xref: /linux/block/blk-mq.c (revision 1771c8c9e65a20128f93df107353a5f4cb91546a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 #define BLK_QC_T_SHIFT		16
69 #define BLK_QC_T_INTERNAL	(1U << 31)
70 
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 		blk_qc_t qc)
73 {
74 	return xa_load(&q->hctx_table,
75 			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77 
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 		blk_qc_t qc)
80 {
81 	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82 
83 	if (qc & BLK_QC_T_INTERNAL)
84 		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 	return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87 
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 		(rq->tag != -1 ?
92 		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94 
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 	return !list_empty_careful(&hctx->dispatch) ||
102 		sbitmap_any_bit_set(&hctx->ctx_map) ||
103 			blk_mq_sched_has_work(hctx);
104 }
105 
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 				     struct blk_mq_ctx *ctx)
111 {
112 	const int bit = ctx->index_hw[hctx->type];
113 
114 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 		sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117 
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 				      struct blk_mq_ctx *ctx)
120 {
121 	const int bit = ctx->index_hw[hctx->type];
122 
123 	sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125 
126 struct mq_inflight {
127 	struct block_device *part;
128 	unsigned int inflight[2];
129 };
130 
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 				  bool reserved)
133 {
134 	struct mq_inflight *mi = priv;
135 
136 	if (rq->part && blk_do_io_stat(rq) &&
137 	    (!mi->part->bd_partno || rq->part == mi->part) &&
138 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 		mi->inflight[rq_data_dir(rq)]++;
140 
141 	return true;
142 }
143 
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 		struct block_device *part)
146 {
147 	struct mq_inflight mi = { .part = part };
148 
149 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150 
151 	return mi.inflight[0] + mi.inflight[1];
152 }
153 
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 		unsigned int inflight[2])
156 {
157 	struct mq_inflight mi = { .part = part };
158 
159 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 	inflight[0] = mi.inflight[0];
161 	inflight[1] = mi.inflight[1];
162 }
163 
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 	mutex_lock(&q->mq_freeze_lock);
167 	if (++q->mq_freeze_depth == 1) {
168 		percpu_ref_kill(&q->q_usage_counter);
169 		mutex_unlock(&q->mq_freeze_lock);
170 		if (queue_is_mq(q))
171 			blk_mq_run_hw_queues(q, false);
172 	} else {
173 		mutex_unlock(&q->mq_freeze_lock);
174 	}
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177 
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183 
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 				     unsigned long timeout)
186 {
187 	return wait_event_timeout(q->mq_freeze_wq,
188 					percpu_ref_is_zero(&q->q_usage_counter),
189 					timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192 
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 	/*
200 	 * In the !blk_mq case we are only calling this to kill the
201 	 * q_usage_counter, otherwise this increases the freeze depth
202 	 * and waits for it to return to zero.  For this reason there is
203 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 	 * exported to drivers as the only user for unfreeze is blk_mq.
205 	 */
206 	blk_freeze_queue_start(q);
207 	blk_mq_freeze_queue_wait(q);
208 }
209 
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 	/*
213 	 * ...just an alias to keep freeze and unfreeze actions balanced
214 	 * in the blk_mq_* namespace
215 	 */
216 	blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219 
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 	mutex_lock(&q->mq_freeze_lock);
223 	if (force_atomic)
224 		q->q_usage_counter.data->force_atomic = true;
225 	q->mq_freeze_depth--;
226 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 	if (!q->mq_freeze_depth) {
228 		percpu_ref_resurrect(&q->q_usage_counter);
229 		wake_up_all(&q->mq_freeze_wq);
230 	}
231 	mutex_unlock(&q->mq_freeze_lock);
232 }
233 
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 	__blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239 
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(&q->queue_lock, flags);
249 	if (!q->quiesce_depth++)
250 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 	spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254 
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 	if (blk_queue_has_srcu(q))
265 		synchronize_srcu(q->srcu);
266 	else
267 		synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270 
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 	blk_mq_quiesce_queue_nowait(q);
283 	blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286 
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 	unsigned long flags;
297 	bool run_queue = false;
298 
299 	spin_lock_irqsave(&q->queue_lock, flags);
300 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 		;
302 	} else if (!--q->quiesce_depth) {
303 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 		run_queue = true;
305 	}
306 	spin_unlock_irqrestore(&q->queue_lock, flags);
307 
308 	/* dispatch requests which are inserted during quiescing */
309 	if (run_queue)
310 		blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313 
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 	struct blk_mq_hw_ctx *hctx;
317 	unsigned long i;
318 
319 	queue_for_each_hw_ctx(q, hctx, i)
320 		if (blk_mq_hw_queue_mapped(hctx))
321 			blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323 
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 	memset(rq, 0, sizeof(*rq));
327 
328 	INIT_LIST_HEAD(&rq->queuelist);
329 	rq->q = q;
330 	rq->__sector = (sector_t) -1;
331 	INIT_HLIST_NODE(&rq->hash);
332 	RB_CLEAR_NODE(&rq->rb_node);
333 	rq->tag = BLK_MQ_NO_TAG;
334 	rq->internal_tag = BLK_MQ_NO_TAG;
335 	rq->start_time_ns = ktime_get_ns();
336 	rq->part = NULL;
337 	blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340 
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 	struct blk_mq_ctx *ctx = data->ctx;
345 	struct blk_mq_hw_ctx *hctx = data->hctx;
346 	struct request_queue *q = data->q;
347 	struct request *rq = tags->static_rqs[tag];
348 
349 	rq->q = q;
350 	rq->mq_ctx = ctx;
351 	rq->mq_hctx = hctx;
352 	rq->cmd_flags = data->cmd_flags;
353 
354 	if (data->flags & BLK_MQ_REQ_PM)
355 		data->rq_flags |= RQF_PM;
356 	if (blk_queue_io_stat(q))
357 		data->rq_flags |= RQF_IO_STAT;
358 	rq->rq_flags = data->rq_flags;
359 
360 	if (!(data->rq_flags & RQF_ELV)) {
361 		rq->tag = tag;
362 		rq->internal_tag = BLK_MQ_NO_TAG;
363 	} else {
364 		rq->tag = BLK_MQ_NO_TAG;
365 		rq->internal_tag = tag;
366 	}
367 	rq->timeout = 0;
368 
369 	if (blk_mq_need_time_stamp(rq))
370 		rq->start_time_ns = ktime_get_ns();
371 	else
372 		rq->start_time_ns = 0;
373 	rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 	rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_ELV) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (!op_is_flush(data->cmd_flags) &&
399 		    e->type->ops.prepare_request) {
400 			e->type->ops.prepare_request(rq);
401 			rq->rq_flags |= RQF_ELVPRIV;
402 		}
403 	}
404 
405 	return rq;
406 }
407 
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 		u64 alloc_time_ns)
411 {
412 	unsigned int tag, tag_offset;
413 	struct blk_mq_tags *tags;
414 	struct request *rq;
415 	unsigned long tag_mask;
416 	int i, nr = 0;
417 
418 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 	if (unlikely(!tag_mask))
420 		return NULL;
421 
422 	tags = blk_mq_tags_from_data(data);
423 	for (i = 0; tag_mask; i++) {
424 		if (!(tag_mask & (1UL << i)))
425 			continue;
426 		tag = tag_offset + i;
427 		prefetch(tags->static_rqs[tag]);
428 		tag_mask &= ~(1UL << i);
429 		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 		rq_list_add(data->cached_rq, rq);
431 		nr++;
432 	}
433 	/* caller already holds a reference, add for remainder */
434 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 	data->nr_tags -= nr;
436 
437 	return rq_list_pop(data->cached_rq);
438 }
439 
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 	struct request_queue *q = data->q;
443 	u64 alloc_time_ns = 0;
444 	struct request *rq;
445 	unsigned int tag;
446 
447 	/* alloc_time includes depth and tag waits */
448 	if (blk_queue_rq_alloc_time(q))
449 		alloc_time_ns = ktime_get_ns();
450 
451 	if (data->cmd_flags & REQ_NOWAIT)
452 		data->flags |= BLK_MQ_REQ_NOWAIT;
453 
454 	if (q->elevator) {
455 		struct elevator_queue *e = q->elevator;
456 
457 		data->rq_flags |= RQF_ELV;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list. Don't include reserved tags in the
462 		 * limiting, as it isn't useful.
463 		 */
464 		if (!op_is_flush(data->cmd_flags) &&
465 		    !blk_op_is_passthrough(data->cmd_flags) &&
466 		    e->type->ops.limit_depth &&
467 		    !(data->flags & BLK_MQ_REQ_RESERVED))
468 			e->type->ops.limit_depth(data->cmd_flags, data);
469 	}
470 
471 retry:
472 	data->ctx = blk_mq_get_ctx(q);
473 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 	if (!(data->rq_flags & RQF_ELV))
475 		blk_mq_tag_busy(data->hctx);
476 
477 	/*
478 	 * Try batched alloc if we want more than 1 tag.
479 	 */
480 	if (data->nr_tags > 1) {
481 		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 		if (rq)
483 			return rq;
484 		data->nr_tags = 1;
485 	}
486 
487 	/*
488 	 * Waiting allocations only fail because of an inactive hctx.  In that
489 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 	 * should have migrated us to an online CPU by now.
491 	 */
492 	tag = blk_mq_get_tag(data);
493 	if (tag == BLK_MQ_NO_TAG) {
494 		if (data->flags & BLK_MQ_REQ_NOWAIT)
495 			return NULL;
496 		/*
497 		 * Give up the CPU and sleep for a random short time to
498 		 * ensure that thread using a realtime scheduling class
499 		 * are migrated off the CPU, and thus off the hctx that
500 		 * is going away.
501 		 */
502 		msleep(3);
503 		goto retry;
504 	}
505 
506 	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 					alloc_time_ns);
508 }
509 
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511 		blk_mq_req_flags_t flags)
512 {
513 	struct blk_mq_alloc_data data = {
514 		.q		= q,
515 		.flags		= flags,
516 		.cmd_flags	= op,
517 		.nr_tags	= 1,
518 	};
519 	struct request *rq;
520 	int ret;
521 
522 	ret = blk_queue_enter(q, flags);
523 	if (ret)
524 		return ERR_PTR(ret);
525 
526 	rq = __blk_mq_alloc_requests(&data);
527 	if (!rq)
528 		goto out_queue_exit;
529 	rq->__data_len = 0;
530 	rq->__sector = (sector_t) -1;
531 	rq->bio = rq->biotail = NULL;
532 	return rq;
533 out_queue_exit:
534 	blk_queue_exit(q);
535 	return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538 
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542 	struct blk_mq_alloc_data data = {
543 		.q		= q,
544 		.flags		= flags,
545 		.cmd_flags	= op,
546 		.nr_tags	= 1,
547 	};
548 	u64 alloc_time_ns = 0;
549 	unsigned int cpu;
550 	unsigned int tag;
551 	int ret;
552 
553 	/* alloc_time includes depth and tag waits */
554 	if (blk_queue_rq_alloc_time(q))
555 		alloc_time_ns = ktime_get_ns();
556 
557 	/*
558 	 * If the tag allocator sleeps we could get an allocation for a
559 	 * different hardware context.  No need to complicate the low level
560 	 * allocator for this for the rare use case of a command tied to
561 	 * a specific queue.
562 	 */
563 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564 		return ERR_PTR(-EINVAL);
565 
566 	if (hctx_idx >= q->nr_hw_queues)
567 		return ERR_PTR(-EIO);
568 
569 	ret = blk_queue_enter(q, flags);
570 	if (ret)
571 		return ERR_PTR(ret);
572 
573 	/*
574 	 * Check if the hardware context is actually mapped to anything.
575 	 * If not tell the caller that it should skip this queue.
576 	 */
577 	ret = -EXDEV;
578 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
579 	if (!blk_mq_hw_queue_mapped(data.hctx))
580 		goto out_queue_exit;
581 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582 	data.ctx = __blk_mq_get_ctx(q, cpu);
583 
584 	if (!q->elevator)
585 		blk_mq_tag_busy(data.hctx);
586 	else
587 		data.rq_flags |= RQF_ELV;
588 
589 	ret = -EWOULDBLOCK;
590 	tag = blk_mq_get_tag(&data);
591 	if (tag == BLK_MQ_NO_TAG)
592 		goto out_queue_exit;
593 	return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
594 					alloc_time_ns);
595 
596 out_queue_exit:
597 	blk_queue_exit(q);
598 	return ERR_PTR(ret);
599 }
600 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
601 
602 static void __blk_mq_free_request(struct request *rq)
603 {
604 	struct request_queue *q = rq->q;
605 	struct blk_mq_ctx *ctx = rq->mq_ctx;
606 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
607 	const int sched_tag = rq->internal_tag;
608 
609 	blk_crypto_free_request(rq);
610 	blk_pm_mark_last_busy(rq);
611 	rq->mq_hctx = NULL;
612 	if (rq->tag != BLK_MQ_NO_TAG)
613 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
614 	if (sched_tag != BLK_MQ_NO_TAG)
615 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
616 	blk_mq_sched_restart(hctx);
617 	blk_queue_exit(q);
618 }
619 
620 void blk_mq_free_request(struct request *rq)
621 {
622 	struct request_queue *q = rq->q;
623 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
624 
625 	if ((rq->rq_flags & RQF_ELVPRIV) &&
626 	    q->elevator->type->ops.finish_request)
627 		q->elevator->type->ops.finish_request(rq);
628 
629 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
630 		__blk_mq_dec_active_requests(hctx);
631 
632 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
633 		laptop_io_completion(q->disk->bdi);
634 
635 	rq_qos_done(q, rq);
636 
637 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
638 	if (req_ref_put_and_test(rq))
639 		__blk_mq_free_request(rq);
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_free_request);
642 
643 void blk_mq_free_plug_rqs(struct blk_plug *plug)
644 {
645 	struct request *rq;
646 
647 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
648 		blk_mq_free_request(rq);
649 }
650 
651 void blk_dump_rq_flags(struct request *rq, char *msg)
652 {
653 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
654 		rq->q->disk ? rq->q->disk->disk_name : "?",
655 		(unsigned long long) rq->cmd_flags);
656 
657 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
658 	       (unsigned long long)blk_rq_pos(rq),
659 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
660 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
661 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
662 }
663 EXPORT_SYMBOL(blk_dump_rq_flags);
664 
665 static void req_bio_endio(struct request *rq, struct bio *bio,
666 			  unsigned int nbytes, blk_status_t error)
667 {
668 	if (unlikely(error)) {
669 		bio->bi_status = error;
670 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
671 		/*
672 		 * Partial zone append completions cannot be supported as the
673 		 * BIO fragments may end up not being written sequentially.
674 		 */
675 		if (bio->bi_iter.bi_size != nbytes)
676 			bio->bi_status = BLK_STS_IOERR;
677 		else
678 			bio->bi_iter.bi_sector = rq->__sector;
679 	}
680 
681 	bio_advance(bio, nbytes);
682 
683 	if (unlikely(rq->rq_flags & RQF_QUIET))
684 		bio_set_flag(bio, BIO_QUIET);
685 	/* don't actually finish bio if it's part of flush sequence */
686 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
687 		bio_endio(bio);
688 }
689 
690 static void blk_account_io_completion(struct request *req, unsigned int bytes)
691 {
692 	if (req->part && blk_do_io_stat(req)) {
693 		const int sgrp = op_stat_group(req_op(req));
694 
695 		part_stat_lock();
696 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
697 		part_stat_unlock();
698 	}
699 }
700 
701 static void blk_print_req_error(struct request *req, blk_status_t status)
702 {
703 	printk_ratelimited(KERN_ERR
704 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
705 		"phys_seg %u prio class %u\n",
706 		blk_status_to_str(status),
707 		req->q->disk ? req->q->disk->disk_name : "?",
708 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
709 		req->cmd_flags & ~REQ_OP_MASK,
710 		req->nr_phys_segments,
711 		IOPRIO_PRIO_CLASS(req->ioprio));
712 }
713 
714 /*
715  * Fully end IO on a request. Does not support partial completions, or
716  * errors.
717  */
718 static void blk_complete_request(struct request *req)
719 {
720 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
721 	int total_bytes = blk_rq_bytes(req);
722 	struct bio *bio = req->bio;
723 
724 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
725 
726 	if (!bio)
727 		return;
728 
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
731 		req->q->integrity.profile->complete_fn(req, total_bytes);
732 #endif
733 
734 	blk_account_io_completion(req, total_bytes);
735 
736 	do {
737 		struct bio *next = bio->bi_next;
738 
739 		/* Completion has already been traced */
740 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
741 
742 		if (req_op(req) == REQ_OP_ZONE_APPEND)
743 			bio->bi_iter.bi_sector = req->__sector;
744 
745 		if (!is_flush)
746 			bio_endio(bio);
747 		bio = next;
748 	} while (bio);
749 
750 	/*
751 	 * Reset counters so that the request stacking driver
752 	 * can find how many bytes remain in the request
753 	 * later.
754 	 */
755 	req->bio = NULL;
756 	req->__data_len = 0;
757 }
758 
759 /**
760  * blk_update_request - Complete multiple bytes without completing the request
761  * @req:      the request being processed
762  * @error:    block status code
763  * @nr_bytes: number of bytes to complete for @req
764  *
765  * Description:
766  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
767  *     the request structure even if @req doesn't have leftover.
