xref: /linux/block/blk-mq.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 
32 #include <trace/events/block.h>
33 
34 #include <linux/blk-mq.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-mq-tag.h"
40 #include "blk-pm.h"
41 #include "blk-stat.h"
42 #include "blk-mq-sched.h"
43 #include "blk-rq-qos.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 
47 static void blk_mq_poll_stats_start(struct request_queue *q);
48 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
49 
50 static int blk_mq_poll_stats_bkt(const struct request *rq)
51 {
52 	int ddir, sectors, bucket;
53 
54 	ddir = rq_data_dir(rq);
55 	sectors = blk_rq_stats_sectors(rq);
56 
57 	bucket = ddir + 2 * ilog2(sectors);
58 
59 	if (bucket < 0)
60 		return -1;
61 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
62 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 
64 	return bucket;
65 }
66 
67 #define BLK_QC_T_SHIFT		16
68 #define BLK_QC_T_INTERNAL	(1U << 31)
69 
70 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
71 		blk_qc_t qc)
72 {
73 	return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
74 }
75 
76 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
77 		blk_qc_t qc)
78 {
79 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
80 
81 	if (qc & BLK_QC_T_INTERNAL)
82 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
83 	return blk_mq_tag_to_rq(hctx->tags, tag);
84 }
85 
86 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
87 {
88 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
89 		(rq->tag != -1 ?
90 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
91 }
92 
93 /*
94  * Check if any of the ctx, dispatch list or elevator
95  * have pending work in this hardware queue.
96  */
97 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
98 {
99 	return !list_empty_careful(&hctx->dispatch) ||
100 		sbitmap_any_bit_set(&hctx->ctx_map) ||
101 			blk_mq_sched_has_work(hctx);
102 }
103 
104 /*
105  * Mark this ctx as having pending work in this hardware queue
106  */
107 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
108 				     struct blk_mq_ctx *ctx)
109 {
110 	const int bit = ctx->index_hw[hctx->type];
111 
112 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
113 		sbitmap_set_bit(&hctx->ctx_map, bit);
114 }
115 
116 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
117 				      struct blk_mq_ctx *ctx)
118 {
119 	const int bit = ctx->index_hw[hctx->type];
120 
121 	sbitmap_clear_bit(&hctx->ctx_map, bit);
122 }
123 
124 struct mq_inflight {
125 	struct block_device *part;
126 	unsigned int inflight[2];
127 };
128 
129 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
130 				  struct request *rq, void *priv,
131 				  bool reserved)
132 {
133 	struct mq_inflight *mi = priv;
134 
135 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 		mi->inflight[rq_data_dir(rq)]++;
138 
139 	return true;
140 }
141 
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 		struct block_device *part)
144 {
145 	struct mq_inflight mi = { .part = part };
146 
147 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148 
149 	return mi.inflight[0] + mi.inflight[1];
150 }
151 
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 		unsigned int inflight[2])
154 {
155 	struct mq_inflight mi = { .part = part };
156 
157 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 	inflight[0] = mi.inflight[0];
159 	inflight[1] = mi.inflight[1];
160 }
161 
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 	mutex_lock(&q->mq_freeze_lock);
165 	if (++q->mq_freeze_depth == 1) {
166 		percpu_ref_kill(&q->q_usage_counter);
167 		mutex_unlock(&q->mq_freeze_lock);
168 		if (queue_is_mq(q))
169 			blk_mq_run_hw_queues(q, false);
170 	} else {
171 		mutex_unlock(&q->mq_freeze_lock);
172 	}
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175 
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181 
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 				     unsigned long timeout)
184 {
185 	return wait_event_timeout(q->mq_freeze_wq,
186 					percpu_ref_is_zero(&q->q_usage_counter),
187 					timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190 
191 /*
192  * Guarantee no request is in use, so we can change any data structure of
193  * the queue afterward.
194  */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 	/*
198 	 * In the !blk_mq case we are only calling this to kill the
199 	 * q_usage_counter, otherwise this increases the freeze depth
200 	 * and waits for it to return to zero.  For this reason there is
201 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 	 * exported to drivers as the only user for unfreeze is blk_mq.
203 	 */
204 	blk_freeze_queue_start(q);
205 	blk_mq_freeze_queue_wait(q);
206 }
207 
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 	/*
211 	 * ...just an alias to keep freeze and unfreeze actions balanced
212 	 * in the blk_mq_* namespace
213 	 */
214 	blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217 
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 	mutex_lock(&q->mq_freeze_lock);
221 	if (force_atomic)
222 		q->q_usage_counter.data->force_atomic = true;
223 	q->mq_freeze_depth--;
224 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 	if (!q->mq_freeze_depth) {
226 		percpu_ref_resurrect(&q->q_usage_counter);
227 		wake_up_all(&q->mq_freeze_wq);
228 	}
229 	mutex_unlock(&q->mq_freeze_lock);
230 }
231 
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 	__blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237 
238 /*
239  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240  * mpt3sas driver such that this function can be removed.
241  */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&q->queue_lock, flags);
247 	if (!q->quiesce_depth++)
248 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 	spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252 
253 /**
254  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255  * @q: request queue.
256  *
257  * Note: it is driver's responsibility for making sure that quiesce has
258  * been started.
259  */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 	struct blk_mq_hw_ctx *hctx;
263 	unsigned int i;
264 	bool rcu = false;
265 
266 	queue_for_each_hw_ctx(q, hctx, i) {
267 		if (hctx->flags & BLK_MQ_F_BLOCKING)
268 			synchronize_srcu(hctx->srcu);
269 		else
270 			rcu = true;
271 	}
272 	if (rcu)
273 		synchronize_rcu();
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
276 
277 /**
278  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
279  * @q: request queue.
280  *
281  * Note: this function does not prevent that the struct request end_io()
282  * callback function is invoked. Once this function is returned, we make
283  * sure no dispatch can happen until the queue is unquiesced via
284  * blk_mq_unquiesce_queue().
285  */
286 void blk_mq_quiesce_queue(struct request_queue *q)
287 {
288 	blk_mq_quiesce_queue_nowait(q);
289 	blk_mq_wait_quiesce_done(q);
290 }
291 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292 
293 /*
294  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295  * @q: request queue.
296  *
297  * This function recovers queue into the state before quiescing
298  * which is done by blk_mq_quiesce_queue.
299  */
300 void blk_mq_unquiesce_queue(struct request_queue *q)
301 {
302 	unsigned long flags;
303 	bool run_queue = false;
304 
305 	spin_lock_irqsave(&q->queue_lock, flags);
306 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
307 		;
308 	} else if (!--q->quiesce_depth) {
309 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 		run_queue = true;
311 	}
312 	spin_unlock_irqrestore(&q->queue_lock, flags);
313 
314 	/* dispatch requests which are inserted during quiescing */
315 	if (run_queue)
316 		blk_mq_run_hw_queues(q, true);
317 }
318 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
319 
320 void blk_mq_wake_waiters(struct request_queue *q)
321 {
322 	struct blk_mq_hw_ctx *hctx;
323 	unsigned int i;
324 
325 	queue_for_each_hw_ctx(q, hctx, i)
326 		if (blk_mq_hw_queue_mapped(hctx))
327 			blk_mq_tag_wakeup_all(hctx->tags, true);
328 }
329 
330 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
331 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
332 {
333 	struct blk_mq_ctx *ctx = data->ctx;
334 	struct blk_mq_hw_ctx *hctx = data->hctx;
335 	struct request_queue *q = data->q;
336 	struct request *rq = tags->static_rqs[tag];
337 
338 	rq->q = q;
339 	rq->mq_ctx = ctx;
340 	rq->mq_hctx = hctx;
341 	rq->cmd_flags = data->cmd_flags;
342 
343 	if (data->flags & BLK_MQ_REQ_PM)
344 		data->rq_flags |= RQF_PM;
345 	if (blk_queue_io_stat(q))
346 		data->rq_flags |= RQF_IO_STAT;
347 	rq->rq_flags = data->rq_flags;
348 
349 	if (!(data->rq_flags & RQF_ELV)) {
350 		rq->tag = tag;
351 		rq->internal_tag = BLK_MQ_NO_TAG;
352 	} else {
353 		rq->tag = BLK_MQ_NO_TAG;
354 		rq->internal_tag = tag;
355 	}
356 	rq->timeout = 0;
357 
358 	if (blk_mq_need_time_stamp(rq))
359 		rq->start_time_ns = ktime_get_ns();
360 	else
361 		rq->start_time_ns = 0;
362 	rq->rq_disk = NULL;
363 	rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 	rq->alloc_time_ns = alloc_time_ns;
366 #endif
367 	rq->io_start_time_ns = 0;
368 	rq->stats_sectors = 0;
369 	rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 	rq->nr_integrity_segments = 0;
372 #endif
373 	rq->end_io = NULL;
374 	rq->end_io_data = NULL;
375 
376 	blk_crypto_rq_set_defaults(rq);
377 	INIT_LIST_HEAD(&rq->queuelist);
378 	/* tag was already set */
379 	WRITE_ONCE(rq->deadline, 0);
380 	refcount_set(&rq->ref, 1);
381 
382 	if (rq->rq_flags & RQF_ELV) {
383 		struct elevator_queue *e = data->q->elevator;
384 
385 		rq->elv.icq = NULL;
386 		INIT_HLIST_NODE(&rq->hash);
387 		RB_CLEAR_NODE(&rq->rb_node);
388 
389 		if (!op_is_flush(data->cmd_flags) &&
390 		    e->type->ops.prepare_request) {
391 			if (e->type->icq_cache)
392 				blk_mq_sched_assign_ioc(rq);
393 
394 			e->type->ops.prepare_request(rq);
395 			rq->rq_flags |= RQF_ELVPRIV;
396 		}
397 	}
398 
399 	return rq;
400 }
401 
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
404 		u64 alloc_time_ns)
405 {
406 	unsigned int tag, tag_offset;
407 	struct blk_mq_tags *tags;
408 	struct request *rq;
409 	unsigned long tag_mask;
410 	int i, nr = 0;
411 
412 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 	if (unlikely(!tag_mask))
414 		return NULL;
415 
416 	tags = blk_mq_tags_from_data(data);
417 	for (i = 0; tag_mask; i++) {
418 		if (!(tag_mask & (1UL << i)))
419 			continue;
420 		tag = tag_offset + i;
421 		prefetch(tags->static_rqs[tag]);
422 		tag_mask &= ~(1UL << i);
423 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
424 		rq_list_add(data->cached_rq, rq);
425 		nr++;
426 	}
427 	/* caller already holds a reference, add for remainder */
428 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
429 	data->nr_tags -= nr;
430 
431 	return rq_list_pop(data->cached_rq);
432 }
433 
434 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
435 {
436 	struct request_queue *q = data->q;
437 	u64 alloc_time_ns = 0;
438 	struct request *rq;
439 	unsigned int tag;
440 
441 	/* alloc_time includes depth and tag waits */
442 	if (blk_queue_rq_alloc_time(q))
443 		alloc_time_ns = ktime_get_ns();
444 
445 	if (data->cmd_flags & REQ_NOWAIT)
446 		data->flags |= BLK_MQ_REQ_NOWAIT;
447 
448 	if (q->elevator) {
449 		struct elevator_queue *e = q->elevator;
450 
451 		data->rq_flags |= RQF_ELV;
452 
453 		/*
454 		 * Flush/passthrough requests are special and go directly to the
455 		 * dispatch list. Don't include reserved tags in the
456 		 * limiting, as it isn't useful.
457 		 */
458 		if (!op_is_flush(data->cmd_flags) &&
459 		    !blk_op_is_passthrough(data->cmd_flags) &&
460 		    e->type->ops.limit_depth &&
461 		    !(data->flags & BLK_MQ_REQ_RESERVED))
462 			e->type->ops.limit_depth(data->cmd_flags, data);
463 	}
464 
465 retry:
466 	data->ctx = blk_mq_get_ctx(q);
467 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
468 	if (!(data->rq_flags & RQF_ELV))
469 		blk_mq_tag_busy(data->hctx);
470 
471 	/*
472 	 * Try batched alloc if we want more than 1 tag.
473 	 */
474 	if (data->nr_tags > 1) {
475 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
476 		if (rq)
477 			return rq;
478 		data->nr_tags = 1;
479 	}
480 
481 	/*
482 	 * Waiting allocations only fail because of an inactive hctx.  In that
483 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
484 	 * should have migrated us to an online CPU by now.
485 	 */
486 	tag = blk_mq_get_tag(data);
487 	if (tag == BLK_MQ_NO_TAG) {
488 		if (data->flags & BLK_MQ_REQ_NOWAIT)
489 			return NULL;
490 		/*
491 		 * Give up the CPU and sleep for a random short time to
492 		 * ensure that thread using a realtime scheduling class
493 		 * are migrated off the CPU, and thus off the hctx that
494 		 * is going away.
495 		 */
496 		msleep(3);
497 		goto retry;
498 	}
499 
500 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
501 					alloc_time_ns);
502 }
503 
504 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
505 		blk_mq_req_flags_t flags)
506 {
507 	struct blk_mq_alloc_data data = {
508 		.q		= q,
509 		.flags		= flags,
510 		.cmd_flags	= op,
511 		.nr_tags	= 1,
512 	};
513 	struct request *rq;
514 	int ret;
515 
516 	ret = blk_queue_enter(q, flags);
517 	if (ret)
518 		return ERR_PTR(ret);
519 
520 	rq = __blk_mq_alloc_requests(&data);
521 	if (!rq)
522 		goto out_queue_exit;
523 	rq->__data_len = 0;
524 	rq->__sector = (sector_t) -1;
525 	rq->bio = rq->biotail = NULL;
526 	return rq;
527 out_queue_exit:
528 	blk_queue_exit(q);
529 	return ERR_PTR(-EWOULDBLOCK);
530 }
531 EXPORT_SYMBOL(blk_mq_alloc_request);
532 
533 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
534 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
535 {
536 	struct blk_mq_alloc_data data = {
537 		.q		= q,
538 		.flags		= flags,
539 		.cmd_flags	= op,
540 		.nr_tags	= 1,
541 	};
542 	u64 alloc_time_ns = 0;
543 	unsigned int cpu;
544 	unsigned int tag;
545 	int ret;
546 
547 	/* alloc_time includes depth and tag waits */
548 	if (blk_queue_rq_alloc_time(q))
549 		alloc_time_ns = ktime_get_ns();
550 
551 	/*
552 	 * If the tag allocator sleeps we could get an allocation for a
553 	 * different hardware context.  No need to complicate the low level
554 	 * allocator for this for the rare use case of a command tied to
555 	 * a specific queue.
556 	 */
557 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
558 		return ERR_PTR(-EINVAL);
559 
560 	if (hctx_idx >= q->nr_hw_queues)
561 		return ERR_PTR(-EIO);
562 
563 	ret = blk_queue_enter(q, flags);
564 	if (ret)
565 		return ERR_PTR(ret);
566 
567 	/*
568 	 * Check if the hardware context is actually mapped to anything.
569 	 * If not tell the caller that it should skip this queue.
570 	 */
571 	ret = -EXDEV;
572 	data.hctx = q->queue_hw_ctx[hctx_idx];
573 	if (!blk_mq_hw_queue_mapped(data.hctx))
574 		goto out_queue_exit;
575 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
576 	data.ctx = __blk_mq_get_ctx(q, cpu);
577 
578 	if (!q->elevator)
579 		blk_mq_tag_busy(data.hctx);
580 	else
581 		data.rq_flags |= RQF_ELV;
582 
583 	ret = -EWOULDBLOCK;
584 	tag = blk_mq_get_tag(&data);
585 	if (tag == BLK_MQ_NO_TAG)
586 		goto out_queue_exit;
587 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
588 					alloc_time_ns);
589 
590 out_queue_exit:
591 	blk_queue_exit(q);
592 	return ERR_PTR(ret);
593 }
594 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
595 
596 static void __blk_mq_free_request(struct request *rq)
597 {
598 	struct request_queue *q = rq->q;
599 	struct blk_mq_ctx *ctx = rq->mq_ctx;
600 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
601 	const int sched_tag = rq->internal_tag;
602 
603 	blk_crypto_free_request(rq);
604 	blk_pm_mark_last_busy(rq);
605 	rq->mq_hctx = NULL;
606 	if (rq->tag != BLK_MQ_NO_TAG)
607 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
608 	if (sched_tag != BLK_MQ_NO_TAG)
609 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
610 	blk_mq_sched_restart(hctx);
611 	blk_queue_exit(q);
612 }
613 
614 void blk_mq_free_request(struct request *rq)
615 {
616 	struct request_queue *q = rq->q;
617 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
618 
619 	if (rq->rq_flags & RQF_ELVPRIV) {
620 		struct elevator_queue *e = q->elevator;
621 
622 		if (e->type->ops.finish_request)
623 			e->type->ops.finish_request(rq);
624 		if (rq->elv.icq) {
625 			put_io_context(rq->elv.icq->ioc);
626 			rq->elv.icq = NULL;
627 		}
628 	}
629 
630 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
631 		__blk_mq_dec_active_requests(hctx);
632 
633 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
634 		laptop_io_completion(q->disk->bdi);
635 
636 	rq_qos_done(q, rq);
637 
638 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
639 	if (refcount_dec_and_test(&rq->ref))
640 		__blk_mq_free_request(rq);
641 }
642 EXPORT_SYMBOL_GPL(blk_mq_free_request);
643 
644 void blk_mq_free_plug_rqs(struct blk_plug *plug)
645 {
646 	struct request *rq;
647 
648 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
649 		blk_mq_free_request(rq);
650 }
651 
652 static void req_bio_endio(struct request *rq, struct bio *bio,
653 			  unsigned int nbytes, blk_status_t error)
654 {
655 	if (unlikely(error)) {
656 		bio->bi_status = error;
657 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
658 		/*
659 		 * Partial zone append completions cannot be supported as the
660 		 * BIO fragments may end up not being written sequentially.
