1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 #include <linux/blk-crypto.h> 30 31 #include <trace/events/block.h> 32 33 #include <linux/blk-mq.h> 34 #include <linux/t10-pi.h> 35 #include "blk.h" 36 #include "blk-mq.h" 37 #include "blk-mq-debugfs.h" 38 #include "blk-mq-tag.h" 39 #include "blk-pm.h" 40 #include "blk-stat.h" 41 #include "blk-mq-sched.h" 42 #include "blk-rq-qos.h" 43 44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 46 static void blk_mq_poll_stats_start(struct request_queue *q); 47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49 static int blk_mq_poll_stats_bkt(const struct request *rq) 50 { 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64 } 65 66 /* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71 { 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75 } 76 77 /* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82 { 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87 } 88 89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91 { 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95 } 96 97 struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100 }; 101 102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105 { 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113 } 114 115 unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117 { 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123 } 124 125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127 { 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133 } 134 135 void blk_freeze_queue_start(struct request_queue *q) 136 { 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146 } 147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149 void blk_mq_freeze_queue_wait(struct request_queue *q) 150 { 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152 } 153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157 { 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161 } 162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164 /* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168 void blk_freeze_queue(struct request_queue *q) 169 { 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179 } 180 181 void blk_mq_freeze_queue(struct request_queue *q) 182 { 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188 } 189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191 void blk_mq_unfreeze_queue(struct request_queue *q) 192 { 193 mutex_lock(&q->mq_freeze_lock); 194 q->mq_freeze_depth--; 195 WARN_ON_ONCE(q->mq_freeze_depth < 0); 196 if (!q->mq_freeze_depth) { 197 percpu_ref_resurrect(&q->q_usage_counter); 198 wake_up_all(&q->mq_freeze_wq); 199 } 200 mutex_unlock(&q->mq_freeze_lock); 201 } 202 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 203 204 /* 205 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 206 * mpt3sas driver such that this function can be removed. 207 */ 208 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 209 { 210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 211 } 212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 213 214 /** 215 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 216 * @q: request queue. 217 * 218 * Note: this function does not prevent that the struct request end_io() 219 * callback function is invoked. Once this function is returned, we make 220 * sure no dispatch can happen until the queue is unquiesced via 221 * blk_mq_unquiesce_queue(). 222 */ 223 void blk_mq_quiesce_queue(struct request_queue *q) 224 { 225 struct blk_mq_hw_ctx *hctx; 226 unsigned int i; 227 bool rcu = false; 228 229 blk_mq_quiesce_queue_nowait(q); 230 231 queue_for_each_hw_ctx(q, hctx, i) { 232 if (hctx->flags & BLK_MQ_F_BLOCKING) 233 synchronize_srcu(hctx->srcu); 234 else 235 rcu = true; 236 } 237 if (rcu) 238 synchronize_rcu(); 239 } 240 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 241 242 /* 243 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 244 * @q: request queue. 245 * 246 * This function recovers queue into the state before quiescing 247 * which is done by blk_mq_quiesce_queue. 248 */ 249 void blk_mq_unquiesce_queue(struct request_queue *q) 250 { 251 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 252 253 /* dispatch requests which are inserted during quiescing */ 254 blk_mq_run_hw_queues(q, true); 255 } 256 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 257 258 void blk_mq_wake_waiters(struct request_queue *q) 259 { 260 struct blk_mq_hw_ctx *hctx; 261 unsigned int i; 262 263 queue_for_each_hw_ctx(q, hctx, i) 264 if (blk_mq_hw_queue_mapped(hctx)) 265 blk_mq_tag_wakeup_all(hctx->tags, true); 266 } 267 268 /* 269 * Only need start/end time stamping if we have iostat or 270 * blk stats enabled, or using an IO scheduler. 271 */ 272 static inline bool blk_mq_need_time_stamp(struct request *rq) 273 { 274 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 275 } 276 277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 278 unsigned int tag, u64 alloc_time_ns) 279 { 280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 281 struct request *rq = tags->static_rqs[tag]; 282 283 if (data->q->elevator) { 284 rq->tag = BLK_MQ_NO_TAG; 285 rq->internal_tag = tag; 286 } else { 287 rq->tag = tag; 288 rq->internal_tag = BLK_MQ_NO_TAG; 289 } 290 291 /* csd/requeue_work/fifo_time is initialized before use */ 292 rq->q = data->q; 293 rq->mq_ctx = data->ctx; 294 rq->mq_hctx = data->hctx; 295 rq->rq_flags = 0; 296 rq->cmd_flags = data->cmd_flags; 297 if (data->flags & BLK_MQ_REQ_PM) 298 rq->rq_flags |= RQF_PM; 299 if (blk_queue_io_stat(data->q)) 300 rq->rq_flags |= RQF_IO_STAT; 301 INIT_LIST_HEAD(&rq->queuelist); 302 INIT_HLIST_NODE(&rq->hash); 303 RB_CLEAR_NODE(&rq->rb_node); 304 rq->rq_disk = NULL; 305 rq->part = NULL; 306 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 307 rq->alloc_time_ns = alloc_time_ns; 308 #endif 309 if (blk_mq_need_time_stamp(rq)) 310 rq->start_time_ns = ktime_get_ns(); 311 else 312 rq->start_time_ns = 0; 313 rq->io_start_time_ns = 0; 314 rq->stats_sectors = 0; 315 rq->nr_phys_segments = 0; 316 #if defined(CONFIG_BLK_DEV_INTEGRITY) 317 rq->nr_integrity_segments = 0; 318 #endif 319 blk_crypto_rq_set_defaults(rq); 320 /* tag was already set */ 321 WRITE_ONCE(rq->deadline, 0); 322 323 rq->timeout = 0; 324 325 rq->end_io = NULL; 326 rq->end_io_data = NULL; 327 328 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 329 refcount_set(&rq->ref, 1); 330 331 if (!op_is_flush(data->cmd_flags)) { 332 struct elevator_queue *e = data->q->elevator; 333 334 rq->elv.icq = NULL; 335 if (e && e->type->ops.prepare_request) { 336 if (e->type->icq_cache) 337 blk_mq_sched_assign_ioc(rq); 338 339 e->type->ops.prepare_request(rq); 340 rq->rq_flags |= RQF_ELVPRIV; 341 } 342 } 343 344 data->hctx->queued++; 345 return rq; 346 } 347 348 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 349 { 350 struct request_queue *q = data->q; 351 struct elevator_queue *e = q->elevator; 352 u64 alloc_time_ns = 0; 353 unsigned int tag; 354 355 /* alloc_time includes depth and tag waits */ 356 if (blk_queue_rq_alloc_time(q)) 357 alloc_time_ns = ktime_get_ns(); 358 359 if (data->cmd_flags & REQ_NOWAIT) 360 data->flags |= BLK_MQ_REQ_NOWAIT; 361 362 if (e) { 363 /* 364 * Flush/passthrough requests are special and go directly to the 365 * dispatch list. Don't include reserved tags in the 366 * limiting, as it isn't useful. 367 */ 368 if (!op_is_flush(data->cmd_flags) && 369 !blk_op_is_passthrough(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } 374 375 retry: 376 data->ctx = blk_mq_get_ctx(q); 377 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 378 if (!e) 379 blk_mq_tag_busy(data->hctx); 380 381 /* 382 * Waiting allocations only fail because of an inactive hctx. In that 383 * case just retry the hctx assignment and tag allocation as CPU hotplug 384 * should have migrated us to an online CPU by now. 385 */ 386 tag = blk_mq_get_tag(data); 387 if (tag == BLK_MQ_NO_TAG) { 388 if (data->flags & BLK_MQ_REQ_NOWAIT) 389 return NULL; 390 391 /* 392 * Give up the CPU and sleep for a random short time to ensure 393 * that thread using a realtime scheduling class are migrated 394 * off the CPU, and thus off the hctx that is going away. 395 */ 396 msleep(3); 397 goto retry; 398 } 399 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 400 } 401 402 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 403 blk_mq_req_flags_t flags) 404 { 405 struct blk_mq_alloc_data data = { 406 .q = q, 407 .flags = flags, 408 .cmd_flags = op, 409 }; 410 struct request *rq; 411 int ret; 412 413 ret = blk_queue_enter(q, flags); 414 if (ret) 415 return ERR_PTR(ret); 416 417 rq = __blk_mq_alloc_request(&data); 418 if (!rq) 419 goto out_queue_exit; 420 rq->__data_len = 0; 421 rq->__sector = (sector_t) -1; 422 rq->bio = rq->biotail = NULL; 423 return rq; 424 out_queue_exit: 425 blk_queue_exit(q); 426 return ERR_PTR(-EWOULDBLOCK); 427 } 428 EXPORT_SYMBOL(blk_mq_alloc_request); 429 430 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 431 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 432 { 433 struct blk_mq_alloc_data data = { 434 .q = q, 435 .flags = flags, 436 .cmd_flags = op, 437 }; 438 u64 alloc_time_ns = 0; 439 unsigned int cpu; 440 unsigned int tag; 441 int ret; 442 443 /* alloc_time includes depth and tag waits */ 444 if (blk_queue_rq_alloc_time(q)) 445 alloc_time_ns = ktime_get_ns(); 446 447 /* 448 * If the tag allocator sleeps we could get an allocation for a 449 * different hardware context. No need to complicate the low level 450 * allocator for this for the rare use case of a command tied to 451 * a specific queue. 452 */ 453 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 454 return ERR_PTR(-EINVAL); 455 456 if (hctx_idx >= q->nr_hw_queues) 457 return ERR_PTR(-EIO); 458 459 ret = blk_queue_enter(q, flags); 460 if (ret) 461 return ERR_PTR(ret); 462 463 /* 464 * Check if the hardware context is actually mapped to anything. 465 * If not tell the caller that it should skip this queue. 466 */ 467 ret = -EXDEV; 468 data.hctx = q->queue_hw_ctx[hctx_idx]; 469 if (!blk_mq_hw_queue_mapped(data.hctx)) 470 goto out_queue_exit; 471 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 472 data.ctx = __blk_mq_get_ctx(q, cpu); 473 474 if (!q->elevator) 475 blk_mq_tag_busy(data.hctx); 476 477 ret = -EWOULDBLOCK; 478 tag = blk_mq_get_tag(&data); 479 if (tag == BLK_MQ_NO_TAG) 480 goto out_queue_exit; 481 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 482 483 out_queue_exit: 484 blk_queue_exit(q); 485 return ERR_PTR(ret); 486 } 487 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 488 489 static void __blk_mq_free_request(struct request *rq) 490 { 491 struct request_queue *q = rq->q; 492 struct blk_mq_ctx *ctx = rq->mq_ctx; 493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 494 const int sched_tag = rq->internal_tag; 495 496 blk_crypto_free_request(rq); 497 blk_pm_mark_last_busy(rq); 498 rq->mq_hctx = NULL; 499 if (rq->tag != BLK_MQ_NO_TAG) 500 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 501 if (sched_tag != BLK_MQ_NO_TAG) 502 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 503 blk_mq_sched_restart(hctx); 504 blk_queue_exit(q); 505 } 506 507 void blk_mq_free_request(struct request *rq) 508 { 509 struct request_queue *q = rq->q; 510 struct elevator_queue *e = q->elevator; 511 struct blk_mq_ctx *ctx = rq->mq_ctx; 512 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 513 514 if (rq->rq_flags & RQF_ELVPRIV) { 515 if (e && e->type->ops.finish_request) 516 e->type->ops.finish_request(rq); 517 if (rq->elv.icq) { 518 put_io_context(rq->elv.icq->ioc); 519 rq->elv.icq = NULL; 520 } 521 } 522 523 ctx->rq_completed[rq_is_sync(rq)]++; 524 if (rq->rq_flags & RQF_MQ_INFLIGHT) 525 __blk_mq_dec_active_requests(hctx); 526 527 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 528 laptop_io_completion(q->disk->bdi); 529 530 rq_qos_done(q, rq); 531 532 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 533 if (refcount_dec_and_test(&rq->ref)) 534 __blk_mq_free_request(rq); 535 } 536 EXPORT_SYMBOL_GPL(blk_mq_free_request); 537 538 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 539 { 540 u64 now = 0; 541 542 if (blk_mq_need_time_stamp(rq)) 543 now = ktime_get_ns(); 544 545 if (rq->rq_flags & RQF_STATS) { 546 blk_mq_poll_stats_start(rq->q); 547 blk_stat_add(rq, now); 548 } 549 550 blk_mq_sched_completed_request(rq, now); 551 552 blk_account_io_done(rq, now); 553 554 if (rq->end_io) { 555 rq_qos_done(rq->q, rq); 556 rq->end_io(rq, error); 557 } else { 558 blk_mq_free_request(rq); 559 } 560 } 561 EXPORT_SYMBOL(__blk_mq_end_request); 562 563 void blk_mq_end_request(struct request *rq, blk_status_t error) 564 { 565 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 566 BUG(); 567 __blk_mq_end_request(rq, error); 568 } 569 EXPORT_SYMBOL(blk_mq_end_request); 570 571 static void blk_complete_reqs(struct llist_head *list) 572 { 573 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 574 struct request *rq, *next; 575 576 llist_for_each_entry_safe(rq, next, entry, ipi_list) 577 rq->q->mq_ops->complete(rq); 578 } 579 580 static __latent_entropy void blk_done_softirq(struct softirq_action *h) 581 { 582 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 583 } 584 585 static int blk_softirq_cpu_dead(unsigned int cpu) 586 { 587 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 588 return 0; 589 } 590 591 static void __blk_mq_complete_request_remote(void *data) 592 { 593 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 594 } 595 596 static inline bool blk_mq_complete_need_ipi(struct request *rq) 597 { 598 int cpu = raw_smp_processor_id(); 599 600 if (!IS_ENABLED(CONFIG_SMP) || 601 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 602 return false; 603 /* 604 * With force threaded interrupts enabled, raising softirq from an SMP 605 * function call will always result in waking the ksoftirqd thread. 