1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/kmemleak.h> 15 #include <linux/mm.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/workqueue.h> 19 #include <linux/smp.h> 20 #include <linux/interrupt.h> 21 #include <linux/llist.h> 22 #include <linux/cpu.h> 23 #include <linux/cache.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 #include <linux/part_stat.h> 31 #include <linux/sched/isolation.h> 32 33 #include <trace/events/block.h> 34 35 #include <linux/t10-pi.h> 36 #include "blk.h" 37 #include "blk-mq.h" 38 #include "blk-mq-debugfs.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd); 46 47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags); 48 static void blk_mq_request_bypass_insert(struct request *rq, 49 blk_insert_t flags); 50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 51 struct list_head *list); 52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 53 struct io_comp_batch *iob, unsigned int flags); 54 55 /* 56 * Check if any of the ctx, dispatch list or elevator 57 * have pending work in this hardware queue. 58 */ 59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 60 { 61 return !list_empty_careful(&hctx->dispatch) || 62 sbitmap_any_bit_set(&hctx->ctx_map) || 63 blk_mq_sched_has_work(hctx); 64 } 65 66 /* 67 * Mark this ctx as having pending work in this hardware queue 68 */ 69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 70 struct blk_mq_ctx *ctx) 71 { 72 const int bit = ctx->index_hw[hctx->type]; 73 74 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 75 sbitmap_set_bit(&hctx->ctx_map, bit); 76 } 77 78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 79 struct blk_mq_ctx *ctx) 80 { 81 const int bit = ctx->index_hw[hctx->type]; 82 83 sbitmap_clear_bit(&hctx->ctx_map, bit); 84 } 85 86 struct mq_inflight { 87 struct block_device *part; 88 unsigned int inflight[2]; 89 }; 90 91 static bool blk_mq_check_inflight(struct request *rq, void *priv) 92 { 93 struct mq_inflight *mi = priv; 94 95 if (rq->rq_flags & RQF_IO_STAT && 96 (!bdev_is_partition(mi->part) || rq->part == mi->part) && 97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 98 mi->inflight[rq_data_dir(rq)]++; 99 100 return true; 101 } 102 103 unsigned int blk_mq_in_flight(struct request_queue *q, 104 struct block_device *part) 105 { 106 struct mq_inflight mi = { .part = part }; 107 108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 109 110 return mi.inflight[0] + mi.inflight[1]; 111 } 112 113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 114 unsigned int inflight[2]) 115 { 116 struct mq_inflight mi = { .part = part }; 117 118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 119 inflight[0] = mi.inflight[0]; 120 inflight[1] = mi.inflight[1]; 121 } 122 123 #ifdef CONFIG_LOCKDEP 124 static bool blk_freeze_set_owner(struct request_queue *q, 125 struct task_struct *owner) 126 { 127 if (!owner) 128 return false; 129 130 if (!q->mq_freeze_depth) { 131 q->mq_freeze_owner = owner; 132 q->mq_freeze_owner_depth = 1; 133 return true; 134 } 135 136 if (owner == q->mq_freeze_owner) 137 q->mq_freeze_owner_depth += 1; 138 return false; 139 } 140 141 /* verify the last unfreeze in owner context */ 142 static bool blk_unfreeze_check_owner(struct request_queue *q) 143 { 144 if (!q->mq_freeze_owner) 145 return false; 146 if (q->mq_freeze_owner != current) 147 return false; 148 if (--q->mq_freeze_owner_depth == 0) { 149 q->mq_freeze_owner = NULL; 150 return true; 151 } 152 return false; 153 } 154 155 #else 156 157 static bool blk_freeze_set_owner(struct request_queue *q, 158 struct task_struct *owner) 159 { 160 return false; 161 } 162 163 static bool blk_unfreeze_check_owner(struct request_queue *q) 164 { 165 return false; 166 } 167 #endif 168 169 bool __blk_freeze_queue_start(struct request_queue *q, 170 struct task_struct *owner) 171 { 172 bool freeze; 173 174 mutex_lock(&q->mq_freeze_lock); 175 freeze = blk_freeze_set_owner(q, owner); 176 if (++q->mq_freeze_depth == 1) { 177 percpu_ref_kill(&q->q_usage_counter); 178 mutex_unlock(&q->mq_freeze_lock); 179 if (queue_is_mq(q)) 180 blk_mq_run_hw_queues(q, false); 181 } else { 182 mutex_unlock(&q->mq_freeze_lock); 183 } 184 185 return freeze; 186 } 187 188 void blk_freeze_queue_start(struct request_queue *q) 189 { 190 if (__blk_freeze_queue_start(q, current)) 191 blk_freeze_acquire_lock(q, false, false); 192 } 193 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 194 195 void blk_mq_freeze_queue_wait(struct request_queue *q) 196 { 197 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 198 } 199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 200 201 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 202 unsigned long timeout) 203 { 204 return wait_event_timeout(q->mq_freeze_wq, 205 percpu_ref_is_zero(&q->q_usage_counter), 206 timeout); 207 } 208 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 209 210 void blk_mq_freeze_queue(struct request_queue *q) 211 { 212 blk_freeze_queue_start(q); 213 blk_mq_freeze_queue_wait(q); 214 } 215 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 216 217 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 218 { 219 bool unfreeze; 220 221 mutex_lock(&q->mq_freeze_lock); 222 if (force_atomic) 223 q->q_usage_counter.data->force_atomic = true; 224 q->mq_freeze_depth--; 225 WARN_ON_ONCE(q->mq_freeze_depth < 0); 226 if (!q->mq_freeze_depth) { 227 percpu_ref_resurrect(&q->q_usage_counter); 228 wake_up_all(&q->mq_freeze_wq); 229 } 230 unfreeze = blk_unfreeze_check_owner(q); 231 mutex_unlock(&q->mq_freeze_lock); 232 233 return unfreeze; 234 } 235 236 void blk_mq_unfreeze_queue(struct request_queue *q) 237 { 238 if (__blk_mq_unfreeze_queue(q, false)) 239 blk_unfreeze_release_lock(q, false, false); 240 } 241 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 242 243 /* 244 * non_owner variant of blk_freeze_queue_start 245 * 246 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen 247 * by the same task. This is fragile and should not be used if at all 248 * possible. 249 */ 250 void blk_freeze_queue_start_non_owner(struct request_queue *q) 251 { 252 __blk_freeze_queue_start(q, NULL); 253 } 254 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner); 255 256 /* non_owner variant of blk_mq_unfreeze_queue */ 257 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q) 258 { 259 __blk_mq_unfreeze_queue(q, false); 260 } 261 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner); 262 263 /* 264 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 265 * mpt3sas driver such that this function can be removed. 266 */ 267 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 268 { 269 unsigned long flags; 270 271 spin_lock_irqsave(&q->queue_lock, flags); 272 if (!q->quiesce_depth++) 273 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 274 spin_unlock_irqrestore(&q->queue_lock, flags); 275 } 276 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 277 278 /** 279 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done 280 * @set: tag_set to wait on 281 * 282 * Note: it is driver's responsibility for making sure that quiesce has 283 * been started on or more of the request_queues of the tag_set. This 284 * function only waits for the quiesce on those request_queues that had 285 * the quiesce flag set using blk_mq_quiesce_queue_nowait. 286 */ 287 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set) 288 { 289 if (set->flags & BLK_MQ_F_BLOCKING) 290 synchronize_srcu(set->srcu); 291 else 292 synchronize_rcu(); 293 } 294 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done); 295 296 /** 297 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 298 * @q: request queue. 299 * 300 * Note: this function does not prevent that the struct request end_io() 301 * callback function is invoked. Once this function is returned, we make 302 * sure no dispatch can happen until the queue is unquiesced via 303 * blk_mq_unquiesce_queue(). 304 */ 305 void blk_mq_quiesce_queue(struct request_queue *q) 306 { 307 blk_mq_quiesce_queue_nowait(q); 308 /* nothing to wait for non-mq queues */ 309 if (queue_is_mq(q)) 310 blk_mq_wait_quiesce_done(q->tag_set); 311 } 312 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 313 314 /* 315 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 316 * @q: request queue. 317 * 318 * This function recovers queue into the state before quiescing 319 * which is done by blk_mq_quiesce_queue. 320 */ 321 void blk_mq_unquiesce_queue(struct request_queue *q) 322 { 323 unsigned long flags; 324 bool run_queue = false; 325 326 spin_lock_irqsave(&q->queue_lock, flags); 327 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) { 328 ; 329 } else if (!--q->quiesce_depth) { 330 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 331 run_queue = true; 332 } 333 spin_unlock_irqrestore(&q->queue_lock, flags); 334 335 /* dispatch requests which are inserted during quiescing */ 336 if (run_queue) 337 blk_mq_run_hw_queues(q, true); 338 } 339 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 340 341 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set) 342 { 343 struct request_queue *q; 344 345 mutex_lock(&set->tag_list_lock); 346 list_for_each_entry(q, &set->tag_list, tag_set_list) { 347 if (!blk_queue_skip_tagset_quiesce(q)) 348 blk_mq_quiesce_queue_nowait(q); 349 } 350 mutex_unlock(&set->tag_list_lock); 351 352 blk_mq_wait_quiesce_done(set); 353 } 354 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset); 355 356 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set) 357 { 358 struct request_queue *q; 359 360 mutex_lock(&set->tag_list_lock); 361 list_for_each_entry(q, &set->tag_list, tag_set_list) { 362 if (!blk_queue_skip_tagset_quiesce(q)) 363 blk_mq_unquiesce_queue(q); 364 } 365 mutex_unlock(&set->tag_list_lock); 366 } 367 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset); 368 369 void blk_mq_wake_waiters(struct request_queue *q) 370 { 371 struct blk_mq_hw_ctx *hctx; 372 unsigned long i; 373 374 queue_for_each_hw_ctx(q, hctx, i) 375 if (blk_mq_hw_queue_mapped(hctx)) 376 blk_mq_tag_wakeup_all(hctx->tags, true); 377 } 378 379 void blk_rq_init(struct request_queue *q, struct request *rq) 380 { 381 memset(rq, 0, sizeof(*rq)); 382 383 INIT_LIST_HEAD(&rq->queuelist); 384 rq->q = q; 385 rq->__sector = (sector_t) -1; 386 INIT_HLIST_NODE(&rq->hash); 387 RB_CLEAR_NODE(&rq->rb_node); 388 rq->tag = BLK_MQ_NO_TAG; 389 rq->internal_tag = BLK_MQ_NO_TAG; 390 rq->start_time_ns = blk_time_get_ns(); 391 rq->part = NULL; 392 blk_crypto_rq_set_defaults(rq); 393 } 394 EXPORT_SYMBOL(blk_rq_init); 395 396 /* Set start and alloc time when the allocated request is actually used */ 397 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns) 398 { 399 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 400 if (blk_queue_rq_alloc_time(rq->q)) 401 rq->alloc_time_ns = alloc_time_ns; 402 else 403 rq->alloc_time_ns = 0; 404 #endif 405 } 406 407 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 408 struct blk_mq_tags *tags, unsigned int tag) 409 { 410 struct blk_mq_ctx *ctx = data->ctx; 411 struct blk_mq_hw_ctx *hctx = data->hctx; 412 struct request_queue *q = data->q; 413 struct request *rq = tags->static_rqs[tag]; 414 415 rq->q = q; 416 rq->mq_ctx = ctx; 417 rq->mq_hctx = hctx; 418 rq->cmd_flags = data->cmd_flags; 419 420 if (data->flags & BLK_MQ_REQ_PM) 421 data->rq_flags |= RQF_PM; 422 rq->rq_flags = data->rq_flags; 423 424 if (data->rq_flags & RQF_SCHED_TAGS) { 425 rq->tag = BLK_MQ_NO_TAG; 426 rq->internal_tag = tag; 427 } else { 428 rq->tag = tag; 429 rq->internal_tag = BLK_MQ_NO_TAG; 430 } 431 rq->timeout = 0; 432 433 rq->part = NULL; 434 rq->io_start_time_ns = 0; 435 rq->stats_sectors = 0; 436 rq->nr_phys_segments = 0; 437 rq->nr_integrity_segments = 0; 438 rq->end_io = NULL; 439 rq->end_io_data = NULL; 440 441 blk_crypto_rq_set_defaults(rq); 442 INIT_LIST_HEAD(&rq->queuelist); 443 /* tag was already set */ 444 WRITE_ONCE(rq->deadline, 0); 445 req_ref_set(rq, 1); 446 447 if (rq->rq_flags & RQF_USE_SCHED) { 448 struct elevator_queue *e = data->q->elevator; 449 450 INIT_HLIST_NODE(&rq->hash); 451 RB_CLEAR_NODE(&rq->rb_node); 452 453 if (e->type->ops.prepare_request) 454 e->type->ops.prepare_request(rq); 455 } 456 457 return rq; 458 } 459 460 static inline struct request * 461 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data) 462 { 463 unsigned int tag, tag_offset; 464 struct blk_mq_tags *tags; 465 struct request *rq; 466 unsigned long tag_mask; 467 int i, nr = 0; 468 469 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset); 470 if (unlikely(!tag_mask)) 471 return NULL; 472 473 tags = blk_mq_tags_from_data(data); 474 for (i = 0; tag_mask; i++) { 475 if (!(tag_mask & (1UL << i))) 476 continue; 477 tag = tag_offset + i; 478 prefetch(tags->static_rqs[tag]); 479 tag_mask &= ~(1UL << i); 480 rq = blk_mq_rq_ctx_init(data, tags, tag); 481 rq_list_add_head(data->cached_rqs, rq); 482 nr++; 483 } 484 if (!(data->rq_flags & RQF_SCHED_TAGS)) 485 blk_mq_add_active_requests(data->hctx, nr); 486 /* caller already holds a reference, add for remainder */ 487 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1); 488 data->nr_tags -= nr; 489 490 return rq_list_pop(data->cached_rqs); 491 } 492 493 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data) 494 { 495 struct request_queue *q = data->q; 496 u64 alloc_time_ns = 0; 497 struct request *rq; 498 unsigned int tag; 499 500 /* alloc_time includes depth and tag waits */ 501 if (blk_queue_rq_alloc_time(q)) 502 alloc_time_ns = blk_time_get_ns(); 503 504 if (data->cmd_flags & REQ_NOWAIT) 505 data->flags |= BLK_MQ_REQ_NOWAIT; 506 507 retry: 508 data->ctx = blk_mq_get_ctx(q); 509 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 510 511 if (q->elevator) { 512 /* 513 * All requests use scheduler tags when an I/O scheduler is 514 * enabled for the queue. 515 */ 516 data->rq_flags |= RQF_SCHED_TAGS; 517 518 /* 519 * Flush/passthrough requests are special and go directly to the 520 * dispatch list. 521 */ 522 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH && 523 !blk_op_is_passthrough(data->cmd_flags)) { 524 struct elevator_mq_ops *ops = &q->elevator->type->ops; 525 526 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED); 527 528 data->rq_flags |= RQF_USE_SCHED; 529 if (ops->limit_depth) 530 ops->limit_depth(data->cmd_flags, data); 531 } 532 } else { 533 blk_mq_tag_busy(data->hctx); 534 } 535 536 if (data->flags & BLK_MQ_REQ_RESERVED) 537 data->rq_flags |= RQF_RESV; 538 539 /* 540 * Try batched alloc if we want more than 1 tag. 541 */ 542 if (data->nr_tags > 1) { 543 rq = __blk_mq_alloc_requests_batch(data); 544 if (rq) { 545 blk_mq_rq_time_init(rq, alloc_time_ns); 546 return rq; 547 } 548 data->nr_tags = 1; 549 } 550 551 /* 552 * Waiting allocations only fail because of an inactive hctx. In that 553 * case just retry the hctx assignment and tag allocation as CPU hotplug 554 * should have migrated us to an online CPU by now. 555 */ 556 tag = blk_mq_get_tag(data); 557 if (tag == BLK_MQ_NO_TAG) { 558 if (data->flags & BLK_MQ_REQ_NOWAIT) 559 return NULL; 560 /* 561 * Give up the CPU and sleep for a random short time to 562 * ensure that thread using a realtime scheduling class 563 * are migrated off the CPU, and thus off the hctx that 564 * is going away. 565 */ 566 msleep(3); 567 goto retry; 568 } 569 570 if (!(data->rq_flags & RQF_SCHED_TAGS)) 571 blk_mq_inc_active_requests(data->hctx); 572 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag); 573 blk_mq_rq_time_init(rq, alloc_time_ns); 574 return rq; 575 } 576 577 static struct request *blk_mq_rq_cache_fill(struct request_queue *q, 578 struct blk_plug *plug, 579 blk_opf_t opf, 580 blk_mq_req_flags_t flags) 581 { 582 struct blk_mq_alloc_data data = { 583 .q = q, 584 .flags = flags, 585 .cmd_flags = opf, 586 .nr_tags = plug->nr_ios, 587 .cached_rqs = &plug->cached_rqs, 588 }; 589 struct request *rq; 590 591 if (blk_queue_enter(q, flags)) 592 return NULL; 593 594 plug->nr_ios = 1; 595 596 rq = __blk_mq_alloc_requests(&data); 597 if (unlikely(!rq)) 598 blk_queue_exit(q); 599 return rq; 600 } 601 602 static struct request *blk_mq_alloc_cached_request(struct request_queue *q, 603 blk_opf_t opf, 604 blk_mq_req_flags_t flags) 605 { 606 struct blk_plug *plug = current->plug; 607 struct request *rq; 608 609 if (!plug) 610 return NULL; 611 612 if (rq_list_empty(&plug->cached_rqs)) { 613 if (plug->nr_ios == 1) 614 return NULL; 615 rq = blk_mq_rq_cache_fill(q, plug, opf, flags); 616 if (!rq) 617 return NULL; 618 } else { 619 rq = rq_list_peek(&plug->cached_rqs); 620 if (!rq || rq->q != q) 621 return NULL; 622 623 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type) 624 return NULL; 625 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 626 return NULL; 627 628 rq_list_pop(&plug->cached_rqs); 629 blk_mq_rq_time_init(rq, blk_time_get_ns()); 630 } 631 632 rq->cmd_flags = opf; 633 INIT_LIST_HEAD(&rq->queuelist); 634 return rq; 635 } 636 637 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf, 638 blk_mq_req_flags_t flags) 639 { 640 struct request *rq; 641 642 rq = blk_mq_alloc_cached_request(q, opf, flags); 643 if (!rq) { 644 struct blk_mq_alloc_data data = { 645 .q = q, 646 .flags = flags, 647 .cmd_flags = opf, 648 .nr_tags = 1, 649 }; 650 int ret; 651 652 ret = blk_queue_enter(q, flags); 653 if (ret) 654 return ERR_PTR(ret); 655 656 rq = __blk_mq_alloc_requests(&data); 657 if (!rq) 658 goto out_queue_exit; 659 } 660 rq->__data_len = 0; 661 rq->__sector = (sector_t) -1; 662 rq->bio = rq->biotail = NULL; 663 return rq; 664 out_queue_exit: 665 blk_queue_exit(q); 666 return ERR_PTR(-EWOULDBLOCK); 667 } 668 EXPORT_SYMBOL(blk_mq_alloc_request); 669 670 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 671 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx) 672 { 673 struct blk_mq_alloc_data data = { 674 .q = q, 675 .flags = flags, 676 .cmd_flags = opf, 677 .nr_tags = 1, 678 }; 679 u64 alloc_time_ns = 0; 680 struct request *rq; 681 unsigned int cpu; 682 unsigned int tag; 683 int ret; 684 685 /* alloc_time includes depth and tag waits */ 686 if (blk_queue_rq_alloc_time(q)) 687 alloc_time_ns = blk_time_get_ns(); 688 689 /* 690 * If the tag allocator sleeps we could get an allocation for a 691 * different hardware context. No need to complicate the low level 692 * allocator for this for the rare use case of a command tied to 693 * a specific queue. 