xref: /linux/block/blk-mq.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	/*
478 	 * Try batched alloc if we want more than 1 tag.
479 	 */
480 	if (data->nr_tags > 1) {
481 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 		if (rq)
483 			return rq;
484 		data->nr_tags = 1;
485 	}
486 
487 	/*
488 	 * Waiting allocations only fail because of an inactive hctx.  In that
489 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 	 * should have migrated us to an online CPU by now.
491 	 */
492 	tag = blk_mq_get_tag(data);
493 	if (tag == BLK_MQ_NO_TAG) {
494 		if (data->flags & BLK_MQ_REQ_NOWAIT)
495 			return NULL;
496 		/*
497 		 * Give up the CPU and sleep for a random short time to
498 		 * ensure that thread using a realtime scheduling class
499 		 * are migrated off the CPU, and thus off the hctx that
500 		 * is going away.
501 		 */
502 		msleep(3);
503 		goto retry;
504 	}
505 
506 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 					alloc_time_ns);
508 }
509 
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511 		blk_mq_req_flags_t flags)
512 {
513 	struct blk_mq_alloc_data data = {
514 		.q		= q,
515 		.flags		= flags,
516 		.cmd_flags	= op,
517 		.nr_tags	= 1,
518 	};
519 	struct request *rq;
520 	int ret;
521 
522 	ret = blk_queue_enter(q, flags);
523 	if (ret)
524 		return ERR_PTR(ret);
525 
526 	rq = __blk_mq_alloc_requests(&data);
527 	if (!rq)
528 		goto out_queue_exit;
529 	rq->__data_len = 0;
530 	rq->__sector = (sector_t) -1;
531 	rq->bio = rq->biotail = NULL;
532 	return rq;
533 out_queue_exit:
534 	blk_queue_exit(q);
535 	return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538 
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542 	struct blk_mq_alloc_data data = {
543 		.q		= q,
544 		.flags		= flags,
545 		.cmd_flags	= op,
546 		.nr_tags	= 1,
547 	};
548 	u64 alloc_time_ns = 0;
549 	unsigned int cpu;
550 	unsigned int tag;
551 	int ret;
552 
553 	/* alloc_time includes depth and tag waits */
554 	if (blk_queue_rq_alloc_time(q))
555 		alloc_time_ns = ktime_get_ns();
556 
557 	/*
558 	 * If the tag allocator sleeps we could get an allocation for a
559 	 * different hardware context.  No need to complicate the low level
560 	 * allocator for this for the rare use case of a command tied to
561 	 * a specific queue.
562 	 */
563 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564 		return ERR_PTR(-EINVAL);
565 
566 	if (hctx_idx >= q->nr_hw_queues)
567 		return ERR_PTR(-EIO);
568 
569 	ret = blk_queue_enter(q, flags);
570 	if (ret)
571 		return ERR_PTR(ret);
572 
573 	/*
574 	 * Check if the hardware context is actually mapped to anything.
575 	 * If not tell the caller that it should skip this queue.
576 	 */
577 	ret = -EXDEV;
578 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
579 	if (!blk_mq_hw_queue_mapped(data.hctx))
580 		goto out_queue_exit;
581 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582 	if (cpu >= nr_cpu_ids)
583 		goto out_queue_exit;
584 	data.ctx = __blk_mq_get_ctx(q, cpu);
585 
586 	if (!q->elevator)
587 		blk_mq_tag_busy(data.hctx);
588 	else
589 		data.rq_flags |= RQF_ELV;
590 
591 	ret = -EWOULDBLOCK;
592 	tag = blk_mq_get_tag(&data);
593 	if (tag == BLK_MQ_NO_TAG)
594 		goto out_queue_exit;
595 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
596 					alloc_time_ns);
597 
598 out_queue_exit:
599 	blk_queue_exit(q);
600 	return ERR_PTR(ret);
601 }
602 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
603 
604 static void __blk_mq_free_request(struct request *rq)
605 {
606 	struct request_queue *q = rq->q;
607 	struct blk_mq_ctx *ctx = rq->mq_ctx;
608 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
609 	const int sched_tag = rq->internal_tag;
610 
611 	blk_crypto_free_request(rq);
612 	blk_pm_mark_last_busy(rq);
613 	rq->mq_hctx = NULL;
614 	if (rq->tag != BLK_MQ_NO_TAG)
615 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
616 	if (sched_tag != BLK_MQ_NO_TAG)
617 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
618 	blk_mq_sched_restart(hctx);
619 	blk_queue_exit(q);
620 }
621 
622 void blk_mq_free_request(struct request *rq)
623 {
624 	struct request_queue *q = rq->q;
625 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
626 
627 	if ((rq->rq_flags & RQF_ELVPRIV) &&
628 	    q->elevator->type->ops.finish_request)
629 		q->elevator->type->ops.finish_request(rq);
630 
631 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
632 		__blk_mq_dec_active_requests(hctx);
633 
634 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
635 		laptop_io_completion(q->disk->bdi);
636 
637 	rq_qos_done(q, rq);
638 
639 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
640 	if (req_ref_put_and_test(rq))
641 		__blk_mq_free_request(rq);
642 }
643 EXPORT_SYMBOL_GPL(blk_mq_free_request);
644 
645 void blk_mq_free_plug_rqs(struct blk_plug *plug)
646 {
647 	struct request *rq;
648 
649 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
650 		blk_mq_free_request(rq);
651 }
652 
653 void blk_dump_rq_flags(struct request *rq, char *msg)
654 {
655 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
656 		rq->q->disk ? rq->q->disk->disk_name : "?",
657 		(unsigned long long) rq->cmd_flags);
658 
659 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
660 	       (unsigned long long)blk_rq_pos(rq),
661 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
662 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
663 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
664 }
665 EXPORT_SYMBOL(blk_dump_rq_flags);
666 
667 static void req_bio_endio(struct request *rq, struct bio *bio,
668 			  unsigned int nbytes, blk_status_t error)
669 {
670 	if (unlikely(error)) {
671 		bio->bi_status = error;
672 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
673 		/*
674 		 * Partial zone append completions cannot be supported as the
675 		 * BIO fragments may end up not being written sequentially.
676 		 */
677 		if (bio->bi_iter.bi_size != nbytes)
678 			bio->bi_status = BLK_STS_IOERR;
679 		else
680 			bio->bi_iter.bi_sector = rq->__sector;
681 	}
682 
683 	bio_advance(bio, nbytes);
684 
685 	if (unlikely(rq->rq_flags & RQF_QUIET))
686 		bio_set_flag(bio, BIO_QUIET);
687 	/* don't actually finish bio if it's part of flush sequence */
688 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
689 		bio_endio(bio);
690 }
691 
692 static void blk_account_io_completion(struct request *req, unsigned int bytes)
693 {
694 	if (req->part && blk_do_io_stat(req)) {
695 		const int sgrp = op_stat_group(req_op(req));
696 
697 		part_stat_lock();
698 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
699 		part_stat_unlock();
700 	}
701 }
702 
703 static void blk_print_req_error(struct request *req, blk_status_t status)
704 {
705 	printk_ratelimited(KERN_ERR
706 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
707 		"phys_seg %u prio class %u\n",
708 		blk_status_to_str(status),
709 		req->q->disk ? req->q->disk->disk_name : "?",
710 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
711 		req->cmd_flags & ~REQ_OP_MASK,
712 		req->nr_phys_segments,
713 		IOPRIO_PRIO_CLASS(req->ioprio));
714 }
715 
716 /*
717  * Fully end IO on a request. Does not support partial completions, or
718  * errors.
719  */
720 static void blk_complete_request(struct request *req)
721 {
722 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
723 	int total_bytes = blk_rq_bytes(req);
724 	struct bio *bio = req->bio;
725 
726 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
727 
728 	if (!bio)
729 		return;
730 
731 #ifdef CONFIG_BLK_DEV_INTEGRITY
732 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
733 		req->q->integrity.profile->complete_fn(req, total_bytes);
734 #endif
735 
736 	blk_account_io_completion(req, total_bytes);
737 
738 	do {
739 		struct bio *next = bio->bi_next;
740 
741 		/* Completion has already been traced */
742 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
743 
744 		if (req_op(req) == REQ_OP_ZONE_APPEND)
745 			bio->bi_iter.bi_sector = req->__sector;
746 
747 		if (!is_flush)
748 			bio_endio(bio);
749 		bio = next;
750 	} while (bio);
751 
752 	/*
753 	 * Reset counters so that the request stacking driver
754 	 * can find how many bytes remain in the request
755 	 * later.
756 	 */
757 	req->bio = NULL;
758 	req->__data_len = 0;
759 }
760 
761 /**
762  * blk_update_request - Complete multiple bytes without completing the request
763  * @req:      the request being processed
764  * @error:    block status code
765  * @nr_bytes: number of bytes to complete for @req
766  *
767  * Description:
768  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
769  *     the request structure even if @req doesn't have leftover.
770  *     If @req has leftover, sets it up for the next range of segments.
771  *
772  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
773  *     %false return from this function.
774  *
775  * Note:
776  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
777  *      except in the consistency check at the end of this function.
778  *
779  * Return:
780  *     %false - this request doesn't have any more data
781  *     %true  - this request has more data
782  **/
783 bool blk_update_request(struct request *req, blk_status_t error,
784 		unsigned int nr_bytes)
785 {
786 	int total_bytes;
787 
788 	trace_block_rq_complete(req, error, nr_bytes);
789 
790 	if (!req->bio)
791 		return false;
792 
793 #ifdef CONFIG_BLK_DEV_INTEGRITY
794 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
795 	    error == BLK_STS_OK)
796 		req->q->integrity.profile->complete_fn(req, nr_bytes);
797 #endif
798 
799 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
800 		     !(req->rq_flags & RQF_QUIET)) &&
801 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
802 		blk_print_req_error(req, error);
803 		trace_block_rq_error(req, error, nr_bytes);
804 	}
805 
806 	blk_account_io_completion(req, nr_bytes);
807 
808 	total_bytes = 0;
809 	while (req->bio) {
810 		struct bio *bio = req->bio;
811 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
812 
813 		if (bio_bytes == bio->bi_iter.bi_size)
814 			req->bio = bio->bi_next;
815 
816 		/* Completion has already been traced */
817 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818 		req_bio_endio(req, bio, bio_bytes, error);
819 
820 		total_bytes += bio_bytes;
821 		nr_bytes -= bio_bytes;
822 
823 		if (!nr_bytes)
824 			break;
825 	}
826 
827 	/*
828 	 * completely done
829 	 */
830 	if (!req->bio) {
831 		/*
832 		 * Reset counters so that the request stacking driver
833 		 * can find how many bytes remain in the request
834 		 * later.
835 		 */
836 		req->__data_len = 0;
837 		return false;
838 	}
839 
840 	req->__data_len -= total_bytes;
841 
842 	/* update sector only for requests with clear definition of sector */
843 	if (!blk_rq_is_passthrough(req))
844 		req->__sector += total_bytes >> 9;
845 
846 	/* mixed attributes always follow the first bio */
847 	if (req->rq_flags & RQF_MIXED_MERGE) {
848 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
849 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
850 	}
851 
852 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
853 		/*
854 		 * If total number of sectors is less than the first segment
855 		 * size, something has gone terribly wrong.
856 		 */
857 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
858 			blk_dump_rq_flags(req, "request botched");
859 			req->__data_len = blk_rq_cur_bytes(req);
860 		}
861 
862 		/* recalculate the number of segments */
863 		req->nr_phys_segments = blk_recalc_rq_segments(req);
864 	}
865 
866 	return true;
867 }
868 EXPORT_SYMBOL_GPL(blk_update_request);
869 
870 static void __blk_account_io_done(struct request *req, u64 now)
871 {
872 	const int sgrp = op_stat_group(req_op(req));
873 
874 	part_stat_lock();
875 	update_io_ticks(req->part, jiffies, true);
876 	part_stat_inc(req->part, ios[sgrp]);
877 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
878 	part_stat_unlock();
879 }
880 
881 static inline void blk_account_io_done(struct request *req, u64 now)
882 {
883 	/*
884 	 * Account IO completion.  flush_rq isn't accounted as a
885 	 * normal IO on queueing nor completion.  Accounting the
886 	 * containing request is enough.
887 	 */
888 	if (blk_do_io_stat(req) && req->part &&
889 	    !(req->rq_flags & RQF_FLUSH_SEQ))
890 		__blk_account_io_done(req, now);
891 }
892 
893 static void __blk_account_io_start(struct request *rq)
894 {
895 	/*
896 	 * All non-passthrough requests are created from a bio with one
897 	 * exception: when a flush command that is part of a flush sequence
898 	 * generated by the state machine in blk-flush.c is cloned onto the
899 	 * lower device by dm-multipath we can get here without a bio.
900 	 */
901 	if (rq->bio)
902 		rq->part = rq->bio->bi_bdev;
903 	else
904 		rq->part = rq->q->disk->part0;
905 
906 	part_stat_lock();
907 	update_io_ticks(rq->part, jiffies, false);
908 	part_stat_unlock();
909 }
910 
911 static inline void blk_account_io_start(struct request *req)
912 {
913 	if (blk_do_io_stat(req))
914 		__blk_account_io_start(req);
915 }
916 
917 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
918 {
919 	if (rq->rq_flags & RQF_STATS) {
920 		blk_mq_poll_stats_start(rq->q);
921 		blk_stat_add(rq, now);
922 	}
923 
924 	blk_mq_sched_completed_request(rq, now);
925 	blk_account_io_done(rq, now);
926 }
927 
928 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
929 {
930 	if (blk_mq_need_time_stamp(rq))
931 		__blk_mq_end_request_acct(rq, ktime_get_ns());
932 
933 	if (rq->end_io) {
934 		rq_qos_done(rq->q, rq);
935 		rq->end_io(rq, error);
936 	} else {
937 		blk_mq_free_request(rq);
938 	}
939 }
940 EXPORT_SYMBOL(__blk_mq_end_request);
941 
942 void blk_mq_end_request(struct request *rq, blk_status_t error)
943 {
944 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
945 		BUG();
946 	__blk_mq_end_request(rq, error);
947 }
948 EXPORT_SYMBOL(blk_mq_end_request);
949 
950 #define TAG_COMP_BATCH		32
951 
952 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
953 					  int *tag_array, int nr_tags)
954 {
955 	struct request_queue *q = hctx->queue;
956 
957 	/*
958 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
959 	 * update hctx->nr_active in batch
960 	 */
961 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
962 		__blk_mq_sub_active_requests(hctx, nr_tags);
963 
964 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
965 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
966 }
967 
968 void blk_mq_end_request_batch(struct io_comp_batch *iob)
969 {
970 	int tags[TAG_COMP_BATCH], nr_tags = 0;
971 	struct blk_mq_hw_ctx *cur_hctx = NULL;
972 	struct request *rq;
973 	u64 now = 0;
974 
975 	if (iob->need_ts)
976 		now = ktime_get_ns();
977 
978 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
979 		prefetch(rq->bio);
980 		prefetch(rq->rq_next);
981 
982 		blk_complete_request(rq);
983 		if (iob->need_ts)
984 			__blk_mq_end_request_acct(rq, now);
985 
986 		rq_qos_done(rq->q, rq);
987 
988 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
989 		if (!req_ref_put_and_test(rq))
990 			continue;
991 
992 		blk_crypto_free_request(rq);
993 		blk_pm_mark_last_busy(rq);
994 
995 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
996 			if (cur_hctx)
997 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
998 			nr_tags = 0;
999 			cur_hctx = rq->mq_hctx;
1000 		}
1001 		tags[nr_tags++] = rq->tag;
1002 	}
1003 
1004 	if (nr_tags)
1005 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1008 
1009 static void blk_complete_reqs(struct llist_head *list)
1010 {
1011 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1012 	struct request *rq, *next;
1013 
1014 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1015 		rq->q->mq_ops->complete(rq);
1016 }
1017 
1018 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1019 {
1020 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1021 }
1022 
1023 static int blk_softirq_cpu_dead(unsigned int cpu)
1024 {
1025 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1026 	return 0;
1027 }
1028 
1029 static void __blk_mq_complete_request_remote(void *data)
1030 {
1031 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1032 }
1033 
1034 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1035 {
1036 	int cpu = raw_smp_processor_id();
1037 
1038 	if (!IS_ENABLED(CONFIG_SMP) ||
1039 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1040 		return false;
1041 	/*
1042 	 * With force threaded interrupts enabled, raising softirq from an SMP
1043 	 * function call will always result in waking the ksoftirqd thread.