606 * This is probably worse than completing the request on a different 607 * cache domain. 608 */ 609 if (force_irqthreads()) 610 return false; 611 612 /* same CPU or cache domain? Complete locally */ 613 if (cpu == rq->mq_ctx->cpu || 614 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 615 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 616 return false; 617 618 /* don't try to IPI to an offline CPU */ 619 return cpu_online(rq->mq_ctx->cpu); 620 } 621 622 static void blk_mq_complete_send_ipi(struct request *rq) 623 { 624 struct llist_head *list; 625 unsigned int cpu; 626 627 cpu = rq->mq_ctx->cpu; 628 list = &per_cpu(blk_cpu_done, cpu); 629 if (llist_add(&rq->ipi_list, list)) { 630 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 631 smp_call_function_single_async(cpu, &rq->csd); 632 } 633 } 634 635 static void blk_mq_raise_softirq(struct request *rq) 636 { 637 struct llist_head *list; 638 639 preempt_disable(); 640 list = this_cpu_ptr(&blk_cpu_done); 641 if (llist_add(&rq->ipi_list, list)) 642 raise_softirq(BLOCK_SOFTIRQ); 643 preempt_enable(); 644 } 645 646 bool blk_mq_complete_request_remote(struct request *rq) 647 { 648 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 649 650 /* 651 * For a polled request, always complete locallly, it's pointless 652 * to redirect the completion. 653 */ 654 if (rq->cmd_flags & REQ_HIPRI) 655 return false; 656 657 if (blk_mq_complete_need_ipi(rq)) { 658 blk_mq_complete_send_ipi(rq); 659 return true; 660 } 661 662 if (rq->q->nr_hw_queues == 1) { 663 blk_mq_raise_softirq(rq); 664 return true; 665 } 666 return false; 667 } 668 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 669 670 /** 671 * blk_mq_complete_request - end I/O on a request 672 * @rq: the request being processed 673 * 674 * Description: 675 * Complete a request by scheduling the ->complete_rq operation. 676 **/ 677 void blk_mq_complete_request(struct request *rq) 678 { 679 if (!blk_mq_complete_request_remote(rq)) 680 rq->q->mq_ops->complete(rq); 681 } 682 EXPORT_SYMBOL(blk_mq_complete_request); 683 684 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 685 __releases(hctx->srcu) 686 { 687 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 688 rcu_read_unlock(); 689 else 690 srcu_read_unlock(hctx->srcu, srcu_idx); 691 } 692 693 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 694 __acquires(hctx->srcu) 695 { 696 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 697 /* shut up gcc false positive */ 698 *srcu_idx = 0; 699 rcu_read_lock(); 700 } else 701 *srcu_idx = srcu_read_lock(hctx->srcu); 702 } 703 704 /** 705 * blk_mq_start_request - Start processing a request 706 * @rq: Pointer to request to be started 707 * 708 * Function used by device drivers to notify the block layer that a request 709 * is going to be processed now, so blk layer can do proper initializations 710 * such as starting the timeout timer. 711 */ 712 void blk_mq_start_request(struct request *rq) 713 { 714 struct request_queue *q = rq->q; 715 716 trace_block_rq_issue(rq); 717 718 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 719 rq->io_start_time_ns = ktime_get_ns(); 720 rq->stats_sectors = blk_rq_sectors(rq); 721 rq->rq_flags |= RQF_STATS; 722 rq_qos_issue(q, rq); 723 } 724 725 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 726 727 blk_add_timer(rq); 728 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 729 730 #ifdef CONFIG_BLK_DEV_INTEGRITY 731 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 732 q->integrity.profile->prepare_fn(rq); 733 #endif 734 } 735 EXPORT_SYMBOL(blk_mq_start_request); 736 737 static void __blk_mq_requeue_request(struct request *rq) 738 { 739 struct request_queue *q = rq->q; 740 741 blk_mq_put_driver_tag(rq); 742 743 trace_block_rq_requeue(rq); 744 rq_qos_requeue(q, rq); 745 746 if (blk_mq_request_started(rq)) { 747 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 748 rq->rq_flags &= ~RQF_TIMED_OUT; 749 } 750 } 751 752 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 753 { 754 __blk_mq_requeue_request(rq); 755 756 /* this request will be re-inserted to io scheduler queue */ 757 blk_mq_sched_requeue_request(rq); 758 759 BUG_ON(!list_empty(&rq->queuelist)); 760 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 761 } 762 EXPORT_SYMBOL(blk_mq_requeue_request); 763 764 static void blk_mq_requeue_work(struct work_struct *work) 765 { 766 struct request_queue *q = 767 container_of(work, struct request_queue, requeue_work.work); 768 LIST_HEAD(rq_list); 769 struct request *rq, *next; 770 771 spin_lock_irq(&q->requeue_lock); 772 list_splice_init(&q->requeue_list, &rq_list); 773 spin_unlock_irq(&q->requeue_lock); 774 775 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 776 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 777 continue; 778 779 rq->rq_flags &= ~RQF_SOFTBARRIER; 780 list_del_init(&rq->queuelist); 781 /* 782 * If RQF_DONTPREP, rq has contained some driver specific 783 * data, so insert it to hctx dispatch list to avoid any 784 * merge. 785 */ 786 if (rq->rq_flags & RQF_DONTPREP) 787 blk_mq_request_bypass_insert(rq, false, false); 788 else 789 blk_mq_sched_insert_request(rq, true, false, false); 790 } 791 792 while (!list_empty(&rq_list)) { 793 rq = list_entry(rq_list.next, struct request, queuelist); 794 list_del_init(&rq->queuelist); 795 blk_mq_sched_insert_request(rq, false, false, false); 796 } 797 798 blk_mq_run_hw_queues(q, false); 799 } 800 801 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 802 bool kick_requeue_list) 803 { 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 /* 808 * We abuse this flag that is otherwise used by the I/O scheduler to 809 * request head insertion from the workqueue. 810 */ 811 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 812 813 spin_lock_irqsave(&q->requeue_lock, flags); 814 if (at_head) { 815 rq->rq_flags |= RQF_SOFTBARRIER; 816 list_add(&rq->queuelist, &q->requeue_list); 817 } else { 818 list_add_tail(&rq->queuelist, &q->requeue_list); 819 } 820 spin_unlock_irqrestore(&q->requeue_lock, flags); 821 822 if (kick_requeue_list) 823 blk_mq_kick_requeue_list(q); 824 } 825 826 void blk_mq_kick_requeue_list(struct request_queue *q) 827 { 828 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 829 } 830 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 831 832 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 833 unsigned long msecs) 834 { 835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 836 msecs_to_jiffies(msecs)); 837 } 838 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 839 840 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 841 { 842 if (tag < tags->nr_tags) { 843 prefetch(tags->rqs[tag]); 844 return tags->rqs[tag]; 845 } 846 847 return NULL; 848 } 849 EXPORT_SYMBOL(blk_mq_tag_to_rq); 850 851 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 852 void *priv, bool reserved) 853 { 854 /* 855 * If we find a request that isn't idle and the queue matches, 856 * we know the queue is busy. Return false to stop the iteration. 857 */ 858 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 859 bool *busy = priv; 860 861 *busy = true; 862 return false; 863 } 864 865 return true; 866 } 867 868 bool blk_mq_queue_inflight(struct request_queue *q) 869 { 870 bool busy = false; 871 872 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 873 return busy; 874 } 875 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 876 877 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 878 { 879 req->rq_flags |= RQF_TIMED_OUT; 880 if (req->q->mq_ops->timeout) { 881 enum blk_eh_timer_return ret; 882 883 ret = req->q->mq_ops->timeout(req, reserved); 884 if (ret == BLK_EH_DONE) 885 return; 886 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 887 } 888 889 blk_add_timer(req); 890 } 891 892 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 893 { 894 unsigned long deadline; 895 896 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 897 return false; 898 if (rq->rq_flags & RQF_TIMED_OUT) 899 return false; 900 901 deadline = READ_ONCE(rq->deadline); 902 if (time_after_eq(jiffies, deadline)) 903 return true; 904 905 if (*next == 0) 906 *next = deadline; 907 else if (time_after(*next, deadline)) 908 *next = deadline; 909 return false; 910 } 911 912 void blk_mq_put_rq_ref(struct request *rq) 913 { 914 if (is_flush_rq(rq)) 915 rq->end_io(rq, 0); 916 else if (refcount_dec_and_test(&rq->ref)) 917 __blk_mq_free_request(rq); 918 } 919 920 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 921 struct request *rq, void *priv, bool reserved) 922 { 923 unsigned long *next = priv; 924 925 /* 926 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 927 * be reallocated underneath the timeout handler's processing, then 928 * the expire check is reliable. If the request is not expired, then 929 * it was completed and reallocated as a new request after returning 930 * from blk_mq_check_expired(). 931 */ 932 if (blk_mq_req_expired(rq, next)) 933 blk_mq_rq_timed_out(rq, reserved); 934 return true; 935 } 936 937 static void blk_mq_timeout_work(struct work_struct *work) 938 { 939 struct request_queue *q = 940 container_of(work, struct request_queue, timeout_work); 941 unsigned long next = 0; 942 struct blk_mq_hw_ctx *hctx; 943 int i; 944 945 /* A deadlock might occur if a request is stuck requiring a 946 * timeout at the same time a queue freeze is waiting 947 * completion, since the timeout code would not be able to 948 * acquire the queue reference here. 949 * 950 * That's why we don't use blk_queue_enter here; instead, we use 951 * percpu_ref_tryget directly, because we need to be able to 952 * obtain a reference even in the short window between the queue 953 * starting to freeze, by dropping the first reference in 954 * blk_freeze_queue_start, and the moment the last request is 955 * consumed, marked by the instant q_usage_counter reaches 956 * zero. 957 */ 958 if (!percpu_ref_tryget(&q->q_usage_counter)) 959 return; 960 961 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 962 963 if (next != 0) { 964 mod_timer(&q->timeout, next); 965 } else { 966 /* 967 * Request timeouts are handled as a forward rolling timer. If 968 * we end up here it means that no requests are pending and 969 * also that no request has been pending for a while. Mark 970 * each hctx as idle. 971 */ 972 queue_for_each_hw_ctx(q, hctx, i) { 973 /* the hctx may be unmapped, so check it here */ 974 if (blk_mq_hw_queue_mapped(hctx)) 975 blk_mq_tag_idle(hctx); 976 } 977 } 978 blk_queue_exit(q); 979 } 980 981 struct flush_busy_ctx_data { 982 struct blk_mq_hw_ctx *hctx; 983 struct list_head *list; 984 }; 985 986 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 987 { 988 struct flush_busy_ctx_data *flush_data = data; 989 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 990 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 991 enum hctx_type type = hctx->type; 992 993 spin_lock(&ctx->lock); 994 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 995 sbitmap_clear_bit(sb, bitnr); 996 spin_unlock(&ctx->lock); 997 return true; 998 } 999 1000 /* 1001 * Process software queues that have been marked busy, splicing them 1002 * to the for-dispatch 1003 */ 1004 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1005 { 1006 struct flush_busy_ctx_data data = { 1007 .hctx = hctx, 1008 .list = list, 1009 }; 1010 1011 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1012 } 1013 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1014 1015 struct dispatch_rq_data { 1016 struct blk_mq_hw_ctx *hctx; 1017 struct request *rq; 1018 }; 1019 1020 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1021 void *data) 1022 { 1023 struct dispatch_rq_data *dispatch_data = data; 1024 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1025 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1026 enum hctx_type type = hctx->type; 1027 1028 spin_lock(&ctx->lock); 1029 if (!list_empty(&ctx->rq_lists[type])) { 1030 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1031 list_del_init(&dispatch_data->rq->queuelist); 1032 if (list_empty(&ctx->rq_lists[type])) 1033 sbitmap_clear_bit(sb, bitnr); 1034 } 1035 spin_unlock(&ctx->lock); 1036 1037 return !dispatch_data->rq; 1038 } 1039 1040 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1041 struct blk_mq_ctx *start) 1042 { 1043 unsigned off = start ? start->index_hw[hctx->type] : 0; 1044 struct dispatch_rq_data data = { 1045 .hctx = hctx, 1046 .rq = NULL, 1047 }; 1048 1049 __sbitmap_for_each_set(&hctx->ctx_map, off, 1050 dispatch_rq_from_ctx, &data); 1051 1052 return data.rq; 1053 } 1054 1055 static inline unsigned int queued_to_index(unsigned int queued) 1056 { 1057 if (!queued) 1058 return 0; 1059 1060 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1061 } 1062 1063 static bool __blk_mq_get_driver_tag(struct request *rq) 1064 { 1065 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1066 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1067 int tag; 1068 1069 blk_mq_tag_busy(rq->mq_hctx); 1070 1071 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1072 bt = rq->mq_hctx->tags->breserved_tags; 1073 tag_offset = 0; 1074 } else { 1075 if (!hctx_may_queue(rq->mq_hctx, bt)) 1076 return false; 1077 } 1078 1079 tag = __sbitmap_queue_get(bt); 1080 if (tag == BLK_MQ_NO_TAG) 1081 return false; 1082 1083 rq->tag = tag + tag_offset; 1084 return true; 1085 } 1086 1087 bool blk_mq_get_driver_tag(struct request *rq) 1088 { 1089 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1090 1091 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1092 return false; 1093 1094 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1095 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1096 rq->rq_flags |= RQF_MQ_INFLIGHT; 1097 __blk_mq_inc_active_requests(hctx); 1098 } 1099 hctx->tags->rqs[rq->tag] = rq; 1100 return true; 1101 } 1102 1103 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1104 int flags, void *key) 1105 { 1106 struct blk_mq_hw_ctx *hctx; 1107 1108 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1109 1110 spin_lock(&hctx->dispatch_wait_lock); 1111 if (!list_empty(&wait->entry)) { 1112 struct sbitmap_queue *sbq; 1113 1114 list_del_init(&wait->entry); 1115 sbq = hctx->tags->bitmap_tags; 1116 atomic_dec(&sbq->ws_active); 1117 } 1118 spin_unlock(&hctx->dispatch_wait_lock); 1119 1120 blk_mq_run_hw_queue(hctx, true); 1121 return 1; 1122 } 1123 1124 /* 1125 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1126 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1127 * restart. For both cases, take care to check the condition again after 1128 * marking us as waiting. 