOL(blk_mq_destroy_queue); 4080 4081 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 4082 struct lock_class_key *lkclass) 4083 { 4084 struct request_queue *q; 4085 struct gendisk *disk; 4086 4087 q = blk_mq_init_queue_data(set, queuedata); 4088 if (IS_ERR(q)) 4089 return ERR_CAST(q); 4090 4091 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4092 if (!disk) { 4093 blk_mq_destroy_queue(q); 4094 blk_put_queue(q); 4095 return ERR_PTR(-ENOMEM); 4096 } 4097 set_bit(GD_OWNS_QUEUE, &disk->state); 4098 return disk; 4099 } 4100 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4101 4102 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4103 struct lock_class_key *lkclass) 4104 { 4105 struct gendisk *disk; 4106 4107 if (!blk_get_queue(q)) 4108 return NULL; 4109 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4110 if (!disk) 4111 blk_put_queue(q); 4112 return disk; 4113 } 4114 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4115 4116 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4117 struct blk_mq_tag_set *set, struct request_queue *q, 4118 int hctx_idx, int node) 4119 { 4120 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4121 4122 /* reuse dead hctx first */ 4123 spin_lock(&q->unused_hctx_lock); 4124 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4125 if (tmp->numa_node == node) { 4126 hctx = tmp; 4127 break; 4128 } 4129 } 4130 if (hctx) 4131 list_del_init(&hctx->hctx_list); 4132 spin_unlock(&q->unused_hctx_lock); 4133 4134 if (!hctx) 4135 hctx = blk_mq_alloc_hctx(q, set, node); 4136 if (!hctx) 4137 goto fail; 4138 4139 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4140 goto free_hctx; 4141 4142 return hctx; 4143 4144 free_hctx: 4145 kobject_put(&hctx->kobj); 4146 fail: 4147 return NULL; 4148 } 4149 4150 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4151 struct request_queue *q) 4152 { 4153 struct blk_mq_hw_ctx *hctx; 4154 unsigned long i, j; 4155 4156 /* protect against switching io scheduler */ 4157 mutex_lock(&q->sysfs_lock); 4158 for (i = 0; i < set->nr_hw_queues; i++) { 4159 int old_node; 4160 int node = blk_mq_get_hctx_node(set, i); 4161 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4162 4163 if (old_hctx) { 4164 old_node = old_hctx->numa_node; 4165 blk_mq_exit_hctx(q, set, old_hctx, i); 4166 } 4167 4168 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4169 if (!old_hctx) 4170 break; 4171 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4172 node, old_node); 4173 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4174 WARN_ON_ONCE(!hctx); 4175 } 4176 } 4177 /* 4178 * Increasing nr_hw_queues fails. Free the newly allocated 4179 * hctxs and keep the previous q->nr_hw_queues. 4180 */ 4181 if (i != set->nr_hw_queues) { 4182 j = q->nr_hw_queues; 4183 } else { 4184 j = i; 4185 q->nr_hw_queues = set->nr_hw_queues; 4186 } 4187 4188 xa_for_each_start(&q->hctx_table, j, hctx, j) 4189 blk_mq_exit_hctx(q, set, hctx, j); 4190 mutex_unlock(&q->sysfs_lock); 4191 } 4192 4193 static void blk_mq_update_poll_flag(struct request_queue *q) 4194 { 4195 struct blk_mq_tag_set *set = q->tag_set; 4196 4197 if (set->nr_maps > HCTX_TYPE_POLL && 4198 set->map[HCTX_TYPE_POLL].nr_queues) 4199 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 4200 else 4201 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 4202 } 4203 4204 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4205 struct request_queue *q) 4206 { 4207 /* mark the queue as mq asap */ 4208 q->mq_ops = set->ops; 4209 4210 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 4211 blk_mq_poll_stats_bkt, 4212 BLK_MQ_POLL_STATS_BKTS, q); 4213 if (!q->poll_cb) 4214 goto err_exit; 4215 4216 if (blk_mq_alloc_ctxs(q)) 4217 goto err_poll; 4218 4219 /* init q->mq_kobj and sw queues' kobjects */ 4220 blk_mq_sysfs_init(q); 4221 4222 INIT_LIST_HEAD(&q->unused_hctx_list); 4223 spin_lock_init(&q->unused_hctx_lock); 4224 4225 xa_init(&q->hctx_table); 4226 4227 blk_mq_realloc_hw_ctxs(set, q); 4228 if (!q->nr_hw_queues) 4229 goto err_hctxs; 4230 4231 