661 		 */
662 		if (bio->bi_iter.bi_size != nbytes)
663 			bio->bi_status = BLK_STS_IOERR;
664 		else
665 			bio->bi_iter.bi_sector = rq->__sector;
666 	}
667 
668 	bio_advance(bio, nbytes);
669 
670 	if (unlikely(rq->rq_flags & RQF_QUIET))
671 		bio_set_flag(bio, BIO_QUIET);
672 	/* don't actually finish bio if it's part of flush sequence */
673 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
674 		bio_endio(bio);
675 }
676 
677 static void blk_account_io_completion(struct request *req, unsigned int bytes)
678 {
679 	if (req->part && blk_do_io_stat(req)) {
680 		const int sgrp = op_stat_group(req_op(req));
681 
682 		part_stat_lock();
683 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
684 		part_stat_unlock();
685 	}
686 }
687 
688 /**
689  * blk_update_request - Complete multiple bytes without completing the request
690  * @req:      the request being processed
691  * @error:    block status code
692  * @nr_bytes: number of bytes to complete for @req
693  *
694  * Description:
695  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
696  *     the request structure even if @req doesn't have leftover.
697  *     If @req has leftover, sets it up for the next range of segments.
698  *
699  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
700  *     %false return from this function.
701  *
702  * Note:
703  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
704  *      except in the consistency check at the end of this function.
705  *
706  * Return:
707  *     %false - this request doesn't have any more data
708  *     %true  - this request has more data
709  **/
710 bool blk_update_request(struct request *req, blk_status_t error,
711 		unsigned int nr_bytes)
712 {
713 	int total_bytes;
714 
715 	trace_block_rq_complete(req, error, nr_bytes);
716 
717 	if (!req->bio)
718 		return false;
719 
720 #ifdef CONFIG_BLK_DEV_INTEGRITY
721 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
722 	    error == BLK_STS_OK)
723 		req->q->integrity.profile->complete_fn(req, nr_bytes);
724 #endif
725 
726 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
727 		     !(req->rq_flags & RQF_QUIET)))
728 		blk_print_req_error(req, error);
729 
730 	blk_account_io_completion(req, nr_bytes);
731 
732 	total_bytes = 0;
733 	while (req->bio) {
734 		struct bio *bio = req->bio;
735 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
736 
737 		if (bio_bytes == bio->bi_iter.bi_size)
738 			req->bio = bio->bi_next;
739 
740 		/* Completion has already been traced */
741 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
742 		req_bio_endio(req, bio, bio_bytes, error);
743 
744 		total_bytes += bio_bytes;
745 		nr_bytes -= bio_bytes;
746 
747 		if (!nr_bytes)
748 			break;
749 	}
750 
751 	/*
752 	 * completely done
753 	 */
754 	if (!req->bio) {
755 		/*
756 		 * Reset counters so that the request stacking driver
757 		 * can find how many bytes remain in the request
758 		 * later.
759 		 */
760 		req->__data_len = 0;
761 		return false;
762 	}
763 
764 	req->__data_len -= total_bytes;
765 
766 	/* update sector only for requests with clear definition of sector */
767 	if (!blk_rq_is_passthrough(req))
768 		req->__sector += total_bytes >> 9;
769 
770 	/* mixed attributes always follow the first bio */
771 	if (req->rq_flags & RQF_MIXED_MERGE) {
772 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
774 	}
775 
776 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
777 		/*
778 		 * If total number of sectors is less than the first segment
779 		 * size, something has gone terribly wrong.
780 		 */
781 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
782 			blk_dump_rq_flags(req, "request botched");
783 			req->__data_len = blk_rq_cur_bytes(req);
784 		}
785 
786 		/* recalculate the number of segments */
787 		req->nr_phys_segments = blk_recalc_rq_segments(req);
788 	}
789 
790 	return true;
791 }
792 EXPORT_SYMBOL_GPL(blk_update_request);
793 
794 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
795 {
796 	if (rq->rq_flags & RQF_STATS) {
797 		blk_mq_poll_stats_start(rq->q);
798 		blk_stat_add(rq, now);
799 	}
800 
801 	blk_mq_sched_completed_request(rq, now);
802 	blk_account_io_done(rq, now);
803 }
804 
805 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
806 {
807 	if (blk_mq_need_time_stamp(rq))
808 		__blk_mq_end_request_acct(rq, ktime_get_ns());
809 
810 	if (rq->end_io) {
811 		rq_qos_done(rq->q, rq);
812 		rq->end_io(rq, error);
813 	} else {
814 		blk_mq_free_request(rq);
815 	}
816 }
817 EXPORT_SYMBOL(__blk_mq_end_request);
818 
819 void blk_mq_end_request(struct request *rq, blk_status_t error)
820 {
821 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
822 		BUG();
823 	__blk_mq_end_request(rq, error);
824 }
825 EXPORT_SYMBOL(blk_mq_end_request);
826 
827 #define TAG_COMP_BATCH		32
828 
829 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
830 					  int *tag_array, int nr_tags)
831 {
832 	struct request_queue *q = hctx->queue;
833 
834 	/*
835 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
836 	 * update hctx->nr_active in batch
837 	 */
838 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
839 		__blk_mq_sub_active_requests(hctx, nr_tags);
840 
841 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
842 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
843 }
844 
845 void blk_mq_end_request_batch(struct io_comp_batch *iob)
846 {
847 	int tags[TAG_COMP_BATCH], nr_tags = 0;
848 	struct blk_mq_hw_ctx *cur_hctx = NULL;
849 	struct request *rq;
850 	u64 now = 0;
851 
852 	if (iob->need_ts)
853 		now = ktime_get_ns();
854 
855 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
856 		prefetch(rq->bio);
857 		prefetch(rq->rq_next);
858 
859 		blk_update_request(rq, BLK_STS_OK, blk_rq_bytes(rq));
860 		if (iob->need_ts)
861 			__blk_mq_end_request_acct(rq, now);
862 
863 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
864 		if (!refcount_dec_and_test(&rq->ref))
865 			continue;
866 
867 		blk_crypto_free_request(rq);
868 		blk_pm_mark_last_busy(rq);
869 		rq_qos_done(rq->q, rq);
870 
871 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
872 			if (cur_hctx)
873 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
874 			nr_tags = 0;
875 			cur_hctx = rq->mq_hctx;
876 		}
877 		tags[nr_tags++] = rq->tag;
878 	}
879 
880 	if (nr_tags)
881 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
882 }
883 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
884 
885 static void blk_complete_reqs(struct llist_head *list)
886 {
887 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
888 	struct request *rq, *next;
889 
890 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
891 		rq->q->mq_ops->complete(rq);
892 }
893 
894 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
895 {
896 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
897 }
898 
899 static int blk_softirq_cpu_dead(unsigned int cpu)
900 {
901 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
902 	return 0;
903 }
904 
905 static void __blk_mq_complete_request_remote(void *data)
906 {
907 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
908 }
909 
910 static inline bool blk_mq_complete_need_ipi(struct request *rq)
911 {
912 	int cpu = raw_smp_processor_id();
913 
914 	if (!IS_ENABLED(CONFIG_SMP) ||
915 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
916 		return false;
917 	/*
918 	 * With force threaded interrupts enabled, raising softirq from an SMP
919 	 * function call will always result in waking the ksoftirqd thread.
920 	 * This is probably worse than completing the request on a different
921 	 * cache domain.
922 	 */
923 	if (force_irqthreads())
924 		return false;
925 
926 	/* same CPU or cache domain?  Complete locally */
927 	if (cpu == rq->mq_ctx->cpu ||
928 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
929 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
930 		return false;
931 
932 	/* don't try to IPI to an offline CPU */
933 	return cpu_online(rq->mq_ctx->cpu);
934 }
935 
936 static void blk_mq_complete_send_ipi(struct request *rq)
937 {
938 	struct llist_head *list;
939 	unsigned int cpu;
940 
941 	cpu = rq->mq_ctx->cpu;
942 	list = &per_cpu(blk_cpu_done, cpu);
943 	if (llist_add(&rq->ipi_list, list)) {
944 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
945 		smp_call_function_single_async(cpu, &rq->csd);
946 	}
947 }
948 
949 static void blk_mq_raise_softirq(struct request *rq)
950 {
951 	struct llist_head *list;
952 
953 	preempt_disable();
954 	list = this_cpu_ptr(&blk_cpu_done);
955 	if (llist_add(&rq->ipi_list, list))
956 		raise_softirq(BLOCK_SOFTIRQ);
957 	preempt_enable();
958 }
959 
960 bool blk_mq_complete_request_remote(struct request *rq)
961 {
962 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
963 
964 	/*
965 	 * For a polled request, always complete locallly, it's pointless
966 	 * to redirect the completion.
967 	 */
968 	if (rq->cmd_flags & REQ_POLLED)
969 		return false;
970 
971 	if (blk_mq_complete_need_ipi(rq)) {
972 		blk_mq_complete_send_ipi(rq);
973 		return true;
974 	}
975 
976 	if (rq->q->nr_hw_queues == 1) {
977 		blk_mq_raise_softirq(rq);
978 		return true;
979 	}
980 	return false;
981 }
982 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
983 
984 /**
985  * blk_mq_complete_request - end I/O on a request
986  * @rq:		the request being processed
987  *
988  * Description:
989  *	Complete a request by scheduling the ->complete_rq operation.
990  **/
991 void blk_mq_complete_request(struct request *rq)
992 {
993 	if (!blk_mq_complete_request_remote(rq))
994 		rq->q->mq_ops->complete(rq);
995 }
996 EXPORT_SYMBOL(blk_mq_complete_request);
997 
998 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
999 	__releases(hctx->srcu)
1000 {
1001 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
1002 		rcu_read_unlock();
1003 	else
1004 		srcu_read_unlock(hctx->srcu, srcu_idx);
1005 }
1006 
1007 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
1008 	__acquires(hctx->srcu)
1009 {
1010 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1011 		/* shut up gcc false positive */
1012 		*srcu_idx = 0;
1013 		rcu_read_lock();
1014 	} else
1015 		*srcu_idx = srcu_read_lock(hctx->srcu);
1016 }
1017 
1018 /**
1019  * blk_mq_start_request - Start processing a request
1020  * @rq: Pointer to request to be started
1021  *
1022  * Function used by device drivers to notify the block layer that a request
1023  * is going to be processed now, so blk layer can do proper initializations
1024  * such as starting the timeout timer.
1025  */
1026 void blk_mq_start_request(struct request *rq)
1027 {
1028 	struct request_queue *q = rq->q;
1029 
1030 	trace_block_rq_issue(rq);
1031 
1032 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1033 		u64 start_time;
1034 #ifdef CONFIG_BLK_CGROUP
1035 		if (rq->bio)
1036 			start_time = bio_issue_time(&rq->bio->bi_issue);
1037 		else
1038 #endif
1039 			start_time = ktime_get_ns();
1040 		rq->io_start_time_ns = start_time;
1041 		rq->stats_sectors = blk_rq_sectors(rq);
1042 		rq->rq_flags |= RQF_STATS;
1043 		rq_qos_issue(q, rq);
1044 	}
1045 
1046 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1047 
1048 	blk_add_timer(rq);
1049 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1050 
1051 #ifdef CONFIG_BLK_DEV_INTEGRITY
1052 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1053 		q->integrity.profile->prepare_fn(rq);
1054 #endif
1055 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1056 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1057 }
1058 EXPORT_SYMBOL(blk_mq_start_request);
1059 
1060 static void __blk_mq_requeue_request(struct request *rq)
1061 {
1062 	struct request_queue *q = rq->q;
1063 
1064 	blk_mq_put_driver_tag(rq);
1065 
1066 	trace_block_rq_requeue(rq);
1067 	rq_qos_requeue(q, rq);
1068 
1069 	if (blk_mq_request_started(rq)) {
1070 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1071 		rq->rq_flags &= ~RQF_TIMED_OUT;
1072 	}
1073 }
1074 
1075 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1076 {
1077 	__blk_mq_requeue_request(rq);
1078 
1079 	/* this request will be re-inserted to io scheduler queue */
1080 	blk_mq_sched_requeue_request(rq);
1081 
1082 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1083 }
1084 EXPORT_SYMBOL(blk_mq_requeue_request);
1085 
1086 static void blk_mq_requeue_work(struct work_struct *work)
1087 {
1088 	struct request_queue *q =
1089 		container_of(work, struct request_queue, requeue_work.work);
1090 	LIST_HEAD(rq_list);
1091 	struct request *rq, *next;
1092 
1093 	spin_lock_irq(&q->requeue_lock);
1094 	list_splice_init(&q->requeue_list, &rq_list);
1095 	spin_unlock_irq(&q->requeue_lock);
1096 
1097 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1098 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1099 			continue;
1100 
1101 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1102 		list_del_init(&rq->queuelist);
1103 		/*
1104 		 * If RQF_DONTPREP, rq has contained some driver specific
1105 		 * data, so insert it to hctx dispatch list to avoid any
1106 		 * merge.
1107 		 */
1108 		if (rq->rq_flags & RQF_DONTPREP)
1109 			blk_mq_request_bypass_insert(rq, false, false);
1110 		else
1111 			blk_mq_sched_insert_request(rq, true, false, false);
1112 	}
1113 
1114 	while (!list_empty(&rq_list)) {
1115 		rq = list_entry(rq_list.next, struct request, queuelist);
1116 		list_del_init(&rq->queuelist);
1117 		blk_mq_sched_insert_request(rq, false, false, false);
1118 	}
1119 
1120 	blk_mq_run_hw_queues(q, false);
1121 }
1122 
1123 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1124 				bool kick_requeue_list)
1125 {
1126 	struct request_queue *q = rq->q;
1127 	unsigned long flags;
1128 
1129 	/*
1130 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1131 	 * request head insertion from the workqueue.
1132 	 */
1133 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1134 
1135 	spin_lock_irqsave(&q->requeue_lock, flags);
1136 	if (at_head) {
1137 		rq->rq_flags |= RQF_SOFTBARRIER;
1138 		list_add(&rq->queuelist, &q->requeue_list);
1139 	} else {
1140 		list_add_tail(&rq->queuelist, &q->requeue_list);
1141 	}
1142 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1143 
1144 	if (kick_requeue_list)
1145 		blk_mq_kick_requeue_list(q);
1146 }
1147 
1148 void blk_mq_kick_requeue_list(struct request_queue *q)
1149 {
1150 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1151 }
1152 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1153 
1154 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1155 				    unsigned long msecs)
1156 {
1157 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1158 				    msecs_to_jiffies(msecs));
1159 }
1160 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1161 
1162 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
1163 			       void *priv, bool reserved)
1164 {
1165 	/*
1166 	 * If we find a request that isn't idle and the queue matches,
1167 	 * we know the queue is busy. Return false to stop the iteration.