1129 */ 1130 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1131 struct request *rq) 1132 { 1133 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1134 struct wait_queue_head *wq; 1135 wait_queue_entry_t *wait; 1136 bool ret; 1137 1138 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1139 blk_mq_sched_mark_restart_hctx(hctx); 1140 1141 /* 1142 * It's possible that a tag was freed in the window between the 1143 * allocation failure and adding the hardware queue to the wait 1144 * queue. 1145 * 1146 * Don't clear RESTART here, someone else could have set it. 1147 * At most this will cost an extra queue run. 1148 */ 1149 return blk_mq_get_driver_tag(rq); 1150 } 1151 1152 wait = &hctx->dispatch_wait; 1153 if (!list_empty_careful(&wait->entry)) 1154 return false; 1155 1156 wq = &bt_wait_ptr(sbq, hctx)->wait; 1157 1158 spin_lock_irq(&wq->lock); 1159 spin_lock(&hctx->dispatch_wait_lock); 1160 if (!list_empty(&wait->entry)) { 1161 spin_unlock(&hctx->dispatch_wait_lock); 1162 spin_unlock_irq(&wq->lock); 1163 return false; 1164 } 1165 1166 atomic_inc(&sbq->ws_active); 1167 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1168 __add_wait_queue(wq, wait); 1169 1170 /* 1171 * It's possible that a tag was freed in the window between the 1172 * allocation failure and adding the hardware queue to the wait 1173 * queue. 1174 */ 1175 ret = blk_mq_get_driver_tag(rq); 1176 if (!ret) { 1177 spin_unlock(&hctx->dispatch_wait_lock); 1178 spin_unlock_irq(&wq->lock); 1179 return false; 1180 } 1181 1182 /* 1183 * We got a tag, remove ourselves from the wait queue to ensure 1184 * someone else gets the wakeup. 1185 */ 1186 list_del_init(&wait->entry); 1187 atomic_dec(&sbq->ws_active); 1188 spin_unlock(&hctx->dispatch_wait_lock); 1189 spin_unlock_irq(&wq->lock); 1190 1191 return true; 1192 } 1193 1194 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1195 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1196 /* 1197 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1198 * - EWMA is one simple way to compute running average value 1199 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1200 * - take 4 as factor for avoiding to get too small(0) result, and this 1201 * factor doesn't matter because EWMA decreases exponentially 1202 */ 1203 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1204 { 1205 unsigned int ewma; 1206 1207 ewma = hctx->dispatch_busy; 1208 1209 if (!ewma && !busy) 1210 return; 1211 1212 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1213 if (busy) 1214 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1215 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1216 1217 hctx->dispatch_busy = ewma; 1218 } 1219 1220 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1221 1222 static void blk_mq_handle_dev_resource(struct request *rq, 1223 struct list_head *list) 1224 { 1225 struct request *next = 1226 list_first_entry_or_null(list, struct request, queuelist); 1227 1228 /* 1229 * If an I/O scheduler has been configured and we got a driver tag for 1230 * the next request already, free it. 1231 */ 1232 if (next) 1233 blk_mq_put_driver_tag(next); 1234 1235 list_add(&rq->queuelist, list); 1236 __blk_mq_requeue_request(rq); 1237 } 1238 1239 static void blk_mq_handle_zone_resource(struct request *rq, 1240 struct list_head *zone_list) 1241 { 1242 /* 1243 * If we end up here it is because we cannot dispatch a request to a 1244 * specific zone due to LLD level zone-write locking or other zone 1245 * related resource not being available. In this case, set the request 1246 * aside in zone_list for retrying it later. 1247 */ 1248 list_add(&rq->queuelist, zone_list); 1249 __blk_mq_requeue_request(rq); 1250 } 1251 1252 enum prep_dispatch { 1253 PREP_DISPATCH_OK, 1254 PREP_DISPATCH_NO_TAG, 1255 PREP_DISPATCH_NO_BUDGET, 1256 }; 1257 1258 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1259 bool need_budget) 1260 { 1261 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1262 int budget_token = -1; 1263 1264 if (need_budget) { 1265 budget_token = blk_mq_get_dispatch_budget(rq->q); 1266 if (budget_token < 0) { 1267 blk_mq_put_driver_tag(rq); 1268 return PREP_DISPATCH_NO_BUDGET; 1269 } 1270 blk_mq_set_rq_budget_token(rq, budget_token); 1271 } 1272 1273 if (!blk_mq_get_driver_tag(rq)) { 1274 /* 1275 * The initial allocation attempt failed, so we need to 1276 * rerun the hardware queue when a tag is freed. The 1277 * waitqueue takes care of that. If the queue is run 1278 * before we add this entry back on the dispatch list, 1279 * we'll re-run it below. 1280 */ 1281 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1282 /* 1283 * All budgets not got from this function will be put 1284 * together during handling partial dispatch 1285 */ 1286 if (need_budget) 1287 blk_mq_put_dispatch_budget(rq->q, budget_token); 1288 return PREP_DISPATCH_NO_TAG; 1289 } 1290 } 1291 1292 return PREP_DISPATCH_OK; 1293 } 1294 1295 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1296 static void blk_mq_release_budgets(struct request_queue *q, 1297 struct list_head *list) 1298 { 1299 struct request *rq; 1300 1301 list_for_each_entry(rq, list, queuelist) { 1302 int budget_token = blk_mq_get_rq_budget_token(rq); 1303 1304 if (budget_token >= 0) 1305 blk_mq_put_dispatch_budget(q, budget_token); 1306 } 1307 } 1308 1309 /* 1310 * Returns true if we did some work AND can potentially do more. 1311 */ 1312 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1313 unsigned int nr_budgets) 1314 { 1315 enum prep_dispatch prep; 1316 struct request_queue *q = hctx->queue; 1317 struct request *rq, *nxt; 1318 int errors, queued; 1319 blk_status_t ret = BLK_STS_OK; 1320 LIST_HEAD(zone_list); 1321 1322 if (list_empty(list)) 1323 return false; 1324 1325 /* 1326 * Now process all the entries, sending them to the driver. 1327 */ 1328 errors = queued = 0; 1329 do { 1330 struct blk_mq_queue_data bd; 1331 1332 rq = list_first_entry(list, struct request, queuelist); 1333 1334 WARN_ON_ONCE(hctx != rq->mq_hctx); 1335 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1336 if (prep != PREP_DISPATCH_OK) 1337 break; 1338 1339 list_del_init(&rq->queuelist); 1340 1341 bd.rq = rq; 1342 1343 /* 1344 * Flag last if we have no more requests, or if we have more 1345 * but can't assign a driver tag to it. 1346 */ 1347 if (list_empty(list)) 1348 bd.last = true; 1349 else { 1350 nxt = list_first_entry(list, struct request, queuelist); 1351 bd.last = !blk_mq_get_driver_tag(nxt); 1352 } 1353 1354 /* 1355 * once the request is queued to lld, no need to cover the 1356 * budget any more 1357 */ 1358 if (nr_budgets) 1359 nr_budgets--; 1360 ret = q->mq_ops->queue_rq(hctx, &bd); 1361 switch (ret) { 1362 case BLK_STS_OK: 1363 queued++; 1364 break; 1365 case BLK_STS_RESOURCE: 1366 case BLK_STS_DEV_RESOURCE: 1367 blk_mq_handle_dev_resource(rq, list); 1368 goto out; 1369 case BLK_STS_ZONE_RESOURCE: 1370 /* 1371 * Move the request to zone_list and keep going through 1372 * the dispatch list to find more requests the drive can 1373 * accept. 1374 */ 1375 blk_mq_handle_zone_resource(rq, &zone_list); 1376 break; 1377 default: 1378 errors++; 1379 blk_mq_end_request(rq, ret); 1380 } 1381 } while (!list_empty(list)); 1382 out: 1383 if (!list_empty(&zone_list)) 1384 list_splice_tail_init(&zone_list, list); 1385 1386 hctx->dispatched[queued_to_index(queued)]++; 1387 1388 /* If we didn't flush the entire list, we could have told the driver 1389 * there was more coming, but that turned out to be a lie. 1390 */ 1391 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1392 q->mq_ops->commit_rqs(hctx); 1393 /* 1394 * Any items that need requeuing? Stuff them into hctx->dispatch, 1395 * that is where we will continue on next queue run. 1396 */ 1397 if (!list_empty(list)) { 1398 bool needs_restart; 1399 /* For non-shared tags, the RESTART check will suffice */ 1400 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1401 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1402 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET; 1403 1404 if (nr_budgets) 1405 blk_mq_release_budgets(q, list); 1406 1407 spin_lock(&hctx->lock); 1408 list_splice_tail_init(list, &hctx->dispatch); 1409 spin_unlock(&hctx->lock); 1410 1411 /* 1412 * Order adding requests to hctx->dispatch and checking 1413 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1414 * in blk_mq_sched_restart(). Avoid restart code path to 1415 * miss the new added requests to hctx->dispatch, meantime 1416 * SCHED_RESTART is observed here. 1417 */ 1418 smp_mb(); 1419 1420 /* 1421 * If SCHED_RESTART was set by the caller of this function and 1422 * it is no longer set that means that it was cleared by another 1423 * thread and hence that a queue rerun is needed. 1424 * 1425 * If 'no_tag' is set, that means that we failed getting 1426 * a driver tag with an I/O scheduler attached. If our dispatch 1427 * waitqueue is no longer active, ensure that we run the queue 1428 * AFTER adding our entries back to the list. 1429 * 1430 * If no I/O scheduler has been configured it is possible that 1431 * the hardware queue got stopped and restarted before requests 1432 * were pushed back onto the dispatch list. Rerun the queue to 1433 * avoid starvation. Notes: 1434 * - blk_mq_run_hw_queue() checks whether or not a queue has 1435 * been stopped before rerunning a queue. 1436 * - Some but not all block drivers stop a queue before 1437 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1438 * and dm-rq. 1439 * 1440 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1441 * bit is set, run queue after a delay to avoid IO stalls 1442 * that could otherwise occur if the queue is idle. We'll do 1443 * similar if we couldn't get budget and SCHED_RESTART is set. 1444 */ 1445 needs_restart = blk_mq_sched_needs_restart(hctx); 1446 if (!needs_restart || 1447 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1448 blk_mq_run_hw_queue(hctx, true); 1449 else if (needs_restart && (ret == BLK_STS_RESOURCE || 1450 no_budget_avail)) 1451 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1452 1453 blk_mq_update_dispatch_busy(hctx, true); 1454 return false; 1455 } else 1456 blk_mq_update_dispatch_busy(hctx, false); 1457 1458 return (queued + errors) != 0; 1459 } 1460 1461 /** 1462 * __blk_mq_run_hw_queue - Run a hardware queue. 1463 * @hctx: Pointer to the hardware queue to run. 1464 * 1465 * Send pending requests to the hardware. 1466 */ 1467 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1468 { 1469 int srcu_idx; 1470 1471 /* 1472 * We can't run the queue inline with ints disabled. Ensure that 1473 * we catch bad users of this early. 1474 */ 1475 WARN_ON_ONCE(in_interrupt()); 1476 1477 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1478 1479 hctx_lock(hctx, &srcu_idx); 1480 blk_mq_sched_dispatch_requests(hctx); 1481 hctx_unlock(hctx, srcu_idx); 1482 } 1483 1484 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1485 { 1486 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1487 1488 if (cpu >= nr_cpu_ids) 1489 cpu = cpumask_first(hctx->cpumask); 1490 return cpu; 1491 } 1492 1493 /* 1494 * It'd be great if the workqueue API had a way to pass 1495 * in a mask and had some smarts for more clever placement. 1496 * For now we just round-robin here, switching for every 1497 * BLK_MQ_CPU_WORK_BATCH queued items. 1498 */ 1499 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1500 { 1501 bool tried = false; 1502 int next_cpu = hctx->next_cpu; 1503 1504 if (hctx->queue->nr_hw_queues == 1) 1505 return WORK_CPU_UNBOUND; 1506 1507 if (--hctx->next_cpu_batch <= 0) { 1508 select_cpu: 1509 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1510 cpu_online_mask); 1511 if (next_cpu >= nr_cpu_ids) 1512 next_cpu = blk_mq_first_mapped_cpu(hctx); 1513 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1514 } 1515 1516 /* 1517 * Do unbound schedule if we can't find a online CPU for this hctx, 1518 * and it should only happen in the path of handling CPU DEAD. 1519 */ 1520 if (!cpu_online(next_cpu)) { 1521 if (!tried) { 1522 tried = true; 1523 goto select_cpu; 1524 } 1525 1526 /* 1527 * Make sure to re-select CPU next time once after CPUs 1528 * in hctx->cpumask become online again. 1529 */ 1530 hctx->next_cpu = next_cpu; 1531 hctx->next_cpu_batch = 1; 1532 return WORK_CPU_UNBOUND; 1533 } 1534 1535 hctx->next_cpu = next_cpu; 1536 return next_cpu; 1537 } 1538 1539 /** 1540 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1541 * @hctx: Pointer to the hardware queue to run. 1542 * @async: If we want to run the queue asynchronously. 1543 * @msecs: Milliseconds of delay to wait before running the queue. 1544 * 1545 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1546 * with a delay of @msecs. 