694 */ 695 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) || 696 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED))) 697 return ERR_PTR(-EINVAL); 698 699 if (hctx_idx >= q->nr_hw_queues) 700 return ERR_PTR(-EIO); 701 702 ret = blk_queue_enter(q, flags); 703 if (ret) 704 return ERR_PTR(ret); 705 706 /* 707 * Check if the hardware context is actually mapped to anything. 708 * If not tell the caller that it should skip this queue. 709 */ 710 ret = -EXDEV; 711 data.hctx = xa_load(&q->hctx_table, hctx_idx); 712 if (!blk_mq_hw_queue_mapped(data.hctx)) 713 goto out_queue_exit; 714 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 715 if (cpu >= nr_cpu_ids) 716 goto out_queue_exit; 717 data.ctx = __blk_mq_get_ctx(q, cpu); 718 719 if (q->elevator) 720 data.rq_flags |= RQF_SCHED_TAGS; 721 else 722 blk_mq_tag_busy(data.hctx); 723 724 if (flags & BLK_MQ_REQ_RESERVED) 725 data.rq_flags |= RQF_RESV; 726 727 ret = -EWOULDBLOCK; 728 tag = blk_mq_get_tag(&data); 729 if (tag == BLK_MQ_NO_TAG) 730 goto out_queue_exit; 731 if (!(data.rq_flags & RQF_SCHED_TAGS)) 732 blk_mq_inc_active_requests(data.hctx); 733 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag); 734 blk_mq_rq_time_init(rq, alloc_time_ns); 735 rq->__data_len = 0; 736 rq->__sector = (sector_t) -1; 737 rq->bio = rq->biotail = NULL; 738 return rq; 739 740 out_queue_exit: 741 blk_queue_exit(q); 742 return ERR_PTR(ret); 743 } 744 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 745 746 static void blk_mq_finish_request(struct request *rq) 747 { 748 struct request_queue *q = rq->q; 749 750 blk_zone_finish_request(rq); 751 752 if (rq->rq_flags & RQF_USE_SCHED) { 753 q->elevator->type->ops.finish_request(rq); 754 /* 755 * For postflush request that may need to be 756 * completed twice, we should clear this flag 757 * to avoid double finish_request() on the rq. 758 */ 759 rq->rq_flags &= ~RQF_USE_SCHED; 760 } 761 } 762 763 static void __blk_mq_free_request(struct request *rq) 764 { 765 struct request_queue *q = rq->q; 766 struct blk_mq_ctx *ctx = rq->mq_ctx; 767 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 768 const int sched_tag = rq->internal_tag; 769 770 blk_crypto_free_request(rq); 771 blk_pm_mark_last_busy(rq); 772 rq->mq_hctx = NULL; 773 774 if (rq->tag != BLK_MQ_NO_TAG) { 775 blk_mq_dec_active_requests(hctx); 776 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 777 } 778 if (sched_tag != BLK_MQ_NO_TAG) 779 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 780 blk_mq_sched_restart(hctx); 781 blk_queue_exit(q); 782 } 783 784 void blk_mq_free_request(struct request *rq) 785 { 786 struct request_queue *q = rq->q; 787 788 blk_mq_finish_request(rq); 789 790 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 791 laptop_io_completion(q->disk->bdi); 792 793 rq_qos_done(q, rq); 794 795 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 796 if (req_ref_put_and_test(rq)) 797 __blk_mq_free_request(rq); 798 } 799 EXPORT_SYMBOL_GPL(blk_mq_free_request); 800 801 void blk_mq_free_plug_rqs(struct blk_plug *plug) 802 { 803 struct request *rq; 804 805 while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL) 806 blk_mq_free_request(rq); 807 } 808 809 void blk_dump_rq_flags(struct request *rq, char *msg) 810 { 811 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 812 rq->q->disk ? rq->q->disk->disk_name : "?", 813 (__force unsigned long long) rq->cmd_flags); 814 815 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 816 (unsigned long long)blk_rq_pos(rq), 817 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 818 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 819 rq->bio, rq->biotail, blk_rq_bytes(rq)); 820 } 821 EXPORT_SYMBOL(blk_dump_rq_flags); 822 823 static void blk_account_io_completion(struct request *req, unsigned int bytes) 824 { 825 if (req->rq_flags & RQF_IO_STAT) { 826 const int sgrp = op_stat_group(req_op(req)); 827 828 part_stat_lock(); 829 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 830 part_stat_unlock(); 831 } 832 } 833 834 static void blk_print_req_error(struct request *req, blk_status_t status) 835 { 836 printk_ratelimited(KERN_ERR 837 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 838 "phys_seg %u prio class %u\n", 839 blk_status_to_str(status), 840 req->q->disk ? req->q->disk->disk_name : "?", 841 blk_rq_pos(req), (__force u32)req_op(req), 842 blk_op_str(req_op(req)), 843 (__force u32)(req->cmd_flags & ~REQ_OP_MASK), 844 req->nr_phys_segments, 845 IOPRIO_PRIO_CLASS(req_get_ioprio(req))); 846 } 847 848 /* 849 * Fully end IO on a request. Does not support partial completions, or 850 * errors. 851 */ 852 static void blk_complete_request(struct request *req) 853 { 854 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0; 855 int total_bytes = blk_rq_bytes(req); 856 struct bio *bio = req->bio; 857 858 trace_block_rq_complete(req, BLK_STS_OK, total_bytes); 859 860 if (!bio) 861 return; 862 863 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ) 864 blk_integrity_complete(req, total_bytes); 865 866 /* 867 * Upper layers may call blk_crypto_evict_key() anytime after the last 868 * bio_endio(). Therefore, the keyslot must be released before that. 869 */ 870 blk_crypto_rq_put_keyslot(req); 871 872 blk_account_io_completion(req, total_bytes); 873 874 do { 875 struct bio *next = bio->bi_next; 876 877 /* Completion has already been traced */ 878 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 879 880 blk_zone_update_request_bio(req, bio); 881 882 if (!is_flush) 883 bio_endio(bio); 884 bio = next; 885 } while (bio); 886 887 /* 888 * Reset counters so that the request stacking driver 889 * can find how many bytes remain in the request 890 * later. 891 */ 892 if (!req->end_io) { 893 req->bio = NULL; 894 req->__data_len = 0; 895 } 896 } 897 898 /** 899 * blk_update_request - Complete multiple bytes without completing the request 900 * @req: the request being processed 901 * @error: block status code 902 * @nr_bytes: number of bytes to complete for @req 903 * 904 * Description: 905 * Ends I/O on a number of bytes attached to @req, but doesn't complete 906 * the request structure even if @req doesn't have leftover. 907 * If @req has leftover, sets it up for the next range of segments. 908 * 909 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 910 * %false return from this function. 911 * 912 * Note: 913 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 914 * except in the consistency check at the end of this function. 915 * 916 * Return: 917 * %false - this request doesn't have any more data 918 * %true - this request has more data 919 **/ 920 bool blk_update_request(struct request *req, blk_status_t error, 921 unsigned int nr_bytes) 922 { 923 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ; 924 bool quiet = req->rq_flags & RQF_QUIET; 925 int total_bytes; 926 927 trace_block_rq_complete(req, error, nr_bytes); 928 929 if (!req->bio) 930 return false; 931 932 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 933 error == BLK_STS_OK) 934 blk_integrity_complete(req, nr_bytes); 935 936 /* 937 * Upper layers may call blk_crypto_evict_key() anytime after the last 938 * bio_endio(). Therefore, the keyslot must be released before that. 939 */ 940 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req)) 941 __blk_crypto_rq_put_keyslot(req); 942 943 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) && 944 !test_bit(GD_DEAD, &req->q->disk->state)) { 945 blk_print_req_error(req, error); 946 trace_block_rq_error(req, error, nr_bytes); 947 } 948 949 blk_account_io_completion(req, nr_bytes); 950 951 total_bytes = 0; 952 while (req->bio) { 953 struct bio *bio = req->bio; 954 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 955 956 if (unlikely(error)) 957 bio->bi_status = error; 958 959 if (bio_bytes == bio->bi_iter.bi_size) { 960 req->bio = bio->bi_next; 961 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) { 962 /* 963 * Partial zone append completions cannot be supported 964 * as the BIO fragments may end up not being written 965 * sequentially. 966 */ 967 bio->bi_status = BLK_STS_IOERR; 968 } 969 970 /* Completion has already been traced */ 971 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 972 if (unlikely(quiet)) 973 bio_set_flag(bio, BIO_QUIET); 974 975 bio_advance(bio, bio_bytes); 976 977 /* Don't actually finish bio if it's part of flush sequence */ 978 if (!bio->bi_iter.bi_size) { 979 blk_zone_update_request_bio(req, bio); 980 if (!is_flush) 981 bio_endio(bio); 982 } 983 984 total_bytes += bio_bytes; 985 nr_bytes -= bio_bytes; 986 987 if (!nr_bytes) 988 break; 989 } 990 991 /* 992 * completely done 993 */ 994 if (!req->bio) { 995 /* 996 * Reset counters so that the request stacking driver 997 * can find how many bytes remain in the request 998 * later. 999 */ 1000 req->__data_len = 0; 1001 return false; 1002 } 1003 1004 req->__data_len -= total_bytes; 1005 1006 /* update sector only for requests with clear definition of sector */ 1007 if (!blk_rq_is_passthrough(req)) 1008 req->__sector += total_bytes >> 9; 1009 1010 /* mixed attributes always follow the first bio */ 1011 if (req->rq_flags & RQF_MIXED_MERGE) { 1012 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1013 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1014 } 1015 1016 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1017 /* 1018 * If total number of sectors is less than the first segment 1019 * size, something has gone terribly wrong. 1020 */ 1021 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1022 blk_dump_rq_flags(req, "request botched"); 1023 req->__data_len = blk_rq_cur_bytes(req); 1024 } 1025 1026 /* recalculate the number of segments */ 1027 req->nr_phys_segments = blk_recalc_rq_segments(req); 1028 } 1029 1030 return true; 1031 } 1032 EXPORT_SYMBOL_GPL(blk_update_request); 1033 1034 static inline void blk_account_io_done(struct request *req, u64 now) 1035 { 1036 trace_block_io_done(req); 1037 1038 /* 1039 * Account IO completion. flush_rq isn't accounted as a 1040 * normal IO on queueing nor completion. Accounting the 1041 * containing request is enough. 1042 */ 1043 if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) { 1044 const int sgrp = op_stat_group(req_op(req)); 1045 1046 part_stat_lock(); 1047 update_io_ticks(req->part, jiffies, true); 1048 part_stat_inc(req->part, ios[sgrp]); 1049 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1050 part_stat_local_dec(req->part, 1051 in_flight[op_is_write(req_op(req))]); 1052 part_stat_unlock(); 1053 } 1054 } 1055 1056 static inline bool blk_rq_passthrough_stats(struct request *req) 1057 { 1058 struct bio *bio = req->bio; 1059 1060 if (!blk_queue_passthrough_stat(req->q)) 1061 return false; 1062 1063 /* Requests without a bio do not transfer data. */ 1064 if (!bio) 1065 return false; 1066 1067 /* 1068 * Stats are accumulated in the bdev, so must have one attached to a 1069 * bio to track stats. Most drivers do not set the bdev for passthrough 1070 * requests, but nvme is one that will set it. 1071 */ 1072 if (!bio->bi_bdev) 1073 return false; 1074 1075 /* 1076 * We don't know what a passthrough command does, but we know the 1077 * payload size and data direction. Ensuring the size is aligned to the 1078 * block size filters out most commands with payloads that don't 1079 * represent sector access. 1080 */ 1081 if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1)) 1082 return false; 1083 return true; 1084 } 1085 1086 static inline void blk_account_io_start(struct request *req) 1087 { 1088 trace_block_io_start(req); 1089 1090 if (!blk_queue_io_stat(req->q)) 1091 return; 1092 if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req)) 1093 return; 1094 1095 req->rq_flags |= RQF_IO_STAT; 1096 req->start_time_ns = blk_time_get_ns(); 1097 1098 /* 1099 * All non-passthrough requests are created from a bio with one 1100 * exception: when a flush command that is part of a flush sequence 1101 * generated by the state machine in blk-flush.c is cloned onto the 1102 * lower device by dm-multipath we can get here without a bio. 1103 */ 1104 if (req->bio) 1105 req->part = req->bio->bi_bdev; 1106 else 1107 req->part = req->q->disk->part0; 1108 1109 part_stat_lock(); 1110 update_io_ticks(req->part, jiffies, false); 1111 part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]); 1112 part_stat_unlock(); 1113 } 1114 1115 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now) 1116 { 1117 if (rq->rq_flags & RQF_STATS) 1118 blk_stat_add(rq, now); 1119 1120 blk_mq_sched_completed_request(rq, now); 1121 blk_account_io_done(rq, now); 1122 } 1123 1124 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 1125 { 1126 if (blk_mq_need_time_stamp(rq)) 1127 __blk_mq_end_request_acct(rq, blk_time_get_ns()); 1128 1129 blk_mq_finish_request(rq); 1130 1131 if (rq->end_io) { 1132 rq_qos_done(rq->q, rq); 1133 if (rq->end_io(rq, error) == RQ_END_IO_FREE) 1134 blk_mq_free_request(rq); 1135 } else { 1136 blk_mq_free_request(rq); 1137 } 1138 } 1139 EXPORT_SYMBOL(__blk_mq_end_request); 1140 1141 void blk_mq_end_request(struct request *rq, blk_status_t error) 1142 { 1143 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 1144 BUG(); 1145 __blk_mq_end_request(rq, error); 1146 } 1147 EXPORT_SYMBOL(blk_mq_end_request); 1148 1149 #define TAG_COMP_BATCH 32 1150 1151 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx, 1152 int *tag_array, int nr_tags) 1153 { 1154 struct request_queue *q = hctx->queue; 1155 1156 blk_mq_sub_active_requests(hctx, nr_tags); 1157 1158 blk_mq_put_tags(hctx->tags, tag_array, nr_tags); 1159 percpu_ref_put_many(&q->q_usage_counter, nr_tags); 1160 } 1161 1162 void blk_mq_end_request_batch(struct io_comp_batch *iob) 1163 { 1164 int tags[TAG_COMP_BATCH], nr_tags = 0; 1165 struct blk_mq_hw_ctx *cur_hctx = NULL; 1166 struct request *rq; 1167 u64 now = 0; 1168 1169 if (iob->need_ts) 1170 now = blk_time_get_ns(); 1171 1172 while ((rq = rq_list_pop(&iob->req_list)) != NULL) { 1173 prefetch(rq->bio); 1174 prefetch(rq->rq_next); 1175 1176 blk_complete_request(rq); 1177 if (iob->need_ts) 1178 __blk_mq_end_request_acct(rq, now); 1179 1180 blk_mq_finish_request(rq); 1181 1182 rq_qos_done(rq->q, rq); 1183 1184 /* 1185 * If end_io handler returns NONE, then it still has 1186 * ownership of the request. 1187 */ 1188 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE) 1189 continue; 1190 1191 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1192 if (!req_ref_put_and_test(rq)) 1193 continue; 1194 1195 blk_crypto_free_request(rq); 1196 blk_pm_mark_last_busy(rq); 1197 1198 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) { 1199 if (cur_hctx) 1200 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1201 nr_tags = 0; 1202 cur_hctx = rq->mq_hctx; 1203 } 1204 tags[nr_tags++] = rq->tag; 1205 } 1206 1207 if (nr_tags) 1208 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags); 1209 } 1210 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch); 1211 1212 static void blk_complete_reqs(struct llist_head *list) 1213 { 1214 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 1215 struct request *rq, *next; 1216 1217 llist_for_each_entry_safe(rq, next, entry, ipi_list) 1218 rq->q->mq_ops->complete(rq); 1219 } 1220 1221 static __latent_entropy void blk_done_softirq(void) 1222 { 1223 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 1224 } 1225 1226 static int blk_softirq_cpu_dead(unsigned int cpu) 1227 { 1228 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 1229 return 0; 1230 } 1231 1232 static void __blk_mq_complete_request_remote(void *data) 1233 { 1234 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 1235 } 1236 1237 static inline bool blk_mq_complete_need_ipi(struct request *rq) 1238 { 1239 int cpu = raw_smp_processor_id(); 1240 1241 if (!IS_ENABLED(CONFIG_SMP) || 1242 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 1243 return false; 1244 /* 1245 * With force threaded interrupts enabled, raising softirq from an SMP 1246 * function call will always result in waking the ksoftirqd thread. 1247 * This is probably worse than completing the request on a different 1248 * cache domain. 1249 */ 1250 if (force_irqthreads()) 1251 return false; 1252 1253 /* same CPU or cache domain and capacity? Complete locally */ 1254 if (cpu == rq->mq_ctx->cpu || 1255 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 1256 cpus_share_cache(cpu, rq->mq_ctx->cpu) && 1257 cpus_equal_capacity(cpu, rq->mq_ctx->cpu))) 1258 return false; 1259 1260 /* don't try to IPI to an offline CPU */ 1261 return cpu_online(rq->mq_ctx->cpu); 1262 } 1263 1264 static void blk_mq_complete_send_ipi(struct request *rq) 1265 { 1266 unsigned int cpu; 1267 1268 cpu = rq->mq_ctx->cpu; 1269 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu))) 1270 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu)); 1271 } 1272 1273 static void blk_mq_raise_softirq(struct request *rq) 1274 { 1275 struct llist_head *list; 1276 1277 preempt_disable(); 1278 list = this_cpu_ptr(&blk_cpu_done); 1279 if (llist_add(&rq->ipi_list, list)) 1280 raise_softirq(BLOCK_SOFTIRQ); 1281 preempt_enable(); 1282 } 1283 1284 bool blk_mq_complete_request_remote(struct request *rq) 1285 { 1286 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 1287 1288 /* 1289 * For request which hctx has only one ctx mapping, 1290 * or a polled request, always complete locally, 1291 * it's pointless to redirect the completion. 1292 */ 1293 if ((rq->mq_hctx->nr_ctx == 1 && 1294 rq->mq_ctx->cpu == raw_smp_processor_id()) || 1295 rq->cmd_flags & REQ_POLLED) 1296 return false; 1297 1298 if (blk_mq_complete_need_ipi(rq)) { 1299 blk_mq_complete_send_ipi(rq); 1300 return true; 1301 } 1302 1303 if (rq->q->nr_hw_queues == 1) { 1304 blk_mq_raise_softirq(rq); 1305 return true; 1306 } 1307 return false; 1308 } 1309 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 1310 1311 /** 1312 * blk_mq_complete_request - end I/O on a request 1313 * @rq: the request being processed 1314 * 1315 * Description: 1316 * Complete a request by scheduling the ->complete_rq operation. 