1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/mm.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/workqueue.h> 16 #include <linux/smp.h> 17 #include <linux/llist.h> 18 #include <linux/list_sort.h> 19 #include <linux/cpu.h> 20 #include <linux/cache.h> 21 #include <linux/sched/sysctl.h> 22 #include <linux/delay.h> 23 #include <linux/crash_dump.h> 24 25 #include <trace/events/block.h> 26 27 #include <linux/blk-mq.h> 28 #include "blk.h" 29 #include "blk-mq.h" 30 #include "blk-mq-tag.h" 31 32 static DEFINE_MUTEX(all_q_mutex); 33 static LIST_HEAD(all_q_list); 34 35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx); 36 37 /* 38 * Check if any of the ctx's have pending work in this hardware queue 39 */ 40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 41 { 42 unsigned int i; 43 44 for (i = 0; i < hctx->ctx_map.size; i++) 45 if (hctx->ctx_map.map[i].word) 46 return true; 47 48 return false; 49 } 50 51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, 52 struct blk_mq_ctx *ctx) 53 { 54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; 55 } 56 57 #define CTX_TO_BIT(hctx, ctx) \ 58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) 59 60 /* 61 * Mark this ctx as having pending work in this hardware queue 62 */ 63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 64 struct blk_mq_ctx *ctx) 65 { 66 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 67 68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) 69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 70 } 71 72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 73 struct blk_mq_ctx *ctx) 74 { 75 struct blk_align_bitmap *bm = get_bm(hctx, ctx); 76 77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); 78 } 79 80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp) 81 { 82 while (true) { 83 int ret; 84 85 if (percpu_ref_tryget_live(&q->mq_usage_counter)) 86 return 0; 87 88 if (!(gfp & __GFP_WAIT)) 89 return -EBUSY; 90 91 ret = wait_event_interruptible(q->mq_freeze_wq, 92 !q->mq_freeze_depth || blk_queue_dying(q)); 93 if (blk_queue_dying(q)) 94 return -ENODEV; 95 if (ret) 96 return ret; 97 } 98 } 99 100 static void blk_mq_queue_exit(struct request_queue *q) 101 { 102 percpu_ref_put(&q->mq_usage_counter); 103 } 104 105 static void blk_mq_usage_counter_release(struct percpu_ref *ref) 106 { 107 struct request_queue *q = 108 container_of(ref, struct request_queue, mq_usage_counter); 109 110 wake_up_all(&q->mq_freeze_wq); 111 } 112 113 void blk_mq_freeze_queue_start(struct request_queue *q) 114 { 115 bool freeze; 116 117 spin_lock_irq(q->queue_lock); 118 freeze = !q->mq_freeze_depth++; 119 spin_unlock_irq(q->queue_lock); 120 121 if (freeze) { 122 percpu_ref_kill(&q->mq_usage_counter); 123 blk_mq_run_hw_queues(q, false); 124 } 125 } 126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start); 127 128 static void blk_mq_freeze_queue_wait(struct request_queue *q) 129 { 130 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter)); 131 } 132 133 /* 134 * Guarantee no request is in use, so we can change any data structure of 135 * the queue afterward. 136 */ 137 void blk_mq_freeze_queue(struct request_queue *q) 138 { 139 blk_mq_freeze_queue_start(q); 140 blk_mq_freeze_queue_wait(q); 141 } 142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 143 144 void blk_mq_unfreeze_queue(struct request_queue *q) 145 { 146 bool wake; 147 148 spin_lock_irq(q->queue_lock); 149 wake = !--q->mq_freeze_depth; 150 WARN_ON_ONCE(q->mq_freeze_depth < 0); 151 spin_unlock_irq(q->queue_lock); 152 if (wake) { 153 percpu_ref_reinit(&q->mq_usage_counter); 154 wake_up_all(&q->mq_freeze_wq); 155 } 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 158 159 void blk_mq_wake_waiters(struct request_queue *q) 160 { 161 struct blk_mq_hw_ctx *hctx; 162 unsigned int i; 163 164 queue_for_each_hw_ctx(q, hctx, i) 165 if (blk_mq_hw_queue_mapped(hctx)) 166 blk_mq_tag_wakeup_all(hctx->tags, true); 167 168 /* 169 * If we are called because the queue has now been marked as 170 * dying, we need to ensure that processes currently waiting on 171 * the queue are notified as well. 172 */ 173 wake_up_all(&q->mq_freeze_wq); 174 } 175 176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 177 { 178 return blk_mq_has_free_tags(hctx->tags); 179 } 180 EXPORT_SYMBOL(blk_mq_can_queue); 181 182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, 183 struct request *rq, unsigned int rw_flags) 184 { 185 if (blk_queue_io_stat(q)) 186 rw_flags |= REQ_IO_STAT; 187 188 INIT_LIST_HEAD(&rq->queuelist); 189 /* csd/requeue_work/fifo_time is initialized before use */ 190 rq->q = q; 191 rq->mq_ctx = ctx; 192 rq->cmd_flags |= rw_flags; 193 /* do not touch atomic flags, it needs atomic ops against the timer */ 194 rq->cpu = -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->rq_disk = NULL; 198 rq->part = NULL; 199 rq->start_time = jiffies; 200 #ifdef CONFIG_BLK_CGROUP 201 rq->rl = NULL; 202 set_start_time_ns(rq); 203 rq->io_start_time_ns = 0; 204 #endif 205 rq->nr_phys_segments = 0; 206 #if defined(CONFIG_BLK_DEV_INTEGRITY) 207 rq->nr_integrity_segments = 0; 208 #endif 209 rq->special = NULL; 210 /* tag was already set */ 211 rq->errors = 0; 212 213 rq->cmd = rq->__cmd; 214 215 rq->extra_len = 0; 216 rq->sense_len = 0; 217 rq->resid_len = 0; 218 rq->sense = NULL; 219 220 INIT_LIST_HEAD(&rq->timeout_list); 221 rq->timeout = 0; 222 223 rq->end_io = NULL; 224 rq->end_io_data = NULL; 225 rq->next_rq = NULL; 226 227 ctx->rq_dispatched[rw_is_sync(rw_flags)]++; 228 } 229 230 static struct request * 231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw) 232 { 233 struct request *rq; 234 unsigned int tag; 235 236 tag = blk_mq_get_tag(data); 237 if (tag != BLK_MQ_TAG_FAIL) { 238 rq = data->hctx->tags->rqs[tag]; 239 240 if (blk_mq_tag_busy(data->hctx)) { 241 rq->cmd_flags = REQ_MQ_INFLIGHT; 242 atomic_inc(&data->hctx->nr_active); 243 } 244 245 rq->tag = tag; 246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw); 247 return rq; 248 } 249 250 return NULL; 251 } 252 253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, 254 bool reserved) 255 { 256 struct blk_mq_ctx *ctx; 257 struct blk_mq_hw_ctx *hctx; 258 struct request *rq; 259 struct blk_mq_alloc_data alloc_data; 260 int ret; 261 262 ret = blk_mq_queue_enter(q, gfp); 263 if (ret) 264 return ERR_PTR(ret); 265 266 ctx = blk_mq_get_ctx(q); 267 hctx = q->mq_ops->map_queue(q, ctx->cpu); 268 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT, 269 reserved, ctx, hctx); 270 271 rq = __blk_mq_alloc_request(&alloc_data, rw); 272 if (!rq && (gfp & __GFP_WAIT)) { 273 __blk_mq_run_hw_queue(hctx); 274 blk_mq_put_ctx(ctx); 275 276 ctx = blk_mq_get_ctx(q); 277 hctx = q->mq_ops->map_queue(q, ctx->cpu); 278 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx, 279 hctx); 280 rq = __blk_mq_alloc_request(&alloc_data, rw); 281 ctx = alloc_data.ctx; 282 } 283 blk_mq_put_ctx(ctx); 284 if (!rq) { 285 blk_mq_queue_exit(q); 286 return ERR_PTR(-EWOULDBLOCK); 287 } 288 return rq; 289 } 290 EXPORT_SYMBOL(blk_mq_alloc_request); 291 292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, 293 struct blk_mq_ctx *ctx, struct request *rq) 294 { 295 const int tag = rq->tag; 296 struct request_queue *q = rq->q; 297 298 if (rq->cmd_flags & REQ_MQ_INFLIGHT) 299 atomic_dec(&hctx->nr_active); 300 rq->cmd_flags = 0; 301 302 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 303 blk_mq_put_tag(hctx, tag, &ctx->last_tag); 304 blk_mq_queue_exit(q); 305 } 306 307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq) 308 { 309 struct