1547 */ 1548 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1549 unsigned long msecs) 1550 { 1551 if (unlikely(blk_mq_hctx_stopped(hctx))) 1552 return; 1553 1554 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1555 int cpu = get_cpu(); 1556 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1557 __blk_mq_run_hw_queue(hctx); 1558 put_cpu(); 1559 return; 1560 } 1561 1562 put_cpu(); 1563 } 1564 1565 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1566 msecs_to_jiffies(msecs)); 1567 } 1568 1569 /** 1570 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1571 * @hctx: Pointer to the hardware queue to run. 1572 * @msecs: Milliseconds of delay to wait before running the queue. 1573 * 1574 * Run a hardware queue asynchronously with a delay of @msecs. 1575 */ 1576 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1577 { 1578 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1579 } 1580 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1581 1582 /** 1583 * blk_mq_run_hw_queue - Start to run a hardware queue. 1584 * @hctx: Pointer to the hardware queue to run. 1585 * @async: If we want to run the queue asynchronously. 1586 * 1587 * Check if the request queue is not in a quiesced state and if there are 1588 * pending requests to be sent. If this is true, run the queue to send requests 1589 * to hardware. 1590 */ 1591 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1592 { 1593 int srcu_idx; 1594 bool need_run; 1595 1596 /* 1597 * When queue is quiesced, we may be switching io scheduler, or 1598 * updating nr_hw_queues, or other things, and we can't run queue 1599 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1600 * 1601 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1602 * quiesced. 1603 */ 1604 hctx_lock(hctx, &srcu_idx); 1605 need_run = !blk_queue_quiesced(hctx->queue) && 1606 blk_mq_hctx_has_pending(hctx); 1607 hctx_unlock(hctx, srcu_idx); 1608 1609 if (need_run) 1610 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1611 } 1612 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1613 1614 /* 1615 * Is the request queue handled by an IO scheduler that does not respect 1616 * hardware queues when dispatching? 1617 */ 1618 static bool blk_mq_has_sqsched(struct request_queue *q) 1619 { 1620 struct elevator_queue *e = q->elevator; 1621 1622 if (e && e->type->ops.dispatch_request && 1623 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1624 return true; 1625 return false; 1626 } 1627 1628 /* 1629 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1630 * scheduler. 1631 */ 1632 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1633 { 1634 struct blk_mq_hw_ctx *hctx; 1635 1636 /* 1637 * If the IO scheduler does not respect hardware queues when 1638 * dispatching, we just don't bother with multiple HW queues and 1639 * dispatch from hctx for the current CPU since running multiple queues 1640 * just causes lock contention inside the scheduler and pointless cache 1641 * bouncing. 1642 */ 1643 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1644 raw_smp_processor_id()); 1645 if (!blk_mq_hctx_stopped(hctx)) 1646 return hctx; 1647 return NULL; 1648 } 1649 1650 /** 1651 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1652 * @q: Pointer to the request queue to run. 1653 * @async: If we want to run the queue asynchronously. 1654 */ 1655 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1656 { 1657 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1658 int i; 1659 1660 sq_hctx = NULL; 1661 if (blk_mq_has_sqsched(q)) 1662 sq_hctx = blk_mq_get_sq_hctx(q); 1663 queue_for_each_hw_ctx(q, hctx, i) { 1664 if (blk_mq_hctx_stopped(hctx)) 1665 continue; 1666 /* 1667 * Dispatch from this hctx either if there's no hctx preferred 1668 * by IO scheduler or if it has requests that bypass the 1669 * scheduler. 1670 */ 1671 if (!sq_hctx || sq_hctx == hctx || 1672 !list_empty_careful(&hctx->dispatch)) 1673 blk_mq_run_hw_queue(hctx, async); 1674 } 1675 } 1676 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1677 1678 /** 1679 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1680 * @q: Pointer to the request queue to run. 1681 * @msecs: Milliseconds of delay to wait before running the queues. 1682 */ 1683 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1684 { 1685 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1686 int i; 1687 1688 sq_hctx = NULL; 1689 if (blk_mq_has_sqsched(q)) 1690 sq_hctx = blk_mq_get_sq_hctx(q); 1691 queue_for_each_hw_ctx(q, hctx, i) { 1692 if (blk_mq_hctx_stopped(hctx)) 1693 continue; 1694 /* 1695 * Dispatch from this hctx either if there's no hctx preferred 1696 * by IO scheduler or if it has requests that bypass the 1697 * scheduler. 1698 */ 1699 if (!sq_hctx || sq_hctx == hctx || 1700 !list_empty_careful(&hctx->dispatch)) 1701 blk_mq_delay_run_hw_queue(hctx, msecs); 1702 } 1703 } 1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1705 1706 /** 1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1708 * @q: request queue. 1709 * 1710 * The caller is responsible for serializing this function against 1711 * blk_mq_{start,stop}_hw_queue(). 1712 */ 1713 bool blk_mq_queue_stopped(struct request_queue *q) 1714 { 1715 struct blk_mq_hw_ctx *hctx; 1716 int i; 1717 1718 queue_for_each_hw_ctx(q, hctx, i) 1719 if (blk_mq_hctx_stopped(hctx)) 1720 return true; 1721 1722 return false; 1723 } 1724 EXPORT_SYMBOL(blk_mq_queue_stopped); 1725 1726 /* 1727 * This function is often used for pausing .queue_rq() by driver when 1728 * there isn't enough resource or some conditions aren't satisfied, and 1729 * BLK_STS_RESOURCE is usually returned. 1730 * 1731 * We do not guarantee that dispatch can be drained or blocked 1732 * after blk_mq_stop_hw_queue() returns. Please use 1733 * blk_mq_quiesce_queue() for that requirement. 1734 */ 1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1736 { 1737 cancel_delayed_work(&hctx->run_work); 1738 1739 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1740 } 1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1742 1743 /* 1744 * This function is often used for pausing .queue_rq() by driver when 1745 * there isn't enough resource or some conditions aren't satisfied, and 1746 * BLK_STS_RESOURCE is usually returned. 1747 * 1748 * We do not guarantee that dispatch can be drained or blocked 1749 * after blk_mq_stop_hw_queues() returns. Please use 1750 * blk_mq_quiesce_queue() for that requirement. 1751 */ 1752 void blk_mq_stop_hw_queues(struct request_queue *q) 1753 { 1754 struct blk_mq_hw_ctx *hctx; 1755 int i; 1756 1757 queue_for_each_hw_ctx(q, hctx, i) 1758 blk_mq_stop_hw_queue(hctx); 1759 } 1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1761 1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1763 { 1764 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1765 1766 blk_mq_run_hw_queue(hctx, false); 1767 } 1768 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1769 1770 void blk_mq_start_hw_queues(struct request_queue *q) 1771 { 1772 struct blk_mq_hw_ctx *hctx; 1773 int i; 1774 1775 queue_for_each_hw_ctx(q, hctx, i) 1776 blk_mq_start_hw_queue(hctx); 1777 } 1778 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1779 1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1781 { 1782 if (!blk_mq_hctx_stopped(hctx)) 1783 return; 1784 1785 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1786 blk_mq_run_hw_queue(hctx, async); 1787 } 1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1789 1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1791 { 1792 struct blk_mq_hw_ctx *hctx; 1793 int i; 1794 1795 queue_for_each_hw_ctx(q, hctx, i) 1796 blk_mq_start_stopped_hw_queue(hctx, async); 1797 } 1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1799 1800 static void blk_mq_run_work_fn(struct work_struct *work) 1801 { 1802 struct blk_mq_hw_ctx *hctx; 1803 1804 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1805 1806 /* 1807 * If we are stopped, don't run the queue. 1808 */ 1809 if (blk_mq_hctx_stopped(hctx)) 1810 return; 1811 1812 __blk_mq_run_hw_queue(hctx); 1813 } 1814 1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1816 struct request *rq, 1817 bool at_head) 1818 { 1819 struct blk_mq_ctx *ctx = rq->mq_ctx; 1820 enum hctx_type type = hctx->type; 1821 1822 lockdep_assert_held(&ctx->lock); 1823 1824 trace_block_rq_insert(rq); 1825 1826 if (at_head) 1827 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1828 else 1829 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1830 } 1831 1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1833 bool at_head) 1834 { 1835 struct blk_mq_ctx *ctx = rq->mq_ctx; 1836 1837 lockdep_assert_held(&ctx->lock); 1838 1839 __blk_mq_insert_req_list(hctx, rq, at_head); 1840 blk_mq_hctx_mark_pending(hctx, ctx); 1841 } 1842 1843 /** 1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1845 * @rq: Pointer to request to be inserted. 1846 * @at_head: true if the request should be inserted at the head of the list. 1847 * @run_queue: If we should run the hardware queue after inserting the request. 1848 * 1849 * Should only be used carefully, when the caller knows we want to 1850 * bypass a potential IO scheduler on the target device. 1851 */ 1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1853 bool run_queue) 1854 { 1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1856 1857 spin_lock(&hctx->lock); 1858 if (at_head) 1859 list_add(&rq->queuelist, &hctx->dispatch); 1860 else 1861 list_add_tail(&rq->queuelist, &hctx->dispatch); 1862 spin_unlock(&hctx->lock); 1863 1864 if (run_queue) 1865 blk_mq_run_hw_queue(hctx, false); 1866 } 1867 1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1869 struct list_head *list) 1870 1871 { 1872 struct request *rq; 1873 enum hctx_type type = hctx->type; 1874 1875 /* 1876 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1877 * offline now 1878 */ 1879 list_for_each_entry(rq, list, queuelist) { 1880 BUG_ON(rq->mq_ctx != ctx); 1881 trace_block_rq_insert(rq); 1882 } 1883 1884 spin_lock(&ctx->lock); 1885 list_splice_tail_init(list, &ctx->rq_lists[type]); 1886 blk_mq_hctx_mark_pending(hctx, ctx); 1887 spin_unlock(&ctx->lock); 1888 } 1889 1890 static int plug_rq_cmp(void *priv, const struct list_head *a, 1891 const struct list_head *b) 1892 { 1893 struct request *rqa = container_of(a, struct request, queuelist); 1894 struct request *rqb = container_of(b, struct request, queuelist); 1895 1896 if (rqa->mq_ctx != rqb->mq_ctx) 1897 return rqa->mq_ctx > rqb->mq_ctx; 1898 if (rqa->mq_hctx != rqb->mq_hctx) 1899 return rqa->mq_hctx > rqb->mq_hctx; 1900 1901 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1902 } 1903 1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1905 { 1906 LIST_HEAD(list); 1907 1908 if (list_empty(&plug->mq_list)) 1909 return; 1910 list_splice_init(&plug->mq_list, &list); 1911 1912 if (plug->rq_count > 2 && plug->multiple_queues) 1913 list_sort(NULL, &list, plug_rq_cmp); 1914 1915 plug->rq_count = 0; 1916 1917 do { 1918 struct list_head rq_list; 1919 struct request *rq, *head_rq = list_entry_rq(list.next); 1920 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1921 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1922 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1923 unsigned int depth = 1; 1924 1925 list_for_each_continue(pos, &list) { 1926 rq = list_entry_rq(pos); 1927 BUG_ON(!rq->q); 1928 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1929 break; 1930 depth++; 1931 } 1932 1933 list_cut_before(&rq_list, &list, pos); 1934 trace_block_unplug(head_rq->q, depth, !from_schedule); 1935 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1936 from_schedule); 1937 } while(!list_empty(&list)); 1938 } 1939 1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1941 unsigned int nr_segs) 1942 { 1943 int err; 1944 1945 if (bio->bi_opf & REQ_RAHEAD) 1946 rq->cmd_flags |= REQ_FAILFAST_MASK; 1947 1948 rq->__sector = bio->bi_iter.bi_sector; 1949 rq->write_hint = bio->bi_write_hint; 1950 blk_rq_bio_prep(rq, bio, nr_segs); 1951 1952 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1953 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1954 WARN_ON_ONCE(err); 1955 1956 blk_account_io_start(rq); 1957 } 1958 1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1960 struct request *rq, 1961 blk_qc_t *cookie, bool last) 1962 { 1963 struct request_queue *q = rq->q; 1964 struct blk_mq_queue_data bd = { 1965 .rq = rq, 1966 .last = last, 1967 }; 1968 blk_qc_t new_cookie; 1969 blk_status_t ret; 1970 1971 new_cookie = request_to_qc_t(hctx, rq); 1972 1973 /* 1974 * For OK queue, we are done. For error, caller may kill it. 1975 * Any other error (busy), just add it to our list as we 1976 * previously would have done. 1977 */ 1978 ret = q->mq_ops->queue_rq(hctx, &bd); 1979 switch (ret) { 1980 case BLK_STS_OK: 1981 blk_mq_update_dispatch_busy(hctx, false); 1982 *cookie = new_cookie; 1983 break; 1984 case BLK_STS_RESOURCE: 1985 case BLK_STS_DEV_RESOURCE: 1986 blk_mq_update_dispatch_busy(hctx, true); 1987 __blk_mq_requeue_request(rq); 1988 break; 1989 default: 1990 blk_mq_update_dispatch_busy(hctx, false); 1991 *cookie = BLK_QC_T_NONE; 1992 break; 1993 } 1994 1995 return ret; 1996 } 1997 1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1999 struct request *rq, 2000 blk_qc_t *cookie, 2001 bool bypass_insert, bool last) 2002 { 2003 struct request_queue *q = rq->q; 2004 bool run_queue = true; 2005 int budget_token; 2006 2007 /* 2008 * RCU or SRCU read lock is needed before checking quiesced flag. 2009 * 2010 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2011 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2012 * and avoid driver to try to dispatch again. 2013 */ 2014 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2015 run_queue = false; 2016 bypass_insert = false; 2017 goto insert; 2018 } 2019 2020 if (q->elevator && !bypass_insert) 2021 goto insert; 2022 2023 budget_token = blk_mq_get_dispatch_budget(q); 2024 if (budget_token < 0) 2025 goto insert; 2026 2027 blk_mq_set_rq_budget_token(rq, budget_token); 2028 2029 if (!blk_mq_get_driver_tag(rq)) { 2030 blk_mq_put_dispatch_budget(q, budget_token); 2031 goto insert; 2032 } 2033 2034 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2035 insert: 2036 if (bypass_insert) 2037 return BLK_STS_RESOURCE; 2038 2039 blk_mq_sched_insert_request(rq, false, run_queue, false); 2040 2041 return BLK_STS_OK; 2042 } 2043 2044 /** 2045 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2046 * @hctx: Pointer of the associated hardware queue. 