1317 **/ 1318 void blk_mq_complete_request(struct request *rq) 1319 { 1320 if (!blk_mq_complete_request_remote(rq)) 1321 rq->q->mq_ops->complete(rq); 1322 } 1323 EXPORT_SYMBOL(blk_mq_complete_request); 1324 1325 /** 1326 * blk_mq_start_request - Start processing a request 1327 * @rq: Pointer to request to be started 1328 * 1329 * Function used by device drivers to notify the block layer that a request 1330 * is going to be processed now, so blk layer can do proper initializations 1331 * such as starting the timeout timer. 1332 */ 1333 void blk_mq_start_request(struct request *rq) 1334 { 1335 struct request_queue *q = rq->q; 1336 1337 trace_block_rq_issue(rq); 1338 1339 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) && 1340 !blk_rq_is_passthrough(rq)) { 1341 rq->io_start_time_ns = blk_time_get_ns(); 1342 rq->stats_sectors = blk_rq_sectors(rq); 1343 rq->rq_flags |= RQF_STATS; 1344 rq_qos_issue(q, rq); 1345 } 1346 1347 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 1348 1349 blk_add_timer(rq); 1350 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 1351 rq->mq_hctx->tags->rqs[rq->tag] = rq; 1352 1353 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 1354 blk_integrity_prepare(rq); 1355 1356 if (rq->bio && rq->bio->bi_opf & REQ_POLLED) 1357 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num); 1358 } 1359 EXPORT_SYMBOL(blk_mq_start_request); 1360 1361 /* 1362 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 1363 * queues. This is important for md arrays to benefit from merging 1364 * requests. 1365 */ 1366 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 1367 { 1368 if (plug->multiple_queues) 1369 return BLK_MAX_REQUEST_COUNT * 2; 1370 return BLK_MAX_REQUEST_COUNT; 1371 } 1372 1373 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1374 { 1375 struct request *last = rq_list_peek(&plug->mq_list); 1376 1377 if (!plug->rq_count) { 1378 trace_block_plug(rq->q); 1379 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) || 1380 (!blk_queue_nomerges(rq->q) && 1381 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1382 blk_mq_flush_plug_list(plug, false); 1383 last = NULL; 1384 trace_block_plug(rq->q); 1385 } 1386 1387 if (!plug->multiple_queues && last && last->q != rq->q) 1388 plug->multiple_queues = true; 1389 /* 1390 * Any request allocated from sched tags can't be issued to 1391 * ->queue_rqs() directly 1392 */ 1393 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS)) 1394 plug->has_elevator = true; 1395 rq_list_add_tail(&plug->mq_list, rq); 1396 plug->rq_count++; 1397 } 1398 1399 /** 1400 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution 1401 * @rq: request to insert 1402 * @at_head: insert request at head or tail of queue 1403 * 1404 * Description: 1405 * Insert a fully prepared request at the back of the I/O scheduler queue 1406 * for execution. Don't wait for completion. 1407 * 1408 * Note: 1409 * This function will invoke @done directly if the queue is dead. 1410 */ 1411 void blk_execute_rq_nowait(struct request *rq, bool at_head) 1412 { 1413 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1414 1415 WARN_ON(irqs_disabled()); 1416 WARN_ON(!blk_rq_is_passthrough(rq)); 1417 1418 blk_account_io_start(rq); 1419 1420 if (current->plug && !at_head) { 1421 blk_add_rq_to_plug(current->plug, rq); 1422 return; 1423 } 1424 1425 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1426 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 1427 } 1428 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); 1429 1430 struct blk_rq_wait { 1431 struct completion done; 1432 blk_status_t ret; 1433 }; 1434 1435 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret) 1436 { 1437 struct blk_rq_wait *wait = rq->end_io_data; 1438 1439 wait->ret = ret; 1440 complete(&wait->done); 1441 return RQ_END_IO_NONE; 1442 } 1443 1444 bool blk_rq_is_poll(struct request *rq) 1445 { 1446 if (!rq->mq_hctx) 1447 return false; 1448 if (rq->mq_hctx->type != HCTX_TYPE_POLL) 1449 return false; 1450 return true; 1451 } 1452 EXPORT_SYMBOL_GPL(blk_rq_is_poll); 1453 1454 static void blk_rq_poll_completion(struct request *rq, struct completion *wait) 1455 { 1456 do { 1457 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0); 1458 cond_resched(); 1459 } while (!completion_done(wait)); 1460 } 1461 1462 /** 1463 * blk_execute_rq - insert a request into queue for execution 1464 * @rq: request to insert 1465 * @at_head: insert request at head or tail of queue 1466 * 1467 * Description: 1468 * Insert a fully prepared request at the back of the I/O scheduler queue 1469 * for execution and wait for completion. 1470 * Return: The blk_status_t result provided to blk_mq_end_request(). 1471 */ 1472 blk_status_t blk_execute_rq(struct request *rq, bool at_head) 1473 { 1474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1475 struct blk_rq_wait wait = { 1476 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done), 1477 }; 1478 1479 WARN_ON(irqs_disabled()); 1480 WARN_ON(!blk_rq_is_passthrough(rq)); 1481 1482 rq->end_io_data = &wait; 1483 rq->end_io = blk_end_sync_rq; 1484 1485 blk_account_io_start(rq); 1486 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0); 1487 blk_mq_run_hw_queue(hctx, false); 1488 1489 if (blk_rq_is_poll(rq)) 1490 blk_rq_poll_completion(rq, &wait.done); 1491 else 1492 blk_wait_io(&wait.done); 1493 1494 return wait.ret; 1495 } 1496 EXPORT_SYMBOL(blk_execute_rq); 1497 1498 static void __blk_mq_requeue_request(struct request *rq) 1499 { 1500 struct request_queue *q = rq->q; 1501 1502 blk_mq_put_driver_tag(rq); 1503 1504 trace_block_rq_requeue(rq); 1505 rq_qos_requeue(q, rq); 1506 1507 if (blk_mq_request_started(rq)) { 1508 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 1509 rq->rq_flags &= ~RQF_TIMED_OUT; 1510 } 1511 } 1512 1513 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 1514 { 1515 struct request_queue *q = rq->q; 1516 unsigned long flags; 1517 1518 __blk_mq_requeue_request(rq); 1519 1520 /* this request will be re-inserted to io scheduler queue */ 1521 blk_mq_sched_requeue_request(rq); 1522 1523 spin_lock_irqsave(&q->requeue_lock, flags); 1524 list_add_tail(&rq->queuelist, &q->requeue_list); 1525 spin_unlock_irqrestore(&q->requeue_lock, flags); 1526 1527 if (kick_requeue_list) 1528 blk_mq_kick_requeue_list(q); 1529 } 1530 EXPORT_SYMBOL(blk_mq_requeue_request); 1531 1532 static void blk_mq_requeue_work(struct work_struct *work) 1533 { 1534 struct request_queue *q = 1535 container_of(work, struct request_queue, requeue_work.work); 1536 LIST_HEAD(rq_list); 1537 LIST_HEAD(flush_list); 1538 struct request *rq; 1539 1540 spin_lock_irq(&q->requeue_lock); 1541 list_splice_init(&q->requeue_list, &rq_list); 1542 list_splice_init(&q->flush_list, &flush_list); 1543 spin_unlock_irq(&q->requeue_lock); 1544 1545 while (!list_empty(&rq_list)) { 1546 rq = list_entry(rq_list.next, struct request, queuelist); 1547 /* 1548 * If RQF_DONTPREP ist set, the request has been started by the 1549 * driver already and might have driver-specific data allocated 1550 * already. Insert it into the hctx dispatch list to avoid 1551 * block layer merges for the request. 1552 */ 1553 if (rq->rq_flags & RQF_DONTPREP) { 1554 list_del_init(&rq->queuelist); 1555 blk_mq_request_bypass_insert(rq, 0); 1556 } else { 1557 list_del_init(&rq->queuelist); 1558 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD); 1559 } 1560 } 1561 1562 while (!list_empty(&flush_list)) { 1563 rq = list_entry(flush_list.next, struct request, queuelist); 1564 list_del_init(&rq->queuelist); 1565 blk_mq_insert_request(rq, 0); 1566 } 1567 1568 blk_mq_run_hw_queues(q, false); 1569 } 1570 1571 void blk_mq_kick_requeue_list(struct request_queue *q) 1572 { 1573 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 1574 } 1575 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 1576 1577 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 1578 unsigned long msecs) 1579 { 1580 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 1581 msecs_to_jiffies(msecs)); 1582 } 1583 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 1584 1585 static bool blk_is_flush_data_rq(struct request *rq) 1586 { 1587 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq); 1588 } 1589 1590 static bool blk_mq_rq_inflight(struct request *rq, void *priv) 1591 { 1592 /* 1593 * If we find a request that isn't idle we know the queue is busy 1594 * as it's checked in the iter. 1595 * Return false to stop the iteration. 1596 * 1597 * In case of queue quiesce, if one flush data request is completed, 1598 * don't count it as inflight given the flush sequence is suspended, 1599 * and the original flush data request is invisible to driver, just 1600 * like other pending requests because of quiesce 1601 */ 1602 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) && 1603 blk_is_flush_data_rq(rq) && 1604 blk_mq_request_completed(rq))) { 1605 bool *busy = priv; 1606 1607 *busy = true; 1608 return false; 1609 } 1610 1611 return true; 1612 } 1613 1614 bool blk_mq_queue_inflight(struct request_queue *q) 1615 { 1616 bool busy = false; 1617 1618 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 1619 return busy; 1620 } 1621 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 1622 1623 static void blk_mq_rq_timed_out(struct request *req) 1624 { 1625 req->rq_flags |= RQF_TIMED_OUT; 1626 if (req->q->mq_ops->timeout) { 1627 enum blk_eh_timer_return ret; 1628 1629 ret = req->q->mq_ops->timeout(req); 1630 if (ret == BLK_EH_DONE) 1631 return; 1632 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 1633 } 1634 1635 blk_add_timer(req); 1636 } 1637 1638 struct blk_expired_data { 1639 bool has_timedout_rq; 1640 unsigned long next; 1641 unsigned long timeout_start; 1642 }; 1643 1644 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired) 1645 { 1646 unsigned long deadline; 1647 1648 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 1649 return false; 1650 if (rq->rq_flags & RQF_TIMED_OUT) 1651 return false; 1652 1653 deadline = READ_ONCE(rq->deadline); 1654 if (time_after_eq(expired->timeout_start, deadline)) 1655 return true; 1656 1657 if (expired->next == 0) 1658 expired->next = deadline; 1659 else if (time_after(expired->next, deadline)) 1660 expired->next = deadline; 1661 return false; 1662 } 1663 1664 void blk_mq_put_rq_ref(struct request *rq) 1665 { 1666 if (is_flush_rq(rq)) { 1667 if (rq->end_io(rq, 0) == RQ_END_IO_FREE) 1668 blk_mq_free_request(rq); 1669 } else if (req_ref_put_and_test(rq)) { 1670 __blk_mq_free_request(rq); 1671 } 1672 } 1673 1674 static bool blk_mq_check_expired(struct request *rq, void *priv) 1675 { 1676 struct blk_expired_data *expired = priv; 1677 1678 /* 1679 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 1680 * be reallocated underneath the timeout handler's processing, then 1681 * the expire check is reliable. If the request is not expired, then 1682 * it was completed and reallocated as a new request after returning 1683 * from blk_mq_check_expired(). 1684 */ 1685 if (blk_mq_req_expired(rq, expired)) { 1686 expired->has_timedout_rq = true; 1687 return false; 1688 } 1689 return true; 1690 } 1691 1692 static bool blk_mq_handle_expired(struct request *rq, void *priv) 1693 { 1694 struct blk_expired_data *expired = priv; 1695 1696 if (blk_mq_req_expired(rq, expired)) 1697 blk_mq_rq_timed_out(rq); 1698 return true; 1699 } 1700 1701 static void blk_mq_timeout_work(struct work_struct *work) 1702 { 1703 struct request_queue *q = 1704 container_of(work, struct request_queue, timeout_work); 1705 struct blk_expired_data expired = { 1706 .timeout_start = jiffies, 1707 }; 1708 struct blk_mq_hw_ctx *hctx; 1709 unsigned long i; 1710 1711 /* A deadlock might occur if a request is stuck requiring a 1712 * timeout at the same time a queue freeze is waiting 1713 * completion, since the timeout code would not be able to 1714 * acquire the queue reference here. 1715 * 1716 * That's why we don't use blk_queue_enter here; instead, we use 1717 * percpu_ref_tryget directly, because we need to be able to 1718 * obtain a reference even in the short window between the queue 1719 * starting to freeze, by dropping the first reference in 1720 * blk_freeze_queue_start, and the moment the last request is 1721 * consumed, marked by the instant q_usage_counter reaches 1722 * zero. 1723 */ 1724 if (!percpu_ref_tryget(&q->q_usage_counter)) 1725 return; 1726 1727 /* check if there is any timed-out request */ 1728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired); 1729 if (expired.has_timedout_rq) { 1730 /* 1731 * Before walking tags, we must ensure any submit started 1732 * before the current time has finished. Since the submit 1733 * uses srcu or rcu, wait for a synchronization point to 1734 * ensure all running submits have finished 1735 */ 1736 blk_mq_wait_quiesce_done(q->tag_set); 1737 1738 expired.next = 0; 1739 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired); 1740 } 1741 1742 if (expired.next != 0) { 1743 mod_timer(&q->timeout, expired.next); 1744 } else { 1745 /* 1746 * Request timeouts are handled as a forward rolling timer. If 1747 * we end up here it means that no requests are pending and 1748 * also that no request has been pending for a while. Mark 1749 * each hctx as idle. 1750 */ 1751 queue_for_each_hw_ctx(q, hctx, i) { 1752 /* the hctx may be unmapped, so check it here */ 1753 if (blk_mq_hw_queue_mapped(hctx)) 1754 blk_mq_tag_idle(hctx); 1755 } 1756 } 1757 blk_queue_exit(q); 1758 } 1759 1760 struct flush_busy_ctx_data { 1761 struct blk_mq_hw_ctx *hctx; 1762 struct list_head *list; 1763 }; 1764 1765 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 1766 { 1767 struct flush_busy_ctx_data *flush_data = data; 1768 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 1769 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1770 enum hctx_type type = hctx->type; 1771 1772 spin_lock(&ctx->lock); 1773 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1774 sbitmap_clear_bit(sb, bitnr); 1775 spin_unlock(&ctx->lock); 1776 return true; 1777 } 1778 1779 /* 1780 * Process software queues that have been marked busy, splicing them 1781 * to the for-dispatch 1782 */ 1783 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1784 { 1785 struct flush_busy_ctx_data data = { 1786 .hctx = hctx, 1787 .list = list, 1788 }; 1789 1790 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1791 } 1792 1793 struct dispatch_rq_data { 1794 struct blk_mq_hw_ctx *hctx; 1795 struct request *rq; 1796 }; 1797 1798 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1799 void *data) 1800 { 1801 struct dispatch_rq_data *dispatch_data = data; 1802 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1803 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1804 enum hctx_type type = hctx->type; 1805 1806 spin_lock(&ctx->lock); 1807 if (!list_empty(&ctx->rq_lists[type])) { 1808 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1809 list_del_init(&dispatch_data->rq->queuelist); 1810 if (list_empty(&ctx->rq_lists[type])) 1811 sbitmap_clear_bit(sb, bitnr); 1812 } 1813 spin_unlock(&ctx->lock); 1814 1815 return !dispatch_data->rq; 1816 } 1817 1818 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1819 struct blk_mq_ctx *start) 1820 { 1821 unsigned off = start ? start->index_hw[hctx->type] : 0; 1822 struct dispatch_rq_data data = { 1823 .hctx = hctx, 1824 .rq = NULL, 1825 }; 1826 1827 __sbitmap_for_each_set(&hctx->ctx_map, off, 1828 dispatch_rq_from_ctx, &data); 1829 1830 return data.rq; 1831 } 1832 1833 bool __blk_mq_alloc_driver_tag(struct request *rq) 1834 { 1835 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags; 1836 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1837 int tag; 1838 1839 blk_mq_tag_busy(rq->mq_hctx); 1840 1841 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1842 bt = &rq->mq_hctx->tags->breserved_tags; 1843 tag_offset = 0; 1844 } else { 1845 if (!hctx_may_queue(rq->mq_hctx, bt)) 1846 return false; 1847 } 1848 1849 tag = __sbitmap_queue_get(bt); 1850 if (tag == BLK_MQ_NO_TAG) 1851 return false; 1852 1853 rq->tag = tag + tag_offset; 1854 blk_mq_inc_active_requests(rq->mq_hctx); 1855 return true; 1856 } 1857 1858 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1859 int flags, void *key) 1860 { 1861 struct blk_mq_hw_ctx *hctx; 1862 1863 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1864 1865 spin_lock(&hctx->dispatch_wait_lock); 1866 if (!list_empty(&wait->entry)) { 1867 struct sbitmap_queue *sbq; 1868 1869 list_del_init(&wait->entry); 1870 sbq = &hctx->tags->bitmap_tags; 1871 atomic_dec(&sbq->ws_active); 1872 } 1873 spin_unlock(&hctx->dispatch_wait_lock); 1874 1875 blk_mq_run_hw_queue(hctx, true); 1876 return 1; 1877 } 1878 1879 /* 1880 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1881 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1882 * restart. For both cases, take care to check the condition again after 1883 * marking us as waiting. 1884 */ 1885 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1886 struct request *rq) 1887 { 1888 struct sbitmap_queue *sbq; 1889 struct wait_queue_head *wq; 1890 wait_queue_entry_t *wait; 1891 bool ret; 1892 1893 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1894 !(blk_mq_is_shared_tags(hctx->flags))) { 1895 blk_mq_sched_mark_restart_hctx(hctx); 1896 1897 /* 1898 * It's possible that a tag was freed in the window between the 1899 * allocation failure and adding the hardware queue to the wait 1900 * queue. 1901 * 1902 * Don't clear RESTART here, someone else could have set it. 1903 * At most this will cost an extra queue run. 1904 */ 1905 return blk_mq_get_driver_tag(rq); 1906 } 1907 1908 wait = &hctx->dispatch_wait; 1909 if (!list_empty_careful(&wait->entry)) 1910 return false; 1911 1912 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) 1913 sbq = &hctx->tags->breserved_tags; 1914 else 1915 sbq = &hctx->tags->bitmap_tags; 1916 wq = &bt_wait_ptr(sbq, hctx)->wait; 1917 1918 spin_lock_irq(&wq->lock); 1919 spin_lock(&hctx->dispatch_wait_lock); 1920 if (!list_empty(&wait->entry)) { 1921 spin_unlock(&hctx->dispatch_wait_lock); 1922 spin_unlock_irq(&wq->lock); 1923 return false; 1924 } 1925 1926 atomic_inc(&sbq->ws_active); 1927 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1928 __add_wait_queue(wq, wait); 1929 1930 /* 1931 * Add one explicit barrier since blk_mq_get_driver_tag() may 1932 * not imply barrier in case of failure. 