blk_mq_ctx *ctx = rq->mq_ctx; 310 311 ctx->rq_completed[rq_is_sync(rq)]++; 312 __blk_mq_free_request(hctx, ctx, rq); 313 314 } 315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request); 316 317 void blk_mq_free_request(struct request *rq) 318 { 319 struct blk_mq_hw_ctx *hctx; 320 struct request_queue *q = rq->q; 321 322 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 323 blk_mq_free_hctx_request(hctx, rq); 324 } 325 EXPORT_SYMBOL_GPL(blk_mq_free_request); 326 327 inline void __blk_mq_end_request(struct request *rq, int error) 328 { 329 blk_account_io_done(rq); 330 331 if (rq->end_io) { 332 rq->end_io(rq, error); 333 } else { 334 if (unlikely(blk_bidi_rq(rq))) 335 blk_mq_free_request(rq->next_rq); 336 blk_mq_free_request(rq); 337 } 338 } 339 EXPORT_SYMBOL(__blk_mq_end_request); 340 341 void blk_mq_end_request(struct request *rq, int error) 342 { 343 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 344 BUG(); 345 __blk_mq_end_request(rq, error); 346 } 347 EXPORT_SYMBOL(blk_mq_end_request); 348 349 static void __blk_mq_complete_request_remote(void *data) 350 { 351 struct request *rq = data; 352 353 rq->q->softirq_done_fn(rq); 354 } 355 356 static void blk_mq_ipi_complete_request(struct request *rq) 357 { 358 struct blk_mq_ctx *ctx = rq->mq_ctx; 359 bool shared = false; 360 int cpu; 361 362 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 363 rq->q->softirq_done_fn(rq); 364 return; 365 } 366 367 cpu = get_cpu(); 368 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 369 shared = cpus_share_cache(cpu, ctx->cpu); 370 371 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 372 rq->csd.func = __blk_mq_complete_request_remote; 373 rq->csd.info = rq; 374 rq->csd.flags = 0; 375 smp_call_function_single_async(ctx->cpu, &rq->csd); 376 } else { 377 rq->q->softirq_done_fn(rq); 378 } 379 put_cpu(); 380 } 381 382 void __blk_mq_complete_request(struct request *rq) 383 { 384 struct request_queue *q = rq->q; 385 386 if (!q->softirq_done_fn) 387 blk_mq_end_request(rq, rq->errors); 388 else 389 blk_mq_ipi_complete_request(rq); 390 } 391 392 /** 393 * blk_mq_complete_request - end I/O on a request 394 * @rq: the request being processed 395 * 396 * Description: 397 * Ends all I/O on a request. It does not handle partial completions. 398 * The actual completion happens out-of-order, through a IPI handler. 399 **/ 400 void blk_mq_complete_request(struct request *rq) 401 { 402 struct request_queue *q = rq->q; 403 404 if (unlikely(blk_should_fake_timeout(q))) 405 return; 406 if (!blk_mark_rq_complete(rq)) 407 __blk_mq_complete_request(rq); 408 } 409 EXPORT_SYMBOL(blk_mq_complete_request); 410 411 int blk_mq_request_started(struct request *rq) 412 { 413 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 414 } 415 EXPORT_SYMBOL_GPL(blk_mq_request_started); 416 417 void blk_mq_start_request(struct request *rq) 418 { 419 struct request_queue *q = rq->q; 420 421 trace_block_rq_issue(q, rq); 422 423 rq->resid_len = blk_rq_bytes(rq); 424 if (unlikely(blk_bidi_rq(rq))) 425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq); 426 427 blk_add_timer(rq); 428 429 /* 430 * Ensure that ->deadline is visible before set the started 431 * flag and clear the completed flag. 432 */ 433 smp_mb__before_atomic(); 434 435 /* 436 * Mark us as started and clear complete. Complete might have been 437 * set if requeue raced with timeout, which then marked it as 438 * complete. So be sure to clear complete again when we start 439 * the request, otherwise we'll ignore the completion event. 440 */ 441 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) 442 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); 443 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) 444 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); 445 446 if (q->dma_drain_size && blk_rq_bytes(rq)) { 447 /* 448 * Make sure space for the drain appears. We know we can do 449 * this because max_hw_segments has been adjusted to be one 450 * fewer than the device can handle. 451 */ 452 rq->nr_phys_segments++; 453 } 454 } 455 EXPORT_SYMBOL(blk_mq_start_request); 456 457 static void __blk_mq_requeue_request(struct request *rq) 458 { 459 struct request_queue *q = rq->q; 460 461 trace_block_rq_requeue(q, rq); 462 463 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 464 if (q->dma_drain_size && blk_rq_bytes(rq)) 465 rq->nr_phys_segments--; 466 } 467 } 468 469 void blk_mq_requeue_request(struct request *rq) 470 { 471 __blk_mq_requeue_request(rq); 472 473 BUG_ON(blk_queued_rq(rq)); 474 blk_mq_add_to_requeue_list(rq, true); 475 } 476 EXPORT_SYMBOL(blk_mq_requeue_request); 477 478 static void blk_mq_requeue_work(struct work_struct *work) 479 { 480 struct request_queue *q = 481 container_of(work, struct request_queue, requeue_work); 482 LIST_HEAD(rq_list); 483 struct request *rq, *next; 484 unsigned long flags; 485 486 spin_lock_irqsave(&q->requeue_lock, flags); 487 list_splice_init(&q->requeue_list, &rq_list); 488 spin_unlock_irqrestore(&q->requeue_lock, flags); 489 490 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 491 if (!(rq->cmd_flags & REQ_SOFTBARRIER)) 492 continue; 493 494 rq->cmd_flags &= ~REQ_SOFTBARRIER; 495 list_del_init(&rq->queuelist); 496 blk_mq_insert_request(rq, true, false, false); 497 } 498 499 while (!list_empty(&rq_list)) { 500 rq = list_entry(rq_list.next, struct request, queuelist); 501 list_del_init(&rq->queuelist); 502 blk_mq_insert_request(rq, false, false, false); 503 } 504 505 /* 506 * Use the start variant of queue running here, so that running 507 * the requeue work will kick stopped queues. 508 */ 509 blk_mq_start_hw_queues(q); 510 } 511 512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) 513 { 514 struct request_queue *q = rq->q; 515 unsigned long flags; 516 517 /* 518 * We abuse this flag that is otherwise used by the I/O scheduler to 519 * request head insertation from the workqueue. 520 */ 521 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); 522 523 spin_lock_irqsave(&q->requeue_lock, flags); 524 if (at_head) { 525 rq->cmd_flags |= REQ_SOFTBARRIER; 526 list_add(&rq->queuelist, &q->requeue_list); 527 } else { 528 list_add_tail(&rq->queuelist, &q->requeue_list); 529 } 530 spin_unlock_irqrestore(&q->requeue_lock, flags); 531 } 532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 533 534 void blk_mq_cancel_requeue_work(struct request_queue *q) 535 { 536 cancel_work_sync(&q->requeue_work); 537 } 538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work); 539 540 void blk_mq_kick_requeue_list(struct request_queue *q) 541 { 542 kblockd_schedule_work(&q->requeue_work); 543 } 544 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 545 546 void blk_mq_abort_requeue_list(struct request_queue *q) 547 { 548 unsigned long flags; 549 LIST_HEAD(rq_list); 550 551 spin_lock_irqsave(&q->requeue_lock, flags); 552 list_splice_init(&q->requeue_list, &rq_list); 553 spin_unlock_irqrestore(&q->requeue_lock, flags); 554 555 while (!list_empty(&rq_list)) { 556 struct request *rq; 557 558 rq = list_first_entry(&rq_list, struct request, queuelist); 559 list_del_init(&rq->queuelist); 560 rq->errors = -EIO; 561 blk_mq_end_request(rq, rq->errors); 562 } 563 } 564 EXPORT_SYMBOL(blk_mq_abort_requeue_list); 565 566 static inline bool is_flush_request(struct request *rq, 567 struct blk_flush_queue *fq, unsigned int tag) 568 { 569 return ((rq->cmd_flags & REQ_FLUSH_SEQ) && 570 fq->flush_rq->tag == tag); 571 } 572 573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 574 { 575 struct request *rq = tags->rqs[tag]; 576 /* mq_ctx of flush rq is always cloned from the corresponding req */ 577 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); 578 579 if (!is_flush_request(rq, fq, tag)) 580 return rq; 581 582 return fq->flush_rq; 583 } 584 EXPORT_SYMBOL(blk_mq_tag_to_rq); 585 586 struct blk_mq_timeout_data { 587 unsigned long next; 588 unsigned int next_set; 589 }; 590 591 void blk_mq_rq_timed_out(struct request *req, bool reserved) 592 { 593 struct blk_mq_ops *ops = req->q->mq_ops; 594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 595 596 /* 597 * We know that complete is set at this point. If STARTED isn't set 598 * anymore, then the request isn't active and the "timeout" should 599 * just be ignored. This can happen due to the bitflag ordering. 