1168 	 */
1169 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
1170 		bool *busy = priv;
1171 
1172 		*busy = true;
1173 		return false;
1174 	}
1175 
1176 	return true;
1177 }
1178 
1179 bool blk_mq_queue_inflight(struct request_queue *q)
1180 {
1181 	bool busy = false;
1182 
1183 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1184 	return busy;
1185 }
1186 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1187 
1188 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1189 {
1190 	req->rq_flags |= RQF_TIMED_OUT;
1191 	if (req->q->mq_ops->timeout) {
1192 		enum blk_eh_timer_return ret;
1193 
1194 		ret = req->q->mq_ops->timeout(req, reserved);
1195 		if (ret == BLK_EH_DONE)
1196 			return;
1197 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1198 	}
1199 
1200 	blk_add_timer(req);
1201 }
1202 
1203 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1204 {
1205 	unsigned long deadline;
1206 
1207 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1208 		return false;
1209 	if (rq->rq_flags & RQF_TIMED_OUT)
1210 		return false;
1211 
1212 	deadline = READ_ONCE(rq->deadline);
1213 	if (time_after_eq(jiffies, deadline))
1214 		return true;
1215 
1216 	if (*next == 0)
1217 		*next = deadline;
1218 	else if (time_after(*next, deadline))
1219 		*next = deadline;
1220 	return false;
1221 }
1222 
1223 void blk_mq_put_rq_ref(struct request *rq)
1224 {
1225 	if (is_flush_rq(rq))
1226 		rq->end_io(rq, 0);
1227 	else if (refcount_dec_and_test(&rq->ref))
1228 		__blk_mq_free_request(rq);
1229 }
1230 
1231 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1232 		struct request *rq, void *priv, bool reserved)
1233 {
1234 	unsigned long *next = priv;
1235 
1236 	/*
1237 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1238 	 * be reallocated underneath the timeout handler's processing, then
1239 	 * the expire check is reliable. If the request is not expired, then
1240 	 * it was completed and reallocated as a new request after returning
1241 	 * from blk_mq_check_expired().
1242 	 */
1243 	if (blk_mq_req_expired(rq, next))
1244 		blk_mq_rq_timed_out(rq, reserved);
1245 	return true;
1246 }
1247 
1248 static void blk_mq_timeout_work(struct work_struct *work)
1249 {
1250 	struct request_queue *q =
1251 		container_of(work, struct request_queue, timeout_work);
1252 	unsigned long next = 0;
1253 	struct blk_mq_hw_ctx *hctx;
1254 	int i;
1255 
1256 	/* A deadlock might occur if a request is stuck requiring a
1257 	 * timeout at the same time a queue freeze is waiting
1258 	 * completion, since the timeout code would not be able to
1259 	 * acquire the queue reference here.
1260 	 *
1261 	 * That's why we don't use blk_queue_enter here; instead, we use
1262 	 * percpu_ref_tryget directly, because we need to be able to
1263 	 * obtain a reference even in the short window between the queue
1264 	 * starting to freeze, by dropping the first reference in
1265 	 * blk_freeze_queue_start, and the moment the last request is
1266 	 * consumed, marked by the instant q_usage_counter reaches
1267 	 * zero.
1268 	 */
1269 	if (!percpu_ref_tryget(&q->q_usage_counter))
1270 		return;
1271 
1272 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1273 
1274 	if (next != 0) {
1275 		mod_timer(&q->timeout, next);
1276 	} else {
1277 		/*
1278 		 * Request timeouts are handled as a forward rolling timer. If
1279 		 * we end up here it means that no requests are pending and
1280 		 * also that no request has been pending for a while. Mark
1281 		 * each hctx as idle.
1282 		 */
1283 		queue_for_each_hw_ctx(q, hctx, i) {
1284 			/* the hctx may be unmapped, so check it here */
1285 			if (blk_mq_hw_queue_mapped(hctx))
1286 				blk_mq_tag_idle(hctx);
1287 		}
1288 	}
1289 	blk_queue_exit(q);
1290 }
1291 
1292 struct flush_busy_ctx_data {
1293 	struct blk_mq_hw_ctx *hctx;
1294 	struct list_head *list;
1295 };
1296 
1297 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1298 {
1299 	struct flush_busy_ctx_data *flush_data = data;
1300 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1301 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1302 	enum hctx_type type = hctx->type;
1303 
1304 	spin_lock(&ctx->lock);
1305 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1306 	sbitmap_clear_bit(sb, bitnr);
1307 	spin_unlock(&ctx->lock);
1308 	return true;
1309 }
1310 
1311 /*
1312  * Process software queues that have been marked busy, splicing them
1313  * to the for-dispatch
1314  */
1315 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1316 {
1317 	struct flush_busy_ctx_data data = {
1318 		.hctx = hctx,
1319 		.list = list,
1320 	};
1321 
1322 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1325 
1326 struct dispatch_rq_data {
1327 	struct blk_mq_hw_ctx *hctx;
1328 	struct request *rq;
1329 };
1330 
1331 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1332 		void *data)
1333 {
1334 	struct dispatch_rq_data *dispatch_data = data;
1335 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1336 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1337 	enum hctx_type type = hctx->type;
1338 
1339 	spin_lock(&ctx->lock);
1340 	if (!list_empty(&ctx->rq_lists[type])) {
1341 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1342 		list_del_init(&dispatch_data->rq->queuelist);
1343 		if (list_empty(&ctx->rq_lists[type]))
1344 			sbitmap_clear_bit(sb, bitnr);
1345 	}
1346 	spin_unlock(&ctx->lock);
1347 
1348 	return !dispatch_data->rq;
1349 }
1350 
1351 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1352 					struct blk_mq_ctx *start)
1353 {
1354 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1355 	struct dispatch_rq_data data = {
1356 		.hctx = hctx,
1357 		.rq   = NULL,
1358 	};
1359 
1360 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1361 			       dispatch_rq_from_ctx, &data);
1362 
1363 	return data.rq;
1364 }
1365 
1366 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1367 {
1368 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1369 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1370 	int tag;
1371 
1372 	blk_mq_tag_busy(rq->mq_hctx);
1373 
1374 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1375 		bt = &rq->mq_hctx->tags->breserved_tags;
1376 		tag_offset = 0;
1377 	} else {
1378 		if (!hctx_may_queue(rq->mq_hctx, bt))
1379 			return false;
1380 	}
1381 
1382 	tag = __sbitmap_queue_get(bt);
1383 	if (tag == BLK_MQ_NO_TAG)
1384 		return false;
1385 
1386 	rq->tag = tag + tag_offset;
1387 	return true;
1388 }
1389 
1390 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1391 {
1392 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1393 		return false;
1394 
1395 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1396 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1397 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1398 		__blk_mq_inc_active_requests(hctx);
1399 	}
1400 	hctx->tags->rqs[rq->tag] = rq;
1401 	return true;
1402 }
1403 
1404 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1405 				int flags, void *key)
1406 {
1407 	struct blk_mq_hw_ctx *hctx;
1408 
1409 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1410 
1411 	spin_lock(&hctx->dispatch_wait_lock);
1412 	if (!list_empty(&wait->entry)) {
1413 		struct sbitmap_queue *sbq;
1414 
1415 		list_del_init(&wait->entry);
1416 		sbq = &hctx->tags->bitmap_tags;
1417 		atomic_dec(&sbq->ws_active);
1418 	}
1419 	spin_unlock(&hctx->dispatch_wait_lock);
1420 
1421 	blk_mq_run_hw_queue(hctx, true);
1422 	return 1;
1423 }
1424 
1425 /*
1426  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1427  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1428  * restart. For both cases, take care to check the condition again after
1429  * marking us as waiting.
1430  */
1431 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1432 				 struct request *rq)
1433 {
1434 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1435 	struct wait_queue_head *wq;
1436 	wait_queue_entry_t *wait;
1437 	bool ret;
1438 
1439 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1440 		blk_mq_sched_mark_restart_hctx(hctx);
1441 
1442 		/*
1443 		 * It's possible that a tag was freed in the window between the
1444 		 * allocation failure and adding the hardware queue to the wait
1445 		 * queue.
1446 		 *
1447 		 * Don't clear RESTART here, someone else could have set it.
1448 		 * At most this will cost an extra queue run.
1449 		 */
1450 		return blk_mq_get_driver_tag(rq);
1451 	}
1452 
1453 	wait = &hctx->dispatch_wait;
1454 	if (!list_empty_careful(&wait->entry))
1455 		return false;
1456 
1457 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1458 
1459 	spin_lock_irq(&wq->lock);
1460 	spin_lock(&hctx->dispatch_wait_lock);
1461 	if (!list_empty(&wait->entry)) {
1462 		spin_unlock(&hctx->dispatch_wait_lock);
1463 		spin_unlock_irq(&wq->lock);
1464 		return false;
1465 	}
1466 
1467 	atomic_inc(&sbq->ws_active);
1468 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1469 	__add_wait_queue(wq, wait);
1470 
1471 	/*
1472 	 * It's possible that a tag was freed in the window between the
1473 	 * allocation failure and adding the hardware queue to the wait
1474 	 * queue.
1475 	 */
1476 	ret = blk_mq_get_driver_tag(rq);
1477 	if (!ret) {
1478 		spin_unlock(&hctx->dispatch_wait_lock);
1479 		spin_unlock_irq(&wq->lock);
1480 		return false;
1481 	}
1482 
1483 	/*
1484 	 * We got a tag, remove ourselves from the wait queue to ensure
1485 	 * someone else gets the wakeup.
1486 	 */
1487 	list_del_init(&wait->entry);
1488 	atomic_dec(&sbq->ws_active);
1489 	spin_unlock(&hctx->dispatch_wait_lock);
1490 	spin_unlock_irq(&wq->lock);
1491 
1492 	return true;
1493 }
1494 
1495 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1496 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1497 /*
1498  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1499  * - EWMA is one simple way to compute running average value
1500  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1501  * - take 4 as factor for avoiding to get too small(0) result, and this
1502  *   factor doesn't matter because EWMA decreases exponentially
1503  */
1504 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1505 {
1506 	unsigned int ewma;
1507 
1508 	ewma = hctx->dispatch_busy;
1509 
1510 	if (!ewma && !busy)
1511 		return;
1512 
1513 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1514 	if (busy)
1515 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1516 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1517 
1518 	hctx->dispatch_busy = ewma;
1519 }
1520 
1521 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1522 
1523 static void blk_mq_handle_dev_resource(struct request *rq,
1524 				       struct list_head *list)
1525 {
1526 	struct request *next =
1527 		list_first_entry_or_null(list, struct request, queuelist);
1528 
1529 	/*
1530 	 * If an I/O scheduler has been configured and we got a driver tag for
1531 	 * the next request already, free it.
1532 	 */
1533 	if (next)
1534 		blk_mq_put_driver_tag(next);
1535 
1536 	list_add(&rq->queuelist, list);
1537 	__blk_mq_requeue_request(rq);
1538 }
1539 
1540 static void blk_mq_handle_zone_resource(struct request *rq,
1541 					struct list_head *zone_list)
1542 {
1543 	/*
1544 	 * If we end up here it is because we cannot dispatch a request to a
1545 	 * specific zone due to LLD level zone-write locking or other zone
1546 	 * related resource not being available. In this case, set the request
1547 	 * aside in zone_list for retrying it later.
1548 	 */
1549 	list_add(&rq->queuelist, zone_list);
1550 	__blk_mq_requeue_request(rq);
1551 }
1552 
1553 enum prep_dispatch {
1554 	PREP_DISPATCH_OK,
1555 	PREP_DISPATCH_NO_TAG,
1556 	PREP_DISPATCH_NO_BUDGET,
1557 };
1558 
1559 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1560 						  bool need_budget)
1561 {
1562 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1563 	int budget_token = -1;
1564 
1565 	if (need_budget) {
1566 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1567 		if (budget_token < 0) {
1568 			blk_mq_put_driver_tag(rq);
1569 			return PREP_DISPATCH_NO_BUDGET;
1570 		}
1571 		blk_mq_set_rq_budget_token(rq, budget_token);
1572 	}
1573 
1574 	if (!blk_mq_get_driver_tag(rq)) {
1575 		/*
1576 		 * The initial allocation attempt failed, so we need to
1577 		 * rerun the hardware queue when a tag is freed. The
1578 		 * waitqueue takes care of that. If the queue is run
1579 		 * before we add this entry back on the dispatch list,
1580 		 * we'll re-run it below.
1581 		 */
1582 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1583 			/*
1584 			 * All budgets not got from this function will be put
1585 			 * together during handling partial dispatch
1586 			 */
1587 			if (need_budget)
1588 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1589 			return PREP_DISPATCH_NO_TAG;
1590 		}
1591 	}
1592 
1593 	return PREP_DISPATCH_OK;
1594 }
1595 
1596 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1597 static void blk_mq_release_budgets(struct request_queue *q,
1598 		struct list_head *list)
1599 {
1600 	struct request *rq;
1601 
1602 	list_for_each_entry(rq, list, queuelist) {
1603 		int budget_token = blk_mq_get_rq_budget_token(rq);
1604 
1605 		if (budget_token >= 0)
1606 			blk_mq_put_dispatch_budget(q, budget_token);
1607 	}
1608 }
1609 
1610 /*
1611  * Returns true if we did some work AND can potentially do more.
1612  */
1613 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1614 			     unsigned int nr_budgets)
1615 {
1616 	enum prep_dispatch prep;
1617 	struct request_queue *q = hctx->queue;
1618 	struct request *rq, *nxt;
1619 	int errors, queued;
1620 	blk_status_t ret = BLK_STS_OK;
1621 	LIST_HEAD(zone_list);
1622 	bool needs_resource = false;
1623 
1624 	if (list_empty(list))
1625 		return false;
1626 
1627 	/*
1628 	 * Now process all the entries, sending them to the driver.
1629 	 */
1630 	errors = queued = 0;
1631 	do {
1632 		struct blk_mq_queue_data bd;
1633 
1634 		rq = list_first_entry(list, struct request, queuelist);
1635 
1636 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1637 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1638 		if (prep != PREP_DISPATCH_OK)
1639 			break;
1640 
1641 		list_del_init(&rq->queuelist);
1642 
1643 		bd.rq = rq;
1644 
1645 		/*
1646 		 * Flag last if we have no more requests, or if we have more
1647 		 * but can't assign a driver tag to it.
1648 		 */
1649 		if (list_empty(list))
1650 			bd.last = true;
1651 		else {
1652 			nxt = list_first_entry(list, struct request, queuelist);
1653 			bd.last = !blk_mq_get_driver_tag(nxt);
1654 		}
1655 
1656 		/*
1657 		 * once the request is queued to lld, no need to cover the
1658 		 * budget any more
1659 		 */
1660 		if (nr_budgets)
1661 			nr_budgets--;
1662 		ret = q->mq_ops->queue_rq(hctx, &bd);
1663 		switch (ret) {
1664 		case BLK_STS_OK:
1665 			queued++;
1666 			break;
1667 		case BLK_STS_RESOURCE:
1668 			needs_resource = true;
1669 			fallthrough;
1670 		case BLK_STS_DEV_RESOURCE:
1671 			blk_mq_handle_dev_resource(rq, list);
1672 			goto out;
1673 		case BLK_STS_ZONE_RESOURCE:
1674 			/*
1675 			 * Move the request to zone_list and keep going through
1676 			 * the dispatch list to find more requests the drive can
1677 			 * accept.
1678 			 */
1679 			blk_mq_handle_zone_resource(rq, &zone_list);
1680 			needs_resource = true;
1681 			break;
1682 		default:
1683 			errors++;
1684 			blk_mq_end_request(rq, ret);
1685 		}
1686 	} while (!list_empty(list));
1687 out:
1688 	if (!list_empty(&zone_list))
1689 		list_splice_tail_init(&zone_list, list);
1690 
1691 	/* If we didn't flush the entire list, we could have told the driver
1692 	 * there was more coming, but that turned out to be a lie.
1693 	 */
1694 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1695 		q->mq_ops->commit_rqs(hctx);
1696 	/*
1697 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1698 	 * that is where we will continue on next queue run.
1699 	 */
1700 	if (!list_empty(list)) {
1701 		bool needs_restart;
1702 		/* For non-shared tags, the RESTART check will suffice */
1703 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1704 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1705 
1706 		if (nr_budgets)
1707 			blk_mq_release_budgets(q, list);
1708 
1709 		spin_lock(&hctx->lock);
1710 		list_splice_tail_init(list, &hctx->dispatch);
1711 		spin_unlock(&hctx->lock);
1712 
1713 		/*
1714 		 * Order adding requests to hctx->dispatch and checking
1715 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1716 		 * in blk_mq_sched_restart(). Avoid restart code path to
1717 		 * miss the new added requests to hctx->dispatch, meantime
1718 		 * SCHED_RESTART is observed here.