1044 	 * This is probably worse than completing the request on a different
1045 	 * cache domain.
1046 	 */
1047 	if (force_irqthreads())
1048 		return false;
1049 
1050 	/* same CPU or cache domain?  Complete locally */
1051 	if (cpu == rq->mq_ctx->cpu ||
1052 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1053 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1054 		return false;
1055 
1056 	/* don't try to IPI to an offline CPU */
1057 	return cpu_online(rq->mq_ctx->cpu);
1058 }
1059 
1060 static void blk_mq_complete_send_ipi(struct request *rq)
1061 {
1062 	struct llist_head *list;
1063 	unsigned int cpu;
1064 
1065 	cpu = rq->mq_ctx->cpu;
1066 	list = &per_cpu(blk_cpu_done, cpu);
1067 	if (llist_add(&rq->ipi_list, list)) {
1068 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1069 		smp_call_function_single_async(cpu, &rq->csd);
1070 	}
1071 }
1072 
1073 static void blk_mq_raise_softirq(struct request *rq)
1074 {
1075 	struct llist_head *list;
1076 
1077 	preempt_disable();
1078 	list = this_cpu_ptr(&blk_cpu_done);
1079 	if (llist_add(&rq->ipi_list, list))
1080 		raise_softirq(BLOCK_SOFTIRQ);
1081 	preempt_enable();
1082 }
1083 
1084 bool blk_mq_complete_request_remote(struct request *rq)
1085 {
1086 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1087 
1088 	/*
1089 	 * For a polled request, always complete locally, it's pointless
1090 	 * to redirect the completion.
1091 	 */
1092 	if (rq->cmd_flags & REQ_POLLED)
1093 		return false;
1094 
1095 	if (blk_mq_complete_need_ipi(rq)) {
1096 		blk_mq_complete_send_ipi(rq);
1097 		return true;
1098 	}
1099 
1100 	if (rq->q->nr_hw_queues == 1) {
1101 		blk_mq_raise_softirq(rq);
1102 		return true;
1103 	}
1104 	return false;
1105 }
1106 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1107 
1108 /**
1109  * blk_mq_complete_request - end I/O on a request
1110  * @rq:		the request being processed
1111  *
1112  * Description:
1113  *	Complete a request by scheduling the ->complete_rq operation.
1114  **/
1115 void blk_mq_complete_request(struct request *rq)
1116 {
1117 	if (!blk_mq_complete_request_remote(rq))
1118 		rq->q->mq_ops->complete(rq);
1119 }
1120 EXPORT_SYMBOL(blk_mq_complete_request);
1121 
1122 /**
1123  * blk_mq_start_request - Start processing a request
1124  * @rq: Pointer to request to be started
1125  *
1126  * Function used by device drivers to notify the block layer that a request
1127  * is going to be processed now, so blk layer can do proper initializations
1128  * such as starting the timeout timer.
1129  */
1130 void blk_mq_start_request(struct request *rq)
1131 {
1132 	struct request_queue *q = rq->q;
1133 
1134 	trace_block_rq_issue(rq);
1135 
1136 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1137 		rq->io_start_time_ns = ktime_get_ns();
1138 		rq->stats_sectors = blk_rq_sectors(rq);
1139 		rq->rq_flags |= RQF_STATS;
1140 		rq_qos_issue(q, rq);
1141 	}
1142 
1143 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1144 
1145 	blk_add_timer(rq);
1146 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1147 
1148 #ifdef CONFIG_BLK_DEV_INTEGRITY
1149 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1150 		q->integrity.profile->prepare_fn(rq);
1151 #endif
1152 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1153 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1154 }
1155 EXPORT_SYMBOL(blk_mq_start_request);
1156 
1157 /*
1158  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1159  * queues. This is important for md arrays to benefit from merging
1160  * requests.
1161  */
1162 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1163 {
1164 	if (plug->multiple_queues)
1165 		return BLK_MAX_REQUEST_COUNT * 2;
1166 	return BLK_MAX_REQUEST_COUNT;
1167 }
1168 
1169 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1170 {
1171 	struct request *last = rq_list_peek(&plug->mq_list);
1172 
1173 	if (!plug->rq_count) {
1174 		trace_block_plug(rq->q);
1175 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1176 		   (!blk_queue_nomerges(rq->q) &&
1177 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1178 		blk_mq_flush_plug_list(plug, false);
1179 		trace_block_plug(rq->q);
1180 	}
1181 
1182 	if (!plug->multiple_queues && last && last->q != rq->q)
1183 		plug->multiple_queues = true;
1184 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1185 		plug->has_elevator = true;
1186 	rq->rq_next = NULL;
1187 	rq_list_add(&plug->mq_list, rq);
1188 	plug->rq_count++;
1189 }
1190 
1191 /**
1192  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1193  * @rq:		request to insert
1194  * @at_head:    insert request at head or tail of queue
1195  *
1196  * Description:
1197  *    Insert a fully prepared request at the back of the I/O scheduler queue
1198  *    for execution.  Don't wait for completion.
1199  *
1200  * Note:
1201  *    This function will invoke @done directly if the queue is dead.
1202  */
1203 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1204 {
1205 	WARN_ON(irqs_disabled());
1206 	WARN_ON(!blk_rq_is_passthrough(rq));
1207 
1208 	blk_account_io_start(rq);
1209 	if (current->plug)
1210 		blk_add_rq_to_plug(current->plug, rq);
1211 	else
1212 		blk_mq_sched_insert_request(rq, at_head, true, false);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1215 
1216 struct blk_rq_wait {
1217 	struct completion done;
1218 	blk_status_t ret;
1219 };
1220 
1221 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1222 {
1223 	struct blk_rq_wait *wait = rq->end_io_data;
1224 
1225 	wait->ret = ret;
1226 	complete(&wait->done);
1227 }
1228 
1229 static bool blk_rq_is_poll(struct request *rq)
1230 {
1231 	if (!rq->mq_hctx)
1232 		return false;
1233 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1234 		return false;
1235 	if (WARN_ON_ONCE(!rq->bio))
1236 		return false;
1237 	return true;
1238 }
1239 
1240 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1241 {
1242 	do {
1243 		bio_poll(rq->bio, NULL, 0);
1244 		cond_resched();
1245 	} while (!completion_done(wait));
1246 }
1247 
1248 /**
1249  * blk_execute_rq - insert a request into queue for execution
1250  * @rq:		request to insert
1251  * @at_head:    insert request at head or tail of queue
1252  *
1253  * Description:
1254  *    Insert a fully prepared request at the back of the I/O scheduler queue
1255  *    for execution and wait for completion.
1256  * Return: The blk_status_t result provided to blk_mq_end_request().
1257  */
1258 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1259 {
1260 	struct blk_rq_wait wait = {
1261 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1262 	};
1263 
1264 	WARN_ON(irqs_disabled());
1265 	WARN_ON(!blk_rq_is_passthrough(rq));
1266 
1267 	rq->end_io_data = &wait;
1268 	rq->end_io = blk_end_sync_rq;
1269 
1270 	blk_account_io_start(rq);
1271 	blk_mq_sched_insert_request(rq, at_head, true, false);
1272 
1273 	if (blk_rq_is_poll(rq)) {
1274 		blk_rq_poll_completion(rq, &wait.done);
1275 	} else {
1276 		/*
1277 		 * Prevent hang_check timer from firing at us during very long
1278 		 * I/O
1279 		 */
1280 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1281 
1282 		if (hang_check)
1283 			while (!wait_for_completion_io_timeout(&wait.done,
1284 					hang_check * (HZ/2)))
1285 				;
1286 		else
1287 			wait_for_completion_io(&wait.done);
1288 	}
1289 
1290 	return wait.ret;
1291 }
1292 EXPORT_SYMBOL(blk_execute_rq);
1293 
1294 static void __blk_mq_requeue_request(struct request *rq)
1295 {
1296 	struct request_queue *q = rq->q;
1297 
1298 	blk_mq_put_driver_tag(rq);
1299 
1300 	trace_block_rq_requeue(rq);
1301 	rq_qos_requeue(q, rq);
1302 
1303 	if (blk_mq_request_started(rq)) {
1304 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1305 		rq->rq_flags &= ~RQF_TIMED_OUT;
1306 	}
1307 }
1308 
1309 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1310 {
1311 	__blk_mq_requeue_request(rq);
1312 
1313 	/* this request will be re-inserted to io scheduler queue */
1314 	blk_mq_sched_requeue_request(rq);
1315 
1316 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1317 }
1318 EXPORT_SYMBOL(blk_mq_requeue_request);
1319 
1320 static void blk_mq_requeue_work(struct work_struct *work)
1321 {
1322 	struct request_queue *q =
1323 		container_of(work, struct request_queue, requeue_work.work);
1324 	LIST_HEAD(rq_list);
1325 	struct request *rq, *next;
1326 
1327 	spin_lock_irq(&q->requeue_lock);
1328 	list_splice_init(&q->requeue_list, &rq_list);
1329 	spin_unlock_irq(&q->requeue_lock);
1330 
1331 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1332 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1333 			continue;
1334 
1335 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1336 		list_del_init(&rq->queuelist);
1337 		/*
1338 		 * If RQF_DONTPREP, rq has contained some driver specific
1339 		 * data, so insert it to hctx dispatch list to avoid any
1340 		 * merge.
1341 		 */
1342 		if (rq->rq_flags & RQF_DONTPREP)
1343 			blk_mq_request_bypass_insert(rq, false, false);
1344 		else
1345 			blk_mq_sched_insert_request(rq, true, false, false);
1346 	}
1347 
1348 	while (!list_empty(&rq_list)) {
1349 		rq = list_entry(rq_list.next, struct request, queuelist);
1350 		list_del_init(&rq->queuelist);
1351 		blk_mq_sched_insert_request(rq, false, false, false);
1352 	}
1353 
1354 	blk_mq_run_hw_queues(q, false);
1355 }
1356 
1357 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1358 				bool kick_requeue_list)
1359 {
1360 	struct request_queue *q = rq->q;
1361 	unsigned long flags;
1362 
1363 	/*
1364 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1365 	 * request head insertion from the workqueue.
1366 	 */
1367 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1368 
1369 	spin_lock_irqsave(&q->requeue_lock, flags);
1370 	if (at_head) {
1371 		rq->rq_flags |= RQF_SOFTBARRIER;
1372 		list_add(&rq->queuelist, &q->requeue_list);
1373 	} else {
1374 		list_add_tail(&rq->queuelist, &q->requeue_list);
1375 	}
1376 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1377 
1378 	if (kick_requeue_list)
1379 		blk_mq_kick_requeue_list(q);
1380 }
1381 
1382 void blk_mq_kick_requeue_list(struct request_queue *q)
1383 {
1384 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1385 }
1386 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1387 
1388 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1389 				    unsigned long msecs)
1390 {
1391 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1392 				    msecs_to_jiffies(msecs));
1393 }
1394 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1395 
1396 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1397 			       bool reserved)
1398 {
1399 	/*
1400 	 * If we find a request that isn't idle we know the queue is busy
1401 	 * as it's checked in the iter.
1402 	 * Return false to stop the iteration.
1403 	 */
1404 	if (blk_mq_request_started(rq)) {
1405 		bool *busy = priv;
1406 
1407 		*busy = true;
1408 		return false;
1409 	}
1410 
1411 	return true;
1412 }
1413 
1414 bool blk_mq_queue_inflight(struct request_queue *q)
1415 {
1416 	bool busy = false;
1417 
1418 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1419 	return busy;
1420 }
1421 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1422 
1423 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1424 {
1425 	req->rq_flags |= RQF_TIMED_OUT;
1426 	if (req->q->mq_ops->timeout) {
1427 		enum blk_eh_timer_return ret;
1428 
1429 		ret = req->q->mq_ops->timeout(req, reserved);
1430 		if (ret == BLK_EH_DONE)
1431 			return;
1432 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1433 	}
1434 
1435 	blk_add_timer(req);
1436 }
1437 
1438 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1439 {
1440 	unsigned long deadline;
1441 
1442 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1443 		return false;
1444 	if (rq->rq_flags & RQF_TIMED_OUT)
1445 		return false;
1446 
1447 	deadline = READ_ONCE(rq->deadline);
1448 	if (time_after_eq(jiffies, deadline))
1449 		return true;
1450 
1451 	if (*next == 0)
1452 		*next = deadline;
1453 	else if (time_after(*next, deadline))
1454 		*next = deadline;
1455 	return false;
1456 }
1457 
1458 void blk_mq_put_rq_ref(struct request *rq)
1459 {
1460 	if (is_flush_rq(rq))
1461 		rq->end_io(rq, 0);
1462 	else if (req_ref_put_and_test(rq))
1463 		__blk_mq_free_request(rq);
1464 }
1465 
1466 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1467 {
1468 	unsigned long *next = priv;
1469 
1470 	/*
1471 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1472 	 * be reallocated underneath the timeout handler's processing, then
1473 	 * the expire check is reliable. If the request is not expired, then
1474 	 * it was completed and reallocated as a new request after returning
1475 	 * from blk_mq_check_expired().
1476 	 */
1477 	if (blk_mq_req_expired(rq, next))
1478 		blk_mq_rq_timed_out(rq, reserved);
1479 	return true;
1480 }
1481 
1482 static void blk_mq_timeout_work(struct work_struct *work)
1483 {
1484 	struct request_queue *q =
1485 		container_of(work, struct request_queue, timeout_work);
1486 	unsigned long next = 0;
1487 	struct blk_mq_hw_ctx *hctx;
1488 	unsigned long i;
1489 
1490 	/* A deadlock might occur if a request is stuck requiring a
1491 	 * timeout at the same time a queue freeze is waiting
1492 	 * completion, since the timeout code would not be able to
1493 	 * acquire the queue reference here.
1494 	 *
1495 	 * That's why we don't use blk_queue_enter here; instead, we use
1496 	 * percpu_ref_tryget directly, because we need to be able to
1497 	 * obtain a reference even in the short window between the queue
1498 	 * starting to freeze, by dropping the first reference in
1499 	 * blk_freeze_queue_start, and the moment the last request is
1500 	 * consumed, marked by the instant q_usage_counter reaches
1501 	 * zero.
1502 	 */
1503 	if (!percpu_ref_tryget(&q->q_usage_counter))
1504 		return;
1505 
1506 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1507 
1508 	if (next != 0) {
1509 		mod_timer(&q->timeout, next);
1510 	} else {
1511 		/*
1512 		 * Request timeouts are handled as a forward rolling timer. If
1513 		 * we end up here it means that no requests are pending and
1514 		 * also that no request has been pending for a while. Mark
1515 		 * each hctx as idle.