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4232 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4233 4234 q->tag_set = set; 4235 4236 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4237 blk_mq_update_poll_flag(q); 4238 4239 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4240 INIT_LIST_HEAD(&q->requeue_list); 4241 spin_lock_init(&q->requeue_lock); 4242 4243 q->nr_requests = set->queue_depth; 4244 4245 /* 4246 * Default to classic polling 4247 */ 4248 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 4249 4250 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4251 blk_mq_add_queue_tag_set(set, q); 4252 blk_mq_map_swqueue(q); 4253 return 0; 4254 4255 err_hctxs: 4256 blk_mq_release(q); 4257 err_poll: 4258 blk_stat_free_callback(q->poll_cb); 4259 q->poll_cb = NULL; 4260 err_exit: 4261 q->mq_ops = NULL; 4262 return -ENOMEM; 4263 } 4264 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4265 4266 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4267 void blk_mq_exit_queue(struct request_queue *q) 4268 { 4269 struct blk_mq_tag_set *set = q->tag_set; 4270 4271 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4272 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4273 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4274 blk_mq_del_queue_tag_set(q); 4275 } 4276 4277 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4278 { 4279 int i; 4280 4281 if (blk_mq_is_shared_tags(set->flags)) { 4282 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4283 BLK_MQ_NO_HCTX_IDX, 4284 set->queue_depth); 4285 if (!set->shared_tags) 4286 return -ENOMEM; 4287 } 4288 4289 for (i = 0; i < set->nr_hw_queues; i++) { 4290 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4291 goto out_unwind; 4292 cond_resched(); 4293 } 4294 4295 return 0; 4296 4297 out_unwind: 4298 while (--i >= 0) 4299 __blk_mq_free_map_and_rqs(set, i); 4300 4301 if (blk_mq_is_shared_tags(set->flags)) { 4302 blk_mq_free_map_and_rqs(set, set->shared_tags, 4303 BLK_MQ_NO_HCTX_IDX); 4304 } 4305 4306 return -ENOMEM; 4307 } 4308 4309 /* 4310 * Allocate the request maps associated with this tag_set. Note that this 4311 * may reduce the depth asked for, if memory is tight. set->queue_depth 4312 * will be updated to reflect the allocated depth. 4313 */ 4314 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4315 { 4316 unsigned int depth; 4317 int err; 4318 4319 depth = set->queue_depth; 4320 do { 4321 err = __blk_mq_alloc_rq_maps(set); 4322 if (!err) 4323 break; 4324 4325 set->queue_depth >>= 1; 4326 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4327 err = -ENOMEM; 4328 break; 4329 } 4330 } while (set->queue_depth); 4331 4332 if (!set->queue_depth || err) { 4333 pr_err("blk-mq: failed to allocate request map\n"); 4334 return -ENOMEM; 4335 } 4336 4337 if (depth != set->queue_depth) 4338 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4339 depth, set->queue_depth); 4340 4341 return 0; 4342 } 4343 4344 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4345 { 4346 /* 4347 * blk_mq_map_queues() and multiple .map_queues() implementations 4348 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4349 * number of hardware queues. 4350 */ 4351 if (set->nr_maps == 1) 4352 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4353 4354 if (set->ops->map_queues && !is_kdump_kernel()) { 4355 int i; 4356 4357 /* 4358 * transport .map_queues is usually done in the following 4359 * way: 4360 * 4361 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4362 * mask = get_cpu_mask(queue) 4363 * for_each_cpu(cpu, mask) 4364 * set->map[x].mq_map[cpu] = queue; 4365 * } 4366 * 4367 * When we need to remap, the table has to be cleared for 4368 * killing stale mapping since one CPU may not be mapped 4369 * to any hw queue. 