768  *     If @req has leftover, sets it up for the next range of segments.
769  *
770  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
771  *     %false return from this function.
772  *
773  * Note:
774  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
775  *      except in the consistency check at the end of this function.
776  *
777  * Return:
778  *     %false - this request doesn't have any more data
779  *     %true  - this request has more data
780  **/
781 bool blk_update_request(struct request *req, blk_status_t error,
782 		unsigned int nr_bytes)
783 {
784 	int total_bytes;
785 
786 	trace_block_rq_complete(req, error, nr_bytes);
787 
788 	if (!req->bio)
789 		return false;
790 
791 #ifdef CONFIG_BLK_DEV_INTEGRITY
792 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
793 	    error == BLK_STS_OK)
794 		req->q->integrity.profile->complete_fn(req, nr_bytes);
795 #endif
796 
797 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
798 		     !(req->rq_flags & RQF_QUIET)) &&
799 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
800 		blk_print_req_error(req, error);
801 		trace_block_rq_error(req, error, nr_bytes);
802 	}
803 
804 	blk_account_io_completion(req, nr_bytes);
805 
806 	total_bytes = 0;
807 	while (req->bio) {
808 		struct bio *bio = req->bio;
809 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
810 
811 		if (bio_bytes == bio->bi_iter.bi_size)
812 			req->bio = bio->bi_next;
813 
814 		/* Completion has already been traced */
815 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
816 		req_bio_endio(req, bio, bio_bytes, error);
817 
818 		total_bytes += bio_bytes;
819 		nr_bytes -= bio_bytes;
820 
821 		if (!nr_bytes)
822 			break;
823 	}
824 
825 	/*
826 	 * completely done
827 	 */
828 	if (!req->bio) {
829 		/*
830 		 * Reset counters so that the request stacking driver
831 		 * can find how many bytes remain in the request
832 		 * later.
833 		 */
834 		req->__data_len = 0;
835 		return false;
836 	}
837 
838 	req->__data_len -= total_bytes;
839 
840 	/* update sector only for requests with clear definition of sector */
841 	if (!blk_rq_is_passthrough(req))
842 		req->__sector += total_bytes >> 9;
843 
844 	/* mixed attributes always follow the first bio */
845 	if (req->rq_flags & RQF_MIXED_MERGE) {
846 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
847 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
848 	}
849 
850 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
851 		/*
852 		 * If total number of sectors is less than the first segment
853 		 * size, something has gone terribly wrong.
854 		 */
855 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
856 			blk_dump_rq_flags(req, "request botched");
857 			req->__data_len = blk_rq_cur_bytes(req);
858 		}
859 
860 		/* recalculate the number of segments */
861 		req->nr_phys_segments = blk_recalc_rq_segments(req);
862 	}
863 
864 	return true;
865 }
866 EXPORT_SYMBOL_GPL(blk_update_request);
867 
868 static void __blk_account_io_done(struct request *req, u64 now)
869 {
870 	const int sgrp = op_stat_group(req_op(req));
871 
872 	part_stat_lock();
873 	update_io_ticks(req->part, jiffies, true);
874 	part_stat_inc(req->part, ios[sgrp]);
875 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
876 	part_stat_unlock();
877 }
878 
879 static inline void blk_account_io_done(struct request *req, u64 now)
880 {
881 	/*
882 	 * Account IO completion.  flush_rq isn't accounted as a
883 	 * normal IO on queueing nor completion.  Accounting the
884 	 * containing request is enough.
885 	 */
886 	if (blk_do_io_stat(req) && req->part &&
887 	    !(req->rq_flags & RQF_FLUSH_SEQ))
888 		__blk_account_io_done(req, now);
889 }
890 
891 static void __blk_account_io_start(struct request *rq)
892 {
893 	/*
894 	 * All non-passthrough requests are created from a bio with one
895 	 * exception: when a flush command that is part of a flush sequence
896 	 * generated by the state machine in blk-flush.c is cloned onto the
897 	 * lower device by dm-multipath we can get here without a bio.
898 	 */
899 	if (rq->bio)
900 		rq->part = rq->bio->bi_bdev;
901 	else
902 		rq->part = rq->q->disk->part0;
903 
904 	part_stat_lock();
905 	update_io_ticks(rq->part, jiffies, false);
906 	part_stat_unlock();
907 }
908 
909 static inline void blk_account_io_start(struct request *req)
910 {
911 	if (blk_do_io_stat(req))
912 		__blk_account_io_start(req);
913 }
914 
915 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
916 {
917 	if (rq->rq_flags & RQF_STATS) {
918 		blk_mq_poll_stats_start(rq->q);
919 		blk_stat_add(rq, now);
920 	}
921 
922 	blk_mq_sched_completed_request(rq, now);
923 	blk_account_io_done(rq, now);
924 }
925 
926 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
927 {
928 	if (blk_mq_need_time_stamp(rq))
929 		__blk_mq_end_request_acct(rq, ktime_get_ns());
930 
931 	if (rq->end_io) {
932 		rq_qos_done(rq->q, rq);
933 		rq->end_io(rq, error);
934 	} else {
935 		blk_mq_free_request(rq);
936 	}
937 }
938 EXPORT_SYMBOL(__blk_mq_end_request);
939 
940 void blk_mq_end_request(struct request *rq, blk_status_t error)
941 {
942 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
943 		BUG();
944 	__blk_mq_end_request(rq, error);
945 }
946 EXPORT_SYMBOL(blk_mq_end_request);
947 
948 #define TAG_COMP_BATCH		32
949 
950 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
951 					  int *tag_array, int nr_tags)
952 {
953 	struct request_queue *q = hctx->queue;
954 
955 	/*
956 	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
957 	 * update hctx->nr_active in batch
958 	 */
959 	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
960 		__blk_mq_sub_active_requests(hctx, nr_tags);
961 
962 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
963 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
964 }
965 
966 void blk_mq_end_request_batch(struct io_comp_batch *iob)
967 {
968 	int tags[TAG_COMP_BATCH], nr_tags = 0;
969 	struct blk_mq_hw_ctx *cur_hctx = NULL;
970 	struct request *rq;
971 	u64 now = 0;
972 
973 	if (iob->need_ts)
974 		now = ktime_get_ns();
975 
976 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
977 		prefetch(rq->bio);
978 		prefetch(rq->rq_next);
979 
980 		blk_complete_request(rq);
981 		if (iob->need_ts)
982 			__blk_mq_end_request_acct(rq, now);
983 
984 		rq_qos_done(rq->q, rq);
985 
986 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
987 		if (!req_ref_put_and_test(rq))
988 			continue;
989 
990 		blk_crypto_free_request(rq);
991 		blk_pm_mark_last_busy(rq);
992 
993 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
994 			if (cur_hctx)
995 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
996 			nr_tags = 0;
997 			cur_hctx = rq->mq_hctx;
998 		}
999 		tags[nr_tags++] = rq->tag;
1000 	}
1001 
1002 	if (nr_tags)
1003 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1006 
1007 static void blk_complete_reqs(struct llist_head *list)
1008 {
1009 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1010 	struct request *rq, *next;
1011 
1012 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1013 		rq->q->mq_ops->complete(rq);
1014 }
1015 
1016 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1017 {
1018 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1019 }
1020 
1021 static int blk_softirq_cpu_dead(unsigned int cpu)
1022 {
1023 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1024 	return 0;
1025 }
1026 
1027 static void __blk_mq_complete_request_remote(void *data)
1028 {
1029 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1030 }
1031 
1032 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1033 {
1034 	int cpu = raw_smp_processor_id();
1035 
1036 	if (!IS_ENABLED(CONFIG_SMP) ||
1037 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1038 		return false;
1039 	/*
1040 	 * With force threaded interrupts enabled, raising softirq from an SMP
1041 	 * function call will always result in waking the ksoftirqd thread.
1042 	 * This is probably worse than completing the request on a different
1043 	 * cache domain.
1044 	 */
1045 	if (force_irqthreads())
1046 		return false;
1047 
1048 	/* same CPU or cache domain?  Complete locally */
1049 	if (cpu == rq->mq_ctx->cpu ||
1050 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1051 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1052 		return false;
1053 
1054 	/* don't try to IPI to an offline CPU */
1055 	return cpu_online(rq->mq_ctx->cpu);
1056 }
1057 
1058 static void blk_mq_complete_send_ipi(struct request *rq)
1059 {
1060 	struct llist_head *list;
1061 	unsigned int cpu;
1062 
1063 	cpu = rq->mq_ctx->cpu;
1064 	list = &per_cpu(blk_cpu_done, cpu);
1065 	if (llist_add(&rq->ipi_list, list)) {
1066 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1067 		smp_call_function_single_async(cpu, &rq->csd);
1068 	}
1069 }
1070 
1071 static void blk_mq_raise_softirq(struct request *rq)
1072 {
1073 	struct llist_head *list;
1074 
1075 	preempt_disable();
1076 	list = this_cpu_ptr(&blk_cpu_done);
1077 	if (llist_add(&rq->ipi_list, list))
1078 		raise_softirq(BLOCK_SOFTIRQ);
1079 	preempt_enable();
1080 }
1081 
1082 bool blk_mq_complete_request_remote(struct request *rq)
1083 {
1084 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1085 
1086 	/*
1087 	 * For a polled request, always complete locally, it's pointless
1088 	 * to redirect the completion.
1089 	 */
1090 	if (rq->cmd_flags & REQ_POLLED)
1091 		return false;
1092 
1093 	if (blk_mq_complete_need_ipi(rq)) {
1094 		blk_mq_complete_send_ipi(rq);
1095 		return true;
1096 	}
1097 
1098 	if (rq->q->nr_hw_queues == 1) {
1099 		blk_mq_raise_softirq(rq);
1100 		return true;
1101 	}
1102 	return false;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1105 
1106 /**
1107  * blk_mq_complete_request - end I/O on a request
1108  * @rq:		the request being processed
1109  *
1110  * Description:
1111  *	Complete a request by scheduling the ->complete_rq operation.
1112  **/
1113 void blk_mq_complete_request(struct request *rq)
1114 {
1115 	if (!blk_mq_complete_request_remote(rq))
1116 		rq->q->mq_ops->complete(rq);
1117 }
1118 EXPORT_SYMBOL(blk_mq_complete_request);
1119 
1120 /**
1121  * blk_mq_start_request - Start processing a request
1122  * @rq: Pointer to request to be started
1123  *
1124  * Function used by device drivers to notify the block layer that a request
1125  * is going to be processed now, so blk layer can do proper initializations
1126  * such as starting the timeout timer.
1127  */
1128 void blk_mq_start_request(struct request *rq)
1129 {
1130 	struct request_queue *q = rq->q;
1131 
1132 	trace_block_rq_issue(rq);
1133 
1134 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1135 		rq->io_start_time_ns = ktime_get_ns();
1136 		rq->stats_sectors = blk_rq_sectors(rq);
1137 		rq->rq_flags |= RQF_STATS;
1138 		rq_qos_issue(q, rq);
1139 	}
1140 
1141 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1142 
1143 	blk_add_timer(rq);
1144 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1145 
1146 #ifdef CONFIG_BLK_DEV_INTEGRITY
1147 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1148 		q->integrity.profile->prepare_fn(rq);
1149 #endif
1150 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1151 	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1152 }
1153 EXPORT_SYMBOL(blk_mq_start_request);
1154 
1155 /*
1156  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1157  * queues. This is important for md arrays to benefit from merging
1158  * requests.
1159  */
1160 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1161 {
1162 	if (plug->multiple_queues)
1163 		return BLK_MAX_REQUEST_COUNT * 2;
1164 	return BLK_MAX_REQUEST_COUNT;
1165 }
1166 
1167 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1168 {
1169 	struct request *last = rq_list_peek(&plug->mq_list);
1170 
1171 	if (!plug->rq_count) {
1172 		trace_block_plug(rq->q);
1173 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1174 		   (!blk_queue_nomerges(rq->q) &&
1175 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1176 		blk_mq_flush_plug_list(plug, false);
1177 		trace_block_plug(rq->q);
1178 	}
1179 
1180 	if (!plug->multiple_queues && last && last->q != rq->q)
1181 		plug->multiple_queues = true;
1182 	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1183 		plug->has_elevator = true;
1184 	rq->rq_next = NULL;
1185 	rq_list_add(&plug->mq_list, rq);
1186 	plug->rq_count++;
1187 }
1188 
1189 /**
1190  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1191  * @rq:		request to insert
1192  * @at_head:    insert request at head or tail of queue
1193  *
1194  * Description:
1195  *    Insert a fully prepared request at the back of the I/O scheduler queue
1196  *    for execution.  Don't wait for completion.
1197  *
1198  * Note:
1199  *    This function will invoke @done directly if the queue is dead.
1200  */
1201 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1202 {
1203 	WARN_ON(irqs_disabled());
1204 	WARN_ON(!blk_rq_is_passthrough(rq));
1205 
1206 	blk_account_io_start(rq);
1207 	if (current->plug)
1208 		blk_add_rq_to_plug(current->plug, rq);
1209 	else
1210 		blk_mq_sched_insert_request(rq, at_head, true, false);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1213 
1214 struct blk_rq_wait {
1215 	struct completion done;
1216 	blk_status_t ret;
1217 };
1218 
1219 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1220 {
1221 	struct blk_rq_wait *wait = rq->end_io_data;
1222 
1223 	wait->ret = ret;
1224 	complete(&wait->done);
1225 }
1226 
1227 static bool blk_rq_is_poll(struct request *rq)
1228 {
1229 	if (!rq->mq_hctx)
1230 		return false;
1231 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1232 		return false;
1233 	if (WARN_ON_ONCE(!rq->bio))
1234 		return false;
1235 	return true;
1236 }
1237 
1238 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1239 {
1240 	do {
1241 		bio_poll(rq->bio, NULL, 0);
1242 		cond_resched();
1243 	} while (!completion_done(wait));
1244 }
1245 
1246 /**
1247  * blk_execute_rq - insert a request into queue for execution
1248  * @rq:		request to insert
1249  * @at_head:    insert request at head or tail of queue
1250  *
1251  * Description:
1252  *    Insert a fully prepared request at the back of the I/O scheduler queue
1253  *    for execution and wait for completion.
1254  * Return: The blk_status_t result provided to blk_mq_end_request().
1255  */
1256 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1257 {
1258 	struct blk_rq_wait wait = {
1259 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1260 	};
1261 
1262 	WARN_ON(irqs_disabled());
1263 	WARN_ON(!blk_rq_is_passthrough(rq));
1264 
1265 	rq->end_io_data = &wait;
1266 	rq->end_io = blk_end_sync_rq;
1267 
1268 	blk_account_io_start(rq);
1269 	blk_mq_sched_insert_request(rq, at_head, true, false);
1270 
1271 	if (blk_rq_is_poll(rq)) {
1272 		blk_rq_poll_completion(rq, &wait.done);
1273 	} else {
1274 		/*
1275 		 * Prevent hang_check timer from firing at us during very long
1276 		 * I/O
1277 		 */
1278 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1279 
1280 		if (hang_check)
1281 			while (!wait_for_completion_io_timeout(&wait.done,
1282 					hang_check * (HZ/2)))
1283 				;
1284 		else
1285 			wait_for_completion_io(&wait.done);
1286 	}
1287 
1288 	return wait.ret;
1289 }
1290 EXPORT_SYMBOL(blk_execute_rq);
1291 
1292 static void __blk_mq_requeue_request(struct request *rq)
1293 {
1294 	struct request_queue *q = rq->q;
1295 
1296 	blk_mq_put_driver_tag(rq);
1297 
1298 	trace_block_rq_requeue(rq);
1299 	rq_qos_requeue(q, rq);
1300 
1301 	if (blk_mq_request_started(rq)) {
1302 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1303 		rq->rq_flags &= ~RQF_TIMED_OUT;
1304 	}
1305 }
1306 
1307 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1308 {
1309 	__blk_mq_requeue_request(rq);
1310 
1311 	/* this request will be re-inserted to io scheduler queue */
1312 	blk_mq_sched_requeue_request(rq);
1313 
1314 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1315 }
1316 EXPORT_SYMBOL(blk_mq_requeue_request);
1317 
1318 static void blk_mq_requeue_work(struct work_struct *work)
1319 {
1320 	struct request_queue *q =
1321 		container_of(work, struct request_queue, requeue_work.work);
1322 	LIST_HEAD(rq_list);
1323 	struct request *rq, *next;
1324 
1325 	spin_lock_irq(&q->requeue_lock);
1326 	list_splice_init(&q->requeue_list, &rq_list);
1327 	spin_unlock_irq(&q->requeue_lock);
1328 
1329 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1330 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1331 			continue;
1332 
1333 		rq->rq_flags &= ~RQF_SOFTBARRIER;
1334 		list_del_init(&rq->queuelist);
1335 		/*
1336 		 * If RQF_DONTPREP, rq has contained some driver specific
1337 		 * data, so insert it to hctx dispatch list to avoid any
1338 		 * merge.
