1 /* 2 * Block multiqueue core code 3 * 4 * Copyright (C) 2013-2014 Jens Axboe 5 * Copyright (C) 2013-2014 Christoph Hellwig 6 */ 7 #include <linux/kernel.h> 8 #include <linux/module.h> 9 #include <linux/backing-dev.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/kmemleak.h> 13 #include <linux/mm.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 #include <linux/smp.h> 18 #include <linux/llist.h> 19 #include <linux/list_sort.h> 20 #include <linux/cpu.h> 21 #include <linux/cache.h> 22 #include <linux/sched/sysctl.h> 23 #include <linux/sched/topology.h> 24 #include <linux/sched/signal.h> 25 #include <linux/delay.h> 26 #include <linux/crash_dump.h> 27 #include <linux/prefetch.h> 28 29 #include <trace/events/block.h> 30 31 #include <linux/blk-mq.h> 32 #include "blk.h" 33 #include "blk-mq.h" 34 #include "blk-mq-debugfs.h" 35 #include "blk-mq-tag.h" 36 #include "blk-stat.h" 37 #include "blk-wbt.h" 38 #include "blk-mq-sched.h" 39 40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 41 static void blk_mq_poll_stats_start(struct request_queue *q); 42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 43 44 static int blk_mq_poll_stats_bkt(const struct request *rq) 45 { 46 int ddir, bytes, bucket; 47 48 ddir = rq_data_dir(rq); 49 bytes = blk_rq_bytes(rq); 50 51 bucket = ddir + 2*(ilog2(bytes) - 9); 52 53 if (bucket < 0) 54 return -1; 55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 57 58 return bucket; 59 } 60 61 /* 62 * Check if any of the ctx's have pending work in this hardware queue 63 */ 64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 65 { 66 return !list_empty_careful(&hctx->dispatch) || 67 sbitmap_any_bit_set(&hctx->ctx_map) || 68 blk_mq_sched_has_work(hctx); 69 } 70 71 /* 72 * Mark this ctx as having pending work in this hardware queue 73 */ 74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 75 struct blk_mq_ctx *ctx) 76 { 77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) 78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); 79 } 80 81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 82 struct blk_mq_ctx *ctx) 83 { 84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); 85 } 86 87 struct mq_inflight { 88 struct hd_struct *part; 89 unsigned int *inflight; 90 }; 91 92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 93 struct request *rq, void *priv, 94 bool reserved) 95 { 96 struct mq_inflight *mi = priv; 97 98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) { 99 /* 100 * index[0] counts the specific partition that was asked 101 * for. index[1] counts the ones that are active on the 102 * whole device, so increment that if mi->part is indeed 103 * a partition, and not a whole device. 104 */ 105 if (rq->part == mi->part) 106 mi->inflight[0]++; 107 if (mi->part->partno) 108 mi->inflight[1]++; 109 } 110 } 111 112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, 113 unsigned int inflight[2]) 114 { 115 struct mq_inflight mi = { .part = part, .inflight = inflight, }; 116 117 inflight[0] = inflight[1] = 0; 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 } 120 121 void blk_freeze_queue_start(struct request_queue *q) 122 { 123 int freeze_depth; 124 125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth); 126 if (freeze_depth == 1) { 127 percpu_ref_kill(&q->q_usage_counter); 128 if (q->mq_ops) 129 blk_mq_run_hw_queues(q, false); 130 } 131 } 132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 133 134 void blk_mq_freeze_queue_wait(struct request_queue *q) 135 { 136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 137 } 138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 139 140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 141 unsigned long timeout) 142 { 143 return wait_event_timeout(q->mq_freeze_wq, 144 percpu_ref_is_zero(&q->q_usage_counter), 145 timeout); 146 } 147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 148 149 /* 150 * Guarantee no request is in use, so we can change any data structure of 151 * the queue afterward. 152 */ 153 void blk_freeze_queue(struct request_queue *q) 154 { 155 /* 156 * In the !blk_mq case we are only calling this to kill the 157 * q_usage_counter, otherwise this increases the freeze depth 158 * and waits for it to return to zero. For this reason there is 159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 160 * exported to drivers as the only user for unfreeze is blk_mq. 161 */ 162 blk_freeze_queue_start(q); 163 if (!q->mq_ops) 164 blk_drain_queue(q); 165 blk_mq_freeze_queue_wait(q); 166 } 167 168 void blk_mq_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * ...just an alias to keep freeze and unfreeze actions balanced 172 * in the blk_mq_* namespace 173 */ 174 blk_freeze_queue(q); 175 } 176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 177 178 void blk_mq_unfreeze_queue(struct request_queue *q) 179 { 180 int freeze_depth; 181 182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth); 183 WARN_ON_ONCE(freeze_depth < 0); 184 if (!freeze_depth) { 185 percpu_ref_reinit(&q->q_usage_counter); 186 wake_up_all(&q->mq_freeze_wq); 187 } 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 190 191 /* 192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 193 * mpt3sas driver such that this function can be removed. 194 */ 195 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 196 { 197 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 200 201 /** 202 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 203 * @q: request queue. 204 * 205 * Note: this function does not prevent that the struct request end_io() 206 * callback function is invoked. Once this function is returned, we make 207 * sure no dispatch can happen until the queue is unquiesced via 208 * blk_mq_unquiesce_queue(). 209 */ 210 void blk_mq_quiesce_queue(struct request_queue *q) 211 { 212 struct blk_mq_hw_ctx *hctx; 213 unsigned int i; 214 bool rcu = false; 215 216 blk_mq_quiesce_queue_nowait(q); 217 218 queue_for_each_hw_ctx(q, hctx, i) { 219 if (hctx->flags & BLK_MQ_F_BLOCKING) 220 synchronize_srcu(hctx->srcu); 221 else 222 rcu = true; 223 } 224 if (rcu) 225 synchronize_rcu(); 226 } 227 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 228 229 /* 230 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 231 * @q: request queue. 232 * 233 * This function recovers queue into the state before quiescing 234 * which is done by blk_mq_quiesce_queue. 235 */ 236 void blk_mq_unquiesce_queue(struct request_queue *q) 237 { 238 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 239 240 /* dispatch requests which are inserted during quiescing */ 241 blk_mq_run_hw_queues(q, true); 242 } 243 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 244 245 void blk_mq_wake_waiters(struct request_queue *q) 246 { 247 struct blk_mq_hw_ctx *hctx; 248 unsigned int i; 249 250 queue_for_each_hw_ctx(q, hctx, i) 251 if (blk_mq_hw_queue_mapped(hctx)) 252 blk_mq_tag_wakeup_all(hctx->tags, true); 253 } 254 255 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) 256 { 257 return blk_mq_has_free_tags(hctx->tags); 258 } 259 EXPORT_SYMBOL(blk_mq_can_queue); 260 261 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 262 unsigned int tag, unsigned int op) 263 { 264 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 265 struct request *rq = tags->static_rqs[tag]; 266 req_flags_t rq_flags = 0; 267 268 if (data->flags & BLK_MQ_REQ_INTERNAL) { 269 rq->tag = -1; 270 rq->internal_tag = tag; 271 } else { 272 if (blk_mq_tag_busy(data->hctx)) { 273 rq_flags = RQF_MQ_INFLIGHT; 274 atomic_inc(&data->hctx->nr_active); 275 } 276 rq->tag = tag; 277 rq->internal_tag = -1; 278 data->hctx->tags->rqs[rq->tag] = rq; 279 } 280 281 /* csd/requeue_work/fifo_time is initialized before use */ 282 rq->q = data->q; 283 rq->mq_ctx = data->ctx; 284 rq->rq_flags = rq_flags; 285 rq->cpu = -1; 286 rq->cmd_flags = op; 287 if (data->flags & BLK_MQ_REQ_PREEMPT) 288 rq->rq_flags |= RQF_PREEMPT; 289 if (blk_queue_io_stat(data->q)) 290 rq->rq_flags |= RQF_IO_STAT; 291 INIT_LIST_HEAD(&rq->queuelist); 292 INIT_HLIST_NODE(&rq->hash); 293 RB_CLEAR_NODE(&rq->rb_node); 294 rq->rq_disk = NULL; 295 rq->part = NULL; 296 rq->start_time = jiffies; 297 rq->nr_phys_segments = 0; 298 #if defined(CONFIG_BLK_DEV_INTEGRITY) 299 rq->nr_integrity_segments = 0; 300 #endif 301 rq->special = NULL; 302 /* tag was already set */ 303 rq->extra_len = 0; 304 rq->__deadline = 0; 305 306 INIT_LIST_HEAD(&rq->timeout_list); 307 rq->timeout = 0; 308 309 rq->end_io = NULL; 310 rq->end_io_data = NULL; 311 rq->next_rq = NULL; 312 313 #ifdef CONFIG_BLK_CGROUP 314 rq->rl = NULL; 315 set_start_time_ns(rq); 316 rq->io_start_time_ns = 0; 317 #endif 318 319 data->ctx->rq_dispatched[op_is_sync(op)]++; 320 return rq; 321 } 322 323 static struct request *blk_mq_get_request(struct request_queue *q, 324 struct bio *bio, unsigned int op, 325 struct blk_mq_alloc_data *data) 326 { 327 struct elevator_queue *e = q->elevator; 328 struct request *rq; 329 unsigned int tag; 330 bool put_ctx_on_error = false; 331 332 blk_queue_enter_live(q); 333 data->q = q; 334 if (likely(!data->ctx)) { 335 data->ctx = blk_mq_get_ctx(q); 336 put_ctx_on_error = true; 337 } 338 if (likely(!data->hctx)) 339 data->hctx = blk_mq_map_queue(q, data->ctx->cpu); 340 if (op & REQ_NOWAIT) 341 data->flags |= BLK_MQ_REQ_NOWAIT; 342 343 if (e) { 344 data->flags |= BLK_MQ_REQ_INTERNAL; 345 346 /* 347 * Flush requests are special and go directly to the 348 * dispatch list. 349 */ 350 if (!op_is_flush(op) && e->type->ops.mq.limit_depth) 351 e->type->ops.mq.limit_depth(op, data); 352 } 353 354 tag = blk_mq_get_tag(data); 355 if (tag == BLK_MQ_TAG_FAIL) { 356 if (put_ctx_on_error) { 357 blk_mq_put_ctx(data->ctx); 358 data->ctx = NULL; 359 } 360 blk_queue_exit(q); 361 return NULL; 362 } 363 364 rq = blk_mq_rq_ctx_init(data, tag, op); 365 if (!op_is_flush(op)) { 366 rq->elv.icq = NULL; 367 if (e && e->type->ops.mq.prepare_request) { 368 if (e->type->icq_cache && rq_ioc(bio)) 369 blk_mq_sched_assign_ioc(rq, bio); 370 371 e->type->ops.mq.prepare_request(rq, bio); 372 rq->rq_flags |= RQF_ELVPRIV; 373 } 374 } 375 data->hctx->queued++; 376 return rq; 377 } 378 379 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 380 blk_mq_req_flags_t flags) 381 { 382 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 383 struct request *rq; 384 int ret; 385 386 ret = blk_queue_enter(q, flags); 387 if (ret) 388 return ERR_PTR(ret); 389 390 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 391 blk_queue_exit(q); 392 393 if (!rq) 394 return ERR_PTR(-EWOULDBLOCK); 395 396 blk_mq_put_ctx(alloc_data.ctx); 397 398 rq->__data_len = 0; 399 rq->__sector = (sector_t) -1; 400 rq->bio = rq->biotail = NULL; 401 return rq; 402 } 403 EXPORT_SYMBOL(blk_mq_alloc_request); 404 405 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 406 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 407 { 408 struct blk_mq_alloc_data alloc_data = { .flags = flags }; 409 struct request *rq; 410 unsigned int cpu; 411 int ret; 412 413 /* 414 * If the tag allocator sleeps we could get an allocation for a 415 * different hardware context. No need to complicate the low level 416 * allocator for this for the rare use case of a command tied to 417 * a specific queue. 