4370 */ 4371 for (i = 0; i < set->nr_maps; i++) 4372 blk_mq_clear_mq_map(&set->map[i]); 4373 4374 set->ops->map_queues(set); 4375 } else { 4376 BUG_ON(set->nr_maps > 1); 4377 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4378 } 4379 } 4380 4381 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4382 int new_nr_hw_queues) 4383 { 4384 struct blk_mq_tags **new_tags; 4385 4386 if (set->nr_hw_queues >= new_nr_hw_queues) 4387 goto done; 4388 4389 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4390 GFP_KERNEL, set->numa_node); 4391 if (!new_tags) 4392 return -ENOMEM; 4393 4394 if (set->tags) 4395 memcpy(new_tags, set->tags, set->nr_hw_queues * 4396 sizeof(*set->tags)); 4397 kfree(set->tags); 4398 set->tags = new_tags; 4399 done: 4400 set->nr_hw_queues = new_nr_hw_queues; 4401 return 0; 4402 } 4403 4404 /* 4405 * Alloc a tag set to be associated with one or more request queues. 4406 * May fail with EINVAL for various error conditions. May adjust the 4407 * requested depth down, if it's too large. In that case, the set 4408 * value will be stored in set->queue_depth. 4409 */ 4410 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4411 { 4412 int i, ret; 4413 4414 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4415 4416 if (!set->nr_hw_queues) 4417 return -EINVAL; 4418 if (!set->queue_depth) 4419 return -EINVAL; 4420 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4421 return -EINVAL; 4422 4423 if (!set->ops->queue_rq) 4424 return -EINVAL; 4425 4426 if (!set->ops->get_budget ^ !set->ops->put_budget) 4427 return -EINVAL; 4428 4429 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4430 pr_info("blk-mq: reduced tag depth to %u\n", 4431 BLK_MQ_MAX_DEPTH); 4432 set->queue_depth = BLK_MQ_MAX_DEPTH; 4433 } 4434 4435 if (!set->nr_maps) 4436 set->nr_maps = 1; 4437 else if (set->nr_maps > HCTX_MAX_TYPES) 4438 return -EINVAL; 4439 4440 /* 4441 * If a crashdump is active, then we are potentially in a very 4442 * memory constrained environment. Limit us to 1 queue and 4443 * 64 tags to prevent using too much memory. 4444 */ 4445 if (is_kdump_kernel()) { 4446 set->nr_hw_queues = 1; 4447 set->nr_maps = 1; 4448 set->queue_depth = min(64U, set->queue_depth); 4449 } 4450 /* 4451 * There is no use for more h/w queues than cpus if we just have 4452 * a single map 4453 */ 4454 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4455 set->nr_hw_queues = nr_cpu_ids; 4456 4457 if (set->flags & BLK_MQ_F_BLOCKING) { 4458 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4459 if (!set->srcu) 4460 return -ENOMEM; 4461 ret = init_srcu_struct(set->srcu); 4462 if (ret) 4463 goto out_free_srcu; 4464 } 4465 4466 ret = -ENOMEM; 4467 set->tags = kcalloc_node(set->nr_hw_queues, 4468 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4469 set->numa_node); 4470 if (!set->tags) 4471 goto out_cleanup_srcu; 4472 4473 for (i = 0; i < set->nr_maps; i++) { 4474 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4475 sizeof(set->map[i].mq_map[0]), 4476 GFP_KERNEL, set->numa_node); 4477 if (!set->map[i].mq_map) 4478 goto out_free_mq_map; 4479 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 4480 } 4481 4482 blk_mq_update_queue_map(set); 4483 4484 ret = blk_mq_alloc_set_map_and_rqs(set); 4485 if (ret) 4486 goto out_free_mq_map; 4487 4488 mutex_init(&set->tag_list_lock); 4489 INIT_LIST_HEAD(&set->tag_list); 4490 4491 return 0; 4492 4493 out_free_mq_map: 4494 for (i = 0; i < set->nr_maps; i++) { 4495 kfree(set->map[i].mq_map); 4496 set->map[i].mq_map = NULL; 4497 } 4498 kfree(set->tags); 4499 set->tags = NULL; 4500 out_cleanup_srcu: 4501 if (set->flags & BLK_MQ_F_BLOCKING) 4502 cleanup_srcu_struct(set->srcu); 4503 out_free_srcu: 4504 if (set->flags & BLK_MQ_F_BLOCKING) 4505 kfree(set->srcu); 4506 return ret; 4507 } 4508 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4509 4510 /* allocate and initialize a tagset for a simple single-queue device */ 4511 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4512 const struct blk_mq_ops *ops, unsigned int queue_depth, 4513 unsigned int set_flags) 4514 { 4515 memset(set, 0, sizeof(*set)); 4516 set->ops = ops; 4517 set->nr_hw_queues = 1; 4518 set->nr_maps = 1; 4519 set->queue_depth = queue_depth; 4520 set->numa_node = NUMA_NO_NODE; 4521 set->flags = set_flags; 4522 