1719 		 */
1720 		smp_mb();
1721 
1722 		/*
1723 		 * If SCHED_RESTART was set by the caller of this function and
1724 		 * it is no longer set that means that it was cleared by another
1725 		 * thread and hence that a queue rerun is needed.
1726 		 *
1727 		 * If 'no_tag' is set, that means that we failed getting
1728 		 * a driver tag with an I/O scheduler attached. If our dispatch
1729 		 * waitqueue is no longer active, ensure that we run the queue
1730 		 * AFTER adding our entries back to the list.
1731 		 *
1732 		 * If no I/O scheduler has been configured it is possible that
1733 		 * the hardware queue got stopped and restarted before requests
1734 		 * were pushed back onto the dispatch list. Rerun the queue to
1735 		 * avoid starvation. Notes:
1736 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1737 		 *   been stopped before rerunning a queue.
1738 		 * - Some but not all block drivers stop a queue before
1739 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1740 		 *   and dm-rq.
1741 		 *
1742 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1743 		 * bit is set, run queue after a delay to avoid IO stalls
1744 		 * that could otherwise occur if the queue is idle.  We'll do
1745 		 * similar if we couldn't get budget or couldn't lock a zone
1746 		 * and SCHED_RESTART is set.
1747 		 */
1748 		needs_restart = blk_mq_sched_needs_restart(hctx);
1749 		if (prep == PREP_DISPATCH_NO_BUDGET)
1750 			needs_resource = true;
1751 		if (!needs_restart ||
1752 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1753 			blk_mq_run_hw_queue(hctx, true);
1754 		else if (needs_restart && needs_resource)
1755 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1756 
1757 		blk_mq_update_dispatch_busy(hctx, true);
1758 		return false;
1759 	} else
1760 		blk_mq_update_dispatch_busy(hctx, false);
1761 
1762 	return (queued + errors) != 0;
1763 }
1764 
1765 /**
1766  * __blk_mq_run_hw_queue - Run a hardware queue.
1767  * @hctx: Pointer to the hardware queue to run.
1768  *
1769  * Send pending requests to the hardware.
1770  */
1771 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1772 {
1773 	int srcu_idx;
1774 
1775 	/*
1776 	 * We can't run the queue inline with ints disabled. Ensure that
1777 	 * we catch bad users of this early.
1778 	 */
1779 	WARN_ON_ONCE(in_interrupt());
1780 
1781 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1782 
1783 	hctx_lock(hctx, &srcu_idx);
1784 	blk_mq_sched_dispatch_requests(hctx);
1785 	hctx_unlock(hctx, srcu_idx);
1786 }
1787 
1788 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1789 {
1790 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1791 
1792 	if (cpu >= nr_cpu_ids)
1793 		cpu = cpumask_first(hctx->cpumask);
1794 	return cpu;
1795 }
1796 
1797 /*
1798  * It'd be great if the workqueue API had a way to pass
1799  * in a mask and had some smarts for more clever placement.
1800  * For now we just round-robin here, switching for every
1801  * BLK_MQ_CPU_WORK_BATCH queued items.
1802  */
1803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1804 {
1805 	bool tried = false;
1806 	int next_cpu = hctx->next_cpu;
1807 
1808 	if (hctx->queue->nr_hw_queues == 1)
1809 		return WORK_CPU_UNBOUND;
1810 
1811 	if (--hctx->next_cpu_batch <= 0) {
1812 select_cpu:
1813 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1814 				cpu_online_mask);
1815 		if (next_cpu >= nr_cpu_ids)
1816 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1817 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1818 	}
1819 
1820 	/*
1821 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1822 	 * and it should only happen in the path of handling CPU DEAD.
1823 	 */
1824 	if (!cpu_online(next_cpu)) {
1825 		if (!tried) {
1826 			tried = true;
1827 			goto select_cpu;
1828 		}
1829 
1830 		/*
1831 		 * Make sure to re-select CPU next time once after CPUs
1832 		 * in hctx->cpumask become online again.
1833 		 */
1834 		hctx->next_cpu = next_cpu;
1835 		hctx->next_cpu_batch = 1;
1836 		return WORK_CPU_UNBOUND;
1837 	}
1838 
1839 	hctx->next_cpu = next_cpu;
1840 	return next_cpu;
1841 }
1842 
1843 /**
1844  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1845  * @hctx: Pointer to the hardware queue to run.
1846  * @async: If we want to run the queue asynchronously.
1847  * @msecs: Milliseconds of delay to wait before running the queue.
1848  *
1849  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1850  * with a delay of @msecs.
1851  */
1852 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1853 					unsigned long msecs)
1854 {
1855 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1856 		return;
1857 
1858 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1859 		int cpu = get_cpu();
1860 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1861 			__blk_mq_run_hw_queue(hctx);
1862 			put_cpu();
1863 			return;
1864 		}
1865 
1866 		put_cpu();
1867 	}
1868 
1869 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1870 				    msecs_to_jiffies(msecs));
1871 }
1872 
1873 /**
1874  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1875  * @hctx: Pointer to the hardware queue to run.
1876  * @msecs: Milliseconds of delay to wait before running the queue.
1877  *
1878  * Run a hardware queue asynchronously with a delay of @msecs.
1879  */
1880 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1881 {
1882 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1883 }
1884 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1885 
1886 /**
1887  * blk_mq_run_hw_queue - Start to run a hardware queue.
1888  * @hctx: Pointer to the hardware queue to run.
1889  * @async: If we want to run the queue asynchronously.
1890  *
1891  * Check if the request queue is not in a quiesced state and if there are
1892  * pending requests to be sent. If this is true, run the queue to send requests
1893  * to hardware.
1894  */
1895 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1896 {
1897 	int srcu_idx;
1898 	bool need_run;
1899 
1900 	/*
1901 	 * When queue is quiesced, we may be switching io scheduler, or
1902 	 * updating nr_hw_queues, or other things, and we can't run queue
1903 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1904 	 *
1905 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1906 	 * quiesced.
1907 	 */
1908 	hctx_lock(hctx, &srcu_idx);
1909 	need_run = !blk_queue_quiesced(hctx->queue) &&
1910 		blk_mq_hctx_has_pending(hctx);
1911 	hctx_unlock(hctx, srcu_idx);
1912 
1913 	if (need_run)
1914 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1915 }
1916 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1917 
1918 /*
1919  * Is the request queue handled by an IO scheduler that does not respect
1920  * hardware queues when dispatching?
1921  */
1922 static bool blk_mq_has_sqsched(struct request_queue *q)
1923 {
1924 	struct elevator_queue *e = q->elevator;
1925 
1926 	if (e && e->type->ops.dispatch_request &&
1927 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1928 		return true;
1929 	return false;
1930 }
1931 
1932 /*
1933  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1934  * scheduler.
1935  */
1936 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1937 {
1938 	struct blk_mq_hw_ctx *hctx;
1939 
1940 	/*
1941 	 * If the IO scheduler does not respect hardware queues when
1942 	 * dispatching, we just don't bother with multiple HW queues and
1943 	 * dispatch from hctx for the current CPU since running multiple queues
1944 	 * just causes lock contention inside the scheduler and pointless cache
1945 	 * bouncing.
1946 	 */
1947 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1948 				     raw_smp_processor_id());
1949 	if (!blk_mq_hctx_stopped(hctx))
1950 		return hctx;
1951 	return NULL;
1952 }
1953 
1954 /**
1955  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1956  * @q: Pointer to the request queue to run.
1957  * @async: If we want to run the queue asynchronously.
1958  */
1959 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1960 {
1961 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1962 	int i;
1963 
1964 	sq_hctx = NULL;
1965 	if (blk_mq_has_sqsched(q))
1966 		sq_hctx = blk_mq_get_sq_hctx(q);
1967 	queue_for_each_hw_ctx(q, hctx, i) {
1968 		if (blk_mq_hctx_stopped(hctx))
1969 			continue;
1970 		/*
1971 		 * Dispatch from this hctx either if there's no hctx preferred
1972 		 * by IO scheduler or if it has requests that bypass the
1973 		 * scheduler.
1974 		 */
1975 		if (!sq_hctx || sq_hctx == hctx ||
1976 		    !list_empty_careful(&hctx->dispatch))
1977 			blk_mq_run_hw_queue(hctx, async);
1978 	}
1979 }
1980 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1981 
1982 /**
1983  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1984  * @q: Pointer to the request queue to run.
1985  * @msecs: Milliseconds of delay to wait before running the queues.
1986  */
1987 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1988 {
1989 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1990 	int i;
1991 
1992 	sq_hctx = NULL;
1993 	if (blk_mq_has_sqsched(q))
1994 		sq_hctx = blk_mq_get_sq_hctx(q);
1995 	queue_for_each_hw_ctx(q, hctx, i) {
1996 		if (blk_mq_hctx_stopped(hctx))
1997 			continue;
1998 		/*
1999 		 * Dispatch from this hctx either if there's no hctx preferred
2000 		 * by IO scheduler or if it has requests that bypass the
2001 		 * scheduler.
2002 		 */
2003 		if (!sq_hctx || sq_hctx == hctx ||
2004 		    !list_empty_careful(&hctx->dispatch))
2005 			blk_mq_delay_run_hw_queue(hctx, msecs);
2006 	}
2007 }
2008 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2009 
2010 /**
2011  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2012  * @q: request queue.
2013  *
2014  * The caller is responsible for serializing this function against
2015  * blk_mq_{start,stop}_hw_queue().
2016  */
2017 bool blk_mq_queue_stopped(struct request_queue *q)
2018 {
2019 	struct blk_mq_hw_ctx *hctx;
2020 	int i;
2021 
2022 	queue_for_each_hw_ctx(q, hctx, i)
2023 		if (blk_mq_hctx_stopped(hctx))
2024 			return true;
2025 
2026 	return false;
2027 }
2028 EXPORT_SYMBOL(blk_mq_queue_stopped);
2029 
2030 /*
2031  * This function is often used for pausing .queue_rq() by driver when
2032  * there isn't enough resource or some conditions aren't satisfied, and
2033  * BLK_STS_RESOURCE is usually returned.
2034  *
2035  * We do not guarantee that dispatch can be drained or blocked
2036  * after blk_mq_stop_hw_queue() returns. Please use
2037  * blk_mq_quiesce_queue() for that requirement.
2038  */
2039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2040 {
2041 	cancel_delayed_work(&hctx->run_work);
2042 
2043 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2044 }
2045 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2046 
2047 /*
2048  * This function is often used for pausing .queue_rq() by driver when
2049  * there isn't enough resource or some conditions aren't satisfied, and
2050  * BLK_STS_RESOURCE is usually returned.
2051  *
2052  * We do not guarantee that dispatch can be drained or blocked
2053  * after blk_mq_stop_hw_queues() returns. Please use
2054  * blk_mq_quiesce_queue() for that requirement.
2055  */
2056 void blk_mq_stop_hw_queues(struct request_queue *q)
2057 {
2058 	struct blk_mq_hw_ctx *hctx;
2059 	int i;
2060 
2061 	queue_for_each_hw_ctx(q, hctx, i)
2062 		blk_mq_stop_hw_queue(hctx);
2063 }
2064 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2065 
2066 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2067 {
2068 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2069 
2070 	blk_mq_run_hw_queue(hctx, false);
2071 }
2072 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2073 
2074 void blk_mq_start_hw_queues(struct request_queue *q)
2075 {
2076 	struct blk_mq_hw_ctx *hctx;
2077 	int i;
2078 
2079 	queue_for_each_hw_ctx(q, hctx, i)
2080 		blk_mq_start_hw_queue(hctx);
2081 }
2082 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2083 
2084 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2085 {
2086 	if (!blk_mq_hctx_stopped(hctx))
2087 		return;
2088 
2089 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2090 	blk_mq_run_hw_queue(hctx, async);
2091 }
2092 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2093 
2094 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2095 {
2096 	struct blk_mq_hw_ctx *hctx;
2097 	int i;
2098 
2099 	queue_for_each_hw_ctx(q, hctx, i)
2100 		blk_mq_start_stopped_hw_queue(hctx, async);
2101 }
2102 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2103 
2104 static void blk_mq_run_work_fn(struct work_struct *work)
2105 {
2106 	struct blk_mq_hw_ctx *hctx;
2107 
2108 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2109 
2110 	/*
2111 	 * If we are stopped, don't run the queue.
2112 	 */
2113 	if (blk_mq_hctx_stopped(hctx))
2114 		return;
2115 
2116 	__blk_mq_run_hw_queue(hctx);
2117 }
2118 
2119 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2120 					    struct request *rq,
2121 					    bool at_head)
2122 {
2123 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2124 	enum hctx_type type = hctx->type;
2125 
2126 	lockdep_assert_held(&ctx->lock);
2127 
2128 	trace_block_rq_insert(rq);
2129 
2130 	if (at_head)
2131 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2132 	else
2133 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2134 }
2135 
2136 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2137 			     bool at_head)
2138 {
2139 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2140 
2141 	lockdep_assert_held(&ctx->lock);
2142 
2143 	__blk_mq_insert_req_list(hctx, rq, at_head);
2144 	blk_mq_hctx_mark_pending(hctx, ctx);
2145 }
2146 
2147 /**
2148  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2149  * @rq: Pointer to request to be inserted.
2150  * @at_head: true if the request should be inserted at the head of the list.
2151  * @run_queue: If we should run the hardware queue after inserting the request.
2152  *
2153  * Should only be used carefully, when the caller knows we want to
2154  * bypass a potential IO scheduler on the target device.
2155  */
2156 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2157 				  bool run_queue)
2158 {
2159 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2160 
2161 	spin_lock(&hctx->lock);
2162 	if (at_head)
2163 		list_add(&rq->queuelist, &hctx->dispatch);
2164 	else
2165 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2166 	spin_unlock(&hctx->lock);
2167 
2168 	if (run_queue)
2169 		blk_mq_run_hw_queue(hctx, false);
2170 }
2171 
2172 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2173 			    struct list_head *list)
2174 
2175 {
2176 	struct request *rq;
2177 	enum hctx_type type = hctx->type;
2178 
2179 	/*
2180 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2181 	 * offline now
2182 	 */
2183 	list_for_each_entry(rq, list, queuelist) {
2184 		BUG_ON(rq->mq_ctx != ctx);
2185 		trace_block_rq_insert(rq);
2186 	}
2187 
2188 	spin_lock(&ctx->lock);
2189 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2190 	blk_mq_hctx_mark_pending(hctx, ctx);
2191 	spin_unlock(&ctx->lock);
2192 }
2193 
2194 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2195 			      bool from_schedule)
2196 {
2197 	if (hctx->queue->mq_ops->commit_rqs) {
2198 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2199 		hctx->queue->mq_ops->commit_rqs(hctx);
2200 	}
2201 	*queued = 0;
2202 }
2203 
2204 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2205 {
2206 	struct blk_mq_hw_ctx *hctx = NULL;
2207 	struct request *rq;
2208 	int queued = 0;
2209 	int errors = 0;
2210 
2211 	while ((rq = rq_list_pop(&plug->mq_list))) {
2212 		bool last = rq_list_empty(plug->mq_list);
2213 		blk_status_t ret;
2214 
2215 		if (hctx != rq->mq_hctx) {
2216 			if (hctx)
2217 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2218 			hctx = rq->mq_hctx;
2219 		}
2220 
2221 		ret = blk_mq_request_issue_directly(rq, last);
2222 		switch (ret) {
2223 		case BLK_STS_OK:
2224 			queued++;
2225 			break;
2226 		case BLK_STS_RESOURCE:
2227 		case BLK_STS_DEV_RESOURCE:
2228 			blk_mq_request_bypass_insert(rq, false, last);
2229 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2230 			return;
2231 		default:
2232 			blk_mq_end_request(rq, ret);
2233 			errors++;
2234 			break;
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * If we didn't flush the entire list, we could have told the driver
2240 	 * there was more coming, but that turned out to be a lie.