600 * Timeout first checks if STARTED is set, and if it is, assumes 601 * the request is active. But if we race with completion, then 602 * we both flags will get cleared. So check here again, and ignore 603 * a timeout event with a request that isn't active. 604 */ 605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags)) 606 return; 607 608 if (ops->timeout) 609 ret = ops->timeout(req, reserved); 610 611 switch (ret) { 612 case BLK_EH_HANDLED: 613 __blk_mq_complete_request(req); 614 break; 615 case BLK_EH_RESET_TIMER: 616 blk_add_timer(req); 617 blk_clear_rq_complete(req); 618 break; 619 case BLK_EH_NOT_HANDLED: 620 break; 621 default: 622 printk(KERN_ERR "block: bad eh return: %d\n", ret); 623 break; 624 } 625 } 626 627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 628 struct request *rq, void *priv, bool reserved) 629 { 630 struct blk_mq_timeout_data *data = priv; 631 632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) { 633 /* 634 * If a request wasn't started before the queue was 635 * marked dying, kill it here or it'll go unnoticed. 636 */ 637 if (unlikely(blk_queue_dying(rq->q))) { 638 rq->errors = -EIO; 639 blk_mq_complete_request(rq); 640 } 641 return; 642 } 643 if (rq->cmd_flags & REQ_NO_TIMEOUT) 644 return; 645 646 if (time_after_eq(jiffies, rq->deadline)) { 647 if (!blk_mark_rq_complete(rq)) 648 blk_mq_rq_timed_out(rq, reserved); 649 } else if (!data->next_set || time_after(data->next, rq->deadline)) { 650 data->next = rq->deadline; 651 data->next_set = 1; 652 } 653 } 654 655 static void blk_mq_rq_timer(unsigned long priv) 656 { 657 struct request_queue *q = (struct request_queue *)priv; 658 struct blk_mq_timeout_data data = { 659 .next = 0, 660 .next_set = 0, 661 }; 662 struct blk_mq_hw_ctx *hctx; 663 int i; 664 665 queue_for_each_hw_ctx(q, hctx, i) { 666 /* 667 * If not software queues are currently mapped to this 668 * hardware queue, there's nothing to check 669 */ 670 if (!blk_mq_hw_queue_mapped(hctx)) 671 continue; 672 673 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data); 674 } 675 676 if (data.next_set) { 677 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 678 mod_timer(&q->timeout, data.next); 679 } else { 680 queue_for_each_hw_ctx(q, hctx, i) { 681 /* the hctx may be unmapped, so check it here */ 682 if (blk_mq_hw_queue_mapped(hctx)) 683 blk_mq_tag_idle(hctx); 684 } 685 } 686 } 687 688 /* 689 * Reverse check our software queue for entries that we could potentially 690 * merge with. Currently includes a hand-wavy stop count of 8, to not spend 691 * too much time checking for merges. 692 */ 693 static bool blk_mq_attempt_merge(struct request_queue *q, 694 struct blk_mq_ctx *ctx, struct bio *bio) 695 { 696 struct request *rq; 697 int checked = 8; 698 699 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { 700 int el_ret; 701 702 if (!checked--) 703 break; 704 705 if (!blk_rq_merge_ok(rq, bio)) 706 continue; 707 708 el_ret = blk_try_merge(rq, bio); 709 if (el_ret == ELEVATOR_BACK_MERGE) { 710 if (bio_attempt_back_merge(q, rq, bio)) { 711 ctx->rq_merged++; 712 return true; 713 } 714 break; 715 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 716 if (bio_attempt_front_merge(q, rq, bio)) { 717 ctx->rq_merged++; 718 return true; 719 } 720 break; 721 } 722 } 723 724 return false; 725 } 726 727 /* 728 * Process software queues that have been marked busy, splicing them 729 * to the for-dispatch 730 */ 731 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 732 { 733 struct blk_mq_ctx *ctx; 734 int i; 735 736 for (i = 0; i < hctx->ctx_map.size; i++) { 737 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; 738 unsigned int off, bit; 739 740 if (!bm->word) 741 continue; 742 743 bit = 0; 744 off = i * hctx->ctx_map.bits_per_word; 745 do { 746 bit = find_next_bit(&bm->word, bm->depth, bit); 747 if (bit >= bm->depth) 748 break; 749 750 ctx = hctx->ctxs[bit + off]; 751 clear_bit(bit, &bm->word); 752 spin_lock(&ctx->lock); 753 list_splice_tail_init(&ctx->rq_list, list); 754 spin_unlock(&ctx->lock); 755 756 bit++; 757 } while (1); 758 } 759 } 760 761 /* 762 * Run this hardware queue, pulling any software queues mapped to it in. 763 * Note that this function currently has various problems around ordering 764 * of IO. In particular, we'd like FIFO behaviour on handling existing 765 * items on the hctx->dispatch list. Ignore that for now. 766 */ 767 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 768 { 769 struct request_queue *q = hctx->queue; 770 struct request *rq; 771 LIST_HEAD(rq_list); 772 LIST_HEAD(driver_list); 773 struct list_head *dptr; 774 int queued; 775 776 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); 777 778 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) 779 return; 780 781 hctx->run++; 782 783 /* 784 * Touch any software queue that has pending entries. 785 */ 786 flush_busy_ctxs(hctx, &rq_list); 787 788 /* 789 * If we have previous entries on our dispatch list, grab them 790 * and stuff them at the front for more fair dispatch. 791 */ 792 if (!list_empty_careful(&hctx->dispatch)) { 793 spin_lock(&hctx->lock); 794 if (!list_empty(&hctx->dispatch)) 795 list_splice_init(&hctx->dispatch, &rq_list); 796 spin_unlock(&hctx->lock); 797 } 798 799 /* 800 * Start off with dptr being NULL, so we start the first request 801 * immediately, even if we have more pending. 802 */ 803 dptr = NULL; 804 805 /* 806 * Now process all the entries, sending them to the driver. 807 */ 808 queued = 0; 809 while (!list_empty(&rq_list)) { 810 struct blk_mq_queue_data bd; 811 int ret; 812 813 rq = list_first_entry(&rq_list, struct request, queuelist); 814 list_del_init(&rq->queuelist); 815 816 bd.rq = rq; 817 bd.list = dptr; 818 bd.last = list_empty(&rq_list); 819 820 ret = q->mq_ops->queue_rq(hctx, &bd); 821 switch (ret) { 822 case BLK_MQ_RQ_QUEUE_OK: 823 queued++; 824 continue; 825 case BLK_MQ_RQ_QUEUE_BUSY: 826 list_add(&rq->queuelist, &rq_list); 827 __blk_mq_requeue_request(rq); 828 break; 829 default: 830 pr_err("blk-mq: bad return on queue: %d\n", ret); 831 case BLK_MQ_RQ_QUEUE_ERROR: 832 rq->errors = -EIO; 833 blk_mq_end_request(rq, rq->errors); 834 break; 835 } 836 837 if (ret == BLK_MQ_RQ_QUEUE_BUSY) 838 break; 839 840 /* 841 * We've done the first request. If we have more than 1 842 * left in the list, set dptr to defer issue. 