1516 		 */
1517 		queue_for_each_hw_ctx(q, hctx, i) {
1518 			/* the hctx may be unmapped, so check it here */
1519 			if (blk_mq_hw_queue_mapped(hctx))
1520 				blk_mq_tag_idle(hctx);
1521 		}
1522 	}
1523 	blk_queue_exit(q);
1524 }
1525 
1526 struct flush_busy_ctx_data {
1527 	struct blk_mq_hw_ctx *hctx;
1528 	struct list_head *list;
1529 };
1530 
1531 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1532 {
1533 	struct flush_busy_ctx_data *flush_data = data;
1534 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1535 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1536 	enum hctx_type type = hctx->type;
1537 
1538 	spin_lock(&ctx->lock);
1539 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1540 	sbitmap_clear_bit(sb, bitnr);
1541 	spin_unlock(&ctx->lock);
1542 	return true;
1543 }
1544 
1545 /*
1546  * Process software queues that have been marked busy, splicing them
1547  * to the for-dispatch
1548  */
1549 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1550 {
1551 	struct flush_busy_ctx_data data = {
1552 		.hctx = hctx,
1553 		.list = list,
1554 	};
1555 
1556 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1557 }
1558 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1559 
1560 struct dispatch_rq_data {
1561 	struct blk_mq_hw_ctx *hctx;
1562 	struct request *rq;
1563 };
1564 
1565 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1566 		void *data)
1567 {
1568 	struct dispatch_rq_data *dispatch_data = data;
1569 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1570 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1571 	enum hctx_type type = hctx->type;
1572 
1573 	spin_lock(&ctx->lock);
1574 	if (!list_empty(&ctx->rq_lists[type])) {
1575 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1576 		list_del_init(&dispatch_data->rq->queuelist);
1577 		if (list_empty(&ctx->rq_lists[type]))
1578 			sbitmap_clear_bit(sb, bitnr);
1579 	}
1580 	spin_unlock(&ctx->lock);
1581 
1582 	return !dispatch_data->rq;
1583 }
1584 
1585 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1586 					struct blk_mq_ctx *start)
1587 {
1588 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1589 	struct dispatch_rq_data data = {
1590 		.hctx = hctx,
1591 		.rq   = NULL,
1592 	};
1593 
1594 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1595 			       dispatch_rq_from_ctx, &data);
1596 
1597 	return data.rq;
1598 }
1599 
1600 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1601 {
1602 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1603 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1604 	int tag;
1605 
1606 	blk_mq_tag_busy(rq->mq_hctx);
1607 
1608 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1609 		bt = &rq->mq_hctx->tags->breserved_tags;
1610 		tag_offset = 0;
1611 	} else {
1612 		if (!hctx_may_queue(rq->mq_hctx, bt))
1613 			return false;
1614 	}
1615 
1616 	tag = __sbitmap_queue_get(bt);
1617 	if (tag == BLK_MQ_NO_TAG)
1618 		return false;
1619 
1620 	rq->tag = tag + tag_offset;
1621 	return true;
1622 }
1623 
1624 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1625 {
1626 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1627 		return false;
1628 
1629 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1630 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1631 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1632 		__blk_mq_inc_active_requests(hctx);
1633 	}
1634 	hctx->tags->rqs[rq->tag] = rq;
1635 	return true;
1636 }
1637 
1638 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1639 				int flags, void *key)
1640 {
1641 	struct blk_mq_hw_ctx *hctx;
1642 
1643 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1644 
1645 	spin_lock(&hctx->dispatch_wait_lock);
1646 	if (!list_empty(&wait->entry)) {
1647 		struct sbitmap_queue *sbq;
1648 
1649 		list_del_init(&wait->entry);
1650 		sbq = &hctx->tags->bitmap_tags;
1651 		atomic_dec(&sbq->ws_active);
1652 	}
1653 	spin_unlock(&hctx->dispatch_wait_lock);
1654 
1655 	blk_mq_run_hw_queue(hctx, true);
1656 	return 1;
1657 }
1658 
1659 /*
1660  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1661  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1662  * restart. For both cases, take care to check the condition again after
1663  * marking us as waiting.
1664  */
1665 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1666 				 struct request *rq)
1667 {
1668 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1669 	struct wait_queue_head *wq;
1670 	wait_queue_entry_t *wait;
1671 	bool ret;
1672 
1673 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1674 		blk_mq_sched_mark_restart_hctx(hctx);
1675 
1676 		/*
1677 		 * It's possible that a tag was freed in the window between the
1678 		 * allocation failure and adding the hardware queue to the wait
1679 		 * queue.
1680 		 *
1681 		 * Don't clear RESTART here, someone else could have set it.
1682 		 * At most this will cost an extra queue run.
1683 		 */
1684 		return blk_mq_get_driver_tag(rq);
1685 	}
1686 
1687 	wait = &hctx->dispatch_wait;
1688 	if (!list_empty_careful(&wait->entry))
1689 		return false;
1690 
1691 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1692 
1693 	spin_lock_irq(&wq->lock);
1694 	spin_lock(&hctx->dispatch_wait_lock);
1695 	if (!list_empty(&wait->entry)) {
1696 		spin_unlock(&hctx->dispatch_wait_lock);
1697 		spin_unlock_irq(&wq->lock);
1698 		return false;
1699 	}
1700 
1701 	atomic_inc(&sbq->ws_active);
1702 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1703 	__add_wait_queue(wq, wait);
1704 
1705 	/*
1706 	 * It's possible that a tag was freed in the window between the
1707 	 * allocation failure and adding the hardware queue to the wait
1708 	 * queue.
1709 	 */
1710 	ret = blk_mq_get_driver_tag(rq);
1711 	if (!ret) {
1712 		spin_unlock(&hctx->dispatch_wait_lock);
1713 		spin_unlock_irq(&wq->lock);
1714 		return false;
1715 	}
1716 
1717 	/*
1718 	 * We got a tag, remove ourselves from the wait queue to ensure
1719 	 * someone else gets the wakeup.
1720 	 */
1721 	list_del_init(&wait->entry);
1722 	atomic_dec(&sbq->ws_active);
1723 	spin_unlock(&hctx->dispatch_wait_lock);
1724 	spin_unlock_irq(&wq->lock);
1725 
1726 	return true;
1727 }
1728 
1729 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1730 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1731 /*
1732  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1733  * - EWMA is one simple way to compute running average value
1734  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1735  * - take 4 as factor for avoiding to get too small(0) result, and this
1736  *   factor doesn't matter because EWMA decreases exponentially
1737  */
1738 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1739 {
1740 	unsigned int ewma;
1741 
1742 	ewma = hctx->dispatch_busy;
1743 
1744 	if (!ewma && !busy)
1745 		return;
1746 
1747 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1748 	if (busy)
1749 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1750 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1751 
1752 	hctx->dispatch_busy = ewma;
1753 }
1754 
1755 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1756 
1757 static void blk_mq_handle_dev_resource(struct request *rq,
1758 				       struct list_head *list)
1759 {
1760 	struct request *next =
1761 		list_first_entry_or_null(list, struct request, queuelist);
1762 
1763 	/*
1764 	 * If an I/O scheduler has been configured and we got a driver tag for
1765 	 * the next request already, free it.
1766 	 */
1767 	if (next)
1768 		blk_mq_put_driver_tag(next);
1769 
1770 	list_add(&rq->queuelist, list);
1771 	__blk_mq_requeue_request(rq);
1772 }
1773 
1774 static void blk_mq_handle_zone_resource(struct request *rq,
1775 					struct list_head *zone_list)
1776 {
1777 	/*
1778 	 * If we end up here it is because we cannot dispatch a request to a
1779 	 * specific zone due to LLD level zone-write locking or other zone
1780 	 * related resource not being available. In this case, set the request
1781 	 * aside in zone_list for retrying it later.
1782 	 */
1783 	list_add(&rq->queuelist, zone_list);
1784 	__blk_mq_requeue_request(rq);
1785 }
1786 
1787 enum prep_dispatch {
1788 	PREP_DISPATCH_OK,
1789 	PREP_DISPATCH_NO_TAG,
1790 	PREP_DISPATCH_NO_BUDGET,
1791 };
1792 
1793 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1794 						  bool need_budget)
1795 {
1796 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1797 	int budget_token = -1;
1798 
1799 	if (need_budget) {
1800 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1801 		if (budget_token < 0) {
1802 			blk_mq_put_driver_tag(rq);
1803 			return PREP_DISPATCH_NO_BUDGET;
1804 		}
1805 		blk_mq_set_rq_budget_token(rq, budget_token);
1806 	}
1807 
1808 	if (!blk_mq_get_driver_tag(rq)) {
1809 		/*
1810 		 * The initial allocation attempt failed, so we need to
1811 		 * rerun the hardware queue when a tag is freed. The
1812 		 * waitqueue takes care of that. If the queue is run
1813 		 * before we add this entry back on the dispatch list,
1814 		 * we'll re-run it below.
1815 		 */
1816 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1817 			/*
1818 			 * All budgets not got from this function will be put
1819 			 * together during handling partial dispatch
1820 			 */
1821 			if (need_budget)
1822 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1823 			return PREP_DISPATCH_NO_TAG;
1824 		}
1825 	}
1826 
1827 	return PREP_DISPATCH_OK;
1828 }
1829 
1830 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1831 static void blk_mq_release_budgets(struct request_queue *q,
1832 		struct list_head *list)
1833 {
1834 	struct request *rq;
1835 
1836 	list_for_each_entry(rq, list, queuelist) {
1837 		int budget_token = blk_mq_get_rq_budget_token(rq);
1838 
1839 		if (budget_token >= 0)
1840 			blk_mq_put_dispatch_budget(q, budget_token);
1841 	}
1842 }
1843 
1844 /*
1845  * Returns true if we did some work AND can potentially do more.
1846  */
1847 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1848 			     unsigned int nr_budgets)
1849 {
1850 	enum prep_dispatch prep;
1851 	struct request_queue *q = hctx->queue;
1852 	struct request *rq, *nxt;
1853 	int errors, queued;
1854 	blk_status_t ret = BLK_STS_OK;
1855 	LIST_HEAD(zone_list);
1856 	bool needs_resource = false;
1857 
1858 	if (list_empty(list))
1859 		return false;
1860 
1861 	/*
1862 	 * Now process all the entries, sending them to the driver.
1863 	 */
1864 	errors = queued = 0;
1865 	do {
1866 		struct blk_mq_queue_data bd;
1867 
1868 		rq = list_first_entry(list, struct request, queuelist);
1869 
1870 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1871 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1872 		if (prep != PREP_DISPATCH_OK)
1873 			break;
1874 
1875 		list_del_init(&rq->queuelist);
1876 
1877 		bd.rq = rq;
1878 
1879 		/*
1880 		 * Flag last if we have no more requests, or if we have more
1881 		 * but can't assign a driver tag to it.
1882 		 */
1883 		if (list_empty(list))
1884 			bd.last = true;
1885 		else {
1886 			nxt = list_first_entry(list, struct request, queuelist);
1887 			bd.last = !blk_mq_get_driver_tag(nxt);
1888 		}
1889 
1890 		/*
1891 		 * once the request is queued to lld, no need to cover the
1892 		 * budget any more
1893 		 */
1894 		if (nr_budgets)
1895 			nr_budgets--;
1896 		ret = q->mq_ops->queue_rq(hctx, &bd);
1897 		switch (ret) {
1898 		case BLK_STS_OK:
1899 			queued++;
1900 			break;
1901 		case BLK_STS_RESOURCE:
1902 			needs_resource = true;
1903 			fallthrough;
1904 		case BLK_STS_DEV_RESOURCE:
1905 			blk_mq_handle_dev_resource(rq, list);
1906 			goto out;
1907 		case BLK_STS_ZONE_RESOURCE:
1908 			/*
1909 			 * Move the request to zone_list and keep going through
1910 			 * the dispatch list to find more requests the drive can
1911 			 * accept.
1912 			 */
1913 			blk_mq_handle_zone_resource(rq, &zone_list);
1914 			needs_resource = true;
1915 			break;
1916 		default:
1917 			errors++;
1918 			blk_mq_end_request(rq, ret);
1919 		}
1920 	} while (!list_empty(list));
1921 out:
1922 	if (!list_empty(&zone_list))
1923 		list_splice_tail_init(&zone_list, list);
1924 
1925 	/* If we didn't flush the entire list, we could have told the driver
1926 	 * there was more coming, but that turned out to be a lie.
1927 	 */
1928 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1929 		q->mq_ops->commit_rqs(hctx);
1930 	/*
1931 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1932 	 * that is where we will continue on next queue run.
1933 	 */
1934 	if (!list_empty(list)) {
1935 		bool needs_restart;
1936 		/* For non-shared tags, the RESTART check will suffice */
1937 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1938 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1939 
1940 		if (nr_budgets)
1941 			blk_mq_release_budgets(q, list);
1942 
1943 		spin_lock(&hctx->lock);
1944 		list_splice_tail_init(list, &hctx->dispatch);
1945 		spin_unlock(&hctx->lock);
1946 
1947 		/*
1948 		 * Order adding requests to hctx->dispatch and checking
1949 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1950 		 * in blk_mq_sched_restart(). Avoid restart code path to
1951 		 * miss the new added requests to hctx->dispatch, meantime
1952 		 * SCHED_RESTART is observed here.
1953 		 */
1954 		smp_mb();
1955 
1956 		/*
1957 		 * If SCHED_RESTART was set by the caller of this function and
1958 		 * it is no longer set that means that it was cleared by another
1959 		 * thread and hence that a queue rerun is needed.
1960 		 *
1961 		 * If 'no_tag' is set, that means that we failed getting
1962 		 * a driver tag with an I/O scheduler attached. If our dispatch
1963 		 * waitqueue is no longer active, ensure that we run the queue
1964 		 * AFTER adding our entries back to the list.
1965 		 *
1966 		 * If no I/O scheduler has been configured it is possible that
1967 		 * the hardware queue got stopped and restarted before requests
1968 		 * were pushed back onto the dispatch list. Rerun the queue to
1969 		 * avoid starvation. Notes:
1970 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1971 		 *   been stopped before rerunning a queue.
1972 		 * - Some but not all block drivers stop a queue before
1973 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1974 		 *   and dm-rq.
1975 		 *
1976 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1977 		 * bit is set, run queue after a delay to avoid IO stalls
1978 		 * that could otherwise occur if the queue is idle.  We'll do
1979 		 * similar if we couldn't get budget or couldn't lock a zone
1980 		 * and SCHED_RESTART is set.
1981 		 */
1982 		needs_restart = blk_mq_sched_needs_restart(hctx);
1983 		if (prep == PREP_DISPATCH_NO_BUDGET)
1984 			needs_resource = true;
1985 		if (!needs_restart ||
1986 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1987 			blk_mq_run_hw_queue(hctx, true);
1988 		else if (needs_restart && needs_resource)
1989 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1990 
1991 		blk_mq_update_dispatch_busy(hctx, true);
1992 		return false;
1993 	} else
1994 		blk_mq_update_dispatch_busy(hctx, false);
1995 
1996 	return (queued + errors) != 0;
1997 }
1998 
1999 /**
2000  * __blk_mq_run_hw_queue - Run a hardware queue.
2001  * @hctx: Pointer to the hardware queue to run.
2002  *
2003  * Send pending requests to the hardware.
2004  */
2005 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2006 {
2007 	/*
2008 	 * We can't run the queue inline with ints disabled. Ensure that
2009 	 * we catch bad users of this early.
2010 	 */
2011 	WARN_ON_ONCE(in_interrupt());
2012 
2013 	blk_mq_run_dispatch_ops(hctx->queue,
2014 			blk_mq_sched_dispatch_requests(hctx));
2015 }
2016 
2017 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2018 {
2019 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2020 
2021 	if (cpu >= nr_cpu_ids)
2022 		cpu = cpumask_first(hctx->cpumask);
2023 	return cpu;
2024 }
2025 
2026 /*
2027  * It'd be great if the workqueue API had a way to pass
2028  * in a mask and had some smarts for more clever placement.
2029  * For now we just round-robin here, switching for every
2030  * BLK_MQ_CPU_WORK_BATCH queued items.
2031  */
2032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2033 {
2034 	bool tried = false;
2035 	int next_cpu = hctx->next_cpu;
2036 
2037 	if (hctx->queue->nr_hw_queues == 1)
2038 		return WORK_CPU_UNBOUND;
2039 
2040 	if (--hctx->next_cpu_batch <= 0) {
2041 select_cpu:
2042 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2043 				cpu_online_mask);
2044 		if (next_cpu >= nr_cpu_ids)
2045 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2046 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2047 	}
2048 
2049 	/*
2050 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2051 	 * and it should only happen in the path of handling CPU DEAD.
2052 	 */
2053 	if (!cpu_online(next_cpu)) {
2054 		if (!tried) {
2055 			tried = true;
2056 			goto select_cpu;
2057 		}
2058 
2059 		/*
2060 		 * Make sure to re-select CPU next time once after CPUs
2061 		 * in hctx->cpumask become online again.