1339 		 */
1340 		if (rq->rq_flags & RQF_DONTPREP)
1341 			blk_mq_request_bypass_insert(rq, false, false);
1342 		else
1343 			blk_mq_sched_insert_request(rq, true, false, false);
1344 	}
1345 
1346 	while (!list_empty(&rq_list)) {
1347 		rq = list_entry(rq_list.next, struct request, queuelist);
1348 		list_del_init(&rq->queuelist);
1349 		blk_mq_sched_insert_request(rq, false, false, false);
1350 	}
1351 
1352 	blk_mq_run_hw_queues(q, false);
1353 }
1354 
1355 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1356 				bool kick_requeue_list)
1357 {
1358 	struct request_queue *q = rq->q;
1359 	unsigned long flags;
1360 
1361 	/*
1362 	 * We abuse this flag that is otherwise used by the I/O scheduler to
1363 	 * request head insertion from the workqueue.
1364 	 */
1365 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1366 
1367 	spin_lock_irqsave(&q->requeue_lock, flags);
1368 	if (at_head) {
1369 		rq->rq_flags |= RQF_SOFTBARRIER;
1370 		list_add(&rq->queuelist, &q->requeue_list);
1371 	} else {
1372 		list_add_tail(&rq->queuelist, &q->requeue_list);
1373 	}
1374 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1375 
1376 	if (kick_requeue_list)
1377 		blk_mq_kick_requeue_list(q);
1378 }
1379 
1380 void blk_mq_kick_requeue_list(struct request_queue *q)
1381 {
1382 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1383 }
1384 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1385 
1386 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1387 				    unsigned long msecs)
1388 {
1389 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1390 				    msecs_to_jiffies(msecs));
1391 }
1392 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1393 
1394 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1395 			       bool reserved)
1396 {
1397 	/*
1398 	 * If we find a request that isn't idle we know the queue is busy
1399 	 * as it's checked in the iter.
1400 	 * Return false to stop the iteration.
1401 	 */
1402 	if (blk_mq_request_started(rq)) {
1403 		bool *busy = priv;
1404 
1405 		*busy = true;
1406 		return false;
1407 	}
1408 
1409 	return true;
1410 }
1411 
1412 bool blk_mq_queue_inflight(struct request_queue *q)
1413 {
1414 	bool busy = false;
1415 
1416 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1417 	return busy;
1418 }
1419 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1420 
1421 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1422 {
1423 	req->rq_flags |= RQF_TIMED_OUT;
1424 	if (req->q->mq_ops->timeout) {
1425 		enum blk_eh_timer_return ret;
1426 
1427 		ret = req->q->mq_ops->timeout(req, reserved);
1428 		if (ret == BLK_EH_DONE)
1429 			return;
1430 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1431 	}
1432 
1433 	blk_add_timer(req);
1434 }
1435 
1436 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1437 {
1438 	unsigned long deadline;
1439 
1440 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1441 		return false;
1442 	if (rq->rq_flags & RQF_TIMED_OUT)
1443 		return false;
1444 
1445 	deadline = READ_ONCE(rq->deadline);
1446 	if (time_after_eq(jiffies, deadline))
1447 		return true;
1448 
1449 	if (*next == 0)
1450 		*next = deadline;
1451 	else if (time_after(*next, deadline))
1452 		*next = deadline;
1453 	return false;
1454 }
1455 
1456 void blk_mq_put_rq_ref(struct request *rq)
1457 {
1458 	if (is_flush_rq(rq))
1459 		rq->end_io(rq, 0);
1460 	else if (req_ref_put_and_test(rq))
1461 		__blk_mq_free_request(rq);
1462 }
1463 
1464 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1465 {
1466 	unsigned long *next = priv;
1467 
1468 	/*
1469 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1470 	 * be reallocated underneath the timeout handler's processing, then
1471 	 * the expire check is reliable. If the request is not expired, then
1472 	 * it was completed and reallocated as a new request after returning
1473 	 * from blk_mq_check_expired().
1474 	 */
1475 	if (blk_mq_req_expired(rq, next))
1476 		blk_mq_rq_timed_out(rq, reserved);
1477 	return true;
1478 }
1479 
1480 static void blk_mq_timeout_work(struct work_struct *work)
1481 {
1482 	struct request_queue *q =
1483 		container_of(work, struct request_queue, timeout_work);
1484 	unsigned long next = 0;
1485 	struct blk_mq_hw_ctx *hctx;
1486 	unsigned long i;
1487 
1488 	/* A deadlock might occur if a request is stuck requiring a
1489 	 * timeout at the same time a queue freeze is waiting
1490 	 * completion, since the timeout code would not be able to
1491 	 * acquire the queue reference here.
1492 	 *
1493 	 * That's why we don't use blk_queue_enter here; instead, we use
1494 	 * percpu_ref_tryget directly, because we need to be able to
1495 	 * obtain a reference even in the short window between the queue
1496 	 * starting to freeze, by dropping the first reference in
1497 	 * blk_freeze_queue_start, and the moment the last request is
1498 	 * consumed, marked by the instant q_usage_counter reaches
1499 	 * zero.
1500 	 */
1501 	if (!percpu_ref_tryget(&q->q_usage_counter))
1502 		return;
1503 
1504 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1505 
1506 	if (next != 0) {
1507 		mod_timer(&q->timeout, next);
1508 	} else {
1509 		/*
1510 		 * Request timeouts are handled as a forward rolling timer. If
1511 		 * we end up here it means that no requests are pending and
1512 		 * also that no request has been pending for a while. Mark
1513 		 * each hctx as idle.
1514 		 */
1515 		queue_for_each_hw_ctx(q, hctx, i) {
1516 			/* the hctx may be unmapped, so check it here */
1517 			if (blk_mq_hw_queue_mapped(hctx))
1518 				blk_mq_tag_idle(hctx);
1519 		}
1520 	}
1521 	blk_queue_exit(q);
1522 }
1523 
1524 struct flush_busy_ctx_data {
1525 	struct blk_mq_hw_ctx *hctx;
1526 	struct list_head *list;
1527 };
1528 
1529 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1530 {
1531 	struct flush_busy_ctx_data *flush_data = data;
1532 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1533 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1534 	enum hctx_type type = hctx->type;
1535 
1536 	spin_lock(&ctx->lock);
1537 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1538 	sbitmap_clear_bit(sb, bitnr);
1539 	spin_unlock(&ctx->lock);
1540 	return true;
1541 }
1542 
1543 /*
1544  * Process software queues that have been marked busy, splicing them
1545  * to the for-dispatch
1546  */
1547 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1548 {
1549 	struct flush_busy_ctx_data data = {
1550 		.hctx = hctx,
1551 		.list = list,
1552 	};
1553 
1554 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1555 }
1556 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1557 
1558 struct dispatch_rq_data {
1559 	struct blk_mq_hw_ctx *hctx;
1560 	struct request *rq;
1561 };
1562 
1563 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1564 		void *data)
1565 {
1566 	struct dispatch_rq_data *dispatch_data = data;
1567 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1568 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1569 	enum hctx_type type = hctx->type;
1570 
1571 	spin_lock(&ctx->lock);
1572 	if (!list_empty(&ctx->rq_lists[type])) {
1573 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1574 		list_del_init(&dispatch_data->rq->queuelist);
1575 		if (list_empty(&ctx->rq_lists[type]))
1576 			sbitmap_clear_bit(sb, bitnr);
1577 	}
1578 	spin_unlock(&ctx->lock);
1579 
1580 	return !dispatch_data->rq;
1581 }
1582 
1583 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1584 					struct blk_mq_ctx *start)
1585 {
1586 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1587 	struct dispatch_rq_data data = {
1588 		.hctx = hctx,
1589 		.rq   = NULL,
1590 	};
1591 
1592 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1593 			       dispatch_rq_from_ctx, &data);
1594 
1595 	return data.rq;
1596 }
1597 
1598 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1599 {
1600 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1601 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1602 	int tag;
1603 
1604 	blk_mq_tag_busy(rq->mq_hctx);
1605 
1606 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1607 		bt = &rq->mq_hctx->tags->breserved_tags;
1608 		tag_offset = 0;
1609 	} else {
1610 		if (!hctx_may_queue(rq->mq_hctx, bt))
1611 			return false;
1612 	}
1613 
1614 	tag = __sbitmap_queue_get(bt);
1615 	if (tag == BLK_MQ_NO_TAG)
1616 		return false;
1617 
1618 	rq->tag = tag + tag_offset;
1619 	return true;
1620 }
1621 
1622 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1623 {
1624 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1625 		return false;
1626 
1627 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1628 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1629 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1630 		__blk_mq_inc_active_requests(hctx);
1631 	}
1632 	hctx->tags->rqs[rq->tag] = rq;
1633 	return true;
1634 }
1635 
1636 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1637 				int flags, void *key)
1638 {
1639 	struct blk_mq_hw_ctx *hctx;
1640 
1641 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1642 
1643 	spin_lock(&hctx->dispatch_wait_lock);
1644 	if (!list_empty(&wait->entry)) {
1645 		struct sbitmap_queue *sbq;
1646 
1647 		list_del_init(&wait->entry);
1648 		sbq = &hctx->tags->bitmap_tags;
1649 		atomic_dec(&sbq->ws_active);
1650 	}
1651 	spin_unlock(&hctx->dispatch_wait_lock);
1652 
1653 	blk_mq_run_hw_queue(hctx, true);
1654 	return 1;
1655 }
1656 
1657 /*
1658  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1659  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1660  * restart. For both cases, take care to check the condition again after
1661  * marking us as waiting.
1662  */
1663 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1664 				 struct request *rq)
1665 {
1666 	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1667 	struct wait_queue_head *wq;
1668 	wait_queue_entry_t *wait;
1669 	bool ret;
1670 
1671 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1672 		blk_mq_sched_mark_restart_hctx(hctx);
1673 
1674 		/*
1675 		 * It's possible that a tag was freed in the window between the
1676 		 * allocation failure and adding the hardware queue to the wait
1677 		 * queue.
1678 		 *
1679 		 * Don't clear RESTART here, someone else could have set it.
1680 		 * At most this will cost an extra queue run.
1681 		 */
1682 		return blk_mq_get_driver_tag(rq);
1683 	}
1684 
1685 	wait = &hctx->dispatch_wait;
1686 	if (!list_empty_careful(&wait->entry))
1687 		return false;
1688 
1689 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1690 
1691 	spin_lock_irq(&wq->lock);
1692 	spin_lock(&hctx->dispatch_wait_lock);
1693 	if (!list_empty(&wait->entry)) {
1694 		spin_unlock(&hctx->dispatch_wait_lock);
1695 		spin_unlock_irq(&wq->lock);
1696 		return false;
1697 	}
1698 
1699 	atomic_inc(&sbq->ws_active);
1700 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1701 	__add_wait_queue(wq, wait);
1702 
1703 	/*
1704 	 * It's possible that a tag was freed in the window between the
1705 	 * allocation failure and adding the hardware queue to the wait
1706 	 * queue.
1707 	 */
1708 	ret = blk_mq_get_driver_tag(rq);
1709 	if (!ret) {
1710 		spin_unlock(&hctx->dispatch_wait_lock);
1711 		spin_unlock_irq(&wq->lock);
1712 		return false;
1713 	}
1714 
1715 	/*
1716 	 * We got a tag, remove ourselves from the wait queue to ensure
1717 	 * someone else gets the wakeup.
1718 	 */
1719 	list_del_init(&wait->entry);
1720 	atomic_dec(&sbq->ws_active);
1721 	spin_unlock(&hctx->dispatch_wait_lock);
1722 	spin_unlock_irq(&wq->lock);
1723 
1724 	return true;
1725 }
1726 
1727 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1728 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1729 /*
1730  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1731  * - EWMA is one simple way to compute running average value
1732  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1733  * - take 4 as factor for avoiding to get too small(0) result, and this
1734  *   factor doesn't matter because EWMA decreases exponentially
1735  */
1736 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1737 {
1738 	unsigned int ewma;
1739 
1740 	ewma = hctx->dispatch_busy;
1741 
1742 	if (!ewma && !busy)
1743 		return;
1744 
1745 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1746 	if (busy)
1747 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1748 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1749 
1750 	hctx->dispatch_busy = ewma;
1751 }
1752 
1753 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1754 
1755 static void blk_mq_handle_dev_resource(struct request *rq,
1756 				       struct list_head *list)
1757 {
1758 	struct request *next =
1759 		list_first_entry_or_null(list, struct request, queuelist);
1760 
1761 	/*
1762 	 * If an I/O scheduler has been configured and we got a driver tag for
1763 	 * the next request already, free it.
1764 	 */
1765 	if (next)
1766 		blk_mq_put_driver_tag(next);
1767 
1768 	list_add(&rq->queuelist, list);
1769 	__blk_mq_requeue_request(rq);
1770 }
1771 
1772 static void blk_mq_handle_zone_resource(struct request *rq,
1773 					struct list_head *zone_list)
1774 {
1775 	/*
1776 	 * If we end up here it is because we cannot dispatch a request to a
1777 	 * specific zone due to LLD level zone-write locking or other zone
1778 	 * related resource not being available. In this case, set the request
1779 	 * aside in zone_list for retrying it later.
1780 	 */
1781 	list_add(&rq->queuelist, zone_list);
1782 	__blk_mq_requeue_request(rq);
1783 }
1784 
1785 enum prep_dispatch {
1786 	PREP_DISPATCH_OK,
1787 	PREP_DISPATCH_NO_TAG,
1788 	PREP_DISPATCH_NO_BUDGET,
1789 };
1790 
1791 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1792 						  bool need_budget)
1793 {
1794 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1795 	int budget_token = -1;
1796 
1797 	if (need_budget) {
1798 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1799 		if (budget_token < 0) {
1800 			blk_mq_put_driver_tag(rq);
1801 			return PREP_DISPATCH_NO_BUDGET;
1802 		}
1803 		blk_mq_set_rq_budget_token(rq, budget_token);
1804 	}
1805 
1806 	if (!blk_mq_get_driver_tag(rq)) {
1807 		/*
1808 		 * The initial allocation attempt failed, so we need to
1809 		 * rerun the hardware queue when a tag is freed. The
1810 		 * waitqueue takes care of that. If the queue is run
1811 		 * before we add this entry back on the dispatch list,
1812 		 * we'll re-run it below.
1813 		 */
1814 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1815 			/*
1816 			 * All budgets not got from this function will be put
1817 			 * together during handling partial dispatch
1818 			 */
1819 			if (need_budget)
1820 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1821 			return PREP_DISPATCH_NO_TAG;
1822 		}
1823 	}
1824 
1825 	return PREP_DISPATCH_OK;
1826 }
1827 
1828 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1829 static void blk_mq_release_budgets(struct request_queue *q,
1830 		struct list_head *list)
1831 {
1832 	struct request *rq;
1833 
1834 	list_for_each_entry(rq, list, queuelist) {
1835 		int budget_token = blk_mq_get_rq_budget_token(rq);
1836 
1837 		if (budget_token >= 0)
1838 			blk_mq_put_dispatch_budget(q, budget_token);
1839 	}
1840 }
1841 
1842 /*
1843  * Returns true if we did some work AND can potentially do more.
1844  */
1845 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1846 			     unsigned int nr_budgets)
1847 {
1848 	enum prep_dispatch prep;
1849 	struct request_queue *q = hctx->queue;
1850 	struct request *rq, *nxt;
1851 	int errors, queued;
1852 	blk_status_t ret = BLK_STS_OK;
1853 	LIST_HEAD(zone_list);
1854 	bool needs_resource = false;
1855 
1856 	if (list_empty(list))
1857 		return false;
1858 
1859 	/*
1860 	 * Now process all the entries, sending them to the driver.
1861 	 */
1862 	errors = queued = 0;
1863 	do {
1864 		struct blk_mq_queue_data bd;
1865 
1866 		rq = list_first_entry(list, struct request, queuelist);
1867 
1868 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1869 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1870 		if (prep != PREP_DISPATCH_OK)
1871 			break;
1872 
1873 		list_del_init(&rq->queuelist);
1874 
1875 		bd.rq = rq;
1876 
1877 		/*
1878 		 * Flag last if we have no more requests, or if we have more
1879 		 * but can't assign a driver tag to it.
1880 		 */
1881 		if (list_empty(list))
1882 			bd.last = true;
1883 		else {
1884 			nxt = list_first_entry(list, struct request, queuelist);
1885 			bd.last = !blk_mq_get_driver_tag(nxt);
1886 		}
1887 
1888 		/*
1889 		 * once the request is queued to lld, no need to cover the
1890 		 * budget any more
1891 		 */
1892 		if (nr_budgets)
1893 			nr_budgets--;
1894 		ret = q->mq_ops->queue_rq(hctx, &bd);
1895 		switch (ret) {
1896 		case BLK_STS_OK:
1897 			queued++;
1898 			break;
1899 		case BLK_STS_RESOURCE:
1900 			needs_resource = true;
1901 			fallthrough;
1902 		case BLK_STS_DEV_RESOURCE:
1903 			blk_mq_handle_dev_resource(rq, list);
1904 			goto out;
1905 		case BLK_STS_ZONE_RESOURCE:
1906 			/*
1907 			 * Move the request to zone_list and keep going through
1908 			 * the dispatch list to find more requests the drive can
1909 			 * accept.