843 */ 844 if (!dptr && rq_list.next != rq_list.prev) 845 dptr = &driver_list; 846 } 847 848 if (!queued) 849 hctx->dispatched[0]++; 850 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1))) 851 hctx->dispatched[ilog2(queued) + 1]++; 852 853 /* 854 * Any items that need requeuing? Stuff them into hctx->dispatch, 855 * that is where we will continue on next queue run. 856 */ 857 if (!list_empty(&rq_list)) { 858 spin_lock(&hctx->lock); 859 list_splice(&rq_list, &hctx->dispatch); 860 spin_unlock(&hctx->lock); 861 /* 862 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but 863 * it's possible the queue is stopped and restarted again 864 * before this. Queue restart will dispatch requests. And since 865 * requests in rq_list aren't added into hctx->dispatch yet, 866 * the requests in rq_list might get lost. 867 * 868 * blk_mq_run_hw_queue() already checks the STOPPED bit 869 **/ 870 blk_mq_run_hw_queue(hctx, true); 871 } 872 } 873 874 /* 875 * It'd be great if the workqueue API had a way to pass 876 * in a mask and had some smarts for more clever placement. 877 * For now we just round-robin here, switching for every 878 * BLK_MQ_CPU_WORK_BATCH queued items. 879 */ 880 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 881 { 882 if (hctx->queue->nr_hw_queues == 1) 883 return WORK_CPU_UNBOUND; 884 885 if (--hctx->next_cpu_batch <= 0) { 886 int cpu = hctx->next_cpu, next_cpu; 887 888 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); 889 if (next_cpu >= nr_cpu_ids) 890 next_cpu = cpumask_first(hctx->cpumask); 891 892 hctx->next_cpu = next_cpu; 893 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 894 895 return cpu; 896 } 897 898 return hctx->next_cpu; 899 } 900 901 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 902 { 903 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) || 904 !blk_mq_hw_queue_mapped(hctx))) 905 return; 906 907 if (!async) { 908 int cpu = get_cpu(); 909 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 910 __blk_mq_run_hw_queue(hctx); 911 put_cpu(); 912 return; 913 } 914 915 put_cpu(); 916 } 917 918 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 919 &hctx->run_work, 0); 920 } 921 922 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 923 { 924 struct blk_mq_hw_ctx *hctx; 925 int i; 926 927 queue_for_each_hw_ctx(q, hctx, i) { 928 if ((!blk_mq_hctx_has_pending(hctx) && 929 list_empty_careful(&hctx->dispatch)) || 930 test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 931 continue; 932 933 blk_mq_run_hw_queue(hctx, async); 934 } 935 } 936 EXPORT_SYMBOL(blk_mq_run_hw_queues); 937 938 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 939 { 940 cancel_delayed_work(&hctx->run_work); 941 cancel_delayed_work(&hctx->delay_work); 942 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 943 } 944 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 945 946 void blk_mq_stop_hw_queues(struct request_queue *q) 947 { 948 struct blk_mq_hw_ctx *hctx; 949 int i; 950 951 queue_for_each_hw_ctx(q, hctx, i) 952 blk_mq_stop_hw_queue(hctx); 953 } 954 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 955 956 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 957 { 958 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 959 960 blk_mq_run_hw_queue(hctx, false); 961 } 962 EXPORT_SYMBOL(blk_mq_start_hw_queue); 963 964 void blk_mq_start_hw_queues(struct request_queue *q) 965 { 966 struct blk_mq_hw_ctx *hctx; 967 int i; 968 969 queue_for_each_hw_ctx(q, hctx, i) 970 blk_mq_start_hw_queue(hctx); 971 } 972 EXPORT_SYMBOL(blk_mq_start_hw_queues); 973 974 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 975 { 976 struct blk_mq_hw_ctx *hctx; 977 int i; 978 979 queue_for_each_hw_ctx(q, hctx, i) { 980 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 981 continue; 982 983 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 984 blk_mq_run_hw_queue(hctx, async); 985 } 986 } 987 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 988 989 static void blk_mq_run_work_fn(struct work_struct *work) 990 { 991 struct blk_mq_hw_ctx *hctx; 992 993 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 994 995 __blk_mq_run_hw_queue(hctx); 996 } 997 998 static void blk_mq_delay_work_fn(struct work_struct *work) 999 { 1000 struct blk_mq_hw_ctx *hctx; 1001 1002 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work); 1003 1004 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1005 __blk_mq_run_hw_queue(hctx); 1006 } 1007 1008 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1009 { 1010 if (unlikely(!blk_mq_hw_queue_mapped(hctx))) 1011 return; 1012 1013 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1014 &hctx->delay_work, msecs_to_jiffies(msecs)); 1015 } 1016 EXPORT_SYMBOL(blk_mq_delay_queue); 1017 1018 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, 1019 struct request *rq, bool at_head) 1020 { 1021 struct blk_mq_ctx *ctx = rq->mq_ctx; 1022 1023 trace_block_rq_insert(hctx->queue, rq); 1024 1025 if (at_head) 1026 list_add(&rq->queuelist, &ctx->rq_list); 1027 else 1028 list_add_tail(&rq->queuelist, &ctx->rq_list); 1029 1030 blk_mq_hctx_mark_pending(hctx, ctx); 1031 } 1032 1033 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, 1034 bool async) 1035 { 1036 struct request_queue *q = rq->q; 1037 struct blk_mq_hw_ctx *hctx; 1038 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx; 1039 1040 current_ctx = blk_mq_get_ctx(q); 1041 if (!cpu_online(ctx->cpu)) 1042 rq->mq_ctx = ctx = current_ctx; 1043 1044 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1045 1046 spin_lock(&ctx->lock); 1047 __blk_mq_insert_request(hctx, rq, at_head); 1048 spin_unlock(&ctx->lock); 1049 1050 if (run_queue) 1051 blk_mq_run_hw_queue(hctx, async); 1052 1053 blk_mq_put_ctx(current_ctx); 1054 } 1055 1056 static void blk_mq_insert_requests(struct request_queue *q, 1057 struct blk_mq_ctx *ctx, 1058 struct list_head *list, 1059 int depth, 1060 bool from_schedule) 1061 1062 { 1063 struct blk_mq_hw_ctx *hctx; 1064 struct blk_mq_ctx *current_ctx; 1065 1066 trace_block_unplug(q, depth, !from_schedule); 1067 1068 current_ctx = blk_mq_get_ctx(q); 1069 1070 if (!cpu_online(ctx->cpu)) 1071 ctx = current_ctx; 1072 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1073 1074 /* 1075 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1076 * offline now 1077 */ 1078 spin_lock(&ctx->lock); 1079 while (!list_empty(list)) { 1080 struct request *rq; 1081 1082 rq = list_first_entry(list, struct request, queuelist); 1083 list_del_init(&rq->queuelist); 1084 rq->mq_ctx = ctx; 1085 __blk_mq_insert_request(hctx, rq, false); 1086 } 1087 spin_unlock(&ctx->lock); 1088 1089 blk_mq_run_hw_queue(hctx, from_schedule); 1090 blk_mq_put_ctx(current_ctx); 1091 } 1092 1093 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1094 { 1095 struct request *rqa = container_of(a, struct request, queuelist); 1096 struct request *rqb = container_of(b, struct request, queuelist); 1097 1098 return !(rqa->mq_ctx < rqb->mq_ctx || 1099 (rqa->mq_ctx == rqb->mq_ctx && 1100 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1101 } 1102 1103 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1104 { 1105 struct blk_mq_ctx *this_ctx; 1106 struct request_queue *this_q; 1107 struct request *rq; 1108 LIST_HEAD(list); 1109 LIST_HEAD(ctx_list); 1110 unsigned int depth; 1111 1112 list_splice_init(&plug->mq_list, &list); 1113 1114 list_sort(NULL, &list, plug_ctx_cmp); 1115 1116 this_q = NULL; 1117 this_ctx = NULL; 1118 depth = 0; 1119 1120 while (!list_empty(&list)) { 1121 rq = list_entry_rq(list.next); 1122 list_del_init(&rq->queuelist); 1123 BUG_ON(!rq->q); 1124 if (rq->mq_ctx != this_ctx) { 1125 if (this_ctx) { 1126 blk_mq_insert_requests(this_q, this_ctx, 1127 &ctx_list, depth, 1128 from_schedule); 1129 } 1130 1131 this_ctx = rq->mq_ctx; 1132 this_q = rq->q; 1133 depth = 0; 1134 } 1135 1136 depth++; 1137 list_add_tail(&rq->queuelist, &ctx_list); 1138 } 1139 1140 /* 1141 * If 'this_ctx' is set, we know we have entries to complete 1142 * on 'ctx_list'. Do those. 