1933 * 1934 * Order adding us to wait queue and allocating driver tag. 1935 * 1936 * The pair is the one implied in sbitmap_queue_wake_up() which 1937 * orders clearing sbitmap tag bits and waitqueue_active() in 1938 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless 1939 * 1940 * Otherwise, re-order of adding wait queue and getting driver tag 1941 * may cause __sbitmap_queue_wake_up() to wake up nothing because 1942 * the waitqueue_active() may not observe us in wait queue. 1943 */ 1944 smp_mb(); 1945 1946 /* 1947 * It's possible that a tag was freed in the window between the 1948 * allocation failure and adding the hardware queue to the wait 1949 * queue. 1950 */ 1951 ret = blk_mq_get_driver_tag(rq); 1952 if (!ret) { 1953 spin_unlock(&hctx->dispatch_wait_lock); 1954 spin_unlock_irq(&wq->lock); 1955 return false; 1956 } 1957 1958 /* 1959 * We got a tag, remove ourselves from the wait queue to ensure 1960 * someone else gets the wakeup. 1961 */ 1962 list_del_init(&wait->entry); 1963 atomic_dec(&sbq->ws_active); 1964 spin_unlock(&hctx->dispatch_wait_lock); 1965 spin_unlock_irq(&wq->lock); 1966 1967 return true; 1968 } 1969 1970 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1971 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1972 /* 1973 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1974 * - EWMA is one simple way to compute running average value 1975 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1976 * - take 4 as factor for avoiding to get too small(0) result, and this 1977 * factor doesn't matter because EWMA decreases exponentially 1978 */ 1979 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1980 { 1981 unsigned int ewma; 1982 1983 ewma = hctx->dispatch_busy; 1984 1985 if (!ewma && !busy) 1986 return; 1987 1988 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1989 if (busy) 1990 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1991 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1992 1993 hctx->dispatch_busy = ewma; 1994 } 1995 1996 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1997 1998 static void blk_mq_handle_dev_resource(struct request *rq, 1999 struct list_head *list) 2000 { 2001 list_add(&rq->queuelist, list); 2002 __blk_mq_requeue_request(rq); 2003 } 2004 2005 enum prep_dispatch { 2006 PREP_DISPATCH_OK, 2007 PREP_DISPATCH_NO_TAG, 2008 PREP_DISPATCH_NO_BUDGET, 2009 }; 2010 2011 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 2012 bool need_budget) 2013 { 2014 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2015 int budget_token = -1; 2016 2017 if (need_budget) { 2018 budget_token = blk_mq_get_dispatch_budget(rq->q); 2019 if (budget_token < 0) { 2020 blk_mq_put_driver_tag(rq); 2021 return PREP_DISPATCH_NO_BUDGET; 2022 } 2023 blk_mq_set_rq_budget_token(rq, budget_token); 2024 } 2025 2026 if (!blk_mq_get_driver_tag(rq)) { 2027 /* 2028 * The initial allocation attempt failed, so we need to 2029 * rerun the hardware queue when a tag is freed. The 2030 * waitqueue takes care of that. If the queue is run 2031 * before we add this entry back on the dispatch list, 2032 * we'll re-run it below. 2033 */ 2034 if (!blk_mq_mark_tag_wait(hctx, rq)) { 2035 /* 2036 * All budgets not got from this function will be put 2037 * together during handling partial dispatch 2038 */ 2039 if (need_budget) 2040 blk_mq_put_dispatch_budget(rq->q, budget_token); 2041 return PREP_DISPATCH_NO_TAG; 2042 } 2043 } 2044 2045 return PREP_DISPATCH_OK; 2046 } 2047 2048 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 2049 static void blk_mq_release_budgets(struct request_queue *q, 2050 struct list_head *list) 2051 { 2052 struct request *rq; 2053 2054 list_for_each_entry(rq, list, queuelist) { 2055 int budget_token = blk_mq_get_rq_budget_token(rq); 2056 2057 if (budget_token >= 0) 2058 blk_mq_put_dispatch_budget(q, budget_token); 2059 } 2060 } 2061 2062 /* 2063 * blk_mq_commit_rqs will notify driver using bd->last that there is no 2064 * more requests. (See comment in struct blk_mq_ops for commit_rqs for 2065 * details) 2066 * Attention, we should explicitly call this in unusual cases: 2067 * 1) did not queue everything initially scheduled to queue 2068 * 2) the last attempt to queue a request failed 2069 */ 2070 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued, 2071 bool from_schedule) 2072 { 2073 if (hctx->queue->mq_ops->commit_rqs && queued) { 2074 trace_block_unplug(hctx->queue, queued, !from_schedule); 2075 hctx->queue->mq_ops->commit_rqs(hctx); 2076 } 2077 } 2078 2079 /* 2080 * Returns true if we did some work AND can potentially do more. 2081 */ 2082 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 2083 unsigned int nr_budgets) 2084 { 2085 enum prep_dispatch prep; 2086 struct request_queue *q = hctx->queue; 2087 struct request *rq; 2088 int queued; 2089 blk_status_t ret = BLK_STS_OK; 2090 bool needs_resource = false; 2091 2092 if (list_empty(list)) 2093 return false; 2094 2095 /* 2096 * Now process all the entries, sending them to the driver. 2097 */ 2098 queued = 0; 2099 do { 2100 struct blk_mq_queue_data bd; 2101 2102 rq = list_first_entry(list, struct request, queuelist); 2103 2104 WARN_ON_ONCE(hctx != rq->mq_hctx); 2105 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 2106 if (prep != PREP_DISPATCH_OK) 2107 break; 2108 2109 list_del_init(&rq->queuelist); 2110 2111 bd.rq = rq; 2112 bd.last = list_empty(list); 2113 2114 /* 2115 * once the request is queued to lld, no need to cover the 2116 * budget any more 2117 */ 2118 if (nr_budgets) 2119 nr_budgets--; 2120 ret = q->mq_ops->queue_rq(hctx, &bd); 2121 switch (ret) { 2122 case BLK_STS_OK: 2123 queued++; 2124 break; 2125 case BLK_STS_RESOURCE: 2126 needs_resource = true; 2127 fallthrough; 2128 case BLK_STS_DEV_RESOURCE: 2129 blk_mq_handle_dev_resource(rq, list); 2130 goto out; 2131 default: 2132 blk_mq_end_request(rq, ret); 2133 } 2134 } while (!list_empty(list)); 2135 out: 2136 /* If we didn't flush the entire list, we could have told the driver 2137 * there was more coming, but that turned out to be a lie. 2138 */ 2139 if (!list_empty(list) || ret != BLK_STS_OK) 2140 blk_mq_commit_rqs(hctx, queued, false); 2141 2142 /* 2143 * Any items that need requeuing? Stuff them into hctx->dispatch, 2144 * that is where we will continue on next queue run. 2145 */ 2146 if (!list_empty(list)) { 2147 bool needs_restart; 2148 /* For non-shared tags, the RESTART check will suffice */ 2149 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 2150 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) || 2151 blk_mq_is_shared_tags(hctx->flags)); 2152 2153 if (nr_budgets) 2154 blk_mq_release_budgets(q, list); 2155 2156 spin_lock(&hctx->lock); 2157 list_splice_tail_init(list, &hctx->dispatch); 2158 spin_unlock(&hctx->lock); 2159 2160 /* 2161 * Order adding requests to hctx->dispatch and checking 2162 * SCHED_RESTART flag. The pair of this smp_mb() is the one 2163 * in blk_mq_sched_restart(). Avoid restart code path to 2164 * miss the new added requests to hctx->dispatch, meantime 2165 * SCHED_RESTART is observed here. 2166 */ 2167 smp_mb(); 2168 2169 /* 2170 * If SCHED_RESTART was set by the caller of this function and 2171 * it is no longer set that means that it was cleared by another 2172 * thread and hence that a queue rerun is needed. 2173 * 2174 * If 'no_tag' is set, that means that we failed getting 2175 * a driver tag with an I/O scheduler attached. If our dispatch 2176 * waitqueue is no longer active, ensure that we run the queue 2177 * AFTER adding our entries back to the list. 2178 * 2179 * If no I/O scheduler has been configured it is possible that 2180 * the hardware queue got stopped and restarted before requests 2181 * were pushed back onto the dispatch list. Rerun the queue to 2182 * avoid starvation. Notes: 2183 * - blk_mq_run_hw_queue() checks whether or not a queue has 2184 * been stopped before rerunning a queue. 2185 * - Some but not all block drivers stop a queue before 2186 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 2187 * and dm-rq. 2188 * 2189 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 2190 * bit is set, run queue after a delay to avoid IO stalls 2191 * that could otherwise occur if the queue is idle. We'll do 2192 * similar if we couldn't get budget or couldn't lock a zone 2193 * and SCHED_RESTART is set. 2194 */ 2195 needs_restart = blk_mq_sched_needs_restart(hctx); 2196 if (prep == PREP_DISPATCH_NO_BUDGET) 2197 needs_resource = true; 2198 if (!needs_restart || 2199 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 2200 blk_mq_run_hw_queue(hctx, true); 2201 else if (needs_resource) 2202 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 2203 2204 blk_mq_update_dispatch_busy(hctx, true); 2205 return false; 2206 } 2207 2208 blk_mq_update_dispatch_busy(hctx, false); 2209 return true; 2210 } 2211 2212 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 2213 { 2214 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 2215 2216 if (cpu >= nr_cpu_ids) 2217 cpu = cpumask_first(hctx->cpumask); 2218 return cpu; 2219 } 2220 2221 /* 2222 * ->next_cpu is always calculated from hctx->cpumask, so simply use 2223 * it for speeding up the check 2224 */ 2225 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx) 2226 { 2227 return hctx->next_cpu >= nr_cpu_ids; 2228 } 2229 2230 /* 2231 * It'd be great if the workqueue API had a way to pass 2232 * in a mask and had some smarts for more clever placement. 2233 * For now we just round-robin here, switching for every 2234 * BLK_MQ_CPU_WORK_BATCH queued items. 2235 */ 2236 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 2237 { 2238 bool tried = false; 2239 int next_cpu = hctx->next_cpu; 2240 2241 /* Switch to unbound if no allowable CPUs in this hctx */ 2242 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx)) 2243 return WORK_CPU_UNBOUND; 2244 2245 if (--hctx->next_cpu_batch <= 0) { 2246 select_cpu: 2247 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 2248 cpu_online_mask); 2249 if (next_cpu >= nr_cpu_ids) 2250 next_cpu = blk_mq_first_mapped_cpu(hctx); 2251 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2252 } 2253 2254 /* 2255 * Do unbound schedule if we can't find a online CPU for this hctx, 2256 * and it should only happen in the path of handling CPU DEAD. 2257 */ 2258 if (!cpu_online(next_cpu)) { 2259 if (!tried) { 2260 tried = true; 2261 goto select_cpu; 2262 } 2263 2264 /* 2265 * Make sure to re-select CPU next time once after CPUs 2266 * in hctx->cpumask become online again. 2267 */ 2268 hctx->next_cpu = next_cpu; 2269 hctx->next_cpu_batch = 1; 2270 return WORK_CPU_UNBOUND; 2271 } 2272 2273 hctx->next_cpu = next_cpu; 2274 return next_cpu; 2275 } 2276 2277 /** 2278 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 2279 * @hctx: Pointer to the hardware queue to run. 2280 * @msecs: Milliseconds of delay to wait before running the queue. 2281 * 2282 * Run a hardware queue asynchronously with a delay of @msecs. 2283 */ 2284 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 2285 { 2286 if (unlikely(blk_mq_hctx_stopped(hctx))) 2287 return; 2288 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 2289 msecs_to_jiffies(msecs)); 2290 } 2291 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 2292 2293 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx) 2294 { 2295 bool need_run; 2296 2297 /* 2298 * When queue is quiesced, we may be switching io scheduler, or 2299 * updating nr_hw_queues, or other things, and we can't run queue 2300 * any more, even blk_mq_hctx_has_pending() can't be called safely. 2301 * 2302 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 2303 * quiesced. 2304 */ 2305 __blk_mq_run_dispatch_ops(hctx->queue, false, 2306 need_run = !blk_queue_quiesced(hctx->queue) && 2307 blk_mq_hctx_has_pending(hctx)); 2308 return need_run; 2309 } 2310 2311 /** 2312 * blk_mq_run_hw_queue - Start to run a hardware queue. 2313 * @hctx: Pointer to the hardware queue to run. 2314 * @async: If we want to run the queue asynchronously. 2315 * 2316 * Check if the request queue is not in a quiesced state and if there are 2317 * pending requests to be sent. If this is true, run the queue to send requests 2318 * to hardware. 2319 */ 2320 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2321 { 2322 bool need_run; 2323 2324 /* 2325 * We can't run the queue inline with interrupts disabled. 2326 */ 2327 WARN_ON_ONCE(!async && in_interrupt()); 2328 2329 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING); 2330 2331 need_run = blk_mq_hw_queue_need_run(hctx); 2332 if (!need_run) { 2333 unsigned long flags; 2334 2335 /* 2336 * Synchronize with blk_mq_unquiesce_queue(), because we check 2337 * if hw queue is quiesced locklessly above, we need the use 2338 * ->queue_lock to make sure we see the up-to-date status to 2339 * not miss rerunning the hw queue. 2340 */ 2341 spin_lock_irqsave(&hctx->queue->queue_lock, flags); 2342 need_run = blk_mq_hw_queue_need_run(hctx); 2343 spin_unlock_irqrestore(&hctx->queue->queue_lock, flags); 2344 2345 if (!need_run) 2346 return; 2347 } 2348 2349 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) { 2350 blk_mq_delay_run_hw_queue(hctx, 0); 2351 return; 2352 } 2353 2354 blk_mq_run_dispatch_ops(hctx->queue, 2355 blk_mq_sched_dispatch_requests(hctx)); 2356 } 2357 EXPORT_SYMBOL(blk_mq_run_hw_queue); 2358 2359 /* 2360 * Return prefered queue to dispatch from (if any) for non-mq aware IO 2361 * scheduler. 2362 */ 2363 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 2364 { 2365 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); 2366 /* 2367 * If the IO scheduler does not respect hardware queues when 2368 * dispatching, we just don't bother with multiple HW queues and 2369 * dispatch from hctx for the current CPU since running multiple queues 2370 * just causes lock contention inside the scheduler and pointless cache 2371 * bouncing. 2372 */ 2373 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT]; 2374 2375 if (!blk_mq_hctx_stopped(hctx)) 2376 return hctx; 2377 return NULL; 2378 } 2379 2380 /** 2381 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 2382 * @q: Pointer to the request queue to run. 2383 * @async: If we want to run the queue asynchronously. 2384 */ 2385 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 2386 { 2387 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2388 unsigned long i; 2389 2390 sq_hctx = NULL; 2391 if (blk_queue_sq_sched(q)) 2392 sq_hctx = blk_mq_get_sq_hctx(q); 2393 queue_for_each_hw_ctx(q, hctx, i) { 2394 if (blk_mq_hctx_stopped(hctx)) 2395 continue; 2396 /* 2397 * Dispatch from this hctx either if there's no hctx preferred 2398 * by IO scheduler or if it has requests that bypass the 2399 * scheduler. 2400 */ 2401 if (!sq_hctx || sq_hctx == hctx || 2402 !list_empty_careful(&hctx->dispatch)) 2403 blk_mq_run_hw_queue(hctx, async); 2404 } 2405 } 2406 EXPORT_SYMBOL(blk_mq_run_hw_queues); 2407 2408 /** 2409 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 2410 * @q: Pointer to the request queue to run. 2411 * @msecs: Milliseconds of delay to wait before running the queues. 2412 */ 2413 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 2414 { 2415 struct blk_mq_hw_ctx *hctx, *sq_hctx; 2416 unsigned long i; 2417 2418 sq_hctx = NULL; 2419 if (blk_queue_sq_sched(q)) 2420 sq_hctx = blk_mq_get_sq_hctx(q); 2421 queue_for_each_hw_ctx(q, hctx, i) { 2422 if (blk_mq_hctx_stopped(hctx)) 2423 continue; 2424 /* 2425 * If there is already a run_work pending, leave the 2426 * pending delay untouched. Otherwise, a hctx can stall 2427 * if another hctx is re-delaying the other's work 2428 * before the work executes. 2429 */ 2430 if (delayed_work_pending(&hctx->run_work)) 2431 continue; 2432 /* 2433 * Dispatch from this hctx either if there's no hctx preferred 2434 * by IO scheduler or if it has requests that bypass the 2435 * scheduler. 2436 */ 2437 if (!sq_hctx || sq_hctx == hctx || 2438 !list_empty_careful(&hctx->dispatch)) 2439 blk_mq_delay_run_hw_queue(hctx, msecs); 2440 } 2441 } 2442 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 2443 2444 /* 2445 * This function is often used for pausing .queue_rq() by driver when 2446 * there isn't enough resource or some conditions aren't satisfied, and 2447 * BLK_STS_RESOURCE is usually returned. 2448 * 2449 * We do not guarantee that dispatch can be drained or blocked 2450 * after blk_mq_stop_hw_queue() returns. Please use 2451 * blk_mq_quiesce_queue() for that requirement. 2452 */ 2453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 2454 { 2455 cancel_delayed_work(&hctx->run_work); 2456 2457 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 2458 } 2459 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 2460 2461 /* 2462 * This function is often used for pausing .queue_rq() by driver when 2463 * there isn't enough resource or some conditions aren't satisfied, and 2464 * BLK_STS_RESOURCE is usually returned. 2465 * 2466 * We do not guarantee that dispatch can be drained or blocked 2467 * after blk_mq_stop_hw_queues() returns. Please use 2468 * blk_mq_quiesce_queue() for that requirement. 2469 */ 2470 void blk_mq_stop_hw_queues(struct request_queue *q) 2471 { 2472 struct blk_mq_hw_ctx *hctx; 2473 unsigned long i; 2474 2475 queue_for_each_hw_ctx(q, hctx, i) 2476 blk_mq_stop_hw_queue(hctx); 2477 } 2478 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 2479 2480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 2481 { 2482 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2483 2484 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING); 2485 } 2486 EXPORT_SYMBOL(blk_mq_start_hw_queue); 2487 2488 void blk_mq_start_hw_queues(struct request_queue *q) 2489 { 2490 struct blk_mq_hw_ctx *hctx; 2491 unsigned long i; 2492 2493 queue_for_each_hw_ctx(q, hctx, i) 2494 blk_mq_start_hw_queue(hctx); 2495 } 2496 EXPORT_SYMBOL(blk_mq_start_hw_queues); 2497 2498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 2499 { 2500 if (!blk_mq_hctx_stopped(hctx)) 2501 return; 2502 2503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 2504 /* 2505 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the 2506 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch 2507 * list in the subsequent routine. 