1910 			 */
1911 			blk_mq_handle_zone_resource(rq, &zone_list);
1912 			needs_resource = true;
1913 			break;
1914 		default:
1915 			errors++;
1916 			blk_mq_end_request(rq, ret);
1917 		}
1918 	} while (!list_empty(list));
1919 out:
1920 	if (!list_empty(&zone_list))
1921 		list_splice_tail_init(&zone_list, list);
1922 
1923 	/* If we didn't flush the entire list, we could have told the driver
1924 	 * there was more coming, but that turned out to be a lie.
1925 	 */
1926 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1927 		q->mq_ops->commit_rqs(hctx);
1928 	/*
1929 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1930 	 * that is where we will continue on next queue run.
1931 	 */
1932 	if (!list_empty(list)) {
1933 		bool needs_restart;
1934 		/* For non-shared tags, the RESTART check will suffice */
1935 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1936 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1937 
1938 		if (nr_budgets)
1939 			blk_mq_release_budgets(q, list);
1940 
1941 		spin_lock(&hctx->lock);
1942 		list_splice_tail_init(list, &hctx->dispatch);
1943 		spin_unlock(&hctx->lock);
1944 
1945 		/*
1946 		 * Order adding requests to hctx->dispatch and checking
1947 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1948 		 * in blk_mq_sched_restart(). Avoid restart code path to
1949 		 * miss the new added requests to hctx->dispatch, meantime
1950 		 * SCHED_RESTART is observed here.
1951 		 */
1952 		smp_mb();
1953 
1954 		/*
1955 		 * If SCHED_RESTART was set by the caller of this function and
1956 		 * it is no longer set that means that it was cleared by another
1957 		 * thread and hence that a queue rerun is needed.
1958 		 *
1959 		 * If 'no_tag' is set, that means that we failed getting
1960 		 * a driver tag with an I/O scheduler attached. If our dispatch
1961 		 * waitqueue is no longer active, ensure that we run the queue
1962 		 * AFTER adding our entries back to the list.
1963 		 *
1964 		 * If no I/O scheduler has been configured it is possible that
1965 		 * the hardware queue got stopped and restarted before requests
1966 		 * were pushed back onto the dispatch list. Rerun the queue to
1967 		 * avoid starvation. Notes:
1968 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1969 		 *   been stopped before rerunning a queue.
1970 		 * - Some but not all block drivers stop a queue before
1971 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1972 		 *   and dm-rq.
1973 		 *
1974 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1975 		 * bit is set, run queue after a delay to avoid IO stalls
1976 		 * that could otherwise occur if the queue is idle.  We'll do
1977 		 * similar if we couldn't get budget or couldn't lock a zone
1978 		 * and SCHED_RESTART is set.
1979 		 */
1980 		needs_restart = blk_mq_sched_needs_restart(hctx);
1981 		if (prep == PREP_DISPATCH_NO_BUDGET)
1982 			needs_resource = true;
1983 		if (!needs_restart ||
1984 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1985 			blk_mq_run_hw_queue(hctx, true);
1986 		else if (needs_restart && needs_resource)
1987 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1988 
1989 		blk_mq_update_dispatch_busy(hctx, true);
1990 		return false;
1991 	} else
1992 		blk_mq_update_dispatch_busy(hctx, false);
1993 
1994 	return (queued + errors) != 0;
1995 }
1996 
1997 /**
1998  * __blk_mq_run_hw_queue - Run a hardware queue.
1999  * @hctx: Pointer to the hardware queue to run.
2000  *
2001  * Send pending requests to the hardware.
2002  */
2003 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2004 {
2005 	/*
2006 	 * We can't run the queue inline with ints disabled. Ensure that
2007 	 * we catch bad users of this early.
2008 	 */
2009 	WARN_ON_ONCE(in_interrupt());
2010 
2011 	blk_mq_run_dispatch_ops(hctx->queue,
2012 			blk_mq_sched_dispatch_requests(hctx));
2013 }
2014 
2015 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2016 {
2017 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2018 
2019 	if (cpu >= nr_cpu_ids)
2020 		cpu = cpumask_first(hctx->cpumask);
2021 	return cpu;
2022 }
2023 
2024 /*
2025  * It'd be great if the workqueue API had a way to pass
2026  * in a mask and had some smarts for more clever placement.
2027  * For now we just round-robin here, switching for every
2028  * BLK_MQ_CPU_WORK_BATCH queued items.
2029  */
2030 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2031 {
2032 	bool tried = false;
2033 	int next_cpu = hctx->next_cpu;
2034 
2035 	if (hctx->queue->nr_hw_queues == 1)
2036 		return WORK_CPU_UNBOUND;
2037 
2038 	if (--hctx->next_cpu_batch <= 0) {
2039 select_cpu:
2040 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2041 				cpu_online_mask);
2042 		if (next_cpu >= nr_cpu_ids)
2043 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2044 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2045 	}
2046 
2047 	/*
2048 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2049 	 * and it should only happen in the path of handling CPU DEAD.
2050 	 */
2051 	if (!cpu_online(next_cpu)) {
2052 		if (!tried) {
2053 			tried = true;
2054 			goto select_cpu;
2055 		}
2056 
2057 		/*
2058 		 * Make sure to re-select CPU next time once after CPUs
2059 		 * in hctx->cpumask become online again.
2060 		 */
2061 		hctx->next_cpu = next_cpu;
2062 		hctx->next_cpu_batch = 1;
2063 		return WORK_CPU_UNBOUND;
2064 	}
2065 
2066 	hctx->next_cpu = next_cpu;
2067 	return next_cpu;
2068 }
2069 
2070 /**
2071  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2072  * @hctx: Pointer to the hardware queue to run.
2073  * @async: If we want to run the queue asynchronously.
2074  * @msecs: Milliseconds of delay to wait before running the queue.
2075  *
2076  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2077  * with a delay of @msecs.
2078  */
2079 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2080 					unsigned long msecs)
2081 {
2082 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2083 		return;
2084 
2085 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2086 		int cpu = get_cpu();
2087 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2088 			__blk_mq_run_hw_queue(hctx);
2089 			put_cpu();
2090 			return;
2091 		}
2092 
2093 		put_cpu();
2094 	}
2095 
2096 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2097 				    msecs_to_jiffies(msecs));
2098 }
2099 
2100 /**
2101  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2102  * @hctx: Pointer to the hardware queue to run.
2103  * @msecs: Milliseconds of delay to wait before running the queue.
2104  *
2105  * Run a hardware queue asynchronously with a delay of @msecs.
2106  */
2107 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2108 {
2109 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2110 }
2111 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2112 
2113 /**
2114  * blk_mq_run_hw_queue - Start to run a hardware queue.
2115  * @hctx: Pointer to the hardware queue to run.
2116  * @async: If we want to run the queue asynchronously.
2117  *
2118  * Check if the request queue is not in a quiesced state and if there are
2119  * pending requests to be sent. If this is true, run the queue to send requests
2120  * to hardware.
2121  */
2122 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2123 {
2124 	bool need_run;
2125 
2126 	/*
2127 	 * When queue is quiesced, we may be switching io scheduler, or
2128 	 * updating nr_hw_queues, or other things, and we can't run queue
2129 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2130 	 *
2131 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2132 	 * quiesced.
2133 	 */
2134 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2135 		need_run = !blk_queue_quiesced(hctx->queue) &&
2136 		blk_mq_hctx_has_pending(hctx));
2137 
2138 	if (need_run)
2139 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
2140 }
2141 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2142 
2143 /*
2144  * Is the request queue handled by an IO scheduler that does not respect
2145  * hardware queues when dispatching?
2146  */
2147 static bool blk_mq_has_sqsched(struct request_queue *q)
2148 {
2149 	struct elevator_queue *e = q->elevator;
2150 
2151 	if (e && e->type->ops.dispatch_request &&
2152 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2153 		return true;
2154 	return false;
2155 }
2156 
2157 /*
2158  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2159  * scheduler.
2160  */
2161 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2162 {
2163 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2164 	/*
2165 	 * If the IO scheduler does not respect hardware queues when
2166 	 * dispatching, we just don't bother with multiple HW queues and
2167 	 * dispatch from hctx for the current CPU since running multiple queues
2168 	 * just causes lock contention inside the scheduler and pointless cache
2169 	 * bouncing.
2170 	 */
2171 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2172 
2173 	if (!blk_mq_hctx_stopped(hctx))
2174 		return hctx;
2175 	return NULL;
2176 }
2177 
2178 /**
2179  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2180  * @q: Pointer to the request queue to run.
2181  * @async: If we want to run the queue asynchronously.
2182  */
2183 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2184 {
2185 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2186 	unsigned long i;
2187 
2188 	sq_hctx = NULL;
2189 	if (blk_mq_has_sqsched(q))
2190 		sq_hctx = blk_mq_get_sq_hctx(q);
2191 	queue_for_each_hw_ctx(q, hctx, i) {
2192 		if (blk_mq_hctx_stopped(hctx))
2193 			continue;
2194 		/*
2195 		 * Dispatch from this hctx either if there's no hctx preferred
2196 		 * by IO scheduler or if it has requests that bypass the
2197 		 * scheduler.
2198 		 */
2199 		if (!sq_hctx || sq_hctx == hctx ||
2200 		    !list_empty_careful(&hctx->dispatch))
2201 			blk_mq_run_hw_queue(hctx, async);
2202 	}
2203 }
2204 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2205 
2206 /**
2207  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2208  * @q: Pointer to the request queue to run.
2209  * @msecs: Milliseconds of delay to wait before running the queues.
2210  */
2211 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2212 {
2213 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2214 	unsigned long i;
2215 
2216 	sq_hctx = NULL;
2217 	if (blk_mq_has_sqsched(q))
2218 		sq_hctx = blk_mq_get_sq_hctx(q);
2219 	queue_for_each_hw_ctx(q, hctx, i) {
2220 		if (blk_mq_hctx_stopped(hctx))
2221 			continue;
2222 		/*
2223 		 * If there is already a run_work pending, leave the
2224 		 * pending delay untouched. Otherwise, a hctx can stall
2225 		 * if another hctx is re-delaying the other's work
2226 		 * before the work executes.
2227 		 */
2228 		if (delayed_work_pending(&hctx->run_work))
2229 			continue;
2230 		/*
2231 		 * Dispatch from this hctx either if there's no hctx preferred
2232 		 * by IO scheduler or if it has requests that bypass the
2233 		 * scheduler.
2234 		 */
2235 		if (!sq_hctx || sq_hctx == hctx ||
2236 		    !list_empty_careful(&hctx->dispatch))
2237 			blk_mq_delay_run_hw_queue(hctx, msecs);
2238 	}
2239 }
2240 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2241 
2242 /**
2243  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2244  * @q: request queue.
2245  *
2246  * The caller is responsible for serializing this function against
2247  * blk_mq_{start,stop}_hw_queue().
2248  */
2249 bool blk_mq_queue_stopped(struct request_queue *q)
2250 {
2251 	struct blk_mq_hw_ctx *hctx;
2252 	unsigned long i;
2253 
2254 	queue_for_each_hw_ctx(q, hctx, i)
2255 		if (blk_mq_hctx_stopped(hctx))
2256 			return true;
2257 
2258 	return false;
2259 }
2260 EXPORT_SYMBOL(blk_mq_queue_stopped);
2261 
2262 /*
2263  * This function is often used for pausing .queue_rq() by driver when
2264  * there isn't enough resource or some conditions aren't satisfied, and
2265  * BLK_STS_RESOURCE is usually returned.
2266  *
2267  * We do not guarantee that dispatch can be drained or blocked
2268  * after blk_mq_stop_hw_queue() returns. Please use
2269  * blk_mq_quiesce_queue() for that requirement.
2270  */
2271 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2272 {
2273 	cancel_delayed_work(&hctx->run_work);
2274 
2275 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2276 }
2277 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2278 
2279 /*
2280  * This function is often used for pausing .queue_rq() by driver when
2281  * there isn't enough resource or some conditions aren't satisfied, and
2282  * BLK_STS_RESOURCE is usually returned.
2283  *
2284  * We do not guarantee that dispatch can be drained or blocked
2285  * after blk_mq_stop_hw_queues() returns. Please use
2286  * blk_mq_quiesce_queue() for that requirement.
2287  */
2288 void blk_mq_stop_hw_queues(struct request_queue *q)
2289 {
2290 	struct blk_mq_hw_ctx *hctx;
2291 	unsigned long i;
2292 
2293 	queue_for_each_hw_ctx(q, hctx, i)
2294 		blk_mq_stop_hw_queue(hctx);
2295 }
2296 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2297 
2298 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2299 {
2300 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2301 
2302 	blk_mq_run_hw_queue(hctx, false);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2305 
2306 void blk_mq_start_hw_queues(struct request_queue *q)
2307 {
2308 	struct blk_mq_hw_ctx *hctx;
2309 	unsigned long i;
2310 
2311 	queue_for_each_hw_ctx(q, hctx, i)
2312 		blk_mq_start_hw_queue(hctx);
2313 }
2314 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2315 
2316 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2317 {
2318 	if (!blk_mq_hctx_stopped(hctx))
2319 		return;
2320 
2321 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2322 	blk_mq_run_hw_queue(hctx, async);
2323 }
2324 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2325 
2326 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2327 {
2328 	struct blk_mq_hw_ctx *hctx;
2329 	unsigned long i;
2330 
2331 	queue_for_each_hw_ctx(q, hctx, i)
2332 		blk_mq_start_stopped_hw_queue(hctx, async);
2333 }
2334 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2335 
2336 static void blk_mq_run_work_fn(struct work_struct *work)
2337 {
2338 	struct blk_mq_hw_ctx *hctx;
2339 
2340 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2341 
2342 	/*
2343 	 * If we are stopped, don't run the queue.
2344 	 */
2345 	if (blk_mq_hctx_stopped(hctx))
2346 		return;
2347 
2348 	__blk_mq_run_hw_queue(hctx);
2349 }
2350 
2351 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2352 					    struct request *rq,
2353 					    bool at_head)
2354 {
2355 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2356 	enum hctx_type type = hctx->type;
2357 
2358 	lockdep_assert_held(&ctx->lock);
2359 
2360 	trace_block_rq_insert(rq);
2361 
2362 	if (at_head)
2363 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2364 	else
2365 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2366 }
2367 
2368 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2369 			     bool at_head)
2370 {
2371 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2372 
2373 	lockdep_assert_held(&ctx->lock);
2374 
2375 	__blk_mq_insert_req_list(hctx, rq, at_head);
2376 	blk_mq_hctx_mark_pending(hctx, ctx);
2377 }
2378 
2379 /**
2380  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2381  * @rq: Pointer to request to be inserted.
2382  * @at_head: true if the request should be inserted at the head of the list.
2383  * @run_queue: If we should run the hardware queue after inserting the request.
2384  *
2385  * Should only be used carefully, when the caller knows we want to
2386  * bypass a potential IO scheduler on the target device.
2387  */
2388 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2389 				  bool run_queue)
2390 {
2391 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2392 
2393 	spin_lock(&hctx->lock);
2394 	if (at_head)
2395 		list_add(&rq->queuelist, &hctx->dispatch);
2396 	else
2397 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2398 	spin_unlock(&hctx->lock);
2399 
2400 	if (run_queue)
2401 		blk_mq_run_hw_queue(hctx, false);
2402 }
2403 
2404 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2405 			    struct list_head *list)
2406 
2407 {
2408 	struct request *rq;
2409 	enum hctx_type type = hctx->type;
2410 
2411 	/*
2412 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2413 	 * offline now
2414 	 */
2415 	list_for_each_entry(rq, list, queuelist) {
2416 		BUG_ON(rq->mq_ctx != ctx);
2417 		trace_block_rq_insert(rq);
2418 	}
2419 
2420 	spin_lock(&ctx->lock);
2421 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2422 	blk_mq_hctx_mark_pending(hctx, ctx);
2423 	spin_unlock(&ctx->lock);
2424 }
2425 
2426 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2427 			      bool from_schedule)
2428 {
2429 	if (hctx->queue->mq_ops->commit_rqs) {
2430 		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2431 		hctx->queue->mq_ops->commit_rqs(hctx);
2432 	}
2433 	*queued = 0;
2434 }
2435 
2436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2437 		unsigned int nr_segs)
2438 {
2439 	int err;
2440 
2441 	if (bio->bi_opf & REQ_RAHEAD)
2442 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2443 
2444 	rq->__sector = bio->bi_iter.bi_sector;
2445 	blk_rq_bio_prep(rq, bio, nr_segs);
2446 
2447 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2448 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2449 	WARN_ON_ONCE(err);
2450 
2451 	blk_account_io_start(rq);
2452 }
2453 
2454 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2455 					    struct request *rq, bool last)
2456 {
2457 	struct request_queue *q = rq->q;
2458 	struct blk_mq_queue_data bd = {
2459 		.rq = rq,
2460 		.last = last,
2461 	};
2462 	blk_status_t ret;
2463 
2464 	/*
2465 	 * For OK queue, we are done. For error, caller may kill it.
2466 	 * Any other error (busy), just add it to our list as we
2467 	 * previously would have done.