2062 		 */
2063 		hctx->next_cpu = next_cpu;
2064 		hctx->next_cpu_batch = 1;
2065 		return WORK_CPU_UNBOUND;
2066 	}
2067 
2068 	hctx->next_cpu = next_cpu;
2069 	return next_cpu;
2070 }
2071 
2072 /**
2073  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2074  * @hctx: Pointer to the hardware queue to run.
2075  * @async: If we want to run the queue asynchronously.
2076  * @msecs: Milliseconds of delay to wait before running the queue.
2077  *
2078  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2079  * with a delay of @msecs.
2080  */
2081 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2082 					unsigned long msecs)
2083 {
2084 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2085 		return;
2086 
2087 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2088 		int cpu = get_cpu();
2089 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2090 			__blk_mq_run_hw_queue(hctx);
2091 			put_cpu();
2092 			return;
2093 		}
2094 
2095 		put_cpu();
2096 	}
2097 
2098 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2099 				    msecs_to_jiffies(msecs));
2100 }
2101 
2102 /**
2103  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2104  * @hctx: Pointer to the hardware queue to run.
2105  * @msecs: Milliseconds of delay to wait before running the queue.
2106  *
2107  * Run a hardware queue asynchronously with a delay of @msecs.
2108  */
2109 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2110 {
2111 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2112 }
2113 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2114 
2115 /**
2116  * blk_mq_run_hw_queue - Start to run a hardware queue.
2117  * @hctx: Pointer to the hardware queue to run.
2118  * @async: If we want to run the queue asynchronously.
2119  *
2120  * Check if the request queue is not in a quiesced state and if there are
2121  * pending requests to be sent. If this is true, run the queue to send requests
2122  * to hardware.
2123  */
2124 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2125 {
2126 	bool need_run;
2127 
2128 	/*
2129 	 * When queue is quiesced, we may be switching io scheduler, or
2130 	 * updating nr_hw_queues, or other things, and we can't run queue
2131 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2132 	 *
2133 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2134 	 * quiesced.
2135 	 */
2136 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2137 		need_run = !blk_queue_quiesced(hctx->queue) &&
2138 		blk_mq_hctx_has_pending(hctx));
2139 
2140 	if (need_run)
2141 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2142 }
2143 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2144 
2145 /*
2146  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2147  * scheduler.
2148  */
2149 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2150 {
2151 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2152 	/*
2153 	 * If the IO scheduler does not respect hardware queues when
2154 	 * dispatching, we just don't bother with multiple HW queues and
2155 	 * dispatch from hctx for the current CPU since running multiple queues
2156 	 * just causes lock contention inside the scheduler and pointless cache
2157 	 * bouncing.
2158 	 */
2159 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2160 
2161 	if (!blk_mq_hctx_stopped(hctx))
2162 		return hctx;
2163 	return NULL;
2164 }
2165 
2166 /**
2167  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2168  * @q: Pointer to the request queue to run.
2169  * @async: If we want to run the queue asynchronously.
2170  */
2171 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2172 {
2173 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2174 	unsigned long i;
2175 
2176 	sq_hctx = NULL;
2177 	if (blk_queue_sq_sched(q))
2178 		sq_hctx = blk_mq_get_sq_hctx(q);
2179 	queue_for_each_hw_ctx(q, hctx, i) {
2180 		if (blk_mq_hctx_stopped(hctx))
2181 			continue;
2182 		/*
2183 		 * Dispatch from this hctx either if there's no hctx preferred
2184 		 * by IO scheduler or if it has requests that bypass the
2185 		 * scheduler.
2186 		 */
2187 		if (!sq_hctx || sq_hctx == hctx ||
2188 		    !list_empty_careful(&hctx->dispatch))
2189 			blk_mq_run_hw_queue(hctx, async);
2190 	}
2191 }
2192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2193 
2194 /**
2195  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2196  * @q: Pointer to the request queue to run.
2197  * @msecs: Milliseconds of delay to wait before running the queues.
2198  */
2199 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2200 {
2201 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2202 	unsigned long i;
2203 
2204 	sq_hctx = NULL;
2205 	if (blk_queue_sq_sched(q))
2206 		sq_hctx = blk_mq_get_sq_hctx(q);
2207 	queue_for_each_hw_ctx(q, hctx, i) {
2208 		if (blk_mq_hctx_stopped(hctx))
2209 			continue;
2210 		/*
2211 		 * If there is already a run_work pending, leave the
2212 		 * pending delay untouched. Otherwise, a hctx can stall
2213 		 * if another hctx is re-delaying the other's work
2214 		 * before the work executes.
2215 		 */
2216 		if (delayed_work_pending(&hctx->run_work))
2217 			continue;
2218 		/*
2219 		 * Dispatch from this hctx either if there's no hctx preferred
2220 		 * by IO scheduler or if it has requests that bypass the
2221 		 * scheduler.
2222 		 */
2223 		if (!sq_hctx || sq_hctx == hctx ||
2224 		    !list_empty_careful(&hctx->dispatch))
2225 			blk_mq_delay_run_hw_queue(hctx, msecs);
2226 	}
2227 }
2228 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2229 
2230 /**
2231  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2232  * @q: request queue.
2233  *
2234  * The caller is responsible for serializing this function against
2235  * blk_mq_{start,stop}_hw_queue().
2236  */
2237 bool blk_mq_queue_stopped(struct request_queue *q)
2238 {
2239 	struct blk_mq_hw_ctx *hctx;
2240 	unsigned long i;
2241 
2242 	queue_for_each_hw_ctx(q, hctx, i)
2243 		if (blk_mq_hctx_stopped(hctx))
2244 			return true;
2245 
2246 	return false;
2247 }
2248 EXPORT_SYMBOL(blk_mq_queue_stopped);
2249 
2250 /*
2251  * This function is often used for pausing .queue_rq() by driver when
2252  * there isn't enough resource or some conditions aren't satisfied, and
2253  * BLK_STS_RESOURCE is usually returned.
2254  *
2255  * We do not guarantee that dispatch can be drained or blocked
2256  * after blk_mq_stop_hw_queue() returns. Please use
2257  * blk_mq_quiesce_queue() for that requirement.
2258  */
2259 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2260 {
2261 	cancel_delayed_work(&hctx->run_work);
2262 
2263 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2264 }
2265 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2266 
2267 /*
2268  * This function is often used for pausing .queue_rq() by driver when
2269  * there isn't enough resource or some conditions aren't satisfied, and
2270  * BLK_STS_RESOURCE is usually returned.
2271  *
2272  * We do not guarantee that dispatch can be drained or blocked
2273  * after blk_mq_stop_hw_queues() returns. Please use
2274  * blk_mq_quiesce_queue() for that requirement.
2275  */
2276 void blk_mq_stop_hw_queues(struct request_queue *q)
2277 {
2278 	struct blk_mq_hw_ctx *hctx;
2279 	unsigned long i;
2280 
2281 	queue_for_each_hw_ctx(q, hctx, i)
2282 		blk_mq_stop_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2285 
2286 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2289 
2290 	blk_mq_run_hw_queue(hctx, false);
2291 }
2292 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2293 
2294 void blk_mq_start_hw_queues(struct request_queue *q)
2295 {
2296 	struct blk_mq_hw_ctx *hctx;
2297 	unsigned long i;
2298 
2299 	queue_for_each_hw_ctx(q, hctx, i)
2300 		blk_mq_start_hw_queue(hctx);
2301 }
2302 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2303 
2304 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2305 {
2306 	if (!blk_mq_hctx_stopped(hctx))
2307 		return;
2308 
2309 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2310 	blk_mq_run_hw_queue(hctx, async);
2311 }
2312 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2313 
2314 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2315 {
2316 	struct blk_mq_hw_ctx *hctx;
2317 	unsigned long i;
2318 
2319 	queue_for_each_hw_ctx(q, hctx, i)
2320 		blk_mq_start_stopped_hw_queue(hctx, async);
2321 }
2322 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2323 
2324 static void blk_mq_run_work_fn(struct work_struct *work)
2325 {
2326 	struct blk_mq_hw_ctx *hctx;
2327 
2328 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2329 
2330 	/*
2331 	 * If we are stopped, don't run the queue.
2332 	 */
2333 	if (blk_mq_hctx_stopped(hctx))
2334 		return;
2335 
2336 	__blk_mq_run_hw_queue(hctx);
2337 }
2338 
2339 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2340 					    struct request *rq,
2341 					    bool at_head)
2342 {
2343 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2344 	enum hctx_type type = hctx->type;
2345 
2346 	lockdep_assert_held(&ctx->lock);
2347 
2348 	trace_block_rq_insert(rq);
2349 
2350 	if (at_head)
2351 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2352 	else
2353 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2354 }
2355 
2356 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2357 			     bool at_head)
2358 {
2359 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2360 
2361 	lockdep_assert_held(&ctx->lock);
2362 
2363 	__blk_mq_insert_req_list(hctx, rq, at_head);
2364 	blk_mq_hctx_mark_pending(hctx, ctx);
2365 }
2366 
2367 /**
2368  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2369  * @rq: Pointer to request to be inserted.
2370  * @at_head: true if the request should be inserted at the head of the list.
2371  * @run_queue: If we should run the hardware queue after inserting the request.
2372  *
2373  * Should only be used carefully, when the caller knows we want to
2374  * bypass a potential IO scheduler on the target device.
2375  */
2376 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2377 				  bool run_queue)
2378 {
2379 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2380 
2381 	spin_lock(&hctx->lock);
2382 	if (at_head)
2383 		list_add(&rq->queuelist, &hctx->dispatch);
2384 	else
2385 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2386 	spin_unlock(&hctx->lock);
2387 
2388 	if (run_queue)
2389 		blk_mq_run_hw_queue(hctx, false);
2390 }
2391 
2392 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2393 			    struct list_head *list)
2394 
2395 {
2396 	struct request *rq;
2397 	enum hctx_type type = hctx->type;
2398 
2399 	/*
2400 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2401 	 * offline now
2402 	 */
2403 	list_for_each_entry(rq, list, queuelist) {
2404 		BUG_ON(rq->mq_ctx != ctx);
2405 		trace_block_rq_insert(rq);
2406 	}
2407 
2408 	spin_lock(&ctx->lock);
2409 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2410 	blk_mq_hctx_mark_pending(hctx, ctx);
2411 	spin_unlock(&ctx->lock);
2412 }
2413 
2414 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2415 			      bool from_schedule)
2416 {
2417 	if (hctx->queue->mq_ops->commit_rqs) {
2418 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2419 		hctx->queue->mq_ops->commit_rqs(hctx);
2420 	}
2421 	*queued = 0;
2422 }
2423 
2424 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2425 		unsigned int nr_segs)
2426 {
2427 	int err;
2428 
2429 	if (bio->bi_opf & REQ_RAHEAD)
2430 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2431 
2432 	rq->__sector = bio->bi_iter.bi_sector;
2433 	blk_rq_bio_prep(rq, bio, nr_segs);
2434 
2435 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2436 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2437 	WARN_ON_ONCE(err);
2438 
2439 	blk_account_io_start(rq);
2440 }
2441 
2442 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2443 					    struct request *rq, bool last)
2444 {
2445 	struct request_queue *q = rq->q;
2446 	struct blk_mq_queue_data bd = {
2447 		.rq = rq,
2448 		.last = last,
2449 	};
2450 	blk_status_t ret;
2451 
2452 	/*
2453 	 * For OK queue, we are done. For error, caller may kill it.
2454 	 * Any other error (busy), just add it to our list as we
2455 	 * previously would have done.
2456 	 */
2457 	ret = q->mq_ops->queue_rq(hctx, &bd);
2458 	switch (ret) {
2459 	case BLK_STS_OK:
2460 		blk_mq_update_dispatch_busy(hctx, false);
2461 		break;
2462 	case BLK_STS_RESOURCE:
2463 	case BLK_STS_DEV_RESOURCE:
2464 		blk_mq_update_dispatch_busy(hctx, true);
2465 		__blk_mq_requeue_request(rq);
2466 		break;
2467 	default:
2468 		blk_mq_update_dispatch_busy(hctx, false);
2469 		break;
2470 	}
2471 
2472 	return ret;
2473 }
2474 
2475 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2476 						struct request *rq,
2477 						bool bypass_insert, bool last)
2478 {
2479 	struct request_queue *q = rq->q;
2480 	bool run_queue = true;
2481 	int budget_token;
2482 
2483 	/*
2484 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2485 	 *
2486 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2487 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2488 	 * and avoid driver to try to dispatch again.
2489 	 */
2490 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2491 		run_queue = false;
2492 		bypass_insert = false;
2493 		goto insert;
2494 	}
2495 
2496 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2497 		goto insert;
2498 
2499 	budget_token = blk_mq_get_dispatch_budget(q);
2500 	if (budget_token < 0)
2501 		goto insert;
2502 
2503 	blk_mq_set_rq_budget_token(rq, budget_token);
2504 
2505 	if (!blk_mq_get_driver_tag(rq)) {
2506 		blk_mq_put_dispatch_budget(q, budget_token);
2507 		goto insert;
2508 	}
2509 
2510 	return __blk_mq_issue_directly(hctx, rq, last);
2511 insert:
2512 	if (bypass_insert)
2513 		return BLK_STS_RESOURCE;
2514 
2515 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2516 
2517 	return BLK_STS_OK;
2518 }
2519 
2520 /**
2521  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2522  * @hctx: Pointer of the associated hardware queue.
2523  * @rq: Pointer to request to be sent.
2524  *
2525  * If the device has enough resources to accept a new request now, send the
2526  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2527  * we can try send it another time in the future. Requests inserted at this
2528  * queue have higher priority.
2529  */
2530 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2531 		struct request *rq)
2532 {
2533 	blk_status_t ret =
2534 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2535 
2536 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2537 		blk_mq_request_bypass_insert(rq, false, true);
2538 	else if (ret != BLK_STS_OK)
2539 		blk_mq_end_request(rq, ret);
2540 }
2541 
2542 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2543 {
2544 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2545 }
2546 
2547 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2548 {
2549 	struct blk_mq_hw_ctx *hctx = NULL;
2550 	struct request *rq;
2551 	int queued = 0;
2552 	int errors = 0;
2553 
2554 	while ((rq = rq_list_pop(&plug->mq_list))) {
2555 		bool last = rq_list_empty(plug->mq_list);
2556 		blk_status_t ret;
2557 
2558 		if (hctx != rq->mq_hctx) {
2559 			if (hctx)
2560 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2561 			hctx = rq->mq_hctx;
2562 		}
2563 
2564 		ret = blk_mq_request_issue_directly(rq, last);
2565 		switch (ret) {
2566 		case BLK_STS_OK:
2567 			queued++;
2568 			break;
2569 		case BLK_STS_RESOURCE:
2570 		case BLK_STS_DEV_RESOURCE:
2571 			blk_mq_request_bypass_insert(rq, false, last);
2572 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2573 			return;
2574 		default:
2575 			blk_mq_end_request(rq, ret);
2576 			errors++;
2577 			break;
2578 		}
2579 	}
2580 
2581 	/*
2582 	 * If we didn't flush the entire list, we could have told the driver
2583 	 * there was more coming, but that turned out to be a lie.
2584 	 */
2585 	if (errors)
2586 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2587 }
2588 
2589 static void __blk_mq_flush_plug_list(struct request_queue *q,
2590 				     struct blk_plug *plug)
2591 {
2592 	if (blk_queue_quiesced(q))
2593 		return;
2594 	q->mq_ops->queue_rqs(&plug->mq_list);
2595 }
2596 
2597 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2598 {
2599 	struct blk_mq_hw_ctx *this_hctx = NULL;
2600 	struct blk_mq_ctx *this_ctx = NULL;
2601 	struct request *requeue_list = NULL;
2602 	unsigned int depth = 0;
2603 	LIST_HEAD(list);
2604 
2605 	do {
2606 		struct request *rq = rq_list_pop(&plug->mq_list);
2607 
2608 		if (!this_hctx) {
2609 			this_hctx = rq->mq_hctx;
2610 			this_ctx = rq->mq_ctx;
2611 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2612 			rq_list_add(&requeue_list, rq);
2613 			continue;
2614 		}
2615 		list_add_tail(&rq->queuelist, &list);
2616 		depth++;
2617 	} while (!rq_list_empty(plug->mq_list));
2618 
2619 	plug->mq_list = requeue_list;
2620 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2621 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2622 }
2623 
2624 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2625 {
2626 	struct request *rq;
2627 
2628 	if (rq_list_empty(plug->mq_list))
2629 		return;
2630 	plug->rq_count = 0;
2631 
2632 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2633 		struct request_queue *q;
2634 
2635 		rq = rq_list_peek(&plug->mq_list);
2636 		q = rq->q;
2637 
2638 		/*
2639 		 * Peek first request and see if we have a ->queue_rqs() hook.