2508 */ 2509 smp_mb__after_atomic(); 2510 blk_mq_run_hw_queue(hctx, async); 2511 } 2512 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 2513 2514 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 2515 { 2516 struct blk_mq_hw_ctx *hctx; 2517 unsigned long i; 2518 2519 queue_for_each_hw_ctx(q, hctx, i) 2520 blk_mq_start_stopped_hw_queue(hctx, async || 2521 (hctx->flags & BLK_MQ_F_BLOCKING)); 2522 } 2523 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 2524 2525 static void blk_mq_run_work_fn(struct work_struct *work) 2526 { 2527 struct blk_mq_hw_ctx *hctx = 2528 container_of(work, struct blk_mq_hw_ctx, run_work.work); 2529 2530 blk_mq_run_dispatch_ops(hctx->queue, 2531 blk_mq_sched_dispatch_requests(hctx)); 2532 } 2533 2534 /** 2535 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 2536 * @rq: Pointer to request to be inserted. 2537 * @flags: BLK_MQ_INSERT_* 2538 * 2539 * Should only be used carefully, when the caller knows we want to 2540 * bypass a potential IO scheduler on the target device. 2541 */ 2542 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags) 2543 { 2544 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2545 2546 spin_lock(&hctx->lock); 2547 if (flags & BLK_MQ_INSERT_AT_HEAD) 2548 list_add(&rq->queuelist, &hctx->dispatch); 2549 else 2550 list_add_tail(&rq->queuelist, &hctx->dispatch); 2551 spin_unlock(&hctx->lock); 2552 } 2553 2554 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, 2555 struct blk_mq_ctx *ctx, struct list_head *list, 2556 bool run_queue_async) 2557 { 2558 struct request *rq; 2559 enum hctx_type type = hctx->type; 2560 2561 /* 2562 * Try to issue requests directly if the hw queue isn't busy to save an 2563 * extra enqueue & dequeue to the sw queue. 2564 */ 2565 if (!hctx->dispatch_busy && !run_queue_async) { 2566 blk_mq_run_dispatch_ops(hctx->queue, 2567 blk_mq_try_issue_list_directly(hctx, list)); 2568 if (list_empty(list)) 2569 goto out; 2570 } 2571 2572 /* 2573 * preemption doesn't flush plug list, so it's possible ctx->cpu is 2574 * offline now 2575 */ 2576 list_for_each_entry(rq, list, queuelist) { 2577 BUG_ON(rq->mq_ctx != ctx); 2578 trace_block_rq_insert(rq); 2579 if (rq->cmd_flags & REQ_NOWAIT) 2580 run_queue_async = true; 2581 } 2582 2583 spin_lock(&ctx->lock); 2584 list_splice_tail_init(list, &ctx->rq_lists[type]); 2585 blk_mq_hctx_mark_pending(hctx, ctx); 2586 spin_unlock(&ctx->lock); 2587 out: 2588 blk_mq_run_hw_queue(hctx, run_queue_async); 2589 } 2590 2591 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags) 2592 { 2593 struct request_queue *q = rq->q; 2594 struct blk_mq_ctx *ctx = rq->mq_ctx; 2595 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2596 2597 if (blk_rq_is_passthrough(rq)) { 2598 /* 2599 * Passthrough request have to be added to hctx->dispatch 2600 * directly. The device may be in a situation where it can't 2601 * handle FS request, and always returns BLK_STS_RESOURCE for 2602 * them, which gets them added to hctx->dispatch. 2603 * 2604 * If a passthrough request is required to unblock the queues, 2605 * and it is added to the scheduler queue, there is no chance to 2606 * dispatch it given we prioritize requests in hctx->dispatch. 2607 */ 2608 blk_mq_request_bypass_insert(rq, flags); 2609 } else if (req_op(rq) == REQ_OP_FLUSH) { 2610 /* 2611 * Firstly normal IO request is inserted to scheduler queue or 2612 * sw queue, meantime we add flush request to dispatch queue( 2613 * hctx->dispatch) directly and there is at most one in-flight 2614 * flush request for each hw queue, so it doesn't matter to add 2615 * flush request to tail or front of the dispatch queue. 2616 * 2617 * Secondly in case of NCQ, flush request belongs to non-NCQ 2618 * command, and queueing it will fail when there is any 2619 * in-flight normal IO request(NCQ command). When adding flush 2620 * rq to the front of hctx->dispatch, it is easier to introduce 2621 * extra time to flush rq's latency because of S_SCHED_RESTART 2622 * compared with adding to the tail of dispatch queue, then 2623 * chance of flush merge is increased, and less flush requests 2624 * will be issued to controller. It is observed that ~10% time 2625 * is saved in blktests block/004 on disk attached to AHCI/NCQ 2626 * drive when adding flush rq to the front of hctx->dispatch. 2627 * 2628 * Simply queue flush rq to the front of hctx->dispatch so that 2629 * intensive flush workloads can benefit in case of NCQ HW. 2630 */ 2631 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD); 2632 } else if (q->elevator) { 2633 LIST_HEAD(list); 2634 2635 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG); 2636 2637 list_add(&rq->queuelist, &list); 2638 q->elevator->type->ops.insert_requests(hctx, &list, flags); 2639 } else { 2640 trace_block_rq_insert(rq); 2641 2642 spin_lock(&ctx->lock); 2643 if (flags & BLK_MQ_INSERT_AT_HEAD) 2644 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]); 2645 else 2646 list_add_tail(&rq->queuelist, 2647 &ctx->rq_lists[hctx->type]); 2648 blk_mq_hctx_mark_pending(hctx, ctx); 2649 spin_unlock(&ctx->lock); 2650 } 2651 } 2652 2653 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 2654 unsigned int nr_segs) 2655 { 2656 int err; 2657 2658 if (bio->bi_opf & REQ_RAHEAD) 2659 rq->cmd_flags |= REQ_FAILFAST_MASK; 2660 2661 rq->__sector = bio->bi_iter.bi_sector; 2662 blk_rq_bio_prep(rq, bio, nr_segs); 2663 if (bio_integrity(bio)) 2664 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q, 2665 bio); 2666 2667 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 2668 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 2669 WARN_ON_ONCE(err); 2670 2671 blk_account_io_start(rq); 2672 } 2673 2674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 2675 struct request *rq, bool last) 2676 { 2677 struct request_queue *q = rq->q; 2678 struct blk_mq_queue_data bd = { 2679 .rq = rq, 2680 .last = last, 2681 }; 2682 blk_status_t ret; 2683 2684 /* 2685 * For OK queue, we are done. For error, caller may kill it. 2686 * Any other error (busy), just add it to our list as we 2687 * previously would have done. 2688 */ 2689 ret = q->mq_ops->queue_rq(hctx, &bd); 2690 switch (ret) { 2691 case BLK_STS_OK: 2692 blk_mq_update_dispatch_busy(hctx, false); 2693 break; 2694 case BLK_STS_RESOURCE: 2695 case BLK_STS_DEV_RESOURCE: 2696 blk_mq_update_dispatch_busy(hctx, true); 2697 __blk_mq_requeue_request(rq); 2698 break; 2699 default: 2700 blk_mq_update_dispatch_busy(hctx, false); 2701 break; 2702 } 2703 2704 return ret; 2705 } 2706 2707 static bool blk_mq_get_budget_and_tag(struct request *rq) 2708 { 2709 int budget_token; 2710 2711 budget_token = blk_mq_get_dispatch_budget(rq->q); 2712 if (budget_token < 0) 2713 return false; 2714 blk_mq_set_rq_budget_token(rq, budget_token); 2715 if (!blk_mq_get_driver_tag(rq)) { 2716 blk_mq_put_dispatch_budget(rq->q, budget_token); 2717 return false; 2718 } 2719 return true; 2720 } 2721 2722 /** 2723 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2724 * @hctx: Pointer of the associated hardware queue. 2725 * @rq: Pointer to request to be sent. 2726 * 2727 * If the device has enough resources to accept a new request now, send the 2728 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2729 * we can try send it another time in the future. Requests inserted at this 2730 * queue have higher priority. 2731 */ 2732 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2733 struct request *rq) 2734 { 2735 blk_status_t ret; 2736 2737 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2738 blk_mq_insert_request(rq, 0); 2739 blk_mq_run_hw_queue(hctx, false); 2740 return; 2741 } 2742 2743 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) { 2744 blk_mq_insert_request(rq, 0); 2745 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT); 2746 return; 2747 } 2748 2749 ret = __blk_mq_issue_directly(hctx, rq, true); 2750 switch (ret) { 2751 case BLK_STS_OK: 2752 break; 2753 case BLK_STS_RESOURCE: 2754 case BLK_STS_DEV_RESOURCE: 2755 blk_mq_request_bypass_insert(rq, 0); 2756 blk_mq_run_hw_queue(hctx, false); 2757 break; 2758 default: 2759 blk_mq_end_request(rq, ret); 2760 break; 2761 } 2762 } 2763 2764 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2765 { 2766 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2767 2768 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) { 2769 blk_mq_insert_request(rq, 0); 2770 blk_mq_run_hw_queue(hctx, false); 2771 return BLK_STS_OK; 2772 } 2773 2774 if (!blk_mq_get_budget_and_tag(rq)) 2775 return BLK_STS_RESOURCE; 2776 return __blk_mq_issue_directly(hctx, rq, last); 2777 } 2778 2779 static void blk_mq_plug_issue_direct(struct blk_plug *plug) 2780 { 2781 struct blk_mq_hw_ctx *hctx = NULL; 2782 struct request *rq; 2783 int queued = 0; 2784 blk_status_t ret = BLK_STS_OK; 2785 2786 while ((rq = rq_list_pop(&plug->mq_list))) { 2787 bool last = rq_list_empty(&plug->mq_list); 2788 2789 if (hctx != rq->mq_hctx) { 2790 if (hctx) { 2791 blk_mq_commit_rqs(hctx, queued, false); 2792 queued = 0; 2793 } 2794 hctx = rq->mq_hctx; 2795 } 2796 2797 ret = blk_mq_request_issue_directly(rq, last); 2798 switch (ret) { 2799 case BLK_STS_OK: 2800 queued++; 2801 break; 2802 case BLK_STS_RESOURCE: 2803 case BLK_STS_DEV_RESOURCE: 2804 blk_mq_request_bypass_insert(rq, 0); 2805 blk_mq_run_hw_queue(hctx, false); 2806 goto out; 2807 default: 2808 blk_mq_end_request(rq, ret); 2809 break; 2810 } 2811 } 2812 2813 out: 2814 if (ret != BLK_STS_OK) 2815 blk_mq_commit_rqs(hctx, queued, false); 2816 } 2817 2818 static void __blk_mq_flush_plug_list(struct request_queue *q, 2819 struct blk_plug *plug) 2820 { 2821 if (blk_queue_quiesced(q)) 2822 return; 2823 q->mq_ops->queue_rqs(&plug->mq_list); 2824 } 2825 2826 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched) 2827 { 2828 struct blk_mq_hw_ctx *this_hctx = NULL; 2829 struct blk_mq_ctx *this_ctx = NULL; 2830 struct rq_list requeue_list = {}; 2831 unsigned int depth = 0; 2832 bool is_passthrough = false; 2833 LIST_HEAD(list); 2834 2835 do { 2836 struct request *rq = rq_list_pop(&plug->mq_list); 2837 2838 if (!this_hctx) { 2839 this_hctx = rq->mq_hctx; 2840 this_ctx = rq->mq_ctx; 2841 is_passthrough = blk_rq_is_passthrough(rq); 2842 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx || 2843 is_passthrough != blk_rq_is_passthrough(rq)) { 2844 rq_list_add_tail(&requeue_list, rq); 2845 continue; 2846 } 2847 list_add_tail(&rq->queuelist, &list); 2848 depth++; 2849 } while (!rq_list_empty(&plug->mq_list)); 2850 2851 plug->mq_list = requeue_list; 2852 trace_block_unplug(this_hctx->queue, depth, !from_sched); 2853 2854 percpu_ref_get(&this_hctx->queue->q_usage_counter); 2855 /* passthrough requests should never be issued to the I/O scheduler */ 2856 if (is_passthrough) { 2857 spin_lock(&this_hctx->lock); 2858 list_splice_tail_init(&list, &this_hctx->dispatch); 2859 spin_unlock(&this_hctx->lock); 2860 blk_mq_run_hw_queue(this_hctx, from_sched); 2861 } else if (this_hctx->queue->elevator) { 2862 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx, 2863 &list, 0); 2864 blk_mq_run_hw_queue(this_hctx, from_sched); 2865 } else { 2866 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched); 2867 } 2868 percpu_ref_put(&this_hctx->queue->q_usage_counter); 2869 } 2870 2871 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2872 { 2873 struct request *rq; 2874 unsigned int depth; 2875 2876 /* 2877 * We may have been called recursively midway through handling 2878 * plug->mq_list via a schedule() in the driver's queue_rq() callback. 2879 * To avoid mq_list changing under our feet, clear rq_count early and 2880 * bail out specifically if rq_count is 0 rather than checking 2881 * whether the mq_list is empty. 2882 */ 2883 if (plug->rq_count == 0) 2884 return; 2885 depth = plug->rq_count; 2886 plug->rq_count = 0; 2887 2888 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) { 2889 struct request_queue *q; 2890 2891 rq = rq_list_peek(&plug->mq_list); 2892 q = rq->q; 2893 trace_block_unplug(q, depth, true); 2894 2895 /* 2896 * Peek first request and see if we have a ->queue_rqs() hook. 2897 * If we do, we can dispatch the whole plug list in one go. We 2898 * already know at this point that all requests belong to the 2899 * same queue, caller must ensure that's the case. 2900 */ 2901 if (q->mq_ops->queue_rqs) { 2902 blk_mq_run_dispatch_ops(q, 2903 __blk_mq_flush_plug_list(q, plug)); 2904 if (rq_list_empty(&plug->mq_list)) 2905 return; 2906 } 2907 2908 blk_mq_run_dispatch_ops(q, 2909 blk_mq_plug_issue_direct(plug)); 2910 if (rq_list_empty(&plug->mq_list)) 2911 return; 2912 } 2913 2914 do { 2915 blk_mq_dispatch_plug_list(plug, from_schedule); 2916 } while (!rq_list_empty(&plug->mq_list)); 2917 } 2918 2919 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2920 struct list_head *list) 2921 { 2922 int queued = 0; 2923 blk_status_t ret = BLK_STS_OK; 2924 2925 while (!list_empty(list)) { 2926 struct request *rq = list_first_entry(list, struct request, 2927 queuelist); 2928 2929 list_del_init(&rq->queuelist); 2930 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2931 switch (ret) { 2932 case BLK_STS_OK: 2933 queued++; 2934 break; 2935 case BLK_STS_RESOURCE: 2936 case BLK_STS_DEV_RESOURCE: 2937 blk_mq_request_bypass_insert(rq, 0); 2938 if (list_empty(list)) 2939 blk_mq_run_hw_queue(hctx, false); 2940 goto out; 2941 default: 2942 blk_mq_end_request(rq, ret); 2943 break; 2944 } 2945 } 2946 2947 out: 2948 if (ret != BLK_STS_OK) 2949 blk_mq_commit_rqs(hctx, queued, false); 2950 } 2951 2952 static bool blk_mq_attempt_bio_merge(struct request_queue *q, 2953 struct bio *bio, unsigned int nr_segs) 2954 { 2955 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) { 2956 if (blk_attempt_plug_merge(q, bio, nr_segs)) 2957 return true; 2958 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2959 return true; 2960 } 2961 return false; 2962 } 2963 2964 static struct request *blk_mq_get_new_requests(struct request_queue *q, 2965 struct blk_plug *plug, 2966 struct bio *bio, 2967 unsigned int nsegs) 2968 { 2969 struct blk_mq_alloc_data data = { 2970 .q = q, 2971 .nr_tags = 1, 2972 .cmd_flags = bio->bi_opf, 2973 }; 2974 struct request *rq; 2975 2976 rq_qos_throttle(q, bio); 2977 2978 if (plug) { 2979 data.nr_tags = plug->nr_ios; 2980 plug->nr_ios = 1; 2981 data.cached_rqs = &plug->cached_rqs; 2982 } 2983 2984 rq = __blk_mq_alloc_requests(&data); 2985 if (rq) 2986 return rq; 2987 rq_qos_cleanup(q, bio); 2988 if (bio->bi_opf & REQ_NOWAIT) 2989 bio_wouldblock_error(bio); 2990 return NULL; 2991 } 2992 2993 /* 2994 * Check if there is a suitable cached request and return it. 2995 */ 2996 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug, 2997 struct request_queue *q, blk_opf_t opf) 2998 { 2999 enum hctx_type type = blk_mq_get_hctx_type(opf); 3000 struct request *rq; 3001 3002 if (!plug) 3003 return NULL; 3004 rq = rq_list_peek(&plug->cached_rqs); 3005 if (!rq || rq->q != q) 3006 return NULL; 3007 if (type != rq->mq_hctx->type && 3008 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT)) 3009 return NULL; 3010 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf)) 3011 return NULL; 3012 return rq; 3013 } 3014 3015 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug, 3016 struct bio *bio) 3017 { 3018 if (rq_list_pop(&plug->cached_rqs) != rq) 3019 WARN_ON_ONCE(1); 3020 3021 /* 3022 * If any qos ->throttle() end up blocking, we will have flushed the 3023 * plug and hence killed the cached_rq list as well. Pop this entry 3024 * before we throttle. 3025 */ 3026 rq_qos_throttle(rq->q, bio); 3027 3028 blk_mq_rq_time_init(rq, blk_time_get_ns()); 3029 rq->cmd_flags = bio->bi_opf; 3030 INIT_LIST_HEAD(&rq->queuelist); 3031 } 3032 3033 static bool bio_unaligned(const struct bio *bio, struct request_queue *q) 3034 { 3035 unsigned int bs_mask = queue_logical_block_size(q) - 1; 3036 3037 /* .bi_sector of any zero sized bio need to be initialized */ 3038 if ((bio->bi_iter.bi_size & bs_mask) || 3039 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask)) 3040 return true; 3041 return false; 3042 } 3043 3044 /** 3045 * blk_mq_submit_bio - Create and send a request to block device. 3046 * @bio: Bio pointer. 3047 * 3048 * Builds up a request structure from @q and @bio and send to the device. The 3049 * request may not be queued directly to hardware if: 3050 * * This request can be merged with another one 3051 * * We want to place request at plug queue for possible future merging 3052 * * There is an IO scheduler active at this queue 3053 * 3054 * It will not queue the request if there is an error with the bio, or at the 3055 * request creation. 