2468 	 */
2469 	ret = q->mq_ops->queue_rq(hctx, &bd);
2470 	switch (ret) {
2471 	case BLK_STS_OK:
2472 		blk_mq_update_dispatch_busy(hctx, false);
2473 		break;
2474 	case BLK_STS_RESOURCE:
2475 	case BLK_STS_DEV_RESOURCE:
2476 		blk_mq_update_dispatch_busy(hctx, true);
2477 		__blk_mq_requeue_request(rq);
2478 		break;
2479 	default:
2480 		blk_mq_update_dispatch_busy(hctx, false);
2481 		break;
2482 	}
2483 
2484 	return ret;
2485 }
2486 
2487 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2488 						struct request *rq,
2489 						bool bypass_insert, bool last)
2490 {
2491 	struct request_queue *q = rq->q;
2492 	bool run_queue = true;
2493 	int budget_token;
2494 
2495 	/*
2496 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2497 	 *
2498 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2499 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2500 	 * and avoid driver to try to dispatch again.
2501 	 */
2502 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2503 		run_queue = false;
2504 		bypass_insert = false;
2505 		goto insert;
2506 	}
2507 
2508 	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2509 		goto insert;
2510 
2511 	budget_token = blk_mq_get_dispatch_budget(q);
2512 	if (budget_token < 0)
2513 		goto insert;
2514 
2515 	blk_mq_set_rq_budget_token(rq, budget_token);
2516 
2517 	if (!blk_mq_get_driver_tag(rq)) {
2518 		blk_mq_put_dispatch_budget(q, budget_token);
2519 		goto insert;
2520 	}
2521 
2522 	return __blk_mq_issue_directly(hctx, rq, last);
2523 insert:
2524 	if (bypass_insert)
2525 		return BLK_STS_RESOURCE;
2526 
2527 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2528 
2529 	return BLK_STS_OK;
2530 }
2531 
2532 /**
2533  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2534  * @hctx: Pointer of the associated hardware queue.
2535  * @rq: Pointer to request to be sent.
2536  *
2537  * If the device has enough resources to accept a new request now, send the
2538  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2539  * we can try send it another time in the future. Requests inserted at this
2540  * queue have higher priority.
2541  */
2542 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2543 		struct request *rq)
2544 {
2545 	blk_status_t ret =
2546 		__blk_mq_try_issue_directly(hctx, rq, false, true);
2547 
2548 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2549 		blk_mq_request_bypass_insert(rq, false, true);
2550 	else if (ret != BLK_STS_OK)
2551 		blk_mq_end_request(rq, ret);
2552 }
2553 
2554 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2555 {
2556 	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2557 }
2558 
2559 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2560 {
2561 	struct blk_mq_hw_ctx *hctx = NULL;
2562 	struct request *rq;
2563 	int queued = 0;
2564 	int errors = 0;
2565 
2566 	while ((rq = rq_list_pop(&plug->mq_list))) {
2567 		bool last = rq_list_empty(plug->mq_list);
2568 		blk_status_t ret;
2569 
2570 		if (hctx != rq->mq_hctx) {
2571 			if (hctx)
2572 				blk_mq_commit_rqs(hctx, &queued, from_schedule);
2573 			hctx = rq->mq_hctx;
2574 		}
2575 
2576 		ret = blk_mq_request_issue_directly(rq, last);
2577 		switch (ret) {
2578 		case BLK_STS_OK:
2579 			queued++;
2580 			break;
2581 		case BLK_STS_RESOURCE:
2582 		case BLK_STS_DEV_RESOURCE:
2583 			blk_mq_request_bypass_insert(rq, false, last);
2584 			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2585 			return;
2586 		default:
2587 			blk_mq_end_request(rq, ret);
2588 			errors++;
2589 			break;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * If we didn't flush the entire list, we could have told the driver
2595 	 * there was more coming, but that turned out to be a lie.
2596 	 */
2597 	if (errors)
2598 		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2599 }
2600 
2601 static void __blk_mq_flush_plug_list(struct request_queue *q,
2602 				     struct blk_plug *plug)
2603 {
2604 	if (blk_queue_quiesced(q))
2605 		return;
2606 	q->mq_ops->queue_rqs(&plug->mq_list);
2607 }
2608 
2609 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2610 {
2611 	struct blk_mq_hw_ctx *this_hctx = NULL;
2612 	struct blk_mq_ctx *this_ctx = NULL;
2613 	struct request *requeue_list = NULL;
2614 	unsigned int depth = 0;
2615 	LIST_HEAD(list);
2616 
2617 	do {
2618 		struct request *rq = rq_list_pop(&plug->mq_list);
2619 
2620 		if (!this_hctx) {
2621 			this_hctx = rq->mq_hctx;
2622 			this_ctx = rq->mq_ctx;
2623 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2624 			rq_list_add(&requeue_list, rq);
2625 			continue;
2626 		}
2627 		list_add_tail(&rq->queuelist, &list);
2628 		depth++;
2629 	} while (!rq_list_empty(plug->mq_list));
2630 
2631 	plug->mq_list = requeue_list;
2632 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2633 	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2634 }
2635 
2636 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2637 {
2638 	struct request *rq;
2639 
2640 	if (rq_list_empty(plug->mq_list))
2641 		return;
2642 	plug->rq_count = 0;
2643 
2644 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2645 		struct request_queue *q;
2646 
2647 		rq = rq_list_peek(&plug->mq_list);
2648 		q = rq->q;
2649 
2650 		/*
2651 		 * Peek first request and see if we have a ->queue_rqs() hook.
2652 		 * If we do, we can dispatch the whole plug list in one go. We
2653 		 * already know at this point that all requests belong to the
2654 		 * same queue, caller must ensure that's the case.
2655 		 *
2656 		 * Since we pass off the full list to the driver at this point,
2657 		 * we do not increment the active request count for the queue.
2658 		 * Bypass shared tags for now because of that.
2659 		 */
2660 		if (q->mq_ops->queue_rqs &&
2661 		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2662 			blk_mq_run_dispatch_ops(q,
2663 				__blk_mq_flush_plug_list(q, plug));
2664 			if (rq_list_empty(plug->mq_list))
2665 				return;
2666 		}
2667 
2668 		blk_mq_run_dispatch_ops(q,
2669 				blk_mq_plug_issue_direct(plug, false));
2670 		if (rq_list_empty(plug->mq_list))
2671 			return;
2672 	}
2673 
2674 	do {
2675 		blk_mq_dispatch_plug_list(plug, from_schedule);
2676 	} while (!rq_list_empty(plug->mq_list));
2677 }
2678 
2679 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2680 		struct list_head *list)
2681 {
2682 	int queued = 0;
2683 	int errors = 0;
2684 
2685 	while (!list_empty(list)) {
2686 		blk_status_t ret;
2687 		struct request *rq = list_first_entry(list, struct request,
2688 				queuelist);
2689 
2690 		list_del_init(&rq->queuelist);
2691 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2692 		if (ret != BLK_STS_OK) {
2693 			if (ret == BLK_STS_RESOURCE ||
2694 					ret == BLK_STS_DEV_RESOURCE) {
2695 				blk_mq_request_bypass_insert(rq, false,
2696 							list_empty(list));
2697 				break;
2698 			}
2699 			blk_mq_end_request(rq, ret);
2700 			errors++;
2701 		} else
2702 			queued++;
2703 	}
2704 
2705 	/*
2706 	 * If we didn't flush the entire list, we could have told
2707 	 * the driver there was more coming, but that turned out to
2708 	 * be a lie.
2709 	 */
2710 	if ((!list_empty(list) || errors) &&
2711 	     hctx->queue->mq_ops->commit_rqs && queued)
2712 		hctx->queue->mq_ops->commit_rqs(hctx);
2713 }
2714 
2715 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2716 				     struct bio *bio, unsigned int nr_segs)
2717 {
2718 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2719 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2720 			return true;
2721 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2722 			return true;
2723 	}
2724 	return false;
2725 }
2726 
2727 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2728 					       struct blk_plug *plug,
2729 					       struct bio *bio,
2730 					       unsigned int nsegs)
2731 {
2732 	struct blk_mq_alloc_data data = {
2733 		.q		= q,
2734 		.nr_tags	= 1,
2735 		.cmd_flags	= bio->bi_opf,
2736 	};
2737 	struct request *rq;
2738 
2739 	if (unlikely(bio_queue_enter(bio)))
2740 		return NULL;
2741 
2742 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2743 		goto queue_exit;
2744 
2745 	rq_qos_throttle(q, bio);
2746 
2747 	if (plug) {
2748 		data.nr_tags = plug->nr_ios;
2749 		plug->nr_ios = 1;
2750 		data.cached_rq = &plug->cached_rq;
2751 	}
2752 
2753 	rq = __blk_mq_alloc_requests(&data);
2754 	if (rq)
2755 		return rq;
2756 	rq_qos_cleanup(q, bio);
2757 	if (bio->bi_opf & REQ_NOWAIT)
2758 		bio_wouldblock_error(bio);
2759 queue_exit:
2760 	blk_queue_exit(q);
2761 	return NULL;
2762 }
2763 
2764 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2765 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2766 {
2767 	struct request *rq;
2768 
2769 	if (!plug)
2770 		return NULL;
2771 	rq = rq_list_peek(&plug->cached_rq);
2772 	if (!rq || rq->q != q)
2773 		return NULL;
2774 
2775 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2776 		*bio = NULL;
2777 		return NULL;
2778 	}
2779 
2780 	rq_qos_throttle(q, *bio);
2781 
2782 	if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2783 		return NULL;
2784 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2785 		return NULL;
2786 
2787 	rq->cmd_flags = (*bio)->bi_opf;
2788 	plug->cached_rq = rq_list_next(rq);
2789 	INIT_LIST_HEAD(&rq->queuelist);
2790 	return rq;
2791 }
2792 
2793 /**
2794  * blk_mq_submit_bio - Create and send a request to block device.
2795  * @bio: Bio pointer.
2796  *
2797  * Builds up a request structure from @q and @bio and send to the device. The
2798  * request may not be queued directly to hardware if:
2799  * * This request can be merged with another one
2800  * * We want to place request at plug queue for possible future merging
2801  * * There is an IO scheduler active at this queue
2802  *
2803  * It will not queue the request if there is an error with the bio, or at the
2804  * request creation.
2805  */
2806 void blk_mq_submit_bio(struct bio *bio)
2807 {
2808 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2809 	struct blk_plug *plug = blk_mq_plug(q, bio);
2810 	const int is_sync = op_is_sync(bio->bi_opf);
2811 	struct request *rq;
2812 	unsigned int nr_segs = 1;
2813 	blk_status_t ret;
2814 
2815 	blk_queue_bounce(q, &bio);
2816 	if (blk_may_split(q, bio))
2817 		__blk_queue_split(q, &bio, &nr_segs);
2818 
2819 	if (!bio_integrity_prep(bio))
2820 		return;
2821 
2822 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2823 	if (!rq) {
2824 		if (!bio)
2825 			return;
2826 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2827 		if (unlikely(!rq))
2828 			return;
2829 	}
2830 
2831 	trace_block_getrq(bio);
2832 
2833 	rq_qos_track(q, rq, bio);
2834 
2835 	blk_mq_bio_to_request(rq, bio, nr_segs);
2836 
2837 	ret = blk_crypto_init_request(rq);
2838 	if (ret != BLK_STS_OK) {
2839 		bio->bi_status = ret;
2840 		bio_endio(bio);
2841 		blk_mq_free_request(rq);
2842 		return;
2843 	}
2844 
2845 	if (op_is_flush(bio->bi_opf)) {
2846 		blk_insert_flush(rq);
2847 		return;
2848 	}
2849 
2850 	if (plug)
2851 		blk_add_rq_to_plug(plug, rq);
2852 	else if ((rq->rq_flags & RQF_ELV) ||
2853 		 (rq->mq_hctx->dispatch_busy &&
2854 		  (q->nr_hw_queues == 1 || !is_sync)))
2855 		blk_mq_sched_insert_request(rq, false, true, true);
2856 	else
2857 		blk_mq_run_dispatch_ops(rq->q,
2858 				blk_mq_try_issue_directly(rq->mq_hctx, rq));
2859 }
2860 
2861 #ifdef CONFIG_BLK_MQ_STACKING
2862 /**
2863  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2864  * @rq: the request being queued
2865  */
2866 blk_status_t blk_insert_cloned_request(struct request *rq)
2867 {
2868 	struct request_queue *q = rq->q;
2869 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2870 	blk_status_t ret;
2871 
2872 	if (blk_rq_sectors(rq) > max_sectors) {
2873 		/*
2874 		 * SCSI device does not have a good way to return if
2875 		 * Write Same/Zero is actually supported. If a device rejects
2876 		 * a non-read/write command (discard, write same,etc.) the
2877 		 * low-level device driver will set the relevant queue limit to
2878 		 * 0 to prevent blk-lib from issuing more of the offending
2879 		 * operations. Commands queued prior to the queue limit being
2880 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2881 		 * errors being propagated to upper layers.
2882 		 */
2883 		if (max_sectors == 0)
2884 			return BLK_STS_NOTSUPP;
2885 
2886 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2887 			__func__, blk_rq_sectors(rq), max_sectors);
2888 		return BLK_STS_IOERR;
2889 	}
2890 
2891 	/*
2892 	 * The queue settings related to segment counting may differ from the
2893 	 * original queue.
2894 	 */
2895 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2896 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2897 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2898 			__func__, rq->nr_phys_segments, queue_max_segments(q));
2899 		return BLK_STS_IOERR;
2900 	}
2901 
2902 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2903 		return BLK_STS_IOERR;
2904 
2905 	if (blk_crypto_insert_cloned_request(rq))
2906 		return BLK_STS_IOERR;
2907 
2908 	blk_account_io_start(rq);
2909 
2910 	/*
2911 	 * Since we have a scheduler attached on the top device,
2912 	 * bypass a potential scheduler on the bottom device for
2913 	 * insert.
2914 	 */
2915 	blk_mq_run_dispatch_ops(q,
2916 			ret = blk_mq_request_issue_directly(rq, true));
2917 	if (ret)
2918 		blk_account_io_done(rq, ktime_get_ns());
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2922 
2923 /**
2924  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2925  * @rq: the clone request to be cleaned up
2926  *
2927  * Description:
2928  *     Free all bios in @rq for a cloned request.
2929  */
2930 void blk_rq_unprep_clone(struct request *rq)
2931 {
2932 	struct bio *bio;
2933 
2934 	while ((bio = rq->bio) != NULL) {
2935 		rq->bio = bio->bi_next;
2936 
2937 		bio_put(bio);
2938 	}
2939 }
2940 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2941 
2942 /**
2943  * blk_rq_prep_clone - Helper function to setup clone request
2944  * @rq: the request to be setup
2945  * @rq_src: original request to be cloned
2946  * @bs: bio_set that bios for clone are allocated from
2947  * @gfp_mask: memory allocation mask for bio
2948  * @bio_ctr: setup function to be called for each clone bio.
2949  *           Returns %0 for success, non %0 for failure.
2950  * @data: private data to be passed to @bio_ctr
2951  *
2952  * Description:
2953  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2954  *     Also, pages which the original bios are pointing to are not copied
2955  *     and the cloned bios just point same pages.
2956  *     So cloned bios must be completed before original bios, which means
2957  *     the caller must complete @rq before @rq_src.
2958  */
2959 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2960 		      struct bio_set *bs, gfp_t gfp_mask,
2961 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2962 		      void *data)
2963 {
2964 	struct bio *bio, *bio_src;
2965 
2966 	if (!bs)
2967 		bs = &fs_bio_set;
2968 
2969 	__rq_for_each_bio(bio_src, rq_src) {
2970 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2971 				      bs);
2972 		if (!bio)
2973 			goto free_and_out;
2974 
2975 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2976 			goto free_and_out;
2977 
2978 		if (rq->bio) {
2979 			rq->biotail->bi_next = bio;
2980 			rq->biotail = bio;
2981 		} else {
2982 			rq->bio = rq->biotail = bio;
2983 		}
2984 		bio = NULL;
2985 	}
2986 
2987 	/* Copy attributes of the original request to the clone request. */
2988 	rq->__sector = blk_rq_pos(rq_src);
2989 	rq->__data_len = blk_rq_bytes(rq_src);
2990 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2991 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2992 		rq->special_vec = rq_src->special_vec;
2993 	}
2994 	rq->nr_phys_segments = rq_src->nr_phys_segments;
2995 	rq->ioprio = rq_src->ioprio;
2996 
2997 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2998 		goto free_and_out;
2999 
3000 	return 0;
3001 
3002 free_and_out:
3003 	if (bio)
3004 		bio_put(bio);
3005 	blk_rq_unprep_clone(rq);
3006 
3007 	return -ENOMEM;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3010 #endif /* CONFIG_BLK_MQ_STACKING */
3011 
3012 /*
3013  * Steal bios from a request and add them to a bio list.
3014  * The request must not have been partially completed before.