2241 	 */
2242 	if (errors)
2243 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2244 }
2245 
2246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2247 {
2248 	struct blk_mq_hw_ctx *this_hctx;
2249 	struct blk_mq_ctx *this_ctx;
2250 	unsigned int depth;
2251 	LIST_HEAD(list);
2252 
2253 	if (rq_list_empty(plug->mq_list))
2254 		return;
2255 	plug->rq_count = 0;
2256 
2257 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2258 		blk_mq_plug_issue_direct(plug, false);
2259 		if (rq_list_empty(plug->mq_list))
2260 			return;
2261 	}
2262 
2263 	this_hctx = NULL;
2264 	this_ctx = NULL;
2265 	depth = 0;
2266 	do {
2267 		struct request *rq;
2268 
2269 		rq = rq_list_pop(&plug->mq_list);
2270 
2271 		if (!this_hctx) {
2272 			this_hctx = rq->mq_hctx;
2273 			this_ctx = rq->mq_ctx;
2274 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2275 			trace_block_unplug(this_hctx->queue, depth,
2276 						!from_schedule);
2277 			blk_mq_sched_insert_requests(this_hctx, this_ctx,
2278 						&list, from_schedule);
2279 			depth = 0;
2280 			this_hctx = rq->mq_hctx;
2281 			this_ctx = rq->mq_ctx;
2282 
2283 		}
2284 
2285 		list_add(&rq->queuelist, &list);
2286 		depth++;
2287 	} while (!rq_list_empty(plug->mq_list));
2288 
2289 	if (!list_empty(&list)) {
2290 		trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2291 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2292 						from_schedule);
2293 	}
2294 }
2295 
2296 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2297 		unsigned int nr_segs)
2298 {
2299 	int err;
2300 
2301 	if (bio->bi_opf & REQ_RAHEAD)
2302 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2303 
2304 	rq->__sector = bio->bi_iter.bi_sector;
2305 	rq->write_hint = bio->bi_write_hint;
2306 	blk_rq_bio_prep(rq, bio, nr_segs);
2307 
2308 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2309 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2310 	WARN_ON_ONCE(err);
2311 
2312 	blk_account_io_start(rq);
2313 }
2314 
2315 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2316 					    struct request *rq, bool last)
2317 {
2318 	struct request_queue *q = rq->q;
2319 	struct blk_mq_queue_data bd = {
2320 		.rq = rq,
2321 		.last = last,
2322 	};
2323 	blk_status_t ret;
2324 
2325 	/*
2326 	 * For OK queue, we are done. For error, caller may kill it.
2327 	 * Any other error (busy), just add it to our list as we
2328 	 * previously would have done.
2329 	 */
2330 	ret = q->mq_ops->queue_rq(hctx, &bd);
2331 	switch (ret) {
2332 	case BLK_STS_OK:
2333 		blk_mq_update_dispatch_busy(hctx, false);
2334 		break;
2335 	case BLK_STS_RESOURCE:
2336 	case BLK_STS_DEV_RESOURCE:
2337 		blk_mq_update_dispatch_busy(hctx, true);
2338 		__blk_mq_requeue_request(rq);
2339 		break;
2340 	default:
2341 		blk_mq_update_dispatch_busy(hctx, false);
2342 		break;
2343 	}
2344 
2345 	return ret;
2346 }
2347 
2348 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2349 						struct request *rq,
2350 						bool bypass_insert, bool last)
2351 {
2352 	struct request_queue *q = rq->q;
2353 	bool run_queue = true;
2354 	int budget_token;
2355 
2356 	/*
2357 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2358 	 *
2359 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2360 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2361 	 * and avoid driver to try to dispatch again.
2362 	 */
2363 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2364 		run_queue = false;
2365 		bypass_insert = false;
2366 		goto insert;
2367 	}
2368 
2369 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2370 		goto insert;
2371 
2372 	budget_token = blk_mq_get_dispatch_budget(q);
2373 	if (budget_token < 0)
2374 		goto insert;
2375 
2376 	blk_mq_set_rq_budget_token(rq, budget_token);
2377 
2378 	if (!blk_mq_get_driver_tag(rq)) {
2379 		blk_mq_put_dispatch_budget(q, budget_token);
2380 		goto insert;
2381 	}
2382 
2383 	return __blk_mq_issue_directly(hctx, rq, last);
2384 insert:
2385 	if (bypass_insert)
2386 		return BLK_STS_RESOURCE;
2387 
2388 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2389 
2390 	return BLK_STS_OK;
2391 }
2392 
2393 /**
2394  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2395  * @hctx: Pointer of the associated hardware queue.
2396  * @rq: Pointer to request to be sent.
2397  *
2398  * If the device has enough resources to accept a new request now, send the
2399  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2400  * we can try send it another time in the future. Requests inserted at this
2401  * queue have higher priority.
2402  */
2403 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2404 		struct request *rq)
2405 {
2406 	blk_status_t ret;
2407 	int srcu_idx;
2408 
2409 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2410 
2411 	hctx_lock(hctx, &srcu_idx);
2412 
2413 	ret = __blk_mq_try_issue_directly(hctx, rq, false, true);
2414 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2415 		blk_mq_request_bypass_insert(rq, false, true);
2416 	else if (ret != BLK_STS_OK)
2417 		blk_mq_end_request(rq, ret);
2418 
2419 	hctx_unlock(hctx, srcu_idx);
2420 }
2421 
2422 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2423 {
2424 	blk_status_t ret;
2425 	int srcu_idx;
2426 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2427 
2428 	hctx_lock(hctx, &srcu_idx);
2429 	ret = __blk_mq_try_issue_directly(hctx, rq, true, last);
2430 	hctx_unlock(hctx, srcu_idx);
2431 
2432 	return ret;
2433 }
2434 
2435 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2436 		struct list_head *list)
2437 {
2438 	int queued = 0;
2439 	int errors = 0;
2440 
2441 	while (!list_empty(list)) {
2442 		blk_status_t ret;
2443 		struct request *rq = list_first_entry(list, struct request,
2444 				queuelist);
2445 
2446 		list_del_init(&rq->queuelist);
2447 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2448 		if (ret != BLK_STS_OK) {
2449 			if (ret == BLK_STS_RESOURCE ||
2450 					ret == BLK_STS_DEV_RESOURCE) {
2451 				blk_mq_request_bypass_insert(rq, false,
2452 							list_empty(list));
2453 				break;
2454 			}
2455 			blk_mq_end_request(rq, ret);
2456 			errors++;
2457 		} else
2458 			queued++;
2459 	}
2460 
2461 	/*
2462 	 * If we didn't flush the entire list, we could have told
2463 	 * the driver there was more coming, but that turned out to
2464 	 * be a lie.
2465 	 */
2466 	if ((!list_empty(list) || errors) &&
2467 	     hctx->queue->mq_ops->commit_rqs && queued)
2468 		hctx->queue->mq_ops->commit_rqs(hctx);
2469 }
2470 
2471 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2472 {
2473 	if (!plug->multiple_queues) {
2474 		struct request *nxt = rq_list_peek(&plug->mq_list);
2475 
2476 		if (nxt && nxt->q != rq->q)
2477 			plug->multiple_queues = true;
2478 	}
2479 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2480 		plug->has_elevator = true;
2481 	rq->rq_next = NULL;
2482 	rq_list_add(&plug->mq_list, rq);
2483 	plug->rq_count++;
2484 }
2485 
2486 /*
2487  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2488  * queues. This is important for md arrays to benefit from merging
2489  * requests.
2490  */
2491 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2492 {
2493 	if (plug->multiple_queues)
2494 		return BLK_MAX_REQUEST_COUNT * 2;
2495 	return BLK_MAX_REQUEST_COUNT;
2496 }
2497 
2498 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2499 				     struct bio *bio, unsigned int nr_segs,
2500 				     bool *same_queue_rq)
2501 {
2502 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2503 		if (blk_attempt_plug_merge(q, bio, nr_segs, same_queue_rq))
2504 			return true;
2505 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2506 			return true;
2507 	}
2508 	return false;
2509 }
2510 
2511 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2512 					       struct blk_plug *plug,
2513 					       struct bio *bio,
2514 					       unsigned int nsegs,
2515 					       bool *same_queue_rq)
2516 {
2517 	struct blk_mq_alloc_data data = {
2518 		.q		= q,
2519 		.nr_tags	= 1,
2520 		.cmd_flags	= bio->bi_opf,
2521 	};
2522 	struct request *rq;
2523 
2524 	if (blk_mq_attempt_bio_merge(q, bio, nsegs, same_queue_rq))
2525 		return NULL;
2526 
2527 	rq_qos_throttle(q, bio);
2528 
2529 	if (plug) {
2530 		data.nr_tags = plug->nr_ios;
2531 		plug->nr_ios = 1;
2532 		data.cached_rq = &plug->cached_rq;
2533 	}
2534 
2535 	rq = __blk_mq_alloc_requests(&data);
2536 	if (rq)
2537 		return rq;
2538 
2539 	rq_qos_cleanup(q, bio);
2540 	if (bio->bi_opf & REQ_NOWAIT)
2541 		bio_wouldblock_error(bio);
2542 
2543 	return NULL;
2544 }
2545 
2546 static inline bool blk_mq_can_use_cached_rq(struct request *rq,
2547 		struct bio *bio)
2548 {
2549 	if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2550 		return false;
2551 
2552 	if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2553 		return false;
2554 
2555 	return true;
2556 }
2557 
2558 static inline struct request *blk_mq_get_request(struct request_queue *q,
2559 						 struct blk_plug *plug,
2560 						 struct bio *bio,
2561 						 unsigned int nsegs,
2562 						 bool *same_queue_rq)
2563 {
2564 	struct request *rq;
2565 	bool checked = false;
2566 
2567 	if (plug) {
2568 
2569 		rq = rq_list_peek(&plug->cached_rq);
2570 		if (rq && rq->q == q) {
2571 			if (unlikely(!submit_bio_checks(bio)))
2572 				return NULL;
2573 			if (blk_mq_attempt_bio_merge(q, bio, nsegs,
2574 						same_queue_rq))
2575 				return NULL;
2576 			checked = true;
2577 			if (!blk_mq_can_use_cached_rq(rq, bio))
2578 				goto fallback;
2579 			rq->cmd_flags = bio->bi_opf;
2580 			plug->cached_rq = rq_list_next(rq);
2581 			INIT_LIST_HEAD(&rq->queuelist);
2582 			rq_qos_throttle(q, bio);
2583 			return rq;
2584 		}
2585 	}
2586 
2587 fallback:
2588 	if (unlikely(bio_queue_enter(bio)))
2589 		return NULL;
2590 	if (!checked && !submit_bio_checks(bio))
2591 		return NULL;
2592 	rq = blk_mq_get_new_requests(q, plug, bio, nsegs, same_queue_rq);
2593 	if (!rq)
2594 		blk_queue_exit(q);
2595 	return rq;
2596 }
2597 
2598 /**
2599  * blk_mq_submit_bio - Create and send a request to block device.
2600  * @bio: Bio pointer.
2601  *
2602  * Builds up a request structure from @q and @bio and send to the device. The
2603  * request may not be queued directly to hardware if:
2604  * * This request can be merged with another one
2605  * * We want to place request at plug queue for possible future merging
2606  * * There is an IO scheduler active at this queue
2607  *
2608  * It will not queue the request if there is an error with the bio, or at the
2609  * request creation.
2610  */
2611 void blk_mq_submit_bio(struct bio *bio)
2612 {
2613 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2614 	const int is_sync = op_is_sync(bio->bi_opf);
2615 	struct request *rq;
2616 	struct blk_plug *plug;
2617 	bool same_queue_rq = false;
2618 	unsigned int nr_segs = 1;
2619 	blk_status_t ret;
2620 
2621 	if (unlikely(!blk_crypto_bio_prep(&bio)))
2622 		return;
2623 
2624 	blk_queue_bounce(q, &bio);
2625 	if (blk_may_split(q, bio))
2626 		__blk_queue_split(q, &bio, &nr_segs);
2627 
2628 	if (!bio_integrity_prep(bio))
2629 		return;
2630 
2631 	plug = blk_mq_plug(q, bio);
2632 	rq = blk_mq_get_request(q, plug, bio, nr_segs, &same_queue_rq);
2633 	if (unlikely(!rq))
2634 		return;
2635 
2636 	trace_block_getrq(bio);
2637 
2638 	rq_qos_track(q, rq, bio);
2639 
2640 	blk_mq_bio_to_request(rq, bio, nr_segs);
2641 
2642 	ret = blk_crypto_init_request(rq);
2643 	if (ret != BLK_STS_OK) {
2644 		bio->bi_status = ret;
2645 		bio_endio(bio);
2646 		blk_mq_free_request(rq);
2647 		return;
2648 	}
2649 
2650 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2651 		return;
2652 
2653 	if (plug && (q->nr_hw_queues == 1 ||
2654 	    blk_mq_is_shared_tags(rq->mq_hctx->flags) ||
2655 	    q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2656 		/*
2657 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2658 		 * we know the driver uses bd->last in a smart fashion.
2659 		 *
2660 		 * Use normal plugging if this disk is slow HDD, as sequential
2661 		 * IO may benefit a lot from plug merging.
2662 		 */
2663 		unsigned int request_count = plug->rq_count;
2664 		struct request *last = NULL;
2665 
2666 		if (!request_count) {
2667 			trace_block_plug(q);
2668 		} else if (!blk_queue_nomerges(q)) {
2669 			last = rq_list_peek(&plug->mq_list);
2670 			if (blk_rq_bytes(last) < BLK_PLUG_FLUSH_SIZE)
2671 				last = NULL;
2672 		}
2673 
2674 		if (request_count >= blk_plug_max_rq_count(plug) || last) {
2675 			blk_mq_flush_plug_list(plug, false);
2676 			trace_block_plug(q);
2677 		}
2678 
2679 		blk_add_rq_to_plug(plug, rq);
2680 	} else if (rq->rq_flags & RQF_ELV) {
2681 		/* Insert the request at the IO scheduler queue */
2682 		blk_mq_sched_insert_request(rq, false, true, true);
2683 	} else if (plug && !blk_queue_nomerges(q)) {
2684 		struct request *next_rq = NULL;
2685 
2686 		/*
2687 		 * We do limited plugging. If the bio can be merged, do that.
2688 		 * Otherwise the existing request in the plug list will be
2689 		 * issued. So the plug list will have one request at most
2690 		 * The plug list might get flushed before this. If that happens,
2691 		 * the plug list is empty, and same_queue_rq is invalid.
2692 		 */
2693 		if (same_queue_rq) {
2694 			next_rq = rq_list_pop(&plug->mq_list);
2695 			plug->rq_count--;
2696 		}
2697 		blk_add_rq_to_plug(plug, rq);
2698 		trace_block_plug(q);
2699 
2700 		if (next_rq) {
2701 			trace_block_unplug(q, 1, true);
2702 			blk_mq_try_issue_directly(next_rq->mq_hctx, next_rq);
2703 		}
2704 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2705 		   !rq->mq_hctx->dispatch_busy) {
2706 		/*
2707 		 * There is no scheduler and we can try to send directly
2708 		 * to the hardware.
2709 		 */
2710 		blk_mq_try_issue_directly(rq->mq_hctx, rq);
2711 	} else {
2712 		/* Default case. */
2713 		blk_mq_sched_insert_request(rq, false, true, true);
2714 	}
2715 }
2716 
2717 static size_t order_to_size(unsigned int order)
2718 {
2719 	return (size_t)PAGE_SIZE << order;
2720 }
2721 
2722 /* called before freeing request pool in @tags */
2723 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
2724 				    struct blk_mq_tags *tags)
2725 {
2726 	struct page *page;
2727 	unsigned long flags;
2728 
2729 	/* There is no need to clear a driver tags own mapping */
2730 	if (drv_tags == tags)
2731 		return;
2732 
2733 	list_for_each_entry(page, &tags->page_list, lru) {
2734 		unsigned long start = (unsigned long)page_address(page);
2735 		unsigned long end = start + order_to_size(page->private);
2736 		int i;
2737 
2738 		for (i = 0; i < drv_tags->nr_tags; i++) {
2739 			struct request *rq = drv_tags->rqs[i];
2740 			unsigned long rq_addr = (unsigned long)rq;
2741 
2742 			if (rq_addr >= start && rq_addr < end) {
2743 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2744 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2745 			}
2746 		}
2747 	}
2748 
2749 	/*
2750 	 * Wait until all pending iteration is done.
2751 	 *
2752 	 * Request reference is cleared and it is guaranteed to be observed
2753 	 * after the ->lock is released.