2047 * @rq: Pointer to request to be sent. 2048 * @cookie: Request queue cookie. 2049 * 2050 * If the device has enough resources to accept a new request now, send the 2051 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2052 * we can try send it another time in the future. Requests inserted at this 2053 * queue have higher priority. 2054 */ 2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2056 struct request *rq, blk_qc_t *cookie) 2057 { 2058 blk_status_t ret; 2059 int srcu_idx; 2060 2061 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2062 2063 hctx_lock(hctx, &srcu_idx); 2064 2065 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2066 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2067 blk_mq_request_bypass_insert(rq, false, true); 2068 else if (ret != BLK_STS_OK) 2069 blk_mq_end_request(rq, ret); 2070 2071 hctx_unlock(hctx, srcu_idx); 2072 } 2073 2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2075 { 2076 blk_status_t ret; 2077 int srcu_idx; 2078 blk_qc_t unused_cookie; 2079 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2080 2081 hctx_lock(hctx, &srcu_idx); 2082 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2083 hctx_unlock(hctx, srcu_idx); 2084 2085 return ret; 2086 } 2087 2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2089 struct list_head *list) 2090 { 2091 int queued = 0; 2092 int errors = 0; 2093 2094 while (!list_empty(list)) { 2095 blk_status_t ret; 2096 struct request *rq = list_first_entry(list, struct request, 2097 queuelist); 2098 2099 list_del_init(&rq->queuelist); 2100 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2101 if (ret != BLK_STS_OK) { 2102 if (ret == BLK_STS_RESOURCE || 2103 ret == BLK_STS_DEV_RESOURCE) { 2104 blk_mq_request_bypass_insert(rq, false, 2105 list_empty(list)); 2106 break; 2107 } 2108 blk_mq_end_request(rq, ret); 2109 errors++; 2110 } else 2111 queued++; 2112 } 2113 2114 /* 2115 * If we didn't flush the entire list, we could have told 2116 * the driver there was more coming, but that turned out to 2117 * be a lie. 2118 */ 2119 if ((!list_empty(list) || errors) && 2120 hctx->queue->mq_ops->commit_rqs && queued) 2121 hctx->queue->mq_ops->commit_rqs(hctx); 2122 } 2123 2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2125 { 2126 list_add_tail(&rq->queuelist, &plug->mq_list); 2127 plug->rq_count++; 2128 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2129 struct request *tmp; 2130 2131 tmp = list_first_entry(&plug->mq_list, struct request, 2132 queuelist); 2133 if (tmp->q != rq->q) 2134 plug->multiple_queues = true; 2135 } 2136 } 2137 2138 /** 2139 * blk_mq_submit_bio - Create and send a request to block device. 2140 * @bio: Bio pointer. 2141 * 2142 * Builds up a request structure from @q and @bio and send to the device. The 2143 * request may not be queued directly to hardware if: 2144 * * This request can be merged with another one 2145 * * We want to place request at plug queue for possible future merging 2146 * * There is an IO scheduler active at this queue 2147 * 2148 * It will not queue the request if there is an error with the bio, or at the 2149 * request creation. 2150 * 2151 * Returns: Request queue cookie. 2152 */ 2153 blk_qc_t blk_mq_submit_bio(struct bio *bio) 2154 { 2155 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2156 const int is_sync = op_is_sync(bio->bi_opf); 2157 const int is_flush_fua = op_is_flush(bio->bi_opf); 2158 struct blk_mq_alloc_data data = { 2159 .q = q, 2160 }; 2161 struct request *rq; 2162 struct blk_plug *plug; 2163 struct request *same_queue_rq = NULL; 2164 unsigned int nr_segs; 2165 blk_qc_t cookie; 2166 blk_status_t ret; 2167 bool hipri; 2168 2169 blk_queue_bounce(q, &bio); 2170 __blk_queue_split(&bio, &nr_segs); 2171 2172 if (!bio_integrity_prep(bio)) 2173 goto queue_exit; 2174 2175 if (!is_flush_fua && !blk_queue_nomerges(q) && 2176 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2177 goto queue_exit; 2178 2179 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2180 goto queue_exit; 2181 2182 rq_qos_throttle(q, bio); 2183 2184 hipri = bio->bi_opf & REQ_HIPRI; 2185 2186 data.cmd_flags = bio->bi_opf; 2187 rq = __blk_mq_alloc_request(&data); 2188 if (unlikely(!rq)) { 2189 rq_qos_cleanup(q, bio); 2190 if (bio->bi_opf & REQ_NOWAIT) 2191 bio_wouldblock_error(bio); 2192 goto queue_exit; 2193 } 2194 2195 trace_block_getrq(bio); 2196 2197 rq_qos_track(q, rq, bio); 2198 2199 cookie = request_to_qc_t(data.hctx, rq); 2200 2201 blk_mq_bio_to_request(rq, bio, nr_segs); 2202 2203 ret = blk_crypto_init_request(rq); 2204 if (ret != BLK_STS_OK) { 2205 bio->bi_status = ret; 2206 bio_endio(bio); 2207 blk_mq_free_request(rq); 2208 return BLK_QC_T_NONE; 2209 } 2210 2211 plug = blk_mq_plug(q, bio); 2212 if (unlikely(is_flush_fua)) { 2213 /* Bypass scheduler for flush requests */ 2214 blk_insert_flush(rq); 2215 blk_mq_run_hw_queue(data.hctx, true); 2216 } else if (plug && (q->nr_hw_queues == 1 || 2217 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) || 2218 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2219 /* 2220 * Use plugging if we have a ->commit_rqs() hook as well, as 2221 * we know the driver uses bd->last in a smart fashion. 2222 * 2223 * Use normal plugging if this disk is slow HDD, as sequential 2224 * IO may benefit a lot from plug merging. 2225 */ 2226 unsigned int request_count = plug->rq_count; 2227 struct request *last = NULL; 2228 2229 if (!request_count) 2230 trace_block_plug(q); 2231 else 2232 last = list_entry_rq(plug->mq_list.prev); 2233 2234 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 2235 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2236 blk_flush_plug_list(plug, false); 2237 trace_block_plug(q); 2238 } 2239 2240 blk_add_rq_to_plug(plug, rq); 2241 } else if (q->elevator) { 2242 /* Insert the request at the IO scheduler queue */ 2243 blk_mq_sched_insert_request(rq, false, true, true); 2244 } else if (plug && !blk_queue_nomerges(q)) { 2245 /* 2246 * We do limited plugging. If the bio can be merged, do that. 2247 * Otherwise the existing request in the plug list will be 2248 * issued. So the plug list will have one request at most 2249 * The plug list might get flushed before this. If that happens, 2250 * the plug list is empty, and same_queue_rq is invalid. 2251 */ 2252 if (list_empty(&plug->mq_list)) 2253 same_queue_rq = NULL; 2254 if (same_queue_rq) { 2255 list_del_init(&same_queue_rq->queuelist); 2256 plug->rq_count--; 2257 } 2258 blk_add_rq_to_plug(plug, rq); 2259 trace_block_plug(q); 2260 2261 if (same_queue_rq) { 2262 data.hctx = same_queue_rq->mq_hctx; 2263 trace_block_unplug(q, 1, true); 2264 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2265 &cookie); 2266 } 2267 } else if ((q->nr_hw_queues > 1 && is_sync) || 2268 !data.hctx->dispatch_busy) { 2269 /* 2270 * There is no scheduler and we can try to send directly 2271 * to the hardware. 2272 */ 2273 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2274 } else { 2275 /* Default case. */ 2276 blk_mq_sched_insert_request(rq, false, true, true); 2277 } 2278 2279 if (!hipri) 2280 return BLK_QC_T_NONE; 2281 return cookie; 2282 queue_exit: 2283 blk_queue_exit(q); 2284 return BLK_QC_T_NONE; 2285 } 2286 2287 static size_t order_to_size(unsigned int order) 2288 { 2289 return (size_t)PAGE_SIZE << order; 2290 } 2291 2292 /* called before freeing request pool in @tags */ 2293 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set, 2294 struct blk_mq_tags *tags, unsigned int hctx_idx) 2295 { 2296 struct blk_mq_tags *drv_tags = set->tags[hctx_idx]; 2297 struct page *page; 2298 unsigned long flags; 2299 2300 list_for_each_entry(page, &tags->page_list, lru) { 2301 unsigned long start = (unsigned long)page_address(page); 2302 unsigned long end = start + order_to_size(page->private); 2303 int i; 2304 2305 for (i = 0; i < set->queue_depth; i++) { 2306 struct request *rq = drv_tags->rqs[i]; 2307 unsigned long rq_addr = (unsigned long)rq; 2308 2309 if (rq_addr >= start && rq_addr < end) { 2310 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2311 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2312 } 2313 } 2314 } 2315 2316 /* 2317 * Wait until all pending iteration is done. 2318 * 2319 * Request reference is cleared and it is guaranteed to be observed 2320 * after the ->lock is released. 2321 */ 2322 spin_lock_irqsave(&drv_tags->lock, flags); 2323 spin_unlock_irqrestore(&drv_tags->lock, flags); 2324 } 2325 2326 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2327 unsigned int hctx_idx) 2328 { 2329 struct page *page; 2330 2331 if (tags->rqs && set->ops->exit_request) { 2332 int i; 2333 2334 for (i = 0; i < tags->nr_tags; i++) { 2335 struct request *rq = tags->static_rqs[i]; 2336 2337 if (!rq) 2338 continue; 2339 set->ops->exit_request(set, rq, hctx_idx); 2340 tags->static_rqs[i] = NULL; 2341 } 2342 } 2343 2344 blk_mq_clear_rq_mapping(set, tags, hctx_idx); 2345 2346 while (!list_empty(&tags->page_list)) { 2347 page = list_first_entry(&tags->page_list, struct page, lru); 2348 list_del_init(&page->lru); 2349 /* 2350 * Remove kmemleak object previously allocated in 2351 * blk_mq_alloc_rqs(). 2352 */ 2353 kmemleak_free(page_address(page)); 2354 __free_pages(page, page->private); 2355 } 2356 } 2357 2358 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2359 { 2360 kfree(tags->rqs); 2361 tags->rqs = NULL; 2362 kfree(tags->static_rqs); 2363 tags->static_rqs = NULL; 2364 2365 blk_mq_free_tags(tags, flags); 2366 } 2367 2368 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2369 unsigned int hctx_idx, 2370 unsigned int nr_tags, 2371 unsigned int reserved_tags, 2372 unsigned int flags) 2373 { 2374 struct blk_mq_tags *tags; 2375 int node; 2376 2377 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2378 if (node == NUMA_NO_NODE) 2379 node = set->numa_node; 2380 2381 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2382 if (!tags) 2383 return NULL; 2384 2385 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2386 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2387 node); 2388 if (!tags->rqs) { 2389 blk_mq_free_tags(tags, flags); 2390 return NULL; 2391 } 2392 2393 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2394 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2395 node); 2396 if (!tags->static_rqs) { 2397 kfree(tags->rqs); 2398 blk_mq_free_tags(tags, flags); 2399 return NULL; 2400 } 2401 2402 return tags; 2403 } 2404 2405 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2406 unsigned int hctx_idx, int node) 2407 { 2408 int ret; 2409 2410 if (set->ops->init_request) { 2411 ret = set->ops->init_request(set, rq, hctx_idx, node); 2412 if (ret) 2413 return ret; 2414 } 2415 2416 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2417 return 0; 2418 } 2419 2420 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2421 unsigned int hctx_idx, unsigned int depth) 2422 { 2423 unsigned int i, j, entries_per_page, max_order = 4; 2424 size_t rq_size, left; 2425 int node; 2426 2427 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2428 if (node == NUMA_NO_NODE) 2429 node = set->numa_node; 2430 2431 INIT_LIST_HEAD(&tags->page_list); 2432 2433 /* 2434 * rq_size is the size of the request plus driver payload, rounded 2435 * to the cacheline size 2436 */ 2437 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2438 cache_line_size()); 2439 left = rq_size * depth; 2440 2441 for (i = 0; i < depth; ) { 2442 int this_order = max_order; 2443 struct page *page; 2444 int to_do; 2445 void *p; 2446 2447 while (this_order && left < order_to_size(this_order - 1)) 2448 this_order--; 2449 2450 do { 2451 page = alloc_pages_node(node, 2452 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2453 this_order); 2454 if (page) 2455 break; 2456 if (!this_order--) 2457 break; 2458 if (order_to_size(this_order) < rq_size) 2459 break; 2460 } while (1); 2461 2462 if (!page) 2463 goto fail; 2464 2465 page->private = this_order; 2466 list_add_tail(&page->lru, &tags->page_list); 2467 2468 p = page_address(page); 2469 /* 2470 * Allow kmemleak to scan these pages as they contain pointers 2471 * to additional allocations like via ops->init_request(). 2472 */ 2473 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2474 entries_per_page = order_to_size(this_order) / rq_size; 2475 to_do = min(entries_per_page, depth - i); 2476 left -= to_do * rq_size; 2477 for (j = 0; j < to_do; j++) { 2478 struct request *rq = p; 2479 2480 tags->static_rqs[i] = rq; 2481 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2482 tags->static_rqs[i] = NULL; 2483 goto fail; 2484 } 2485 2486 p += rq_size; 2487 i++; 2488 } 2489 } 2490 return 0; 2491 2492 fail: 2493 blk_mq_free_rqs(set, tags, hctx_idx); 2494 return -ENOMEM; 2495 } 2496 2497 struct rq_iter_data { 2498 struct blk_mq_hw_ctx *hctx; 2499 bool has_rq; 2500 }; 2501 2502 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2503 { 2504 struct rq_iter_data *iter_data = data; 2505 2506 if (rq->mq_hctx != iter_data->hctx) 2507 return true; 2508 iter_data->has_rq = true; 2509 return false; 2510 } 2511 2512 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2513 { 2514 struct blk_mq_tags *tags = hctx->sched_tags ? 