3015  */
3016 void blk_steal_bios(struct bio_list *list, struct request *rq)
3017 {
3018 	if (rq->bio) {
3019 		if (list->tail)
3020 			list->tail->bi_next = rq->bio;
3021 		else
3022 			list->head = rq->bio;
3023 		list->tail = rq->biotail;
3024 
3025 		rq->bio = NULL;
3026 		rq->biotail = NULL;
3027 	}
3028 
3029 	rq->__data_len = 0;
3030 }
3031 EXPORT_SYMBOL_GPL(blk_steal_bios);
3032 
3033 static size_t order_to_size(unsigned int order)
3034 {
3035 	return (size_t)PAGE_SIZE << order;
3036 }
3037 
3038 /* called before freeing request pool in @tags */
3039 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3040 				    struct blk_mq_tags *tags)
3041 {
3042 	struct page *page;
3043 	unsigned long flags;
3044 
3045 	/* There is no need to clear a driver tags own mapping */
3046 	if (drv_tags == tags)
3047 		return;
3048 
3049 	list_for_each_entry(page, &tags->page_list, lru) {
3050 		unsigned long start = (unsigned long)page_address(page);
3051 		unsigned long end = start + order_to_size(page->private);
3052 		int i;
3053 
3054 		for (i = 0; i < drv_tags->nr_tags; i++) {
3055 			struct request *rq = drv_tags->rqs[i];
3056 			unsigned long rq_addr = (unsigned long)rq;
3057 
3058 			if (rq_addr >= start && rq_addr < end) {
3059 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3060 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3061 			}
3062 		}
3063 	}
3064 
3065 	/*
3066 	 * Wait until all pending iteration is done.
3067 	 *
3068 	 * Request reference is cleared and it is guaranteed to be observed
3069 	 * after the ->lock is released.
3070 	 */
3071 	spin_lock_irqsave(&drv_tags->lock, flags);
3072 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3073 }
3074 
3075 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3076 		     unsigned int hctx_idx)
3077 {
3078 	struct blk_mq_tags *drv_tags;
3079 	struct page *page;
3080 
3081 	if (list_empty(&tags->page_list))
3082 		return;
3083 
3084 	if (blk_mq_is_shared_tags(set->flags))
3085 		drv_tags = set->shared_tags;
3086 	else
3087 		drv_tags = set->tags[hctx_idx];
3088 
3089 	if (tags->static_rqs && set->ops->exit_request) {
3090 		int i;
3091 
3092 		for (i = 0; i < tags->nr_tags; i++) {
3093 			struct request *rq = tags->static_rqs[i];
3094 
3095 			if (!rq)
3096 				continue;
3097 			set->ops->exit_request(set, rq, hctx_idx);
3098 			tags->static_rqs[i] = NULL;
3099 		}
3100 	}
3101 
3102 	blk_mq_clear_rq_mapping(drv_tags, tags);
3103 
3104 	while (!list_empty(&tags->page_list)) {
3105 		page = list_first_entry(&tags->page_list, struct page, lru);
3106 		list_del_init(&page->lru);
3107 		/*
3108 		 * Remove kmemleak object previously allocated in
3109 		 * blk_mq_alloc_rqs().
3110 		 */
3111 		kmemleak_free(page_address(page));
3112 		__free_pages(page, page->private);
3113 	}
3114 }
3115 
3116 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3117 {
3118 	kfree(tags->rqs);
3119 	tags->rqs = NULL;
3120 	kfree(tags->static_rqs);
3121 	tags->static_rqs = NULL;
3122 
3123 	blk_mq_free_tags(tags);
3124 }
3125 
3126 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3127 		unsigned int hctx_idx)
3128 {
3129 	int i;
3130 
3131 	for (i = 0; i < set->nr_maps; i++) {
3132 		unsigned int start = set->map[i].queue_offset;
3133 		unsigned int end = start + set->map[i].nr_queues;
3134 
3135 		if (hctx_idx >= start && hctx_idx < end)
3136 			break;
3137 	}
3138 
3139 	if (i >= set->nr_maps)
3140 		i = HCTX_TYPE_DEFAULT;
3141 
3142 	return i;
3143 }
3144 
3145 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3146 		unsigned int hctx_idx)
3147 {
3148 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3149 
3150 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3151 }
3152 
3153 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3154 					       unsigned int hctx_idx,
3155 					       unsigned int nr_tags,
3156 					       unsigned int reserved_tags)
3157 {
3158 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3159 	struct blk_mq_tags *tags;
3160 
3161 	if (node == NUMA_NO_NODE)
3162 		node = set->numa_node;
3163 
3164 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3165 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3166 	if (!tags)
3167 		return NULL;
3168 
3169 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3170 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3171 				 node);
3172 	if (!tags->rqs) {
3173 		blk_mq_free_tags(tags);
3174 		return NULL;
3175 	}
3176 
3177 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3178 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3179 					node);
3180 	if (!tags->static_rqs) {
3181 		kfree(tags->rqs);
3182 		blk_mq_free_tags(tags);
3183 		return NULL;
3184 	}
3185 
3186 	return tags;
3187 }
3188 
3189 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3190 			       unsigned int hctx_idx, int node)
3191 {
3192 	int ret;
3193 
3194 	if (set->ops->init_request) {
3195 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3196 		if (ret)
3197 			return ret;
3198 	}
3199 
3200 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3201 	return 0;
3202 }
3203 
3204 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3205 			    struct blk_mq_tags *tags,
3206 			    unsigned int hctx_idx, unsigned int depth)
3207 {
3208 	unsigned int i, j, entries_per_page, max_order = 4;
3209 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3210 	size_t rq_size, left;
3211 
3212 	if (node == NUMA_NO_NODE)
3213 		node = set->numa_node;
3214 
3215 	INIT_LIST_HEAD(&tags->page_list);
3216 
3217 	/*
3218 	 * rq_size is the size of the request plus driver payload, rounded
3219 	 * to the cacheline size
3220 	 */
3221 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3222 				cache_line_size());
3223 	left = rq_size * depth;
3224 
3225 	for (i = 0; i < depth; ) {
3226 		int this_order = max_order;
3227 		struct page *page;
3228 		int to_do;
3229 		void *p;
3230 
3231 		while (this_order && left < order_to_size(this_order - 1))
3232 			this_order--;
3233 
3234 		do {
3235 			page = alloc_pages_node(node,
3236 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3237 				this_order);
3238 			if (page)
3239 				break;
3240 			if (!this_order--)
3241 				break;
3242 			if (order_to_size(this_order) < rq_size)
3243 				break;
3244 		} while (1);
3245 
3246 		if (!page)
3247 			goto fail;
3248 
3249 		page->private = this_order;
3250 		list_add_tail(&page->lru, &tags->page_list);
3251 
3252 		p = page_address(page);
3253 		/*
3254 		 * Allow kmemleak to scan these pages as they contain pointers
3255 		 * to additional allocations like via ops->init_request().
3256 		 */
3257 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3258 		entries_per_page = order_to_size(this_order) / rq_size;
3259 		to_do = min(entries_per_page, depth - i);
3260 		left -= to_do * rq_size;
3261 		for (j = 0; j < to_do; j++) {
3262 			struct request *rq = p;
3263 
3264 			tags->static_rqs[i] = rq;
3265 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3266 				tags->static_rqs[i] = NULL;
3267 				goto fail;
3268 			}
3269 
3270 			p += rq_size;
3271 			i++;
3272 		}
3273 	}
3274 	return 0;
3275 
3276 fail:
3277 	blk_mq_free_rqs(set, tags, hctx_idx);
3278 	return -ENOMEM;
3279 }
3280 
3281 struct rq_iter_data {
3282 	struct blk_mq_hw_ctx *hctx;
3283 	bool has_rq;
3284 };
3285 
3286 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3287 {
3288 	struct rq_iter_data *iter_data = data;
3289 
3290 	if (rq->mq_hctx != iter_data->hctx)
3291 		return true;
3292 	iter_data->has_rq = true;
3293 	return false;
3294 }
3295 
3296 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3297 {
3298 	struct blk_mq_tags *tags = hctx->sched_tags ?
3299 			hctx->sched_tags : hctx->tags;
3300 	struct rq_iter_data data = {
3301 		.hctx	= hctx,
3302 	};
3303 
3304 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3305 	return data.has_rq;
3306 }
3307 
3308 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3309 		struct blk_mq_hw_ctx *hctx)
3310 {
3311 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3312 		return false;
3313 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3314 		return false;
3315 	return true;
3316 }
3317 
3318 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3319 {
3320 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3321 			struct blk_mq_hw_ctx, cpuhp_online);
3322 
3323 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3324 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3325 		return 0;
3326 
3327 	/*
3328 	 * Prevent new request from being allocated on the current hctx.
3329 	 *
3330 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3331 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3332 	 * seen once we return from the tag allocator.
3333 	 */
3334 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3335 	smp_mb__after_atomic();
3336 
3337 	/*
3338 	 * Try to grab a reference to the queue and wait for any outstanding
3339 	 * requests.  If we could not grab a reference the queue has been
3340 	 * frozen and there are no requests.
3341 	 */
3342 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3343 		while (blk_mq_hctx_has_requests(hctx))
3344 			msleep(5);
3345 		percpu_ref_put(&hctx->queue->q_usage_counter);
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3352 {
3353 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3354 			struct blk_mq_hw_ctx, cpuhp_online);
3355 
3356 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3357 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3358 	return 0;
3359 }
3360 
3361 /*
3362  * 'cpu' is going away. splice any existing rq_list entries from this
3363  * software queue to the hw queue dispatch list, and ensure that it
3364  * gets run.
3365  */
3366 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3367 {
3368 	struct blk_mq_hw_ctx *hctx;
3369 	struct blk_mq_ctx *ctx;
3370 	LIST_HEAD(tmp);
3371 	enum hctx_type type;
3372 
3373 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3374 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3375 		return 0;
3376 
3377 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3378 	type = hctx->type;
3379 
3380 	spin_lock(&ctx->lock);
3381 	if (!list_empty(&ctx->rq_lists[type])) {
3382 		list_splice_init(&ctx->rq_lists[type], &tmp);
3383 		blk_mq_hctx_clear_pending(hctx, ctx);
3384 	}
3385 	spin_unlock(&ctx->lock);
3386 
3387 	if (list_empty(&tmp))
3388 		return 0;
3389 
3390 	spin_lock(&hctx->lock);
3391 	list_splice_tail_init(&tmp, &hctx->dispatch);
3392 	spin_unlock(&hctx->lock);
3393 
3394 	blk_mq_run_hw_queue(hctx, true);
3395 	return 0;
3396 }
3397 
3398 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3399 {
3400 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3401 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3402 						    &hctx->cpuhp_online);
3403 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3404 					    &hctx->cpuhp_dead);
3405 }
3406 
3407 /*
3408  * Before freeing hw queue, clearing the flush request reference in
3409  * tags->rqs[] for avoiding potential UAF.
3410  */
3411 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3412 		unsigned int queue_depth, struct request *flush_rq)
3413 {
3414 	int i;
3415 	unsigned long flags;
3416 
3417 	/* The hw queue may not be mapped yet */
3418 	if (!tags)
3419 		return;
3420 
3421 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3422 
3423 	for (i = 0; i < queue_depth; i++)
3424 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3425 
3426 	/*
3427 	 * Wait until all pending iteration is done.
3428 	 *
3429 	 * Request reference is cleared and it is guaranteed to be observed
3430 	 * after the ->lock is released.
3431 	 */
3432 	spin_lock_irqsave(&tags->lock, flags);
3433 	spin_unlock_irqrestore(&tags->lock, flags);
3434 }
3435 
3436 /* hctx->ctxs will be freed in queue's release handler */
3437 static void blk_mq_exit_hctx(struct request_queue *q,
3438 		struct blk_mq_tag_set *set,
3439 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3440 {
3441 	struct request *flush_rq = hctx->fq->flush_rq;
3442 
3443 	if (blk_mq_hw_queue_mapped(hctx))
3444 		blk_mq_tag_idle(hctx);
3445 
3446 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3447 			set->queue_depth, flush_rq);
3448 	if (set->ops->exit_request)
3449 		set->ops->exit_request(set, flush_rq, hctx_idx);
3450 
3451 	if (set->ops->exit_hctx)
3452 		set->ops->exit_hctx(hctx, hctx_idx);
3453 
3454 	blk_mq_remove_cpuhp(hctx);
3455 
3456 	xa_erase(&q->hctx_table, hctx_idx);
3457 
3458 	spin_lock(&q->unused_hctx_lock);
3459 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3460 	spin_unlock(&q->unused_hctx_lock);
3461 }
3462 
3463 static void blk_mq_exit_hw_queues(struct request_queue *q,
3464 		struct blk_mq_tag_set *set, int nr_queue)
3465 {
3466 	struct blk_mq_hw_ctx *hctx;
3467 	unsigned long i;
3468 
3469 	queue_for_each_hw_ctx(q, hctx, i) {
3470 		if (i == nr_queue)
3471 			break;
3472 		blk_mq_exit_hctx(q, set, hctx, i);
3473 	}
3474 }
3475 
3476 static int blk_mq_init_hctx(struct request_queue *q,
3477 		struct blk_mq_tag_set *set,
3478 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3479 {
3480 	hctx->queue_num = hctx_idx;
3481 
3482 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3483 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3484 				&hctx->cpuhp_online);
3485 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3486 
3487 	hctx->tags = set->tags[hctx_idx];
3488 
3489 	if (set->ops->init_hctx &&
3490 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3491 		goto unregister_cpu_notifier;
3492 
3493 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3494 				hctx->numa_node))
3495 		goto exit_hctx;
3496 
3497 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3498 		goto exit_flush_rq;
3499 
3500 	return 0;
3501 
3502  exit_flush_rq:
3503 	if (set->ops->exit_request)
3504 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3505  exit_hctx:
3506 	if (set->ops->exit_hctx)
3507 		set->ops->exit_hctx(hctx, hctx_idx);
3508  unregister_cpu_notifier:
3509 	blk_mq_remove_cpuhp(hctx);
3510 	return -1;
3511 }
3512 
3513 static struct blk_mq_hw_ctx *
3514 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3515 		int node)
3516 {
3517 	struct blk_mq_hw_ctx *hctx;
3518 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3519 
3520 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3521 	if (!hctx)
3522 		goto fail_alloc_hctx;
3523 
3524 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3525 		goto free_hctx;
3526 
3527 	atomic_set(&hctx->nr_active, 0);
3528 	if (node == NUMA_NO_NODE)
3529 		node = set->numa_node;
3530 	hctx->numa_node = node;
3531 
3532 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3533 	spin_lock_init(&hctx->lock);
3534 	INIT_LIST_HEAD(&hctx->dispatch);
3535 	hctx->queue = q;
3536 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3537 
3538 	INIT_LIST_HEAD(&hctx->hctx_list);
3539 
3540 	/*
3541 	 * Allocate space for all possible cpus to avoid allocation at
3542 	 * runtime
3543 	 */
3544 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3545 			gfp, node);
3546 	if (!hctx->ctxs)
3547 		goto free_cpumask;
3548 
3549 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3550 				gfp, node, false, false))
3551 		goto free_ctxs;
3552 	hctx->nr_ctx = 0;
3553 
3554 	spin_lock_init(&hctx->dispatch_wait_lock);
3555 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3556 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3557 
3558 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3559 	if (!hctx->fq)
3560 		goto free_bitmap;
3561 
3562 	blk_mq_hctx_kobj_init(hctx);
3563 
3564 	return hctx;
3565 
3566  free_bitmap:
3567 	sbitmap_free(&hctx->ctx_map);
3568  free_ctxs:
3569 	kfree(hctx->ctxs);
3570  free_cpumask:
3571 	free_cpumask_var(hctx->cpumask);
3572  free_hctx:
3573 	kfree(hctx);
3574  fail_alloc_hctx:
3575 	return NULL;
3576 }
3577 
3578 static void blk_mq_init_cpu_queues(struct request_queue *q,
3579 				   unsigned int nr_hw_queues)
3580 {
3581 	struct blk_mq_tag_set *set = q->tag_set;
3582 	unsigned int i, j;
3583 
3584 	for_each_possible_cpu(i) {
3585 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3586 		struct blk_mq_hw_ctx *hctx;
3587 		int k;
3588 
3589 		__ctx->cpu = i;
3590 		spin_lock_init(&__ctx->lock);
3591 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3592 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3593 
3594 		__ctx->queue = q;
3595 
3596 		/*
3597 		 * Set local node, IFF we have more than one hw queue. If
3598 		 * not, we remain on the home node of the device
3599 		 */
3600 		for (j = 0; j < set->nr_maps; j++) {
3601 			hctx = blk_mq_map_queue_type(q, j, i);
3602 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3603 				hctx->numa_node = cpu_to_node(i);
3604 		}
3605 	}
3606 }
3607 
3608 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3609 					     unsigned int hctx_idx,
3610 					     unsigned int depth)
3611 {
3612 	struct blk_mq_tags *tags;
3613 	int ret;
3614 
3615 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3616 	if (!tags)
3617 		return NULL;
3618 
3619 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3620 	if (ret) {
3621 		blk_mq_free_rq_map(tags);
3622 		return NULL;
3623 	}
3624 
3625 	return tags;
3626 }
3627 
3628 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3629 				       int hctx_idx)
3630 {
3631 	if (blk_mq_is_shared_tags(set->flags)) {
3632 		set->tags[hctx_idx] = set->shared_tags;
3633 
3634 		return true;
3635 	}
3636 
3637 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3638 						       set->queue_depth);
3639 
3640 	return set->tags[hctx_idx];
3641 }
3642 
3643 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3644 			     struct blk_mq_tags *tags,
3645 			     unsigned int hctx_idx)
3646 {
3647 	if (tags) {
3648 		blk_mq_free_rqs(set, tags, hctx_idx);
3649 		blk_mq_free_rq_map(tags);
3650 	}
3651 }
3652 
3653 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3654 				      unsigned int hctx_idx)
3655 {
3656 	if (!blk_mq_is_shared_tags(set->flags))
3657 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3658 
3659 	set->tags[hctx_idx] = NULL;
3660 }
3661 
3662 static void blk_mq_map_swqueue(struct request_queue *q)
3663 {
3664 	unsigned int j, hctx_idx;
3665 	unsigned long i;
3666 	struct blk_mq_hw_ctx *hctx;
3667 	struct blk_mq_ctx *ctx;
3668 	struct blk_mq_tag_set *set = q->tag_set;
3669 
3670 	queue_for_each_hw_ctx(q, hctx, i) {
3671 		cpumask_clear(hctx->cpumask);
3672 		hctx->nr_ctx = 0;
3673 		hctx->dispatch_from = NULL;
3674 	}
3675 
3676 	/*
3677 	 * Map software to hardware queues.