418 */ 419 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 420 return ERR_PTR(-EINVAL); 421 422 if (hctx_idx >= q->nr_hw_queues) 423 return ERR_PTR(-EIO); 424 425 ret = blk_queue_enter(q, flags); 426 if (ret) 427 return ERR_PTR(ret); 428 429 /* 430 * Check if the hardware context is actually mapped to anything. 431 * If not tell the caller that it should skip this queue. 432 */ 433 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 434 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 435 blk_queue_exit(q); 436 return ERR_PTR(-EXDEV); 437 } 438 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 439 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 440 441 rq = blk_mq_get_request(q, NULL, op, &alloc_data); 442 blk_queue_exit(q); 443 444 if (!rq) 445 return ERR_PTR(-EWOULDBLOCK); 446 447 return rq; 448 } 449 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 450 451 void blk_mq_free_request(struct request *rq) 452 { 453 struct request_queue *q = rq->q; 454 struct elevator_queue *e = q->elevator; 455 struct blk_mq_ctx *ctx = rq->mq_ctx; 456 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); 457 const int sched_tag = rq->internal_tag; 458 459 if (rq->rq_flags & RQF_ELVPRIV) { 460 if (e && e->type->ops.mq.finish_request) 461 e->type->ops.mq.finish_request(rq); 462 if (rq->elv.icq) { 463 put_io_context(rq->elv.icq->ioc); 464 rq->elv.icq = NULL; 465 } 466 } 467 468 ctx->rq_completed[rq_is_sync(rq)]++; 469 if (rq->rq_flags & RQF_MQ_INFLIGHT) 470 atomic_dec(&hctx->nr_active); 471 472 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 473 laptop_io_completion(q->backing_dev_info); 474 475 wbt_done(q->rq_wb, &rq->issue_stat); 476 477 if (blk_rq_rl(rq)) 478 blk_put_rl(blk_rq_rl(rq)); 479 480 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 481 if (rq->tag != -1) 482 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 483 if (sched_tag != -1) 484 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 485 blk_mq_sched_restart(hctx); 486 blk_queue_exit(q); 487 } 488 EXPORT_SYMBOL_GPL(blk_mq_free_request); 489 490 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 491 { 492 blk_account_io_done(rq); 493 494 if (rq->end_io) { 495 wbt_done(rq->q->rq_wb, &rq->issue_stat); 496 rq->end_io(rq, error); 497 } else { 498 if (unlikely(blk_bidi_rq(rq))) 499 blk_mq_free_request(rq->next_rq); 500 blk_mq_free_request(rq); 501 } 502 } 503 EXPORT_SYMBOL(__blk_mq_end_request); 504 505 void blk_mq_end_request(struct request *rq, blk_status_t error) 506 { 507 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 508 BUG(); 509 __blk_mq_end_request(rq, error); 510 } 511 EXPORT_SYMBOL(blk_mq_end_request); 512 513 static void __blk_mq_complete_request_remote(void *data) 514 { 515 struct request *rq = data; 516 517 rq->q->softirq_done_fn(rq); 518 } 519 520 static void __blk_mq_complete_request(struct request *rq) 521 { 522 struct blk_mq_ctx *ctx = rq->mq_ctx; 523 bool shared = false; 524 int cpu; 525 526 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT); 527 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE); 528 529 if (rq->internal_tag != -1) 530 blk_mq_sched_completed_request(rq); 531 if (rq->rq_flags & RQF_STATS) { 532 blk_mq_poll_stats_start(rq->q); 533 blk_stat_add(rq); 534 } 535 536 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { 537 rq->q->softirq_done_fn(rq); 538 return; 539 } 540 541 cpu = get_cpu(); 542 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) 543 shared = cpus_share_cache(cpu, ctx->cpu); 544 545 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 546 rq->csd.func = __blk_mq_complete_request_remote; 547 rq->csd.info = rq; 548 rq->csd.flags = 0; 549 smp_call_function_single_async(ctx->cpu, &rq->csd); 550 } else { 551 rq->q->softirq_done_fn(rq); 552 } 553 put_cpu(); 554 } 555 556 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 557 __releases(hctx->srcu) 558 { 559 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 560 rcu_read_unlock(); 561 else 562 srcu_read_unlock(hctx->srcu, srcu_idx); 563 } 564 565 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 566 __acquires(hctx->srcu) 567 { 568 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 569 /* shut up gcc false positive */ 570 *srcu_idx = 0; 571 rcu_read_lock(); 572 } else 573 *srcu_idx = srcu_read_lock(hctx->srcu); 574 } 575 576 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate) 577 { 578 unsigned long flags; 579 580 /* 581 * blk_mq_rq_aborted_gstate() is used from the completion path and 582 * can thus be called from irq context. u64_stats_fetch in the 583 * middle of update on the same CPU leads to lockup. Disable irq 584 * while updating. 585 */ 586 local_irq_save(flags); 587 u64_stats_update_begin(&rq->aborted_gstate_sync); 588 rq->aborted_gstate = gstate; 589 u64_stats_update_end(&rq->aborted_gstate_sync); 590 local_irq_restore(flags); 591 } 592 593 static u64 blk_mq_rq_aborted_gstate(struct request *rq) 594 { 595 unsigned int start; 596 u64 aborted_gstate; 597 598 do { 599 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync); 600 aborted_gstate = rq->aborted_gstate; 601 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start)); 602 603 return aborted_gstate; 604 } 605 606 /** 607 * blk_mq_complete_request - end I/O on a request 608 * @rq: the request being processed 609 * 610 * Description: 611 * Ends all I/O on a request. It does not handle partial completions. 612 * The actual completion happens out-of-order, through a IPI handler. 613 **/ 614 void blk_mq_complete_request(struct request *rq) 615 { 616 struct request_queue *q = rq->q; 617 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu); 618 int srcu_idx; 619 620 if (unlikely(blk_should_fake_timeout(q))) 621 return; 622 623 /* 624 * If @rq->aborted_gstate equals the current instance, timeout is 625 * claiming @rq and we lost. This is synchronized through 626 * hctx_lock(). See blk_mq_timeout_work() for details. 627 * 628 * Completion path never blocks and we can directly use RCU here 629 * instead of hctx_lock() which can be either RCU or SRCU. 630 * However, that would complicate paths which want to synchronize 631 * against us. Let stay in sync with the issue path so that 632 * hctx_lock() covers both issue and completion paths. 633 */ 634 hctx_lock(hctx, &srcu_idx); 635 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate) 636 __blk_mq_complete_request(rq); 637 hctx_unlock(hctx, srcu_idx); 638 } 639 EXPORT_SYMBOL(blk_mq_complete_request); 640 641 int blk_mq_request_started(struct request *rq) 642 { 643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE; 644 } 645 EXPORT_SYMBOL_GPL(blk_mq_request_started); 646 647 void blk_mq_start_request(struct request *rq) 648 { 649 struct request_queue *q = rq->q; 650 651 blk_mq_sched_started_request(rq); 652 653 trace_block_rq_issue(q, rq); 654 655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 656 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq)); 657 rq->rq_flags |= RQF_STATS; 658 wbt_issue(q->rq_wb, &rq->issue_stat); 659 } 660 661 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 662 663 /* 664 * Mark @rq in-flight which also advances the generation number, 665 * and register for timeout. Protect with a seqcount to allow the 666 * timeout path to read both @rq->gstate and @rq->deadline 667 * coherently. 668 * 669 * This is the only place where a request is marked in-flight. If 670 * the timeout path reads an in-flight @rq->gstate, the 671 * @rq->deadline it reads together under @rq->gstate_seq is 672 * guaranteed to be the matching one. 673 */ 674 preempt_disable(); 675 write_seqcount_begin(&rq->gstate_seq); 676 677 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT); 678 blk_add_timer(rq); 679 680 write_seqcount_end(&rq->gstate_seq); 681 preempt_enable(); 682 683 if (q->dma_drain_size && blk_rq_bytes(rq)) { 684 /* 685 * Make sure space for the drain appears. We know we can do 686 * this because max_hw_segments has been adjusted to be one 687 * fewer than the device can handle. 688 */ 689 rq->nr_phys_segments++; 690 } 691 } 692 EXPORT_SYMBOL(blk_mq_start_request); 693 694 /* 695 * When we reach here because queue is busy, it's safe to change the state 696 * to IDLE without checking @rq->aborted_gstate because we should still be 697 * holding the RCU read lock and thus protected against timeout. 698 */ 699 static void __blk_mq_requeue_request(struct request *rq) 700 { 701 struct request_queue *q = rq->q; 702 703 blk_mq_put_driver_tag(rq); 704 705 trace_block_rq_requeue(q, rq); 706 wbt_requeue(q->rq_wb, &rq->issue_stat); 707 708 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) { 709 blk_mq_rq_update_state(rq, MQ_RQ_IDLE); 710 if (q->dma_drain_size && blk_rq_bytes(rq)) 711 rq->nr_phys_segments--; 712 } 713 } 714 715 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 716 { 717 __blk_mq_requeue_request(rq); 718 719 /* this request will be re-inserted to io scheduler queue */ 720 blk_mq_sched_requeue_request(rq); 721 722 BUG_ON(blk_queued_rq(rq)); 723 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 724 } 725 EXPORT_SYMBOL(blk_mq_requeue_request); 726 727 static void blk_mq_requeue_work(struct work_struct *work) 728 { 729 struct request_queue *q = 730 container_of(work, struct request_queue, requeue_work.work); 731 LIST_HEAD(rq_list); 732 struct request *rq, *next; 733 734 spin_lock_irq(&q->requeue_lock); 735 list_splice_init(&q->requeue_list, &rq_list); 736 spin_unlock_irq(&q->requeue_lock); 737 738 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 739 if (!(rq->rq_flags & RQF_SOFTBARRIER)) 740 continue; 741 742 rq->rq_flags &= ~RQF_SOFTBARRIER; 743 list_del_init(&rq->queuelist); 744 blk_mq_sched_insert_request(rq, true, false, false); 745 } 746 747 while (!list_empty(&rq_list)) { 748 rq = list_entry(rq_list.next, struct request, queuelist); 749 list_del_init(&rq->queuelist); 750 blk_mq_sched_insert_request(rq, false, false, false); 751 } 752 753 blk_mq_run_hw_queues(q, false); 754 } 755 756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 757 bool kick_requeue_list) 758 { 759 struct request_queue *q = rq->q; 760 unsigned long flags; 761 762 /* 763 * We abuse this flag that is otherwise used by the I/O scheduler to 764 * request head insertion from the workqueue. 