xref: /linux/block/blk-mq.c (revision 2af8cbe30531eca73c8f3ba277f155fc0020b01a)
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26 
27 #include <trace/events/block.h>
28 
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38 
39 /*
40  * Check if any of the ctx's have pending work in this hardware queue
41  */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 	return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46 
47 /*
48  * Mark this ctx as having pending work in this hardware queue
49  */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 				     struct blk_mq_ctx *ctx)
52 {
53 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56 
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 				      struct blk_mq_ctx *ctx)
59 {
60 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62 
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 	int freeze_depth;
66 
67 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 	if (freeze_depth == 1) {
69 		percpu_ref_kill(&q->q_usage_counter);
70 		blk_mq_run_hw_queues(q, false);
71 	}
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74 
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79 
80 /*
81  * Guarantee no request is in use, so we can change any data structure of
82  * the queue afterward.
83  */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 	/*
87 	 * In the !blk_mq case we are only calling this to kill the
88 	 * q_usage_counter, otherwise this increases the freeze depth
89 	 * and waits for it to return to zero.  For this reason there is
90 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 	 * exported to drivers as the only user for unfreeze is blk_mq.
92 	 */
93 	blk_mq_freeze_queue_start(q);
94 	blk_mq_freeze_queue_wait(q);
95 }
96 
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 	/*
100 	 * ...just an alias to keep freeze and unfreeze actions balanced
101 	 * in the blk_mq_* namespace
102 	 */
103 	blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106 
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 	int freeze_depth;
110 
111 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 	WARN_ON_ONCE(freeze_depth < 0);
113 	if (!freeze_depth) {
114 		percpu_ref_reinit(&q->q_usage_counter);
115 		wake_up_all(&q->mq_freeze_wq);
116 	}
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119 
120 /**
121  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122  * @q: request queue.
123  *
124  * Note: this function does not prevent that the struct request end_io()
125  * callback function is invoked. Additionally, it is not prevented that
126  * new queue_rq() calls occur unless the queue has been stopped first.
127  */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 	struct blk_mq_hw_ctx *hctx;
131 	unsigned int i;
132 	bool rcu = false;
133 
134 	blk_mq_stop_hw_queues(q);
135 
136 	queue_for_each_hw_ctx(q, hctx, i) {
137 		if (hctx->flags & BLK_MQ_F_BLOCKING)
138 			synchronize_srcu(&hctx->queue_rq_srcu);
139 		else
140 			rcu = true;
141 	}
142 	if (rcu)
143 		synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146 
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 	struct blk_mq_hw_ctx *hctx;
150 	unsigned int i;
151 
152 	queue_for_each_hw_ctx(q, hctx, i)
153 		if (blk_mq_hw_queue_mapped(hctx))
154 			blk_mq_tag_wakeup_all(hctx->tags, true);
155 
156 	/*
157 	 * If we are called because the queue has now been marked as
158 	 * dying, we need to ensure that processes currently waiting on
159 	 * the queue are notified as well.
160 	 */
161 	wake_up_all(&q->mq_freeze_wq);
162 }
163 
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 	return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169 
170 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 			struct request *rq, unsigned int op)
172 {
173 	INIT_LIST_HEAD(&rq->queuelist);
174 	/* csd/requeue_work/fifo_time is initialized before use */
175 	rq->q = q;
176 	rq->mq_ctx = ctx;
177 	rq->cmd_flags = op;
178 	if (blk_queue_io_stat(q))
179 		rq->rq_flags |= RQF_IO_STAT;
180 	/* do not touch atomic flags, it needs atomic ops against the timer */
181 	rq->cpu = -1;
182 	INIT_HLIST_NODE(&rq->hash);
183 	RB_CLEAR_NODE(&rq->rb_node);
184 	rq->rq_disk = NULL;
185 	rq->part = NULL;
186 	rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 	rq->rl = NULL;
189 	set_start_time_ns(rq);
190 	rq->io_start_time_ns = 0;
191 #endif
192 	rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 	rq->nr_integrity_segments = 0;
195 #endif
196 	rq->special = NULL;
197 	/* tag was already set */
198 	rq->errors = 0;
199 
200 	rq->cmd = rq->__cmd;
201 
202 	rq->extra_len = 0;
203 	rq->sense_len = 0;
204 	rq->resid_len = 0;
205 	rq->sense = NULL;
206 
207 	INIT_LIST_HEAD(&rq->timeout_list);
208 	rq->timeout = 0;
209 
210 	rq->end_io = NULL;
211 	rq->end_io_data = NULL;
212 	rq->next_rq = NULL;
213 
214 	ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
217 
218 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
219 				       unsigned int op)
220 {
221 	struct request *rq;
222 	unsigned int tag;
223 
224 	tag = blk_mq_get_tag(data);
225 	if (tag != BLK_MQ_TAG_FAIL) {
226 		rq = data->hctx->tags->static_rqs[tag];
227 
228 		if (blk_mq_tag_busy(data->hctx)) {
229 			rq->rq_flags = RQF_MQ_INFLIGHT;
230 			atomic_inc(&data->hctx->nr_active);
231 		}
232 
233 		rq->tag = tag;
234 		data->hctx->tags->rqs[tag] = rq;
235 		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
236 		return rq;
237 	}
238 
239 	return NULL;
240 }
241 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
242 
243 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
244 		unsigned int flags)
245 {
246 	struct blk_mq_ctx *ctx;
247 	struct blk_mq_hw_ctx *hctx;
248 	struct request *rq;
249 	struct blk_mq_alloc_data alloc_data;
250 	int ret;
251 
252 	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
253 	if (ret)
254 		return ERR_PTR(ret);
255 
256 	ctx = blk_mq_get_ctx(q);
257 	hctx = blk_mq_map_queue(q, ctx->cpu);
258 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
259 	rq = __blk_mq_alloc_request(&alloc_data, rw);
260 	blk_mq_put_ctx(ctx);
261 
262 	if (!rq) {
263 		blk_queue_exit(q);
264 		return ERR_PTR(-EWOULDBLOCK);
265 	}
266 
267 	rq->__data_len = 0;
268 	rq->__sector = (sector_t) -1;
269 	rq->bio = rq->biotail = NULL;
270 	return rq;
271 }
272 EXPORT_SYMBOL(blk_mq_alloc_request);
273 
274 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
275 		unsigned int flags, unsigned int hctx_idx)
276 {
277 	struct blk_mq_hw_ctx *hctx;
278 	struct blk_mq_ctx *ctx;
279 	struct request *rq;
280 	struct blk_mq_alloc_data alloc_data;
281 	int ret;
282 
283 	/*
284 	 * If the tag allocator sleeps we could get an allocation for a
285 	 * different hardware context.  No need to complicate the low level
286 	 * allocator for this for the rare use case of a command tied to
287 	 * a specific queue.
288 	 */
289 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
290 		return ERR_PTR(-EINVAL);
291 
292 	if (hctx_idx >= q->nr_hw_queues)
293 		return ERR_PTR(-EIO);
294 
295 	ret = blk_queue_enter(q, true);
296 	if (ret)
297 		return ERR_PTR(ret);
298 
299 	/*
300 	 * Check if the hardware context is actually mapped to anything.
301 	 * If not tell the caller that it should skip this queue.
302 	 */
303 	hctx = q->queue_hw_ctx[hctx_idx];
304 	if (!blk_mq_hw_queue_mapped(hctx)) {
305 		ret = -EXDEV;
306 		goto out_queue_exit;
307 	}
308 	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
309 
310 	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
311 	rq = __blk_mq_alloc_request(&alloc_data, rw);
312 	if (!rq) {
313 		ret = -EWOULDBLOCK;
314 		goto out_queue_exit;
315 	}
316 
317 	return rq;
318 
319 out_queue_exit:
320 	blk_queue_exit(q);
321 	return ERR_PTR(ret);
322 }
323 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
324 
325 void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
326 			   struct request *rq)
327 {
328 	const int tag = rq->tag;
329 	struct request_queue *q = rq->q;
330 
331 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
332 		atomic_dec(&hctx->nr_active);
333 
334 	wbt_done(q->rq_wb, &rq->issue_stat);
335 	rq->rq_flags = 0;
336 
337 	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
338 	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
339 	blk_mq_put_tag(hctx, hctx->tags, ctx, tag);
340 	blk_queue_exit(q);
341 }
342 
343 static void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx,
344 				     struct request *rq)
345 {
346 	struct blk_mq_ctx *ctx = rq->mq_ctx;
347 
348 	ctx->rq_completed[rq_is_sync(rq)]++;
349 	__blk_mq_free_request(hctx, ctx, rq);
350 }
351 
352 void blk_mq_free_request(struct request *rq)
353 {
354 	blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
355 }
356 EXPORT_SYMBOL_GPL(blk_mq_free_request);
357 
358 inline void __blk_mq_end_request(struct request *rq, int error)
359 {
360 	blk_account_io_done(rq);
361 
362 	if (rq->end_io) {
363 		wbt_done(rq->q->rq_wb, &rq->issue_stat);
364 		rq->end_io(rq, error);
365 	} else {
366 		if (unlikely(blk_bidi_rq(rq)))
367 			blk_mq_free_request(rq->next_rq);
368 		blk_mq_free_request(rq);
369 	}
370 }
371 EXPORT_SYMBOL(__blk_mq_end_request);
372 
373 void blk_mq_end_request(struct request *rq, int error)
374 {
375 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
376 		BUG();
377 	__blk_mq_end_request(rq, error);
378 }
379 EXPORT_SYMBOL(blk_mq_end_request);
380 
381 static void __blk_mq_complete_request_remote(void *data)
382 {
383 	struct request *rq = data;
384 
385 	rq->q->softirq_done_fn(rq);
386 }
387 
388 static void blk_mq_ipi_complete_request(struct request *rq)
389 {
390 	struct blk_mq_ctx *ctx = rq->mq_ctx;
391 	bool shared = false;
392 	int cpu;
393 
394 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
395 		rq->q->softirq_done_fn(rq);
396 		return;
397 	}
398 
399 	cpu = get_cpu();
400 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
401 		shared = cpus_share_cache(cpu, ctx->cpu);
402 
403 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
404 		rq->csd.func = __blk_mq_complete_request_remote;
405 		rq->csd.info = rq;
406 		rq->csd.flags = 0;
407 		smp_call_function_single_async(ctx->cpu, &rq->csd);
408 	} else {
409 		rq->q->softirq_done_fn(rq);
410 	}
411 	put_cpu();
412 }
413 
414 static void blk_mq_stat_add(struct request *rq)
415 {
416 	if (rq->rq_flags & RQF_STATS) {
417 		/*
418 		 * We could rq->mq_ctx here, but there's less of a risk
419 		 * of races if we have the completion event add the stats
420 		 * to the local software queue.