1143 */ 1144 if (this_ctx) { 1145 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth, 1146 from_schedule); 1147 } 1148 } 1149 1150 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1151 { 1152 init_request_from_bio(rq, bio); 1153 1154 if (blk_do_io_stat(rq)) 1155 blk_account_io_start(rq, 1); 1156 } 1157 1158 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx) 1159 { 1160 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) && 1161 !blk_queue_nomerges(hctx->queue); 1162 } 1163 1164 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, 1165 struct blk_mq_ctx *ctx, 1166 struct request *rq, struct bio *bio) 1167 { 1168 if (!hctx_allow_merges(hctx)) { 1169 blk_mq_bio_to_request(rq, bio); 1170 spin_lock(&ctx->lock); 1171 insert_rq: 1172 __blk_mq_insert_request(hctx, rq, false); 1173 spin_unlock(&ctx->lock); 1174 return false; 1175 } else { 1176 struct request_queue *q = hctx->queue; 1177 1178 spin_lock(&ctx->lock); 1179 if (!blk_mq_attempt_merge(q, ctx, bio)) { 1180 blk_mq_bio_to_request(rq, bio); 1181 goto insert_rq; 1182 } 1183 1184 spin_unlock(&ctx->lock); 1185 __blk_mq_free_request(hctx, ctx, rq); 1186 return true; 1187 } 1188 } 1189 1190 struct blk_map_ctx { 1191 struct blk_mq_hw_ctx *hctx; 1192 struct blk_mq_ctx *ctx; 1193 }; 1194 1195 static struct request *blk_mq_map_request(struct request_queue *q, 1196 struct bio *bio, 1197 struct blk_map_ctx *data) 1198 { 1199 struct blk_mq_hw_ctx *hctx; 1200 struct blk_mq_ctx *ctx; 1201 struct request *rq; 1202 int rw = bio_data_dir(bio); 1203 struct blk_mq_alloc_data alloc_data; 1204 1205 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) { 1206 bio_endio(bio, -EIO); 1207 return NULL; 1208 } 1209 1210 ctx = blk_mq_get_ctx(q); 1211 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1212 1213 if (rw_is_sync(bio->bi_rw)) 1214 rw |= REQ_SYNC; 1215 1216 trace_block_getrq(q, bio, rw); 1217 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx, 1218 hctx); 1219 rq = __blk_mq_alloc_request(&alloc_data, rw); 1220 if (unlikely(!rq)) { 1221 __blk_mq_run_hw_queue(hctx); 1222 blk_mq_put_ctx(ctx); 1223 trace_block_sleeprq(q, bio, rw); 1224 1225 ctx = blk_mq_get_ctx(q); 1226 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1227 blk_mq_set_alloc_data(&alloc_data, q, 1228 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx); 1229 rq = __blk_mq_alloc_request(&alloc_data, rw); 1230 ctx = alloc_data.ctx; 1231 hctx = alloc_data.hctx; 1232 } 1233 1234 hctx->queued++; 1235 data->hctx = hctx; 1236 data->ctx = ctx; 1237 return rq; 1238 } 1239 1240 /* 1241 * Multiple hardware queue variant. This will not use per-process plugs, 1242 * but will attempt to bypass the hctx queueing if we can go straight to 1243 * hardware for SYNC IO. 1244 */ 1245 static void blk_mq_make_request(struct request_queue *q, struct bio *bio) 1246 { 1247 const int is_sync = rw_is_sync(bio->bi_rw); 1248 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1249 struct blk_map_ctx data; 1250 struct request *rq; 1251 1252 blk_queue_bounce(q, &bio); 1253 1254 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1255 bio_endio(bio, -EIO); 1256 return; 1257 } 1258 1259 rq = blk_mq_map_request(q, bio, &data); 1260 if (unlikely(!rq)) 1261 return; 1262 1263 if (unlikely(is_flush_fua)) { 1264 blk_mq_bio_to_request(rq, bio); 1265 blk_insert_flush(rq); 1266 goto run_queue; 1267 } 1268 1269 /* 1270 * If the driver supports defer issued based on 'last', then 1271 * queue it up like normal since we can potentially save some 1272 * CPU this way. 1273 */ 1274 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) { 1275 struct blk_mq_queue_data bd = { 1276 .rq = rq, 1277 .list = NULL, 1278 .last = 1 1279 }; 1280 int ret; 1281 1282 blk_mq_bio_to_request(rq, bio); 1283 1284 /* 1285 * For OK queue, we are done. For error, kill it. Any other 1286 * error (busy), just add it to our list as we previously 1287 * would have done 1288 */ 1289 ret = q->mq_ops->queue_rq(data.hctx, &bd); 1290 if (ret == BLK_MQ_RQ_QUEUE_OK) 1291 goto done; 1292 else { 1293 __blk_mq_requeue_request(rq); 1294 1295 if (ret == BLK_MQ_RQ_QUEUE_ERROR) { 1296 rq->errors = -EIO; 1297 blk_mq_end_request(rq, rq->errors); 1298 goto done; 1299 } 1300 } 1301 } 1302 1303 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1304 /* 1305 * For a SYNC request, send it to the hardware immediately. For 1306 * an ASYNC request, just ensure that we run it later on. The 1307 * latter allows for merging opportunities and more efficient 1308 * dispatching. 1309 */ 1310 run_queue: 1311 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1312 } 1313 done: 1314 blk_mq_put_ctx(data.ctx); 1315 } 1316 1317 /* 1318 * Single hardware queue variant. This will attempt to use any per-process 1319 * plug for merging and IO deferral. 1320 */ 1321 static void blk_sq_make_request(struct request_queue *q, struct bio *bio) 1322 { 1323 const int is_sync = rw_is_sync(bio->bi_rw); 1324 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); 1325 unsigned int use_plug, request_count = 0; 1326 struct blk_map_ctx data; 1327 struct request *rq; 1328 1329 /* 1330 * If we have multiple hardware queues, just go directly to 1331 * one of those for sync IO. 1332 */ 1333 use_plug = !is_flush_fua && !is_sync; 1334 1335 blk_queue_bounce(q, &bio); 1336 1337 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1338 bio_endio(bio, -EIO); 1339 return; 1340 } 1341 1342 if (use_plug && !blk_queue_nomerges(q) && 1343 blk_attempt_plug_merge(q, bio, &request_count)) 1344 return; 1345 1346 rq = blk_mq_map_request(q, bio, &data); 1347 if (unlikely(!rq)) 1348 return; 1349 1350 if (unlikely(is_flush_fua)) { 1351 blk_mq_bio_to_request(rq, bio); 1352 blk_insert_flush(rq); 1353 goto run_queue; 1354 } 1355 1356 /* 1357 * A task plug currently exists. Since this is completely lockless, 1358 * utilize that to temporarily store requests until the task is 1359 * either done or scheduled away. 1360 */ 1361 if (use_plug) { 1362 struct blk_plug *plug = current->plug; 1363 1364 if (plug) { 1365 blk_mq_bio_to_request(rq, bio); 1366 if (list_empty(&plug->mq_list)) 1367 trace_block_plug(q); 1368 else if (request_count >= BLK_MAX_REQUEST_COUNT) { 1369 blk_flush_plug_list(plug, false); 1370 trace_block_plug(q); 1371 } 1372 list_add_tail(&rq->queuelist, &plug->mq_list); 1373 blk_mq_put_ctx(data.ctx); 1374 return; 1375 } 1376 } 1377 1378 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { 1379 /* 1380 * For a SYNC request, send it to the hardware immediately. For 1381 * an ASYNC request, just ensure that we run it later on. The 1382 * latter allows for merging opportunities and more efficient 1383 * dispatching. 