2640 		 * If we do, we can dispatch the whole plug list in one go. We
2641 		 * already know at this point that all requests belong to the
2642 		 * same queue, caller must ensure that's the case.
2643 		 *
2644 		 * Since we pass off the full list to the driver at this point,
2645 		 * we do not increment the active request count for the queue.
2646 		 * Bypass shared tags for now because of that.
2647 		 */
2648 		if (q->mq_ops->queue_rqs &&
2649 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2650 			blk_mq_run_dispatch_ops(q,
2651 				__blk_mq_flush_plug_list(q, plug));
2652 			if (rq_list_empty(plug->mq_list))
2653 				return;
2654 		}
2655 
2656 		blk_mq_run_dispatch_ops(q,
2657 				blk_mq_plug_issue_direct(plug, false));
2658 		if (rq_list_empty(plug->mq_list))
2659 			return;
2660 	}
2661 
2662 	do {
2663 		blk_mq_dispatch_plug_list(plug, from_schedule);
2664 	} while (!rq_list_empty(plug->mq_list));
2665 }
2666 
2667 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2668 		struct list_head *list)
2669 {
2670 	int queued = 0;
2671 	int errors = 0;
2672 
2673 	while (!list_empty(list)) {
2674 		blk_status_t ret;
2675 		struct request *rq = list_first_entry(list, struct request,
2676 				queuelist);
2677 
2678 		list_del_init(&rq->queuelist);
2679 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2680 		if (ret != BLK_STS_OK) {
2681 			if (ret == BLK_STS_RESOURCE ||
2682 					ret == BLK_STS_DEV_RESOURCE) {
2683 				blk_mq_request_bypass_insert(rq, false,
2684 							list_empty(list));
2685 				break;
2686 			}
2687 			blk_mq_end_request(rq, ret);
2688 			errors++;
2689 		} else
2690 			queued++;
2691 	}
2692 
2693 	/*
2694 	 * If we didn't flush the entire list, we could have told
2695 	 * the driver there was more coming, but that turned out to
2696 	 * be a lie.
2697 	 */
2698 	if ((!list_empty(list) || errors) &&
2699 	     hctx->queue->mq_ops->commit_rqs && queued)
2700 		hctx->queue->mq_ops->commit_rqs(hctx);
2701 }
2702 
2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2704 				     struct bio *bio, unsigned int nr_segs)
2705 {
2706 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2707 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2708 			return true;
2709 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2710 			return true;
2711 	}
2712 	return false;
2713 }
2714 
2715 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2716 					       struct blk_plug *plug,
2717 					       struct bio *bio,
2718 					       unsigned int nsegs)
2719 {
2720 	struct blk_mq_alloc_data data = {
2721 		.q		= q,
2722 		.nr_tags	= 1,
2723 		.cmd_flags	= bio->bi_opf,
2724 	};
2725 	struct request *rq;
2726 
2727 	if (unlikely(bio_queue_enter(bio)))
2728 		return NULL;
2729 
2730 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2731 		goto queue_exit;
2732 
2733 	rq_qos_throttle(q, bio);
2734 
2735 	if (plug) {
2736 		data.nr_tags = plug->nr_ios;
2737 		plug->nr_ios = 1;
2738 		data.cached_rq = &plug->cached_rq;
2739 	}
2740 
2741 	rq = __blk_mq_alloc_requests(&data);
2742 	if (rq)
2743 		return rq;
2744 	rq_qos_cleanup(q, bio);
2745 	if (bio->bi_opf & REQ_NOWAIT)
2746 		bio_wouldblock_error(bio);
2747 queue_exit:
2748 	blk_queue_exit(q);
2749 	return NULL;
2750 }
2751 
2752 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2753 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2754 {
2755 	struct request *rq;
2756 
2757 	if (!plug)
2758 		return NULL;
2759 	rq = rq_list_peek(&plug->cached_rq);
2760 	if (!rq || rq->q != q)
2761 		return NULL;
2762 
2763 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2764 		*bio = NULL;
2765 		return NULL;
2766 	}
2767 
2768 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2769 		return NULL;
2770 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2771 		return NULL;
2772 
2773 	/*
2774 	 * If any qos ->throttle() end up blocking, we will have flushed the
2775 	 * plug and hence killed the cached_rq list as well. Pop this entry
2776 	 * before we throttle.
2777 	 */
2778 	plug->cached_rq = rq_list_next(rq);
2779 	rq_qos_throttle(q, *bio);
2780 
2781 	rq->cmd_flags = (*bio)->bi_opf;
2782 	INIT_LIST_HEAD(&rq->queuelist);
2783 	return rq;
2784 }
2785 
2786 /**
2787  * blk_mq_submit_bio - Create and send a request to block device.
2788  * @bio: Bio pointer.
2789  *
2790  * Builds up a request structure from @q and @bio and send to the device. The
2791  * request may not be queued directly to hardware if:
2792  * * This request can be merged with another one
2793  * * We want to place request at plug queue for possible future merging
2794  * * There is an IO scheduler active at this queue
2795  *
2796  * It will not queue the request if there is an error with the bio, or at the
2797  * request creation.
2798  */
2799 void blk_mq_submit_bio(struct bio *bio)
2800 {
2801 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2802 	struct blk_plug *plug = blk_mq_plug(q, bio);
2803 	const int is_sync = op_is_sync(bio->bi_opf);
2804 	struct request *rq;
2805 	unsigned int nr_segs = 1;
2806 	blk_status_t ret;
2807 
2808 	blk_queue_bounce(q, &bio);
2809 	if (blk_may_split(q, bio))
2810 		__blk_queue_split(q, &bio, &nr_segs);
2811 
2812 	if (!bio_integrity_prep(bio))
2813 		return;
2814 
2815 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2816 	if (!rq) {
2817 		if (!bio)
2818 			return;
2819 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2820 		if (unlikely(!rq))
2821 			return;
2822 	}
2823 
2824 	trace_block_getrq(bio);
2825 
2826 	rq_qos_track(q, rq, bio);
2827 
2828 	blk_mq_bio_to_request(rq, bio, nr_segs);
2829 
2830 	ret = blk_crypto_init_request(rq);
2831 	if (ret != BLK_STS_OK) {
2832 		bio->bi_status = ret;
2833 		bio_endio(bio);
2834 		blk_mq_free_request(rq);
2835 		return;
2836 	}
2837 
2838 	if (op_is_flush(bio->bi_opf)) {
2839 		blk_insert_flush(rq);
2840 		return;
2841 	}
2842 
2843 	if (plug)
2844 		blk_add_rq_to_plug(plug, rq);
2845 	else if ((rq->rq_flags & RQF_ELV) ||
2846 		 (rq->mq_hctx->dispatch_busy &&
2847 		  (q->nr_hw_queues == 1 || !is_sync)))
2848 		blk_mq_sched_insert_request(rq, false, true, true);
2849 	else
2850 		blk_mq_run_dispatch_ops(rq->q,
2851 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2852 }
2853 
2854 #ifdef CONFIG_BLK_MQ_STACKING
2855 /**
2856  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2857  * @rq: the request being queued
2858  */
2859 blk_status_t blk_insert_cloned_request(struct request *rq)
2860 {
2861 	struct request_queue *q = rq->q;
2862 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2863 	blk_status_t ret;
2864 
2865 	if (blk_rq_sectors(rq) > max_sectors) {
2866 		/*
2867 		 * SCSI device does not have a good way to return if
2868 		 * Write Same/Zero is actually supported. If a device rejects
2869 		 * a non-read/write command (discard, write same,etc.) the
2870 		 * low-level device driver will set the relevant queue limit to
2871 		 * 0 to prevent blk-lib from issuing more of the offending
2872 		 * operations. Commands queued prior to the queue limit being
2873 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2874 		 * errors being propagated to upper layers.
2875 		 */
2876 		if (max_sectors == 0)
2877 			return BLK_STS_NOTSUPP;
2878 
2879 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2880 			__func__, blk_rq_sectors(rq), max_sectors);
2881 		return BLK_STS_IOERR;
2882 	}
2883 
2884 	/*
2885 	 * The queue settings related to segment counting may differ from the
2886 	 * original queue.
2887 	 */
2888 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2889 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2890 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2891 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2892 		return BLK_STS_IOERR;
2893 	}
2894 
2895 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2896 		return BLK_STS_IOERR;
2897 
2898 	if (blk_crypto_insert_cloned_request(rq))
2899 		return BLK_STS_IOERR;
2900 
2901 	blk_account_io_start(rq);
2902 
2903 	/*
2904 	 * Since we have a scheduler attached on the top device,
2905 	 * bypass a potential scheduler on the bottom device for
2906 	 * insert.
2907 	 */
2908 	blk_mq_run_dispatch_ops(q,
2909 			ret = blk_mq_request_issue_directly(rq, true));
2910 	if (ret)
2911 		blk_account_io_done(rq, ktime_get_ns());
2912 	return ret;
2913 }
2914 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2915 
2916 /**
2917  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2918  * @rq: the clone request to be cleaned up
2919  *
2920  * Description:
2921  *     Free all bios in @rq for a cloned request.
2922  */
2923 void blk_rq_unprep_clone(struct request *rq)
2924 {
2925 	struct bio *bio;
2926 
2927 	while ((bio = rq->bio) != NULL) {
2928 		rq->bio = bio->bi_next;
2929 
2930 		bio_put(bio);
2931 	}
2932 }
2933 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2934 
2935 /**
2936  * blk_rq_prep_clone - Helper function to setup clone request
2937  * @rq: the request to be setup
2938  * @rq_src: original request to be cloned
2939  * @bs: bio_set that bios for clone are allocated from
2940  * @gfp_mask: memory allocation mask for bio
2941  * @bio_ctr: setup function to be called for each clone bio.
2942  *           Returns %0 for success, non %0 for failure.
2943  * @data: private data to be passed to @bio_ctr
2944  *
2945  * Description:
2946  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2947  *     Also, pages which the original bios are pointing to are not copied
2948  *     and the cloned bios just point same pages.
2949  *     So cloned bios must be completed before original bios, which means
2950  *     the caller must complete @rq before @rq_src.
2951  */
2952 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2953 		      struct bio_set *bs, gfp_t gfp_mask,
2954 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2955 		      void *data)
2956 {
2957 	struct bio *bio, *bio_src;
2958 
2959 	if (!bs)
2960 		bs = &fs_bio_set;
2961 
2962 	__rq_for_each_bio(bio_src, rq_src) {
2963 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2964 				      bs);
2965 		if (!bio)
2966 			goto free_and_out;
2967 
2968 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2969 			goto free_and_out;
2970 
2971 		if (rq->bio) {
2972 			rq->biotail->bi_next = bio;
2973 			rq->biotail = bio;
2974 		} else {
2975 			rq->bio = rq->biotail = bio;
2976 		}
2977 		bio = NULL;
2978 	}
2979 
2980 	/* Copy attributes of the original request to the clone request. */
2981 	rq->__sector = blk_rq_pos(rq_src);
2982 	rq->__data_len = blk_rq_bytes(rq_src);
2983 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2984 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2985 		rq->special_vec = rq_src->special_vec;
2986 	}
2987 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2988 	rq->ioprio = rq_src->ioprio;
2989 
2990 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2991 		goto free_and_out;
2992 
2993 	return 0;
2994 
2995 free_and_out:
2996 	if (bio)
2997 		bio_put(bio);
2998 	blk_rq_unprep_clone(rq);
2999 
3000 	return -ENOMEM;
3001 }
3002 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3003 #endif /* CONFIG_BLK_MQ_STACKING */
3004 
3005 /*
3006  * Steal bios from a request and add them to a bio list.
3007  * The request must not have been partially completed before.
3008  */
3009 void blk_steal_bios(struct bio_list *list, struct request *rq)
3010 {
3011 	if (rq->bio) {
3012 		if (list->tail)
3013 			list->tail->bi_next = rq->bio;
3014 		else
3015 			list->head = rq->bio;
3016 		list->tail = rq->biotail;
3017 
3018 		rq->bio = NULL;
3019 		rq->biotail = NULL;
3020 	}
3021 
3022 	rq->__data_len = 0;
3023 }
3024 EXPORT_SYMBOL_GPL(blk_steal_bios);
3025 
3026 static size_t order_to_size(unsigned int order)
3027 {
3028 	return (size_t)PAGE_SIZE << order;
3029 }
3030 
3031 /* called before freeing request pool in @tags */
3032 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3033 				    struct blk_mq_tags *tags)
3034 {
3035 	struct page *page;
3036 	unsigned long flags;
3037 
3038 	/* There is no need to clear a driver tags own mapping */
3039 	if (drv_tags == tags)
3040 		return;
3041 
3042 	list_for_each_entry(page, &tags->page_list, lru) {
3043 		unsigned long start = (unsigned long)page_address(page);
3044 		unsigned long end = start + order_to_size(page->private);
3045 		int i;
3046 
3047 		for (i = 0; i < drv_tags->nr_tags; i++) {
3048 			struct request *rq = drv_tags->rqs[i];
3049 			unsigned long rq_addr = (unsigned long)rq;
3050 
3051 			if (rq_addr >= start && rq_addr < end) {
3052 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3053 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3054 			}
3055 		}
3056 	}
3057 
3058 	/*
3059 	 * Wait until all pending iteration is done.
3060 	 *
3061 	 * Request reference is cleared and it is guaranteed to be observed
3062 	 * after the ->lock is released.
3063 	 */
3064 	spin_lock_irqsave(&drv_tags->lock, flags);
3065 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3066 }
3067 
3068 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3069 		     unsigned int hctx_idx)
3070 {
3071 	struct blk_mq_tags *drv_tags;
3072 	struct page *page;
3073 
3074 	if (list_empty(&tags->page_list))
3075 		return;
3076 
3077 	if (blk_mq_is_shared_tags(set->flags))
3078 		drv_tags = set->shared_tags;
3079 	else
3080 		drv_tags = set->tags[hctx_idx];
3081 
3082 	if (tags->static_rqs && set->ops->exit_request) {
3083 		int i;
3084 
3085 		for (i = 0; i < tags->nr_tags; i++) {
3086 			struct request *rq = tags->static_rqs[i];
3087 
3088 			if (!rq)
3089 				continue;
3090 			set->ops->exit_request(set, rq, hctx_idx);
3091 			tags->static_rqs[i] = NULL;
3092 		}
3093 	}
3094 
3095 	blk_mq_clear_rq_mapping(drv_tags, tags);
3096 
3097 	while (!list_empty(&tags->page_list)) {
3098 		page = list_first_entry(&tags->page_list, struct page, lru);
3099 		list_del_init(&page->lru);
3100 		/*
3101 		 * Remove kmemleak object previously allocated in
3102 		 * blk_mq_alloc_rqs().