765 */ 766 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 767 768 spin_lock_irqsave(&q->requeue_lock, flags); 769 if (at_head) { 770 rq->rq_flags |= RQF_SOFTBARRIER; 771 list_add(&rq->queuelist, &q->requeue_list); 772 } else { 773 list_add_tail(&rq->queuelist, &q->requeue_list); 774 } 775 spin_unlock_irqrestore(&q->requeue_lock, flags); 776 777 if (kick_requeue_list) 778 blk_mq_kick_requeue_list(q); 779 } 780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list); 781 782 void blk_mq_kick_requeue_list(struct request_queue *q) 783 { 784 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 785 } 786 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 787 788 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 789 unsigned long msecs) 790 { 791 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 792 msecs_to_jiffies(msecs)); 793 } 794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 795 796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 797 { 798 if (tag < tags->nr_tags) { 799 prefetch(tags->rqs[tag]); 800 return tags->rqs[tag]; 801 } 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(blk_mq_tag_to_rq); 806 807 struct blk_mq_timeout_data { 808 unsigned long next; 809 unsigned int next_set; 810 unsigned int nr_expired; 811 }; 812 813 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 814 { 815 const struct blk_mq_ops *ops = req->q->mq_ops; 816 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER; 817 818 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED; 819 820 if (ops->timeout) 821 ret = ops->timeout(req, reserved); 822 823 switch (ret) { 824 case BLK_EH_HANDLED: 825 __blk_mq_complete_request(req); 826 break; 827 case BLK_EH_RESET_TIMER: 828 /* 829 * As nothing prevents from completion happening while 830 * ->aborted_gstate is set, this may lead to ignored 831 * completions and further spurious timeouts. 832 */ 833 blk_mq_rq_update_aborted_gstate(req, 0); 834 blk_add_timer(req); 835 break; 836 case BLK_EH_NOT_HANDLED: 837 break; 838 default: 839 printk(KERN_ERR "block: bad eh return: %d\n", ret); 840 break; 841 } 842 } 843 844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 845 struct request *rq, void *priv, bool reserved) 846 { 847 struct blk_mq_timeout_data *data = priv; 848 unsigned long gstate, deadline; 849 int start; 850 851 might_sleep(); 852 853 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) 854 return; 855 856 /* read coherent snapshots of @rq->state_gen and @rq->deadline */ 857 while (true) { 858 start = read_seqcount_begin(&rq->gstate_seq); 859 gstate = READ_ONCE(rq->gstate); 860 deadline = blk_rq_deadline(rq); 861 if (!read_seqcount_retry(&rq->gstate_seq, start)) 862 break; 863 cond_resched(); 864 } 865 866 /* if in-flight && overdue, mark for abortion */ 867 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT && 868 time_after_eq(jiffies, deadline)) { 869 blk_mq_rq_update_aborted_gstate(rq, gstate); 870 data->nr_expired++; 871 hctx->nr_expired++; 872 } else if (!data->next_set || time_after(data->next, deadline)) { 873 data->next = deadline; 874 data->next_set = 1; 875 } 876 } 877 878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx, 879 struct request *rq, void *priv, bool reserved) 880 { 881 /* 882 * We marked @rq->aborted_gstate and waited for RCU. If there were 883 * completions that we lost to, they would have finished and 884 * updated @rq->gstate by now; otherwise, the completion path is 885 * now guaranteed to see @rq->aborted_gstate and yield. If 886 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours. 887 */ 888 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) && 889 READ_ONCE(rq->gstate) == rq->aborted_gstate) 890 blk_mq_rq_timed_out(rq, reserved); 891 } 892 893 static void blk_mq_timeout_work(struct work_struct *work) 894 { 895 struct request_queue *q = 896 container_of(work, struct request_queue, timeout_work); 897 struct blk_mq_timeout_data data = { 898 .next = 0, 899 .next_set = 0, 900 .nr_expired = 0, 901 }; 902 struct blk_mq_hw_ctx *hctx; 903 int i; 904 905 /* A deadlock might occur if a request is stuck requiring a 906 * timeout at the same time a queue freeze is waiting 907 * completion, since the timeout code would not be able to 908 * acquire the queue reference here. 909 * 910 * That's why we don't use blk_queue_enter here; instead, we use 911 * percpu_ref_tryget directly, because we need to be able to 912 * obtain a reference even in the short window between the queue 913 * starting to freeze, by dropping the first reference in 914 * blk_freeze_queue_start, and the moment the last request is 915 * consumed, marked by the instant q_usage_counter reaches 916 * zero. 917 */ 918 if (!percpu_ref_tryget(&q->q_usage_counter)) 919 return; 920 921 /* scan for the expired ones and set their ->aborted_gstate */ 922 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data); 923 924 if (data.nr_expired) { 925 bool has_rcu = false; 926 927 /* 928 * Wait till everyone sees ->aborted_gstate. The 929 * sequential waits for SRCUs aren't ideal. If this ever 930 * becomes a problem, we can add per-hw_ctx rcu_head and 931 * wait in parallel. 932 */ 933 queue_for_each_hw_ctx(q, hctx, i) { 934 if (!hctx->nr_expired) 935 continue; 936 937 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 938 has_rcu = true; 939 else 940 synchronize_srcu(hctx->srcu); 941 942 hctx->nr_expired = 0; 943 } 944 if (has_rcu) 945 synchronize_rcu(); 946 947 /* terminate the ones we won */ 948 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL); 949 } 950 951 if (data.next_set) { 952 data.next = blk_rq_timeout(round_jiffies_up(data.next)); 953 mod_timer(&q->timeout, data.next); 954 } else { 955 /* 956 * Request timeouts are handled as a forward rolling timer. If 957 * we end up here it means that no requests are pending and 958 * also that no request has been pending for a while. Mark 959 * each hctx as idle. 960 */ 961 queue_for_each_hw_ctx(q, hctx, i) { 962 /* the hctx may be unmapped, so check it here */ 963 if (blk_mq_hw_queue_mapped(hctx)) 964 blk_mq_tag_idle(hctx); 965 } 966 } 967 blk_queue_exit(q); 968 } 969 970 struct flush_busy_ctx_data { 971 struct blk_mq_hw_ctx *hctx; 972 struct list_head *list; 973 }; 974 975 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 976 { 977 struct flush_busy_ctx_data *flush_data = data; 978 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 979 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 980 981 spin_lock(&ctx->lock); 982 list_splice_tail_init(&ctx->rq_list, flush_data->list); 983 sbitmap_clear_bit(sb, bitnr); 984 spin_unlock(&ctx->lock); 985 return true; 986 } 987 988 /* 989 * Process software queues that have been marked busy, splicing them 990 * to the for-dispatch 991 */ 992 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 993 { 994 struct flush_busy_ctx_data data = { 995 .hctx = hctx, 996 .list = list, 997 }; 998 999 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1000 } 1001 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1002 1003 struct dispatch_rq_data { 1004 struct blk_mq_hw_ctx *hctx; 1005 struct request *rq; 1006 }; 1007 1008 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1009 void *data) 1010 { 1011 struct dispatch_rq_data *dispatch_data = data; 1012 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1013 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1014 1015 spin_lock(&ctx->lock); 1016 if (unlikely(!list_empty(&ctx->rq_list))) { 1017 dispatch_data->rq = list_entry_rq(ctx->rq_list.next); 1018 list_del_init(&dispatch_data->rq->queuelist); 1019 if (list_empty(&ctx->rq_list)) 1020 sbitmap_clear_bit(sb, bitnr); 1021 } 1022 spin_unlock(&ctx->lock); 1023 1024 return !dispatch_data->rq; 1025 } 1026 1027 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1028 struct blk_mq_ctx *start) 1029 { 1030 unsigned off = start ? start->index_hw : 0; 1031 struct dispatch_rq_data data = { 1032 .hctx = hctx, 1033 .rq = NULL, 1034 }; 1035 1036 __sbitmap_for_each_set(&hctx->ctx_map, off, 1037 dispatch_rq_from_ctx, &data); 1038 1039 return data.rq; 1040 } 1041 1042 static inline unsigned int queued_to_index(unsigned int queued) 1043 { 1044 if (!queued) 1045 return 0; 1046 1047 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1048 } 1049 1050 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx, 1051 bool wait) 1052 { 1053 struct blk_mq_alloc_data data = { 1054 .q = rq->q, 1055 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), 1056 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT, 1057 }; 1058 1059 might_sleep_if(wait); 1060 1061 if (rq->tag != -1) 1062 goto done; 1063 1064 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1065 data.flags |= BLK_MQ_REQ_RESERVED; 1066 1067 rq->tag = blk_mq_get_tag(&data); 1068 if (rq->tag >= 0) { 1069 if (blk_mq_tag_busy(data.hctx)) { 1070 rq->rq_flags |= RQF_MQ_INFLIGHT; 1071 atomic_inc(&data.hctx->nr_active); 1072 } 1073 data.hctx->tags->rqs[rq->tag] = rq; 1074 } 1075 1076 done: 1077 if (hctx) 1078 *hctx = data.hctx; 1079 return rq->tag != -1; 1080 } 1081 1082 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1083 int flags, void *key) 1084 { 1085 struct blk_mq_hw_ctx *hctx; 1086 1087 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1088 1089 list_del_init(&wait->entry); 1090 blk_mq_run_hw_queue(hctx, true); 1091 return 1; 1092 } 1093 1094 /* 1095 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1096 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1097 * restart. For both cases, take care to check the condition again after 1098 * marking us as waiting. 1099 */ 1100 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx, 1101 struct request *rq) 1102 { 1103 struct blk_mq_hw_ctx *this_hctx = *hctx; 1104 struct sbq_wait_state *ws; 1105 wait_queue_entry_t *wait; 1106 bool ret; 1107 1108 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1109 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state)) 1110 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state); 1111 1112 /* 1113 * It's possible that a tag was freed in the window between the 1114 * allocation failure and adding the hardware queue to the wait 1115 * queue. 1116 * 1117 * Don't clear RESTART here, someone else could have set it. 1118 * At most this will cost an extra queue run. 1119 */ 1120 return blk_mq_get_driver_tag(rq, hctx, false); 1121 } 1122 1123 wait = &this_hctx->dispatch_wait; 1124 if (!list_empty_careful(&wait->entry)) 1125 return false; 1126 1127 spin_lock(&this_hctx->lock); 1128 if (!list_empty(&wait->entry)) { 1129 spin_unlock(&this_hctx->lock); 1130 return false; 1131 } 1132 1133 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx); 1134 add_wait_queue(&ws->wait, wait); 1135 1136 /* 1137 * It's possible that a tag was freed in the window between the 1138 * allocation failure and adding the hardware queue to the wait 1139 * queue. 1140 */ 1141 ret = blk_mq_get_driver_tag(rq, hctx, false); 1142 if (!ret) { 1143 spin_unlock(&this_hctx->lock); 1144 return false; 1145 } 1146 1147 /* 1148 * We got a tag, remove ourselves from the wait queue to ensure 1149 * someone else gets the wakeup. 1150 */ 1151 spin_lock_irq(&ws->wait.lock); 1152 list_del_init(&wait->entry); 1153 spin_unlock_irq(&ws->wait.lock); 1154 spin_unlock(&this_hctx->lock); 1155 1156 return true; 1157 } 1158 1159 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1160 1161 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1162 bool got_budget) 1163 { 1164 struct blk_mq_hw_ctx *hctx; 1165 struct request *rq, *nxt; 1166 bool no_tag = false; 1167 int errors, queued; 1168 blk_status_t ret = BLK_STS_OK; 1169 1170 if (list_empty(list)) 1171 return false; 1172 1173 WARN_ON(!list_is_singular(list) && got_budget); 1174 1175 /* 1176 * Now process all the entries, sending them to the driver. 