421 		 */
422 		struct blk_mq_ctx *ctx;
423 
424 		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
425 		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
426 	}
427 }
428 
429 static void __blk_mq_complete_request(struct request *rq)
430 {
431 	struct request_queue *q = rq->q;
432 
433 	blk_mq_stat_add(rq);
434 
435 	if (!q->softirq_done_fn)
436 		blk_mq_end_request(rq, rq->errors);
437 	else
438 		blk_mq_ipi_complete_request(rq);
439 }
440 
441 /**
442  * blk_mq_complete_request - end I/O on a request
443  * @rq:		the request being processed
444  *
445  * Description:
446  *	Ends all I/O on a request. It does not handle partial completions.
447  *	The actual completion happens out-of-order, through a IPI handler.
448  **/
449 void blk_mq_complete_request(struct request *rq, int error)
450 {
451 	struct request_queue *q = rq->q;
452 
453 	if (unlikely(blk_should_fake_timeout(q)))
454 		return;
455 	if (!blk_mark_rq_complete(rq)) {
456 		rq->errors = error;
457 		__blk_mq_complete_request(rq);
458 	}
459 }
460 EXPORT_SYMBOL(blk_mq_complete_request);
461 
462 int blk_mq_request_started(struct request *rq)
463 {
464 	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
465 }
466 EXPORT_SYMBOL_GPL(blk_mq_request_started);
467 
468 void blk_mq_start_request(struct request *rq)
469 {
470 	struct request_queue *q = rq->q;
471 
472 	trace_block_rq_issue(q, rq);
473 
474 	rq->resid_len = blk_rq_bytes(rq);
475 	if (unlikely(blk_bidi_rq(rq)))
476 		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
477 
478 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
479 		blk_stat_set_issue_time(&rq->issue_stat);
480 		rq->rq_flags |= RQF_STATS;
481 		wbt_issue(q->rq_wb, &rq->issue_stat);
482 	}
483 
484 	blk_add_timer(rq);
485 
486 	/*
487 	 * Ensure that ->deadline is visible before set the started
488 	 * flag and clear the completed flag.
489 	 */
490 	smp_mb__before_atomic();
491 
492 	/*
493 	 * Mark us as started and clear complete. Complete might have been
494 	 * set if requeue raced with timeout, which then marked it as
495 	 * complete. So be sure to clear complete again when we start
496 	 * the request, otherwise we'll ignore the completion event.
497 	 */
498 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
499 		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
500 	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
501 		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
502 
503 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
504 		/*
505 		 * Make sure space for the drain appears.  We know we can do
506 		 * this because max_hw_segments has been adjusted to be one
507 		 * fewer than the device can handle.
508 		 */
509 		rq->nr_phys_segments++;
510 	}
511 }
512 EXPORT_SYMBOL(blk_mq_start_request);
513 
514 static void __blk_mq_requeue_request(struct request *rq)
515 {
516 	struct request_queue *q = rq->q;
517 
518 	trace_block_rq_requeue(q, rq);
519 	wbt_requeue(q->rq_wb, &rq->issue_stat);
520 
521 	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
522 		if (q->dma_drain_size && blk_rq_bytes(rq))
523 			rq->nr_phys_segments--;
524 	}
525 }
526 
527 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
528 {
529 	__blk_mq_requeue_request(rq);
530 
531 	BUG_ON(blk_queued_rq(rq));
532 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
533 }
534 EXPORT_SYMBOL(blk_mq_requeue_request);
535 
536 static void blk_mq_requeue_work(struct work_struct *work)
537 {
538 	struct request_queue *q =
539 		container_of(work, struct request_queue, requeue_work.work);
540 	LIST_HEAD(rq_list);
541 	struct request *rq, *next;
542 	unsigned long flags;
543 
544 	spin_lock_irqsave(&q->requeue_lock, flags);
545 	list_splice_init(&q->requeue_list, &rq_list);
546 	spin_unlock_irqrestore(&q->requeue_lock, flags);
547 
548 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
549 		if (!(rq->rq_flags & RQF_SOFTBARRIER))
550 			continue;
551 
552 		rq->rq_flags &= ~RQF_SOFTBARRIER;
553 		list_del_init(&rq->queuelist);
554 		blk_mq_insert_request(rq, true, false, false);
555 	}
556 
557 	while (!list_empty(&rq_list)) {
558 		rq = list_entry(rq_list.next, struct request, queuelist);
559 		list_del_init(&rq->queuelist);
560 		blk_mq_insert_request(rq, false, false, false);
561 	}
562 
563 	blk_mq_run_hw_queues(q, false);
564 }
565 
566 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
567 				bool kick_requeue_list)
568 {
569 	struct request_queue *q = rq->q;
570 	unsigned long flags;
571 
572 	/*
573 	 * We abuse this flag that is otherwise used by the I/O scheduler to
574 	 * request head insertation from the workqueue.
575 	 */
576 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
577 
578 	spin_lock_irqsave(&q->requeue_lock, flags);
579 	if (at_head) {
580 		rq->rq_flags |= RQF_SOFTBARRIER;
581 		list_add(&rq->queuelist, &q->requeue_list);
582 	} else {
583 		list_add_tail(&rq->queuelist, &q->requeue_list);
584 	}
585 	spin_unlock_irqrestore(&q->requeue_lock, flags);
586 
587 	if (kick_requeue_list)
588 		blk_mq_kick_requeue_list(q);
589 }
590 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
591 
592 void blk_mq_kick_requeue_list(struct request_queue *q)
593 {
594 	kblockd_schedule_delayed_work(&q->requeue_work, 0);
595 }
596 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
597 
598 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
599 				    unsigned long msecs)
600 {
601 	kblockd_schedule_delayed_work(&q->requeue_work,
602 				      msecs_to_jiffies(msecs));
603 }
604 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
605 
606 void blk_mq_abort_requeue_list(struct request_queue *q)
607 {
608 	unsigned long flags;
609 	LIST_HEAD(rq_list);
610 
611 	spin_lock_irqsave(&q->requeue_lock, flags);
612 	list_splice_init(&q->requeue_list, &rq_list);
613 	spin_unlock_irqrestore(&q->requeue_lock, flags);
614 
615 	while (!list_empty(&rq_list)) {
616 		struct request *rq;
617 
618 		rq = list_first_entry(&rq_list, struct request, queuelist);
619 		list_del_init(&rq->queuelist);
620 		rq->errors = -EIO;
621 		blk_mq_end_request(rq, rq->errors);
622 	}
623 }
624 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
625 
626 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
627 {
628 	if (tag < tags->nr_tags) {
629 		prefetch(tags->rqs[tag]);
630 		return tags->rqs[tag];
631 	}
632 
633 	return NULL;
634 }
635 EXPORT_SYMBOL(blk_mq_tag_to_rq);
636 
637 struct blk_mq_timeout_data {
638 	unsigned long next;
639 	unsigned int next_set;
640 };
641 
642 void blk_mq_rq_timed_out(struct request *req, bool reserved)
643 {
644 	const struct blk_mq_ops *ops = req->q->mq_ops;
645 	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
646 
647 	/*
648 	 * We know that complete is set at this point. If STARTED isn't set
649 	 * anymore, then the request isn't active and the "timeout" should
650 	 * just be ignored. This can happen due to the bitflag ordering.
651 	 * Timeout first checks if STARTED is set, and if it is, assumes
652 	 * the request is active. But if we race with completion, then
653 	 * we both flags will get cleared. So check here again, and ignore
654 	 * a timeout event with a request that isn't active.
655 	 */
656 	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
657 		return;
658 
659 	if (ops->timeout)
660 		ret = ops->timeout(req, reserved);
661 
662 	switch (ret) {
663 	case BLK_EH_HANDLED:
664 		__blk_mq_complete_request(req);
665 		break;
666 	case BLK_EH_RESET_TIMER:
667 		blk_add_timer(req);
668 		blk_clear_rq_complete(req);
669 		break;
670 	case BLK_EH_NOT_HANDLED:
671 		break;
672 	default:
673 		printk(KERN_ERR "block: bad eh return: %d\n", ret);
674 		break;
675 	}
676 }
677 
678 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
679 		struct request *rq, void *priv, bool reserved)
680 {
681 	struct blk_mq_timeout_data *data = priv;
682 
683 	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
684 		/*
685 		 * If a request wasn't started before the queue was
686 		 * marked dying, kill it here or it'll go unnoticed.
687 		 */
688 		if (unlikely(blk_queue_dying(rq->q))) {
689 			rq->errors = -EIO;
690 			blk_mq_end_request(rq, rq->errors);
691 		}
692 		return;
693 	}
694 
695 	if (time_after_eq(jiffies, rq->deadline)) {
696 		if (!blk_mark_rq_complete(rq))
697 			blk_mq_rq_timed_out(rq, reserved);
698 	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
699 		data->next = rq->deadline;
700 		data->next_set = 1;
701 	}
702 }
703 
704 static void blk_mq_timeout_work(struct work_struct *work)
705 {
706 	struct request_queue *q =
707 		container_of(work, struct request_queue, timeout_work);
708 	struct blk_mq_timeout_data data = {
709 		.next		= 0,
710 		.next_set	= 0,
711 	};
712 	int i;
713 
714 	/* A deadlock might occur if a request is stuck requiring a
715 	 * timeout at the same time a queue freeze is waiting
716 	 * completion, since the timeout code would not be able to
717 	 * acquire the queue reference here.