3056 */ 3057 void blk_mq_submit_bio(struct bio *bio) 3058 { 3059 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 3060 struct blk_plug *plug = current->plug; 3061 const int is_sync = op_is_sync(bio->bi_opf); 3062 struct blk_mq_hw_ctx *hctx; 3063 unsigned int nr_segs; 3064 struct request *rq; 3065 blk_status_t ret; 3066 3067 /* 3068 * If the plug has a cached request for this queue, try to use it. 3069 */ 3070 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf); 3071 3072 /* 3073 * A BIO that was released from a zone write plug has already been 3074 * through the preparation in this function, already holds a reference 3075 * on the queue usage counter, and is the only write BIO in-flight for 3076 * the target zone. Go straight to preparing a request for it. 3077 */ 3078 if (bio_zone_write_plugging(bio)) { 3079 nr_segs = bio->__bi_nr_segments; 3080 if (rq) 3081 blk_queue_exit(q); 3082 goto new_request; 3083 } 3084 3085 bio = blk_queue_bounce(bio, q); 3086 3087 /* 3088 * The cached request already holds a q_usage_counter reference and we 3089 * don't have to acquire a new one if we use it. 3090 */ 3091 if (!rq) { 3092 if (unlikely(bio_queue_enter(bio))) 3093 return; 3094 } 3095 3096 /* 3097 * Device reconfiguration may change logical block size, so alignment 3098 * check has to be done with queue usage counter held 3099 */ 3100 if (unlikely(bio_unaligned(bio, q))) { 3101 bio_io_error(bio); 3102 goto queue_exit; 3103 } 3104 3105 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs); 3106 if (!bio) 3107 goto queue_exit; 3108 3109 if (!bio_integrity_prep(bio)) 3110 goto queue_exit; 3111 3112 if (blk_mq_attempt_bio_merge(q, bio, nr_segs)) 3113 goto queue_exit; 3114 3115 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs)) 3116 goto queue_exit; 3117 3118 new_request: 3119 if (!rq) { 3120 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs); 3121 if (unlikely(!rq)) 3122 goto queue_exit; 3123 } else { 3124 blk_mq_use_cached_rq(rq, plug, bio); 3125 } 3126 3127 trace_block_getrq(bio); 3128 3129 rq_qos_track(q, rq, bio); 3130 3131 blk_mq_bio_to_request(rq, bio, nr_segs); 3132 3133 ret = blk_crypto_rq_get_keyslot(rq); 3134 if (ret != BLK_STS_OK) { 3135 bio->bi_status = ret; 3136 bio_endio(bio); 3137 blk_mq_free_request(rq); 3138 return; 3139 } 3140 3141 if (bio_zone_write_plugging(bio)) 3142 blk_zone_write_plug_init_request(rq); 3143 3144 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq)) 3145 return; 3146 3147 if (plug) { 3148 blk_add_rq_to_plug(plug, rq); 3149 return; 3150 } 3151 3152 hctx = rq->mq_hctx; 3153 if ((rq->rq_flags & RQF_USE_SCHED) || 3154 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) { 3155 blk_mq_insert_request(rq, 0); 3156 blk_mq_run_hw_queue(hctx, true); 3157 } else { 3158 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq)); 3159 } 3160 return; 3161 3162 queue_exit: 3163 /* 3164 * Don't drop the queue reference if we were trying to use a cached 3165 * request and thus didn't acquire one. 3166 */ 3167 if (!rq) 3168 blk_queue_exit(q); 3169 } 3170 3171 #ifdef CONFIG_BLK_MQ_STACKING 3172 /** 3173 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 3174 * @rq: the request being queued 3175 */ 3176 blk_status_t blk_insert_cloned_request(struct request *rq) 3177 { 3178 struct request_queue *q = rq->q; 3179 unsigned int max_sectors = blk_queue_get_max_sectors(rq); 3180 unsigned int max_segments = blk_rq_get_max_segments(rq); 3181 blk_status_t ret; 3182 3183 if (blk_rq_sectors(rq) > max_sectors) { 3184 /* 3185 * SCSI device does not have a good way to return if 3186 * Write Same/Zero is actually supported. If a device rejects 3187 * a non-read/write command (discard, write same,etc.) the 3188 * low-level device driver will set the relevant queue limit to 3189 * 0 to prevent blk-lib from issuing more of the offending 3190 * operations. Commands queued prior to the queue limit being 3191 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 3192 * errors being propagated to upper layers. 3193 */ 3194 if (max_sectors == 0) 3195 return BLK_STS_NOTSUPP; 3196 3197 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 3198 __func__, blk_rq_sectors(rq), max_sectors); 3199 return BLK_STS_IOERR; 3200 } 3201 3202 /* 3203 * The queue settings related to segment counting may differ from the 3204 * original queue. 3205 */ 3206 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 3207 if (rq->nr_phys_segments > max_segments) { 3208 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n", 3209 __func__, rq->nr_phys_segments, max_segments); 3210 return BLK_STS_IOERR; 3211 } 3212 3213 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq))) 3214 return BLK_STS_IOERR; 3215 3216 ret = blk_crypto_rq_get_keyslot(rq); 3217 if (ret != BLK_STS_OK) 3218 return ret; 3219 3220 blk_account_io_start(rq); 3221 3222 /* 3223 * Since we have a scheduler attached on the top device, 3224 * bypass a potential scheduler on the bottom device for 3225 * insert. 3226 */ 3227 blk_mq_run_dispatch_ops(q, 3228 ret = blk_mq_request_issue_directly(rq, true)); 3229 if (ret) 3230 blk_account_io_done(rq, blk_time_get_ns()); 3231 return ret; 3232 } 3233 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 3234 3235 /** 3236 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3237 * @rq: the clone request to be cleaned up 3238 * 3239 * Description: 3240 * Free all bios in @rq for a cloned request. 3241 */ 3242 void blk_rq_unprep_clone(struct request *rq) 3243 { 3244 struct bio *bio; 3245 3246 while ((bio = rq->bio) != NULL) { 3247 rq->bio = bio->bi_next; 3248 3249 bio_put(bio); 3250 } 3251 } 3252 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3253 3254 /** 3255 * blk_rq_prep_clone - Helper function to setup clone request 3256 * @rq: the request to be setup 3257 * @rq_src: original request to be cloned 3258 * @bs: bio_set that bios for clone are allocated from 3259 * @gfp_mask: memory allocation mask for bio 3260 * @bio_ctr: setup function to be called for each clone bio. 3261 * Returns %0 for success, non %0 for failure. 3262 * @data: private data to be passed to @bio_ctr 3263 * 3264 * Description: 3265 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3266 * Also, pages which the original bios are pointing to are not copied 3267 * and the cloned bios just point same pages. 3268 * So cloned bios must be completed before original bios, which means 3269 * the caller must complete @rq before @rq_src. 3270 */ 3271 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3272 struct bio_set *bs, gfp_t gfp_mask, 3273 int (*bio_ctr)(struct bio *, struct bio *, void *), 3274 void *data) 3275 { 3276 struct bio *bio, *bio_src; 3277 3278 if (!bs) 3279 bs = &fs_bio_set; 3280 3281 __rq_for_each_bio(bio_src, rq_src) { 3282 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask, 3283 bs); 3284 if (!bio) 3285 goto free_and_out; 3286 3287 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3288 goto free_and_out; 3289 3290 if (rq->bio) { 3291 rq->biotail->bi_next = bio; 3292 rq->biotail = bio; 3293 } else { 3294 rq->bio = rq->biotail = bio; 3295 } 3296 bio = NULL; 3297 } 3298 3299 /* Copy attributes of the original request to the clone request. */ 3300 rq->__sector = blk_rq_pos(rq_src); 3301 rq->__data_len = blk_rq_bytes(rq_src); 3302 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3303 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 3304 rq->special_vec = rq_src->special_vec; 3305 } 3306 rq->nr_phys_segments = rq_src->nr_phys_segments; 3307 3308 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 3309 goto free_and_out; 3310 3311 return 0; 3312 3313 free_and_out: 3314 if (bio) 3315 bio_put(bio); 3316 blk_rq_unprep_clone(rq); 3317 3318 return -ENOMEM; 3319 } 3320 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3321 #endif /* CONFIG_BLK_MQ_STACKING */ 3322 3323 /* 3324 * Steal bios from a request and add them to a bio list. 3325 * The request must not have been partially completed before. 3326 */ 3327 void blk_steal_bios(struct bio_list *list, struct request *rq) 3328 { 3329 if (rq->bio) { 3330 if (list->tail) 3331 list->tail->bi_next = rq->bio; 3332 else 3333 list->head = rq->bio; 3334 list->tail = rq->biotail; 3335 3336 rq->bio = NULL; 3337 rq->biotail = NULL; 3338 } 3339 3340 rq->__data_len = 0; 3341 } 3342 EXPORT_SYMBOL_GPL(blk_steal_bios); 3343 3344 static size_t order_to_size(unsigned int order) 3345 { 3346 return (size_t)PAGE_SIZE << order; 3347 } 3348 3349 /* called before freeing request pool in @tags */ 3350 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags, 3351 struct blk_mq_tags *tags) 3352 { 3353 struct page *page; 3354 unsigned long flags; 3355 3356 /* 3357 * There is no need to clear mapping if driver tags is not initialized 3358 * or the mapping belongs to the driver tags. 3359 */ 3360 if (!drv_tags || drv_tags == tags) 3361 return; 3362 3363 list_for_each_entry(page, &tags->page_list, lru) { 3364 unsigned long start = (unsigned long)page_address(page); 3365 unsigned long end = start + order_to_size(page->private); 3366 int i; 3367 3368 for (i = 0; i < drv_tags->nr_tags; i++) { 3369 struct request *rq = drv_tags->rqs[i]; 3370 unsigned long rq_addr = (unsigned long)rq; 3371 3372 if (rq_addr >= start && rq_addr < end) { 3373 WARN_ON_ONCE(req_ref_read(rq) != 0); 3374 cmpxchg(&drv_tags->rqs[i], rq, NULL); 3375 } 3376 } 3377 } 3378 3379 /* 3380 * Wait until all pending iteration is done. 3381 * 3382 * Request reference is cleared and it is guaranteed to be observed 3383 * after the ->lock is released. 3384 */ 3385 spin_lock_irqsave(&drv_tags->lock, flags); 3386 spin_unlock_irqrestore(&drv_tags->lock, flags); 3387 } 3388 3389 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 3390 unsigned int hctx_idx) 3391 { 3392 struct blk_mq_tags *drv_tags; 3393 struct page *page; 3394 3395 if (list_empty(&tags->page_list)) 3396 return; 3397 3398 if (blk_mq_is_shared_tags(set->flags)) 3399 drv_tags = set->shared_tags; 3400 else 3401 drv_tags = set->tags[hctx_idx]; 3402 3403 if (tags->static_rqs && set->ops->exit_request) { 3404 int i; 3405 3406 for (i = 0; i < tags->nr_tags; i++) { 3407 struct request *rq = tags->static_rqs[i]; 3408 3409 if (!rq) 3410 continue; 3411 set->ops->exit_request(set, rq, hctx_idx); 3412 tags->static_rqs[i] = NULL; 3413 } 3414 } 3415 3416 blk_mq_clear_rq_mapping(drv_tags, tags); 3417 3418 while (!list_empty(&tags->page_list)) { 3419 page = list_first_entry(&tags->page_list, struct page, lru); 3420 list_del_init(&page->lru); 3421 /* 3422 * Remove kmemleak object previously allocated in 3423 * blk_mq_alloc_rqs(). 3424 */ 3425 kmemleak_free(page_address(page)); 3426 __free_pages(page, page->private); 3427 } 3428 } 3429 3430 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 3431 { 3432 kfree(tags->rqs); 3433 tags->rqs = NULL; 3434 kfree(tags->static_rqs); 3435 tags->static_rqs = NULL; 3436 3437 blk_mq_free_tags(tags); 3438 } 3439 3440 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set, 3441 unsigned int hctx_idx) 3442 { 3443 int i; 3444 3445 for (i = 0; i < set->nr_maps; i++) { 3446 unsigned int start = set->map[i].queue_offset; 3447 unsigned int end = start + set->map[i].nr_queues; 3448 3449 if (hctx_idx >= start && hctx_idx < end) 3450 break; 3451 } 3452 3453 if (i >= set->nr_maps) 3454 i = HCTX_TYPE_DEFAULT; 3455 3456 return i; 3457 } 3458 3459 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set, 3460 unsigned int hctx_idx) 3461 { 3462 enum hctx_type type = hctx_idx_to_type(set, hctx_idx); 3463 3464 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx); 3465 } 3466 3467 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 3468 unsigned int hctx_idx, 3469 unsigned int nr_tags, 3470 unsigned int reserved_tags) 3471 { 3472 int node = blk_mq_get_hctx_node(set, hctx_idx); 3473 struct blk_mq_tags *tags; 3474 3475 if (node == NUMA_NO_NODE) 3476 node = set->numa_node; 3477 3478 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 3479 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 3480 if (!tags) 3481 return NULL; 3482 3483 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3484 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3485 node); 3486 if (!tags->rqs) 3487 goto err_free_tags; 3488 3489 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 3490 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 3491 node); 3492 if (!tags->static_rqs) 3493 goto err_free_rqs; 3494 3495 return tags; 3496 3497 err_free_rqs: 3498 kfree(tags->rqs); 3499 err_free_tags: 3500 blk_mq_free_tags(tags); 3501 return NULL; 3502 } 3503 3504 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 3505 unsigned int hctx_idx, int node) 3506 { 3507 int ret; 3508 3509 if (set->ops->init_request) { 3510 ret = set->ops->init_request(set, rq, hctx_idx, node); 3511 if (ret) 3512 return ret; 3513 } 3514 3515 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 3516 return 0; 3517 } 3518 3519 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, 3520 struct blk_mq_tags *tags, 3521 unsigned int hctx_idx, unsigned int depth) 3522 { 3523 unsigned int i, j, entries_per_page, max_order = 4; 3524 int node = blk_mq_get_hctx_node(set, hctx_idx); 3525 size_t rq_size, left; 3526 3527 if (node == NUMA_NO_NODE) 3528 node = set->numa_node; 3529 3530 INIT_LIST_HEAD(&tags->page_list); 3531 3532 /* 3533 * rq_size is the size of the request plus driver payload, rounded 3534 * to the cacheline size 3535 */ 3536 rq_size = round_up(sizeof(struct request) + set->cmd_size, 3537 cache_line_size()); 3538 left = rq_size * depth; 3539 3540 for (i = 0; i < depth; ) { 3541 int this_order = max_order; 3542 struct page *page; 3543 int to_do; 3544 void *p; 3545 3546 while (this_order && left < order_to_size(this_order - 1)) 3547 this_order--; 3548 3549 do { 3550 page = alloc_pages_node(node, 3551 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 3552 this_order); 3553 if (page) 3554 break; 3555 if (!this_order--) 3556 break; 3557 if (order_to_size(this_order) < rq_size) 3558 break; 3559 } while (1); 3560 3561 if (!page) 3562 goto fail; 3563 3564 page->private = this_order; 3565 list_add_tail(&page->lru, &tags->page_list); 3566 3567 p = page_address(page); 3568 /* 3569 * Allow kmemleak to scan these pages as they contain pointers 3570 * to additional allocations like via ops->init_request(). 3571 */ 3572 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 3573 entries_per_page = order_to_size(this_order) / rq_size; 3574 to_do = min(entries_per_page, depth - i); 3575 left -= to_do * rq_size; 3576 for (j = 0; j < to_do; j++) { 3577 struct request *rq = p; 3578 3579 tags->static_rqs[i] = rq; 3580 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 3581 tags->static_rqs[i] = NULL; 3582 goto fail; 3583 } 3584 3585 p += rq_size; 3586 i++; 3587 } 3588 } 3589 return 0; 3590 3591 fail: 3592 blk_mq_free_rqs(set, tags, hctx_idx); 3593 return -ENOMEM; 3594 } 3595 3596 struct rq_iter_data { 3597 struct blk_mq_hw_ctx *hctx; 3598 bool has_rq; 3599 }; 3600 3601 static bool blk_mq_has_request(struct request *rq, void *data) 3602 { 3603 struct rq_iter_data *iter_data = data; 3604 3605 if (rq->mq_hctx != iter_data->hctx) 3606 return true; 3607 iter_data->has_rq = true; 3608 return false; 3609 } 3610 3611 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 3612 { 3613 struct blk_mq_tags *tags = hctx->sched_tags ? 3614 hctx->sched_tags : hctx->tags; 3615 struct rq_iter_data data = { 3616 .hctx = hctx, 3617 }; 3618 3619 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 3620 return data.has_rq; 3621 } 3622 3623 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx, 3624 unsigned int this_cpu) 3625 { 3626 enum hctx_type type = hctx->type; 3627 int cpu; 3628 3629 /* 3630 * hctx->cpumask has to rule out isolated CPUs, but userspace still 3631 * might submit IOs on these isolated CPUs, so use the queue map to 3632 * check if all CPUs mapped to this hctx are offline 3633 */ 3634 for_each_online_cpu(cpu) { 3635 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue, 3636 type, cpu); 3637 3638 if (h != hctx) 3639 continue; 3640 3641 /* this hctx has at least one online CPU */ 3642 if (this_cpu != cpu) 3643 return true; 3644 } 3645 3646 return false; 3647 } 3648 3649 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 3650 { 3651 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3652 struct blk_mq_hw_ctx, cpuhp_online); 3653 3654 if (blk_mq_hctx_has_online_cpu(hctx, cpu)) 3655 return 0; 3656 3657 /* 3658 * Prevent new request from being allocated on the current hctx. 3659 * 3660 * The smp_mb__after_atomic() Pairs with the implied barrier in 3661 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 3662 * seen once we return from the tag allocator. 3663 */ 3664 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3665 smp_mb__after_atomic(); 3666 3667 /* 3668 * Try to grab a reference to the queue and wait for any outstanding 3669 * requests. If we could not grab a reference the queue has been 3670 * frozen and there are no requests. 3671 */ 3672 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 3673 while (blk_mq_hctx_has_requests(hctx)) 3674 msleep(5); 3675 percpu_ref_put(&hctx->queue->q_usage_counter); 3676 } 3677 3678 return 0; 3679 } 3680 3681 /* 3682 * Check if one CPU is mapped to the specified hctx 3683 * 3684 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed 3685 * to be used for scheduling kworker only. For other usage, please call this 3686 * helper for checking if one CPU belongs to the specified hctx 3687 */ 3688 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu, 3689 const struct blk_mq_hw_ctx *hctx) 3690 { 3691 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue, 3692 hctx->type, cpu); 3693 3694 return mapped_hctx == hctx; 3695 } 3696 3697 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 3698 { 3699 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 3700 struct blk_mq_hw_ctx, cpuhp_online); 3701 3702 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3703 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 3704 return 0; 3705 } 3706 3707 /* 3708 * 'cpu' is going away. splice any existing rq_list entries from this 3709 * software queue to the hw queue dispatch list, and ensure that it 3710 * gets run. 3711 */ 3712 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 3713 { 3714 struct blk_mq_hw_ctx *hctx; 3715 struct blk_mq_ctx *ctx; 3716 LIST_HEAD(tmp); 3717 enum hctx_type type; 3718 3719 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 3720 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx)) 3721 return 0; 3722 3723 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 3724 type = hctx->type; 3725 3726 spin_lock(&ctx->lock); 3727 if (!list_empty(&ctx->rq_lists[type])) { 3728 list_splice_init(&ctx->rq_lists[type], &tmp); 3729 blk_mq_hctx_clear_pending(hctx, ctx); 3730 } 3731 spin_unlock(&ctx->lock); 3732 3733 if (list_empty(&tmp)) 3734 return 0; 3735 3736 spin_lock(&hctx->lock); 3737 list_splice_tail_init(&tmp, &hctx->dispatch); 3738 spin_unlock(&hctx->lock); 3739 3740 blk_mq_run_hw_queue(hctx, true); 3741 return 0; 3742 } 3743 3744 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 3745 { 3746 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3747 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3748 &hctx->cpuhp_online); 3749 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 3750 &hctx->cpuhp_dead); 3751 } 3752 3753 /* 3754 * Before freeing hw queue, clearing the flush request reference in 3755 * tags->rqs[] for avoiding potential UAF. 3756 */ 3757 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 3758 unsigned int queue_depth, struct request *flush_rq) 3759 { 3760 int i; 3761 unsigned long flags; 3762 3763 /* The hw queue may not be mapped yet */ 3764 if (!tags) 3765 return; 3766 3767 WARN_ON_ONCE(req_ref_read(flush_rq) != 0); 3768 3769 for (i = 0; i < queue_depth; i++) 3770 cmpxchg(&tags->rqs[i], flush_rq, NULL); 3771 3772 /* 3773 * Wait until all pending iteration is done. 3774 * 3775 * Request reference is cleared and it is guaranteed to be observed 3776 * after the ->lock is released. 