2515 hctx->sched_tags : hctx->tags; 2516 struct rq_iter_data data = { 2517 .hctx = hctx, 2518 }; 2519 2520 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2521 return data.has_rq; 2522 } 2523 2524 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2525 struct blk_mq_hw_ctx *hctx) 2526 { 2527 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2528 return false; 2529 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2530 return false; 2531 return true; 2532 } 2533 2534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2535 { 2536 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2537 struct blk_mq_hw_ctx, cpuhp_online); 2538 2539 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2540 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2541 return 0; 2542 2543 /* 2544 * Prevent new request from being allocated on the current hctx. 2545 * 2546 * The smp_mb__after_atomic() Pairs with the implied barrier in 2547 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2548 * seen once we return from the tag allocator. 2549 */ 2550 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2551 smp_mb__after_atomic(); 2552 2553 /* 2554 * Try to grab a reference to the queue and wait for any outstanding 2555 * requests. If we could not grab a reference the queue has been 2556 * frozen and there are no requests. 2557 */ 2558 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2559 while (blk_mq_hctx_has_requests(hctx)) 2560 msleep(5); 2561 percpu_ref_put(&hctx->queue->q_usage_counter); 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2568 { 2569 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2570 struct blk_mq_hw_ctx, cpuhp_online); 2571 2572 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2573 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2574 return 0; 2575 } 2576 2577 /* 2578 * 'cpu' is going away. splice any existing rq_list entries from this 2579 * software queue to the hw queue dispatch list, and ensure that it 2580 * gets run. 2581 */ 2582 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2583 { 2584 struct blk_mq_hw_ctx *hctx; 2585 struct blk_mq_ctx *ctx; 2586 LIST_HEAD(tmp); 2587 enum hctx_type type; 2588 2589 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2590 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2591 return 0; 2592 2593 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2594 type = hctx->type; 2595 2596 spin_lock(&ctx->lock); 2597 if (!list_empty(&ctx->rq_lists[type])) { 2598 list_splice_init(&ctx->rq_lists[type], &tmp); 2599 blk_mq_hctx_clear_pending(hctx, ctx); 2600 } 2601 spin_unlock(&ctx->lock); 2602 2603 if (list_empty(&tmp)) 2604 return 0; 2605 2606 spin_lock(&hctx->lock); 2607 list_splice_tail_init(&tmp, &hctx->dispatch); 2608 spin_unlock(&hctx->lock); 2609 2610 blk_mq_run_hw_queue(hctx, true); 2611 return 0; 2612 } 2613 2614 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2615 { 2616 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2617 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2618 &hctx->cpuhp_online); 2619 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2620 &hctx->cpuhp_dead); 2621 } 2622 2623 /* 2624 * Before freeing hw queue, clearing the flush request reference in 2625 * tags->rqs[] for avoiding potential UAF. 2626 */ 2627 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2628 unsigned int queue_depth, struct request *flush_rq) 2629 { 2630 int i; 2631 unsigned long flags; 2632 2633 /* The hw queue may not be mapped yet */ 2634 if (!tags) 2635 return; 2636 2637 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2638 2639 for (i = 0; i < queue_depth; i++) 2640 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2641 2642 /* 2643 * Wait until all pending iteration is done. 2644 * 2645 * Request reference is cleared and it is guaranteed to be observed 2646 * after the ->lock is released. 2647 */ 2648 spin_lock_irqsave(&tags->lock, flags); 2649 spin_unlock_irqrestore(&tags->lock, flags); 2650 } 2651 2652 /* hctx->ctxs will be freed in queue's release handler */ 2653 static void blk_mq_exit_hctx(struct request_queue *q, 2654 struct blk_mq_tag_set *set, 2655 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2656 { 2657 struct request *flush_rq = hctx->fq->flush_rq; 2658 2659 if (blk_mq_hw_queue_mapped(hctx)) 2660 blk_mq_tag_idle(hctx); 2661 2662 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 2663 set->queue_depth, flush_rq); 2664 if (set->ops->exit_request) 2665 set->ops->exit_request(set, flush_rq, hctx_idx); 2666 2667 if (set->ops->exit_hctx) 2668 set->ops->exit_hctx(hctx, hctx_idx); 2669 2670 blk_mq_remove_cpuhp(hctx); 2671 2672 spin_lock(&q->unused_hctx_lock); 2673 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2674 spin_unlock(&q->unused_hctx_lock); 2675 } 2676 2677 static void blk_mq_exit_hw_queues(struct request_queue *q, 2678 struct blk_mq_tag_set *set, int nr_queue) 2679 { 2680 struct blk_mq_hw_ctx *hctx; 2681 unsigned int i; 2682 2683 queue_for_each_hw_ctx(q, hctx, i) { 2684 if (i == nr_queue) 2685 break; 2686 blk_mq_debugfs_unregister_hctx(hctx); 2687 blk_mq_exit_hctx(q, set, hctx, i); 2688 } 2689 } 2690 2691 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2692 { 2693 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2694 2695 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2696 __alignof__(struct blk_mq_hw_ctx)) != 2697 sizeof(struct blk_mq_hw_ctx)); 2698 2699 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2700 hw_ctx_size += sizeof(struct srcu_struct); 2701 2702 return hw_ctx_size; 2703 } 2704 2705 static int blk_mq_init_hctx(struct request_queue *q, 2706 struct blk_mq_tag_set *set, 2707 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2708 { 2709 hctx->queue_num = hctx_idx; 2710 2711 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2712 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2713 &hctx->cpuhp_online); 2714 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2715 2716 hctx->tags = set->tags[hctx_idx]; 2717 2718 if (set->ops->init_hctx && 2719 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2720 goto unregister_cpu_notifier; 2721 2722 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2723 hctx->numa_node)) 2724 goto exit_hctx; 2725 return 0; 2726 2727 exit_hctx: 2728 if (set->ops->exit_hctx) 2729 set->ops->exit_hctx(hctx, hctx_idx); 2730 unregister_cpu_notifier: 2731 blk_mq_remove_cpuhp(hctx); 2732 return -1; 2733 } 2734 2735 static struct blk_mq_hw_ctx * 2736 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2737 int node) 2738 { 2739 struct blk_mq_hw_ctx *hctx; 2740 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2741 2742 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2743 if (!hctx) 2744 goto fail_alloc_hctx; 2745 2746 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2747 goto free_hctx; 2748 2749 atomic_set(&hctx->nr_active, 0); 2750 if (node == NUMA_NO_NODE) 2751 node = set->numa_node; 2752 hctx->numa_node = node; 2753 2754 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2755 spin_lock_init(&hctx->lock); 2756 INIT_LIST_HEAD(&hctx->dispatch); 2757 hctx->queue = q; 2758 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2759 2760 INIT_LIST_HEAD(&hctx->hctx_list); 2761 2762 /* 2763 * Allocate space for all possible cpus to avoid allocation at 2764 * runtime 2765 */ 2766 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2767 gfp, node); 2768 if (!hctx->ctxs) 2769 goto free_cpumask; 2770 2771 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2772 gfp, node, false, false)) 2773 goto free_ctxs; 2774 hctx->nr_ctx = 0; 2775 2776 spin_lock_init(&hctx->dispatch_wait_lock); 2777 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2778 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2779 2780 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2781 if (!hctx->fq) 2782 goto free_bitmap; 2783 2784 if (hctx->flags & BLK_MQ_F_BLOCKING) 2785 init_srcu_struct(hctx->srcu); 2786 blk_mq_hctx_kobj_init(hctx); 2787 2788 return hctx; 2789 2790 free_bitmap: 2791 sbitmap_free(&hctx->ctx_map); 2792 free_ctxs: 2793 kfree(hctx->ctxs); 2794 free_cpumask: 2795 free_cpumask_var(hctx->cpumask); 2796 free_hctx: 2797 kfree(hctx); 2798 fail_alloc_hctx: 2799 return NULL; 2800 } 2801 2802 static void blk_mq_init_cpu_queues(struct request_queue *q, 2803 unsigned int nr_hw_queues) 2804 { 2805 struct blk_mq_tag_set *set = q->tag_set; 2806 unsigned int i, j; 2807 2808 for_each_possible_cpu(i) { 2809 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2810 struct blk_mq_hw_ctx *hctx; 2811 int k; 2812 2813 __ctx->cpu = i; 2814 spin_lock_init(&__ctx->lock); 2815 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2816 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2817 2818 __ctx->queue = q; 2819 2820 /* 2821 * Set local node, IFF we have more than one hw queue. If 2822 * not, we remain on the home node of the device 2823 */ 2824 for (j = 0; j < set->nr_maps; j++) { 2825 hctx = blk_mq_map_queue_type(q, j, i); 2826 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2827 hctx->numa_node = cpu_to_node(i); 2828 } 2829 } 2830 } 2831 2832 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2833 int hctx_idx) 2834 { 2835 unsigned int flags = set->flags; 2836 int ret = 0; 2837 2838 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2839 set->queue_depth, set->reserved_tags, flags); 2840 if (!set->tags[hctx_idx]) 2841 return false; 2842 2843 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2844 set->queue_depth); 2845 if (!ret) 2846 return true; 2847 2848 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2849 set->tags[hctx_idx] = NULL; 2850 return false; 2851 } 2852 2853 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2854 unsigned int hctx_idx) 2855 { 2856 unsigned int flags = set->flags; 2857 2858 if (set->tags && set->tags[hctx_idx]) { 2859 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2860 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2861 set->tags[hctx_idx] = NULL; 2862 } 2863 } 2864 2865 static void blk_mq_map_swqueue(struct request_queue *q) 2866 { 2867 unsigned int i, j, hctx_idx; 2868 struct blk_mq_hw_ctx *hctx; 2869 struct blk_mq_ctx *ctx; 2870 struct blk_mq_tag_set *set = q->tag_set; 2871 2872 queue_for_each_hw_ctx(q, hctx, i) { 2873 cpumask_clear(hctx->cpumask); 2874 hctx->nr_ctx = 0; 2875 hctx->dispatch_from = NULL; 2876 } 2877 2878 /* 2879 * Map software to hardware queues. 2880 * 2881 * If the cpu isn't present, the cpu is mapped to first hctx. 2882 */ 2883 for_each_possible_cpu(i) { 2884 2885 ctx = per_cpu_ptr(q->queue_ctx, i); 2886 for (j = 0; j < set->nr_maps; j++) { 2887 if (!set->map[j].nr_queues) { 2888 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2889 HCTX_TYPE_DEFAULT, i); 2890 continue; 2891 } 2892 hctx_idx = set->map[j].mq_map[i]; 2893 /* unmapped hw queue can be remapped after CPU topo changed */ 2894 if (!set->tags[hctx_idx] && 2895 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2896 /* 2897 * If tags initialization fail for some hctx, 2898 * that hctx won't be brought online. In this 2899 * case, remap the current ctx to hctx[0] which 2900 * is guaranteed to always have tags allocated 2901 */ 2902 set->map[j].mq_map[i] = 0; 2903 } 2904 2905 hctx = blk_mq_map_queue_type(q, j, i); 2906 ctx->hctxs[j] = hctx; 2907 /* 2908 * If the CPU is already set in the mask, then we've 2909 * mapped this one already. This can happen if 2910 * devices share queues across queue maps. 2911 */ 2912 if (cpumask_test_cpu(i, hctx->cpumask)) 2913 continue; 2914 2915 cpumask_set_cpu(i, hctx->cpumask); 2916 hctx->type = j; 2917 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2918 hctx->ctxs[hctx->nr_ctx++] = ctx; 2919 2920 /* 2921 * If the nr_ctx type overflows, we have exceeded the 2922 * amount of sw queues we can support. 2923 */ 2924 BUG_ON(!hctx->nr_ctx); 2925 } 2926 2927 for (; j < HCTX_MAX_TYPES; j++) 2928 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2929 HCTX_TYPE_DEFAULT, i); 2930 } 2931 2932 queue_for_each_hw_ctx(q, hctx, i) { 2933 /* 2934 * If no software queues are mapped to this hardware queue, 2935 * disable it and free the request entries. 2936 */ 2937 if (!hctx->nr_ctx) { 2938 /* Never unmap queue 0. We need it as a 2939 * fallback in case of a new remap fails 2940 * allocation 2941 */ 2942 if (i && set->tags[i]) 2943 blk_mq_free_map_and_requests(set, i); 2944 2945 hctx->tags = NULL; 2946 continue; 2947 } 2948 2949 hctx->tags = set->tags[i]; 2950 WARN_ON(!hctx->tags); 2951 2952 /* 2953 * Set the map size to the number of mapped software queues. 2954 * This is more accurate and more efficient than looping 2955 * over all possibly mapped software queues. 