2754 	 */
2755 	spin_lock_irqsave(&drv_tags->lock, flags);
2756 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2757 }
2758 
2759 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2760 		     unsigned int hctx_idx)
2761 {
2762 	struct blk_mq_tags *drv_tags;
2763 	struct page *page;
2764 
2765 	if (blk_mq_is_shared_tags(set->flags))
2766 		drv_tags = set->shared_tags;
2767 	else
2768 		drv_tags = set->tags[hctx_idx];
2769 
2770 	if (tags->static_rqs && set->ops->exit_request) {
2771 		int i;
2772 
2773 		for (i = 0; i < tags->nr_tags; i++) {
2774 			struct request *rq = tags->static_rqs[i];
2775 
2776 			if (!rq)
2777 				continue;
2778 			set->ops->exit_request(set, rq, hctx_idx);
2779 			tags->static_rqs[i] = NULL;
2780 		}
2781 	}
2782 
2783 	blk_mq_clear_rq_mapping(drv_tags, tags);
2784 
2785 	while (!list_empty(&tags->page_list)) {
2786 		page = list_first_entry(&tags->page_list, struct page, lru);
2787 		list_del_init(&page->lru);
2788 		/*
2789 		 * Remove kmemleak object previously allocated in
2790 		 * blk_mq_alloc_rqs().
2791 		 */
2792 		kmemleak_free(page_address(page));
2793 		__free_pages(page, page->private);
2794 	}
2795 }
2796 
2797 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2798 {
2799 	kfree(tags->rqs);
2800 	tags->rqs = NULL;
2801 	kfree(tags->static_rqs);
2802 	tags->static_rqs = NULL;
2803 
2804 	blk_mq_free_tags(tags);
2805 }
2806 
2807 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2808 					       unsigned int hctx_idx,
2809 					       unsigned int nr_tags,
2810 					       unsigned int reserved_tags)
2811 {
2812 	struct blk_mq_tags *tags;
2813 	int node;
2814 
2815 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2816 	if (node == NUMA_NO_NODE)
2817 		node = set->numa_node;
2818 
2819 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2820 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2821 	if (!tags)
2822 		return NULL;
2823 
2824 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2825 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2826 				 node);
2827 	if (!tags->rqs) {
2828 		blk_mq_free_tags(tags);
2829 		return NULL;
2830 	}
2831 
2832 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2833 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2834 					node);
2835 	if (!tags->static_rqs) {
2836 		kfree(tags->rqs);
2837 		blk_mq_free_tags(tags);
2838 		return NULL;
2839 	}
2840 
2841 	return tags;
2842 }
2843 
2844 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2845 			       unsigned int hctx_idx, int node)
2846 {
2847 	int ret;
2848 
2849 	if (set->ops->init_request) {
2850 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2851 		if (ret)
2852 			return ret;
2853 	}
2854 
2855 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2856 	return 0;
2857 }
2858 
2859 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
2860 			    struct blk_mq_tags *tags,
2861 			    unsigned int hctx_idx, unsigned int depth)
2862 {
2863 	unsigned int i, j, entries_per_page, max_order = 4;
2864 	size_t rq_size, left;
2865 	int node;
2866 
2867 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2868 	if (node == NUMA_NO_NODE)
2869 		node = set->numa_node;
2870 
2871 	INIT_LIST_HEAD(&tags->page_list);
2872 
2873 	/*
2874 	 * rq_size is the size of the request plus driver payload, rounded
2875 	 * to the cacheline size
2876 	 */
2877 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2878 				cache_line_size());
2879 	left = rq_size * depth;
2880 
2881 	for (i = 0; i < depth; ) {
2882 		int this_order = max_order;
2883 		struct page *page;
2884 		int to_do;
2885 		void *p;
2886 
2887 		while (this_order && left < order_to_size(this_order - 1))
2888 			this_order--;
2889 
2890 		do {
2891 			page = alloc_pages_node(node,
2892 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2893 				this_order);
2894 			if (page)
2895 				break;
2896 			if (!this_order--)
2897 				break;
2898 			if (order_to_size(this_order) < rq_size)
2899 				break;
2900 		} while (1);
2901 
2902 		if (!page)
2903 			goto fail;
2904 
2905 		page->private = this_order;
2906 		list_add_tail(&page->lru, &tags->page_list);
2907 
2908 		p = page_address(page);
2909 		/*
2910 		 * Allow kmemleak to scan these pages as they contain pointers
2911 		 * to additional allocations like via ops->init_request().
2912 		 */
2913 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2914 		entries_per_page = order_to_size(this_order) / rq_size;
2915 		to_do = min(entries_per_page, depth - i);
2916 		left -= to_do * rq_size;
2917 		for (j = 0; j < to_do; j++) {
2918 			struct request *rq = p;
2919 
2920 			tags->static_rqs[i] = rq;
2921 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2922 				tags->static_rqs[i] = NULL;
2923 				goto fail;
2924 			}
2925 
2926 			p += rq_size;
2927 			i++;
2928 		}
2929 	}
2930 	return 0;
2931 
2932 fail:
2933 	blk_mq_free_rqs(set, tags, hctx_idx);
2934 	return -ENOMEM;
2935 }
2936 
2937 struct rq_iter_data {
2938 	struct blk_mq_hw_ctx *hctx;
2939 	bool has_rq;
2940 };
2941 
2942 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2943 {
2944 	struct rq_iter_data *iter_data = data;
2945 
2946 	if (rq->mq_hctx != iter_data->hctx)
2947 		return true;
2948 	iter_data->has_rq = true;
2949 	return false;
2950 }
2951 
2952 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2953 {
2954 	struct blk_mq_tags *tags = hctx->sched_tags ?
2955 			hctx->sched_tags : hctx->tags;
2956 	struct rq_iter_data data = {
2957 		.hctx	= hctx,
2958 	};
2959 
2960 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2961 	return data.has_rq;
2962 }
2963 
2964 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2965 		struct blk_mq_hw_ctx *hctx)
2966 {
2967 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2968 		return false;
2969 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2970 		return false;
2971 	return true;
2972 }
2973 
2974 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2975 {
2976 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2977 			struct blk_mq_hw_ctx, cpuhp_online);
2978 
2979 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2980 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2981 		return 0;
2982 
2983 	/*
2984 	 * Prevent new request from being allocated on the current hctx.
2985 	 *
2986 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2987 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2988 	 * seen once we return from the tag allocator.
2989 	 */
2990 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2991 	smp_mb__after_atomic();
2992 
2993 	/*
2994 	 * Try to grab a reference to the queue and wait for any outstanding
2995 	 * requests.  If we could not grab a reference the queue has been
2996 	 * frozen and there are no requests.
2997 	 */
2998 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2999 		while (blk_mq_hctx_has_requests(hctx))
3000 			msleep(5);
3001 		percpu_ref_put(&hctx->queue->q_usage_counter);
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3008 {
3009 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3010 			struct blk_mq_hw_ctx, cpuhp_online);
3011 
3012 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3013 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3014 	return 0;
3015 }
3016 
3017 /*
3018  * 'cpu' is going away. splice any existing rq_list entries from this
3019  * software queue to the hw queue dispatch list, and ensure that it
3020  * gets run.
3021  */
3022 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3023 {
3024 	struct blk_mq_hw_ctx *hctx;
3025 	struct blk_mq_ctx *ctx;
3026 	LIST_HEAD(tmp);
3027 	enum hctx_type type;
3028 
3029 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3030 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3031 		return 0;
3032 
3033 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3034 	type = hctx->type;
3035 
3036 	spin_lock(&ctx->lock);
3037 	if (!list_empty(&ctx->rq_lists[type])) {
3038 		list_splice_init(&ctx->rq_lists[type], &tmp);
3039 		blk_mq_hctx_clear_pending(hctx, ctx);
3040 	}
3041 	spin_unlock(&ctx->lock);
3042 
3043 	if (list_empty(&tmp))
3044 		return 0;
3045 
3046 	spin_lock(&hctx->lock);
3047 	list_splice_tail_init(&tmp, &hctx->dispatch);
3048 	spin_unlock(&hctx->lock);
3049 
3050 	blk_mq_run_hw_queue(hctx, true);
3051 	return 0;
3052 }
3053 
3054 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3055 {
3056 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3057 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3058 						    &hctx->cpuhp_online);
3059 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3060 					    &hctx->cpuhp_dead);
3061 }
3062 
3063 /*
3064  * Before freeing hw queue, clearing the flush request reference in
3065  * tags->rqs[] for avoiding potential UAF.
3066  */
3067 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3068 		unsigned int queue_depth, struct request *flush_rq)
3069 {
3070 	int i;
3071 	unsigned long flags;
3072 
3073 	/* The hw queue may not be mapped yet */
3074 	if (!tags)
3075 		return;
3076 
3077 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
3078 
3079 	for (i = 0; i < queue_depth; i++)
3080 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3081 
3082 	/*
3083 	 * Wait until all pending iteration is done.
3084 	 *
3085 	 * Request reference is cleared and it is guaranteed to be observed
3086 	 * after the ->lock is released.
3087 	 */
3088 	spin_lock_irqsave(&tags->lock, flags);
3089 	spin_unlock_irqrestore(&tags->lock, flags);
3090 }
3091 
3092 /* hctx->ctxs will be freed in queue's release handler */
3093 static void blk_mq_exit_hctx(struct request_queue *q,
3094 		struct blk_mq_tag_set *set,
3095 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3096 {
3097 	struct request *flush_rq = hctx->fq->flush_rq;
3098 
3099 	if (blk_mq_hw_queue_mapped(hctx))
3100 		blk_mq_tag_idle(hctx);
3101 
3102 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3103 			set->queue_depth, flush_rq);
3104 	if (set->ops->exit_request)
3105 		set->ops->exit_request(set, flush_rq, hctx_idx);
3106 
3107 	if (set->ops->exit_hctx)
3108 		set->ops->exit_hctx(hctx, hctx_idx);
3109 
3110 	blk_mq_remove_cpuhp(hctx);
3111 
3112 	spin_lock(&q->unused_hctx_lock);
3113 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3114 	spin_unlock(&q->unused_hctx_lock);
3115 }
3116 
3117 static void blk_mq_exit_hw_queues(struct request_queue *q,
3118 		struct blk_mq_tag_set *set, int nr_queue)
3119 {
3120 	struct blk_mq_hw_ctx *hctx;
3121 	unsigned int i;
3122 
3123 	queue_for_each_hw_ctx(q, hctx, i) {
3124 		if (i == nr_queue)
3125 			break;
3126 		blk_mq_debugfs_unregister_hctx(hctx);
3127 		blk_mq_exit_hctx(q, set, hctx, i);
3128 	}
3129 }
3130 
3131 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
3132 {
3133 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
3134 
3135 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
3136 			   __alignof__(struct blk_mq_hw_ctx)) !=
3137 		     sizeof(struct blk_mq_hw_ctx));
3138 
3139 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
3140 		hw_ctx_size += sizeof(struct srcu_struct);
3141 
3142 	return hw_ctx_size;
3143 }
3144 
3145 static int blk_mq_init_hctx(struct request_queue *q,
3146 		struct blk_mq_tag_set *set,
3147 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3148 {
3149 	hctx->queue_num = hctx_idx;
3150 
3151 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3152 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3153 				&hctx->cpuhp_online);
3154 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3155 
3156 	hctx->tags = set->tags[hctx_idx];
3157 
3158 	if (set->ops->init_hctx &&
3159 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3160 		goto unregister_cpu_notifier;
3161 
3162 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3163 				hctx->numa_node))
3164 		goto exit_hctx;
3165 	return 0;
3166 
3167  exit_hctx:
3168 	if (set->ops->exit_hctx)
3169 		set->ops->exit_hctx(hctx, hctx_idx);
3170  unregister_cpu_notifier:
3171 	blk_mq_remove_cpuhp(hctx);
3172 	return -1;
3173 }
3174 
3175 static struct blk_mq_hw_ctx *
3176 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3177 		int node)
3178 {
3179 	struct blk_mq_hw_ctx *hctx;
3180 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3181 
3182 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
3183 	if (!hctx)
3184 		goto fail_alloc_hctx;
3185 
3186 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3187 		goto free_hctx;
3188 
3189 	atomic_set(&hctx->nr_active, 0);
3190 	if (node == NUMA_NO_NODE)
3191 		node = set->numa_node;
3192 	hctx->numa_node = node;
3193 
3194 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3195 	spin_lock_init(&hctx->lock);
3196 	INIT_LIST_HEAD(&hctx->dispatch);
3197 	hctx->queue = q;
3198 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3199 
3200 	INIT_LIST_HEAD(&hctx->hctx_list);
3201 
3202 	/*
3203 	 * Allocate space for all possible cpus to avoid allocation at
3204 	 * runtime
3205 	 */
3206 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3207 			gfp, node);
3208 	if (!hctx->ctxs)
3209 		goto free_cpumask;
3210 
3211 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3212 				gfp, node, false, false))
3213 		goto free_ctxs;
3214 	hctx->nr_ctx = 0;
3215 
3216 	spin_lock_init(&hctx->dispatch_wait_lock);
3217 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3218 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3219 
3220 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3221 	if (!hctx->fq)
3222 		goto free_bitmap;
3223 
3224 	if (hctx->flags & BLK_MQ_F_BLOCKING)
3225 		init_srcu_struct(hctx->srcu);
3226 	blk_mq_hctx_kobj_init(hctx);
3227 
3228 	return hctx;
3229 
3230  free_bitmap:
3231 	sbitmap_free(&hctx->ctx_map);
3232  free_ctxs:
3233 	kfree(hctx->ctxs);
3234  free_cpumask:
3235 	free_cpumask_var(hctx->cpumask);
3236  free_hctx:
3237 	kfree(hctx);
3238  fail_alloc_hctx:
3239 	return NULL;
3240 }
3241 
3242 static void blk_mq_init_cpu_queues(struct request_queue *q,
3243 				   unsigned int nr_hw_queues)
3244 {
3245 	struct blk_mq_tag_set *set = q->tag_set;
3246 	unsigned int i, j;
3247 
3248 	for_each_possible_cpu(i) {
3249 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3250 		struct blk_mq_hw_ctx *hctx;
3251 		int k;
3252 
3253 		__ctx->cpu = i;
3254 		spin_lock_init(&__ctx->lock);
3255 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3256 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3257 
3258 		__ctx->queue = q;
3259 
3260 		/*
3261 		 * Set local node, IFF we have more than one hw queue. If
3262 		 * not, we remain on the home node of the device
3263 		 */
3264 		for (j = 0; j < set->nr_maps; j++) {
3265 			hctx = blk_mq_map_queue_type(q, j, i);
3266 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3267 				hctx->numa_node = cpu_to_node(i);
3268 		}
3269 	}
3270 }
3271 
3272 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3273 					     unsigned int hctx_idx,
3274 					     unsigned int depth)
3275 {
3276 	struct blk_mq_tags *tags;
3277 	int ret;
3278 
3279 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3280 	if (!tags)
3281 		return NULL;
3282 
3283 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3284 	if (ret) {
3285 		blk_mq_free_rq_map(tags);
3286 		return NULL;
3287 	}
3288 
3289 	return tags;
3290 }
3291 
3292 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3293 				       int hctx_idx)
3294 {
3295 	if (blk_mq_is_shared_tags(set->flags)) {
3296 		set->tags[hctx_idx] = set->shared_tags;
3297 
3298 		return true;
3299 	}
3300 
3301 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3302 						       set->queue_depth);
3303 
3304 	return set->tags[hctx_idx];
3305 }
3306 
3307 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3308 			     struct blk_mq_tags *tags,
3309 			     unsigned int hctx_idx)
3310 {
3311 	if (tags) {
3312 		blk_mq_free_rqs(set, tags, hctx_idx);
3313 		blk_mq_free_rq_map(tags);
3314 	}
3315 }
3316 
3317 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3318 				      unsigned int hctx_idx)
3319 {
3320 	if (!blk_mq_is_shared_tags(set->flags))
3321 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3322 
3323 	set->tags[hctx_idx] = NULL;
3324 }
3325 
3326 static void blk_mq_map_swqueue(struct request_queue *q)
3327 {
3328 	unsigned int i, j, hctx_idx;
3329 	struct blk_mq_hw_ctx *hctx;
3330 	struct blk_mq_ctx *ctx;
3331 	struct blk_mq_tag_set *set = q->tag_set;
3332 
3333 	queue_for_each_hw_ctx(q, hctx, i) {
3334 		cpumask_clear(hctx->cpumask);
3335 		hctx->nr_ctx = 0;
3336 		hctx->dispatch_from = NULL;
3337 	}
3338 
3339 	/*
3340 	 * Map software to hardware queues.