return blk_mq_alloc_tag_set(set); 4523 } 4524 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4525 4526 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4527 { 4528 int i, j; 4529 4530 for (i = 0; i < set->nr_hw_queues; i++) 4531 __blk_mq_free_map_and_rqs(set, i); 4532 4533 if (blk_mq_is_shared_tags(set->flags)) { 4534 blk_mq_free_map_and_rqs(set, set->shared_tags, 4535 BLK_MQ_NO_HCTX_IDX); 4536 } 4537 4538 for (j = 0; j < set->nr_maps; j++) { 4539 kfree(set->map[j].mq_map); 4540 set->map[j].mq_map = NULL; 4541 } 4542 4543 kfree(set->tags); 4544 set->tags = NULL; 4545 if (set->flags & BLK_MQ_F_BLOCKING) { 4546 cleanup_srcu_struct(set->srcu); 4547 kfree(set->srcu); 4548 } 4549 } 4550 EXPORT_SYMBOL(blk_mq_free_tag_set); 4551 4552 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4553 { 4554 struct blk_mq_tag_set *set = q->tag_set; 4555 struct blk_mq_hw_ctx *hctx; 4556 int ret; 4557 unsigned long i; 4558 4559 if (!set) 4560 return -EINVAL; 4561 4562 if (q->nr_requests == nr) 4563 return 0; 4564 4565 blk_mq_freeze_queue(q); 4566 blk_mq_quiesce_queue(q); 4567 4568 ret = 0; 4569 queue_for_each_hw_ctx(q, hctx, i) { 4570 if (!hctx->tags) 4571 continue; 4572 /* 4573 * If we're using an MQ scheduler, just update the scheduler 4574 * queue depth. This is similar to what the old code would do. 4575 */ 4576 if (hctx->sched_tags) { 4577 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4578 nr, true); 4579 } else { 4580 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4581 false); 4582 } 4583 if (ret) 4584 break; 4585 if (q->elevator && q->elevator->type->ops.depth_updated) 4586 q->elevator->type->ops.depth_updated(hctx); 4587 } 4588 if (!ret) { 4589 q->nr_requests = nr; 4590 if (blk_mq_is_shared_tags(set->flags)) { 4591 if (q->elevator) 4592 blk_mq_tag_update_sched_shared_tags(q); 4593 else 4594 blk_mq_tag_resize_shared_tags(set, nr); 4595 } 4596 } 4597 4598 blk_mq_unquiesce_queue(q); 4599 blk_mq_unfreeze_queue(q); 4600 4601 return ret; 4602 } 4603 4604 /* 4605 * request_queue and elevator_type pair. 4606 * It is just used by __blk_mq_update_nr_hw_queues to cache 4607 * the elevator_type associated with a request_queue. 4608 */ 4609 struct blk_mq_qe_pair { 4610 struct list_head node; 4611 struct request_queue *q; 4612 struct elevator_type *type; 4613 }; 4614 4615 /* 4616 * Cache the elevator_type in qe pair list and switch the 4617 * io scheduler to 'none' 4618 */ 4619 static bool blk_mq_elv_switch_none(struct list_head *head, 4620 struct request_queue *q) 4621 { 4622 struct blk_mq_qe_pair *qe; 4623 4624 if (!q->elevator) 4625 return true; 4626 4627 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4628 if (!qe) 4629 return false; 4630 4631 /* q->elevator needs protection from ->sysfs_lock */ 4632 mutex_lock(&q->sysfs_lock); 4633 4634 INIT_LIST_HEAD(&qe->node); 4635 qe->q = q; 4636 qe->type = q->elevator->type; 4637 /* keep a reference to the elevator module as we'll switch back */ 4638 __elevator_get(qe->type); 4639 list_add(&qe->node, head); 4640 elevator_disable(q); 4641 mutex_unlock(&q->sysfs_lock); 4642 4643 return true; 4644 } 4645 4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4647 struct request_queue *q) 4648 { 4649 struct blk_mq_qe_pair *qe; 4650 4651 list_for_each_entry(qe, head, node) 4652 if (qe->q == q) 4653 return qe; 4654 4655 return NULL; 4656 } 4657 4658 static void blk_mq_elv_switch_back(struct list_head *head, 4659 struct request_queue *q) 4660 { 4661 struct blk_mq_qe_pair *qe; 4662 struct elevator_type *t; 4663 4664 qe = blk_lookup_qe_pair(head, q); 4665 if (!qe) 4666 return; 4667 t = qe->type; 4668 list_del(&qe->node); 4669 kfree(qe); 4670 4671 mutex_lock(&q->sysfs_lock); 4672 elevator_switch(q, t); 4673 /* drop the reference acquired in blk_mq_elv_switch_none */ 4674 elevator_put(t); 4675 mutex_unlock(&q->sysfs_lock); 4676 } 4677 4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4679 int nr_hw_queues) 4680 { 4681 struct request_queue *q; 4682 LIST_HEAD(head); 4683 int prev_nr_hw_queues; 4684 4685 lockdep_assert_held(&set->tag_list_lock); 4686 4687 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4688 nr_hw_queues = nr_cpu_ids; 4689 if (nr_hw_queues < 1) 4690 return; 4691 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4692 return; 4693 4694 list_for_each_entry(q, &set->tag_list, tag_set_list) 4695 blk_mq_freeze_queue(q); 4696 /* 4697 * Switch IO scheduler to 'none', cleaning up the data associated 4698 * with the previous scheduler. We will switch back once we are done 4699 * updating the new sw to hw queue mappings. 