1177 */ 1178 errors = queued = 0; 1179 do { 1180 struct blk_mq_queue_data bd; 1181 1182 rq = list_first_entry(list, struct request, queuelist); 1183 if (!blk_mq_get_driver_tag(rq, &hctx, false)) { 1184 /* 1185 * The initial allocation attempt failed, so we need to 1186 * rerun the hardware queue when a tag is freed. The 1187 * waitqueue takes care of that. If the queue is run 1188 * before we add this entry back on the dispatch list, 1189 * we'll re-run it below. 1190 */ 1191 if (!blk_mq_mark_tag_wait(&hctx, rq)) { 1192 if (got_budget) 1193 blk_mq_put_dispatch_budget(hctx); 1194 /* 1195 * For non-shared tags, the RESTART check 1196 * will suffice. 1197 */ 1198 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1199 no_tag = true; 1200 break; 1201 } 1202 } 1203 1204 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) { 1205 blk_mq_put_driver_tag(rq); 1206 break; 1207 } 1208 1209 list_del_init(&rq->queuelist); 1210 1211 bd.rq = rq; 1212 1213 /* 1214 * Flag last if we have no more requests, or if we have more 1215 * but can't assign a driver tag to it. 1216 */ 1217 if (list_empty(list)) 1218 bd.last = true; 1219 else { 1220 nxt = list_first_entry(list, struct request, queuelist); 1221 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false); 1222 } 1223 1224 ret = q->mq_ops->queue_rq(hctx, &bd); 1225 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1226 /* 1227 * If an I/O scheduler has been configured and we got a 1228 * driver tag for the next request already, free it 1229 * again. 1230 */ 1231 if (!list_empty(list)) { 1232 nxt = list_first_entry(list, struct request, queuelist); 1233 blk_mq_put_driver_tag(nxt); 1234 } 1235 list_add(&rq->queuelist, list); 1236 __blk_mq_requeue_request(rq); 1237 break; 1238 } 1239 1240 if (unlikely(ret != BLK_STS_OK)) { 1241 errors++; 1242 blk_mq_end_request(rq, BLK_STS_IOERR); 1243 continue; 1244 } 1245 1246 queued++; 1247 } while (!list_empty(list)); 1248 1249 hctx->dispatched[queued_to_index(queued)]++; 1250 1251 /* 1252 * Any items that need requeuing? Stuff them into hctx->dispatch, 1253 * that is where we will continue on next queue run. 1254 */ 1255 if (!list_empty(list)) { 1256 bool needs_restart; 1257 1258 spin_lock(&hctx->lock); 1259 list_splice_init(list, &hctx->dispatch); 1260 spin_unlock(&hctx->lock); 1261 1262 /* 1263 * If SCHED_RESTART was set by the caller of this function and 1264 * it is no longer set that means that it was cleared by another 1265 * thread and hence that a queue rerun is needed. 1266 * 1267 * If 'no_tag' is set, that means that we failed getting 1268 * a driver tag with an I/O scheduler attached. If our dispatch 1269 * waitqueue is no longer active, ensure that we run the queue 1270 * AFTER adding our entries back to the list. 1271 * 1272 * If no I/O scheduler has been configured it is possible that 1273 * the hardware queue got stopped and restarted before requests 1274 * were pushed back onto the dispatch list. Rerun the queue to 1275 * avoid starvation. Notes: 1276 * - blk_mq_run_hw_queue() checks whether or not a queue has 1277 * been stopped before rerunning a queue. 1278 * - Some but not all block drivers stop a queue before 1279 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1280 * and dm-rq. 1281 * 1282 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1283 * bit is set, run queue after a delay to avoid IO stalls 1284 * that could otherwise occur if the queue is idle. 1285 */ 1286 needs_restart = blk_mq_sched_needs_restart(hctx); 1287 if (!needs_restart || 1288 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1289 blk_mq_run_hw_queue(hctx, true); 1290 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1291 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1292 } 1293 1294 return (queued + errors) != 0; 1295 } 1296 1297 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1298 { 1299 int srcu_idx; 1300 1301 /* 1302 * We should be running this queue from one of the CPUs that 1303 * are mapped to it. 1304 * 1305 * There are at least two related races now between setting 1306 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1307 * __blk_mq_run_hw_queue(): 1308 * 1309 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1310 * but later it becomes online, then this warning is harmless 1311 * at all 1312 * 1313 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1314 * but later it becomes offline, then the warning can't be 1315 * triggered, and we depend on blk-mq timeout handler to 1316 * handle dispatched requests to this hctx 1317 */ 1318 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1319 cpu_online(hctx->next_cpu)) { 1320 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1321 raw_smp_processor_id(), 1322 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1323 dump_stack(); 1324 } 1325 1326 /* 1327 * We can't run the queue inline with ints disabled. Ensure that 1328 * we catch bad users of this early. 1329 */ 1330 WARN_ON_ONCE(in_interrupt()); 1331 1332 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1333 1334 hctx_lock(hctx, &srcu_idx); 1335 blk_mq_sched_dispatch_requests(hctx); 1336 hctx_unlock(hctx, srcu_idx); 1337 } 1338 1339 /* 1340 * It'd be great if the workqueue API had a way to pass 1341 * in a mask and had some smarts for more clever placement. 1342 * For now we just round-robin here, switching for every 1343 * BLK_MQ_CPU_WORK_BATCH queued items. 1344 */ 1345 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1346 { 1347 bool tried = false; 1348 1349 if (hctx->queue->nr_hw_queues == 1) 1350 return WORK_CPU_UNBOUND; 1351 1352 if (--hctx->next_cpu_batch <= 0) { 1353 int next_cpu; 1354 select_cpu: 1355 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask, 1356 cpu_online_mask); 1357 if (next_cpu >= nr_cpu_ids) 1358 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask); 1359 1360 /* 1361 * No online CPU is found, so have to make sure hctx->next_cpu 1362 * is set correctly for not breaking workqueue. 1363 */ 1364 if (next_cpu >= nr_cpu_ids) 1365 hctx->next_cpu = cpumask_first(hctx->cpumask); 1366 else 1367 hctx->next_cpu = next_cpu; 1368 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1369 } 1370 1371 /* 1372 * Do unbound schedule if we can't find a online CPU for this hctx, 1373 * and it should only happen in the path of handling CPU DEAD. 1374 */ 1375 if (!cpu_online(hctx->next_cpu)) { 1376 if (!tried) { 1377 tried = true; 1378 goto select_cpu; 1379 } 1380 1381 /* 1382 * Make sure to re-select CPU next time once after CPUs 1383 * in hctx->cpumask become online again. 1384 */ 1385 hctx->next_cpu_batch = 1; 1386 return WORK_CPU_UNBOUND; 1387 } 1388 return hctx->next_cpu; 1389 } 1390 1391 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1392 unsigned long msecs) 1393 { 1394 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1395 return; 1396 1397 if (unlikely(blk_mq_hctx_stopped(hctx))) 1398 return; 1399 1400 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1401 int cpu = get_cpu(); 1402 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1403 __blk_mq_run_hw_queue(hctx); 1404 put_cpu(); 1405 return; 1406 } 1407 1408 put_cpu(); 1409 } 1410 1411 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1412 msecs_to_jiffies(msecs)); 1413 } 1414 1415 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1416 { 1417 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1418 } 1419 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1420 1421 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1422 { 1423 int srcu_idx; 1424 bool need_run; 1425 1426 /* 1427 * When queue is quiesced, we may be switching io scheduler, or 1428 * updating nr_hw_queues, or other things, and we can't run queue 1429 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1430 * 1431 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1432 * quiesced. 1433 */ 1434 hctx_lock(hctx, &srcu_idx); 1435 need_run = !blk_queue_quiesced(hctx->queue) && 1436 blk_mq_hctx_has_pending(hctx); 1437 hctx_unlock(hctx, srcu_idx); 1438 1439 if (need_run) { 1440 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1441 return true; 1442 } 1443 1444 return false; 1445 } 1446 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1447 1448 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1449 { 1450 struct blk_mq_hw_ctx *hctx; 1451 int i; 1452 1453 queue_for_each_hw_ctx(q, hctx, i) { 1454 if (blk_mq_hctx_stopped(hctx)) 1455 continue; 1456 1457 blk_mq_run_hw_queue(hctx, async); 1458 } 1459 } 1460 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1461 1462 /** 1463 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1464 * @q: request queue. 1465 * 1466 * The caller is responsible for serializing this function against 1467 * blk_mq_{start,stop}_hw_queue(). 1468 */ 1469 bool blk_mq_queue_stopped(struct request_queue *q) 1470 { 1471 struct blk_mq_hw_ctx *hctx; 1472 int i; 1473 1474 queue_for_each_hw_ctx(q, hctx, i) 1475 if (blk_mq_hctx_stopped(hctx)) 1476 return true; 1477 1478 return false; 1479 } 1480 EXPORT_SYMBOL(blk_mq_queue_stopped); 1481 1482 /* 1483 * This function is often used for pausing .queue_rq() by driver when 1484 * there isn't enough resource or some conditions aren't satisfied, and 1485 * BLK_STS_RESOURCE is usually returned. 1486 * 1487 * We do not guarantee that dispatch can be drained or blocked 1488 * after blk_mq_stop_hw_queue() returns. Please use 1489 * blk_mq_quiesce_queue() for that requirement. 1490 */ 1491 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1492 { 1493 cancel_delayed_work(&hctx->run_work); 1494 1495 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1496 } 1497 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1498 1499 /* 1500 * This function is often used for pausing .queue_rq() by driver when 1501 * there isn't enough resource or some conditions aren't satisfied, and 1502 * BLK_STS_RESOURCE is usually returned. 1503 * 1504 * We do not guarantee that dispatch can be drained or blocked 1505 * after blk_mq_stop_hw_queues() returns. Please use 1506 * blk_mq_quiesce_queue() for that requirement. 1507 */ 1508 void blk_mq_stop_hw_queues(struct request_queue *q) 1509 { 1510 struct blk_mq_hw_ctx *hctx; 1511 int i; 1512 1513 queue_for_each_hw_ctx(q, hctx, i) 1514 blk_mq_stop_hw_queue(hctx); 1515 } 1516 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1517 1518 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1519 { 1520 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1521 1522 blk_mq_run_hw_queue(hctx, false); 1523 } 1524 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1525 1526 void blk_mq_start_hw_queues(struct request_queue *q) 1527 { 1528 struct blk_mq_hw_ctx *hctx; 1529 int i; 1530 1531 queue_for_each_hw_ctx(q, hctx, i) 1532 blk_mq_start_hw_queue(hctx); 1533 } 1534 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1535 1536 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1537 { 1538 if (!blk_mq_hctx_stopped(hctx)) 1539 return; 1540 1541 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1542 blk_mq_run_hw_queue(hctx, async); 1543 } 1544 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1545 1546 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1547 { 1548 struct blk_mq_hw_ctx *hctx; 1549 int i; 1550 1551 queue_for_each_hw_ctx(q, hctx, i) 1552 blk_mq_start_stopped_hw_queue(hctx, async); 1553 } 1554 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1555 1556 static void blk_mq_run_work_fn(struct work_struct *work) 1557 { 1558 struct blk_mq_hw_ctx *hctx; 1559 1560 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1561 1562 /* 1563 * If we are stopped, don't run the queue. The exception is if 1564 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear 1565 * the STOPPED bit and run it. 1566 */ 1567 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) { 1568 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state)) 1569 return; 1570 1571 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1572 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1573 } 1574 1575 __blk_mq_run_hw_queue(hctx); 1576 } 1577 1578 1579 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1580 { 1581 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx))) 1582 return; 1583 1584 /* 1585 * Stop the hw queue, then modify currently delayed work. 1586 * This should prevent us from running the queue prematurely. 