3777 */ 3778 spin_lock_irqsave(&tags->lock, flags); 3779 spin_unlock_irqrestore(&tags->lock, flags); 3780 } 3781 3782 /* hctx->ctxs will be freed in queue's release handler */ 3783 static void blk_mq_exit_hctx(struct request_queue *q, 3784 struct blk_mq_tag_set *set, 3785 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 3786 { 3787 struct request *flush_rq = hctx->fq->flush_rq; 3788 3789 if (blk_mq_hw_queue_mapped(hctx)) 3790 blk_mq_tag_idle(hctx); 3791 3792 if (blk_queue_init_done(q)) 3793 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 3794 set->queue_depth, flush_rq); 3795 if (set->ops->exit_request) 3796 set->ops->exit_request(set, flush_rq, hctx_idx); 3797 3798 if (set->ops->exit_hctx) 3799 set->ops->exit_hctx(hctx, hctx_idx); 3800 3801 blk_mq_remove_cpuhp(hctx); 3802 3803 xa_erase(&q->hctx_table, hctx_idx); 3804 3805 spin_lock(&q->unused_hctx_lock); 3806 list_add(&hctx->hctx_list, &q->unused_hctx_list); 3807 spin_unlock(&q->unused_hctx_lock); 3808 } 3809 3810 static void blk_mq_exit_hw_queues(struct request_queue *q, 3811 struct blk_mq_tag_set *set, int nr_queue) 3812 { 3813 struct blk_mq_hw_ctx *hctx; 3814 unsigned long i; 3815 3816 queue_for_each_hw_ctx(q, hctx, i) { 3817 if (i == nr_queue) 3818 break; 3819 blk_mq_exit_hctx(q, set, hctx, i); 3820 } 3821 } 3822 3823 static int blk_mq_init_hctx(struct request_queue *q, 3824 struct blk_mq_tag_set *set, 3825 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 3826 { 3827 hctx->queue_num = hctx_idx; 3828 3829 if (!(hctx->flags & BLK_MQ_F_STACKING)) 3830 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 3831 &hctx->cpuhp_online); 3832 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 3833 3834 hctx->tags = set->tags[hctx_idx]; 3835 3836 if (set->ops->init_hctx && 3837 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 3838 goto unregister_cpu_notifier; 3839 3840 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 3841 hctx->numa_node)) 3842 goto exit_hctx; 3843 3844 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL)) 3845 goto exit_flush_rq; 3846 3847 return 0; 3848 3849 exit_flush_rq: 3850 if (set->ops->exit_request) 3851 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 3852 exit_hctx: 3853 if (set->ops->exit_hctx) 3854 set->ops->exit_hctx(hctx, hctx_idx); 3855 unregister_cpu_notifier: 3856 blk_mq_remove_cpuhp(hctx); 3857 return -1; 3858 } 3859 3860 static struct blk_mq_hw_ctx * 3861 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 3862 int node) 3863 { 3864 struct blk_mq_hw_ctx *hctx; 3865 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 3866 3867 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node); 3868 if (!hctx) 3869 goto fail_alloc_hctx; 3870 3871 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 3872 goto free_hctx; 3873 3874 atomic_set(&hctx->nr_active, 0); 3875 if (node == NUMA_NO_NODE) 3876 node = set->numa_node; 3877 hctx->numa_node = node; 3878 3879 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 3880 spin_lock_init(&hctx->lock); 3881 INIT_LIST_HEAD(&hctx->dispatch); 3882 hctx->queue = q; 3883 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 3884 3885 INIT_LIST_HEAD(&hctx->hctx_list); 3886 3887 /* 3888 * Allocate space for all possible cpus to avoid allocation at 3889 * runtime 3890 */ 3891 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 3892 gfp, node); 3893 if (!hctx->ctxs) 3894 goto free_cpumask; 3895 3896 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 3897 gfp, node, false, false)) 3898 goto free_ctxs; 3899 hctx->nr_ctx = 0; 3900 3901 spin_lock_init(&hctx->dispatch_wait_lock); 3902 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 3903 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 3904 3905 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 3906 if (!hctx->fq) 3907 goto free_bitmap; 3908 3909 blk_mq_hctx_kobj_init(hctx); 3910 3911 return hctx; 3912 3913 free_bitmap: 3914 sbitmap_free(&hctx->ctx_map); 3915 free_ctxs: 3916 kfree(hctx->ctxs); 3917 free_cpumask: 3918 free_cpumask_var(hctx->cpumask); 3919 free_hctx: 3920 kfree(hctx); 3921 fail_alloc_hctx: 3922 return NULL; 3923 } 3924 3925 static void blk_mq_init_cpu_queues(struct request_queue *q, 3926 unsigned int nr_hw_queues) 3927 { 3928 struct blk_mq_tag_set *set = q->tag_set; 3929 unsigned int i, j; 3930 3931 for_each_possible_cpu(i) { 3932 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 3933 struct blk_mq_hw_ctx *hctx; 3934 int k; 3935 3936 __ctx->cpu = i; 3937 spin_lock_init(&__ctx->lock); 3938 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 3939 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 3940 3941 __ctx->queue = q; 3942 3943 /* 3944 * Set local node, IFF we have more than one hw queue. If 3945 * not, we remain on the home node of the device 3946 */ 3947 for (j = 0; j < set->nr_maps; j++) { 3948 hctx = blk_mq_map_queue_type(q, j, i); 3949 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 3950 hctx->numa_node = cpu_to_node(i); 3951 } 3952 } 3953 } 3954 3955 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3956 unsigned int hctx_idx, 3957 unsigned int depth) 3958 { 3959 struct blk_mq_tags *tags; 3960 int ret; 3961 3962 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags); 3963 if (!tags) 3964 return NULL; 3965 3966 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth); 3967 if (ret) { 3968 blk_mq_free_rq_map(tags); 3969 return NULL; 3970 } 3971 3972 return tags; 3973 } 3974 3975 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set, 3976 int hctx_idx) 3977 { 3978 if (blk_mq_is_shared_tags(set->flags)) { 3979 set->tags[hctx_idx] = set->shared_tags; 3980 3981 return true; 3982 } 3983 3984 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx, 3985 set->queue_depth); 3986 3987 return set->tags[hctx_idx]; 3988 } 3989 3990 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 3991 struct blk_mq_tags *tags, 3992 unsigned int hctx_idx) 3993 { 3994 if (tags) { 3995 blk_mq_free_rqs(set, tags, hctx_idx); 3996 blk_mq_free_rq_map(tags); 3997 } 3998 } 3999 4000 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set, 4001 unsigned int hctx_idx) 4002 { 4003 if (!blk_mq_is_shared_tags(set->flags)) 4004 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx); 4005 4006 set->tags[hctx_idx] = NULL; 4007 } 4008 4009 static void blk_mq_map_swqueue(struct request_queue *q) 4010 { 4011 unsigned int j, hctx_idx; 4012 unsigned long i; 4013 struct blk_mq_hw_ctx *hctx; 4014 struct blk_mq_ctx *ctx; 4015 struct blk_mq_tag_set *set = q->tag_set; 4016 4017 queue_for_each_hw_ctx(q, hctx, i) { 4018 cpumask_clear(hctx->cpumask); 4019 hctx->nr_ctx = 0; 4020 hctx->dispatch_from = NULL; 4021 } 4022 4023 /* 4024 * Map software to hardware queues. 4025 * 4026 * If the cpu isn't present, the cpu is mapped to first hctx. 4027 */ 4028 for_each_possible_cpu(i) { 4029 4030 ctx = per_cpu_ptr(q->queue_ctx, i); 4031 for (j = 0; j < set->nr_maps; j++) { 4032 if (!set->map[j].nr_queues) { 4033 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4034 HCTX_TYPE_DEFAULT, i); 4035 continue; 4036 } 4037 hctx_idx = set->map[j].mq_map[i]; 4038 /* unmapped hw queue can be remapped after CPU topo changed */ 4039 if (!set->tags[hctx_idx] && 4040 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) { 4041 /* 4042 * If tags initialization fail for some hctx, 4043 * that hctx won't be brought online. In this 4044 * case, remap the current ctx to hctx[0] which 4045 * is guaranteed to always have tags allocated 4046 */ 4047 set->map[j].mq_map[i] = 0; 4048 } 4049 4050 hctx = blk_mq_map_queue_type(q, j, i); 4051 ctx->hctxs[j] = hctx; 4052 /* 4053 * If the CPU is already set in the mask, then we've 4054 * mapped this one already. This can happen if 4055 * devices share queues across queue maps. 4056 */ 4057 if (cpumask_test_cpu(i, hctx->cpumask)) 4058 continue; 4059 4060 cpumask_set_cpu(i, hctx->cpumask); 4061 hctx->type = j; 4062 ctx->index_hw[hctx->type] = hctx->nr_ctx; 4063 hctx->ctxs[hctx->nr_ctx++] = ctx; 4064 4065 /* 4066 * If the nr_ctx type overflows, we have exceeded the 4067 * amount of sw queues we can support. 4068 */ 4069 BUG_ON(!hctx->nr_ctx); 4070 } 4071 4072 for (; j < HCTX_MAX_TYPES; j++) 4073 ctx->hctxs[j] = blk_mq_map_queue_type(q, 4074 HCTX_TYPE_DEFAULT, i); 4075 } 4076 4077 queue_for_each_hw_ctx(q, hctx, i) { 4078 int cpu; 4079 4080 /* 4081 * If no software queues are mapped to this hardware queue, 4082 * disable it and free the request entries. 4083 */ 4084 if (!hctx->nr_ctx) { 4085 /* Never unmap queue 0. We need it as a 4086 * fallback in case of a new remap fails 4087 * allocation 4088 */ 4089 if (i) 4090 __blk_mq_free_map_and_rqs(set, i); 4091 4092 hctx->tags = NULL; 4093 continue; 4094 } 4095 4096 hctx->tags = set->tags[i]; 4097 WARN_ON(!hctx->tags); 4098 4099 /* 4100 * Set the map size to the number of mapped software queues. 4101 * This is more accurate and more efficient than looping 4102 * over all possibly mapped software queues. 4103 */ 4104 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 4105 4106 /* 4107 * Rule out isolated CPUs from hctx->cpumask to avoid 4108 * running block kworker on isolated CPUs 4109 */ 4110 for_each_cpu(cpu, hctx->cpumask) { 4111 if (cpu_is_isolated(cpu)) 4112 cpumask_clear_cpu(cpu, hctx->cpumask); 4113 } 4114 4115 /* 4116 * Initialize batch roundrobin counts 4117 */ 4118 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 4119 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 4120 } 4121 } 4122 4123 /* 4124 * Caller needs to ensure that we're either frozen/quiesced, or that 4125 * the queue isn't live yet. 4126 */ 4127 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 4128 { 4129 struct blk_mq_hw_ctx *hctx; 4130 unsigned long i; 4131 4132 queue_for_each_hw_ctx(q, hctx, i) { 4133 if (shared) { 4134 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4135 } else { 4136 blk_mq_tag_idle(hctx); 4137 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4138 } 4139 } 4140 } 4141 4142 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 4143 bool shared) 4144 { 4145 struct request_queue *q; 4146 4147 lockdep_assert_held(&set->tag_list_lock); 4148 4149 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4150 blk_mq_freeze_queue(q); 4151 queue_set_hctx_shared(q, shared); 4152 blk_mq_unfreeze_queue(q); 4153 } 4154 } 4155 4156 static void blk_mq_del_queue_tag_set(struct request_queue *q) 4157 { 4158 struct blk_mq_tag_set *set = q->tag_set; 4159 4160 mutex_lock(&set->tag_list_lock); 4161 list_del(&q->tag_set_list); 4162 if (list_is_singular(&set->tag_list)) { 4163 /* just transitioned to unshared */ 4164 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 4165 /* update existing queue */ 4166 blk_mq_update_tag_set_shared(set, false); 4167 } 4168 mutex_unlock(&set->tag_list_lock); 4169 INIT_LIST_HEAD(&q->tag_set_list); 4170 } 4171 4172 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 4173 struct request_queue *q) 4174 { 4175 mutex_lock(&set->tag_list_lock); 4176 4177 /* 4178 * Check to see if we're transitioning to shared (from 1 to 2 queues). 4179 */ 4180 if (!list_empty(&set->tag_list) && 4181 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 4182 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 4183 /* update existing queue */ 4184 blk_mq_update_tag_set_shared(set, true); 4185 } 4186 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 4187 queue_set_hctx_shared(q, true); 4188 list_add_tail(&q->tag_set_list, &set->tag_list); 4189 4190 mutex_unlock(&set->tag_list_lock); 4191 } 4192 4193 /* All allocations will be freed in release handler of q->mq_kobj */ 4194 static int blk_mq_alloc_ctxs(struct request_queue *q) 4195 { 4196 struct blk_mq_ctxs *ctxs; 4197 int cpu; 4198 4199 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 4200 if (!ctxs) 4201 return -ENOMEM; 4202 4203 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 4204 if (!ctxs->queue_ctx) 4205 goto fail; 4206 4207 for_each_possible_cpu(cpu) { 4208 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 4209 ctx->ctxs = ctxs; 4210 } 4211 4212 q->mq_kobj = &ctxs->kobj; 4213 q->queue_ctx = ctxs->queue_ctx; 4214 4215 return 0; 4216 fail: 4217 kfree(ctxs); 4218 return -ENOMEM; 4219 } 4220 4221 /* 4222 * It is the actual release handler for mq, but we do it from 4223 * request queue's release handler for avoiding use-after-free 4224 * and headache because q->mq_kobj shouldn't have been introduced, 4225 * but we can't group ctx/kctx kobj without it. 4226 */ 4227 void blk_mq_release(struct request_queue *q) 4228 { 4229 struct blk_mq_hw_ctx *hctx, *next; 4230 unsigned long i; 4231 4232 queue_for_each_hw_ctx(q, hctx, i) 4233 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 4234 4235 /* all hctx are in .unused_hctx_list now */ 4236 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 4237 list_del_init(&hctx->hctx_list); 4238 kobject_put(&hctx->kobj); 4239 } 4240 4241 xa_destroy(&q->hctx_table); 4242 4243 /* 4244 * release .mq_kobj and sw queue's kobject now because 4245 * both share lifetime with request queue. 4246 */ 4247 blk_mq_sysfs_deinit(q); 4248 } 4249 4250 static bool blk_mq_can_poll(struct blk_mq_tag_set *set) 4251 { 4252 return set->nr_maps > HCTX_TYPE_POLL && 4253 set->map[HCTX_TYPE_POLL].nr_queues; 4254 } 4255 4256 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set, 4257 struct queue_limits *lim, void *queuedata) 4258 { 4259 struct queue_limits default_lim = { }; 4260 struct request_queue *q; 4261 int ret; 4262 4263 if (!lim) 4264 lim = &default_lim; 4265 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT; 4266 if (blk_mq_can_poll(set)) 4267 lim->features |= BLK_FEAT_POLL; 4268 4269 q = blk_alloc_queue(lim, set->numa_node); 4270 if (IS_ERR(q)) 4271 return q; 4272 q->queuedata = queuedata; 4273 ret = blk_mq_init_allocated_queue(set, q); 4274 if (ret) { 4275 blk_put_queue(q); 4276 return ERR_PTR(ret); 4277 } 4278 return q; 4279 } 4280 EXPORT_SYMBOL(blk_mq_alloc_queue); 4281 4282 /** 4283 * blk_mq_destroy_queue - shutdown a request queue 4284 * @q: request queue to shutdown 4285 * 4286 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future 4287 * requests will be failed with -ENODEV. The caller is responsible for dropping 4288 * the reference from blk_mq_alloc_queue() by calling blk_put_queue(). 4289 * 4290 * Context: can sleep 4291 */ 4292 void blk_mq_destroy_queue(struct request_queue *q) 4293 { 4294 WARN_ON_ONCE(!queue_is_mq(q)); 4295 WARN_ON_ONCE(blk_queue_registered(q)); 4296 4297 might_sleep(); 4298 4299 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 4300 blk_queue_start_drain(q); 4301 blk_mq_freeze_queue_wait(q); 4302 4303 blk_sync_queue(q); 4304 blk_mq_cancel_work_sync(q); 4305 blk_mq_exit_queue(q); 4306 } 4307 EXPORT_SYMBOL(blk_mq_destroy_queue); 4308 4309 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, 4310 struct queue_limits *lim, void *queuedata, 4311 struct lock_class_key *lkclass) 4312 { 4313 struct request_queue *q; 4314 struct gendisk *disk; 4315 4316 q = blk_mq_alloc_queue(set, lim, queuedata); 4317 if (IS_ERR(q)) 4318 return ERR_CAST(q); 4319 4320 disk = __alloc_disk_node(q, set->numa_node, lkclass); 4321 if (!disk) { 4322 blk_mq_destroy_queue(q); 4323 blk_put_queue(q); 4324 return ERR_PTR(-ENOMEM); 4325 } 4326 set_bit(GD_OWNS_QUEUE, &disk->state); 4327 return disk; 4328 } 4329 EXPORT_SYMBOL(__blk_mq_alloc_disk); 4330 4331 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q, 4332 struct lock_class_key *lkclass) 4333 { 4334 struct gendisk *disk; 4335 4336 if (!blk_get_queue(q)) 4337 return NULL; 4338 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass); 4339 if (!disk) 4340 blk_put_queue(q); 4341 return disk; 4342 } 4343 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue); 4344 4345 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 4346 struct blk_mq_tag_set *set, struct request_queue *q, 4347 int hctx_idx, int node) 4348 { 4349 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 4350 4351 /* reuse dead hctx first */ 4352 spin_lock(&q->unused_hctx_lock); 4353 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 4354 if (tmp->numa_node == node) { 4355 hctx = tmp; 4356 break; 4357 } 4358 } 4359 if (hctx) 4360 list_del_init(&hctx->hctx_list); 4361 spin_unlock(&q->unused_hctx_lock); 4362 4363 if (!hctx) 4364 hctx = blk_mq_alloc_hctx(q, set, node); 4365 if (!hctx) 4366 goto fail; 4367 4368 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 4369 goto free_hctx; 4370 4371 return hctx; 4372 4373 free_hctx: 4374 kobject_put(&hctx->kobj); 4375 fail: 4376 return NULL; 4377 } 4378 4379 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 4380 struct request_queue *q) 4381 { 4382 struct blk_mq_hw_ctx *hctx; 4383 unsigned long i, j; 4384 4385 /* protect against switching io scheduler */ 4386 mutex_lock(&q->sysfs_lock); 4387 for (i = 0; i < set->nr_hw_queues; i++) { 4388 int old_node; 4389 int node = blk_mq_get_hctx_node(set, i); 4390 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i); 4391 4392 if (old_hctx) { 4393 old_node = old_hctx->numa_node; 4394 blk_mq_exit_hctx(q, set, old_hctx, i); 4395 } 4396 4397 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) { 4398 if (!old_hctx) 4399 break; 4400 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n", 4401 node, old_node); 4402 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node); 4403 WARN_ON_ONCE(!hctx); 4404 } 4405 } 4406 /* 4407 * Increasing nr_hw_queues fails. Free the newly allocated 4408 * hctxs and keep the previous q->nr_hw_queues. 