3341 	 *
3342 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3343 	 */
3344 	for_each_possible_cpu(i) {
3345 
3346 		ctx = per_cpu_ptr(q->queue_ctx, i);
3347 		for (j = 0; j < set->nr_maps; j++) {
3348 			if (!set->map[j].nr_queues) {
3349 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3350 						HCTX_TYPE_DEFAULT, i);
3351 				continue;
3352 			}
3353 			hctx_idx = set->map[j].mq_map[i];
3354 			/* unmapped hw queue can be remapped after CPU topo changed */
3355 			if (!set->tags[hctx_idx] &&
3356 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3357 				/*
3358 				 * If tags initialization fail for some hctx,
3359 				 * that hctx won't be brought online.  In this
3360 				 * case, remap the current ctx to hctx[0] which
3361 				 * is guaranteed to always have tags allocated
3362 				 */
3363 				set->map[j].mq_map[i] = 0;
3364 			}
3365 
3366 			hctx = blk_mq_map_queue_type(q, j, i);
3367 			ctx->hctxs[j] = hctx;
3368 			/*
3369 			 * If the CPU is already set in the mask, then we've
3370 			 * mapped this one already. This can happen if
3371 			 * devices share queues across queue maps.
3372 			 */
3373 			if (cpumask_test_cpu(i, hctx->cpumask))
3374 				continue;
3375 
3376 			cpumask_set_cpu(i, hctx->cpumask);
3377 			hctx->type = j;
3378 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3379 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3380 
3381 			/*
3382 			 * If the nr_ctx type overflows, we have exceeded the
3383 			 * amount of sw queues we can support.
3384 			 */
3385 			BUG_ON(!hctx->nr_ctx);
3386 		}
3387 
3388 		for (; j < HCTX_MAX_TYPES; j++)
3389 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3390 					HCTX_TYPE_DEFAULT, i);
3391 	}
3392 
3393 	queue_for_each_hw_ctx(q, hctx, i) {
3394 		/*
3395 		 * If no software queues are mapped to this hardware queue,
3396 		 * disable it and free the request entries.
3397 		 */
3398 		if (!hctx->nr_ctx) {
3399 			/* Never unmap queue 0.  We need it as a
3400 			 * fallback in case of a new remap fails
3401 			 * allocation
3402 			 */
3403 			if (i)
3404 				__blk_mq_free_map_and_rqs(set, i);
3405 
3406 			hctx->tags = NULL;
3407 			continue;
3408 		}
3409 
3410 		hctx->tags = set->tags[i];
3411 		WARN_ON(!hctx->tags);
3412 
3413 		/*
3414 		 * Set the map size to the number of mapped software queues.
3415 		 * This is more accurate and more efficient than looping
3416 		 * over all possibly mapped software queues.
3417 		 */
3418 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3419 
3420 		/*
3421 		 * Initialize batch roundrobin counts
3422 		 */
3423 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3424 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3425 	}
3426 }
3427 
3428 /*
3429  * Caller needs to ensure that we're either frozen/quiesced, or that
3430  * the queue isn't live yet.
3431  */
3432 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3433 {
3434 	struct blk_mq_hw_ctx *hctx;
3435 	int i;
3436 
3437 	queue_for_each_hw_ctx(q, hctx, i) {
3438 		if (shared) {
3439 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3440 		} else {
3441 			blk_mq_tag_idle(hctx);
3442 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3443 		}
3444 	}
3445 }
3446 
3447 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3448 					 bool shared)
3449 {
3450 	struct request_queue *q;
3451 
3452 	lockdep_assert_held(&set->tag_list_lock);
3453 
3454 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3455 		blk_mq_freeze_queue(q);
3456 		queue_set_hctx_shared(q, shared);
3457 		blk_mq_unfreeze_queue(q);
3458 	}
3459 }
3460 
3461 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3462 {
3463 	struct blk_mq_tag_set *set = q->tag_set;
3464 
3465 	mutex_lock(&set->tag_list_lock);
3466 	list_del(&q->tag_set_list);
3467 	if (list_is_singular(&set->tag_list)) {
3468 		/* just transitioned to unshared */
3469 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3470 		/* update existing queue */
3471 		blk_mq_update_tag_set_shared(set, false);
3472 	}
3473 	mutex_unlock(&set->tag_list_lock);
3474 	INIT_LIST_HEAD(&q->tag_set_list);
3475 }
3476 
3477 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3478 				     struct request_queue *q)
3479 {
3480 	mutex_lock(&set->tag_list_lock);
3481 
3482 	/*
3483 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3484 	 */
3485 	if (!list_empty(&set->tag_list) &&
3486 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3487 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3488 		/* update existing queue */
3489 		blk_mq_update_tag_set_shared(set, true);
3490 	}
3491 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3492 		queue_set_hctx_shared(q, true);
3493 	list_add_tail(&q->tag_set_list, &set->tag_list);
3494 
3495 	mutex_unlock(&set->tag_list_lock);
3496 }
3497 
3498 /* All allocations will be freed in release handler of q->mq_kobj */
3499 static int blk_mq_alloc_ctxs(struct request_queue *q)
3500 {
3501 	struct blk_mq_ctxs *ctxs;
3502 	int cpu;
3503 
3504 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3505 	if (!ctxs)
3506 		return -ENOMEM;
3507 
3508 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3509 	if (!ctxs->queue_ctx)
3510 		goto fail;
3511 
3512 	for_each_possible_cpu(cpu) {
3513 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3514 		ctx->ctxs = ctxs;
3515 	}
3516 
3517 	q->mq_kobj = &ctxs->kobj;
3518 	q->queue_ctx = ctxs->queue_ctx;
3519 
3520 	return 0;
3521  fail:
3522 	kfree(ctxs);
3523 	return -ENOMEM;
3524 }
3525 
3526 /*
3527  * It is the actual release handler for mq, but we do it from
3528  * request queue's release handler for avoiding use-after-free
3529  * and headache because q->mq_kobj shouldn't have been introduced,
3530  * but we can't group ctx/kctx kobj without it.
3531  */
3532 void blk_mq_release(struct request_queue *q)
3533 {
3534 	struct blk_mq_hw_ctx *hctx, *next;
3535 	int i;
3536 
3537 	queue_for_each_hw_ctx(q, hctx, i)
3538 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3539 
3540 	/* all hctx are in .unused_hctx_list now */
3541 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3542 		list_del_init(&hctx->hctx_list);
3543 		kobject_put(&hctx->kobj);
3544 	}
3545 
3546 	kfree(q->queue_hw_ctx);
3547 
3548 	/*
3549 	 * release .mq_kobj and sw queue's kobject now because
3550 	 * both share lifetime with request queue.
3551 	 */
3552 	blk_mq_sysfs_deinit(q);
3553 }
3554 
3555 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3556 		void *queuedata)
3557 {
3558 	struct request_queue *q;
3559 	int ret;
3560 
3561 	q = blk_alloc_queue(set->numa_node);
3562 	if (!q)
3563 		return ERR_PTR(-ENOMEM);
3564 	q->queuedata = queuedata;
3565 	ret = blk_mq_init_allocated_queue(set, q);
3566 	if (ret) {
3567 		blk_cleanup_queue(q);
3568 		return ERR_PTR(ret);
3569 	}
3570 	return q;
3571 }
3572 
3573 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3574 {
3575 	return blk_mq_init_queue_data(set, NULL);
3576 }
3577 EXPORT_SYMBOL(blk_mq_init_queue);
3578 
3579 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3580 		struct lock_class_key *lkclass)
3581 {
3582 	struct request_queue *q;
3583 	struct gendisk *disk;
3584 
3585 	q = blk_mq_init_queue_data(set, queuedata);
3586 	if (IS_ERR(q))
3587 		return ERR_CAST(q);
3588 
3589 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3590 	if (!disk) {
3591 		blk_cleanup_queue(q);
3592 		return ERR_PTR(-ENOMEM);
3593 	}
3594 	return disk;
3595 }
3596 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3597 
3598 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3599 		struct blk_mq_tag_set *set, struct request_queue *q,
3600 		int hctx_idx, int node)
3601 {
3602 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3603 
3604 	/* reuse dead hctx first */
3605 	spin_lock(&q->unused_hctx_lock);
3606 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3607 		if (tmp->numa_node == node) {
3608 			hctx = tmp;
3609 			break;
3610 		}
3611 	}
3612 	if (hctx)
3613 		list_del_init(&hctx->hctx_list);
3614 	spin_unlock(&q->unused_hctx_lock);
3615 
3616 	if (!hctx)
3617 		hctx = blk_mq_alloc_hctx(q, set, node);
3618 	if (!hctx)
3619 		goto fail;
3620 
3621 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3622 		goto free_hctx;
3623 
3624 	return hctx;
3625 
3626  free_hctx:
3627 	kobject_put(&hctx->kobj);
3628  fail:
3629 	return NULL;
3630 }
3631 
3632 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3633 						struct request_queue *q)
3634 {
3635 	int i, j, end;
3636 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3637 
3638 	if (q->nr_hw_queues < set->nr_hw_queues) {
3639 		struct blk_mq_hw_ctx **new_hctxs;
3640 
3641 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3642 				       sizeof(*new_hctxs), GFP_KERNEL,
3643 				       set->numa_node);
3644 		if (!new_hctxs)
3645 			return;
3646 		if (hctxs)
3647 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3648 			       sizeof(*hctxs));
3649 		q->queue_hw_ctx = new_hctxs;
3650 		kfree(hctxs);
3651 		hctxs = new_hctxs;
3652 	}
3653 
3654 	/* protect against switching io scheduler  */
3655 	mutex_lock(&q->sysfs_lock);
3656 	for (i = 0; i < set->nr_hw_queues; i++) {
3657 		int node;
3658 		struct blk_mq_hw_ctx *hctx;
3659 
3660 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3661 		/*
3662 		 * If the hw queue has been mapped to another numa node,
3663 		 * we need to realloc the hctx. If allocation fails, fallback
3664 		 * to use the previous one.
3665 		 */
3666 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3667 			continue;
3668 
3669 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3670 		if (hctx) {
3671 			if (hctxs[i])
3672 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3673 			hctxs[i] = hctx;
3674 		} else {
3675 			if (hctxs[i])
3676 				pr_warn("Allocate new hctx on node %d fails,\
3677 						fallback to previous one on node %d\n",
3678 						node, hctxs[i]->numa_node);
3679 			else
3680 				break;
3681 		}
3682 	}
3683 	/*
3684 	 * Increasing nr_hw_queues fails. Free the newly allocated
3685 	 * hctxs and keep the previous q->nr_hw_queues.
3686 	 */
3687 	if (i != set->nr_hw_queues) {
3688 		j = q->nr_hw_queues;
3689 		end = i;
3690 	} else {
3691 		j = i;
3692 		end = q->nr_hw_queues;
3693 		q->nr_hw_queues = set->nr_hw_queues;
3694 	}
3695 
3696 	for (; j < end; j++) {
3697 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3698 
3699 		if (hctx) {
3700 			blk_mq_exit_hctx(q, set, hctx, j);
3701 			hctxs[j] = NULL;
3702 		}
3703 	}
3704 	mutex_unlock(&q->sysfs_lock);
3705 }
3706 
3707 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3708 		struct request_queue *q)
3709 {
3710 	/* mark the queue as mq asap */
3711 	q->mq_ops = set->ops;
3712 
3713 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3714 					     blk_mq_poll_stats_bkt,
3715 					     BLK_MQ_POLL_STATS_BKTS, q);
3716 	if (!q->poll_cb)
3717 		goto err_exit;
3718 
3719 	if (blk_mq_alloc_ctxs(q))
3720 		goto err_poll;
3721 
3722 	/* init q->mq_kobj and sw queues' kobjects */
3723 	blk_mq_sysfs_init(q);
3724 
3725 	INIT_LIST_HEAD(&q->unused_hctx_list);
3726 	spin_lock_init(&q->unused_hctx_lock);
3727 
3728 	blk_mq_realloc_hw_ctxs(set, q);
3729 	if (!q->nr_hw_queues)
3730 		goto err_hctxs;
3731 
3732 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3733 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3734 
3735 	q->tag_set = set;
3736 
3737 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3738 	if (set->nr_maps > HCTX_TYPE_POLL &&
3739 	    set->map[HCTX_TYPE_POLL].nr_queues)
3740 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3741 
3742 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3743 	INIT_LIST_HEAD(&q->requeue_list);
3744 	spin_lock_init(&q->requeue_lock);
3745 
3746 	q->nr_requests = set->queue_depth;
3747 
3748 	/*
3749 	 * Default to classic polling
3750 	 */
3751 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3752 
3753 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3754 	blk_mq_add_queue_tag_set(set, q);
3755 	blk_mq_map_swqueue(q);
3756 	return 0;
3757 
3758 err_hctxs:
3759 	kfree(q->queue_hw_ctx);
3760 	q->nr_hw_queues = 0;
3761 	blk_mq_sysfs_deinit(q);
3762 err_poll:
3763 	blk_stat_free_callback(q->poll_cb);
3764 	q->poll_cb = NULL;
3765 err_exit:
3766 	q->mq_ops = NULL;
3767 	return -ENOMEM;
3768 }
3769 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3770 
3771 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3772 void blk_mq_exit_queue(struct request_queue *q)
3773 {
3774 	struct blk_mq_tag_set *set = q->tag_set;
3775 
3776 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3777 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3778 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3779 	blk_mq_del_queue_tag_set(q);
3780 }
3781 
3782 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3783 {
3784 	int i;
3785 
3786 	if (blk_mq_is_shared_tags(set->flags)) {
3787 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
3788 						BLK_MQ_NO_HCTX_IDX,
3789 						set->queue_depth);
3790 		if (!set->shared_tags)
3791 			return -ENOMEM;
3792 	}
3793 
3794 	for (i = 0; i < set->nr_hw_queues; i++) {
3795 		if (!__blk_mq_alloc_map_and_rqs(set, i))
3796 			goto out_unwind;
3797 		cond_resched();
3798 	}
3799 
3800 	return 0;
3801 
3802 out_unwind:
3803 	while (--i >= 0)
3804 		__blk_mq_free_map_and_rqs(set, i);
3805 
3806 	if (blk_mq_is_shared_tags(set->flags)) {
3807 		blk_mq_free_map_and_rqs(set, set->shared_tags,
3808 					BLK_MQ_NO_HCTX_IDX);
3809 	}
3810 
3811 	return -ENOMEM;
3812 }
3813 
3814 /*
3815  * Allocate the request maps associated with this tag_set. Note that this
3816  * may reduce the depth asked for, if memory is tight. set->queue_depth
3817  * will be updated to reflect the allocated depth.
3818  */
3819 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
3820 {
3821 	unsigned int depth;
3822 	int err;
3823 
3824 	depth = set->queue_depth;
3825 	do {
3826 		err = __blk_mq_alloc_rq_maps(set);
3827 		if (!err)
3828 			break;
3829 
3830 		set->queue_depth >>= 1;
3831 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3832 			err = -ENOMEM;
3833 			break;
3834 		}
3835 	} while (set->queue_depth);
3836 
3837 	if (!set->queue_depth || err) {
3838 		pr_err("blk-mq: failed to allocate request map\n");
3839 		return -ENOMEM;
3840 	}
3841 
3842 	if (depth != set->queue_depth)
3843 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3844 						depth, set->queue_depth);
3845 
3846 	return 0;
3847 }
3848 
3849 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3850 {
3851 	/*
3852 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3853 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3854 	 * number of hardware queues.
3855 	 */
3856 	if (set->nr_maps == 1)
3857 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3858 
3859 	if (set->ops->map_queues && !is_kdump_kernel()) {
3860 		int i;
3861 
3862 		/*
3863 		 * transport .map_queues is usually done in the following
3864 		 * way:
3865 		 *
3866 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3867 		 * 	mask = get_cpu_mask(queue)
3868 		 * 	for_each_cpu(cpu, mask)
3869 		 * 		set->map[x].mq_map[cpu] = queue;
3870 		 * }
3871 		 *
3872 		 * When we need to remap, the table has to be cleared for
3873 		 * killing stale mapping since one CPU may not be mapped
3874 		 * to any hw queue.
3875 		 */
3876 		for (i = 0; i < set->nr_maps; i++)
3877 			blk_mq_clear_mq_map(&set->map[i]);
3878 
3879 		return set->ops->map_queues(set);
3880 	} else {
3881 		BUG_ON(set->nr_maps > 1);
3882 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3883 	}
3884 }
3885 
3886 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3887 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3888 {
3889 	struct blk_mq_tags **new_tags;
3890 
3891 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3892 		return 0;
3893 
3894 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3895 				GFP_KERNEL, set->numa_node);
3896 	if (!new_tags)
3897 		return -ENOMEM;
3898 
3899 	if (set->tags)
3900 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3901 		       sizeof(*set->tags));
3902 	kfree(set->tags);
3903 	set->tags = new_tags;
3904 	set->nr_hw_queues = new_nr_hw_queues;
3905 
3906 	return 0;
3907 }
3908 
3909 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3910 				int new_nr_hw_queues)
3911 {
3912 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3913 }
3914 
3915 /*
3916  * Alloc a tag set to be associated with one or more request queues.