1587 * Mark the queue as auto-clearing STOPPED when it runs. 1588 */ 1589 blk_mq_stop_hw_queue(hctx); 1590 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state); 1591 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), 1592 &hctx->run_work, 1593 msecs_to_jiffies(msecs)); 1594 } 1595 EXPORT_SYMBOL(blk_mq_delay_queue); 1596 1597 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1598 struct request *rq, 1599 bool at_head) 1600 { 1601 struct blk_mq_ctx *ctx = rq->mq_ctx; 1602 1603 lockdep_assert_held(&ctx->lock); 1604 1605 trace_block_rq_insert(hctx->queue, rq); 1606 1607 if (at_head) 1608 list_add(&rq->queuelist, &ctx->rq_list); 1609 else 1610 list_add_tail(&rq->queuelist, &ctx->rq_list); 1611 } 1612 1613 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1614 bool at_head) 1615 { 1616 struct blk_mq_ctx *ctx = rq->mq_ctx; 1617 1618 lockdep_assert_held(&ctx->lock); 1619 1620 __blk_mq_insert_req_list(hctx, rq, at_head); 1621 blk_mq_hctx_mark_pending(hctx, ctx); 1622 } 1623 1624 /* 1625 * Should only be used carefully, when the caller knows we want to 1626 * bypass a potential IO scheduler on the target device. 1627 */ 1628 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) 1629 { 1630 struct blk_mq_ctx *ctx = rq->mq_ctx; 1631 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1632 1633 spin_lock(&hctx->lock); 1634 list_add_tail(&rq->queuelist, &hctx->dispatch); 1635 spin_unlock(&hctx->lock); 1636 1637 if (run_queue) 1638 blk_mq_run_hw_queue(hctx, false); 1639 } 1640 1641 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1642 struct list_head *list) 1643 1644 { 1645 /* 1646 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1647 * offline now 1648 */ 1649 spin_lock(&ctx->lock); 1650 while (!list_empty(list)) { 1651 struct request *rq; 1652 1653 rq = list_first_entry(list, struct request, queuelist); 1654 BUG_ON(rq->mq_ctx != ctx); 1655 list_del_init(&rq->queuelist); 1656 __blk_mq_insert_req_list(hctx, rq, false); 1657 } 1658 blk_mq_hctx_mark_pending(hctx, ctx); 1659 spin_unlock(&ctx->lock); 1660 } 1661 1662 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) 1663 { 1664 struct request *rqa = container_of(a, struct request, queuelist); 1665 struct request *rqb = container_of(b, struct request, queuelist); 1666 1667 return !(rqa->mq_ctx < rqb->mq_ctx || 1668 (rqa->mq_ctx == rqb->mq_ctx && 1669 blk_rq_pos(rqa) < blk_rq_pos(rqb))); 1670 } 1671 1672 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1673 { 1674 struct blk_mq_ctx *this_ctx; 1675 struct request_queue *this_q; 1676 struct request *rq; 1677 LIST_HEAD(list); 1678 LIST_HEAD(ctx_list); 1679 unsigned int depth; 1680 1681 list_splice_init(&plug->mq_list, &list); 1682 1683 list_sort(NULL, &list, plug_ctx_cmp); 1684 1685 this_q = NULL; 1686 this_ctx = NULL; 1687 depth = 0; 1688 1689 while (!list_empty(&list)) { 1690 rq = list_entry_rq(list.next); 1691 list_del_init(&rq->queuelist); 1692 BUG_ON(!rq->q); 1693 if (rq->mq_ctx != this_ctx) { 1694 if (this_ctx) { 1695 trace_block_unplug(this_q, depth, from_schedule); 1696 blk_mq_sched_insert_requests(this_q, this_ctx, 1697 &ctx_list, 1698 from_schedule); 1699 } 1700 1701 this_ctx = rq->mq_ctx; 1702 this_q = rq->q; 1703 depth = 0; 1704 } 1705 1706 depth++; 1707 list_add_tail(&rq->queuelist, &ctx_list); 1708 } 1709 1710 /* 1711 * If 'this_ctx' is set, we know we have entries to complete 1712 * on 'ctx_list'. Do those. 1713 */ 1714 if (this_ctx) { 1715 trace_block_unplug(this_q, depth, from_schedule); 1716 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, 1717 from_schedule); 1718 } 1719 } 1720 1721 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) 1722 { 1723 blk_init_request_from_bio(rq, bio); 1724 1725 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); 1726 1727 blk_account_io_start(rq, true); 1728 } 1729 1730 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx, 1731 struct blk_mq_ctx *ctx, 1732 struct request *rq) 1733 { 1734 spin_lock(&ctx->lock); 1735 __blk_mq_insert_request(hctx, rq, false); 1736 spin_unlock(&ctx->lock); 1737 } 1738 1739 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) 1740 { 1741 if (rq->tag != -1) 1742 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); 1743 1744 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); 1745 } 1746 1747 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1748 struct request *rq, 1749 blk_qc_t *cookie) 1750 { 1751 struct request_queue *q = rq->q; 1752 struct blk_mq_queue_data bd = { 1753 .rq = rq, 1754 .last = true, 1755 }; 1756 blk_qc_t new_cookie; 1757 blk_status_t ret; 1758 1759 new_cookie = request_to_qc_t(hctx, rq); 1760 1761 /* 1762 * For OK queue, we are done. For error, caller may kill it. 1763 * Any other error (busy), just add it to our list as we 1764 * previously would have done. 1765 */ 1766 ret = q->mq_ops->queue_rq(hctx, &bd); 1767 switch (ret) { 1768 case BLK_STS_OK: 1769 *cookie = new_cookie; 1770 break; 1771 case BLK_STS_RESOURCE: 1772 case BLK_STS_DEV_RESOURCE: 1773 __blk_mq_requeue_request(rq); 1774 break; 1775 default: 1776 *cookie = BLK_QC_T_NONE; 1777 break; 1778 } 1779 1780 return ret; 1781 } 1782 1783 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1784 struct request *rq, 1785 blk_qc_t *cookie, 1786 bool bypass_insert) 1787 { 1788 struct request_queue *q = rq->q; 1789 bool run_queue = true; 1790 1791 /* 1792 * RCU or SRCU read lock is needed before checking quiesced flag. 1793 * 1794 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1795 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1796 * and avoid driver to try to dispatch again. 1797 */ 1798 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1799 run_queue = false; 1800 bypass_insert = false; 1801 goto insert; 1802 } 1803 1804 if (q->elevator && !bypass_insert) 1805 goto insert; 1806 1807 if (!blk_mq_get_driver_tag(rq, NULL, false)) 1808 goto insert; 1809 1810 if (!blk_mq_get_dispatch_budget(hctx)) { 1811 blk_mq_put_driver_tag(rq); 1812 goto insert; 1813 } 1814 1815 return __blk_mq_issue_directly(hctx, rq, cookie); 1816 insert: 1817 if (bypass_insert) 1818 return BLK_STS_RESOURCE; 1819 1820 blk_mq_sched_insert_request(rq, false, run_queue, false); 1821 return BLK_STS_OK; 1822 } 1823 1824 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1825 struct request *rq, blk_qc_t *cookie) 1826 { 1827 blk_status_t ret; 1828 int srcu_idx; 1829 1830 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1831 1832 hctx_lock(hctx, &srcu_idx); 1833 1834 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); 1835 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1836 blk_mq_sched_insert_request(rq, false, true, false); 1837 else if (ret != BLK_STS_OK) 1838 blk_mq_end_request(rq, ret); 1839 1840 hctx_unlock(hctx, srcu_idx); 1841 } 1842 1843 blk_status_t blk_mq_request_issue_directly(struct request *rq) 1844 { 1845 blk_status_t ret; 1846 int srcu_idx; 1847 blk_qc_t unused_cookie; 1848 struct blk_mq_ctx *ctx = rq->mq_ctx; 1849 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); 1850 1851 hctx_lock(hctx, &srcu_idx); 1852 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); 1853 hctx_unlock(hctx, srcu_idx); 1854 1855 return ret; 1856 } 1857 1858 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1859 { 1860 const int is_sync = op_is_sync(bio->bi_opf); 1861 const int is_flush_fua = op_is_flush(bio->bi_opf); 1862 struct blk_mq_alloc_data data = { .flags = 0 }; 1863 struct request *rq; 1864 unsigned int request_count = 0; 1865 struct blk_plug *plug; 1866 struct request *same_queue_rq = NULL; 1867 blk_qc_t cookie; 1868 unsigned int wb_acct; 1869 1870 blk_queue_bounce(q, &bio); 1871 1872 blk_queue_split(q, &bio); 1873 1874 if (!bio_integrity_prep(bio)) 1875 return BLK_QC_T_NONE; 1876 1877 if (!is_flush_fua && !blk_queue_nomerges(q) && 1878 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) 1879 return BLK_QC_T_NONE; 1880 1881 if (blk_mq_sched_bio_merge(q, bio)) 1882 return BLK_QC_T_NONE; 1883 1884 wb_acct = wbt_wait(q->rq_wb, bio, NULL); 1885 1886 trace_block_getrq(q, bio, bio->bi_opf); 1887 1888 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); 1889 if (unlikely(!rq)) { 1890 __wbt_done(q->rq_wb, wb_acct); 1891 if (bio->bi_opf & REQ_NOWAIT) 1892 bio_wouldblock_error(bio); 1893 return BLK_QC_T_NONE; 1894 } 1895 1896 wbt_track(&rq->issue_stat, wb_acct); 1897 1898 cookie = request_to_qc_t(data.hctx, rq); 1899 1900 plug = current->plug; 1901 if (unlikely(is_flush_fua)) { 1902 blk_mq_put_ctx(data.ctx); 1903 blk_mq_bio_to_request(rq, bio); 1904 1905 /* bypass scheduler for flush rq */ 1906 blk_insert_flush(rq); 1907 blk_mq_run_hw_queue(data.hctx, true); 1908 } else if (plug && q->nr_hw_queues == 1) { 1909 struct request *last = NULL; 1910 1911 blk_mq_put_ctx(data.ctx); 1912 blk_mq_bio_to_request(rq, bio); 1913 1914 /* 1915 * @request_count may become stale because of schedule 1916 * out, so check the list again. 1917 */ 1918 if (list_empty(&plug->mq_list)) 1919 request_count = 0; 1920 else if (blk_queue_nomerges(q)) 1921 request_count = blk_plug_queued_count(q); 1922 1923 if (!request_count) 1924 trace_block_plug(q); 1925 else 1926 last = list_entry_rq(plug->mq_list.prev); 1927 1928 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1929 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1930 blk_flush_plug_list(plug, false); 1931 trace_block_plug(q); 1932 } 1933 1934 list_add_tail(&rq->queuelist, &plug->mq_list); 1935 } else if (plug && !blk_queue_nomerges(q)) { 1936 blk_mq_bio_to_request(rq, bio); 1937 1938 /* 1939 * We do limited plugging. If the bio can be merged, do that. 1940 * Otherwise the existing request in the plug list will be 1941 * issued. So the plug list will have one request at most 1942 * The plug list might get flushed before this. If that happens, 1943 * the plug list is empty, and same_queue_rq is invalid. 