718 	 *
719 	 * That's why we don't use blk_queue_enter here; instead, we use
720 	 * percpu_ref_tryget directly, because we need to be able to
721 	 * obtain a reference even in the short window between the queue
722 	 * starting to freeze, by dropping the first reference in
723 	 * blk_mq_freeze_queue_start, and the moment the last request is
724 	 * consumed, marked by the instant q_usage_counter reaches
725 	 * zero.
726 	 */
727 	if (!percpu_ref_tryget(&q->q_usage_counter))
728 		return;
729 
730 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
731 
732 	if (data.next_set) {
733 		data.next = blk_rq_timeout(round_jiffies_up(data.next));
734 		mod_timer(&q->timeout, data.next);
735 	} else {
736 		struct blk_mq_hw_ctx *hctx;
737 
738 		queue_for_each_hw_ctx(q, hctx, i) {
739 			/* the hctx may be unmapped, so check it here */
740 			if (blk_mq_hw_queue_mapped(hctx))
741 				blk_mq_tag_idle(hctx);
742 		}
743 	}
744 	blk_queue_exit(q);
745 }
746 
747 /*
748  * Reverse check our software queue for entries that we could potentially
749  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
750  * too much time checking for merges.
751  */
752 static bool blk_mq_attempt_merge(struct request_queue *q,
753 				 struct blk_mq_ctx *ctx, struct bio *bio)
754 {
755 	struct request *rq;
756 	int checked = 8;
757 
758 	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
759 		int el_ret;
760 
761 		if (!checked--)
762 			break;
763 
764 		if (!blk_rq_merge_ok(rq, bio))
765 			continue;
766 
767 		el_ret = blk_try_merge(rq, bio);
768 		if (el_ret == ELEVATOR_BACK_MERGE) {
769 			if (bio_attempt_back_merge(q, rq, bio)) {
770 				ctx->rq_merged++;
771 				return true;
772 			}
773 			break;
774 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
775 			if (bio_attempt_front_merge(q, rq, bio)) {
776 				ctx->rq_merged++;
777 				return true;
778 			}
779 			break;
780 		}
781 	}
782 
783 	return false;
784 }
785 
786 struct flush_busy_ctx_data {
787 	struct blk_mq_hw_ctx *hctx;
788 	struct list_head *list;
789 };
790 
791 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
792 {
793 	struct flush_busy_ctx_data *flush_data = data;
794 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
795 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
796 
797 	sbitmap_clear_bit(sb, bitnr);
798 	spin_lock(&ctx->lock);
799 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
800 	spin_unlock(&ctx->lock);
801 	return true;
802 }
803 
804 /*
805  * Process software queues that have been marked busy, splicing them
806  * to the for-dispatch
807  */
808 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
809 {
810 	struct flush_busy_ctx_data data = {
811 		.hctx = hctx,
812 		.list = list,
813 	};
814 
815 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
816 }
817 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
818 
819 static inline unsigned int queued_to_index(unsigned int queued)
820 {
821 	if (!queued)
822 		return 0;
823 
824 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
825 }
826 
827 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
828 {
829 	struct request_queue *q = hctx->queue;
830 	struct request *rq;
831 	LIST_HEAD(driver_list);
832 	struct list_head *dptr;
833 	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
834 
835 	/*
836 	 * Start off with dptr being NULL, so we start the first request
837 	 * immediately, even if we have more pending.
838 	 */
839 	dptr = NULL;
840 
841 	/*
842 	 * Now process all the entries, sending them to the driver.
843 	 */
844 	queued = 0;
845 	while (!list_empty(list)) {
846 		struct blk_mq_queue_data bd;
847 
848 		rq = list_first_entry(list, struct request, queuelist);
849 		list_del_init(&rq->queuelist);
850 
851 		bd.rq = rq;
852 		bd.list = dptr;
853 		bd.last = list_empty(list);
854 
855 		ret = q->mq_ops->queue_rq(hctx, &bd);
856 		switch (ret) {
857 		case BLK_MQ_RQ_QUEUE_OK:
858 			queued++;
859 			break;
860 		case BLK_MQ_RQ_QUEUE_BUSY:
861 			list_add(&rq->queuelist, list);
862 			__blk_mq_requeue_request(rq);
863 			break;
864 		default:
865 			pr_err("blk-mq: bad return on queue: %d\n", ret);
866 		case BLK_MQ_RQ_QUEUE_ERROR:
867 			rq->errors = -EIO;
868 			blk_mq_end_request(rq, rq->errors);
869 			break;
870 		}
871 
872 		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
873 			break;
874 
875 		/*
876 		 * We've done the first request. If we have more than 1
877 		 * left in the list, set dptr to defer issue.
878 		 */
879 		if (!dptr && list->next != list->prev)
880 			dptr = &driver_list;
881 	}
882 
883 	hctx->dispatched[queued_to_index(queued)]++;
884 
885 	/*
886 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
887 	 * that is where we will continue on next queue run.
888 	 */
889 	if (!list_empty(list)) {
890 		spin_lock(&hctx->lock);
891 		list_splice(list, &hctx->dispatch);
892 		spin_unlock(&hctx->lock);
893 
894 		/*
895 		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
896 		 * it's possible the queue is stopped and restarted again
897 		 * before this. Queue restart will dispatch requests. And since
898 		 * requests in rq_list aren't added into hctx->dispatch yet,
899 		 * the requests in rq_list might get lost.
900 		 *
901 		 * blk_mq_run_hw_queue() already checks the STOPPED bit
902 		 **/
903 		blk_mq_run_hw_queue(hctx, true);
904 	}
905 
906 	return ret != BLK_MQ_RQ_QUEUE_BUSY;
907 }
908 
909 /*
910  * Run this hardware queue, pulling any software queues mapped to it in.
911  * Note that this function currently has various problems around ordering
912  * of IO. In particular, we'd like FIFO behaviour on handling existing
913  * items on the hctx->dispatch list. Ignore that for now.
914  */
915 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
916 {
917 	LIST_HEAD(rq_list);
918 	LIST_HEAD(driver_list);
919 
920 	if (unlikely(blk_mq_hctx_stopped(hctx)))
921 		return;
922 
923 	hctx->run++;
924 
925 	/*
926 	 * Touch any software queue that has pending entries.
927 	 */
928 	blk_mq_flush_busy_ctxs(hctx, &rq_list);
929 
930 	/*
931 	 * If we have previous entries on our dispatch list, grab them
932 	 * and stuff them at the front for more fair dispatch.
933 	 */
934 	if (!list_empty_careful(&hctx->dispatch)) {
935 		spin_lock(&hctx->lock);
936 		if (!list_empty(&hctx->dispatch))
937 			list_splice_init(&hctx->dispatch, &rq_list);
938 		spin_unlock(&hctx->lock);
939 	}
940 
941 	blk_mq_dispatch_rq_list(hctx, &rq_list);
942 }
943 
944 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
945 {
946 	int srcu_idx;
947 
948 	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
949 		cpu_online(hctx->next_cpu));
950 
951 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
952 		rcu_read_lock();
953 		blk_mq_process_rq_list(hctx);
954 		rcu_read_unlock();
955 	} else {
956 		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
957 		blk_mq_process_rq_list(hctx);
958 		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
959 	}
960 }
961 
962 /*
963  * It'd be great if the workqueue API had a way to pass
964  * in a mask and had some smarts for more clever placement.
965  * For now we just round-robin here, switching for every
966  * BLK_MQ_CPU_WORK_BATCH queued items.
967  */
968 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
969 {
970 	if (hctx->queue->nr_hw_queues == 1)
971 		return WORK_CPU_UNBOUND;
972 
973 	if (--hctx->next_cpu_batch <= 0) {
974 		int next_cpu;
975 
976 		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
977 		if (next_cpu >= nr_cpu_ids)
978 			next_cpu = cpumask_first(hctx->cpumask);
979 
980 		hctx->next_cpu = next_cpu;
981 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
982 	}
983 
984 	return hctx->next_cpu;
985 }
986 
987 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
988 {
989 	if (unlikely(blk_mq_hctx_stopped(hctx) ||
990 		     !blk_mq_hw_queue_mapped(hctx)))
991 		return;
992 
993 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
994 		int cpu = get_cpu();
995 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
996 			__blk_mq_run_hw_queue(hctx);
997 			put_cpu();
998 			return;
999 		}
1000 
1001 		put_cpu();
1002 	}
1003 
1004 	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1005 }
1006 
1007 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1008 {
1009 	struct blk_mq_hw_ctx *hctx;
1010 	int i;
1011 
1012 	queue_for_each_hw_ctx(q, hctx, i) {
1013 		if ((!blk_mq_hctx_has_pending(hctx) &&
1014 		    list_empty_careful(&hctx->dispatch)) ||
1015 		    blk_mq_hctx_stopped(hctx))
1016 			continue;
1017 
1018 		blk_mq_run_hw_queue(hctx, async);
1019 	}
1020 }
1021 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1022 
1023 /**
1024  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1025  * @q: request queue.
1026  *
1027  * The caller is responsible for serializing this function against
1028  * blk_mq_{start,stop}_hw_queue().