3678 	 *
3679 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3680 	 */
3681 	for_each_possible_cpu(i) {
3682 
3683 		ctx = per_cpu_ptr(q->queue_ctx, i);
3684 		for (j = 0; j < set->nr_maps; j++) {
3685 			if (!set->map[j].nr_queues) {
3686 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3687 						HCTX_TYPE_DEFAULT, i);
3688 				continue;
3689 			}
3690 			hctx_idx = set->map[j].mq_map[i];
3691 			/* unmapped hw queue can be remapped after CPU topo changed */
3692 			if (!set->tags[hctx_idx] &&
3693 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3694 				/*
3695 				 * If tags initialization fail for some hctx,
3696 				 * that hctx won't be brought online.  In this
3697 				 * case, remap the current ctx to hctx[0] which
3698 				 * is guaranteed to always have tags allocated
3699 				 */
3700 				set->map[j].mq_map[i] = 0;
3701 			}
3702 
3703 			hctx = blk_mq_map_queue_type(q, j, i);
3704 			ctx->hctxs[j] = hctx;
3705 			/*
3706 			 * If the CPU is already set in the mask, then we've
3707 			 * mapped this one already. This can happen if
3708 			 * devices share queues across queue maps.
3709 			 */
3710 			if (cpumask_test_cpu(i, hctx->cpumask))
3711 				continue;
3712 
3713 			cpumask_set_cpu(i, hctx->cpumask);
3714 			hctx->type = j;
3715 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3716 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3717 
3718 			/*
3719 			 * If the nr_ctx type overflows, we have exceeded the
3720 			 * amount of sw queues we can support.
3721 			 */
3722 			BUG_ON(!hctx->nr_ctx);
3723 		}
3724 
3725 		for (; j < HCTX_MAX_TYPES; j++)
3726 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3727 					HCTX_TYPE_DEFAULT, i);
3728 	}
3729 
3730 	queue_for_each_hw_ctx(q, hctx, i) {
3731 		/*
3732 		 * If no software queues are mapped to this hardware queue,
3733 		 * disable it and free the request entries.
3734 		 */
3735 		if (!hctx->nr_ctx) {
3736 			/* Never unmap queue 0.  We need it as a
3737 			 * fallback in case of a new remap fails
3738 			 * allocation
3739 			 */
3740 			if (i)
3741 				__blk_mq_free_map_and_rqs(set, i);
3742 
3743 			hctx->tags = NULL;
3744 			continue;
3745 		}
3746 
3747 		hctx->tags = set->tags[i];
3748 		WARN_ON(!hctx->tags);
3749 
3750 		/*
3751 		 * Set the map size to the number of mapped software queues.
3752 		 * This is more accurate and more efficient than looping
3753 		 * over all possibly mapped software queues.
3754 		 */
3755 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3756 
3757 		/*
3758 		 * Initialize batch roundrobin counts
3759 		 */
3760 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3761 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3762 	}
3763 }
3764 
3765 /*
3766  * Caller needs to ensure that we're either frozen/quiesced, or that
3767  * the queue isn't live yet.
3768  */
3769 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3770 {
3771 	struct blk_mq_hw_ctx *hctx;
3772 	unsigned long i;
3773 
3774 	queue_for_each_hw_ctx(q, hctx, i) {
3775 		if (shared) {
3776 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3777 		} else {
3778 			blk_mq_tag_idle(hctx);
3779 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3780 		}
3781 	}
3782 }
3783 
3784 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3785 					 bool shared)
3786 {
3787 	struct request_queue *q;
3788 
3789 	lockdep_assert_held(&set->tag_list_lock);
3790 
3791 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3792 		blk_mq_freeze_queue(q);
3793 		queue_set_hctx_shared(q, shared);
3794 		blk_mq_unfreeze_queue(q);
3795 	}
3796 }
3797 
3798 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3799 {
3800 	struct blk_mq_tag_set *set = q->tag_set;
3801 
3802 	mutex_lock(&set->tag_list_lock);
3803 	list_del(&q->tag_set_list);
3804 	if (list_is_singular(&set->tag_list)) {
3805 		/* just transitioned to unshared */
3806 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3807 		/* update existing queue */
3808 		blk_mq_update_tag_set_shared(set, false);
3809 	}
3810 	mutex_unlock(&set->tag_list_lock);
3811 	INIT_LIST_HEAD(&q->tag_set_list);
3812 }
3813 
3814 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3815 				     struct request_queue *q)
3816 {
3817 	mutex_lock(&set->tag_list_lock);
3818 
3819 	/*
3820 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3821 	 */
3822 	if (!list_empty(&set->tag_list) &&
3823 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3824 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3825 		/* update existing queue */
3826 		blk_mq_update_tag_set_shared(set, true);
3827 	}
3828 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3829 		queue_set_hctx_shared(q, true);
3830 	list_add_tail(&q->tag_set_list, &set->tag_list);
3831 
3832 	mutex_unlock(&set->tag_list_lock);
3833 }
3834 
3835 /* All allocations will be freed in release handler of q->mq_kobj */
3836 static int blk_mq_alloc_ctxs(struct request_queue *q)
3837 {
3838 	struct blk_mq_ctxs *ctxs;
3839 	int cpu;
3840 
3841 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3842 	if (!ctxs)
3843 		return -ENOMEM;
3844 
3845 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3846 	if (!ctxs->queue_ctx)
3847 		goto fail;
3848 
3849 	for_each_possible_cpu(cpu) {
3850 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3851 		ctx->ctxs = ctxs;
3852 	}
3853 
3854 	q->mq_kobj = &ctxs->kobj;
3855 	q->queue_ctx = ctxs->queue_ctx;
3856 
3857 	return 0;
3858  fail:
3859 	kfree(ctxs);
3860 	return -ENOMEM;
3861 }
3862 
3863 /*
3864  * It is the actual release handler for mq, but we do it from
3865  * request queue's release handler for avoiding use-after-free
3866  * and headache because q->mq_kobj shouldn't have been introduced,
3867  * but we can't group ctx/kctx kobj without it.
3868  */
3869 void blk_mq_release(struct request_queue *q)
3870 {
3871 	struct blk_mq_hw_ctx *hctx, *next;
3872 	unsigned long i;
3873 
3874 	queue_for_each_hw_ctx(q, hctx, i)
3875 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3876 
3877 	/* all hctx are in .unused_hctx_list now */
3878 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3879 		list_del_init(&hctx->hctx_list);
3880 		kobject_put(&hctx->kobj);
3881 	}
3882 
3883 	xa_destroy(&q->hctx_table);
3884 
3885 	/*
3886 	 * release .mq_kobj and sw queue's kobject now because
3887 	 * both share lifetime with request queue.
3888 	 */
3889 	blk_mq_sysfs_deinit(q);
3890 }
3891 
3892 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3893 		void *queuedata)
3894 {
3895 	struct request_queue *q;
3896 	int ret;
3897 
3898 	q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3899 	if (!q)
3900 		return ERR_PTR(-ENOMEM);
3901 	q->queuedata = queuedata;
3902 	ret = blk_mq_init_allocated_queue(set, q);
3903 	if (ret) {
3904 		blk_cleanup_queue(q);
3905 		return ERR_PTR(ret);
3906 	}
3907 	return q;
3908 }
3909 
3910 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3911 {
3912 	return blk_mq_init_queue_data(set, NULL);
3913 }
3914 EXPORT_SYMBOL(blk_mq_init_queue);
3915 
3916 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3917 		struct lock_class_key *lkclass)
3918 {
3919 	struct request_queue *q;
3920 	struct gendisk *disk;
3921 
3922 	q = blk_mq_init_queue_data(set, queuedata);
3923 	if (IS_ERR(q))
3924 		return ERR_CAST(q);
3925 
3926 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3927 	if (!disk) {
3928 		blk_cleanup_queue(q);
3929 		return ERR_PTR(-ENOMEM);
3930 	}
3931 	return disk;
3932 }
3933 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3934 
3935 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3936 		struct blk_mq_tag_set *set, struct request_queue *q,
3937 		int hctx_idx, int node)
3938 {
3939 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3940 
3941 	/* reuse dead hctx first */
3942 	spin_lock(&q->unused_hctx_lock);
3943 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3944 		if (tmp->numa_node == node) {
3945 			hctx = tmp;
3946 			break;
3947 		}
3948 	}
3949 	if (hctx)
3950 		list_del_init(&hctx->hctx_list);
3951 	spin_unlock(&q->unused_hctx_lock);
3952 
3953 	if (!hctx)
3954 		hctx = blk_mq_alloc_hctx(q, set, node);
3955 	if (!hctx)
3956 		goto fail;
3957 
3958 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3959 		goto free_hctx;
3960 
3961 	return hctx;
3962 
3963  free_hctx:
3964 	kobject_put(&hctx->kobj);
3965  fail:
3966 	return NULL;
3967 }
3968 
3969 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3970 						struct request_queue *q)
3971 {
3972 	struct blk_mq_hw_ctx *hctx;
3973 	unsigned long i, j;
3974 
3975 	/* protect against switching io scheduler  */
3976 	mutex_lock(&q->sysfs_lock);
3977 	for (i = 0; i < set->nr_hw_queues; i++) {
3978 		int old_node;
3979 		int node = blk_mq_get_hctx_node(set, i);
3980 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3981 
3982 		if (old_hctx) {
3983 			old_node = old_hctx->numa_node;
3984 			blk_mq_exit_hctx(q, set, old_hctx, i);
3985 		}
3986 
3987 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3988 			if (!old_hctx)
3989 				break;
3990 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3991 					node, old_node);
3992 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3993 			WARN_ON_ONCE(!hctx);
3994 		}
3995 	}
3996 	/*
3997 	 * Increasing nr_hw_queues fails. Free the newly allocated
3998 	 * hctxs and keep the previous q->nr_hw_queues.
3999 	 */
4000 	if (i != set->nr_hw_queues) {
4001 		j = q->nr_hw_queues;
4002 	} else {
4003 		j = i;
4004 		q->nr_hw_queues = set->nr_hw_queues;
4005 	}
4006 
4007 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4008 		blk_mq_exit_hctx(q, set, hctx, j);
4009 	mutex_unlock(&q->sysfs_lock);
4010 }
4011 
4012 static void blk_mq_update_poll_flag(struct request_queue *q)
4013 {
4014 	struct blk_mq_tag_set *set = q->tag_set;
4015 
4016 	if (set->nr_maps > HCTX_TYPE_POLL &&
4017 	    set->map[HCTX_TYPE_POLL].nr_queues)
4018 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4019 	else
4020 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4021 }
4022 
4023 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4024 		struct request_queue *q)
4025 {
4026 	WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4027 			!!(set->flags & BLK_MQ_F_BLOCKING));
4028 
4029 	/* mark the queue as mq asap */
4030 	q->mq_ops = set->ops;
4031 
4032 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4033 					     blk_mq_poll_stats_bkt,
4034 					     BLK_MQ_POLL_STATS_BKTS, q);
4035 	if (!q->poll_cb)
4036 		goto err_exit;
4037 
4038 	if (blk_mq_alloc_ctxs(q))
4039 		goto err_poll;
4040 
4041 	/* init q->mq_kobj and sw queues' kobjects */
4042 	blk_mq_sysfs_init(q);
4043 
4044 	INIT_LIST_HEAD(&q->unused_hctx_list);
4045 	spin_lock_init(&q->unused_hctx_lock);
4046 
4047 	xa_init(&q->hctx_table);
4048 
4049 	blk_mq_realloc_hw_ctxs(set, q);
4050 	if (!q->nr_hw_queues)
4051 		goto err_hctxs;
4052 
4053 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4054 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4055 
4056 	q->tag_set = set;
4057 
4058 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4059 	blk_mq_update_poll_flag(q);
4060 
4061 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4062 	INIT_LIST_HEAD(&q->requeue_list);
4063 	spin_lock_init(&q->requeue_lock);
4064 
4065 	q->nr_requests = set->queue_depth;
4066 
4067 	/*
4068 	 * Default to classic polling
4069 	 */
4070 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4071 
4072 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4073 	blk_mq_add_queue_tag_set(set, q);
4074 	blk_mq_map_swqueue(q);
4075 	return 0;
4076 
4077 err_hctxs:
4078 	xa_destroy(&q->hctx_table);
4079 	q->nr_hw_queues = 0;
4080 	blk_mq_sysfs_deinit(q);
4081 err_poll:
4082 	blk_stat_free_callback(q->poll_cb);
4083 	q->poll_cb = NULL;
4084 err_exit:
4085 	q->mq_ops = NULL;
4086 	return -ENOMEM;
4087 }
4088 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4089 
4090 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4091 void blk_mq_exit_queue(struct request_queue *q)
4092 {
4093 	struct blk_mq_tag_set *set = q->tag_set;
4094 
4095 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4096 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4097 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4098 	blk_mq_del_queue_tag_set(q);
4099 }
4100 
4101 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4102 {
4103 	int i;
4104 
4105 	if (blk_mq_is_shared_tags(set->flags)) {
4106 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4107 						BLK_MQ_NO_HCTX_IDX,
4108 						set->queue_depth);
4109 		if (!set->shared_tags)
4110 			return -ENOMEM;
4111 	}
4112 
4113 	for (i = 0; i < set->nr_hw_queues; i++) {
4114 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4115 			goto out_unwind;
4116 		cond_resched();
4117 	}
4118 
4119 	return 0;
4120 
4121 out_unwind:
4122 	while (--i >= 0)
4123 		__blk_mq_free_map_and_rqs(set, i);
4124 
4125 	if (blk_mq_is_shared_tags(set->flags)) {
4126 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4127 					BLK_MQ_NO_HCTX_IDX);
4128 	}
4129 
4130 	return -ENOMEM;
4131 }
4132 
4133 /*
4134  * Allocate the request maps associated with this tag_set. Note that this
4135  * may reduce the depth asked for, if memory is tight. set->queue_depth
4136  * will be updated to reflect the allocated depth.
4137  */
4138 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4139 {
4140 	unsigned int depth;
4141 	int err;
4142 
4143 	depth = set->queue_depth;
4144 	do {
4145 		err = __blk_mq_alloc_rq_maps(set);
4146 		if (!err)
4147 			break;
4148 
4149 		set->queue_depth >>= 1;
4150 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4151 			err = -ENOMEM;
4152 			break;
4153 		}
4154 	} while (set->queue_depth);
4155 
4156 	if (!set->queue_depth || err) {
4157 		pr_err("blk-mq: failed to allocate request map\n");
4158 		return -ENOMEM;
4159 	}
4160 
4161 	if (depth != set->queue_depth)
4162 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4163 						depth, set->queue_depth);
4164 
4165 	return 0;
4166 }
4167 
4168 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4169 {
4170 	/*
4171 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4172 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4173 	 * number of hardware queues.
4174 	 */
4175 	if (set->nr_maps == 1)
4176 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4177 
4178 	if (set->ops->map_queues && !is_kdump_kernel()) {
4179 		int i;
4180 
4181 		/*
4182 		 * transport .map_queues is usually done in the following
4183 		 * way:
4184 		 *
4185 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4186 		 * 	mask = get_cpu_mask(queue)
4187 		 * 	for_each_cpu(cpu, mask)
4188 		 * 		set->map[x].mq_map[cpu] = queue;
4189 		 * }
4190 		 *
4191 		 * When we need to remap, the table has to be cleared for
4192 		 * killing stale mapping since one CPU may not be mapped
4193 		 * to any hw queue.
4194 		 */
4195 		for (i = 0; i < set->nr_maps; i++)
4196 			blk_mq_clear_mq_map(&set->map[i]);
4197 
4198 		return set->ops->map_queues(set);
4199 	} else {
4200 		BUG_ON(set->nr_maps > 1);
4201 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4202 	}
4203 }
4204 
4205 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4206 				  int cur_nr_hw_queues, int new_nr_hw_queues)
4207 {
4208 	struct blk_mq_tags **new_tags;
4209 
4210 	if (cur_nr_hw_queues >= new_nr_hw_queues)
4211 		return 0;
4212 
4213 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4214 				GFP_KERNEL, set->numa_node);
4215 	if (!new_tags)
4216 		return -ENOMEM;
4217 
4218 	if (set->tags)
4219 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
4220 		       sizeof(*set->tags));
4221 	kfree(set->tags);
4222 	set->tags = new_tags;
4223 	set->nr_hw_queues = new_nr_hw_queues;
4224 
4225 	return 0;
4226 }
4227 
4228 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4229 				int new_nr_hw_queues)
4230 {
4231 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4232 }
4233 
4234 /*
4235  * Alloc a tag set to be associated with one or more request queues.