1944 */ 1945 if (list_empty(&plug->mq_list)) 1946 same_queue_rq = NULL; 1947 if (same_queue_rq) 1948 list_del_init(&same_queue_rq->queuelist); 1949 list_add_tail(&rq->queuelist, &plug->mq_list); 1950 1951 blk_mq_put_ctx(data.ctx); 1952 1953 if (same_queue_rq) { 1954 data.hctx = blk_mq_map_queue(q, 1955 same_queue_rq->mq_ctx->cpu); 1956 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 1957 &cookie); 1958 } 1959 } else if (q->nr_hw_queues > 1 && is_sync) { 1960 blk_mq_put_ctx(data.ctx); 1961 blk_mq_bio_to_request(rq, bio); 1962 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 1963 } else if (q->elevator) { 1964 blk_mq_put_ctx(data.ctx); 1965 blk_mq_bio_to_request(rq, bio); 1966 blk_mq_sched_insert_request(rq, false, true, true); 1967 } else { 1968 blk_mq_put_ctx(data.ctx); 1969 blk_mq_bio_to_request(rq, bio); 1970 blk_mq_queue_io(data.hctx, data.ctx, rq); 1971 blk_mq_run_hw_queue(data.hctx, true); 1972 } 1973 1974 return cookie; 1975 } 1976 1977 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 1978 unsigned int hctx_idx) 1979 { 1980 struct page *page; 1981 1982 if (tags->rqs && set->ops->exit_request) { 1983 int i; 1984 1985 for (i = 0; i < tags->nr_tags; i++) { 1986 struct request *rq = tags->static_rqs[i]; 1987 1988 if (!rq) 1989 continue; 1990 set->ops->exit_request(set, rq, hctx_idx); 1991 tags->static_rqs[i] = NULL; 1992 } 1993 } 1994 1995 while (!list_empty(&tags->page_list)) { 1996 page = list_first_entry(&tags->page_list, struct page, lru); 1997 list_del_init(&page->lru); 1998 /* 1999 * Remove kmemleak object previously allocated in 2000 * blk_mq_init_rq_map(). 2001 */ 2002 kmemleak_free(page_address(page)); 2003 __free_pages(page, page->private); 2004 } 2005 } 2006 2007 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2008 { 2009 kfree(tags->rqs); 2010 tags->rqs = NULL; 2011 kfree(tags->static_rqs); 2012 tags->static_rqs = NULL; 2013 2014 blk_mq_free_tags(tags); 2015 } 2016 2017 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2018 unsigned int hctx_idx, 2019 unsigned int nr_tags, 2020 unsigned int reserved_tags) 2021 { 2022 struct blk_mq_tags *tags; 2023 int node; 2024 2025 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2026 if (node == NUMA_NO_NODE) 2027 node = set->numa_node; 2028 2029 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2030 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2031 if (!tags) 2032 return NULL; 2033 2034 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2035 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2036 node); 2037 if (!tags->rqs) { 2038 blk_mq_free_tags(tags); 2039 return NULL; 2040 } 2041 2042 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *), 2043 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2044 node); 2045 if (!tags->static_rqs) { 2046 kfree(tags->rqs); 2047 blk_mq_free_tags(tags); 2048 return NULL; 2049 } 2050 2051 return tags; 2052 } 2053 2054 static size_t order_to_size(unsigned int order) 2055 { 2056 return (size_t)PAGE_SIZE << order; 2057 } 2058 2059 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2060 unsigned int hctx_idx, int node) 2061 { 2062 int ret; 2063 2064 if (set->ops->init_request) { 2065 ret = set->ops->init_request(set, rq, hctx_idx, node); 2066 if (ret) 2067 return ret; 2068 } 2069 2070 seqcount_init(&rq->gstate_seq); 2071 u64_stats_init(&rq->aborted_gstate_sync); 2072 return 0; 2073 } 2074 2075 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2076 unsigned int hctx_idx, unsigned int depth) 2077 { 2078 unsigned int i, j, entries_per_page, max_order = 4; 2079 size_t rq_size, left; 2080 int node; 2081 2082 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); 2083 if (node == NUMA_NO_NODE) 2084 node = set->numa_node; 2085 2086 INIT_LIST_HEAD(&tags->page_list); 2087 2088 /* 2089 * rq_size is the size of the request plus driver payload, rounded 2090 * to the cacheline size 2091 */ 2092 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2093 cache_line_size()); 2094 left = rq_size * depth; 2095 2096 for (i = 0; i < depth; ) { 2097 int this_order = max_order; 2098 struct page *page; 2099 int to_do; 2100 void *p; 2101 2102 while (this_order && left < order_to_size(this_order - 1)) 2103 this_order--; 2104 2105 do { 2106 page = alloc_pages_node(node, 2107 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2108 this_order); 2109 if (page) 2110 break; 2111 if (!this_order--) 2112 break; 2113 if (order_to_size(this_order) < rq_size) 2114 break; 2115 } while (1); 2116 2117 if (!page) 2118 goto fail; 2119 2120 page->private = this_order; 2121 list_add_tail(&page->lru, &tags->page_list); 2122 2123 p = page_address(page); 2124 /* 2125 * Allow kmemleak to scan these pages as they contain pointers 2126 * to additional allocations like via ops->init_request(). 2127 */ 2128 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2129 entries_per_page = order_to_size(this_order) / rq_size; 2130 to_do = min(entries_per_page, depth - i); 2131 left -= to_do * rq_size; 2132 for (j = 0; j < to_do; j++) { 2133 struct request *rq = p; 2134 2135 tags->static_rqs[i] = rq; 2136 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2137 tags->static_rqs[i] = NULL; 2138 goto fail; 2139 } 2140 2141 p += rq_size; 2142 i++; 2143 } 2144 } 2145 return 0; 2146 2147 fail: 2148 blk_mq_free_rqs(set, tags, hctx_idx); 2149 return -ENOMEM; 2150 } 2151 2152 /* 2153 * 'cpu' is going away. splice any existing rq_list entries from this 2154 * software queue to the hw queue dispatch list, and ensure that it 2155 * gets run. 2156 */ 2157 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2158 { 2159 struct blk_mq_hw_ctx *hctx; 2160 struct blk_mq_ctx *ctx; 2161 LIST_HEAD(tmp); 2162 2163 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2164 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2165 2166 spin_lock(&ctx->lock); 2167 if (!list_empty(&ctx->rq_list)) { 2168 list_splice_init(&ctx->rq_list, &tmp); 2169 blk_mq_hctx_clear_pending(hctx, ctx); 2170 } 2171 spin_unlock(&ctx->lock); 2172 2173 if (list_empty(&tmp)) 2174 return 0; 2175 2176 spin_lock(&hctx->lock); 2177 list_splice_tail_init(&tmp, &hctx->dispatch); 2178 spin_unlock(&hctx->lock); 2179 2180 blk_mq_run_hw_queue(hctx, true); 2181 return 0; 2182 } 2183 2184 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2185 { 2186 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2187 &hctx->cpuhp_dead); 2188 } 2189 2190 /* hctx->ctxs will be freed in queue's release handler */ 2191 static void blk_mq_exit_hctx(struct request_queue *q, 2192 struct blk_mq_tag_set *set, 2193 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2194 { 2195 blk_mq_debugfs_unregister_hctx(hctx); 2196 2197 if (blk_mq_hw_queue_mapped(hctx)) 2198 blk_mq_tag_idle(hctx); 2199 2200 if (set->ops->exit_request) 2201 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2202 2203 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2204 2205 if (set->ops->exit_hctx) 2206 set->ops->exit_hctx(hctx, hctx_idx); 2207 2208 if (hctx->flags & BLK_MQ_F_BLOCKING) 2209 cleanup_srcu_struct(hctx->srcu); 2210 2211 blk_mq_remove_cpuhp(hctx); 2212 blk_free_flush_queue(hctx->fq); 2213 sbitmap_free(&hctx->ctx_map); 2214 } 2215 2216 static void blk_mq_exit_hw_queues(struct request_queue *q, 2217 struct blk_mq_tag_set *set, int nr_queue) 2218 { 2219 struct blk_mq_hw_ctx *hctx; 2220 unsigned int i; 2221 2222 queue_for_each_hw_ctx(q, hctx, i) { 2223 if (i == nr_queue) 2224 break; 2225 blk_mq_exit_hctx(q, set, hctx, i); 2226 } 2227 } 2228 2229 static int blk_mq_init_hctx(struct request_queue *q, 2230 struct blk_mq_tag_set *set, 2231 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2232 { 2233 int node; 2234 2235 node = hctx->numa_node; 2236 if (node == NUMA_NO_NODE) 2237 node = hctx->numa_node = set->numa_node; 2238 2239 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2240 spin_lock_init(&hctx->lock); 2241 INIT_LIST_HEAD(&hctx->dispatch); 2242 hctx->queue = q; 2243 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2244 2245 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2246 2247 hctx->tags = set->tags[hctx_idx]; 2248 2249 /* 2250 * Allocate space for all possible cpus to avoid allocation at 2251 * runtime 2252 */ 2253 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2254 GFP_KERNEL, node); 2255 if (!hctx->ctxs) 2256 goto unregister_cpu_notifier; 2257 2258 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL, 2259 node)) 2260 goto free_ctxs; 2261 2262 hctx->nr_ctx = 0; 2263 2264 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2265 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2266 2267 if (set->ops->init_hctx && 2268 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2269 goto free_bitmap; 2270 2271 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx)) 2272 goto exit_hctx; 2273 2274 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size); 2275 if (!hctx->fq) 2276 goto sched_exit_hctx; 2277 2278 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) 2279 goto free_fq; 2280 2281 if (hctx->flags & BLK_MQ_F_BLOCKING) 2282 init_srcu_struct(hctx->srcu); 2283 2284 blk_mq_debugfs_register_hctx(q, hctx); 2285 2286 return 0; 2287 2288 free_fq: 2289 kfree(hctx->fq); 2290 sched_exit_hctx: 2291 blk_mq_sched_exit_hctx(q, hctx, hctx_idx); 2292 exit_hctx: 2293 if (set->ops->exit_hctx) 2294 set->ops->exit_hctx(hctx, hctx_idx); 2295 free_bitmap: 2296 sbitmap_free(&hctx->ctx_map); 2297 free_ctxs: 2298 kfree(hctx->ctxs); 2299 unregister_cpu_notifier: 2300 blk_mq_remove_cpuhp(hctx); 2301 return -1; 2302 } 2303 2304 static void blk_mq_init_cpu_queues(struct request_queue *q, 2305 unsigned int nr_hw_queues) 2306 { 2307 unsigned int i; 2308 2309 for_each_possible_cpu(i) { 2310 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2311 struct blk_mq_hw_ctx *hctx; 2312 2313 __ctx->cpu = i; 2314 spin_lock_init(&__ctx->lock); 2315 INIT_LIST_HEAD(&__ctx->rq_list); 2316 __ctx->queue = q; 2317 2318 /* 2319 * Set local node, IFF we have more than one hw queue. If 2320 * not, we remain on the home node of the device 2321 */ 2322 hctx = blk_mq_map_queue(q, i); 2323 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2324 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2325 } 2326 } 2327 2328 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2329 { 2330 int ret = 0; 2331 2332 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2333 set->queue_depth, set->reserved_tags); 2334 if (!set->tags[hctx_idx]) 2335 return false; 2336 2337 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2338 set->queue_depth); 2339 if (!ret) 2340 return true; 2341 2342 blk_mq_free_rq_map(set->tags[hctx_idx]); 2343 set->tags[hctx_idx] = NULL; 2344 return false; 2345 } 2346 2347 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2348 unsigned int hctx_idx) 2349 { 2350 if (set->tags[hctx_idx]) { 2351 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2352 blk_mq_free_rq_map(set->tags[hctx_idx]); 2353 set->tags[hctx_idx] = NULL; 2354 } 2355 } 2356 2357 static void blk_mq_map_swqueue(struct request_queue *q) 2358 { 2359 unsigned int i, hctx_idx; 2360 struct blk_mq_hw_ctx *hctx; 2361 struct blk_mq_ctx *ctx; 2362 struct blk_mq_tag_set *set = q->tag_set; 2363 2364 /* 2365 * Avoid others reading imcomplete hctx->cpumask through sysfs 2366 */ 2367 mutex_lock(&q->sysfs_lock); 2368 2369 queue_for_each_hw_ctx(q, hctx, i) { 2370 cpumask_clear(hctx->cpumask); 2371 hctx->nr_ctx = 0; 2372 } 2373 2374 /* 2375 * Map software to hardware queues. 