1029  */
1030 bool blk_mq_queue_stopped(struct request_queue *q)
1031 {
1032 	struct blk_mq_hw_ctx *hctx;
1033 	int i;
1034 
1035 	queue_for_each_hw_ctx(q, hctx, i)
1036 		if (blk_mq_hctx_stopped(hctx))
1037 			return true;
1038 
1039 	return false;
1040 }
1041 EXPORT_SYMBOL(blk_mq_queue_stopped);
1042 
1043 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1044 {
1045 	cancel_work(&hctx->run_work);
1046 	cancel_delayed_work(&hctx->delay_work);
1047 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1048 }
1049 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1050 
1051 void blk_mq_stop_hw_queues(struct request_queue *q)
1052 {
1053 	struct blk_mq_hw_ctx *hctx;
1054 	int i;
1055 
1056 	queue_for_each_hw_ctx(q, hctx, i)
1057 		blk_mq_stop_hw_queue(hctx);
1058 }
1059 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1060 
1061 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1062 {
1063 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1064 
1065 	blk_mq_run_hw_queue(hctx, false);
1066 }
1067 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1068 
1069 void blk_mq_start_hw_queues(struct request_queue *q)
1070 {
1071 	struct blk_mq_hw_ctx *hctx;
1072 	int i;
1073 
1074 	queue_for_each_hw_ctx(q, hctx, i)
1075 		blk_mq_start_hw_queue(hctx);
1076 }
1077 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1078 
1079 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1080 {
1081 	if (!blk_mq_hctx_stopped(hctx))
1082 		return;
1083 
1084 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1085 	blk_mq_run_hw_queue(hctx, async);
1086 }
1087 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1088 
1089 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1090 {
1091 	struct blk_mq_hw_ctx *hctx;
1092 	int i;
1093 
1094 	queue_for_each_hw_ctx(q, hctx, i)
1095 		blk_mq_start_stopped_hw_queue(hctx, async);
1096 }
1097 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1098 
1099 static void blk_mq_run_work_fn(struct work_struct *work)
1100 {
1101 	struct blk_mq_hw_ctx *hctx;
1102 
1103 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1104 
1105 	__blk_mq_run_hw_queue(hctx);
1106 }
1107 
1108 static void blk_mq_delay_work_fn(struct work_struct *work)
1109 {
1110 	struct blk_mq_hw_ctx *hctx;
1111 
1112 	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1113 
1114 	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1115 		__blk_mq_run_hw_queue(hctx);
1116 }
1117 
1118 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1119 {
1120 	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1121 		return;
1122 
1123 	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1124 			&hctx->delay_work, msecs_to_jiffies(msecs));
1125 }
1126 EXPORT_SYMBOL(blk_mq_delay_queue);
1127 
1128 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1129 					    struct request *rq,
1130 					    bool at_head)
1131 {
1132 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1133 
1134 	trace_block_rq_insert(hctx->queue, rq);
1135 
1136 	if (at_head)
1137 		list_add(&rq->queuelist, &ctx->rq_list);
1138 	else
1139 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1140 }
1141 
1142 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1143 			     bool at_head)
1144 {
1145 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1146 
1147 	__blk_mq_insert_req_list(hctx, rq, at_head);
1148 	blk_mq_hctx_mark_pending(hctx, ctx);
1149 }
1150 
1151 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1152 			   bool async)
1153 {
1154 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1155 	struct request_queue *q = rq->q;
1156 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1157 
1158 	spin_lock(&ctx->lock);
1159 	__blk_mq_insert_request(hctx, rq, at_head);
1160 	spin_unlock(&ctx->lock);
1161 
1162 	if (run_queue)
1163 		blk_mq_run_hw_queue(hctx, async);
1164 }
1165 
1166 static void blk_mq_insert_requests(struct request_queue *q,
1167 				     struct blk_mq_ctx *ctx,
1168 				     struct list_head *list,
1169 				     int depth,
1170 				     bool from_schedule)
1171 
1172 {
1173 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1174 
1175 	trace_block_unplug(q, depth, !from_schedule);
1176 
1177 	/*
1178 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1179 	 * offline now
1180 	 */
1181 	spin_lock(&ctx->lock);
1182 	while (!list_empty(list)) {
1183 		struct request *rq;
1184 
1185 		rq = list_first_entry(list, struct request, queuelist);
1186 		BUG_ON(rq->mq_ctx != ctx);
1187 		list_del_init(&rq->queuelist);
1188 		__blk_mq_insert_req_list(hctx, rq, false);
1189 	}
1190 	blk_mq_hctx_mark_pending(hctx, ctx);
1191 	spin_unlock(&ctx->lock);
1192 
1193 	blk_mq_run_hw_queue(hctx, from_schedule);
1194 }
1195 
1196 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1197 {
1198 	struct request *rqa = container_of(a, struct request, queuelist);
1199 	struct request *rqb = container_of(b, struct request, queuelist);
1200 
1201 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1202 		 (rqa->mq_ctx == rqb->mq_ctx &&
1203 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1204 }
1205 
1206 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1207 {
1208 	struct blk_mq_ctx *this_ctx;
1209 	struct request_queue *this_q;
1210 	struct request *rq;
1211 	LIST_HEAD(list);
1212 	LIST_HEAD(ctx_list);
1213 	unsigned int depth;
1214 
1215 	list_splice_init(&plug->mq_list, &list);
1216 
1217 	list_sort(NULL, &list, plug_ctx_cmp);
1218 
1219 	this_q = NULL;
1220 	this_ctx = NULL;
1221 	depth = 0;
1222 
1223 	while (!list_empty(&list)) {
1224 		rq = list_entry_rq(list.next);
1225 		list_del_init(&rq->queuelist);
1226 		BUG_ON(!rq->q);
1227 		if (rq->mq_ctx != this_ctx) {
1228 			if (this_ctx) {
1229 				blk_mq_insert_requests(this_q, this_ctx,
1230 							&ctx_list, depth,
1231 							from_schedule);
1232 			}
1233 
1234 			this_ctx = rq->mq_ctx;
1235 			this_q = rq->q;
1236 			depth = 0;
1237 		}
1238 
1239 		depth++;
1240 		list_add_tail(&rq->queuelist, &ctx_list);
1241 	}
1242 
1243 	/*
1244 	 * If 'this_ctx' is set, we know we have entries to complete
1245 	 * on 'ctx_list'. Do those.
1246 	 */
1247 	if (this_ctx) {
1248 		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1249 				       from_schedule);
1250 	}
1251 }
1252 
1253 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1254 {
1255 	init_request_from_bio(rq, bio);
1256 
1257 	blk_account_io_start(rq, true);
1258 }
1259 
1260 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1261 {
1262 	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1263 		!blk_queue_nomerges(hctx->queue);
1264 }
1265 
1266 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1267 					 struct blk_mq_ctx *ctx,
1268 					 struct request *rq, struct bio *bio)
1269 {
1270 	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1271 		blk_mq_bio_to_request(rq, bio);
1272 		spin_lock(&ctx->lock);
1273 insert_rq:
1274 		__blk_mq_insert_request(hctx, rq, false);
1275 		spin_unlock(&ctx->lock);
1276 		return false;
1277 	} else {
1278 		struct request_queue *q = hctx->queue;
1279 
1280 		spin_lock(&ctx->lock);
1281 		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1282 			blk_mq_bio_to_request(rq, bio);
1283 			goto insert_rq;
1284 		}
1285 
1286 		spin_unlock(&ctx->lock);
1287 		__blk_mq_free_request(hctx, ctx, rq);
1288 		return true;
1289 	}
1290 }
1291 
1292 static struct request *blk_mq_map_request(struct request_queue *q,
1293 					  struct bio *bio,
1294 					  struct blk_mq_alloc_data *data)
1295 {
1296 	struct blk_mq_hw_ctx *hctx;
1297 	struct blk_mq_ctx *ctx;
1298 	struct request *rq;
1299 
1300 	blk_queue_enter_live(q);
1301 	ctx = blk_mq_get_ctx(q);
1302 	hctx = blk_mq_map_queue(q, ctx->cpu);
1303 
1304 	trace_block_getrq(q, bio, bio->bi_opf);
1305 	blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1306 	rq = __blk_mq_alloc_request(data, bio->bi_opf);
1307 
1308 	data->hctx->queued++;
1309 	return rq;
1310 }
1311 
1312 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1313 {
1314 	return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1315 }
1316 
1317 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1318 {
1319 	int ret;
1320 	struct request_queue *q = rq->q;
1321 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1322 	struct blk_mq_queue_data bd = {
1323 		.rq = rq,
1324 		.list = NULL,
1325 		.last = 1
1326 	};
1327 	blk_qc_t new_cookie = request_to_qc_t(hctx, rq);
1328 
1329 	if (blk_mq_hctx_stopped(hctx))
1330 		goto insert;
1331 
1332 	/*
1333 	 * For OK queue, we are done. For error, kill it. Any other
1334 	 * error (busy), just add it to our list as we previously
1335 	 * would have done
1336 	 */
1337 	ret = q->mq_ops->queue_rq(hctx, &bd);
1338 	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1339 		*cookie = new_cookie;
1340 		return;
1341 	}
1342 
1343 	__blk_mq_requeue_request(rq);
1344 
1345 	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1346 		*cookie = BLK_QC_T_NONE;
1347 		rq->errors = -EIO;
1348 		blk_mq_end_request(rq, rq->errors);
1349 		return;
1350 	}
1351 
1352 insert:
1353 	blk_mq_insert_request(rq, false, true, true);
1354 }
1355 
1356 /*
1357  * Multiple hardware queue variant. This will not use per-process plugs,
1358  * but will attempt to bypass the hctx queueing if we can go straight to
1359  * hardware for SYNC IO.
1360  */
1361 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1362 {
1363 	const int is_sync = op_is_sync(bio->bi_opf);
1364 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1365 	struct blk_mq_alloc_data data;
1366 	struct request *rq;
1367 	unsigned int request_count = 0, srcu_idx;
1368 	struct blk_plug *plug;
1369 	struct request *same_queue_rq = NULL;
1370 	blk_qc_t cookie;
1371 	unsigned int wb_acct;
1372 
1373 	blk_queue_bounce(q, &bio);
1374 
1375 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1376 		bio_io_error(bio);
1377 		return BLK_QC_T_NONE;
1378 	}
1379 
1380 	blk_queue_split(q, &bio, q->bio_split);
1381 
1382 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1383 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1384 		return BLK_QC_T_NONE;
1385 
1386 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1387 
1388 	rq = blk_mq_map_request(q, bio, &data);
1389 	if (unlikely(!rq)) {
1390 		__wbt_done(q->rq_wb, wb_acct);
1391 		return BLK_QC_T_NONE;
1392 	}
1393 
1394 	wbt_track(&rq->issue_stat, wb_acct);
1395 
1396 	cookie = request_to_qc_t(data.hctx, rq);
1397 
1398 	if (unlikely(is_flush_fua)) {
1399 		blk_mq_bio_to_request(rq, bio);
1400 		blk_insert_flush(rq);
1401 		goto run_queue;
1402 	}
1403 
1404 	plug = current->plug;
1405 	/*
1406 	 * If the driver supports defer issued based on 'last', then
1407 	 * queue it up like normal since we can potentially save some
1408 	 * CPU this way.
1409 	 */
1410 	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1411 	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1412 		struct request *old_rq = NULL;
1413 
1414 		blk_mq_bio_to_request(rq, bio);
1415 
1416 		/*
1417 		 * We do limited plugging. If the bio can be merged, do that.