1384 */ 1385 run_queue: 1386 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); 1387 } 1388 1389 blk_mq_put_ctx(data.ctx); 1390 } 1391 1392 /* 1393 * Default mapping to a software queue, since we use one per CPU. 1394 */ 1395 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) 1396 { 1397 return q->queue_hw_ctx[q->mq_map[cpu]]; 1398 } 1399 EXPORT_SYMBOL(blk_mq_map_queue); 1400 1401 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, 1402 struct blk_mq_tags *tags, unsigned int hctx_idx) 1403 { 1404 struct page *page; 1405 1406 if (tags->rqs && set->ops->exit_request) { 1407 int i; 1408 1409 for (i = 0; i < tags->nr_tags; i++) { 1410 if (!tags->rqs[i]) 1411 continue; 1412 set->ops->exit_request(set->driver_data, tags->rqs[i], 1413 hctx_idx, i); 1414 tags->rqs[i] = NULL; 1415 } 1416 } 1417 1418 while (!list_empty(&tags->page_list)) { 1419 page = list_first_entry(&tags->page_list, struct page, lru); 1420 list_del_init(&page->lru); 1421 __free_pages(page, page->private); 1422 } 1423 1424 kfree(tags->rqs); 1425 1426 blk_mq_free_tags(tags); 1427 } 1428 1429 static size_t order_to_size(unsigned int order) 1430 { 1431 return (size_t)PAGE_SIZE << order; 1432 } 1433 1434 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, 1435 unsigned int hctx_idx) 1436 { 1437 struct blk_mq_tags *tags; 1438 unsigned int i, j, entries_per_page, max_order = 4; 1439 size_t rq_size, left; 1440 1441 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags, 1442 set->numa_node, 1443 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 1444 if (!tags) 1445 return NULL; 1446 1447 INIT_LIST_HEAD(&tags->page_list); 1448 1449 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *), 1450 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY, 1451 set->numa_node); 1452 if (!tags->rqs) { 1453 blk_mq_free_tags(tags); 1454 return NULL; 1455 } 1456 1457 /* 1458 * rq_size is the size of the request plus driver payload, rounded 1459 * to the cacheline size 1460 */ 1461 rq_size = round_up(sizeof(struct request) + set->cmd_size, 1462 cache_line_size()); 1463 left = rq_size * set->queue_depth; 1464 1465 for (i = 0; i < set->queue_depth; ) { 1466 int this_order = max_order; 1467 struct page *page; 1468 int to_do; 1469 void *p; 1470 1471 while (left < order_to_size(this_order - 1) && this_order) 1472 this_order--; 1473 1474 do { 1475 page = alloc_pages_node(set->numa_node, 1476 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 1477 this_order); 1478 if (page) 1479 break; 1480 if (!this_order--) 1481 break; 1482 if (order_to_size(this_order) < rq_size) 1483 break; 1484 } while (1); 1485 1486 if (!page) 1487 goto fail; 1488 1489 page->private = this_order; 1490 list_add_tail(&page->lru, &tags->page_list); 1491 1492 p = page_address(page); 1493 entries_per_page = order_to_size(this_order) / rq_size; 1494 to_do = min(entries_per_page, set->queue_depth - i); 1495 left -= to_do * rq_size; 1496 for (j = 0; j < to_do; j++) { 1497 tags->rqs[i] = p; 1498 if (set->ops->init_request) { 1499 if (set->ops->init_request(set->driver_data, 1500 tags->rqs[i], hctx_idx, i, 1501 set->numa_node)) { 1502 tags->rqs[i] = NULL; 1503 goto fail; 1504 } 1505 } 1506 1507 p += rq_size; 1508 i++; 1509 } 1510 } 1511 1512 return tags; 1513 1514 fail: 1515 blk_mq_free_rq_map(set, tags, hctx_idx); 1516 return NULL; 1517 } 1518 1519 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) 1520 { 1521 kfree(bitmap->map); 1522 } 1523 1524 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) 1525 { 1526 unsigned int bpw = 8, total, num_maps, i; 1527 1528 bitmap->bits_per_word = bpw; 1529 1530 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; 1531 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), 1532 GFP_KERNEL, node); 1533 if (!bitmap->map) 1534 return -ENOMEM; 1535 1536 total = nr_cpu_ids; 1537 for (i = 0; i < num_maps; i++) { 1538 bitmap->map[i].depth = min(total, bitmap->bits_per_word); 1539 total -= bitmap->map[i].depth; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) 1546 { 1547 struct request_queue *q = hctx->queue; 1548 struct blk_mq_ctx *ctx; 1549 LIST_HEAD(tmp); 1550 1551 /* 1552 * Move ctx entries to new CPU, if this one is going away. 1553 */ 1554 ctx = __blk_mq_get_ctx(q, cpu); 1555 1556 spin_lock(&ctx->lock); 1557 if (!list_empty(&ctx->rq_list)) { 1558 list_splice_init(&ctx->rq_list, &tmp); 1559 blk_mq_hctx_clear_pending(hctx, ctx); 1560 } 1561 spin_unlock(&ctx->lock); 1562 1563 if (list_empty(&tmp)) 1564 return NOTIFY_OK; 1565 1566 ctx = blk_mq_get_ctx(q); 1567 spin_lock(&ctx->lock); 1568 1569 while (!list_empty(&tmp)) { 1570 struct request *rq; 1571 1572 rq = list_first_entry(&tmp, struct request, queuelist); 1573 rq->mq_ctx = ctx; 1574 list_move_tail(&rq->queuelist, &ctx->rq_list); 1575 } 1576 1577 hctx = q->mq_ops->map_queue(q, ctx->cpu); 1578 blk_mq_hctx_mark_pending(hctx, ctx); 1579 1580 spin_unlock(&ctx->lock); 1581 1582 blk_mq_run_hw_queue(hctx, true); 1583 blk_mq_put_ctx(ctx); 1584 return NOTIFY_OK; 1585 } 1586 1587 static int blk_mq_hctx_notify(void *data, unsigned long action, 1588 unsigned int cpu) 1589 { 1590 struct blk_mq_hw_ctx *hctx = data; 1591 1592 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 1593 return blk_mq_hctx_cpu_offline(hctx, cpu); 1594 1595 /* 1596 * In case of CPU online, tags may be reallocated 1597 * in blk_mq_map_swqueue() after mapping is updated. 1598 */ 1599 1600 return NOTIFY_OK; 1601 } 1602 1603 /* hctx->ctxs will be freed in queue's release handler */ 1604 static void blk_mq_exit_hctx(struct request_queue *q, 1605 struct blk_mq_tag_set *set, 1606 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 1607 { 1608 unsigned flush_start_tag = set->queue_depth; 1609 1610 blk_mq_tag_idle(hctx); 1611 1612 if (set->ops->exit_request) 1613 set->ops->exit_request(set->driver_data, 1614 hctx->fq->flush_rq, hctx_idx, 1615 flush_start_tag + hctx_idx); 1616 1617 if (set->ops->exit_hctx) 1618 set->ops->exit_hctx(hctx, hctx_idx); 1619 1620 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1621 blk_free_flush_queue(hctx->fq); 1622 blk_mq_free_bitmap(&hctx->ctx_map); 1623 } 1624 1625 static void blk_mq_exit_hw_queues(struct request_queue *q, 1626 struct blk_mq_tag_set *set, int nr_queue) 1627 { 1628 struct blk_mq_hw_ctx *hctx; 1629 unsigned int i; 1630 1631 queue_for_each_hw_ctx(q, hctx, i) { 1632 if (i == nr_queue) 1633 break; 1634 blk_mq_exit_hctx(q, set, hctx, i); 1635 } 1636 } 1637 1638 static void blk_mq_free_hw_queues(struct request_queue *q, 1639 struct blk_mq_tag_set *set) 1640 { 1641 struct blk_mq_hw_ctx *hctx; 1642 unsigned int i; 1643 1644 queue_for_each_hw_ctx(q, hctx, i) 1645 free_cpumask_var(hctx->cpumask); 1646 } 1647 1648 static int blk_mq_init_hctx(struct request_queue *q, 1649 struct blk_mq_tag_set *set, 1650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 1651 { 1652 int node; 1653 unsigned flush_start_tag = set->queue_depth; 1654 1655 node = hctx->numa_node; 1656 if (node == NUMA_NO_NODE) 1657 node = hctx->numa_node = set->numa_node; 1658 1659 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 1660 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn); 1661 spin_lock_init(&hctx->lock); 1662 INIT_LIST_HEAD(&hctx->dispatch); 1663 hctx->queue = q; 1664 hctx->queue_num = hctx_idx; 1665 hctx->flags = set->flags; 1666 1667 blk_mq_init_cpu_notifier(&hctx->cpu_notifier, 1668 blk_mq_hctx_notify, hctx); 1669 blk_mq_register_cpu_notifier(&hctx->cpu_notifier); 1670 1671 hctx->tags = set->tags[hctx_idx]; 1672 1673 /* 1674 * Allocate space for all possible cpus to avoid allocation at 1675 * runtime 1676 */ 1677 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *), 1678 GFP_KERNEL, node); 1679 if (!hctx->ctxs) 1680 goto unregister_cpu_notifier; 1681 1682 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) 1683 goto free_ctxs; 1684 1685 hctx->nr_ctx = 0; 1686 1687 if (set->ops->init_hctx && 1688 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 1689 goto free_bitmap; 1690 1691 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 1692 if (!hctx->fq) 1693 goto exit_hctx; 1694 1695 if (set->ops->init_request && 1696 set->ops->init_request(set->driver_data, 1697 hctx->fq->flush_rq, hctx_idx, 1698 flush_start_tag + hctx_idx, node)) 1699 goto free_fq; 1700 1701 return 0; 1702 1703 free_fq: 1704 kfree(hctx->fq); 1705 exit_hctx: 1706 if (set->ops->exit_hctx) 1707 set->ops->exit_hctx(hctx, hctx_idx); 1708 free_bitmap: 1709 