2376 * 2377 * If the cpu isn't present, the cpu is mapped to first hctx. 2378 */ 2379 for_each_possible_cpu(i) { 2380 hctx_idx = q->mq_map[i]; 2381 /* unmapped hw queue can be remapped after CPU topo changed */ 2382 if (!set->tags[hctx_idx] && 2383 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2384 /* 2385 * If tags initialization fail for some hctx, 2386 * that hctx won't be brought online. In this 2387 * case, remap the current ctx to hctx[0] which 2388 * is guaranteed to always have tags allocated 2389 */ 2390 q->mq_map[i] = 0; 2391 } 2392 2393 ctx = per_cpu_ptr(q->queue_ctx, i); 2394 hctx = blk_mq_map_queue(q, i); 2395 2396 cpumask_set_cpu(i, hctx->cpumask); 2397 ctx->index_hw = hctx->nr_ctx; 2398 hctx->ctxs[hctx->nr_ctx++] = ctx; 2399 } 2400 2401 mutex_unlock(&q->sysfs_lock); 2402 2403 queue_for_each_hw_ctx(q, hctx, i) { 2404 /* 2405 * If no software queues are mapped to this hardware queue, 2406 * disable it and free the request entries. 2407 */ 2408 if (!hctx->nr_ctx) { 2409 /* Never unmap queue 0. We need it as a 2410 * fallback in case of a new remap fails 2411 * allocation 2412 */ 2413 if (i && set->tags[i]) 2414 blk_mq_free_map_and_requests(set, i); 2415 2416 hctx->tags = NULL; 2417 continue; 2418 } 2419 2420 hctx->tags = set->tags[i]; 2421 WARN_ON(!hctx->tags); 2422 2423 /* 2424 * Set the map size to the number of mapped software queues. 2425 * This is more accurate and more efficient than looping 2426 * over all possibly mapped software queues. 2427 */ 2428 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2429 2430 /* 2431 * Initialize batch roundrobin counts 2432 */ 2433 hctx->next_cpu = cpumask_first_and(hctx->cpumask, 2434 cpu_online_mask); 2435 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2436 } 2437 } 2438 2439 /* 2440 * Caller needs to ensure that we're either frozen/quiesced, or that 2441 * the queue isn't live yet. 2442 */ 2443 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2444 { 2445 struct blk_mq_hw_ctx *hctx; 2446 int i; 2447 2448 queue_for_each_hw_ctx(q, hctx, i) { 2449 if (shared) { 2450 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2451 atomic_inc(&q->shared_hctx_restart); 2452 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2453 } else { 2454 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) 2455 atomic_dec(&q->shared_hctx_restart); 2456 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2457 } 2458 } 2459 } 2460 2461 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2462 bool shared) 2463 { 2464 struct request_queue *q; 2465 2466 lockdep_assert_held(&set->tag_list_lock); 2467 2468 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2469 blk_mq_freeze_queue(q); 2470 queue_set_hctx_shared(q, shared); 2471 blk_mq_unfreeze_queue(q); 2472 } 2473 } 2474 2475 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2476 { 2477 struct blk_mq_tag_set *set = q->tag_set; 2478 2479 mutex_lock(&set->tag_list_lock); 2480 list_del_rcu(&q->tag_set_list); 2481 INIT_LIST_HEAD(&q->tag_set_list); 2482 if (list_is_singular(&set->tag_list)) { 2483 /* just transitioned to unshared */ 2484 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2485 /* update existing queue */ 2486 blk_mq_update_tag_set_depth(set, false); 2487 } 2488 mutex_unlock(&set->tag_list_lock); 2489 2490 synchronize_rcu(); 2491 } 2492 2493 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2494 struct request_queue *q) 2495 { 2496 q->tag_set = set; 2497 2498 mutex_lock(&set->tag_list_lock); 2499 2500 /* 2501 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2502 */ 2503 if (!list_empty(&set->tag_list) && 2504 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2505 set->flags |= BLK_MQ_F_TAG_SHARED; 2506 /* update existing queue */ 2507 blk_mq_update_tag_set_depth(set, true); 2508 } 2509 if (set->flags & BLK_MQ_F_TAG_SHARED) 2510 queue_set_hctx_shared(q, true); 2511 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2512 2513 mutex_unlock(&set->tag_list_lock); 2514 } 2515 2516 /* 2517 * It is the actual release handler for mq, but we do it from 2518 * request queue's release handler for avoiding use-after-free 2519 * and headache because q->mq_kobj shouldn't have been introduced, 2520 * but we can't group ctx/kctx kobj without it. 2521 */ 2522 void blk_mq_release(struct request_queue *q) 2523 { 2524 struct blk_mq_hw_ctx *hctx; 2525 unsigned int i; 2526 2527 /* hctx kobj stays in hctx */ 2528 queue_for_each_hw_ctx(q, hctx, i) { 2529 if (!hctx) 2530 continue; 2531 kobject_put(&hctx->kobj); 2532 } 2533 2534 q->mq_map = NULL; 2535 2536 kfree(q->queue_hw_ctx); 2537 2538 /* 2539 * release .mq_kobj and sw queue's kobject now because 2540 * both share lifetime with request queue. 2541 */ 2542 blk_mq_sysfs_deinit(q); 2543 2544 free_percpu(q->queue_ctx); 2545 } 2546 2547 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2548 { 2549 struct request_queue *uninit_q, *q; 2550 2551 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); 2552 if (!uninit_q) 2553 return ERR_PTR(-ENOMEM); 2554 2555 q = blk_mq_init_allocated_queue(set, uninit_q); 2556 if (IS_ERR(q)) 2557 blk_cleanup_queue(uninit_q); 2558 2559 return q; 2560 } 2561 EXPORT_SYMBOL(blk_mq_init_queue); 2562 2563 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2564 { 2565 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2566 2567 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2568 __alignof__(struct blk_mq_hw_ctx)) != 2569 sizeof(struct blk_mq_hw_ctx)); 2570 2571 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2572 hw_ctx_size += sizeof(struct srcu_struct); 2573 2574 return hw_ctx_size; 2575 } 2576 2577 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2578 struct request_queue *q) 2579 { 2580 int i, j; 2581 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2582 2583 blk_mq_sysfs_unregister(q); 2584 2585 /* protect against switching io scheduler */ 2586 mutex_lock(&q->sysfs_lock); 2587 for (i = 0; i < set->nr_hw_queues; i++) { 2588 int node; 2589 2590 if (hctxs[i]) 2591 continue; 2592 2593 node = blk_mq_hw_queue_to_node(q->mq_map, i); 2594 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), 2595 GFP_KERNEL, node); 2596 if (!hctxs[i]) 2597 break; 2598 2599 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL, 2600 node)) { 2601 kfree(hctxs[i]); 2602 hctxs[i] = NULL; 2603 break; 2604 } 2605 2606 atomic_set(&hctxs[i]->nr_active, 0); 2607 hctxs[i]->numa_node = node; 2608 hctxs[i]->queue_num = i; 2609 2610 if (blk_mq_init_hctx(q, set, hctxs[i], i)) { 2611 free_cpumask_var(hctxs[i]->cpumask); 2612 kfree(hctxs[i]); 2613 hctxs[i] = NULL; 2614 break; 2615 } 2616 blk_mq_hctx_kobj_init(hctxs[i]); 2617 } 2618 for (j = i; j < q->nr_hw_queues; j++) { 2619 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2620 2621 if (hctx) { 2622 if (hctx->tags) 2623 blk_mq_free_map_and_requests(set, j); 2624 blk_mq_exit_hctx(q, set, hctx, j); 2625 kobject_put(&hctx->kobj); 2626 hctxs[j] = NULL; 2627 2628 } 2629 } 2630 q->nr_hw_queues = i; 2631 mutex_unlock(&q->sysfs_lock); 2632 blk_mq_sysfs_register(q); 2633 } 2634 2635 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2636 struct request_queue *q) 2637 { 2638 /* mark the queue as mq asap */ 2639 q->mq_ops = set->ops; 2640 2641 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2642 blk_mq_poll_stats_bkt, 2643 BLK_MQ_POLL_STATS_BKTS, q); 2644 if (!q->poll_cb) 2645 goto err_exit; 2646 2647 q->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2648 if (!q->queue_ctx) 2649 goto err_exit; 2650 2651 /* init q->mq_kobj and sw queues' kobjects */ 2652 blk_mq_sysfs_init(q); 2653 2654 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)), 2655 GFP_KERNEL, set->numa_node); 2656 if (!q->queue_hw_ctx) 2657 goto err_percpu; 2658 2659 q->mq_map = set->mq_map; 2660 2661 blk_mq_realloc_hw_ctxs(set, q); 2662 if (!q->nr_hw_queues) 2663 goto err_hctxs; 2664 2665 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2666 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2667 2668 q->nr_queues = nr_cpu_ids; 2669 2670 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2671 2672 if (!(set->flags & BLK_MQ_F_SG_MERGE)) 2673 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 2674 2675 q->sg_reserved_size = INT_MAX; 2676 2677 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2678 INIT_LIST_HEAD(&q->requeue_list); 2679 spin_lock_init(&q->requeue_lock); 2680 2681 blk_queue_make_request(q, blk_mq_make_request); 2682 if (q->mq_ops->poll) 2683 q->poll_fn = blk_mq_poll; 2684 2685 /* 2686 * Do this after blk_queue_make_request() overrides it... 2687 */ 2688 q->nr_requests = set->queue_depth; 2689 2690 /* 2691 * Default to classic polling 2692 */ 2693 q->poll_nsec = -1; 2694 2695 if (set->ops->complete) 2696 blk_queue_softirq_done(q, set->ops->complete); 2697 2698 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2699 blk_mq_add_queue_tag_set(set, q); 2700 blk_mq_map_swqueue(q); 2701 2702 if (!(set->flags & BLK_MQ_F_NO_SCHED)) { 2703 int ret; 2704 2705 ret = blk_mq_sched_init(q); 2706 if (ret) 2707 return ERR_PTR(ret); 2708 } 2709 2710 return q; 2711 2712 err_hctxs: 2713 kfree(q->queue_hw_ctx); 2714 err_percpu: 2715 free_percpu(q->queue_ctx); 2716 err_exit: 2717 q->mq_ops = NULL; 2718 return ERR_PTR(-ENOMEM); 2719 } 2720 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2721 2722 void blk_mq_free_queue(struct request_queue *q) 2723 { 2724 struct blk_mq_tag_set *set = q->tag_set; 2725 2726 blk_mq_del_queue_tag_set(q); 2727 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2728 } 2729 2730 /* Basically redo blk_mq_init_queue with queue frozen */ 2731 static void blk_mq_queue_reinit(struct request_queue *q) 2732 { 2733 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); 2734 2735 blk_mq_debugfs_unregister_hctxs(q); 2736 blk_mq_sysfs_unregister(q); 2737 2738 /* 2739 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe 2740 * we should change hctx numa_node according to the new topology (this 2741 * involves freeing and re-allocating memory, worth doing?) 2742 */ 2743 blk_mq_map_swqueue(q); 2744 2745 blk_mq_sysfs_register(q); 2746 blk_mq_debugfs_register_hctxs(q); 2747 } 2748 2749 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2750 { 2751 int i; 2752 2753 for (i = 0; i < set->nr_hw_queues; i++) 2754 if (!__blk_mq_alloc_rq_map(set, i)) 2755 goto out_unwind; 2756 2757 return 0; 2758 2759 out_unwind: 2760 while (--i >= 0) 2761 blk_mq_free_rq_map(set->tags[i]); 2762 2763 return -ENOMEM; 2764 } 2765 2766 /* 2767 * Allocate the request maps associated with this tag_set. Note that this 2768 * may reduce the depth asked for, if memory is tight. set->queue_depth 2769 * will be updated to reflect the allocated depth. 