1418 		 * Otherwise the existing request in the plug list will be
1419 		 * issued. So the plug list will have one request at most
1420 		 */
1421 		if (plug) {
1422 			/*
1423 			 * The plug list might get flushed before this. If that
1424 			 * happens, same_queue_rq is invalid and plug list is
1425 			 * empty
1426 			 */
1427 			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1428 				old_rq = same_queue_rq;
1429 				list_del_init(&old_rq->queuelist);
1430 			}
1431 			list_add_tail(&rq->queuelist, &plug->mq_list);
1432 		} else /* is_sync */
1433 			old_rq = rq;
1434 		blk_mq_put_ctx(data.ctx);
1435 		if (!old_rq)
1436 			goto done;
1437 
1438 		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1439 			rcu_read_lock();
1440 			blk_mq_try_issue_directly(old_rq, &cookie);
1441 			rcu_read_unlock();
1442 		} else {
1443 			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1444 			blk_mq_try_issue_directly(old_rq, &cookie);
1445 			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1446 		}
1447 		goto done;
1448 	}
1449 
1450 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1451 		/*
1452 		 * For a SYNC request, send it to the hardware immediately. For
1453 		 * an ASYNC request, just ensure that we run it later on. The
1454 		 * latter allows for merging opportunities and more efficient
1455 		 * dispatching.
1456 		 */
1457 run_queue:
1458 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1459 	}
1460 	blk_mq_put_ctx(data.ctx);
1461 done:
1462 	return cookie;
1463 }
1464 
1465 /*
1466  * Single hardware queue variant. This will attempt to use any per-process
1467  * plug for merging and IO deferral.
1468  */
1469 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1470 {
1471 	const int is_sync = op_is_sync(bio->bi_opf);
1472 	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1473 	struct blk_plug *plug;
1474 	unsigned int request_count = 0;
1475 	struct blk_mq_alloc_data data;
1476 	struct request *rq;
1477 	blk_qc_t cookie;
1478 	unsigned int wb_acct;
1479 
1480 	blk_queue_bounce(q, &bio);
1481 
1482 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483 		bio_io_error(bio);
1484 		return BLK_QC_T_NONE;
1485 	}
1486 
1487 	blk_queue_split(q, &bio, q->bio_split);
1488 
1489 	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1490 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1491 			return BLK_QC_T_NONE;
1492 	} else
1493 		request_count = blk_plug_queued_count(q);
1494 
1495 	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1496 
1497 	rq = blk_mq_map_request(q, bio, &data);
1498 	if (unlikely(!rq)) {
1499 		__wbt_done(q->rq_wb, wb_acct);
1500 		return BLK_QC_T_NONE;
1501 	}
1502 
1503 	wbt_track(&rq->issue_stat, wb_acct);
1504 
1505 	cookie = request_to_qc_t(data.hctx, rq);
1506 
1507 	if (unlikely(is_flush_fua)) {
1508 		blk_mq_bio_to_request(rq, bio);
1509 		blk_insert_flush(rq);
1510 		goto run_queue;
1511 	}
1512 
1513 	/*
1514 	 * A task plug currently exists. Since this is completely lockless,
1515 	 * utilize that to temporarily store requests until the task is
1516 	 * either done or scheduled away.
1517 	 */
1518 	plug = current->plug;
1519 	if (plug) {
1520 		struct request *last = NULL;
1521 
1522 		blk_mq_bio_to_request(rq, bio);
1523 
1524 		/*
1525 		 * @request_count may become stale because of schedule
1526 		 * out, so check the list again.
1527 		 */
1528 		if (list_empty(&plug->mq_list))
1529 			request_count = 0;
1530 		if (!request_count)
1531 			trace_block_plug(q);
1532 		else
1533 			last = list_entry_rq(plug->mq_list.prev);
1534 
1535 		blk_mq_put_ctx(data.ctx);
1536 
1537 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1538 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1539 			blk_flush_plug_list(plug, false);
1540 			trace_block_plug(q);
1541 		}
1542 
1543 		list_add_tail(&rq->queuelist, &plug->mq_list);
1544 		return cookie;
1545 	}
1546 
1547 	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1548 		/*
1549 		 * For a SYNC request, send it to the hardware immediately. For
1550 		 * an ASYNC request, just ensure that we run it later on. The
1551 		 * latter allows for merging opportunities and more efficient
1552 		 * dispatching.
1553 		 */
1554 run_queue:
1555 		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1556 	}
1557 
1558 	blk_mq_put_ctx(data.ctx);
1559 	return cookie;
1560 }
1561 
1562 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1563 		     unsigned int hctx_idx)
1564 {
1565 	struct page *page;
1566 
1567 	if (tags->rqs && set->ops->exit_request) {
1568 		int i;
1569 
1570 		for (i = 0; i < tags->nr_tags; i++) {
1571 			struct request *rq = tags->static_rqs[i];
1572 
1573 			if (!rq)
1574 				continue;
1575 			set->ops->exit_request(set->driver_data, rq,
1576 						hctx_idx, i);
1577 			tags->static_rqs[i] = NULL;
1578 		}
1579 	}
1580 
1581 	while (!list_empty(&tags->page_list)) {
1582 		page = list_first_entry(&tags->page_list, struct page, lru);
1583 		list_del_init(&page->lru);
1584 		/*
1585 		 * Remove kmemleak object previously allocated in
1586 		 * blk_mq_init_rq_map().
1587 		 */
1588 		kmemleak_free(page_address(page));
1589 		__free_pages(page, page->private);
1590 	}
1591 }
1592 
1593 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1594 {
1595 	kfree(tags->rqs);
1596 	tags->rqs = NULL;
1597 	kfree(tags->static_rqs);
1598 	tags->static_rqs = NULL;
1599 
1600 	blk_mq_free_tags(tags);
1601 }
1602 
1603 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1604 					unsigned int hctx_idx,
1605 					unsigned int nr_tags,
1606 					unsigned int reserved_tags)
1607 {
1608 	struct blk_mq_tags *tags;
1609 
1610 	tags = blk_mq_init_tags(nr_tags, reserved_tags,
1611 				set->numa_node,
1612 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1613 	if (!tags)
1614 		return NULL;
1615 
1616 	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1617 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1618 				 set->numa_node);
1619 	if (!tags->rqs) {
1620 		blk_mq_free_tags(tags);
1621 		return NULL;
1622 	}
1623 
1624 	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1625 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1626 				 set->numa_node);
1627 	if (!tags->static_rqs) {
1628 		kfree(tags->rqs);
1629 		blk_mq_free_tags(tags);
1630 		return NULL;
1631 	}
1632 
1633 	return tags;
1634 }
1635 
1636 static size_t order_to_size(unsigned int order)
1637 {
1638 	return (size_t)PAGE_SIZE << order;
1639 }
1640 
1641 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1642 		     unsigned int hctx_idx, unsigned int depth)
1643 {
1644 	unsigned int i, j, entries_per_page, max_order = 4;
1645 	size_t rq_size, left;
1646 
1647 	INIT_LIST_HEAD(&tags->page_list);
1648 
1649 	/*
1650 	 * rq_size is the size of the request plus driver payload, rounded
1651 	 * to the cacheline size
1652 	 */
1653 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1654 				cache_line_size());
1655 	left = rq_size * depth;
1656 
1657 	for (i = 0; i < depth; ) {
1658 		int this_order = max_order;
1659 		struct page *page;
1660 		int to_do;
1661 		void *p;
1662 
1663 		while (this_order && left < order_to_size(this_order - 1))
1664 			this_order--;
1665 
1666 		do {
1667 			page = alloc_pages_node(set->numa_node,
1668 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1669 				this_order);
1670 			if (page)
1671 				break;
1672 			if (!this_order--)
1673 				break;
1674 			if (order_to_size(this_order) < rq_size)
1675 				break;
1676 		} while (1);
1677 
1678 		if (!page)
1679 			goto fail;
1680 
1681 		page->private = this_order;
1682 		list_add_tail(&page->lru, &tags->page_list);
1683 
1684 		p = page_address(page);
1685 		/*
1686 		 * Allow kmemleak to scan these pages as they contain pointers
1687 		 * to additional allocations like via ops->init_request().
1688 		 */
1689 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1690 		entries_per_page = order_to_size(this_order) / rq_size;
1691 		to_do = min(entries_per_page, depth - i);
1692 		left -= to_do * rq_size;
1693 		for (j = 0; j < to_do; j++) {
1694 			struct request *rq = p;
1695 
1696 			tags->static_rqs[i] = rq;
1697 			if (set->ops->init_request) {
1698 				if (set->ops->init_request(set->driver_data,
1699 						rq, hctx_idx, i,
1700 						set->numa_node)) {
1701 					tags->static_rqs[i] = NULL;
1702 					goto fail;
1703 				}
1704 			}
1705 
1706 			p += rq_size;
1707 			i++;
1708 		}
1709 	}
1710 	return 0;
1711 
1712 fail:
1713 	blk_mq_free_rqs(set, tags, hctx_idx);
1714 	return -ENOMEM;
1715 }
1716 
1717 /*
1718  * 'cpu' is going away. splice any existing rq_list entries from this
1719  * software queue to the hw queue dispatch list, and ensure that it
1720  * gets run.