blk_mq_free_bitmap(&hctx->ctx_map); 1710 free_ctxs: 1711 kfree(hctx->ctxs); 1712 unregister_cpu_notifier: 1713 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); 1714 1715 return -1; 1716 } 1717 1718 static int blk_mq_init_hw_queues(struct request_queue *q, 1719 struct blk_mq_tag_set *set) 1720 { 1721 struct blk_mq_hw_ctx *hctx; 1722 unsigned int i; 1723 1724 /* 1725 * Initialize hardware queues 1726 */ 1727 queue_for_each_hw_ctx(q, hctx, i) { 1728 if (blk_mq_init_hctx(q, set, hctx, i)) 1729 break; 1730 } 1731 1732 if (i == q->nr_hw_queues) 1733 return 0; 1734 1735 /* 1736 * Init failed 1737 */ 1738 blk_mq_exit_hw_queues(q, set, i); 1739 1740 return 1; 1741 } 1742 1743 static void blk_mq_init_cpu_queues(struct request_queue *q, 1744 unsigned int nr_hw_queues) 1745 { 1746 unsigned int i; 1747 1748 for_each_possible_cpu(i) { 1749 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 1750 struct blk_mq_hw_ctx *hctx; 1751 1752 memset(__ctx, 0, sizeof(*__ctx)); 1753 __ctx->cpu = i; 1754 spin_lock_init(&__ctx->lock); 1755 INIT_LIST_HEAD(&__ctx->rq_list); 1756 __ctx->queue = q; 1757 1758 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1759 if (!cpu_online(i)) 1760 continue; 1761 1762 hctx = q->mq_ops->map_queue(q, i); 1763 1764 /* 1765 * Set local node, IFF we have more than one hw queue. If 1766 * not, we remain on the home node of the device 1767 */ 1768 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 1769 hctx->numa_node = cpu_to_node(i); 1770 } 1771 } 1772 1773 static void blk_mq_map_swqueue(struct request_queue *q) 1774 { 1775 unsigned int i; 1776 struct blk_mq_hw_ctx *hctx; 1777 struct blk_mq_ctx *ctx; 1778 struct blk_mq_tag_set *set = q->tag_set; 1779 1780 queue_for_each_hw_ctx(q, hctx, i) { 1781 cpumask_clear(hctx->cpumask); 1782 hctx->nr_ctx = 0; 1783 } 1784 1785 /* 1786 * Map software to hardware queues 1787 */ 1788 queue_for_each_ctx(q, ctx, i) { 1789 /* If the cpu isn't online, the cpu is mapped to first hctx */ 1790 if (!cpu_online(i)) 1791 continue; 1792 1793 hctx = q->mq_ops->map_queue(q, i); 1794 cpumask_set_cpu(i, hctx->cpumask); 1795 ctx->index_hw = hctx->nr_ctx; 1796 hctx->ctxs[hctx->nr_ctx++] = ctx; 1797 } 1798 1799 queue_for_each_hw_ctx(q, hctx, i) { 1800 struct blk_mq_ctxmap *map = &hctx->ctx_map; 1801 1802 /* 1803 * If no software queues are mapped to this hardware queue, 1804 * disable it and free the request entries. 1805 */ 1806 if (!hctx->nr_ctx) { 1807 if (set->tags[i]) { 1808 blk_mq_free_rq_map(set, set->tags[i], i); 1809 set->tags[i] = NULL; 1810 } 1811 hctx->tags = NULL; 1812 continue; 1813 } 1814 1815 /* unmapped hw queue can be remapped after CPU topo changed */ 1816 if (!set->tags[i]) 1817 set->tags[i] = blk_mq_init_rq_map(set, i); 1818 hctx->tags = set->tags[i]; 1819 WARN_ON(!hctx->tags); 1820 1821 /* 1822 * Set the map size to the number of mapped software queues. 1823 * This is more accurate and more efficient than looping 1824 * over all possibly mapped software queues. 1825 */ 1826 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word); 1827 1828 /* 1829 * Initialize batch roundrobin counts 1830 */ 1831 hctx->next_cpu = cpumask_first(hctx->cpumask); 1832 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1833 } 1834 } 1835 1836 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) 1837 { 1838 struct blk_mq_hw_ctx *hctx; 1839 struct request_queue *q; 1840 bool shared; 1841 int i; 1842 1843 if (set->tag_list.next == set->tag_list.prev) 1844 shared = false; 1845 else 1846 shared = true; 1847 1848 list_for_each_entry(q, &set->tag_list, tag_set_list) { 1849 blk_mq_freeze_queue(q); 1850 1851 queue_for_each_hw_ctx(q, hctx, i) { 1852 if (shared) 1853 hctx->flags |= BLK_MQ_F_TAG_SHARED; 1854 else 1855 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 1856 } 1857 blk_mq_unfreeze_queue(q); 1858 } 1859 } 1860 1861 static void blk_mq_del_queue_tag_set(struct request_queue *q) 1862 { 1863 struct blk_mq_tag_set *set = q->tag_set; 1864 1865 mutex_lock(&set->tag_list_lock); 1866 list_del_init(&q->tag_set_list); 1867 blk_mq_update_tag_set_depth(set); 1868 mutex_unlock(&set->tag_list_lock); 1869 } 1870 1871 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 1872 struct request_queue *q) 1873 { 1874 q->tag_set = set; 1875 1876 mutex_lock(&set->tag_list_lock); 1877 list_add_tail(&q->tag_set_list, &set->tag_list); 1878 blk_mq_update_tag_set_depth(set); 1879 mutex_unlock(&set->tag_list_lock); 1880 } 1881 1882 /* 1883 * It is the actual release handler for mq, but we do it from 1884 * request queue's release handler for avoiding use-after-free 1885 * and headache because q->mq_kobj shouldn't have been introduced, 1886 * but we can't group ctx/kctx kobj without it. 1887 */ 1888 void blk_mq_release(struct request_queue *q) 1889 { 1890 struct blk_mq_hw_ctx *hctx; 1891 unsigned int i; 1892 1893 /* hctx kobj stays in hctx */ 1894 queue_for_each_hw_ctx(q, hctx, i) { 1895 if (!hctx) 1896 continue; 1897 kfree(hctx->ctxs); 1898 kfree(hctx); 1899 } 1900 1901 kfree(q->queue_hw_ctx); 1902 1903 /* ctx kobj stays in queue_ctx */ 1904 free_percpu(q->queue_ctx); 1905 } 1906 1907 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 1908 { 1909 struct request_queue *uninit_q, *q; 1910 1911 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 1912 if (!uninit_q) 1913 return ERR_PTR(-ENOMEM); 1914 1915 q = blk_mq_init_allocated_queue(set, uninit_q); 1916 if (IS_ERR(q)) 1917 blk_cleanup_queue(uninit_q); 1918 1919 return q; 1920 } 1921 EXPORT_SYMBOL(blk_mq_init_queue); 1922 1923 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 1924 struct request_queue *q) 1925 { 1926 struct blk_mq_hw_ctx **hctxs; 1927 struct blk_mq_ctx __percpu *ctx; 1928 unsigned int *map; 1929 int i; 1930 1931 ctx = alloc_percpu(struct blk_mq_ctx); 1932 if (!ctx) 1933 return ERR_PTR(-ENOMEM); 1934 1935 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL, 1936 set->numa_node); 1937 1938 if (!hctxs) 1939 goto err_percpu; 1940 1941 map = blk_mq_make_queue_map(set); 1942 if (!map) 1943 goto err_map; 1944 1945 for (i = 0; i < set->nr_hw_queues; i++) { 1946 int node = blk_mq_hw_queue_to_node(map, i); 1947 1948 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx), 1949 GFP_KERNEL, node); 1950 if (!hctxs[i]) 1951 goto err_hctxs; 1952 1953 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 1954 node)) 1955 goto err_hctxs; 1956 1957 atomic_set(&hctxs[i]->nr_active, 0); 1958 hctxs[i]->numa_node = node; 1959 hctxs[i]->queue_num = i; 1960 } 1961 1962 /* 1963 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1964 * See blk_register_queue() for details. 