2956 */ 2957 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2958 2959 /* 2960 * Initialize batch roundrobin counts 2961 */ 2962 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2963 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2964 } 2965 } 2966 2967 /* 2968 * Caller needs to ensure that we're either frozen/quiesced, or that 2969 * the queue isn't live yet. 2970 */ 2971 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2972 { 2973 struct blk_mq_hw_ctx *hctx; 2974 int i; 2975 2976 queue_for_each_hw_ctx(q, hctx, i) { 2977 if (shared) { 2978 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 2979 } else { 2980 blk_mq_tag_idle(hctx); 2981 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 2982 } 2983 } 2984 } 2985 2986 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 2987 bool shared) 2988 { 2989 struct request_queue *q; 2990 2991 lockdep_assert_held(&set->tag_list_lock); 2992 2993 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2994 blk_mq_freeze_queue(q); 2995 queue_set_hctx_shared(q, shared); 2996 blk_mq_unfreeze_queue(q); 2997 } 2998 } 2999 3000 static void blk_mq_del_queue_tag_set(struct request_queue *q) 3001 { 3002 struct blk_mq_tag_set *set = q->tag_set; 3003 3004 mutex_lock(&set->tag_list_lock); 3005 list_del(&q->tag_set_list); 3006 if (list_is_singular(&set->tag_list)) { 3007 /* just transitioned to unshared */ 3008 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3009 /* update existing queue */ 3010 blk_mq_update_tag_set_shared(set, false); 3011 } 3012 mutex_unlock(&set->tag_list_lock); 3013 INIT_LIST_HEAD(&q->tag_set_list); 3014 } 3015 3016 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3017 struct request_queue *q) 3018 { 3019 mutex_lock(&set->tag_list_lock); 3020 3021 /* 3022 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3023 */ 3024 if (!list_empty(&set->tag_list) && 3025 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3026 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3027 /* update existing queue */ 3028 blk_mq_update_tag_set_shared(set, true); 3029 } 3030 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3031 queue_set_hctx_shared(q, true); 3032 list_add_tail(&q->tag_set_list, &set->tag_list); 3033 3034 mutex_unlock(&set->tag_list_lock); 3035 } 3036 3037 /* All allocations will be freed in release handler of q->mq_kobj */ 3038 static int blk_mq_alloc_ctxs(struct request_queue *q) 3039 { 3040 struct blk_mq_ctxs *ctxs; 3041 int cpu; 3042 3043 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3044 if (!ctxs) 3045 return -ENOMEM; 3046 3047 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3048 if (!ctxs->queue_ctx) 3049 goto fail; 3050 3051 for_each_possible_cpu(cpu) { 3052 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3053 ctx->ctxs = ctxs; 3054 } 3055 3056 q->mq_kobj = &ctxs->kobj; 3057 q->queue_ctx = ctxs->queue_ctx; 3058 3059 return 0; 3060 fail: 3061 kfree(ctxs); 3062 return -ENOMEM; 3063 } 3064 3065 /* 3066 * It is the actual release handler for mq, but we do it from 3067 * request queue's release handler for avoiding use-after-free 3068 * and headache because q->mq_kobj shouldn't have been introduced, 3069 * but we can't group ctx/kctx kobj without it. 3070 */ 3071 void blk_mq_release(struct request_queue *q) 3072 { 3073 struct blk_mq_hw_ctx *hctx, *next; 3074 int i; 3075 3076 queue_for_each_hw_ctx(q, hctx, i) 3077 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3078 3079 /* all hctx are in .unused_hctx_list now */ 3080 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3081 list_del_init(&hctx->hctx_list); 3082 kobject_put(&hctx->kobj); 3083 } 3084 3085 kfree(q->queue_hw_ctx); 3086 3087 /* 3088 * release .mq_kobj and sw queue's kobject now because 3089 * both share lifetime with request queue. 3090 */ 3091 blk_mq_sysfs_deinit(q); 3092 } 3093 3094 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3095 void *queuedata) 3096 { 3097 struct request_queue *q; 3098 int ret; 3099 3100 q = blk_alloc_queue(set->numa_node); 3101 if (!q) 3102 return ERR_PTR(-ENOMEM); 3103 q->queuedata = queuedata; 3104 ret = blk_mq_init_allocated_queue(set, q); 3105 if (ret) { 3106 blk_cleanup_queue(q); 3107 return ERR_PTR(ret); 3108 } 3109 return q; 3110 } 3111 3112 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3113 { 3114 return blk_mq_init_queue_data(set, NULL); 3115 } 3116 EXPORT_SYMBOL(blk_mq_init_queue); 3117 3118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3119 struct lock_class_key *lkclass) 3120 { 3121 struct request_queue *q; 3122 struct gendisk *disk; 3123 3124 q = blk_mq_init_queue_data(set, queuedata); 3125 if (IS_ERR(q)) 3126 return ERR_CAST(q); 3127 3128 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3129 if (!disk) { 3130 blk_cleanup_queue(q); 3131 return ERR_PTR(-ENOMEM); 3132 } 3133 return disk; 3134 } 3135 EXPORT_SYMBOL(__blk_mq_alloc_disk); 3136 3137 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3138 struct blk_mq_tag_set *set, struct request_queue *q, 3139 int hctx_idx, int node) 3140 { 3141 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3142 3143 /* reuse dead hctx first */ 3144 spin_lock(&q->unused_hctx_lock); 3145 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3146 if (tmp->numa_node == node) { 3147 hctx = tmp; 3148 break; 3149 } 3150 } 3151 if (hctx) 3152 list_del_init(&hctx->hctx_list); 3153 spin_unlock(&q->unused_hctx_lock); 3154 3155 if (!hctx) 3156 hctx = blk_mq_alloc_hctx(q, set, node); 3157 if (!hctx) 3158 goto fail; 3159 3160 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3161 goto free_hctx; 3162 3163 return hctx; 3164 3165 free_hctx: 3166 kobject_put(&hctx->kobj); 3167 fail: 3168 return NULL; 3169 } 3170 3171 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3172 struct request_queue *q) 3173 { 3174 int i, j, end; 3175 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3176 3177 if (q->nr_hw_queues < set->nr_hw_queues) { 3178 struct blk_mq_hw_ctx **new_hctxs; 3179 3180 new_hctxs = kcalloc_node(set->nr_hw_queues, 3181 sizeof(*new_hctxs), GFP_KERNEL, 3182 set->numa_node); 3183 if (!new_hctxs) 3184 return; 3185 if (hctxs) 3186 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3187 sizeof(*hctxs)); 3188 q->queue_hw_ctx = new_hctxs; 3189 kfree(hctxs); 3190 hctxs = new_hctxs; 3191 } 3192 3193 /* protect against switching io scheduler */ 3194 mutex_lock(&q->sysfs_lock); 3195 for (i = 0; i < set->nr_hw_queues; i++) { 3196 int node; 3197 struct blk_mq_hw_ctx *hctx; 3198 3199 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3200 /* 3201 * If the hw queue has been mapped to another numa node, 3202 * we need to realloc the hctx. If allocation fails, fallback 3203 * to use the previous one. 3204 */ 3205 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3206 continue; 3207 3208 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3209 if (hctx) { 3210 if (hctxs[i]) 3211 blk_mq_exit_hctx(q, set, hctxs[i], i); 3212 hctxs[i] = hctx; 3213 } else { 3214 if (hctxs[i]) 3215 pr_warn("Allocate new hctx on node %d fails,\ 3216 fallback to previous one on node %d\n", 3217 node, hctxs[i]->numa_node); 3218 else 3219 break; 3220 } 3221 } 3222 /* 3223 * Increasing nr_hw_queues fails. Free the newly allocated 3224 * hctxs and keep the previous q->nr_hw_queues. 3225 */ 3226 if (i != set->nr_hw_queues) { 3227 j = q->nr_hw_queues; 3228 end = i; 3229 } else { 3230 j = i; 3231 end = q->nr_hw_queues; 3232 q->nr_hw_queues = set->nr_hw_queues; 3233 } 3234 3235 for (; j < end; j++) { 3236 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3237 3238 if (hctx) { 3239 if (hctx->tags) 3240 blk_mq_free_map_and_requests(set, j); 3241 blk_mq_exit_hctx(q, set, hctx, j); 3242 hctxs[j] = NULL; 3243 } 3244 } 3245 mutex_unlock(&q->sysfs_lock); 3246 } 3247 3248 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3249 struct request_queue *q) 3250 { 3251 /* mark the queue as mq asap */ 3252 q->mq_ops = set->ops; 3253 3254 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3255 blk_mq_poll_stats_bkt, 3256 BLK_MQ_POLL_STATS_BKTS, q); 3257 if (!q->poll_cb) 3258 goto err_exit; 3259 3260 if (blk_mq_alloc_ctxs(q)) 3261 goto err_poll; 3262 3263 /* init q->mq_kobj and sw queues' kobjects */ 3264 blk_mq_sysfs_init(q); 3265 3266 INIT_LIST_HEAD(&q->unused_hctx_list); 3267 spin_lock_init(&q->unused_hctx_lock); 3268 3269 blk_mq_realloc_hw_ctxs(set, q); 3270 if (!q->nr_hw_queues) 3271 goto err_hctxs; 3272 3273 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3274 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3275 3276 q->tag_set = set; 3277 3278 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3279 if (set->nr_maps > HCTX_TYPE_POLL && 3280 set->map[HCTX_TYPE_POLL].nr_queues) 3281 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3282 3283 q->sg_reserved_size = INT_MAX; 3284 3285 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3286 INIT_LIST_HEAD(&q->requeue_list); 3287 spin_lock_init(&q->requeue_lock); 3288 3289 q->nr_requests = set->queue_depth; 3290 3291 /* 3292 * Default to classic polling 3293 */ 3294 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3295 3296 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3297 blk_mq_add_queue_tag_set(set, q); 3298 blk_mq_map_swqueue(q); 3299 return 0; 3300 3301 err_hctxs: 3302 kfree(q->queue_hw_ctx); 3303 q->nr_hw_queues = 0; 3304 blk_mq_sysfs_deinit(q); 3305 err_poll: 3306 blk_stat_free_callback(q->poll_cb); 3307 q->poll_cb = NULL; 3308 err_exit: 3309 q->mq_ops = NULL; 3310 return -ENOMEM; 3311 } 3312 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3313 3314 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 3315 void blk_mq_exit_queue(struct request_queue *q) 3316 { 3317 struct blk_mq_tag_set *set = q->tag_set; 3318 3319 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3320 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3321 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3322 blk_mq_del_queue_tag_set(q); 3323 } 3324 3325 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3326 { 3327 int i; 3328 3329 for (i = 0; i < set->nr_hw_queues; i++) { 3330 if (!__blk_mq_alloc_map_and_request(set, i)) 3331 goto out_unwind; 3332 cond_resched(); 3333 } 3334 3335 return 0; 3336 3337 out_unwind: 3338 while (--i >= 0) 3339 blk_mq_free_map_and_requests(set, i); 3340 3341 return -ENOMEM; 3342 } 3343 3344 /* 3345 * Allocate the request maps associated with this tag_set. Note that this 3346 * may reduce the depth asked for, if memory is tight. set->queue_depth 3347 * will be updated to reflect the allocated depth. 3348 */ 3349 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3350 { 3351 unsigned int depth; 3352 int err; 3353 3354 depth = set->queue_depth; 3355 do { 3356 err = __blk_mq_alloc_rq_maps(set); 3357 if (!err) 3358 break; 3359 3360 set->queue_depth >>= 1; 3361 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3362 err = -ENOMEM; 3363 break; 3364 } 3365 } while (set->queue_depth); 3366 3367 if (!set->queue_depth || err) { 3368 pr_err("blk-mq: failed to allocate request map\n"); 3369 return -ENOMEM; 3370 } 3371 3372 if (depth != set->queue_depth) 3373 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3374 depth, set->queue_depth); 3375 3376 return 0; 3377 } 3378 3379 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3380 { 3381 /* 3382 * blk_mq_map_queues() and multiple .map_queues() implementations 3383 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3384 * number of hardware queues. 3385 */ 3386 if (set->nr_maps == 1) 3387 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3388 3389 if (set->ops->map_queues && !is_kdump_kernel()) { 3390 int i; 3391 3392 /* 3393 * transport .map_queues is usually done in the following 3394 * way: 3395 * 3396 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3397 * mask = get_cpu_mask(queue) 3398 * for_each_cpu(cpu, mask) 3399 * set->map[x].mq_map[cpu] = queue; 3400 * } 3401 * 3402 * When we need to remap, the table has to be cleared for 3403 * killing stale mapping since one CPU may not be mapped 3404 * to any hw queue. 3405 */ 3406 for (i = 0; i < set->nr_maps; i++) 3407 blk_mq_clear_mq_map(&set->map[i]); 3408 3409 return set->ops->map_queues(set); 3410 } else { 3411 BUG_ON(set->nr_maps > 1); 3412 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3413 } 3414 } 3415 3416 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3417 int cur_nr_hw_queues, int new_nr_hw_queues) 3418 { 3419 struct blk_mq_tags **new_tags; 3420 3421 if (cur_nr_hw_queues >= new_nr_hw_queues) 3422 return 0; 3423 3424 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3425 GFP_KERNEL, set->numa_node); 3426 if (!new_tags) 3427 return -ENOMEM; 3428 3429 if (set->tags) 3430 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3431 sizeof(*set->tags)); 3432 kfree(set->tags); 3433 set->tags = new_tags; 3434 set->nr_hw_queues = new_nr_hw_queues; 3435 3436 return 0; 3437 } 3438 3439 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3440 int new_nr_hw_queues) 3441 { 3442 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3443 } 3444 3445 /* 3446 * Alloc a tag set to be associated with one or more request queues. 3447 * May fail with EINVAL for various error conditions. May adjust the 3448 * requested depth down, if it's too large. In that case, the set 3449 * value will be stored in set->queue_depth. 3450 */ 3451 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3452 { 3453 int i, ret; 3454 3455 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3456 3457 if (!set->nr_hw_queues) 3458 return -EINVAL; 3459 if (!set->queue_depth) 3460 return -EINVAL; 3461 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3462 return -EINVAL; 3463 3464 if (!set->ops->queue_rq) 3465 return -EINVAL; 3466 3467 if (!set->ops->get_budget ^ !set->ops->put_budget) 3468 return -EINVAL; 3469 3470 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3471 pr_info("blk-mq: reduced tag depth to %u\n", 3472 BLK_MQ_MAX_DEPTH); 3473 set->queue_depth = BLK_MQ_MAX_DEPTH; 3474 } 3475 3476 if (!set->nr_maps) 3477 set->nr_maps = 1; 3478 else if (set->nr_maps > HCTX_MAX_TYPES) 3479 return -EINVAL; 3480 3481 /* 3482 * If a crashdump is active, then we are potentially in a very 3483 * memory constrained environment. Limit us to 1 queue and 3484 * 64 tags to prevent using too much memory. 