3917  * May fail with EINVAL for various error conditions. May adjust the
3918  * requested depth down, if it's too large. In that case, the set
3919  * value will be stored in set->queue_depth.
3920  */
3921 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3922 {
3923 	int i, ret;
3924 
3925 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3926 
3927 	if (!set->nr_hw_queues)
3928 		return -EINVAL;
3929 	if (!set->queue_depth)
3930 		return -EINVAL;
3931 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3932 		return -EINVAL;
3933 
3934 	if (!set->ops->queue_rq)
3935 		return -EINVAL;
3936 
3937 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3938 		return -EINVAL;
3939 
3940 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3941 		pr_info("blk-mq: reduced tag depth to %u\n",
3942 			BLK_MQ_MAX_DEPTH);
3943 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3944 	}
3945 
3946 	if (!set->nr_maps)
3947 		set->nr_maps = 1;
3948 	else if (set->nr_maps > HCTX_MAX_TYPES)
3949 		return -EINVAL;
3950 
3951 	/*
3952 	 * If a crashdump is active, then we are potentially in a very
3953 	 * memory constrained environment. Limit us to 1 queue and
3954 	 * 64 tags to prevent using too much memory.
3955 	 */
3956 	if (is_kdump_kernel()) {
3957 		set->nr_hw_queues = 1;
3958 		set->nr_maps = 1;
3959 		set->queue_depth = min(64U, set->queue_depth);
3960 	}
3961 	/*
3962 	 * There is no use for more h/w queues than cpus if we just have
3963 	 * a single map
3964 	 */
3965 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3966 		set->nr_hw_queues = nr_cpu_ids;
3967 
3968 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3969 		return -ENOMEM;
3970 
3971 	ret = -ENOMEM;
3972 	for (i = 0; i < set->nr_maps; i++) {
3973 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3974 						  sizeof(set->map[i].mq_map[0]),
3975 						  GFP_KERNEL, set->numa_node);
3976 		if (!set->map[i].mq_map)
3977 			goto out_free_mq_map;
3978 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3979 	}
3980 
3981 	ret = blk_mq_update_queue_map(set);
3982 	if (ret)
3983 		goto out_free_mq_map;
3984 
3985 	ret = blk_mq_alloc_set_map_and_rqs(set);
3986 	if (ret)
3987 		goto out_free_mq_map;
3988 
3989 	mutex_init(&set->tag_list_lock);
3990 	INIT_LIST_HEAD(&set->tag_list);
3991 
3992 	return 0;
3993 
3994 out_free_mq_map:
3995 	for (i = 0; i < set->nr_maps; i++) {
3996 		kfree(set->map[i].mq_map);
3997 		set->map[i].mq_map = NULL;
3998 	}
3999 	kfree(set->tags);
4000 	set->tags = NULL;
4001 	return ret;
4002 }
4003 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4004 
4005 /* allocate and initialize a tagset for a simple single-queue device */
4006 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4007 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4008 		unsigned int set_flags)
4009 {
4010 	memset(set, 0, sizeof(*set));
4011 	set->ops = ops;
4012 	set->nr_hw_queues = 1;
4013 	set->nr_maps = 1;
4014 	set->queue_depth = queue_depth;
4015 	set->numa_node = NUMA_NO_NODE;
4016 	set->flags = set_flags;
4017 	return blk_mq_alloc_tag_set(set);
4018 }
4019 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4020 
4021 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4022 {
4023 	int i, j;
4024 
4025 	for (i = 0; i < set->nr_hw_queues; i++)
4026 		__blk_mq_free_map_and_rqs(set, i);
4027 
4028 	if (blk_mq_is_shared_tags(set->flags)) {
4029 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4030 					BLK_MQ_NO_HCTX_IDX);
4031 	}
4032 
4033 	for (j = 0; j < set->nr_maps; j++) {
4034 		kfree(set->map[j].mq_map);
4035 		set->map[j].mq_map = NULL;
4036 	}
4037 
4038 	kfree(set->tags);
4039 	set->tags = NULL;
4040 }
4041 EXPORT_SYMBOL(blk_mq_free_tag_set);
4042 
4043 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4044 {
4045 	struct blk_mq_tag_set *set = q->tag_set;
4046 	struct blk_mq_hw_ctx *hctx;
4047 	int i, ret;
4048 
4049 	if (!set)
4050 		return -EINVAL;
4051 
4052 	if (q->nr_requests == nr)
4053 		return 0;
4054 
4055 	blk_mq_freeze_queue(q);
4056 	blk_mq_quiesce_queue(q);
4057 
4058 	ret = 0;
4059 	queue_for_each_hw_ctx(q, hctx, i) {
4060 		if (!hctx->tags)
4061 			continue;
4062 		/*
4063 		 * If we're using an MQ scheduler, just update the scheduler
4064 		 * queue depth. This is similar to what the old code would do.
4065 		 */
4066 		if (hctx->sched_tags) {
4067 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4068 						      nr, true);
4069 		} else {
4070 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4071 						      false);
4072 		}
4073 		if (ret)
4074 			break;
4075 		if (q->elevator && q->elevator->type->ops.depth_updated)
4076 			q->elevator->type->ops.depth_updated(hctx);
4077 	}
4078 	if (!ret) {
4079 		q->nr_requests = nr;
4080 		if (blk_mq_is_shared_tags(set->flags)) {
4081 			if (q->elevator)
4082 				blk_mq_tag_update_sched_shared_tags(q);
4083 			else
4084 				blk_mq_tag_resize_shared_tags(set, nr);
4085 		}
4086 	}
4087 
4088 	blk_mq_unquiesce_queue(q);
4089 	blk_mq_unfreeze_queue(q);
4090 
4091 	return ret;
4092 }
4093 
4094 /*
4095  * request_queue and elevator_type pair.
4096  * It is just used by __blk_mq_update_nr_hw_queues to cache
4097  * the elevator_type associated with a request_queue.
4098  */
4099 struct blk_mq_qe_pair {
4100 	struct list_head node;
4101 	struct request_queue *q;
4102 	struct elevator_type *type;
4103 };
4104 
4105 /*
4106  * Cache the elevator_type in qe pair list and switch the
4107  * io scheduler to 'none'
4108  */
4109 static bool blk_mq_elv_switch_none(struct list_head *head,
4110 		struct request_queue *q)
4111 {
4112 	struct blk_mq_qe_pair *qe;
4113 
4114 	if (!q->elevator)
4115 		return true;
4116 
4117 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4118 	if (!qe)
4119 		return false;
4120 
4121 	INIT_LIST_HEAD(&qe->node);
4122 	qe->q = q;
4123 	qe->type = q->elevator->type;
4124 	list_add(&qe->node, head);
4125 
4126 	mutex_lock(&q->sysfs_lock);
4127 	/*
4128 	 * After elevator_switch_mq, the previous elevator_queue will be
4129 	 * released by elevator_release. The reference of the io scheduler
4130 	 * module get by elevator_get will also be put. So we need to get
4131 	 * a reference of the io scheduler module here to prevent it to be
4132 	 * removed.
4133 	 */
4134 	__module_get(qe->type->elevator_owner);
4135 	elevator_switch_mq(q, NULL);
4136 	mutex_unlock(&q->sysfs_lock);
4137 
4138 	return true;
4139 }
4140 
4141 static void blk_mq_elv_switch_back(struct list_head *head,
4142 		struct request_queue *q)
4143 {
4144 	struct blk_mq_qe_pair *qe;
4145 	struct elevator_type *t = NULL;
4146 
4147 	list_for_each_entry(qe, head, node)
4148 		if (qe->q == q) {
4149 			t = qe->type;
4150 			break;
4151 		}
4152 
4153 	if (!t)
4154 		return;
4155 
4156 	list_del(&qe->node);
4157 	kfree(qe);
4158 
4159 	mutex_lock(&q->sysfs_lock);
4160 	elevator_switch_mq(q, t);
4161 	mutex_unlock(&q->sysfs_lock);
4162 }
4163 
4164 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4165 							int nr_hw_queues)
4166 {
4167 	struct request_queue *q;
4168 	LIST_HEAD(head);
4169 	int prev_nr_hw_queues;
4170 
4171 	lockdep_assert_held(&set->tag_list_lock);
4172 
4173 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4174 		nr_hw_queues = nr_cpu_ids;
4175 	if (nr_hw_queues < 1)
4176 		return;
4177 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4178 		return;
4179 
4180 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4181 		blk_mq_freeze_queue(q);
4182 	/*
4183 	 * Switch IO scheduler to 'none', cleaning up the data associated
4184 	 * with the previous scheduler. We will switch back once we are done
4185 	 * updating the new sw to hw queue mappings.
4186 	 */
4187 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4188 		if (!blk_mq_elv_switch_none(&head, q))
4189 			goto switch_back;
4190 
4191 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4192 		blk_mq_debugfs_unregister_hctxs(q);
4193 		blk_mq_sysfs_unregister(q);
4194 	}
4195 
4196 	prev_nr_hw_queues = set->nr_hw_queues;
4197 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4198 	    0)
4199 		goto reregister;
4200 
4201 	set->nr_hw_queues = nr_hw_queues;
4202 fallback:
4203 	blk_mq_update_queue_map(set);
4204 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4205 		blk_mq_realloc_hw_ctxs(set, q);
4206 		if (q->nr_hw_queues != set->nr_hw_queues) {
4207 			int i = prev_nr_hw_queues;
4208 
4209 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4210 					nr_hw_queues, prev_nr_hw_queues);
4211 			for (; i < set->nr_hw_queues; i++)
4212 				__blk_mq_free_map_and_rqs(set, i);
4213 
4214 			set->nr_hw_queues = prev_nr_hw_queues;
4215 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4216 			goto fallback;
4217 		}
4218 		blk_mq_map_swqueue(q);
4219 	}
4220 
4221 reregister:
4222 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4223 		blk_mq_sysfs_register(q);
4224 		blk_mq_debugfs_register_hctxs(q);
4225 	}
4226 
4227 switch_back:
4228 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4229 		blk_mq_elv_switch_back(&head, q);
4230 
4231 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4232 		blk_mq_unfreeze_queue(q);
4233 }
4234 
4235 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4236 {
4237 	mutex_lock(&set->tag_list_lock);
4238 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4239 	mutex_unlock(&set->tag_list_lock);
4240 }
4241 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4242 
4243 /* Enable polling stats and return whether they were already enabled. */
4244 static bool blk_poll_stats_enable(struct request_queue *q)
4245 {
4246 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4247 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
4248 		return true;
4249 	blk_stat_add_callback(q, q->poll_cb);
4250 	return false;
4251 }
4252 
4253 static void blk_mq_poll_stats_start(struct request_queue *q)
4254 {
4255 	/*
4256 	 * We don't arm the callback if polling stats are not enabled or the
4257 	 * callback is already active.
4258 	 */
4259 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
4260 	    blk_stat_is_active(q->poll_cb))
4261 		return;
4262 
4263 	blk_stat_activate_msecs(q->poll_cb, 100);
4264 }
4265 
4266 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4267 {
4268 	struct request_queue *q = cb->data;
4269 	int bucket;
4270 
4271 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4272 		if (cb->stat[bucket].nr_samples)
4273 			q->poll_stat[bucket] = cb->stat[bucket];
4274 	}
4275 }
4276 
4277 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4278 				       struct request *rq)
4279 {
4280 	unsigned long ret = 0;
4281 	int bucket;
4282 
4283 	/*
4284 	 * If stats collection isn't on, don't sleep but turn it on for
4285 	 * future users
4286 	 */
4287 	if (!blk_poll_stats_enable(q))
4288 		return 0;
4289 
4290 	/*
4291 	 * As an optimistic guess, use half of the mean service time
4292 	 * for this type of request. We can (and should) make this smarter.
4293 	 * For instance, if the completion latencies are tight, we can
4294 	 * get closer than just half the mean. This is especially
4295 	 * important on devices where the completion latencies are longer
4296 	 * than ~10 usec. We do use the stats for the relevant IO size
4297 	 * if available which does lead to better estimates.
4298 	 */
4299 	bucket = blk_mq_poll_stats_bkt(rq);
4300 	if (bucket < 0)
4301 		return ret;
4302 
4303 	if (q->poll_stat[bucket].nr_samples)
4304 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4305 
4306 	return ret;
4307 }
4308 
4309 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4310 {
4311 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4312 	struct request *rq = blk_qc_to_rq(hctx, qc);
4313 	struct hrtimer_sleeper hs;
4314 	enum hrtimer_mode mode;
4315 	unsigned int nsecs;
4316 	ktime_t kt;
4317 
4318 	/*
4319 	 * If a request has completed on queue that uses an I/O scheduler, we
4320 	 * won't get back a request from blk_qc_to_rq.
4321 	 */
4322 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4323 		return false;
4324 
4325 	/*
4326 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4327 	 *
4328 	 *  0:	use half of prev avg
4329 	 * >0:	use this specific value
4330 	 */
4331 	if (q->poll_nsec > 0)
4332 		nsecs = q->poll_nsec;
4333 	else
4334 		nsecs = blk_mq_poll_nsecs(q, rq);
4335 
4336 	if (!nsecs)
4337 		return false;
4338 
4339 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4340 
4341 	/*
4342 	 * This will be replaced with the stats tracking code, using
4343 	 * 'avg_completion_time / 2' as the pre-sleep target.
4344 	 */
4345 	kt = nsecs;
4346 
4347 	mode = HRTIMER_MODE_REL;
4348 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4349 	hrtimer_set_expires(&hs.timer, kt);
4350 
4351 	do {
4352 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4353 			break;
4354 		set_current_state(TASK_UNINTERRUPTIBLE);
4355 		hrtimer_sleeper_start_expires(&hs, mode);
4356 		if (hs.task)
4357 			io_schedule();
4358 		hrtimer_cancel(&hs.timer);
4359 		mode = HRTIMER_MODE_ABS;
4360 	} while (hs.task && !signal_pending(current));
4361 
4362 	__set_current_state(TASK_RUNNING);
4363 	destroy_hrtimer_on_stack(&hs.timer);
4364 
4365 	/*
4366 	 * If we sleep, have the caller restart the poll loop to reset the
4367 	 * state.  Like for the other success return cases, the caller is
4368 	 * responsible for checking if the IO completed.  If the IO isn't
4369 	 * complete, we'll get called again and will go straight to the busy
4370 	 * poll loop.
4371 	 */
4372 	return true;
4373 }
4374 
4375 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4376 			       struct io_comp_batch *iob, unsigned int flags)
4377 {
4378 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4379 	long state = get_current_state();
4380 	int ret;
4381 
4382 	do {
4383 		ret = q->mq_ops->poll(hctx, iob);
4384 		if (ret > 0) {
4385 			__set_current_state(TASK_RUNNING);
4386 			return ret;
4387 		}
4388 
4389 		if (signal_pending_state(state, current))
4390 			__set_current_state(TASK_RUNNING);
4391 		if (task_is_running(current))
4392 			return 1;
4393 
4394 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4395 			break;
4396 		cpu_relax();
4397 	} while (!need_resched());
4398 
4399 	__set_current_state(TASK_RUNNING);
4400 	return 0;
4401 }
4402 
4403 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4404 		unsigned int flags)
4405 {
4406 	if (!(flags & BLK_POLL_NOSLEEP) &&
4407 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4408 		if (blk_mq_poll_hybrid(q, cookie))
4409 			return 1;
4410 	}
4411 	return blk_mq_poll_classic(q, cookie, iob, flags);
4412 }
4413 
4414 unsigned int blk_mq_rq_cpu(struct request *rq)
4415 {
4416 	return rq->mq_ctx->cpu;
4417 }
4418 EXPORT_SYMBOL(blk_mq_rq_cpu);
4419 
4420 static int __init blk_mq_init(void)
4421 {
4422 	int i;
4423 
4424 	for_each_possible_cpu(i)
4425 		init_llist_head(&per_cpu(blk_cpu_done, i));
4426 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4427 
4428 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4429 				  "block/softirq:dead", NULL,
4430 				  blk_softirq_cpu_dead);
4431 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4432 				blk_mq_hctx_notify_dead);
4433 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4434 				blk_mq_hctx_notify_online,
4435 				blk_mq_hctx_notify_offline);
4436 	return 0;
4437 }
4438 subsys_initcall(blk_mq_init);
4439