3103 		 */
3104 		kmemleak_free(page_address(page));
3105 		__free_pages(page, page->private);
3106 	}
3107 }
3108 
3109 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3110 {
3111 	kfree(tags->rqs);
3112 	tags->rqs = NULL;
3113 	kfree(tags->static_rqs);
3114 	tags->static_rqs = NULL;
3115 
3116 	blk_mq_free_tags(tags);
3117 }
3118 
3119 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3120 		unsigned int hctx_idx)
3121 {
3122 	int i;
3123 
3124 	for (i = 0; i < set->nr_maps; i++) {
3125 		unsigned int start = set->map[i].queue_offset;
3126 		unsigned int end = start + set->map[i].nr_queues;
3127 
3128 		if (hctx_idx >= start && hctx_idx < end)
3129 			break;
3130 	}
3131 
3132 	if (i >= set->nr_maps)
3133 		i = HCTX_TYPE_DEFAULT;
3134 
3135 	return i;
3136 }
3137 
3138 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3139 		unsigned int hctx_idx)
3140 {
3141 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3142 
3143 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3144 }
3145 
3146 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3147 					       unsigned int hctx_idx,
3148 					       unsigned int nr_tags,
3149 					       unsigned int reserved_tags)
3150 {
3151 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3152 	struct blk_mq_tags *tags;
3153 
3154 	if (node == NUMA_NO_NODE)
3155 		node = set->numa_node;
3156 
3157 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3158 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3159 	if (!tags)
3160 		return NULL;
3161 
3162 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3163 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3164 				 node);
3165 	if (!tags->rqs) {
3166 		blk_mq_free_tags(tags);
3167 		return NULL;
3168 	}
3169 
3170 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3171 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3172 					node);
3173 	if (!tags->static_rqs) {
3174 		kfree(tags->rqs);
3175 		blk_mq_free_tags(tags);
3176 		return NULL;
3177 	}
3178 
3179 	return tags;
3180 }
3181 
3182 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3183 			       unsigned int hctx_idx, int node)
3184 {
3185 	int ret;
3186 
3187 	if (set->ops->init_request) {
3188 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3189 		if (ret)
3190 			return ret;
3191 	}
3192 
3193 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3194 	return 0;
3195 }
3196 
3197 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3198 			    struct blk_mq_tags *tags,
3199 			    unsigned int hctx_idx, unsigned int depth)
3200 {
3201 	unsigned int i, j, entries_per_page, max_order = 4;
3202 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3203 	size_t rq_size, left;
3204 
3205 	if (node == NUMA_NO_NODE)
3206 		node = set->numa_node;
3207 
3208 	INIT_LIST_HEAD(&tags->page_list);
3209 
3210 	/*
3211 	 * rq_size is the size of the request plus driver payload, rounded
3212 	 * to the cacheline size
3213 	 */
3214 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3215 				cache_line_size());
3216 	left = rq_size * depth;
3217 
3218 	for (i = 0; i < depth; ) {
3219 		int this_order = max_order;
3220 		struct page *page;
3221 		int to_do;
3222 		void *p;
3223 
3224 		while (this_order && left < order_to_size(this_order - 1))
3225 			this_order--;
3226 
3227 		do {
3228 			page = alloc_pages_node(node,
3229 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3230 				this_order);
3231 			if (page)
3232 				break;
3233 			if (!this_order--)
3234 				break;
3235 			if (order_to_size(this_order) < rq_size)
3236 				break;
3237 		} while (1);
3238 
3239 		if (!page)
3240 			goto fail;
3241 
3242 		page->private = this_order;
3243 		list_add_tail(&page->lru, &tags->page_list);
3244 
3245 		p = page_address(page);
3246 		/*
3247 		 * Allow kmemleak to scan these pages as they contain pointers
3248 		 * to additional allocations like via ops->init_request().
3249 		 */
3250 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3251 		entries_per_page = order_to_size(this_order) / rq_size;
3252 		to_do = min(entries_per_page, depth - i);
3253 		left -= to_do * rq_size;
3254 		for (j = 0; j < to_do; j++) {
3255 			struct request *rq = p;
3256 
3257 			tags->static_rqs[i] = rq;
3258 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3259 				tags->static_rqs[i] = NULL;
3260 				goto fail;
3261 			}
3262 
3263 			p += rq_size;
3264 			i++;
3265 		}
3266 	}
3267 	return 0;
3268 
3269 fail:
3270 	blk_mq_free_rqs(set, tags, hctx_idx);
3271 	return -ENOMEM;
3272 }
3273 
3274 struct rq_iter_data {
3275 	struct blk_mq_hw_ctx *hctx;
3276 	bool has_rq;
3277 };
3278 
3279 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3280 {
3281 	struct rq_iter_data *iter_data = data;
3282 
3283 	if (rq->mq_hctx != iter_data->hctx)
3284 		return true;
3285 	iter_data->has_rq = true;
3286 	return false;
3287 }
3288 
3289 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3290 {
3291 	struct blk_mq_tags *tags = hctx->sched_tags ?
3292 			hctx->sched_tags : hctx->tags;
3293 	struct rq_iter_data data = {
3294 		.hctx	= hctx,
3295 	};
3296 
3297 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3298 	return data.has_rq;
3299 }
3300 
3301 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3302 		struct blk_mq_hw_ctx *hctx)
3303 {
3304 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3305 		return false;
3306 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3307 		return false;
3308 	return true;
3309 }
3310 
3311 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3312 {
3313 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3314 			struct blk_mq_hw_ctx, cpuhp_online);
3315 
3316 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3317 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3318 		return 0;
3319 
3320 	/*
3321 	 * Prevent new request from being allocated on the current hctx.
3322 	 *
3323 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3324 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3325 	 * seen once we return from the tag allocator.
3326 	 */
3327 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3328 	smp_mb__after_atomic();
3329 
3330 	/*
3331 	 * Try to grab a reference to the queue and wait for any outstanding
3332 	 * requests.  If we could not grab a reference the queue has been
3333 	 * frozen and there are no requests.
3334 	 */
3335 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3336 		while (blk_mq_hctx_has_requests(hctx))
3337 			msleep(5);
3338 		percpu_ref_put(&hctx->queue->q_usage_counter);
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3345 {
3346 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3347 			struct blk_mq_hw_ctx, cpuhp_online);
3348 
3349 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3350 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3351 	return 0;
3352 }
3353 
3354 /*
3355  * 'cpu' is going away. splice any existing rq_list entries from this
3356  * software queue to the hw queue dispatch list, and ensure that it
3357  * gets run.
3358  */
3359 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3360 {
3361 	struct blk_mq_hw_ctx *hctx;
3362 	struct blk_mq_ctx *ctx;
3363 	LIST_HEAD(tmp);
3364 	enum hctx_type type;
3365 
3366 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3367 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3368 		return 0;
3369 
3370 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3371 	type = hctx->type;
3372 
3373 	spin_lock(&ctx->lock);
3374 	if (!list_empty(&ctx->rq_lists[type])) {
3375 		list_splice_init(&ctx->rq_lists[type], &tmp);
3376 		blk_mq_hctx_clear_pending(hctx, ctx);
3377 	}
3378 	spin_unlock(&ctx->lock);
3379 
3380 	if (list_empty(&tmp))
3381 		return 0;
3382 
3383 	spin_lock(&hctx->lock);
3384 	list_splice_tail_init(&tmp, &hctx->dispatch);
3385 	spin_unlock(&hctx->lock);
3386 
3387 	blk_mq_run_hw_queue(hctx, true);
3388 	return 0;
3389 }
3390 
3391 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3392 {
3393 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3394 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3395 						    &hctx->cpuhp_online);
3396 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3397 					    &hctx->cpuhp_dead);
3398 }
3399 
3400 /*
3401  * Before freeing hw queue, clearing the flush request reference in
3402  * tags->rqs[] for avoiding potential UAF.
3403  */
3404 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3405 		unsigned int queue_depth, struct request *flush_rq)
3406 {
3407 	int i;
3408 	unsigned long flags;
3409 
3410 	/* The hw queue may not be mapped yet */
3411 	if (!tags)
3412 		return;
3413 
3414 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3415 
3416 	for (i = 0; i < queue_depth; i++)
3417 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3418 
3419 	/*
3420 	 * Wait until all pending iteration is done.
3421 	 *
3422 	 * Request reference is cleared and it is guaranteed to be observed
3423 	 * after the ->lock is released.
3424 	 */
3425 	spin_lock_irqsave(&tags->lock, flags);
3426 	spin_unlock_irqrestore(&tags->lock, flags);
3427 }
3428 
3429 /* hctx->ctxs will be freed in queue's release handler */
3430 static void blk_mq_exit_hctx(struct request_queue *q,
3431 		struct blk_mq_tag_set *set,
3432 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3433 {
3434 	struct request *flush_rq = hctx->fq->flush_rq;
3435 
3436 	if (blk_mq_hw_queue_mapped(hctx))
3437 		blk_mq_tag_idle(hctx);
3438 
3439 	if (blk_queue_init_done(q))
3440 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3441 				set->queue_depth, flush_rq);
3442 	if (set->ops->exit_request)
3443 		set->ops->exit_request(set, flush_rq, hctx_idx);
3444 
3445 	if (set->ops->exit_hctx)
3446 		set->ops->exit_hctx(hctx, hctx_idx);
3447 
3448 	blk_mq_remove_cpuhp(hctx);
3449 
3450 	xa_erase(&q->hctx_table, hctx_idx);
3451 
3452 	spin_lock(&q->unused_hctx_lock);
3453 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3454 	spin_unlock(&q->unused_hctx_lock);
3455 }
3456 
3457 static void blk_mq_exit_hw_queues(struct request_queue *q,
3458 		struct blk_mq_tag_set *set, int nr_queue)
3459 {
3460 	struct blk_mq_hw_ctx *hctx;
3461 	unsigned long i;
3462 
3463 	queue_for_each_hw_ctx(q, hctx, i) {
3464 		if (i == nr_queue)
3465 			break;
3466 		blk_mq_exit_hctx(q, set, hctx, i);
3467 	}
3468 }
3469 
3470 static int blk_mq_init_hctx(struct request_queue *q,
3471 		struct blk_mq_tag_set *set,
3472 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3473 {
3474 	hctx->queue_num = hctx_idx;
3475 
3476 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3477 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3478 				&hctx->cpuhp_online);
3479 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3480 
3481 	hctx->tags = set->tags[hctx_idx];
3482 
3483 	if (set->ops->init_hctx &&
3484 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3485 		goto unregister_cpu_notifier;
3486 
3487 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3488 				hctx->numa_node))
3489 		goto exit_hctx;
3490 
3491 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3492 		goto exit_flush_rq;
3493 
3494 	return 0;
3495 
3496  exit_flush_rq:
3497 	if (set->ops->exit_request)
3498 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3499  exit_hctx:
3500 	if (set->ops->exit_hctx)
3501 		set->ops->exit_hctx(hctx, hctx_idx);
3502  unregister_cpu_notifier:
3503 	blk_mq_remove_cpuhp(hctx);
3504 	return -1;
3505 }
3506 
3507 static struct blk_mq_hw_ctx *
3508 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3509 		int node)
3510 {
3511 	struct blk_mq_hw_ctx *hctx;
3512 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3513 
3514 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3515 	if (!hctx)
3516 		goto fail_alloc_hctx;
3517 
3518 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3519 		goto free_hctx;
3520 
3521 	atomic_set(&hctx->nr_active, 0);
3522 	if (node == NUMA_NO_NODE)
3523 		node = set->numa_node;
3524 	hctx->numa_node = node;
3525 
3526 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3527 	spin_lock_init(&hctx->lock);
3528 	INIT_LIST_HEAD(&hctx->dispatch);
3529 	hctx->queue = q;
3530 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3531 
3532 	INIT_LIST_HEAD(&hctx->hctx_list);
3533 
3534 	/*
3535 	 * Allocate space for all possible cpus to avoid allocation at
3536 	 * runtime
3537 	 */
3538 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3539 			gfp, node);
3540 	if (!hctx->ctxs)
3541 		goto free_cpumask;
3542 
3543 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3544 				gfp, node, false, false))
3545 		goto free_ctxs;
3546 	hctx->nr_ctx = 0;
3547 
3548 	spin_lock_init(&hctx->dispatch_wait_lock);
3549 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3550 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3551 
3552 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3553 	if (!hctx->fq)
3554 		goto free_bitmap;
3555 
3556 	blk_mq_hctx_kobj_init(hctx);
3557 
3558 	return hctx;
3559 
3560  free_bitmap:
3561 	sbitmap_free(&hctx->ctx_map);
3562  free_ctxs:
3563 	kfree(hctx->ctxs);
3564  free_cpumask:
3565 	free_cpumask_var(hctx->cpumask);
3566  free_hctx:
3567 	kfree(hctx);
3568  fail_alloc_hctx:
3569 	return NULL;
3570 }
3571 
3572 static void blk_mq_init_cpu_queues(struct request_queue *q,
3573 				   unsigned int nr_hw_queues)
3574 {
3575 	struct blk_mq_tag_set *set = q->tag_set;
3576 	unsigned int i, j;
3577 
3578 	for_each_possible_cpu(i) {
3579 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3580 		struct blk_mq_hw_ctx *hctx;
3581 		int k;
3582 
3583 		__ctx->cpu = i;
3584 		spin_lock_init(&__ctx->lock);
3585 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3586 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3587 
3588 		__ctx->queue = q;
3589 
3590 		/*
3591 		 * Set local node, IFF we have more than one hw queue. If
3592 		 * not, we remain on the home node of the device
3593 		 */
3594 		for (j = 0; j < set->nr_maps; j++) {
3595 			hctx = blk_mq_map_queue_type(q, j, i);
3596 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3597 				hctx->numa_node = cpu_to_node(i);
3598 		}
3599 	}
3600 }
3601 
3602 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3603 					     unsigned int hctx_idx,
3604 					     unsigned int depth)
3605 {
3606 	struct blk_mq_tags *tags;
3607 	int ret;
3608 
3609 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3610 	if (!tags)
3611 		return NULL;
3612 
3613 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3614 	if (ret) {
3615 		blk_mq_free_rq_map(tags);
3616 		return NULL;
3617 	}
3618 
3619 	return tags;
3620 }
3621 
3622 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3623 				       int hctx_idx)
3624 {
3625 	if (blk_mq_is_shared_tags(set->flags)) {
3626 		set->tags[hctx_idx] = set->shared_tags;
3627 
3628 		return true;
3629 	}
3630 
3631 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3632 						       set->queue_depth);
3633 
3634 	return set->tags[hctx_idx];
3635 }
3636 
3637 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3638 			     struct blk_mq_tags *tags,
3639 			     unsigned int hctx_idx)
3640 {
3641 	if (tags) {
3642 		blk_mq_free_rqs(set, tags, hctx_idx);
3643 		blk_mq_free_rq_map(tags);
3644 	}
3645 }
3646 
3647 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3648 				      unsigned int hctx_idx)
3649 {
3650 	if (!blk_mq_is_shared_tags(set->flags))
3651 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3652 
3653 	set->tags[hctx_idx] = NULL;
3654 }
3655 
3656 static void blk_mq_map_swqueue(struct request_queue *q)
3657 {
3658 	unsigned int j, hctx_idx;
3659 	unsigned long i;
3660 	struct blk_mq_hw_ctx *hctx;
3661 	struct blk_mq_ctx *ctx;
3662 	struct blk_mq_tag_set *set = q->tag_set;
3663 
3664 	queue_for_each_hw_ctx(q, hctx, i) {
3665 		cpumask_clear(hctx->cpumask);
3666 		hctx->nr_ctx = 0;
3667 		hctx->dispatch_from = NULL;
3668 	}
3669 
3670 	/*
3671 	 * Map software to hardware queues.
3672 	 *
3673 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3674 	 */
3675 	for_each_possible_cpu(i) {
3676 
3677 		ctx = per_cpu_ptr(q->queue_ctx, i);
3678 		for (j = 0; j < set->nr_maps; j++) {
3679 			if (!set->map[j].nr_queues) {
3680 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3681 						HCTX_TYPE_DEFAULT, i);
3682 				continue;
3683 			}
3684 			hctx_idx = set->map[j].mq_map[i];
3685 			/* unmapped hw queue can be remapped after CPU topo changed */
3686 			if (!set->tags[hctx_idx] &&
3687 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3688 				/*
3689 				 * If tags initialization fail for some hctx,
3690 				 * that hctx won't be brought online.  In this
3691 				 * case, remap the current ctx to hctx[0] which
3692 				 * is guaranteed to always have tags allocated
3693 				 */
3694 				set->map[j].mq_map[i] = 0;
3695 			}
3696 
3697 			hctx = blk_mq_map_queue_type(q, j, i);
3698 			ctx->hctxs[j] = hctx;
3699 			/*
3700 			 * If the CPU is already set in the mask, then we've
3701 			 * mapped this one already. This can happen if
3702 			 * devices share queues across queue maps.