4409 */ 4410 if (i != set->nr_hw_queues) { 4411 j = q->nr_hw_queues; 4412 } else { 4413 j = i; 4414 q->nr_hw_queues = set->nr_hw_queues; 4415 } 4416 4417 xa_for_each_start(&q->hctx_table, j, hctx, j) 4418 blk_mq_exit_hctx(q, set, hctx, j); 4419 mutex_unlock(&q->sysfs_lock); 4420 } 4421 4422 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 4423 struct request_queue *q) 4424 { 4425 /* mark the queue as mq asap */ 4426 q->mq_ops = set->ops; 4427 4428 /* 4429 * ->tag_set has to be setup before initialize hctx, which cpuphp 4430 * handler needs it for checking queue mapping 4431 */ 4432 q->tag_set = set; 4433 4434 if (blk_mq_alloc_ctxs(q)) 4435 goto err_exit; 4436 4437 /* init q->mq_kobj and sw queues' kobjects */ 4438 blk_mq_sysfs_init(q); 4439 4440 INIT_LIST_HEAD(&q->unused_hctx_list); 4441 spin_lock_init(&q->unused_hctx_lock); 4442 4443 xa_init(&q->hctx_table); 4444 4445 blk_mq_realloc_hw_ctxs(set, q); 4446 if (!q->nr_hw_queues) 4447 goto err_hctxs; 4448 4449 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 4450 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 4451 4452 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 4453 4454 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 4455 INIT_LIST_HEAD(&q->flush_list); 4456 INIT_LIST_HEAD(&q->requeue_list); 4457 spin_lock_init(&q->requeue_lock); 4458 4459 q->nr_requests = set->queue_depth; 4460 4461 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 4462 blk_mq_add_queue_tag_set(set, q); 4463 blk_mq_map_swqueue(q); 4464 return 0; 4465 4466 err_hctxs: 4467 blk_mq_release(q); 4468 err_exit: 4469 q->mq_ops = NULL; 4470 return -ENOMEM; 4471 } 4472 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 4473 4474 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 4475 void blk_mq_exit_queue(struct request_queue *q) 4476 { 4477 struct blk_mq_tag_set *set = q->tag_set; 4478 4479 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 4480 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 4481 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 4482 blk_mq_del_queue_tag_set(q); 4483 } 4484 4485 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 4486 { 4487 int i; 4488 4489 if (blk_mq_is_shared_tags(set->flags)) { 4490 set->shared_tags = blk_mq_alloc_map_and_rqs(set, 4491 BLK_MQ_NO_HCTX_IDX, 4492 set->queue_depth); 4493 if (!set->shared_tags) 4494 return -ENOMEM; 4495 } 4496 4497 for (i = 0; i < set->nr_hw_queues; i++) { 4498 if (!__blk_mq_alloc_map_and_rqs(set, i)) 4499 goto out_unwind; 4500 cond_resched(); 4501 } 4502 4503 return 0; 4504 4505 out_unwind: 4506 while (--i >= 0) 4507 __blk_mq_free_map_and_rqs(set, i); 4508 4509 if (blk_mq_is_shared_tags(set->flags)) { 4510 blk_mq_free_map_and_rqs(set, set->shared_tags, 4511 BLK_MQ_NO_HCTX_IDX); 4512 } 4513 4514 return -ENOMEM; 4515 } 4516 4517 /* 4518 * Allocate the request maps associated with this tag_set. Note that this 4519 * may reduce the depth asked for, if memory is tight. set->queue_depth 4520 * will be updated to reflect the allocated depth. 4521 */ 4522 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set) 4523 { 4524 unsigned int depth; 4525 int err; 4526 4527 depth = set->queue_depth; 4528 do { 4529 err = __blk_mq_alloc_rq_maps(set); 4530 if (!err) 4531 break; 4532 4533 set->queue_depth >>= 1; 4534 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 4535 err = -ENOMEM; 4536 break; 4537 } 4538 } while (set->queue_depth); 4539 4540 if (!set->queue_depth || err) { 4541 pr_err("blk-mq: failed to allocate request map\n"); 4542 return -ENOMEM; 4543 } 4544 4545 if (depth != set->queue_depth) 4546 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 4547 depth, set->queue_depth); 4548 4549 return 0; 4550 } 4551 4552 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set) 4553 { 4554 /* 4555 * blk_mq_map_queues() and multiple .map_queues() implementations 4556 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 4557 * number of hardware queues. 4558 */ 4559 if (set->nr_maps == 1) 4560 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 4561 4562 if (set->ops->map_queues) { 4563 int i; 4564 4565 /* 4566 * transport .map_queues is usually done in the following 4567 * way: 4568 * 4569 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 4570 * mask = get_cpu_mask(queue) 4571 * for_each_cpu(cpu, mask) 4572 * set->map[x].mq_map[cpu] = queue; 4573 * } 4574 * 4575 * When we need to remap, the table has to be cleared for 4576 * killing stale mapping since one CPU may not be mapped 4577 * to any hw queue. 4578 */ 4579 for (i = 0; i < set->nr_maps; i++) 4580 blk_mq_clear_mq_map(&set->map[i]); 4581 4582 set->ops->map_queues(set); 4583 } else { 4584 BUG_ON(set->nr_maps > 1); 4585 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 4586 } 4587 } 4588 4589 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 4590 int new_nr_hw_queues) 4591 { 4592 struct blk_mq_tags **new_tags; 4593 int i; 4594 4595 if (set->nr_hw_queues >= new_nr_hw_queues) 4596 goto done; 4597 4598 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 4599 GFP_KERNEL, set->numa_node); 4600 if (!new_tags) 4601 return -ENOMEM; 4602 4603 if (set->tags) 4604 memcpy(new_tags, set->tags, set->nr_hw_queues * 4605 sizeof(*set->tags)); 4606 kfree(set->tags); 4607 set->tags = new_tags; 4608 4609 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) { 4610 if (!__blk_mq_alloc_map_and_rqs(set, i)) { 4611 while (--i >= set->nr_hw_queues) 4612 __blk_mq_free_map_and_rqs(set, i); 4613 return -ENOMEM; 4614 } 4615 cond_resched(); 4616 } 4617 4618 done: 4619 set->nr_hw_queues = new_nr_hw_queues; 4620 return 0; 4621 } 4622 4623 /* 4624 * Alloc a tag set to be associated with one or more request queues. 4625 * May fail with EINVAL for various error conditions. May adjust the 4626 * requested depth down, if it's too large. In that case, the set 4627 * value will be stored in set->queue_depth. 4628 */ 4629 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 4630 { 4631 int i, ret; 4632 4633 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 4634 4635 if (!set->nr_hw_queues) 4636 return -EINVAL; 4637 if (!set->queue_depth) 4638 return -EINVAL; 4639 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 4640 return -EINVAL; 4641 4642 if (!set->ops->queue_rq) 4643 return -EINVAL; 4644 4645 if (!set->ops->get_budget ^ !set->ops->put_budget) 4646 return -EINVAL; 4647 4648 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 4649 pr_info("blk-mq: reduced tag depth to %u\n", 4650 BLK_MQ_MAX_DEPTH); 4651 set->queue_depth = BLK_MQ_MAX_DEPTH; 4652 } 4653 4654 if (!set->nr_maps) 4655 set->nr_maps = 1; 4656 else if (set->nr_maps > HCTX_MAX_TYPES) 4657 return -EINVAL; 4658 4659 /* 4660 * If a crashdump is active, then we are potentially in a very 4661 * memory constrained environment. Limit us to 64 tags to prevent 4662 * using too much memory. 4663 */ 4664 if (is_kdump_kernel()) 4665 set->queue_depth = min(64U, set->queue_depth); 4666 4667 /* 4668 * There is no use for more h/w queues than cpus if we just have 4669 * a single map 4670 */ 4671 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 4672 set->nr_hw_queues = nr_cpu_ids; 4673 4674 if (set->flags & BLK_MQ_F_BLOCKING) { 4675 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL); 4676 if (!set->srcu) 4677 return -ENOMEM; 4678 ret = init_srcu_struct(set->srcu); 4679 if (ret) 4680 goto out_free_srcu; 4681 } 4682 4683 ret = -ENOMEM; 4684 set->tags = kcalloc_node(set->nr_hw_queues, 4685 sizeof(struct blk_mq_tags *), GFP_KERNEL, 4686 set->numa_node); 4687 if (!set->tags) 4688 goto out_cleanup_srcu; 4689 4690 for (i = 0; i < set->nr_maps; i++) { 4691 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 4692 sizeof(set->map[i].mq_map[0]), 4693 GFP_KERNEL, set->numa_node); 4694 if (!set->map[i].mq_map) 4695 goto out_free_mq_map; 4696 set->map[i].nr_queues = set->nr_hw_queues; 4697 } 4698 4699 blk_mq_update_queue_map(set); 4700 4701 ret = blk_mq_alloc_set_map_and_rqs(set); 4702 if (ret) 4703 goto out_free_mq_map; 4704 4705 mutex_init(&set->tag_list_lock); 4706 INIT_LIST_HEAD(&set->tag_list); 4707 4708 return 0; 4709 4710 out_free_mq_map: 4711 for (i = 0; i < set->nr_maps; i++) { 4712 kfree(set->map[i].mq_map); 4713 set->map[i].mq_map = NULL; 4714 } 4715 kfree(set->tags); 4716 set->tags = NULL; 4717 out_cleanup_srcu: 4718 if (set->flags & BLK_MQ_F_BLOCKING) 4719 cleanup_srcu_struct(set->srcu); 4720 out_free_srcu: 4721 if (set->flags & BLK_MQ_F_BLOCKING) 4722 kfree(set->srcu); 4723 return ret; 4724 } 4725 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 4726 4727 /* allocate and initialize a tagset for a simple single-queue device */ 4728 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 4729 const struct blk_mq_ops *ops, unsigned int queue_depth, 4730 unsigned int set_flags) 4731 { 4732 memset(set, 0, sizeof(*set)); 4733 set->ops = ops; 4734 set->nr_hw_queues = 1; 4735 set->nr_maps = 1; 4736 set->queue_depth = queue_depth; 4737 set->numa_node = NUMA_NO_NODE; 4738 set->flags = set_flags; 4739 return blk_mq_alloc_tag_set(set); 4740 } 4741 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 4742 4743 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 4744 { 4745 int i, j; 4746 4747 for (i = 0; i < set->nr_hw_queues; i++) 4748 __blk_mq_free_map_and_rqs(set, i); 4749 4750 if (blk_mq_is_shared_tags(set->flags)) { 4751 blk_mq_free_map_and_rqs(set, set->shared_tags, 4752 BLK_MQ_NO_HCTX_IDX); 4753 } 4754 4755 for (j = 0; j < set->nr_maps; j++) { 4756 kfree(set->map[j].mq_map); 4757 set->map[j].mq_map = NULL; 4758 } 4759 4760 kfree(set->tags); 4761 set->tags = NULL; 4762 if (set->flags & BLK_MQ_F_BLOCKING) { 4763 cleanup_srcu_struct(set->srcu); 4764 kfree(set->srcu); 4765 } 4766 } 4767 EXPORT_SYMBOL(blk_mq_free_tag_set); 4768 4769 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 4770 { 4771 struct blk_mq_tag_set *set = q->tag_set; 4772 struct blk_mq_hw_ctx *hctx; 4773 int ret; 4774 unsigned long i; 4775 4776 if (WARN_ON_ONCE(!q->mq_freeze_depth)) 4777 return -EINVAL; 4778 4779 if (!set) 4780 return -EINVAL; 4781 4782 if (q->nr_requests == nr) 4783 return 0; 4784 4785 blk_mq_quiesce_queue(q); 4786 4787 ret = 0; 4788 queue_for_each_hw_ctx(q, hctx, i) { 4789 if (!hctx->tags) 4790 continue; 4791 /* 4792 * If we're using an MQ scheduler, just update the scheduler 4793 * queue depth. This is similar to what the old code would do. 4794 */ 4795 if (hctx->sched_tags) { 4796 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 4797 nr, true); 4798 } else { 4799 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 4800 false); 4801 } 4802 if (ret) 4803 break; 4804 if (q->elevator && q->elevator->type->ops.depth_updated) 4805 q->elevator->type->ops.depth_updated(hctx); 4806 } 4807 if (!ret) { 4808 q->nr_requests = nr; 4809 if (blk_mq_is_shared_tags(set->flags)) { 4810 if (q->elevator) 4811 blk_mq_tag_update_sched_shared_tags(q); 4812 else 4813 blk_mq_tag_resize_shared_tags(set, nr); 4814 } 4815 } 4816 4817 blk_mq_unquiesce_queue(q); 4818 4819 return ret; 4820 } 4821 4822 /* 4823 * request_queue and elevator_type pair. 4824 * It is just used by __blk_mq_update_nr_hw_queues to cache 4825 * the elevator_type associated with a request_queue. 4826 */ 4827 struct blk_mq_qe_pair { 4828 struct list_head node; 4829 struct request_queue *q; 4830 struct elevator_type *type; 4831 }; 4832 4833 /* 4834 * Cache the elevator_type in qe pair list and switch the 4835 * io scheduler to 'none' 4836 */ 4837 static bool blk_mq_elv_switch_none(struct list_head *head, 4838 struct request_queue *q) 4839 { 4840 struct blk_mq_qe_pair *qe; 4841 4842 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 4843 if (!qe) 4844 return false; 4845 4846 /* q->elevator needs protection from ->sysfs_lock */ 4847 mutex_lock(&q->sysfs_lock); 4848 4849 /* the check has to be done with holding sysfs_lock */ 4850 if (!q->elevator) { 4851 kfree(qe); 4852 goto unlock; 4853 } 4854 4855 INIT_LIST_HEAD(&qe->node); 4856 qe->q = q; 4857 qe->type = q->elevator->type; 4858 /* keep a reference to the elevator module as we'll switch back */ 4859 __elevator_get(qe->type); 4860 list_add(&qe->node, head); 4861 elevator_disable(q); 4862 unlock: 4863 mutex_unlock(&q->sysfs_lock); 4864 4865 return true; 4866 } 4867 4868 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head, 4869 struct request_queue *q) 4870 { 4871 struct blk_mq_qe_pair *qe; 4872 4873 list_for_each_entry(qe, head, node) 4874 if (qe->q == q) 4875 return qe; 4876 4877 return NULL; 4878 } 4879 4880 static void blk_mq_elv_switch_back(struct list_head *head, 4881 struct request_queue *q) 4882 { 4883 struct blk_mq_qe_pair *qe; 4884 struct elevator_type *t; 4885 4886 qe = blk_lookup_qe_pair(head, q); 4887 if (!qe) 4888 return; 4889 t = qe->type; 4890 list_del(&qe->node); 4891 kfree(qe); 4892 4893 mutex_lock(&q->sysfs_lock); 4894 elevator_switch(q, t); 4895 /* drop the reference acquired in blk_mq_elv_switch_none */ 4896 elevator_put(t); 4897 mutex_unlock(&q->sysfs_lock); 4898 } 4899 4900 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 4901 int nr_hw_queues) 4902 { 4903 struct request_queue *q; 4904 LIST_HEAD(head); 4905 int prev_nr_hw_queues = set->nr_hw_queues; 4906 int i; 4907 4908 lockdep_assert_held(&set->tag_list_lock); 4909 4910 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 4911 nr_hw_queues = nr_cpu_ids; 4912 if (nr_hw_queues < 1) 4913 return; 4914 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 4915 return; 4916 4917 list_for_each_entry(q, &set->tag_list, tag_set_list) 4918 blk_mq_freeze_queue(q); 4919 /* 4920 * Switch IO scheduler to 'none', cleaning up the data associated 4921 * with the previous scheduler. We will switch back once we are done 4922 * updating the new sw to hw queue mappings. 4923 */ 4924 list_for_each_entry(q, &set->tag_list, tag_set_list) 4925 if (!blk_mq_elv_switch_none(&head, q)) 4926 goto switch_back; 4927 4928 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4929 blk_mq_debugfs_unregister_hctxs(q); 4930 blk_mq_sysfs_unregister_hctxs(q); 4931 } 4932 4933 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0) 4934 goto reregister; 4935 4936 fallback: 4937 blk_mq_update_queue_map(set); 4938 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4939 struct queue_limits lim; 4940 4941 blk_mq_realloc_hw_ctxs(set, q); 4942 4943 if (q->nr_hw_queues != set->nr_hw_queues) { 4944 int i = prev_nr_hw_queues; 4945 4946 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 4947 nr_hw_queues, prev_nr_hw_queues); 4948 for (; i < set->nr_hw_queues; i++) 4949 __blk_mq_free_map_and_rqs(set, i); 4950 4951 set->nr_hw_queues = prev_nr_hw_queues; 4952 goto fallback; 4953 } 4954 lim = queue_limits_start_update(q); 4955 if (blk_mq_can_poll(set)) 4956 lim.features |= BLK_FEAT_POLL; 4957 else 4958 lim.features &= ~BLK_FEAT_POLL; 4959 if (queue_limits_commit_update(q, &lim) < 0) 4960 pr_warn("updating the poll flag failed\n"); 4961 blk_mq_map_swqueue(q); 4962 } 4963 4964 reregister: 4965 list_for_each_entry(q, &set->tag_list, tag_set_list) { 4966 blk_mq_sysfs_register_hctxs(q); 4967 blk_mq_debugfs_register_hctxs(q); 4968 } 4969 4970 switch_back: 4971 list_for_each_entry(q, &set->tag_list, tag_set_list) 4972 blk_mq_elv_switch_back(&head, q); 4973 4974 list_for_each_entry(q, &set->tag_list, tag_set_list) 4975 blk_mq_unfreeze_queue(q); 4976 4977 /* Free the excess tags when nr_hw_queues shrink. */ 4978 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++) 4979 __blk_mq_free_map_and_rqs(set, i); 4980 } 4981 4982 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 4983 { 4984 mutex_lock(&set->tag_list_lock); 4985 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 4986 mutex_unlock(&set->tag_list_lock); 4987 } 4988 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 4989 4990 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx, 4991 struct io_comp_batch *iob, unsigned int flags) 4992 { 4993 long state = get_current_state(); 4994 int ret; 4995 4996 do { 4997 ret = q->mq_ops->poll(hctx, iob); 4998 if (ret > 0) { 4999 __set_current_state(TASK_RUNNING); 5000 return ret; 5001 } 5002 5003 if (signal_pending_state(state, current)) 5004 __set_current_state(TASK_RUNNING); 5005 if (task_is_running(current)) 5006 return 1; 5007 5008 if (ret < 0 || (flags & BLK_POLL_ONESHOT)) 5009 break; 5010 cpu_relax(); 5011 } while (!need_resched()); 5012 5013 __set_current_state(TASK_RUNNING); 5014 return 0; 5015 } 5016 5017 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, 5018 struct io_comp_batch *iob, unsigned int flags) 5019 { 5020 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie); 5021 5022 return blk_hctx_poll(q, hctx, iob, flags); 5023 } 5024 5025 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob, 5026 unsigned int poll_flags) 5027 { 5028 struct request_queue *q = rq->q; 5029 int ret; 5030 5031 if (!blk_rq_is_poll(rq)) 5032 return 0; 5033 if (!percpu_ref_tryget(&q->q_usage_counter)) 5034 return 0; 5035 5036 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags); 5037 blk_queue_exit(q); 5038 5039 return ret; 5040 } 5041 EXPORT_SYMBOL_GPL(blk_rq_poll); 5042 5043 unsigned int blk_mq_rq_cpu(struct request *rq) 5044 { 5045 return rq->mq_ctx->cpu; 5046 } 5047 EXPORT_SYMBOL(blk_mq_rq_cpu); 5048 5049 void blk_mq_cancel_work_sync(struct request_queue *q) 5050 { 5051 struct blk_mq_hw_ctx *hctx; 5052 unsigned long i; 5053 5054 cancel_delayed_work_sync(&q->requeue_work); 5055 5056 queue_for_each_hw_ctx(q, hctx, i) 5057 cancel_delayed_work_sync(&hctx->run_work); 5058 } 5059 5060 static int __init blk_mq_init(void) 5061 { 5062 int i; 5063 5064 for_each_possible_cpu(i) 5065 init_llist_head(&per_cpu(blk_cpu_done, i)); 5066 for_each_possible_cpu(i) 5067 INIT_CSD(&per_cpu(blk_cpu_csd, i), 5068 __blk_mq_complete_request_remote, NULL); 5069 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 5070 5071 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 5072 "block/softirq:dead", NULL, 5073 blk_softirq_cpu_dead); 5074 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 5075 blk_mq_hctx_notify_dead); 5076 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 5077 blk_mq_hctx_notify_online, 5078 blk_mq_hctx_notify_offline); 5079 return 0; 5080 } 5081 subsys_initcall(blk_mq_init); 5082