4700 */ 4701 list_for_each_entry(q, &set->tag_list, tag_set_list) 4702 if (!blk_mq_elv_switch_none(&head, q)) 4703 goto switch_back; 4704 4705 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4706 blk_mq_debugfs_unregister_hctxs(q); 4707 blk_mq_sysfs_unregister_hctxs(q); 4708 } 4709 4710 prev_nr_hw_queues = set->nr_hw_queues; 4711 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4712 goto reregister; 4713 4714 fallback: 4715 blk_mq_update_queue_map(set); 4716 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4717 blk_mq_realloc_hw_ctxs(set, q); 4718 blk_mq_update_poll_flag(q); 4719 if (q->nr_hw_queues != set->nr_hw_queues) { 4720 int i = prev_nr_hw_queues; 4721 4722 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4723 nr_hw_queues, prev_nr_hw_queues); 4724 for (; i < set->nr_hw_queues; i++) 4725 __blk_mq_free_map_and_rqs(set, i); 4726 4727 set->nr_hw_queues = prev_nr_hw_queues; 4728 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4729 goto fallback; 4730 } 4731 blk_mq_map_swqueue(q); 4732 } 4733 4734 reregister: 4735 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4736 blk_mq_sysfs_register_hctxs(q); 4737 blk_mq_debugfs_register_hctxs(q); 4738 } 4739 4740 switch_back: 4741 list_for_each_entry(q, &set->tag_list, tag_set_list) 4742 blk_mq_elv_switch_back(&head, q); 4743 4744 list_for_each_entry(q, &set->tag_list, tag_set_list) 4745 blk_mq_unfreeze_queue(q); 4746 } 4747 4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4749 { 4750 mutex_lock(&set->tag_list_lock); 4751 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4752 mutex_unlock(&set->tag_list_lock); 4753 } 4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4755 4756 /* Enable polling stats and return whether they were already enabled. */ 4757 static bool blk_poll_stats_enable(struct request_queue *q) 4758 { 4759 if (q->poll_stat) 4760 return true; 4761 4762 return blk_stats_alloc_enable(q); 4763 } 4764 4765 static void blk_mq_poll_stats_start(struct request_queue *q) 4766 { 4767 /* 4768 * We don't arm the callback if polling stats are not enabled or the 4769 * callback is already active. 4770 */ 4771 if (!q->poll_stat || blk_stat_is_active(q->poll_cb)) 4772 return; 4773 4774 blk_stat_activate_msecs(q->poll_cb, 100); 4775 } 4776 4777 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 4778 { 4779 struct request_queue *q = cb->data; 4780 int bucket; 4781 4782 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 4783 if (cb->stat[bucket].nr_samples) 4784 q->poll_stat[bucket] = cb->stat[bucket]; 4785 } 4786 } 4787 4788 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 4789 struct request *rq) 4790 { 4791 unsigned long ret = 0; 4792 int bucket; 4793 4794 /* 4795 * If stats collection isn't on, don't sleep but turn it on for 4796 * future users 4797 */ 4798 if (!blk_poll_stats_enable(q)) 4799 return 0; 4800 4801 /* 4802 * As an optimistic guess, use half of the mean service time 4803 * for this type of request. We can (and should) make this smarter. 4804 * For instance, if the completion latencies are tight, we can 4805 * get closer than just half the mean. This is especially 4806 * important on devices where the completion latencies are longer 4807 * than ~10 usec. We do use the stats for the relevant IO size 4808 * if available which does lead to better estimates. 