3703 			 */
3704 			if (cpumask_test_cpu(i, hctx->cpumask))
3705 				continue;
3706 
3707 			cpumask_set_cpu(i, hctx->cpumask);
3708 			hctx->type = j;
3709 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3710 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3711 
3712 			/*
3713 			 * If the nr_ctx type overflows, we have exceeded the
3714 			 * amount of sw queues we can support.
3715 			 */
3716 			BUG_ON(!hctx->nr_ctx);
3717 		}
3718 
3719 		for (; j < HCTX_MAX_TYPES; j++)
3720 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3721 					HCTX_TYPE_DEFAULT, i);
3722 	}
3723 
3724 	queue_for_each_hw_ctx(q, hctx, i) {
3725 		/*
3726 		 * If no software queues are mapped to this hardware queue,
3727 		 * disable it and free the request entries.
3728 		 */
3729 		if (!hctx->nr_ctx) {
3730 			/* Never unmap queue 0.  We need it as a
3731 			 * fallback in case of a new remap fails
3732 			 * allocation
3733 			 */
3734 			if (i)
3735 				__blk_mq_free_map_and_rqs(set, i);
3736 
3737 			hctx->tags = NULL;
3738 			continue;
3739 		}
3740 
3741 		hctx->tags = set->tags[i];
3742 		WARN_ON(!hctx->tags);
3743 
3744 		/*
3745 		 * Set the map size to the number of mapped software queues.
3746 		 * This is more accurate and more efficient than looping
3747 		 * over all possibly mapped software queues.
3748 		 */
3749 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3750 
3751 		/*
3752 		 * Initialize batch roundrobin counts
3753 		 */
3754 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3755 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3756 	}
3757 }
3758 
3759 /*
3760  * Caller needs to ensure that we're either frozen/quiesced, or that
3761  * the queue isn't live yet.
3762  */
3763 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3764 {
3765 	struct blk_mq_hw_ctx *hctx;
3766 	unsigned long i;
3767 
3768 	queue_for_each_hw_ctx(q, hctx, i) {
3769 		if (shared) {
3770 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3771 		} else {
3772 			blk_mq_tag_idle(hctx);
3773 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3774 		}
3775 	}
3776 }
3777 
3778 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3779 					 bool shared)
3780 {
3781 	struct request_queue *q;
3782 
3783 	lockdep_assert_held(&set->tag_list_lock);
3784 
3785 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3786 		blk_mq_freeze_queue(q);
3787 		queue_set_hctx_shared(q, shared);
3788 		blk_mq_unfreeze_queue(q);
3789 	}
3790 }
3791 
3792 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3793 {
3794 	struct blk_mq_tag_set *set = q->tag_set;
3795 
3796 	mutex_lock(&set->tag_list_lock);
3797 	list_del(&q->tag_set_list);
3798 	if (list_is_singular(&set->tag_list)) {
3799 		/* just transitioned to unshared */
3800 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3801 		/* update existing queue */
3802 		blk_mq_update_tag_set_shared(set, false);
3803 	}
3804 	mutex_unlock(&set->tag_list_lock);
3805 	INIT_LIST_HEAD(&q->tag_set_list);
3806 }
3807 
3808 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3809 				     struct request_queue *q)
3810 {
3811 	mutex_lock(&set->tag_list_lock);
3812 
3813 	/*
3814 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3815 	 */
3816 	if (!list_empty(&set->tag_list) &&
3817 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3818 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3819 		/* update existing queue */
3820 		blk_mq_update_tag_set_shared(set, true);
3821 	}
3822 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3823 		queue_set_hctx_shared(q, true);
3824 	list_add_tail(&q->tag_set_list, &set->tag_list);
3825 
3826 	mutex_unlock(&set->tag_list_lock);
3827 }
3828 
3829 /* All allocations will be freed in release handler of q->mq_kobj */
3830 static int blk_mq_alloc_ctxs(struct request_queue *q)
3831 {
3832 	struct blk_mq_ctxs *ctxs;
3833 	int cpu;
3834 
3835 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3836 	if (!ctxs)
3837 		return -ENOMEM;
3838 
3839 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3840 	if (!ctxs->queue_ctx)
3841 		goto fail;
3842 
3843 	for_each_possible_cpu(cpu) {
3844 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3845 		ctx->ctxs = ctxs;
3846 	}
3847 
3848 	q->mq_kobj = &ctxs->kobj;
3849 	q->queue_ctx = ctxs->queue_ctx;
3850 
3851 	return 0;
3852  fail:
3853 	kfree(ctxs);
3854 	return -ENOMEM;
3855 }
3856 
3857 /*
3858  * It is the actual release handler for mq, but we do it from
3859  * request queue's release handler for avoiding use-after-free
3860  * and headache because q->mq_kobj shouldn't have been introduced,
3861  * but we can't group ctx/kctx kobj without it.
3862  */
3863 void blk_mq_release(struct request_queue *q)
3864 {
3865 	struct blk_mq_hw_ctx *hctx, *next;
3866 	unsigned long i;
3867 
3868 	queue_for_each_hw_ctx(q, hctx, i)
3869 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3870 
3871 	/* all hctx are in .unused_hctx_list now */
3872 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3873 		list_del_init(&hctx->hctx_list);
3874 		kobject_put(&hctx->kobj);
3875 	}
3876 
3877 	xa_destroy(&q->hctx_table);
3878 
3879 	/*
3880 	 * release .mq_kobj and sw queue's kobject now because
3881 	 * both share lifetime with request queue.
3882 	 */
3883 	blk_mq_sysfs_deinit(q);
3884 }
3885 
3886 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3887 		void *queuedata)
3888 {
3889 	struct request_queue *q;
3890 	int ret;
3891 
3892 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3893 	if (!q)
3894 		return ERR_PTR(-ENOMEM);
3895 	q->queuedata = queuedata;
3896 	ret = blk_mq_init_allocated_queue(set, q);
3897 	if (ret) {
3898 		blk_cleanup_queue(q);
3899 		return ERR_PTR(ret);
3900 	}
3901 	return q;
3902 }
3903 
3904 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3905 {
3906 	return blk_mq_init_queue_data(set, NULL);
3907 }
3908 EXPORT_SYMBOL(blk_mq_init_queue);
3909 
3910 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3911 		struct lock_class_key *lkclass)
3912 {
3913 	struct request_queue *q;
3914 	struct gendisk *disk;
3915 
3916 	q = blk_mq_init_queue_data(set, queuedata);
3917 	if (IS_ERR(q))
3918 		return ERR_CAST(q);
3919 
3920 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3921 	if (!disk) {
3922 		blk_cleanup_queue(q);
3923 		return ERR_PTR(-ENOMEM);
3924 	}
3925 	return disk;
3926 }
3927 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3928 
3929 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3930 		struct blk_mq_tag_set *set, struct request_queue *q,
3931 		int hctx_idx, int node)
3932 {
3933 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3934 
3935 	/* reuse dead hctx first */
3936 	spin_lock(&q->unused_hctx_lock);
3937 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3938 		if (tmp->numa_node == node) {
3939 			hctx = tmp;
3940 			break;
3941 		}
3942 	}
3943 	if (hctx)
3944 		list_del_init(&hctx->hctx_list);
3945 	spin_unlock(&q->unused_hctx_lock);
3946 
3947 	if (!hctx)
3948 		hctx = blk_mq_alloc_hctx(q, set, node);
3949 	if (!hctx)
3950 		goto fail;
3951 
3952 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3953 		goto free_hctx;
3954 
3955 	return hctx;
3956 
3957  free_hctx:
3958 	kobject_put(&hctx->kobj);
3959  fail:
3960 	return NULL;
3961 }
3962 
3963 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3964 						struct request_queue *q)
3965 {
3966 	struct blk_mq_hw_ctx *hctx;
3967 	unsigned long i, j;
3968 
3969 	/* protect against switching io scheduler  */
3970 	mutex_lock(&q->sysfs_lock);
3971 	for (i = 0; i < set->nr_hw_queues; i++) {
3972 		int old_node;
3973 		int node = blk_mq_get_hctx_node(set, i);
3974 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3975 
3976 		if (old_hctx) {
3977 			old_node = old_hctx->numa_node;
3978 			blk_mq_exit_hctx(q, set, old_hctx, i);
3979 		}
3980 
3981 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3982 			if (!old_hctx)
3983 				break;
3984 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3985 					node, old_node);
3986 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3987 			WARN_ON_ONCE(!hctx);
3988 		}
3989 	}
3990 	/*
3991 	 * Increasing nr_hw_queues fails. Free the newly allocated
3992 	 * hctxs and keep the previous q->nr_hw_queues.
3993 	 */
3994 	if (i != set->nr_hw_queues) {
3995 		j = q->nr_hw_queues;
3996 	} else {
3997 		j = i;
3998 		q->nr_hw_queues = set->nr_hw_queues;
3999 	}
4000 
4001 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4002 		blk_mq_exit_hctx(q, set, hctx, j);
4003 	mutex_unlock(&q->sysfs_lock);
4004 }
4005 
4006 static void blk_mq_update_poll_flag(struct request_queue *q)
4007 {
4008 	struct blk_mq_tag_set *set = q->tag_set;
4009 
4010 	if (set->nr_maps > HCTX_TYPE_POLL &&
4011 	    set->map[HCTX_TYPE_POLL].nr_queues)
4012 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4013 	else
4014 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4015 }
4016 
4017 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4018 		struct request_queue *q)
4019 {
4020 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4021 			!!(set->flags & BLK_MQ_F_BLOCKING));
4022 
4023 	/* mark the queue as mq asap */
4024 	q->mq_ops = set->ops;
4025 
4026 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4027 					     blk_mq_poll_stats_bkt,
4028 					     BLK_MQ_POLL_STATS_BKTS, q);
4029 	if (!q->poll_cb)
4030 		goto err_exit;
4031 
4032 	if (blk_mq_alloc_ctxs(q))
4033 		goto err_poll;
4034 
4035 	/* init q->mq_kobj and sw queues' kobjects */
4036 	blk_mq_sysfs_init(q);
4037 
4038 	INIT_LIST_HEAD(&q->unused_hctx_list);
4039 	spin_lock_init(&q->unused_hctx_lock);
4040 
4041 	xa_init(&q->hctx_table);
4042 
4043 	blk_mq_realloc_hw_ctxs(set, q);
4044 	if (!q->nr_hw_queues)
4045 		goto err_hctxs;
4046 
4047 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4048 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4049 
4050 	q->tag_set = set;
4051 
4052 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4053 	blk_mq_update_poll_flag(q);
4054 
4055 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4056 	INIT_LIST_HEAD(&q->requeue_list);
4057 	spin_lock_init(&q->requeue_lock);
4058 
4059 	q->nr_requests = set->queue_depth;
4060 
4061 	/*
4062 	 * Default to classic polling
4063 	 */
4064 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4065 
4066 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4067 	blk_mq_add_queue_tag_set(set, q);
4068 	blk_mq_map_swqueue(q);
4069 	return 0;
4070 
4071 err_hctxs:
4072 	xa_destroy(&q->hctx_table);
4073 	q->nr_hw_queues = 0;
4074 	blk_mq_sysfs_deinit(q);
4075 err_poll:
4076 	blk_stat_free_callback(q->poll_cb);
4077 	q->poll_cb = NULL;
4078 err_exit:
4079 	q->mq_ops = NULL;
4080 	return -ENOMEM;
4081 }
4082 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4083 
4084 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4085 void blk_mq_exit_queue(struct request_queue *q)
4086 {
4087 	struct blk_mq_tag_set *set = q->tag_set;
4088 
4089 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4090 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4091 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4092 	blk_mq_del_queue_tag_set(q);
4093 }
4094 
4095 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4096 {
4097 	int i;
4098 
4099 	if (blk_mq_is_shared_tags(set->flags)) {
4100 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4101 						BLK_MQ_NO_HCTX_IDX,
4102 						set->queue_depth);
4103 		if (!set->shared_tags)
4104 			return -ENOMEM;
4105 	}
4106 
4107 	for (i = 0; i < set->nr_hw_queues; i++) {
4108 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4109 			goto out_unwind;
4110 		cond_resched();
4111 	}
4112 
4113 	return 0;
4114 
4115 out_unwind:
4116 	while (--i >= 0)
4117 		__blk_mq_free_map_and_rqs(set, i);
4118 
4119 	if (blk_mq_is_shared_tags(set->flags)) {
4120 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4121 					BLK_MQ_NO_HCTX_IDX);
4122 	}
4123 
4124 	return -ENOMEM;
4125 }
4126 
4127 /*
4128  * Allocate the request maps associated with this tag_set. Note that this
4129  * may reduce the depth asked for, if memory is tight. set->queue_depth
4130  * will be updated to reflect the allocated depth.
4131  */
4132 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4133 {
4134 	unsigned int depth;
4135 	int err;
4136 
4137 	depth = set->queue_depth;
4138 	do {
4139 		err = __blk_mq_alloc_rq_maps(set);
4140 		if (!err)
4141 			break;
4142 
4143 		set->queue_depth >>= 1;
4144 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4145 			err = -ENOMEM;
4146 			break;
4147 		}
4148 	} while (set->queue_depth);
4149 
4150 	if (!set->queue_depth || err) {
4151 		pr_err("blk-mq: failed to allocate request map\n");
4152 		return -ENOMEM;
4153 	}
4154 
4155 	if (depth != set->queue_depth)
4156 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4157 						depth, set->queue_depth);
4158 
4159 	return 0;
4160 }
4161 
4162 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4163 {
4164 	/*
4165 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4166 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4167 	 * number of hardware queues.
4168 	 */
4169 	if (set->nr_maps == 1)
4170 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4171 
4172 	if (set->ops->map_queues && !is_kdump_kernel()) {
4173 		int i;
4174 
4175 		/*
4176 		 * transport .map_queues is usually done in the following
4177 		 * way:
4178 		 *
4179 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4180 		 * 	mask = get_cpu_mask(queue)
4181 		 * 	for_each_cpu(cpu, mask)
4182 		 * 		set->map[x].mq_map[cpu] = queue;
4183 		 * }
4184 		 *
4185 		 * When we need to remap, the table has to be cleared for
4186 		 * killing stale mapping since one CPU may not be mapped
4187 		 * to any hw queue.
4188 		 */
4189 		for (i = 0; i < set->nr_maps; i++)
4190 			blk_mq_clear_mq_map(&set->map[i]);
4191 
4192 		return set->ops->map_queues(set);
4193 	} else {
4194 		BUG_ON(set->nr_maps > 1);
4195 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4196 	}
4197 }
4198 
4199 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4200 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4201 {
4202 	struct blk_mq_tags **new_tags;
4203 
4204 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4205 		return 0;
4206 
4207 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4208 				GFP_KERNEL, set->numa_node);
4209 	if (!new_tags)
4210 		return -ENOMEM;
4211 
4212 	if (set->tags)
4213 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4214 		       sizeof(*set->tags));
4215 	kfree(set->tags);
4216 	set->tags = new_tags;
4217 	set->nr_hw_queues = new_nr_hw_queues;
4218 
4219 	return 0;
4220 }
4221 
4222 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4223 				int new_nr_hw_queues)
4224 {
4225 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4226 }
4227 
4228 /*
4229  * Alloc a tag set to be associated with one or more request queues.
4230  * May fail with EINVAL for various error conditions. May adjust the
4231  * requested depth down, if it's too large. In that case, the set
4232  * value will be stored in set->queue_depth.
4233  */
4234 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4235 {
4236 	int i, ret;
4237 
4238 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4239 
4240 	if (!set->nr_hw_queues)
4241 		return -EINVAL;
4242 	if (!set->queue_depth)
4243 		return -EINVAL;
4244 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4245 		return -EINVAL;
4246 
4247 	if (!set->ops->queue_rq)
4248 		return -EINVAL;
4249 
4250 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4251 		return -EINVAL;
4252 
4253 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4254 		pr_info("blk-mq: reduced tag depth to %u\n",
4255 			BLK_MQ_MAX_DEPTH);
4256 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4257 	}
4258 
4259 	if (!set->nr_maps)
4260 		set->nr_maps = 1;
4261 	else if (set->nr_maps > HCTX_MAX_TYPES)
4262 		return -EINVAL;
4263 
4264 	/*
4265 	 * If a crashdump is active, then we are potentially in a very
4266 	 * memory constrained environment. Limit us to 1 queue and
4267 	 * 64 tags to prevent using too much memory.