2770 */ 2771 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2772 { 2773 unsigned int depth; 2774 int err; 2775 2776 depth = set->queue_depth; 2777 do { 2778 err = __blk_mq_alloc_rq_maps(set); 2779 if (!err) 2780 break; 2781 2782 set->queue_depth >>= 1; 2783 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2784 err = -ENOMEM; 2785 break; 2786 } 2787 } while (set->queue_depth); 2788 2789 if (!set->queue_depth || err) { 2790 pr_err("blk-mq: failed to allocate request map\n"); 2791 return -ENOMEM; 2792 } 2793 2794 if (depth != set->queue_depth) 2795 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2796 depth, set->queue_depth); 2797 2798 return 0; 2799 } 2800 2801 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2802 { 2803 if (set->ops->map_queues) { 2804 int cpu; 2805 /* 2806 * transport .map_queues is usually done in the following 2807 * way: 2808 * 2809 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2810 * mask = get_cpu_mask(queue) 2811 * for_each_cpu(cpu, mask) 2812 * set->mq_map[cpu] = queue; 2813 * } 2814 * 2815 * When we need to remap, the table has to be cleared for 2816 * killing stale mapping since one CPU may not be mapped 2817 * to any hw queue. 2818 */ 2819 for_each_possible_cpu(cpu) 2820 set->mq_map[cpu] = 0; 2821 2822 return set->ops->map_queues(set); 2823 } else 2824 return blk_mq_map_queues(set); 2825 } 2826 2827 /* 2828 * Alloc a tag set to be associated with one or more request queues. 2829 * May fail with EINVAL for various error conditions. May adjust the 2830 * requested depth down, if if it too large. In that case, the set 2831 * value will be stored in set->queue_depth. 2832 */ 2833 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 2834 { 2835 int ret; 2836 2837 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 2838 2839 if (!set->nr_hw_queues) 2840 return -EINVAL; 2841 if (!set->queue_depth) 2842 return -EINVAL; 2843 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 2844 return -EINVAL; 2845 2846 if (!set->ops->queue_rq) 2847 return -EINVAL; 2848 2849 if (!set->ops->get_budget ^ !set->ops->put_budget) 2850 return -EINVAL; 2851 2852 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 2853 pr_info("blk-mq: reduced tag depth to %u\n", 2854 BLK_MQ_MAX_DEPTH); 2855 set->queue_depth = BLK_MQ_MAX_DEPTH; 2856 } 2857 2858 /* 2859 * If a crashdump is active, then we are potentially in a very 2860 * memory constrained environment. Limit us to 1 queue and 2861 * 64 tags to prevent using too much memory. 2862 */ 2863 if (is_kdump_kernel()) { 2864 set->nr_hw_queues = 1; 2865 set->queue_depth = min(64U, set->queue_depth); 2866 } 2867 /* 2868 * There is no use for more h/w queues than cpus. 2869 */ 2870 if (set->nr_hw_queues > nr_cpu_ids) 2871 set->nr_hw_queues = nr_cpu_ids; 2872 2873 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *), 2874 GFP_KERNEL, set->numa_node); 2875 if (!set->tags) 2876 return -ENOMEM; 2877 2878 ret = -ENOMEM; 2879 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids, 2880 GFP_KERNEL, set->numa_node); 2881 if (!set->mq_map) 2882 goto out_free_tags; 2883 2884 ret = blk_mq_update_queue_map(set); 2885 if (ret) 2886 goto out_free_mq_map; 2887 2888 ret = blk_mq_alloc_rq_maps(set); 2889 if (ret) 2890 goto out_free_mq_map; 2891 2892 mutex_init(&set->tag_list_lock); 2893 INIT_LIST_HEAD(&set->tag_list); 2894 2895 return 0; 2896 2897 out_free_mq_map: 2898 kfree(set->mq_map); 2899 set->mq_map = NULL; 2900 out_free_tags: 2901 kfree(set->tags); 2902 set->tags = NULL; 2903 return ret; 2904 } 2905 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 2906 2907 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 2908 { 2909 int i; 2910 2911 for (i = 0; i < nr_cpu_ids; i++) 2912 blk_mq_free_map_and_requests(set, i); 2913 2914 kfree(set->mq_map); 2915 set->mq_map = NULL; 2916 2917 kfree(set->tags); 2918 set->tags = NULL; 2919 } 2920 EXPORT_SYMBOL(blk_mq_free_tag_set); 2921 2922 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 2923 { 2924 struct blk_mq_tag_set *set = q->tag_set; 2925 struct blk_mq_hw_ctx *hctx; 2926 int i, ret; 2927 2928 if (!set) 2929 return -EINVAL; 2930 2931 blk_mq_freeze_queue(q); 2932 blk_mq_quiesce_queue(q); 2933 2934 ret = 0; 2935 queue_for_each_hw_ctx(q, hctx, i) { 2936 if (!hctx->tags) 2937 continue; 2938 /* 2939 * If we're using an MQ scheduler, just update the scheduler 2940 * queue depth. This is similar to what the old code would do. 2941 */ 2942 if (!hctx->sched_tags) { 2943 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 2944 false); 2945 } else { 2946 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 2947 nr, true); 2948 } 2949 if (ret) 2950 break; 2951 } 2952 2953 if (!ret) 2954 q->nr_requests = nr; 2955 2956 blk_mq_unquiesce_queue(q); 2957 blk_mq_unfreeze_queue(q); 2958 2959 return ret; 2960 } 2961 2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 2963 int nr_hw_queues) 2964 { 2965 struct request_queue *q; 2966 2967 lockdep_assert_held(&set->tag_list_lock); 2968 2969 if (nr_hw_queues > nr_cpu_ids) 2970 nr_hw_queues = nr_cpu_ids; 2971 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 2972 return; 2973 2974 list_for_each_entry(q, &set->tag_list, tag_set_list) 2975 blk_mq_freeze_queue(q); 2976 2977 set->nr_hw_queues = nr_hw_queues; 2978 blk_mq_update_queue_map(set); 2979 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2980 blk_mq_realloc_hw_ctxs(set, q); 2981 blk_mq_queue_reinit(q); 2982 } 2983 2984 list_for_each_entry(q, &set->tag_list, tag_set_list) 2985 blk_mq_unfreeze_queue(q); 2986 } 2987 2988 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 2989 { 2990 mutex_lock(&set->tag_list_lock); 2991 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 2992 mutex_unlock(&set->tag_list_lock); 2993 } 2994 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 2995 2996 /* Enable polling stats and return whether they were already enabled. */ 2997 static bool blk_poll_stats_enable(struct request_queue *q) 2998 { 2999 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3000 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3001 return true; 3002 blk_stat_add_callback(q, q->poll_cb); 3003 return false; 3004 } 3005 3006 static void blk_mq_poll_stats_start(struct request_queue *q) 3007 { 3008 /* 3009 * We don't arm the callback if polling stats are not enabled or the 3010 * callback is already active. 3011 */ 3012 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3013 blk_stat_is_active(q->poll_cb)) 3014 return; 3015 3016 blk_stat_activate_msecs(q->poll_cb, 100); 3017 } 3018 3019 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3020 { 3021 struct request_queue *q = cb->data; 3022 int bucket; 3023 3024 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3025 if (cb->stat[bucket].nr_samples) 3026 q->poll_stat[bucket] = cb->stat[bucket]; 3027 } 3028 } 3029 3030 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3031 struct blk_mq_hw_ctx *hctx, 3032 struct request *rq) 3033 { 3034 unsigned long ret = 0; 3035 int bucket; 3036 3037 /* 3038 * If stats collection isn't on, don't sleep but turn it on for 3039 * future users 3040 */ 3041 if (!blk_poll_stats_enable(q)) 3042 return 0; 3043 3044 /* 3045 * As an optimistic guess, use half of the mean service time 3046 * for this type of request. We can (and should) make this smarter. 3047 * For instance, if the completion latencies are tight, we can 3048 * get closer than just half the mean. This is especially 3049 * important on devices where the completion latencies are longer 3050 * than ~10 usec. We do use the stats for the relevant IO size 3051 * if available which does lead to better estimates. 3052 */ 3053 bucket = blk_mq_poll_stats_bkt(rq); 3054 if (bucket < 0) 3055 return ret; 3056 3057 if (q->poll_stat[bucket].nr_samples) 3058 ret = (q->poll_stat[bucket].mean + 1) / 2; 3059 3060 return ret; 3061 } 3062 3063 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3064 struct blk_mq_hw_ctx *hctx, 3065 struct request *rq) 3066 { 3067 struct hrtimer_sleeper hs; 3068 enum hrtimer_mode mode; 3069 unsigned int nsecs; 3070 ktime_t kt; 3071 3072 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3073 return false; 3074 3075 /* 3076 * poll_nsec can be: 3077 * 3078 * -1: don't ever hybrid sleep 3079 * 0: use half of prev avg 3080 * >0: use this specific value 3081 */ 3082 if (q->poll_nsec == -1) 3083 return false; 3084 else if (q->poll_nsec > 0) 3085 nsecs = q->poll_nsec; 3086 else 3087 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3088 3089 if (!nsecs) 3090 return false; 3091 3092 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3093 3094 /* 3095 * This will be replaced with the stats tracking code, using 3096 * 'avg_completion_time / 2' as the pre-sleep target. 3097 */ 3098 kt = nsecs; 3099 3100 mode = HRTIMER_MODE_REL; 3101 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); 3102 hrtimer_set_expires(&hs.timer, kt); 3103 3104 hrtimer_init_sleeper(&hs, current); 3105 do { 3106 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3107 break; 3108 set_current_state(TASK_UNINTERRUPTIBLE); 3109 hrtimer_start_expires(&hs.timer, mode); 3110 if (hs.task) 3111 io_schedule(); 3112 hrtimer_cancel(&hs.timer); 3113 mode = HRTIMER_MODE_ABS; 3114 } while (hs.task && !signal_pending(current)); 3115 3116 __set_current_state(TASK_RUNNING); 3117 destroy_hrtimer_on_stack(&hs.timer); 3118 return true; 3119 } 3120 3121 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) 3122 { 3123 struct request_queue *q = hctx->queue; 3124 long state; 3125 3126 /* 3127 * If we sleep, have the caller restart the poll loop to reset 3128 * the state. Like for the other success return cases, the 3129 * caller is responsible for checking if the IO completed. If 3130 * the IO isn't complete, we'll get called again and will go 3131 * straight to the busy poll loop. 3132 */ 3133 if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) 3134 return true; 3135 3136 hctx->poll_considered++; 3137 3138 state = current->state; 3139 while (!need_resched()) { 3140 int ret; 3141 3142 hctx->poll_invoked++; 3143 3144 ret = q->mq_ops->poll(hctx, rq->tag); 3145 if (ret > 0) { 3146 hctx->poll_success++; 3147 set_current_state(TASK_RUNNING); 3148 return true; 3149 } 3150 3151 if (signal_pending_state(state, current)) 3152 set_current_state(TASK_RUNNING); 3153 3154 if (current->state == TASK_RUNNING) 3155 return true; 3156 if (ret < 0) 3157 break; 3158 cpu_relax(); 3159 } 3160 3161 __set_current_state(TASK_RUNNING); 3162 return false; 3163 } 3164 3165 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) 3166 { 3167 struct blk_mq_hw_ctx *hctx; 3168 struct request *rq; 3169 3170 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3171 return false; 3172 3173 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3174 if (!blk_qc_t_is_internal(cookie)) 3175 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3176 else { 3177 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3178 /* 3179 * With scheduling, if the request has completed, we'll 3180 * get a NULL return here, as we clear the sched tag when 3181 * that happens. The request still remains valid, like always, 3182 * so we should be safe with just the NULL check. 3183 */ 3184 if (!rq) 3185 return false; 3186 } 3187 3188 return __blk_mq_poll(hctx, rq); 3189 } 3190 3191 static int __init blk_mq_init(void) 3192 { 3193 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3194 blk_mq_hctx_notify_dead); 3195 return 0; 3196 } 3197 subsys_initcall(blk_mq_init); 3198