1721  */
1722 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1723 {
1724 	struct blk_mq_hw_ctx *hctx;
1725 	struct blk_mq_ctx *ctx;
1726 	LIST_HEAD(tmp);
1727 
1728 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1729 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1730 
1731 	spin_lock(&ctx->lock);
1732 	if (!list_empty(&ctx->rq_list)) {
1733 		list_splice_init(&ctx->rq_list, &tmp);
1734 		blk_mq_hctx_clear_pending(hctx, ctx);
1735 	}
1736 	spin_unlock(&ctx->lock);
1737 
1738 	if (list_empty(&tmp))
1739 		return 0;
1740 
1741 	spin_lock(&hctx->lock);
1742 	list_splice_tail_init(&tmp, &hctx->dispatch);
1743 	spin_unlock(&hctx->lock);
1744 
1745 	blk_mq_run_hw_queue(hctx, true);
1746 	return 0;
1747 }
1748 
1749 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1750 {
1751 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1752 					    &hctx->cpuhp_dead);
1753 }
1754 
1755 /* hctx->ctxs will be freed in queue's release handler */
1756 static void blk_mq_exit_hctx(struct request_queue *q,
1757 		struct blk_mq_tag_set *set,
1758 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1759 {
1760 	unsigned flush_start_tag = set->queue_depth;
1761 
1762 	blk_mq_tag_idle(hctx);
1763 
1764 	if (set->ops->exit_request)
1765 		set->ops->exit_request(set->driver_data,
1766 				       hctx->fq->flush_rq, hctx_idx,
1767 				       flush_start_tag + hctx_idx);
1768 
1769 	if (set->ops->exit_hctx)
1770 		set->ops->exit_hctx(hctx, hctx_idx);
1771 
1772 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1773 		cleanup_srcu_struct(&hctx->queue_rq_srcu);
1774 
1775 	blk_mq_remove_cpuhp(hctx);
1776 	blk_free_flush_queue(hctx->fq);
1777 	sbitmap_free(&hctx->ctx_map);
1778 }
1779 
1780 static void blk_mq_exit_hw_queues(struct request_queue *q,
1781 		struct blk_mq_tag_set *set, int nr_queue)
1782 {
1783 	struct blk_mq_hw_ctx *hctx;
1784 	unsigned int i;
1785 
1786 	queue_for_each_hw_ctx(q, hctx, i) {
1787 		if (i == nr_queue)
1788 			break;
1789 		blk_mq_exit_hctx(q, set, hctx, i);
1790 	}
1791 }
1792 
1793 static void blk_mq_free_hw_queues(struct request_queue *q,
1794 		struct blk_mq_tag_set *set)
1795 {
1796 	struct blk_mq_hw_ctx *hctx;
1797 	unsigned int i;
1798 
1799 	queue_for_each_hw_ctx(q, hctx, i)
1800 		free_cpumask_var(hctx->cpumask);
1801 }
1802 
1803 static int blk_mq_init_hctx(struct request_queue *q,
1804 		struct blk_mq_tag_set *set,
1805 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1806 {
1807 	int node;
1808 	unsigned flush_start_tag = set->queue_depth;
1809 
1810 	node = hctx->numa_node;
1811 	if (node == NUMA_NO_NODE)
1812 		node = hctx->numa_node = set->numa_node;
1813 
1814 	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1815 	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1816 	spin_lock_init(&hctx->lock);
1817 	INIT_LIST_HEAD(&hctx->dispatch);
1818 	hctx->queue = q;
1819 	hctx->queue_num = hctx_idx;
1820 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1821 
1822 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1823 
1824 	hctx->tags = set->tags[hctx_idx];
1825 
1826 	/*
1827 	 * Allocate space for all possible cpus to avoid allocation at
1828 	 * runtime
1829 	 */
1830 	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1831 					GFP_KERNEL, node);
1832 	if (!hctx->ctxs)
1833 		goto unregister_cpu_notifier;
1834 
1835 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1836 			      node))
1837 		goto free_ctxs;
1838 
1839 	hctx->nr_ctx = 0;
1840 
1841 	if (set->ops->init_hctx &&
1842 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1843 		goto free_bitmap;
1844 
1845 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1846 	if (!hctx->fq)
1847 		goto exit_hctx;
1848 
1849 	if (set->ops->init_request &&
1850 	    set->ops->init_request(set->driver_data,
1851 				   hctx->fq->flush_rq, hctx_idx,
1852 				   flush_start_tag + hctx_idx, node))
1853 		goto free_fq;
1854 
1855 	if (hctx->flags & BLK_MQ_F_BLOCKING)
1856 		init_srcu_struct(&hctx->queue_rq_srcu);
1857 
1858 	return 0;
1859 
1860  free_fq:
1861 	kfree(hctx->fq);
1862  exit_hctx:
1863 	if (set->ops->exit_hctx)
1864 		set->ops->exit_hctx(hctx, hctx_idx);
1865  free_bitmap:
1866 	sbitmap_free(&hctx->ctx_map);
1867  free_ctxs:
1868 	kfree(hctx->ctxs);
1869  unregister_cpu_notifier:
1870 	blk_mq_remove_cpuhp(hctx);
1871 	return -1;
1872 }
1873 
1874 static void blk_mq_init_cpu_queues(struct request_queue *q,
1875 				   unsigned int nr_hw_queues)
1876 {
1877 	unsigned int i;
1878 
1879 	for_each_possible_cpu(i) {
1880 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1881 		struct blk_mq_hw_ctx *hctx;
1882 
1883 		memset(__ctx, 0, sizeof(*__ctx));
1884 		__ctx->cpu = i;
1885 		spin_lock_init(&__ctx->lock);
1886 		INIT_LIST_HEAD(&__ctx->rq_list);
1887 		__ctx->queue = q;
1888 		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1889 		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1890 
1891 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1892 		if (!cpu_online(i))
1893 			continue;
1894 
1895 		hctx = blk_mq_map_queue(q, i);
1896 
1897 		/*
1898 		 * Set local node, IFF we have more than one hw queue. If
1899 		 * not, we remain on the home node of the device
1900 		 */
1901 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1902 			hctx->numa_node = local_memory_node(cpu_to_node(i));
1903 	}
1904 }
1905 
1906 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1907 {
1908 	int ret = 0;
1909 
1910 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1911 					set->queue_depth, set->reserved_tags);
1912 	if (!set->tags[hctx_idx])
1913 		return false;
1914 
1915 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1916 				set->queue_depth);
1917 	if (!ret)
1918 		return true;
1919 
1920 	blk_mq_free_rq_map(set->tags[hctx_idx]);
1921 	set->tags[hctx_idx] = NULL;
1922 	return false;
1923 }
1924 
1925 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1926 					 unsigned int hctx_idx)
1927 {
1928 	blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1929 	blk_mq_free_rq_map(set->tags[hctx_idx]);
1930 	set->tags[hctx_idx] = NULL;
1931 }
1932 
1933 static void blk_mq_map_swqueue(struct request_queue *q,
1934 			       const struct cpumask *online_mask)
1935 {
1936 	unsigned int i, hctx_idx;
1937 	struct blk_mq_hw_ctx *hctx;
1938 	struct blk_mq_ctx *ctx;
1939 	struct blk_mq_tag_set *set = q->tag_set;
1940 
1941 	/*
1942 	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1943 	 */
1944 	mutex_lock(&q->sysfs_lock);
1945 
1946 	queue_for_each_hw_ctx(q, hctx, i) {
1947 		cpumask_clear(hctx->cpumask);
1948 		hctx->nr_ctx = 0;
1949 	}
1950 
1951 	/*
1952 	 * Map software to hardware queues
1953 	 */
1954 	for_each_possible_cpu(i) {
1955 		/* If the cpu isn't online, the cpu is mapped to first hctx */
1956 		if (!cpumask_test_cpu(i, online_mask))
1957 			continue;
1958 
1959 		hctx_idx = q->mq_map[i];
1960 		/* unmapped hw queue can be remapped after CPU topo changed */
1961 		if (!set->tags[hctx_idx] &&
1962 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
1963 			/*
1964 			 * If tags initialization fail for some hctx,
1965 			 * that hctx won't be brought online.  In this
1966 			 * case, remap the current ctx to hctx[0] which
1967 			 * is guaranteed to always have tags allocated
1968 			 */
1969 			q->mq_map[i] = 0;
1970 		}
1971 
1972 		ctx = per_cpu_ptr(q->queue_ctx, i);
1973 		hctx = blk_mq_map_queue(q, i);
1974 
1975 		cpumask_set_cpu(i, hctx->cpumask);
1976 		ctx->index_hw = hctx->nr_ctx;
1977 		hctx->ctxs[hctx->nr_ctx++] = ctx;
1978 	}
1979 
1980 	mutex_unlock(&q->sysfs_lock);
1981 
1982 	queue_for_each_hw_ctx(q, hctx, i) {
1983 		/*
1984 		 * If no software queues are mapped to this hardware queue,
1985 		 * disable it and free the request entries.
1986 		 */
1987 		if (!hctx->nr_ctx) {
1988 			/* Never unmap queue 0.  We need it as a
1989 			 * fallback in case of a new remap fails
1990 			 * allocation
1991 			 */
1992 			if (i && set->tags[i])
1993 				blk_mq_free_map_and_requests(set, i);
1994 
1995 			hctx->tags = NULL;
1996 			continue;
1997 		}
1998 
1999 		hctx->tags = set->tags[i];
2000 		WARN_ON(!hctx->tags);
2001 
2002 		/*
2003 		 * Set the map size to the number of mapped software queues.
2004 		 * This is more accurate and more efficient than looping
2005 		 * over all possibly mapped software queues.
2006 		 */
2007 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2008 
2009 		/*
2010 		 * Initialize batch roundrobin counts
2011 		 */
2012 		hctx->next_cpu = cpumask_first(hctx->cpumask);
2013 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2014 	}
2015 }
2016 
2017 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2018 {
2019 	struct blk_mq_hw_ctx *hctx;
2020 	int i;
2021 
2022 	queue_for_each_hw_ctx(q, hctx, i) {
2023 		if (shared)
2024 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2025 		else
2026 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2027 	}
2028 }
2029 
2030 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2031 {
2032 	struct request_queue *q;
2033 
2034 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2035 		blk_mq_freeze_queue(q);
2036 		queue_set_hctx_shared(q, shared);
2037 		blk_mq_unfreeze_queue(q);
2038 	}
2039 }
2040 
2041 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2042 {
2043 	struct blk_mq_tag_set *set = q->tag_set;
2044 
2045 	mutex_lock(&set->tag_list_lock);
2046 	list_del_init(&q->tag_set_list);
2047 	if (list_is_singular(&set->tag_list)) {
2048 		/* just transitioned to unshared */
2049 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2050 		/* update existing queue */
2051 		blk_mq_update_tag_set_depth(set, false);
2052 	}
2053 	mutex_unlock(&set->tag_list_lock);
2054 }
2055 
2056 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2057 				     struct request_queue *q)
2058 {
2059 	q->tag_set = set;
2060 
2061 	mutex_lock(&set->tag_list_lock);
2062 
2063 	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2064 	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2065 		set->flags |= BLK_MQ_F_TAG_SHARED;
2066 		/* update existing queue */
2067 		blk_mq_update_tag_set_depth(set, true);
2068 	}
2069 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2070 		queue_set_hctx_shared(q, true);
2071 	list_add_tail(&q->tag_set_list, &set->tag_list);
2072 
2073 	mutex_unlock(&set->tag_list_lock);
2074 }
2075 
2076 /*
2077  * It is the actual release handler for mq, but we do it from
2078  * request queue's release handler for avoiding use-after-free
2079  * and headache because q->mq_kobj shouldn't have been introduced,
2080  * but we can't group ctx/kctx kobj without it.