1965 */ 1966 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release, 1967 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1968 goto err_hctxs; 1969 1970 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); 1971 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000); 1972 1973 q->nr_queues = nr_cpu_ids; 1974 q->nr_hw_queues = set->nr_hw_queues; 1975 q->mq_map = map; 1976 1977 q->queue_ctx = ctx; 1978 q->queue_hw_ctx = hctxs; 1979 1980 q->mq_ops = set->ops; 1981 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 1982 1983 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 1984 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE; 1985 1986 q->sg_reserved_size = INT_MAX; 1987 1988 INIT_WORK(&q->requeue_work, blk_mq_requeue_work); 1989 INIT_LIST_HEAD(&q->requeue_list); 1990 spin_lock_init(&q->requeue_lock); 1991 1992 if (q->nr_hw_queues > 1) 1993 blk_queue_make_request(q, blk_mq_make_request); 1994 else 1995 blk_queue_make_request(q, blk_sq_make_request); 1996 1997 /* 1998 * Do this after blk_queue_make_request() overrides it... 1999 */ 2000 q->nr_requests = set->queue_depth; 2001 2002 if (set->ops->complete) 2003 blk_queue_softirq_done(q, set->ops->complete); 2004 2005 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2006 2007 if (blk_mq_init_hw_queues(q, set)) 2008 goto err_hctxs; 2009 2010 mutex_lock(&all_q_mutex); 2011 list_add_tail(&q->all_q_node, &all_q_list); 2012 mutex_unlock(&all_q_mutex); 2013 2014 blk_mq_add_queue_tag_set(set, q); 2015 2016 blk_mq_map_swqueue(q); 2017 2018 return q; 2019 2020 err_hctxs: 2021 kfree(map); 2022 for (i = 0; i < set->nr_hw_queues; i++) { 2023 if (!hctxs[i]) 2024 break; 2025 free_cpumask_var(hctxs[i]->cpumask); 2026 kfree(hctxs[i]); 2027 } 2028 err_map: 2029 kfree(hctxs); 2030 err_percpu: 2031 free_percpu(ctx); 2032 return ERR_PTR(-ENOMEM); 2033 } 2034 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2035 2036 void blk_mq_free_queue(struct request_queue *q) 2037 { 2038 struct blk_mq_tag_set *set = q->tag_set; 2039 2040 blk_mq_del_queue_tag_set(q); 2041 2042 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2043 blk_mq_free_hw_queues(q, set); 2044 2045 percpu_ref_exit(&q->mq_usage_counter); 2046 2047 kfree(q->mq_map); 2048 2049 q->mq_map = NULL; 2050 2051 mutex_lock(&all_q_mutex); 2052 list_del_init(&q->all_q_node); 2053 mutex_unlock(&all_q_mutex); 2054 } 2055 2056 /* Basically redo blk_mq_init_queue with queue frozen */ 2057 static void blk_mq_queue_reinit(struct request_queue *q) 2058 { 2059 WARN_ON_ONCE(!q->mq_freeze_depth); 2060 2061 blk_mq_sysfs_unregister(q); 2062 2063 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues); 2064 2065 /* 2066 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2067 * we should change hctx numa_node according to new topology (this 2068 * involves free and re-allocate memory, worthy doing?) 2069 */ 2070 2071 blk_mq_map_swqueue(q); 2072 2073 blk_mq_sysfs_register(q); 2074 } 2075 2076 static int blk_mq_queue_reinit_notify(struct notifier_block *nb, 2077 unsigned long action, void *hcpu) 2078 { 2079 struct request_queue *q; 2080 2081 /* 2082 * Before new mappings are established, hotadded cpu might already 2083 * start handling requests. This doesn't break anything as we map 2084 * offline CPUs to first hardware queue. We will re-init the queue 2085 * below to get optimal settings. 2086 */ 2087 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && 2088 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) 2089 return NOTIFY_OK; 2090 2091 mutex_lock(&all_q_mutex); 2092 2093 /* 2094 * We need to freeze and reinit all existing queues. Freezing 2095 * involves synchronous wait for an RCU grace period and doing it 2096 * one by one may take a long time. Start freezing all queues in 2097 * one swoop and then wait for the completions so that freezing can 2098 * take place in parallel. 2099 */ 2100 list_for_each_entry(q, &all_q_list, all_q_node) 2101 blk_mq_freeze_queue_start(q); 2102 list_for_each_entry(q, &all_q_list, all_q_node) { 2103 blk_mq_freeze_queue_wait(q); 2104 2105 /* 2106 * timeout handler can't touch hw queue during the 2107 * reinitialization 2108 */ 2109 del_timer_sync(&q->timeout); 2110 } 2111 2112 list_for_each_entry(q, &all_q_list, all_q_node) 2113 blk_mq_queue_reinit(q); 2114 2115 list_for_each_entry(q, &all_q_list, all_q_node) 2116 blk_mq_unfreeze_queue(q); 2117 2118 mutex_unlock(&all_q_mutex); 2119 return NOTIFY_OK; 2120 } 2121 2122 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2123 { 2124 int i; 2125 2126 for (i = 0; i < set->nr_hw_queues; i++) { 2127 set->tags[i] = blk_mq_init_rq_map(set, i); 2128 if (!set->tags[i]) 2129 goto out_unwind; 2130 } 2131 2132 return 0; 2133 2134 out_unwind: 2135 while (--i >= 0) 2136 blk_mq_free_rq_map(set, set->tags[i], i); 2137 2138 return -ENOMEM; 2139 } 2140 2141 /* 2142 * Allocate the request maps associated with this tag_set. Note that this 2143 * may reduce the depth asked for, if memory is tight. set->queue_depth 2144 * will be updated to reflect the allocated depth. 2145 */ 2146 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2147 { 2148 unsigned int depth; 2149 int err; 2150 2151 depth = set->queue_depth; 2152 do { 2153 err = __blk_mq_alloc_rq_maps(set); 2154 if (!err) 2155 break; 2156 2157 set->queue_depth >>= 1; 2158 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2159 err = -ENOMEM; 2160 break; 2161 } 2162 } while (set->queue_depth); 2163 2164 if (!set->queue_depth || err) { 2165 pr_err("blk-mq: failed to allocate request map\n"); 2166 return -ENOMEM; 2167 } 2168 2169 if (depth != set->queue_depth) 2170 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2171 depth, set->queue_depth); 2172 2173 return 0; 2174 } 2175 2176 /* 2177 * Alloc a tag set to be associated with one or more request queues. 2178 * May fail with EINVAL for various error conditions. May adjust the 2179 * requested depth down, if if it too large. In that case, the set 2180 * value will be stored in set->queue_depth. 2181 */ 2182 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2183 { 2184 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2185 2186 if (!set->nr_hw_queues) 2187 return -EINVAL; 2188 if (!set->queue_depth) 2189 return -EINVAL; 2190 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2191 return -EINVAL; 2192 2193 if (!set->ops->queue_rq || !set->ops->map_queue) 2194 return -EINVAL; 2195 2196 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2197 pr_info("blk-mq: reduced tag depth to %u\n", 2198 BLK_MQ_MAX_DEPTH); 2199 set->queue_depth = BLK_MQ_MAX_DEPTH; 2200 } 2201 2202 /* 2203 * If a crashdump is active, then we are potentially in a very 2204 * memory constrained environment. Limit us to 1 queue and 2205 * 64 tags to prevent using too much memory. 2206 */ 2207 if (is_kdump_kernel()) { 2208 set->nr_hw_queues = 1; 2209 set->queue_depth = min(64U, set->queue_depth); 2210 } 2211 2212 set->tags = kmalloc_node(set->nr_hw_queues * 2213 sizeof(struct blk_mq_tags *), 2214 GFP_KERNEL, set->numa_node); 2215 if (!set->tags) 2216 return -ENOMEM; 2217 2218 if (blk_mq_alloc_rq_maps(set)) 2219 goto enomem; 2220 2221 mutex_init(&set->tag_list_lock); 2222 INIT_LIST_HEAD(&set->tag_list); 2223 2224 return 0; 2225 enomem: 2226 kfree(set->tags); 2227 set->tags = NULL; 2228 return -ENOMEM; 2229 } 2230 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2231 2232 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2233 { 2234 int i; 2235 2236 for (i = 0; i < set->nr_hw_queues; i++) { 2237 if (set->tags[i]) 2238 blk_mq_free_rq_map(set, set->tags[i], i); 2239 } 2240 2241 kfree(set->tags); 2242 set->tags = NULL; 2243 } 2244 EXPORT_SYMBOL(blk_mq_free_tag_set); 2245 2246 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2247 { 2248 struct blk_mq_tag_set *set = q->tag_set; 2249 struct blk_mq_hw_ctx *hctx; 2250 int i, ret; 2251 2252 if (!set || nr > set->queue_depth) 2253 return -EINVAL; 2254 2255 ret = 0; 2256 queue_for_each_hw_ctx(q, hctx, i) { 2257 ret = blk_mq_tag_update_depth(hctx->tags, nr); 2258 if (ret) 2259 break; 2260 } 2261 2262 if (!ret) 2263 q->nr_requests = nr; 2264 2265 return ret; 2266 } 2267 2268 void blk_mq_disable_hotplug(void) 2269 { 2270 mutex_lock(&all_q_mutex); 2271 } 2272 2273 void blk_mq_enable_hotplug(void) 2274 { 2275 mutex_unlock(&all_q_mutex); 2276 } 2277 2278 static int __init blk_mq_init(void) 2279 { 2280 blk_mq_cpu_init(); 2281 2282 hotcpu_notifier(blk_mq_queue_reinit_notify, 0); 2283 2284 return 0; 2285 } 2286 subsys_initcall(blk_mq_init); 2287