4809 */ 4810 bucket = blk_mq_poll_stats_bkt(rq); 4811 if (bucket < 0) 4812 return ret; 4813 4814 if (q->poll_stat[bucket].nr_samples) 4815 ret = (q->poll_stat[bucket].mean + 1) / 2; 4816 4817 return ret; 4818 } 4819 4820 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc) 4821 { 4822 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc); 4823 struct request *rq = blk_qc_to_rq(hctx, qc); 4824 struct hrtimer_sleeper hs; 4825 enum hrtimer_mode mode; 4826 unsigned int nsecs; 4827 ktime_t kt; 4828 4829 /* 4830 * If a request has completed on queue that uses an I/O scheduler, we 4831 * won't get back a request from blk_qc_to_rq. 4832 */ 4833 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT)) 4834 return false; 4835 4836 /* 4837 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 4838 * 4839 * 0: use half of prev avg 4840 * >0: use this specific value 4841 */ 4842 if (q->poll_nsec > 0) 4843 nsecs = q->poll_nsec; 4844 else 4845 nsecs = blk_mq_poll_nsecs(q, rq); 4846 4847 if (!nsecs) 4848 return false; 4849 4850 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 4851 4852 /* 4853 * This will be replaced with the stats tracking code, using 4854 * 'avg_completion_time / 2' as the pre-sleep target. 4855 */ 4856 kt = nsecs; 4857 4858 mode = HRTIMER_MODE_REL; 4859 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 4860 hrtimer_set_expires(&hs.timer, kt); 4861 4862 do { 4863 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 4864 break; 4865 set_current_state(TASK_UNINTERRUPTIBLE); 4866 hrtimer_sleeper_start_expires(&hs, mode); 4867 if (hs.task) 4868 io_schedule(); 4869 hrtimer_cancel(&hs.timer); 4870 mode = HRTIMER_MODE_ABS; 4871 } while (hs.task && !signal_pending(current)); 4872 4873 __set_current_state(TASK_RUNNING); 4874 destroy_hrtimer_on_stack(&hs.timer); 4875 4876 /* 4877 * If we sleep, have the caller restart the poll loop to reset the 4878 * state. Like for the other success return cases, the caller is 4879 * responsible for checking if the IO completed. If the IO isn't 4880 * complete, we'll get called again and will go straight to the busy 4881 * poll loop. 4882 */ 4883 return true; 4884 } 4885 4886 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie, 4887 struct io_comp_batch *iob, unsigned int flags) 4888 { 4889 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie); 4890 long state = get_current_state(); 4891 int ret; 4892 4893 do { 4894 ret = q->mq_ops->poll(hctx, iob); 4895 if (ret > 0) { 4896 __set_current_state(TASK_RUNNING); 4897 return ret; 4898 } 4899 4900 if (signal_pending_state(state, current)) 4901 __set_current_state(TASK_RUNNING); 4902 if (task_is_running(current)) 4903 return 1; 4904 4905 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 4906 break; 4907 cpu_relax(); 4908 } while (!need_resched()); 4909 4910 __set_current_state(TASK_RUNNING); 4911 return 0; 4912 } 4913 4914 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob, 4915 unsigned int flags) 4916 { 4917 if (!(flags & BLK_POLL_NOSLEEP) && 4918 q->poll_nsec != BLK_MQ_POLL_CLASSIC) { 4919 if (blk_mq_poll_hybrid(q, cookie)) 4920 return 1; 4921 } 4922 return blk_mq_poll_classic(q, cookie, iob, flags); 4923 } 4924 4925 unsigned int blk_mq_rq_cpu(struct request *rq) 4926 { 4927 return rq->mq_ctx->cpu; 4928 } 4929 EXPORT_SYMBOL(blk_mq_rq_cpu); 4930 4931 void blk_mq_cancel_work_sync(struct request_queue *q) 4932 { 4933 struct blk_mq_hw_ctx *hctx; 4934 unsigned long i; 4935 4936 cancel_delayed_work_sync(&q->requeue_work); 4937 4938 queue_for_each_hw_ctx(q, hctx, i) 4939 cancel_delayed_work_sync(&hctx->run_work); 4940 } 4941 4942 static int __init blk_mq_init(void) 4943 { 4944 int i; 4945 4946 for_each_possible_cpu(i) 4947 init_llist_head(&per_cpu(blk_cpu_done, i)); 4948 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4949 4950 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4951 "block/softirq:dead", NULL, 4952 blk_softirq_cpu_dead); 4953 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4954 blk_mq_hctx_notify_dead); 4955 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4956 blk_mq_hctx_notify_online, 4957 blk_mq_hctx_notify_offline); 4958 return 0; 4959 } 4960 subsys_initcall(blk_mq_init); 4961