4236  * May fail with EINVAL for various error conditions. May adjust the
4237  * requested depth down, if it's too large. In that case, the set
4238  * value will be stored in set->queue_depth.
4239  */
4240 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4241 {
4242 	int i, ret;
4243 
4244 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4245 
4246 	if (!set->nr_hw_queues)
4247 		return -EINVAL;
4248 	if (!set->queue_depth)
4249 		return -EINVAL;
4250 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4251 		return -EINVAL;
4252 
4253 	if (!set->ops->queue_rq)
4254 		return -EINVAL;
4255 
4256 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4257 		return -EINVAL;
4258 
4259 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4260 		pr_info("blk-mq: reduced tag depth to %u\n",
4261 			BLK_MQ_MAX_DEPTH);
4262 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4263 	}
4264 
4265 	if (!set->nr_maps)
4266 		set->nr_maps = 1;
4267 	else if (set->nr_maps > HCTX_MAX_TYPES)
4268 		return -EINVAL;
4269 
4270 	/*
4271 	 * If a crashdump is active, then we are potentially in a very
4272 	 * memory constrained environment. Limit us to 1 queue and
4273 	 * 64 tags to prevent using too much memory.
4274 	 */
4275 	if (is_kdump_kernel()) {
4276 		set->nr_hw_queues = 1;
4277 		set->nr_maps = 1;
4278 		set->queue_depth = min(64U, set->queue_depth);
4279 	}
4280 	/*
4281 	 * There is no use for more h/w queues than cpus if we just have
4282 	 * a single map
4283 	 */
4284 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4285 		set->nr_hw_queues = nr_cpu_ids;
4286 
4287 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4288 		return -ENOMEM;
4289 
4290 	ret = -ENOMEM;
4291 	for (i = 0; i < set->nr_maps; i++) {
4292 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4293 						  sizeof(set->map[i].mq_map[0]),
4294 						  GFP_KERNEL, set->numa_node);
4295 		if (!set->map[i].mq_map)
4296 			goto out_free_mq_map;
4297 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4298 	}
4299 
4300 	ret = blk_mq_update_queue_map(set);
4301 	if (ret)
4302 		goto out_free_mq_map;
4303 
4304 	ret = blk_mq_alloc_set_map_and_rqs(set);
4305 	if (ret)
4306 		goto out_free_mq_map;
4307 
4308 	mutex_init(&set->tag_list_lock);
4309 	INIT_LIST_HEAD(&set->tag_list);
4310 
4311 	return 0;
4312 
4313 out_free_mq_map:
4314 	for (i = 0; i < set->nr_maps; i++) {
4315 		kfree(set->map[i].mq_map);
4316 		set->map[i].mq_map = NULL;
4317 	}
4318 	kfree(set->tags);
4319 	set->tags = NULL;
4320 	return ret;
4321 }
4322 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4323 
4324 /* allocate and initialize a tagset for a simple single-queue device */
4325 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4326 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4327 		unsigned int set_flags)
4328 {
4329 	memset(set, 0, sizeof(*set));
4330 	set->ops = ops;
4331 	set->nr_hw_queues = 1;
4332 	set->nr_maps = 1;
4333 	set->queue_depth = queue_depth;
4334 	set->numa_node = NUMA_NO_NODE;
4335 	set->flags = set_flags;
4336 	return blk_mq_alloc_tag_set(set);
4337 }
4338 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4339 
4340 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4341 {
4342 	int i, j;
4343 
4344 	for (i = 0; i < set->nr_hw_queues; i++)
4345 		__blk_mq_free_map_and_rqs(set, i);
4346 
4347 	if (blk_mq_is_shared_tags(set->flags)) {
4348 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4349 					BLK_MQ_NO_HCTX_IDX);
4350 	}
4351 
4352 	for (j = 0; j < set->nr_maps; j++) {
4353 		kfree(set->map[j].mq_map);
4354 		set->map[j].mq_map = NULL;
4355 	}
4356 
4357 	kfree(set->tags);
4358 	set->tags = NULL;
4359 }
4360 EXPORT_SYMBOL(blk_mq_free_tag_set);
4361 
4362 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4363 {
4364 	struct blk_mq_tag_set *set = q->tag_set;
4365 	struct blk_mq_hw_ctx *hctx;
4366 	int ret;
4367 	unsigned long i;
4368 
4369 	if (!set)
4370 		return -EINVAL;
4371 
4372 	if (q->nr_requests == nr)
4373 		return 0;
4374 
4375 	blk_mq_freeze_queue(q);
4376 	blk_mq_quiesce_queue(q);
4377 
4378 	ret = 0;
4379 	queue_for_each_hw_ctx(q, hctx, i) {
4380 		if (!hctx->tags)
4381 			continue;
4382 		/*
4383 		 * If we're using an MQ scheduler, just update the scheduler
4384 		 * queue depth. This is similar to what the old code would do.
4385 		 */
4386 		if (hctx->sched_tags) {
4387 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4388 						      nr, true);
4389 		} else {
4390 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4391 						      false);
4392 		}
4393 		if (ret)
4394 			break;
4395 		if (q->elevator && q->elevator->type->ops.depth_updated)
4396 			q->elevator->type->ops.depth_updated(hctx);
4397 	}
4398 	if (!ret) {
4399 		q->nr_requests = nr;
4400 		if (blk_mq_is_shared_tags(set->flags)) {
4401 			if (q->elevator)
4402 				blk_mq_tag_update_sched_shared_tags(q);
4403 			else
4404 				blk_mq_tag_resize_shared_tags(set, nr);
4405 		}
4406 	}
4407 
4408 	blk_mq_unquiesce_queue(q);
4409 	blk_mq_unfreeze_queue(q);
4410 
4411 	return ret;
4412 }
4413 
4414 /*
4415  * request_queue and elevator_type pair.
4416  * It is just used by __blk_mq_update_nr_hw_queues to cache
4417  * the elevator_type associated with a request_queue.
4418  */
4419 struct blk_mq_qe_pair {
4420 	struct list_head node;
4421 	struct request_queue *q;
4422 	struct elevator_type *type;
4423 };
4424 
4425 /*
4426  * Cache the elevator_type in qe pair list and switch the
4427  * io scheduler to 'none'
4428  */
4429 static bool blk_mq_elv_switch_none(struct list_head *head,
4430 		struct request_queue *q)
4431 {
4432 	struct blk_mq_qe_pair *qe;
4433 
4434 	if (!q->elevator)
4435 		return true;
4436 
4437 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4438 	if (!qe)
4439 		return false;
4440 
4441 	INIT_LIST_HEAD(&qe->node);
4442 	qe->q = q;
4443 	qe->type = q->elevator->type;
4444 	list_add(&qe->node, head);
4445 
4446 	mutex_lock(&q->sysfs_lock);
4447 	/*
4448 	 * After elevator_switch_mq, the previous elevator_queue will be
4449 	 * released by elevator_release. The reference of the io scheduler
4450 	 * module get by elevator_get will also be put. So we need to get
4451 	 * a reference of the io scheduler module here to prevent it to be
4452 	 * removed.
4453 	 */
4454 	__module_get(qe->type->elevator_owner);
4455 	elevator_switch_mq(q, NULL);
4456 	mutex_unlock(&q->sysfs_lock);
4457 
4458 	return true;
4459 }
4460 
4461 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4462 						struct request_queue *q)
4463 {
4464 	struct blk_mq_qe_pair *qe;
4465 
4466 	list_for_each_entry(qe, head, node)
4467 		if (qe->q == q)
4468 			return qe;
4469 
4470 	return NULL;
4471 }
4472 
4473 static void blk_mq_elv_switch_back(struct list_head *head,
4474 				  struct request_queue *q)
4475 {
4476 	struct blk_mq_qe_pair *qe;
4477 	struct elevator_type *t;
4478 
4479 	qe = blk_lookup_qe_pair(head, q);
4480 	if (!qe)
4481 		return;
4482 	t = qe->type;
4483 	list_del(&qe->node);
4484 	kfree(qe);
4485 
4486 	mutex_lock(&q->sysfs_lock);
4487 	elevator_switch_mq(q, t);
4488 	mutex_unlock(&q->sysfs_lock);
4489 }
4490 
4491 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4492 							int nr_hw_queues)
4493 {
4494 	struct request_queue *q;
4495 	LIST_HEAD(head);
4496 	int prev_nr_hw_queues;
4497 
4498 	lockdep_assert_held(&set->tag_list_lock);
4499 
4500 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4501 		nr_hw_queues = nr_cpu_ids;
4502 	if (nr_hw_queues < 1)
4503 		return;
4504 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4505 		return;
4506 
4507 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4508 		blk_mq_freeze_queue(q);
4509 	/*
4510 	 * Switch IO scheduler to 'none', cleaning up the data associated
4511 	 * with the previous scheduler. We will switch back once we are done
4512 	 * updating the new sw to hw queue mappings.
4513 	 */
4514 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4515 		if (!blk_mq_elv_switch_none(&head, q))
4516 			goto switch_back;
4517 
4518 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4519 		blk_mq_debugfs_unregister_hctxs(q);
4520 		blk_mq_sysfs_unregister(q);
4521 	}
4522 
4523 	prev_nr_hw_queues = set->nr_hw_queues;
4524 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4525 	    0)
4526 		goto reregister;
4527 
4528 	set->nr_hw_queues = nr_hw_queues;
4529 fallback:
4530 	blk_mq_update_queue_map(set);
4531 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4532 		blk_mq_realloc_hw_ctxs(set, q);
4533 		blk_mq_update_poll_flag(q);
4534 		if (q->nr_hw_queues != set->nr_hw_queues) {
4535 			int i = prev_nr_hw_queues;
4536 
4537 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4538 					nr_hw_queues, prev_nr_hw_queues);
4539 			for (; i < set->nr_hw_queues; i++)
4540 				__blk_mq_free_map_and_rqs(set, i);
4541 
4542 			set->nr_hw_queues = prev_nr_hw_queues;
4543 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4544 			goto fallback;
4545 		}
4546 		blk_mq_map_swqueue(q);
4547 	}
4548 
4549 reregister:
4550 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4551 		blk_mq_sysfs_register(q);
4552 		blk_mq_debugfs_register_hctxs(q);
4553 	}
4554 
4555 switch_back:
4556 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4557 		blk_mq_elv_switch_back(&head, q);
4558 
4559 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4560 		blk_mq_unfreeze_queue(q);
4561 }
4562 
4563 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4564 {
4565 	mutex_lock(&set->tag_list_lock);
4566 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4567 	mutex_unlock(&set->tag_list_lock);
4568 }
4569 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4570 
4571 /* Enable polling stats and return whether they were already enabled. */
4572 static bool blk_poll_stats_enable(struct request_queue *q)
4573 {
4574 	if (q->poll_stat)
4575 		return true;
4576 
4577 	return blk_stats_alloc_enable(q);
4578 }
4579 
4580 static void blk_mq_poll_stats_start(struct request_queue *q)
4581 {
4582 	/*
4583 	 * We don't arm the callback if polling stats are not enabled or the
4584 	 * callback is already active.
4585 	 */
4586 	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4587 		return;
4588 
4589 	blk_stat_activate_msecs(q->poll_cb, 100);
4590 }
4591 
4592 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4593 {
4594 	struct request_queue *q = cb->data;
4595 	int bucket;
4596 
4597 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4598 		if (cb->stat[bucket].nr_samples)
4599 			q->poll_stat[bucket] = cb->stat[bucket];
4600 	}
4601 }
4602 
4603 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4604 				       struct request *rq)
4605 {
4606 	unsigned long ret = 0;
4607 	int bucket;
4608 
4609 	/*
4610 	 * If stats collection isn't on, don't sleep but turn it on for
4611 	 * future users
4612 	 */
4613 	if (!blk_poll_stats_enable(q))
4614 		return 0;
4615 
4616 	/*
4617 	 * As an optimistic guess, use half of the mean service time
4618 	 * for this type of request. We can (and should) make this smarter.
4619 	 * For instance, if the completion latencies are tight, we can
4620 	 * get closer than just half the mean. This is especially
4621 	 * important on devices where the completion latencies are longer
4622 	 * than ~10 usec. We do use the stats for the relevant IO size
4623 	 * if available which does lead to better estimates.
4624 	 */
4625 	bucket = blk_mq_poll_stats_bkt(rq);
4626 	if (bucket < 0)
4627 		return ret;
4628 
4629 	if (q->poll_stat[bucket].nr_samples)
4630 		ret = (q->poll_stat[bucket].mean + 1) / 2;
4631 
4632 	return ret;
4633 }
4634 
4635 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4636 {
4637 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4638 	struct request *rq = blk_qc_to_rq(hctx, qc);
4639 	struct hrtimer_sleeper hs;
4640 	enum hrtimer_mode mode;
4641 	unsigned int nsecs;
4642 	ktime_t kt;
4643 
4644 	/*
4645 	 * If a request has completed on queue that uses an I/O scheduler, we
4646 	 * won't get back a request from blk_qc_to_rq.
4647 	 */
4648 	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4649 		return false;
4650 
4651 	/*
4652 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4653 	 *
4654 	 *  0:	use half of prev avg
4655 	 * >0:	use this specific value
4656 	 */
4657 	if (q->poll_nsec > 0)
4658 		nsecs = q->poll_nsec;
4659 	else
4660 		nsecs = blk_mq_poll_nsecs(q, rq);
4661 
4662 	if (!nsecs)
4663 		return false;
4664 
4665 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4666 
4667 	/*
4668 	 * This will be replaced with the stats tracking code, using
4669 	 * 'avg_completion_time / 2' as the pre-sleep target.
4670 	 */
4671 	kt = nsecs;
4672 
4673 	mode = HRTIMER_MODE_REL;
4674 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4675 	hrtimer_set_expires(&hs.timer, kt);
4676 
4677 	do {
4678 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4679 			break;
4680 		set_current_state(TASK_UNINTERRUPTIBLE);
4681 		hrtimer_sleeper_start_expires(&hs, mode);
4682 		if (hs.task)
4683 			io_schedule();
4684 		hrtimer_cancel(&hs.timer);
4685 		mode = HRTIMER_MODE_ABS;
4686 	} while (hs.task && !signal_pending(current));
4687 
4688 	__set_current_state(TASK_RUNNING);
4689 	destroy_hrtimer_on_stack(&hs.timer);
4690 
4691 	/*
4692 	 * If we sleep, have the caller restart the poll loop to reset the
4693 	 * state.  Like for the other success return cases, the caller is
4694 	 * responsible for checking if the IO completed.  If the IO isn't
4695 	 * complete, we'll get called again and will go straight to the busy
4696 	 * poll loop.
4697 	 */
4698 	return true;
4699 }
4700 
4701 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4702 			       struct io_comp_batch *iob, unsigned int flags)
4703 {
4704 	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4705 	long state = get_current_state();
4706 	int ret;
4707 
4708 	do {
4709 		ret = q->mq_ops->poll(hctx, iob);
4710 		if (ret > 0) {
4711 			__set_current_state(TASK_RUNNING);
4712 			return ret;
4713 		}
4714 
4715 		if (signal_pending_state(state, current))
4716 			__set_current_state(TASK_RUNNING);
4717 		if (task_is_running(current))
4718 			return 1;
4719 
4720 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4721 			break;
4722 		cpu_relax();
4723 	} while (!need_resched());
4724 
4725 	__set_current_state(TASK_RUNNING);
4726 	return 0;
4727 }
4728 
4729 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4730 		unsigned int flags)
4731 {
4732 	if (!(flags & BLK_POLL_NOSLEEP) &&
4733 	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4734 		if (blk_mq_poll_hybrid(q, cookie))
4735 			return 1;
4736 	}
4737 	return blk_mq_poll_classic(q, cookie, iob, flags);
4738 }
4739 
4740 unsigned int blk_mq_rq_cpu(struct request *rq)
4741 {
4742 	return rq->mq_ctx->cpu;
4743 }
4744 EXPORT_SYMBOL(blk_mq_rq_cpu);
4745 
4746 void blk_mq_cancel_work_sync(struct request_queue *q)
4747 {
4748 	if (queue_is_mq(q)) {
4749 		struct blk_mq_hw_ctx *hctx;
4750 		unsigned long i;
4751 
4752 		cancel_delayed_work_sync(&q->requeue_work);
4753 
4754 		queue_for_each_hw_ctx(q, hctx, i)
4755 			cancel_delayed_work_sync(&hctx->run_work);
4756 	}
4757 }
4758 
4759 static int __init blk_mq_init(void)
4760 {
4761 	int i;
4762 
4763 	for_each_possible_cpu(i)
4764 		init_llist_head(&per_cpu(blk_cpu_done, i));
4765 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4766 
4767 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4768 				  "block/softirq:dead", NULL,
4769 				  blk_softirq_cpu_dead);
4770 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4771 				blk_mq_hctx_notify_dead);
4772 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4773 				blk_mq_hctx_notify_online,
4774 				blk_mq_hctx_notify_offline);
4775 	return 0;
4776 }
4777 subsys_initcall(blk_mq_init);
4778