3485 */ 3486 if (is_kdump_kernel()) { 3487 set->nr_hw_queues = 1; 3488 set->nr_maps = 1; 3489 set->queue_depth = min(64U, set->queue_depth); 3490 } 3491 /* 3492 * There is no use for more h/w queues than cpus if we just have 3493 * a single map 3494 */ 3495 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3496 set->nr_hw_queues = nr_cpu_ids; 3497 3498 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3499 return -ENOMEM; 3500 3501 ret = -ENOMEM; 3502 for (i = 0; i < set->nr_maps; i++) { 3503 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3504 sizeof(set->map[i].mq_map[0]), 3505 GFP_KERNEL, set->numa_node); 3506 if (!set->map[i].mq_map) 3507 goto out_free_mq_map; 3508 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3509 } 3510 3511 ret = blk_mq_update_queue_map(set); 3512 if (ret) 3513 goto out_free_mq_map; 3514 3515 ret = blk_mq_alloc_map_and_requests(set); 3516 if (ret) 3517 goto out_free_mq_map; 3518 3519 if (blk_mq_is_sbitmap_shared(set->flags)) { 3520 atomic_set(&set->active_queues_shared_sbitmap, 0); 3521 3522 if (blk_mq_init_shared_sbitmap(set)) { 3523 ret = -ENOMEM; 3524 goto out_free_mq_rq_maps; 3525 } 3526 } 3527 3528 mutex_init(&set->tag_list_lock); 3529 INIT_LIST_HEAD(&set->tag_list); 3530 3531 return 0; 3532 3533 out_free_mq_rq_maps: 3534 for (i = 0; i < set->nr_hw_queues; i++) 3535 blk_mq_free_map_and_requests(set, i); 3536 out_free_mq_map: 3537 for (i = 0; i < set->nr_maps; i++) { 3538 kfree(set->map[i].mq_map); 3539 set->map[i].mq_map = NULL; 3540 } 3541 kfree(set->tags); 3542 set->tags = NULL; 3543 return ret; 3544 } 3545 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3546 3547 /* allocate and initialize a tagset for a simple single-queue device */ 3548 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 3549 const struct blk_mq_ops *ops, unsigned int queue_depth, 3550 unsigned int set_flags) 3551 { 3552 memset(set, 0, sizeof(*set)); 3553 set->ops = ops; 3554 set->nr_hw_queues = 1; 3555 set->nr_maps = 1; 3556 set->queue_depth = queue_depth; 3557 set->numa_node = NUMA_NO_NODE; 3558 set->flags = set_flags; 3559 return blk_mq_alloc_tag_set(set); 3560 } 3561 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 3562 3563 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3564 { 3565 int i, j; 3566 3567 for (i = 0; i < set->nr_hw_queues; i++) 3568 blk_mq_free_map_and_requests(set, i); 3569 3570 if (blk_mq_is_sbitmap_shared(set->flags)) 3571 blk_mq_exit_shared_sbitmap(set); 3572 3573 for (j = 0; j < set->nr_maps; j++) { 3574 kfree(set->map[j].mq_map); 3575 set->map[j].mq_map = NULL; 3576 } 3577 3578 kfree(set->tags); 3579 set->tags = NULL; 3580 } 3581 EXPORT_SYMBOL(blk_mq_free_tag_set); 3582 3583 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3584 { 3585 struct blk_mq_tag_set *set = q->tag_set; 3586 struct blk_mq_hw_ctx *hctx; 3587 int i, ret; 3588 3589 if (!set) 3590 return -EINVAL; 3591 3592 if (q->nr_requests == nr) 3593 return 0; 3594 3595 blk_mq_freeze_queue(q); 3596 blk_mq_quiesce_queue(q); 3597 3598 ret = 0; 3599 queue_for_each_hw_ctx(q, hctx, i) { 3600 if (!hctx->tags) 3601 continue; 3602 /* 3603 * If we're using an MQ scheduler, just update the scheduler 3604 * queue depth. This is similar to what the old code would do. 3605 */ 3606 if (!hctx->sched_tags) { 3607 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3608 false); 3609 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3610 blk_mq_tag_resize_shared_sbitmap(set, nr); 3611 } else { 3612 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3613 nr, true); 3614 if (blk_mq_is_sbitmap_shared(set->flags)) { 3615 hctx->sched_tags->bitmap_tags = 3616 &q->sched_bitmap_tags; 3617 hctx->sched_tags->breserved_tags = 3618 &q->sched_breserved_tags; 3619 } 3620 } 3621 if (ret) 3622 break; 3623 if (q->elevator && q->elevator->type->ops.depth_updated) 3624 q->elevator->type->ops.depth_updated(hctx); 3625 } 3626 if (!ret) { 3627 q->nr_requests = nr; 3628 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags)) 3629 sbitmap_queue_resize(&q->sched_bitmap_tags, 3630 nr - set->reserved_tags); 3631 } 3632 3633 blk_mq_unquiesce_queue(q); 3634 blk_mq_unfreeze_queue(q); 3635 3636 return ret; 3637 } 3638 3639 /* 3640 * request_queue and elevator_type pair. 3641 * It is just used by __blk_mq_update_nr_hw_queues to cache 3642 * the elevator_type associated with a request_queue. 3643 */ 3644 struct blk_mq_qe_pair { 3645 struct list_head node; 3646 struct request_queue *q; 3647 struct elevator_type *type; 3648 }; 3649 3650 /* 3651 * Cache the elevator_type in qe pair list and switch the 3652 * io scheduler to 'none' 3653 */ 3654 static bool blk_mq_elv_switch_none(struct list_head *head, 3655 struct request_queue *q) 3656 { 3657 struct blk_mq_qe_pair *qe; 3658 3659 if (!q->elevator) 3660 return true; 3661 3662 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3663 if (!qe) 3664 return false; 3665 3666 INIT_LIST_HEAD(&qe->node); 3667 qe->q = q; 3668 qe->type = q->elevator->type; 3669 list_add(&qe->node, head); 3670 3671 mutex_lock(&q->sysfs_lock); 3672 /* 3673 * After elevator_switch_mq, the previous elevator_queue will be 3674 * released by elevator_release. The reference of the io scheduler 3675 * module get by elevator_get will also be put. So we need to get 3676 * a reference of the io scheduler module here to prevent it to be 3677 * removed. 3678 */ 3679 __module_get(qe->type->elevator_owner); 3680 elevator_switch_mq(q, NULL); 3681 mutex_unlock(&q->sysfs_lock); 3682 3683 return true; 3684 } 3685 3686 static void blk_mq_elv_switch_back(struct list_head *head, 3687 struct request_queue *q) 3688 { 3689 struct blk_mq_qe_pair *qe; 3690 struct elevator_type *t = NULL; 3691 3692 list_for_each_entry(qe, head, node) 3693 if (qe->q == q) { 3694 t = qe->type; 3695 break; 3696 } 3697 3698 if (!t) 3699 return; 3700 3701 list_del(&qe->node); 3702 kfree(qe); 3703 3704 mutex_lock(&q->sysfs_lock); 3705 elevator_switch_mq(q, t); 3706 mutex_unlock(&q->sysfs_lock); 3707 } 3708 3709 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3710 int nr_hw_queues) 3711 { 3712 struct request_queue *q; 3713 LIST_HEAD(head); 3714 int prev_nr_hw_queues; 3715 3716 lockdep_assert_held(&set->tag_list_lock); 3717 3718 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3719 nr_hw_queues = nr_cpu_ids; 3720 if (nr_hw_queues < 1) 3721 return; 3722 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3723 return; 3724 3725 list_for_each_entry(q, &set->tag_list, tag_set_list) 3726 blk_mq_freeze_queue(q); 3727 /* 3728 * Switch IO scheduler to 'none', cleaning up the data associated 3729 * with the previous scheduler. We will switch back once we are done 3730 * updating the new sw to hw queue mappings. 3731 */ 3732 list_for_each_entry(q, &set->tag_list, tag_set_list) 3733 if (!blk_mq_elv_switch_none(&head, q)) 3734 goto switch_back; 3735 3736 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3737 blk_mq_debugfs_unregister_hctxs(q); 3738 blk_mq_sysfs_unregister(q); 3739 } 3740 3741 prev_nr_hw_queues = set->nr_hw_queues; 3742 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3743 0) 3744 goto reregister; 3745 3746 set->nr_hw_queues = nr_hw_queues; 3747 fallback: 3748 blk_mq_update_queue_map(set); 3749 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3750 blk_mq_realloc_hw_ctxs(set, q); 3751 if (q->nr_hw_queues != set->nr_hw_queues) { 3752 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3753 nr_hw_queues, prev_nr_hw_queues); 3754 set->nr_hw_queues = prev_nr_hw_queues; 3755 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3756 goto fallback; 3757 } 3758 blk_mq_map_swqueue(q); 3759 } 3760 3761 reregister: 3762 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3763 blk_mq_sysfs_register(q); 3764 blk_mq_debugfs_register_hctxs(q); 3765 } 3766 3767 switch_back: 3768 list_for_each_entry(q, &set->tag_list, tag_set_list) 3769 blk_mq_elv_switch_back(&head, q); 3770 3771 list_for_each_entry(q, &set->tag_list, tag_set_list) 3772 blk_mq_unfreeze_queue(q); 3773 } 3774 3775 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3776 { 3777 mutex_lock(&set->tag_list_lock); 3778 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3779 mutex_unlock(&set->tag_list_lock); 3780 } 3781 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3782 3783 /* Enable polling stats and return whether they were already enabled. */ 3784 static bool blk_poll_stats_enable(struct request_queue *q) 3785 { 3786 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3787 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3788 return true; 3789 blk_stat_add_callback(q, q->poll_cb); 3790 return false; 3791 } 3792 3793 static void blk_mq_poll_stats_start(struct request_queue *q) 3794 { 3795 /* 3796 * We don't arm the callback if polling stats are not enabled or the 3797 * callback is already active. 3798 */ 3799 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3800 blk_stat_is_active(q->poll_cb)) 3801 return; 3802 3803 blk_stat_activate_msecs(q->poll_cb, 100); 3804 } 3805 3806 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3807 { 3808 struct request_queue *q = cb->data; 3809 int bucket; 3810 3811 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3812 if (cb->stat[bucket].nr_samples) 3813 q->poll_stat[bucket] = cb->stat[bucket]; 3814 } 3815 } 3816 3817 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3818 struct request *rq) 3819 { 3820 unsigned long ret = 0; 3821 int bucket; 3822 3823 /* 3824 * If stats collection isn't on, don't sleep but turn it on for 3825 * future users 3826 */ 3827 if (!blk_poll_stats_enable(q)) 3828 return 0; 3829 3830 /* 3831 * As an optimistic guess, use half of the mean service time 3832 * for this type of request. We can (and should) make this smarter. 3833 * For instance, if the completion latencies are tight, we can 3834 * get closer than just half the mean. This is especially 3835 * important on devices where the completion latencies are longer 3836 * than ~10 usec. We do use the stats for the relevant IO size 3837 * if available which does lead to better estimates. 3838 */ 3839 bucket = blk_mq_poll_stats_bkt(rq); 3840 if (bucket < 0) 3841 return ret; 3842 3843 if (q->poll_stat[bucket].nr_samples) 3844 ret = (q->poll_stat[bucket].mean + 1) / 2; 3845 3846 return ret; 3847 } 3848 3849 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3850 struct request *rq) 3851 { 3852 struct hrtimer_sleeper hs; 3853 enum hrtimer_mode mode; 3854 unsigned int nsecs; 3855 ktime_t kt; 3856 3857 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3858 return false; 3859 3860 /* 3861 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3862 * 3863 * 0: use half of prev avg 3864 * >0: use this specific value 3865 */ 3866 if (q->poll_nsec > 0) 3867 nsecs = q->poll_nsec; 3868 else 3869 nsecs = blk_mq_poll_nsecs(q, rq); 3870 3871 if (!nsecs) 3872 return false; 3873 3874 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3875 3876 /* 3877 * This will be replaced with the stats tracking code, using 3878 * 'avg_completion_time / 2' as the pre-sleep target. 3879 */ 3880 kt = nsecs; 3881 3882 mode = HRTIMER_MODE_REL; 3883 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3884 hrtimer_set_expires(&hs.timer, kt); 3885 3886 do { 3887 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3888 break; 3889 set_current_state(TASK_UNINTERRUPTIBLE); 3890 hrtimer_sleeper_start_expires(&hs, mode); 3891 if (hs.task) 3892 io_schedule(); 3893 hrtimer_cancel(&hs.timer); 3894 mode = HRTIMER_MODE_ABS; 3895 } while (hs.task && !signal_pending(current)); 3896 3897 __set_current_state(TASK_RUNNING); 3898 destroy_hrtimer_on_stack(&hs.timer); 3899 return true; 3900 } 3901 3902 static bool blk_mq_poll_hybrid(struct request_queue *q, 3903 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3904 { 3905 struct request *rq; 3906 3907 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3908 return false; 3909 3910 if (!blk_qc_t_is_internal(cookie)) 3911 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3912 else { 3913 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3914 /* 3915 * With scheduling, if the request has completed, we'll 3916 * get a NULL return here, as we clear the sched tag when 3917 * that happens. The request still remains valid, like always, 3918 * so we should be safe with just the NULL check. 3919 */ 3920 if (!rq) 3921 return false; 3922 } 3923 3924 return blk_mq_poll_hybrid_sleep(q, rq); 3925 } 3926 3927 /** 3928 * blk_poll - poll for IO completions 3929 * @q: the queue 3930 * @cookie: cookie passed back at IO submission time 3931 * @spin: whether to spin for completions 3932 * 3933 * Description: 3934 * Poll for completions on the passed in queue. Returns number of 3935 * completed entries found. If @spin is true, then blk_poll will continue 3936 * looping until at least one completion is found, unless the task is 3937 * otherwise marked running (or we need to reschedule). 3938 */ 3939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3940 { 3941 struct blk_mq_hw_ctx *hctx; 3942 unsigned int state; 3943 3944 if (!blk_qc_t_valid(cookie) || 3945 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3946 return 0; 3947 3948 if (current->plug) 3949 blk_flush_plug_list(current->plug, false); 3950 3951 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3952 3953 /* 3954 * If we sleep, have the caller restart the poll loop to reset 3955 * the state. Like for the other success return cases, the 3956 * caller is responsible for checking if the IO completed. If 3957 * the IO isn't complete, we'll get called again and will go 3958 * straight to the busy poll loop. If specified not to spin, 3959 * we also should not sleep. 3960 */ 3961 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3962 return 1; 3963 3964 hctx->poll_considered++; 3965 3966 state = get_current_state(); 3967 do { 3968 int ret; 3969 3970 hctx->poll_invoked++; 3971 3972 ret = q->mq_ops->poll(hctx); 3973 if (ret > 0) { 3974 hctx->poll_success++; 3975 __set_current_state(TASK_RUNNING); 3976 return ret; 3977 } 3978 3979 if (signal_pending_state(state, current)) 3980 __set_current_state(TASK_RUNNING); 3981 3982 if (task_is_running(current)) 3983 return 1; 3984 if (ret < 0 || !spin) 3985 break; 3986 cpu_relax(); 3987 } while (!need_resched()); 3988 3989 __set_current_state(TASK_RUNNING); 3990 return 0; 3991 } 3992 EXPORT_SYMBOL_GPL(blk_poll); 3993 3994 unsigned int blk_mq_rq_cpu(struct request *rq) 3995 { 3996 return rq->mq_ctx->cpu; 3997 } 3998 EXPORT_SYMBOL(blk_mq_rq_cpu); 3999 4000 static int __init blk_mq_init(void) 4001 { 4002 int i; 4003 4004 for_each_possible_cpu(i) 4005 init_llist_head(&per_cpu(blk_cpu_done, i)); 4006 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4007 4008 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4009 "block/softirq:dead", NULL, 4010 blk_softirq_cpu_dead); 4011 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4012 blk_mq_hctx_notify_dead); 4013 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4014 blk_mq_hctx_notify_online, 4015 blk_mq_hctx_notify_offline); 4016 return 0; 4017 } 4018 subsys_initcall(blk_mq_init); 4019