2081  */
2082 void blk_mq_release(struct request_queue *q)
2083 {
2084 	struct blk_mq_hw_ctx *hctx;
2085 	unsigned int i;
2086 
2087 	/* hctx kobj stays in hctx */
2088 	queue_for_each_hw_ctx(q, hctx, i) {
2089 		if (!hctx)
2090 			continue;
2091 		kfree(hctx->ctxs);
2092 		kfree(hctx);
2093 	}
2094 
2095 	q->mq_map = NULL;
2096 
2097 	kfree(q->queue_hw_ctx);
2098 
2099 	/* ctx kobj stays in queue_ctx */
2100 	free_percpu(q->queue_ctx);
2101 }
2102 
2103 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2104 {
2105 	struct request_queue *uninit_q, *q;
2106 
2107 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2108 	if (!uninit_q)
2109 		return ERR_PTR(-ENOMEM);
2110 
2111 	q = blk_mq_init_allocated_queue(set, uninit_q);
2112 	if (IS_ERR(q))
2113 		blk_cleanup_queue(uninit_q);
2114 
2115 	return q;
2116 }
2117 EXPORT_SYMBOL(blk_mq_init_queue);
2118 
2119 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2120 						struct request_queue *q)
2121 {
2122 	int i, j;
2123 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2124 
2125 	blk_mq_sysfs_unregister(q);
2126 	for (i = 0; i < set->nr_hw_queues; i++) {
2127 		int node;
2128 
2129 		if (hctxs[i])
2130 			continue;
2131 
2132 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2133 		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2134 					GFP_KERNEL, node);
2135 		if (!hctxs[i])
2136 			break;
2137 
2138 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2139 						node)) {
2140 			kfree(hctxs[i]);
2141 			hctxs[i] = NULL;
2142 			break;
2143 		}
2144 
2145 		atomic_set(&hctxs[i]->nr_active, 0);
2146 		hctxs[i]->numa_node = node;
2147 		hctxs[i]->queue_num = i;
2148 
2149 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2150 			free_cpumask_var(hctxs[i]->cpumask);
2151 			kfree(hctxs[i]);
2152 			hctxs[i] = NULL;
2153 			break;
2154 		}
2155 		blk_mq_hctx_kobj_init(hctxs[i]);
2156 	}
2157 	for (j = i; j < q->nr_hw_queues; j++) {
2158 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2159 
2160 		if (hctx) {
2161 			if (hctx->tags)
2162 				blk_mq_free_map_and_requests(set, j);
2163 			blk_mq_exit_hctx(q, set, hctx, j);
2164 			free_cpumask_var(hctx->cpumask);
2165 			kobject_put(&hctx->kobj);
2166 			kfree(hctx->ctxs);
2167 			kfree(hctx);
2168 			hctxs[j] = NULL;
2169 
2170 		}
2171 	}
2172 	q->nr_hw_queues = i;
2173 	blk_mq_sysfs_register(q);
2174 }
2175 
2176 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2177 						  struct request_queue *q)
2178 {
2179 	/* mark the queue as mq asap */
2180 	q->mq_ops = set->ops;
2181 
2182 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2183 	if (!q->queue_ctx)
2184 		goto err_exit;
2185 
2186 	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2187 						GFP_KERNEL, set->numa_node);
2188 	if (!q->queue_hw_ctx)
2189 		goto err_percpu;
2190 
2191 	q->mq_map = set->mq_map;
2192 
2193 	blk_mq_realloc_hw_ctxs(set, q);
2194 	if (!q->nr_hw_queues)
2195 		goto err_hctxs;
2196 
2197 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2198 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2199 
2200 	q->nr_queues = nr_cpu_ids;
2201 
2202 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2203 
2204 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2205 		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2206 
2207 	q->sg_reserved_size = INT_MAX;
2208 
2209 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2210 	INIT_LIST_HEAD(&q->requeue_list);
2211 	spin_lock_init(&q->requeue_lock);
2212 
2213 	if (q->nr_hw_queues > 1)
2214 		blk_queue_make_request(q, blk_mq_make_request);
2215 	else
2216 		blk_queue_make_request(q, blk_sq_make_request);
2217 
2218 	/*
2219 	 * Do this after blk_queue_make_request() overrides it...
2220 	 */
2221 	q->nr_requests = set->queue_depth;
2222 
2223 	/*
2224 	 * Default to classic polling
2225 	 */
2226 	q->poll_nsec = -1;
2227 
2228 	if (set->ops->complete)
2229 		blk_queue_softirq_done(q, set->ops->complete);
2230 
2231 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2232 
2233 	get_online_cpus();
2234 	mutex_lock(&all_q_mutex);
2235 
2236 	list_add_tail(&q->all_q_node, &all_q_list);
2237 	blk_mq_add_queue_tag_set(set, q);
2238 	blk_mq_map_swqueue(q, cpu_online_mask);
2239 
2240 	mutex_unlock(&all_q_mutex);
2241 	put_online_cpus();
2242 
2243 	return q;
2244 
2245 err_hctxs:
2246 	kfree(q->queue_hw_ctx);
2247 err_percpu:
2248 	free_percpu(q->queue_ctx);
2249 err_exit:
2250 	q->mq_ops = NULL;
2251 	return ERR_PTR(-ENOMEM);
2252 }
2253 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2254 
2255 void blk_mq_free_queue(struct request_queue *q)
2256 {
2257 	struct blk_mq_tag_set	*set = q->tag_set;
2258 
2259 	mutex_lock(&all_q_mutex);
2260 	list_del_init(&q->all_q_node);
2261 	mutex_unlock(&all_q_mutex);
2262 
2263 	wbt_exit(q);
2264 
2265 	blk_mq_del_queue_tag_set(q);
2266 
2267 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2268 	blk_mq_free_hw_queues(q, set);
2269 }
2270 
2271 /* Basically redo blk_mq_init_queue with queue frozen */
2272 static void blk_mq_queue_reinit(struct request_queue *q,
2273 				const struct cpumask *online_mask)
2274 {
2275 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2276 
2277 	blk_mq_sysfs_unregister(q);
2278 
2279 	/*
2280 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2281 	 * we should change hctx numa_node according to new topology (this
2282 	 * involves free and re-allocate memory, worthy doing?)
2283 	 */
2284 
2285 	blk_mq_map_swqueue(q, online_mask);
2286 
2287 	blk_mq_sysfs_register(q);
2288 }
2289 
2290 /*
2291  * New online cpumask which is going to be set in this hotplug event.
2292  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2293  * one-by-one and dynamically allocating this could result in a failure.
2294  */
2295 static struct cpumask cpuhp_online_new;
2296 
2297 static void blk_mq_queue_reinit_work(void)
2298 {
2299 	struct request_queue *q;
2300 
2301 	mutex_lock(&all_q_mutex);
2302 	/*
2303 	 * We need to freeze and reinit all existing queues.  Freezing
2304 	 * involves synchronous wait for an RCU grace period and doing it
2305 	 * one by one may take a long time.  Start freezing all queues in
2306 	 * one swoop and then wait for the completions so that freezing can
2307 	 * take place in parallel.
2308 	 */
2309 	list_for_each_entry(q, &all_q_list, all_q_node)
2310 		blk_mq_freeze_queue_start(q);
2311 	list_for_each_entry(q, &all_q_list, all_q_node)
2312 		blk_mq_freeze_queue_wait(q);
2313 
2314 	list_for_each_entry(q, &all_q_list, all_q_node)
2315 		blk_mq_queue_reinit(q, &cpuhp_online_new);
2316 
2317 	list_for_each_entry(q, &all_q_list, all_q_node)
2318 		blk_mq_unfreeze_queue(q);
2319 
2320 	mutex_unlock(&all_q_mutex);
2321 }
2322 
2323 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2324 {
2325 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2326 	blk_mq_queue_reinit_work();
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Before hotadded cpu starts handling requests, new mappings must be
2332  * established.  Otherwise, these requests in hw queue might never be
2333  * dispatched.
2334  *
2335  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2336  * for CPU0, and ctx1 for CPU1).
2337  *
2338  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2339  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2340  *
2341  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2342  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2343  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2344  * ignored.
2345  */
2346 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2347 {
2348 	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2349 	cpumask_set_cpu(cpu, &cpuhp_online_new);
2350 	blk_mq_queue_reinit_work();
2351 	return 0;
2352 }
2353 
2354 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2355 {
2356 	int i;
2357 
2358 	for (i = 0; i < set->nr_hw_queues; i++)
2359 		if (!__blk_mq_alloc_rq_map(set, i))
2360 			goto out_unwind;
2361 
2362 	return 0;
2363 
2364 out_unwind:
2365 	while (--i >= 0)
2366 		blk_mq_free_rq_map(set->tags[i]);
2367 
2368 	return -ENOMEM;
2369 }
2370 
2371 /*
2372  * Allocate the request maps associated with this tag_set. Note that this
2373  * may reduce the depth asked for, if memory is tight. set->queue_depth
2374  * will be updated to reflect the allocated depth.
2375  */
2376 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2377 {
2378 	unsigned int depth;
2379 	int err;
2380 
2381 	depth = set->queue_depth;
2382 	do {
2383 		err = __blk_mq_alloc_rq_maps(set);
2384 		if (!err)
2385 			break;
2386 
2387 		set->queue_depth >>= 1;
2388 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2389 			err = -ENOMEM;
2390 			break;
2391 		}
2392 	} while (set->queue_depth);
2393 
2394 	if (!set->queue_depth || err) {
2395 		pr_err("blk-mq: failed to allocate request map\n");
2396 		return -ENOMEM;
2397 	}
2398 
2399 	if (depth != set->queue_depth)
2400 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2401 						depth, set->queue_depth);
2402 
2403 	return 0;
2404 }
2405 
2406 /*
2407  * Alloc a tag set to be associated with one or more request queues.