4268 	 */
4269 	if (is_kdump_kernel()) {
4270 		set->nr_hw_queues = 1;
4271 		set->nr_maps = 1;
4272 		set->queue_depth = min(64U, set->queue_depth);
4273 	}
4274 	/*
4275 	 * There is no use for more h/w queues than cpus if we just have
4276 	 * a single map
4277 	 */
4278 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4279 		set->nr_hw_queues = nr_cpu_ids;
4280 
4281 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4282 		return -ENOMEM;
4283 
4284 	ret = -ENOMEM;
4285 	for (i = 0; i < set->nr_maps; i++) {
4286 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4287 						  sizeof(set->map[i].mq_map[0]),
4288 						  GFP_KERNEL, set->numa_node);
4289 		if (!set->map[i].mq_map)
4290 			goto out_free_mq_map;
4291 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4292 	}
4293 
4294 	ret = blk_mq_update_queue_map(set);
4295 	if (ret)
4296 		goto out_free_mq_map;
4297 
4298 	ret = blk_mq_alloc_set_map_and_rqs(set);
4299 	if (ret)
4300 		goto out_free_mq_map;
4301 
4302 	mutex_init(&set->tag_list_lock);
4303 	INIT_LIST_HEAD(&set->tag_list);
4304 
4305 	return 0;
4306 
4307 out_free_mq_map:
4308 	for (i = 0; i < set->nr_maps; i++) {
4309 		kfree(set->map[i].mq_map);
4310 		set->map[i].mq_map = NULL;
4311 	}
4312 	kfree(set->tags);
4313 	set->tags = NULL;
4314 	return ret;
4315 }
4316 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4317 
4318 /* allocate and initialize a tagset for a simple single-queue device */
4319 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4320 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4321 		unsigned int set_flags)
4322 {
4323 	memset(set, 0, sizeof(*set));
4324 	set->ops = ops;
4325 	set->nr_hw_queues = 1;
4326 	set->nr_maps = 1;
4327 	set->queue_depth = queue_depth;
4328 	set->numa_node = NUMA_NO_NODE;
4329 	set->flags = set_flags;
4330 	return blk_mq_alloc_tag_set(set);
4331 }
4332 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4333 
4334 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4335 {
4336 	int i, j;
4337 
4338 	for (i = 0; i < set->nr_hw_queues; i++)
4339 		__blk_mq_free_map_and_rqs(set, i);
4340 
4341 	if (blk_mq_is_shared_tags(set->flags)) {
4342 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4343 					BLK_MQ_NO_HCTX_IDX);
4344 	}
4345 
4346 	for (j = 0; j < set->nr_maps; j++) {
4347 		kfree(set->map[j].mq_map);
4348 		set->map[j].mq_map = NULL;
4349 	}
4350 
4351 	kfree(set->tags);
4352 	set->tags = NULL;
4353 }
4354 EXPORT_SYMBOL(blk_mq_free_tag_set);
4355 
4356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4357 {
4358 	struct blk_mq_tag_set *set = q->tag_set;
4359 	struct blk_mq_hw_ctx *hctx;
4360 	int ret;
4361 	unsigned long i;
4362 
4363 	if (!set)
4364 		return -EINVAL;
4365 
4366 	if (q->nr_requests == nr)
4367 		return 0;
4368 
4369 	blk_mq_freeze_queue(q);
4370 	blk_mq_quiesce_queue(q);
4371 
4372 	ret = 0;
4373 	queue_for_each_hw_ctx(q, hctx, i) {
4374 		if (!hctx->tags)
4375 			continue;
4376 		/*
4377 		 * If we're using an MQ scheduler, just update the scheduler
4378 		 * queue depth. This is similar to what the old code would do.
4379 		 */
4380 		if (hctx->sched_tags) {
4381 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4382 						      nr, true);
4383 		} else {
4384 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4385 						      false);
4386 		}
4387 		if (ret)
4388 			break;
4389 		if (q->elevator && q->elevator->type->ops.depth_updated)
4390 			q->elevator->type->ops.depth_updated(hctx);
4391 	}
4392 	if (!ret) {
4393 		q->nr_requests = nr;
4394 		if (blk_mq_is_shared_tags(set->flags)) {
4395 			if (q->elevator)
4396 				blk_mq_tag_update_sched_shared_tags(q);
4397 			else
4398 				blk_mq_tag_resize_shared_tags(set, nr);
4399 		}
4400 	}
4401 
4402 	blk_mq_unquiesce_queue(q);
4403 	blk_mq_unfreeze_queue(q);
4404 
4405 	return ret;
4406 }
4407 
4408 /*
4409  * request_queue and elevator_type pair.
4410  * It is just used by __blk_mq_update_nr_hw_queues to cache
4411  * the elevator_type associated with a request_queue.
4412  */
4413 struct blk_mq_qe_pair {
4414 	struct list_head node;
4415 	struct request_queue *q;
4416 	struct elevator_type *type;
4417 };
4418 
4419 /*
4420  * Cache the elevator_type in qe pair list and switch the
4421  * io scheduler to 'none'
4422  */
4423 static bool blk_mq_elv_switch_none(struct list_head *head,
4424 		struct request_queue *q)
4425 {
4426 	struct blk_mq_qe_pair *qe;
4427 
4428 	if (!q->elevator)
4429 		return true;
4430 
4431 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4432 	if (!qe)
4433 		return false;
4434 
4435 	/* q->elevator needs protection from ->sysfs_lock */
4436 	mutex_lock(&q->sysfs_lock);
4437 
4438 	INIT_LIST_HEAD(&qe->node);
4439 	qe->q = q;
4440 	qe->type = q->elevator->type;
4441 	list_add(&qe->node, head);
4442 
4443 	/*
4444 	 * After elevator_switch_mq, the previous elevator_queue will be
4445 	 * released by elevator_release. The reference of the io scheduler
4446 	 * module get by elevator_get will also be put. So we need to get
4447 	 * a reference of the io scheduler module here to prevent it to be
4448 	 * removed.
4449 	 */
4450 	__module_get(qe->type->elevator_owner);
4451 	elevator_switch_mq(q, NULL);
4452 	mutex_unlock(&q->sysfs_lock);
4453 
4454 	return true;
4455 }
4456 
4457 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4458 						struct request_queue *q)
4459 {
4460 	struct blk_mq_qe_pair *qe;
4461 
4462 	list_for_each_entry(qe, head, node)
4463 		if (qe->q == q)
4464 			return qe;
4465 
4466 	return NULL;
4467 }
4468 
4469 static void blk_mq_elv_switch_back(struct list_head *head,
4470 				  struct request_queue *q)
4471 {
4472 	struct blk_mq_qe_pair *qe;
4473 	struct elevator_type *t;
4474 
4475 	qe = blk_lookup_qe_pair(head, q);
4476 	if (!qe)
4477 		return;
4478 	t = qe->type;
4479 	list_del(&qe->node);
4480 	kfree(qe);
4481 
4482 	mutex_lock(&q->sysfs_lock);
4483 	elevator_switch_mq(q, t);
4484 	mutex_unlock(&q->sysfs_lock);
4485 }
4486 
4487 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4488 							int nr_hw_queues)
4489 {
4490 	struct request_queue *q;
4491 	LIST_HEAD(head);
4492 	int prev_nr_hw_queues;
4493 
4494 	lockdep_assert_held(&set->tag_list_lock);
4495 
4496 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4497 		nr_hw_queues = nr_cpu_ids;
4498 	if (nr_hw_queues < 1)
4499 		return;
4500 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4501 		return;
4502 
4503 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4504 		blk_mq_freeze_queue(q);
4505 	/*
4506 	 * Switch IO scheduler to 'none', cleaning up the data associated
4507 	 * with the previous scheduler. We will switch back once we are done
4508 	 * updating the new sw to hw queue mappings.
4509 	 */
4510 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4511 		if (!blk_mq_elv_switch_none(&head, q))
4512 			goto switch_back;
4513 
4514 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4515 		blk_mq_debugfs_unregister_hctxs(q);
4516 		blk_mq_sysfs_unregister(q);
4517 	}
4518 
4519 	prev_nr_hw_queues = set->nr_hw_queues;
4520 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4521 	    0)
4522 		goto reregister;
4523 
4524 	set->nr_hw_queues = nr_hw_queues;
4525 fallback:
4526 	blk_mq_update_queue_map(set);
4527 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4528 		blk_mq_realloc_hw_ctxs(set, q);
4529 		blk_mq_update_poll_flag(q);
4530 		if (q->nr_hw_queues != set->nr_hw_queues) {
4531 			int i = prev_nr_hw_queues;
4532 
4533 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4534 					nr_hw_queues, prev_nr_hw_queues);
4535 			for (; i < set->nr_hw_queues; i++)
4536 				__blk_mq_free_map_and_rqs(set, i);
4537 
4538 			set->nr_hw_queues = prev_nr_hw_queues;
4539 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4540 			goto fallback;
4541 		}
4542 		blk_mq_map_swqueue(q);
4543 	}
4544 
4545 reregister:
4546 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547 		blk_mq_sysfs_register(q);
4548 		blk_mq_debugfs_register_hctxs(q);
4549 	}
4550 
4551 switch_back:
4552 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4553 		blk_mq_elv_switch_back(&head, q);
4554 
4555 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4556 		blk_mq_unfreeze_queue(q);
4557 }
4558 
4559 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4560 {
4561 	mutex_lock(&set->tag_list_lock);
4562 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4563 	mutex_unlock(&set->tag_list_lock);
4564 }
4565 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4566 
4567 /* Enable polling stats and return whether they were already enabled. */
4568 static bool blk_poll_stats_enable(struct request_queue *q)
4569 {
4570 	if (q->poll_stat)
4571 		return true;
4572 
4573 	return blk_stats_alloc_enable(q);
4574 }
4575 
4576 static void blk_mq_poll_stats_start(struct request_queue *q)
4577 {
4578 	/*
4579 	 * We don't arm the callback if polling stats are not enabled or the
4580 	 * callback is already active.
4581 	 */
4582 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4583 		return;
4584 
4585 	blk_stat_activate_msecs(q->poll_cb, 100);
4586 }
4587 
4588 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4589 {
4590 	struct request_queue *q = cb->data;
4591 	int bucket;
4592 
4593 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4594 		if (cb->stat[bucket].nr_samples)
4595 			q->poll_stat[bucket] = cb->stat[bucket];
4596 	}
4597 }
4598 
4599 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4600 				       struct request *rq)
4601 {
4602 	unsigned long ret = 0;
4603 	int bucket;
4604 
4605 	/*
4606 	 * If stats collection isn't on, don't sleep but turn it on for
4607 	 * future users
4608 	 */
4609 	if (!blk_poll_stats_enable(q))
4610 		return 0;
4611 
4612 	/*
4613 	 * As an optimistic guess, use half of the mean service time
4614 	 * for this type of request. We can (and should) make this smarter.
4615 	 * For instance, if the completion latencies are tight, we can
4616 	 * get closer than just half the mean. This is especially
4617 	 * important on devices where the completion latencies are longer
4618 	 * than ~10 usec. We do use the stats for the relevant IO size
4619 	 * if available which does lead to better estimates.
4620 	 */
4621 	bucket = blk_mq_poll_stats_bkt(rq);
4622 	if (bucket < 0)
4623 		return ret;
4624 
4625 	if (q->poll_stat[bucket].nr_samples)
4626 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4627 
4628 	return ret;
4629 }
4630 
4631 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4632 {
4633 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4634 	struct request *rq = blk_qc_to_rq(hctx, qc);
4635 	struct hrtimer_sleeper hs;
4636 	enum hrtimer_mode mode;
4637 	unsigned int nsecs;
4638 	ktime_t kt;
4639 
4640 	/*
4641 	 * If a request has completed on queue that uses an I/O scheduler, we
4642 	 * won't get back a request from blk_qc_to_rq.
4643 	 */
4644 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4645 		return false;
4646 
4647 	/*
4648 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4649 	 *
4650 	 *  0:	use half of prev avg
4651 	 * >0:	use this specific value
4652 	 */
4653 	if (q->poll_nsec > 0)
4654 		nsecs = q->poll_nsec;
4655 	else
4656 		nsecs = blk_mq_poll_nsecs(q, rq);
4657 
4658 	if (!nsecs)
4659 		return false;
4660 
4661 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4662 
4663 	/*
4664 	 * This will be replaced with the stats tracking code, using
4665 	 * 'avg_completion_time / 2' as the pre-sleep target.
4666 	 */
4667 	kt = nsecs;
4668 
4669 	mode = HRTIMER_MODE_REL;
4670 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4671 	hrtimer_set_expires(&hs.timer, kt);
4672 
4673 	do {
4674 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4675 			break;
4676 		set_current_state(TASK_UNINTERRUPTIBLE);
4677 		hrtimer_sleeper_start_expires(&hs, mode);
4678 		if (hs.task)
4679 			io_schedule();
4680 		hrtimer_cancel(&hs.timer);
4681 		mode = HRTIMER_MODE_ABS;
4682 	} while (hs.task && !signal_pending(current));
4683 
4684 	__set_current_state(TASK_RUNNING);
4685 	destroy_hrtimer_on_stack(&hs.timer);
4686 
4687 	/*
4688 	 * If we sleep, have the caller restart the poll loop to reset the
4689 	 * state.  Like for the other success return cases, the caller is
4690 	 * responsible for checking if the IO completed.  If the IO isn't
4691 	 * complete, we'll get called again and will go straight to the busy
4692 	 * poll loop.
4693 	 */
4694 	return true;
4695 }
4696 
4697 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4698 			       struct io_comp_batch *iob, unsigned int flags)
4699 {
4700 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4701 	long state = get_current_state();
4702 	int ret;
4703 
4704 	do {
4705 		ret = q->mq_ops->poll(hctx, iob);
4706 		if (ret > 0) {
4707 			__set_current_state(TASK_RUNNING);
4708 			return ret;
4709 		}
4710 
4711 		if (signal_pending_state(state, current))
4712 			__set_current_state(TASK_RUNNING);
4713 		if (task_is_running(current))
4714 			return 1;
4715 
4716 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4717 			break;
4718 		cpu_relax();
4719 	} while (!need_resched());
4720 
4721 	__set_current_state(TASK_RUNNING);
4722 	return 0;
4723 }
4724 
4725 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4726 		unsigned int flags)
4727 {
4728 	if (!(flags & BLK_POLL_NOSLEEP) &&
4729 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4730 		if (blk_mq_poll_hybrid(q, cookie))
4731 			return 1;
4732 	}
4733 	return blk_mq_poll_classic(q, cookie, iob, flags);
4734 }
4735 
4736 unsigned int blk_mq_rq_cpu(struct request *rq)
4737 {
4738 	return rq->mq_ctx->cpu;
4739 }
4740 EXPORT_SYMBOL(blk_mq_rq_cpu);
4741 
4742 void blk_mq_cancel_work_sync(struct request_queue *q)
4743 {
4744 	if (queue_is_mq(q)) {
4745 		struct blk_mq_hw_ctx *hctx;
4746 		unsigned long i;
4747 
4748 		cancel_delayed_work_sync(&q->requeue_work);
4749 
4750 		queue_for_each_hw_ctx(q, hctx, i)
4751 			cancel_delayed_work_sync(&hctx->run_work);
4752 	}
4753 }
4754 
4755 static int __init blk_mq_init(void)
4756 {
4757 	int i;
4758 
4759 	for_each_possible_cpu(i)
4760 		init_llist_head(&per_cpu(blk_cpu_done, i));
4761 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4762 
4763 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4764 				  "block/softirq:dead", NULL,
4765 				  blk_softirq_cpu_dead);
4766 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4767 				blk_mq_hctx_notify_dead);
4768 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4769 				blk_mq_hctx_notify_online,
4770 				blk_mq_hctx_notify_offline);
4771 	return 0;
4772 }
4773 subsys_initcall(blk_mq_init);
4774