2408  * May fail with EINVAL for various error conditions. May adjust the
2409  * requested depth down, if if it too large. In that case, the set
2410  * value will be stored in set->queue_depth.
2411  */
2412 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2413 {
2414 	int ret;
2415 
2416 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2417 
2418 	if (!set->nr_hw_queues)
2419 		return -EINVAL;
2420 	if (!set->queue_depth)
2421 		return -EINVAL;
2422 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2423 		return -EINVAL;
2424 
2425 	if (!set->ops->queue_rq)
2426 		return -EINVAL;
2427 
2428 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2429 		pr_info("blk-mq: reduced tag depth to %u\n",
2430 			BLK_MQ_MAX_DEPTH);
2431 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2432 	}
2433 
2434 	/*
2435 	 * If a crashdump is active, then we are potentially in a very
2436 	 * memory constrained environment. Limit us to 1 queue and
2437 	 * 64 tags to prevent using too much memory.
2438 	 */
2439 	if (is_kdump_kernel()) {
2440 		set->nr_hw_queues = 1;
2441 		set->queue_depth = min(64U, set->queue_depth);
2442 	}
2443 	/*
2444 	 * There is no use for more h/w queues than cpus.
2445 	 */
2446 	if (set->nr_hw_queues > nr_cpu_ids)
2447 		set->nr_hw_queues = nr_cpu_ids;
2448 
2449 	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2450 				 GFP_KERNEL, set->numa_node);
2451 	if (!set->tags)
2452 		return -ENOMEM;
2453 
2454 	ret = -ENOMEM;
2455 	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2456 			GFP_KERNEL, set->numa_node);
2457 	if (!set->mq_map)
2458 		goto out_free_tags;
2459 
2460 	if (set->ops->map_queues)
2461 		ret = set->ops->map_queues(set);
2462 	else
2463 		ret = blk_mq_map_queues(set);
2464 	if (ret)
2465 		goto out_free_mq_map;
2466 
2467 	ret = blk_mq_alloc_rq_maps(set);
2468 	if (ret)
2469 		goto out_free_mq_map;
2470 
2471 	mutex_init(&set->tag_list_lock);
2472 	INIT_LIST_HEAD(&set->tag_list);
2473 
2474 	return 0;
2475 
2476 out_free_mq_map:
2477 	kfree(set->mq_map);
2478 	set->mq_map = NULL;
2479 out_free_tags:
2480 	kfree(set->tags);
2481 	set->tags = NULL;
2482 	return ret;
2483 }
2484 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2485 
2486 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2487 {
2488 	int i;
2489 
2490 	for (i = 0; i < nr_cpu_ids; i++)
2491 		blk_mq_free_map_and_requests(set, i);
2492 
2493 	kfree(set->mq_map);
2494 	set->mq_map = NULL;
2495 
2496 	kfree(set->tags);
2497 	set->tags = NULL;
2498 }
2499 EXPORT_SYMBOL(blk_mq_free_tag_set);
2500 
2501 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2502 {
2503 	struct blk_mq_tag_set *set = q->tag_set;
2504 	struct blk_mq_hw_ctx *hctx;
2505 	int i, ret;
2506 
2507 	if (!set || nr > set->queue_depth)
2508 		return -EINVAL;
2509 
2510 	ret = 0;
2511 	queue_for_each_hw_ctx(q, hctx, i) {
2512 		if (!hctx->tags)
2513 			continue;
2514 		ret = blk_mq_tag_update_depth(hctx->tags, nr);
2515 		if (ret)
2516 			break;
2517 	}
2518 
2519 	if (!ret)
2520 		q->nr_requests = nr;
2521 
2522 	return ret;
2523 }
2524 
2525 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2526 {
2527 	struct request_queue *q;
2528 
2529 	if (nr_hw_queues > nr_cpu_ids)
2530 		nr_hw_queues = nr_cpu_ids;
2531 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2532 		return;
2533 
2534 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2535 		blk_mq_freeze_queue(q);
2536 
2537 	set->nr_hw_queues = nr_hw_queues;
2538 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2539 		blk_mq_realloc_hw_ctxs(set, q);
2540 
2541 		if (q->nr_hw_queues > 1)
2542 			blk_queue_make_request(q, blk_mq_make_request);
2543 		else
2544 			blk_queue_make_request(q, blk_sq_make_request);
2545 
2546 		blk_mq_queue_reinit(q, cpu_online_mask);
2547 	}
2548 
2549 	list_for_each_entry(q, &set->tag_list, tag_set_list)
2550 		blk_mq_unfreeze_queue(q);
2551 }
2552 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2553 
2554 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2555 				       struct blk_mq_hw_ctx *hctx,
2556 				       struct request *rq)
2557 {
2558 	struct blk_rq_stat stat[2];
2559 	unsigned long ret = 0;
2560 
2561 	/*
2562 	 * If stats collection isn't on, don't sleep but turn it on for
2563 	 * future users
2564 	 */
2565 	if (!blk_stat_enable(q))
2566 		return 0;
2567 
2568 	/*
2569 	 * We don't have to do this once per IO, should optimize this
2570 	 * to just use the current window of stats until it changes
2571 	 */
2572 	memset(&stat, 0, sizeof(stat));
2573 	blk_hctx_stat_get(hctx, stat);
2574 
2575 	/*
2576 	 * As an optimistic guess, use half of the mean service time
2577 	 * for this type of request. We can (and should) make this smarter.
2578 	 * For instance, if the completion latencies are tight, we can
2579 	 * get closer than just half the mean. This is especially
2580 	 * important on devices where the completion latencies are longer
2581 	 * than ~10 usec.
2582 	 */
2583 	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2584 		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2585 	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2586 		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2587 
2588 	return ret;
2589 }
2590 
2591 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2592 				     struct blk_mq_hw_ctx *hctx,
2593 				     struct request *rq)
2594 {
2595 	struct hrtimer_sleeper hs;
2596 	enum hrtimer_mode mode;
2597 	unsigned int nsecs;
2598 	ktime_t kt;
2599 
2600 	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2601 		return false;
2602 
2603 	/*
2604 	 * poll_nsec can be:
2605 	 *
2606 	 * -1:	don't ever hybrid sleep
2607 	 *  0:	use half of prev avg
2608 	 * >0:	use this specific value
2609 	 */
2610 	if (q->poll_nsec == -1)
2611 		return false;
2612 	else if (q->poll_nsec > 0)
2613 		nsecs = q->poll_nsec;
2614 	else
2615 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2616 
2617 	if (!nsecs)
2618 		return false;
2619 
2620 	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2621 
2622 	/*
2623 	 * This will be replaced with the stats tracking code, using
2624 	 * 'avg_completion_time / 2' as the pre-sleep target.
2625 	 */
2626 	kt = nsecs;
2627 
2628 	mode = HRTIMER_MODE_REL;
2629 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2630 	hrtimer_set_expires(&hs.timer, kt);
2631 
2632 	hrtimer_init_sleeper(&hs, current);
2633 	do {
2634 		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2635 			break;
2636 		set_current_state(TASK_UNINTERRUPTIBLE);
2637 		hrtimer_start_expires(&hs.timer, mode);
2638 		if (hs.task)
2639 			io_schedule();
2640 		hrtimer_cancel(&hs.timer);
2641 		mode = HRTIMER_MODE_ABS;
2642 	} while (hs.task && !signal_pending(current));
2643 
2644 	__set_current_state(TASK_RUNNING);
2645 	destroy_hrtimer_on_stack(&hs.timer);
2646 	return true;
2647 }
2648 
2649 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2650 {
2651 	struct request_queue *q = hctx->queue;
2652 	long state;
2653 
2654 	/*
2655 	 * If we sleep, have the caller restart the poll loop to reset
2656 	 * the state. Like for the other success return cases, the
2657 	 * caller is responsible for checking if the IO completed. If
2658 	 * the IO isn't complete, we'll get called again and will go
2659 	 * straight to the busy poll loop.
2660 	 */
2661 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2662 		return true;
2663 
2664 	hctx->poll_considered++;
2665 
2666 	state = current->state;
2667 	while (!need_resched()) {
2668 		int ret;
2669 
2670 		hctx->poll_invoked++;
2671 
2672 		ret = q->mq_ops->poll(hctx, rq->tag);
2673 		if (ret > 0) {
2674 			hctx->poll_success++;
2675 			set_current_state(TASK_RUNNING);
2676 			return true;
2677 		}
2678 
2679 		if (signal_pending_state(state, current))
2680 			set_current_state(TASK_RUNNING);
2681 
2682 		if (current->state == TASK_RUNNING)
2683 			return true;
2684 		if (ret < 0)
2685 			break;
2686 		cpu_relax();
2687 	}
2688 
2689 	return false;
2690 }
2691 
2692 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2693 {
2694 	struct blk_mq_hw_ctx *hctx;
2695 	struct blk_plug *plug;
2696 	struct request *rq;
2697 
2698 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2699 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2700 		return false;
2701 
2702 	plug = current->plug;
2703 	if (plug)
2704 		blk_flush_plug_list(plug, false);
2705 
2706 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2707 	rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2708 
2709 	return __blk_mq_poll(hctx, rq);
2710 }
2711 EXPORT_SYMBOL_GPL(blk_mq_poll);
2712 
2713 void blk_mq_disable_hotplug(void)
2714 {
2715 	mutex_lock(&all_q_mutex);
2716 }
2717 
2718 void blk_mq_enable_hotplug(void)
2719 {
2720 	mutex_unlock(&all_q_mutex);
2721 }
2722 
2723 static int __init blk_mq_init(void)
2724 {
2725 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2726 				blk_mq_hctx_notify_dead);
2727 
2728 	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2729 				  blk_mq_queue_reinit_prepare,
2730 				  blk_mq_queue_reinit_dead);
2731 	return 0;
2732 }
2733 subsys_initcall(blk_mq_init);
2734