xref: /linux/block/blk-mq.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 
32 #include <trace/events/block.h>
33 
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-pm.h"
39 #include "blk-stat.h"
40 #include "blk-mq-sched.h"
41 #include "blk-rq-qos.h"
42 
43 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
44 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
45 
46 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
47 static void blk_mq_request_bypass_insert(struct request *rq,
48 		blk_insert_t flags);
49 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
50 		struct list_head *list);
51 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
52 			 struct io_comp_batch *iob, unsigned int flags);
53 
54 /*
55  * Check if any of the ctx, dispatch list or elevator
56  * have pending work in this hardware queue.
57  */
58 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 {
60 	return !list_empty_careful(&hctx->dispatch) ||
61 		sbitmap_any_bit_set(&hctx->ctx_map) ||
62 			blk_mq_sched_has_work(hctx);
63 }
64 
65 /*
66  * Mark this ctx as having pending work in this hardware queue
67  */
68 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
69 				     struct blk_mq_ctx *ctx)
70 {
71 	const int bit = ctx->index_hw[hctx->type];
72 
73 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
74 		sbitmap_set_bit(&hctx->ctx_map, bit);
75 }
76 
77 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
78 				      struct blk_mq_ctx *ctx)
79 {
80 	const int bit = ctx->index_hw[hctx->type];
81 
82 	sbitmap_clear_bit(&hctx->ctx_map, bit);
83 }
84 
85 struct mq_inflight {
86 	struct block_device *part;
87 	unsigned int inflight[2];
88 };
89 
90 static bool blk_mq_check_inflight(struct request *rq, void *priv)
91 {
92 	struct mq_inflight *mi = priv;
93 
94 	if (rq->part && blk_do_io_stat(rq) &&
95 	    (!mi->part->bd_partno || rq->part == mi->part) &&
96 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
97 		mi->inflight[rq_data_dir(rq)]++;
98 
99 	return true;
100 }
101 
102 unsigned int blk_mq_in_flight(struct request_queue *q,
103 		struct block_device *part)
104 {
105 	struct mq_inflight mi = { .part = part };
106 
107 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
108 
109 	return mi.inflight[0] + mi.inflight[1];
110 }
111 
112 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
113 		unsigned int inflight[2])
114 {
115 	struct mq_inflight mi = { .part = part };
116 
117 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 	inflight[0] = mi.inflight[0];
119 	inflight[1] = mi.inflight[1];
120 }
121 
122 void blk_freeze_queue_start(struct request_queue *q)
123 {
124 	mutex_lock(&q->mq_freeze_lock);
125 	if (++q->mq_freeze_depth == 1) {
126 		percpu_ref_kill(&q->q_usage_counter);
127 		mutex_unlock(&q->mq_freeze_lock);
128 		if (queue_is_mq(q))
129 			blk_mq_run_hw_queues(q, false);
130 	} else {
131 		mutex_unlock(&q->mq_freeze_lock);
132 	}
133 }
134 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
135 
136 void blk_mq_freeze_queue_wait(struct request_queue *q)
137 {
138 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
141 
142 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
143 				     unsigned long timeout)
144 {
145 	return wait_event_timeout(q->mq_freeze_wq,
146 					percpu_ref_is_zero(&q->q_usage_counter),
147 					timeout);
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
150 
151 /*
152  * Guarantee no request is in use, so we can change any data structure of
153  * the queue afterward.
154  */
155 void blk_freeze_queue(struct request_queue *q)
156 {
157 	/*
158 	 * In the !blk_mq case we are only calling this to kill the
159 	 * q_usage_counter, otherwise this increases the freeze depth
160 	 * and waits for it to return to zero.  For this reason there is
161 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
162 	 * exported to drivers as the only user for unfreeze is blk_mq.
163 	 */
164 	blk_freeze_queue_start(q);
165 	blk_mq_freeze_queue_wait(q);
166 }
167 
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * ...just an alias to keep freeze and unfreeze actions balanced
172 	 * in the blk_mq_* namespace
173 	 */
174 	blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177 
178 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
179 {
180 	mutex_lock(&q->mq_freeze_lock);
181 	if (force_atomic)
182 		q->q_usage_counter.data->force_atomic = true;
183 	q->mq_freeze_depth--;
184 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
185 	if (!q->mq_freeze_depth) {
186 		percpu_ref_resurrect(&q->q_usage_counter);
187 		wake_up_all(&q->mq_freeze_wq);
188 	}
189 	mutex_unlock(&q->mq_freeze_lock);
190 }
191 
192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194 	__blk_mq_unfreeze_queue(q, false);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
197 
198 /*
199  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
200  * mpt3sas driver such that this function can be removed.
201  */
202 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
203 {
204 	unsigned long flags;
205 
206 	spin_lock_irqsave(&q->queue_lock, flags);
207 	if (!q->quiesce_depth++)
208 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209 	spin_unlock_irqrestore(&q->queue_lock, flags);
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
212 
213 /**
214  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
215  * @set: tag_set to wait on
216  *
217  * Note: it is driver's responsibility for making sure that quiesce has
218  * been started on or more of the request_queues of the tag_set.  This
219  * function only waits for the quiesce on those request_queues that had
220  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
221  */
222 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
223 {
224 	if (set->flags & BLK_MQ_F_BLOCKING)
225 		synchronize_srcu(set->srcu);
226 	else
227 		synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
230 
231 /**
232  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
233  * @q: request queue.
234  *
235  * Note: this function does not prevent that the struct request end_io()
236  * callback function is invoked. Once this function is returned, we make
237  * sure no dispatch can happen until the queue is unquiesced via
238  * blk_mq_unquiesce_queue().
239  */
240 void blk_mq_quiesce_queue(struct request_queue *q)
241 {
242 	blk_mq_quiesce_queue_nowait(q);
243 	/* nothing to wait for non-mq queues */
244 	if (queue_is_mq(q))
245 		blk_mq_wait_quiesce_done(q->tag_set);
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	unsigned long flags;
259 	bool run_queue = false;
260 
261 	spin_lock_irqsave(&q->queue_lock, flags);
262 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
263 		;
264 	} else if (!--q->quiesce_depth) {
265 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 		run_queue = true;
267 	}
268 	spin_unlock_irqrestore(&q->queue_lock, flags);
269 
270 	/* dispatch requests which are inserted during quiescing */
271 	if (run_queue)
272 		blk_mq_run_hw_queues(q, true);
273 }
274 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
275 
276 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
277 {
278 	struct request_queue *q;
279 
280 	mutex_lock(&set->tag_list_lock);
281 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
282 		if (!blk_queue_skip_tagset_quiesce(q))
283 			blk_mq_quiesce_queue_nowait(q);
284 	}
285 	blk_mq_wait_quiesce_done(set);
286 	mutex_unlock(&set->tag_list_lock);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
289 
290 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
291 {
292 	struct request_queue *q;
293 
294 	mutex_lock(&set->tag_list_lock);
295 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
296 		if (!blk_queue_skip_tagset_quiesce(q))
297 			blk_mq_unquiesce_queue(q);
298 	}
299 	mutex_unlock(&set->tag_list_lock);
300 }
301 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
302 
303 void blk_mq_wake_waiters(struct request_queue *q)
304 {
305 	struct blk_mq_hw_ctx *hctx;
306 	unsigned long i;
307 
308 	queue_for_each_hw_ctx(q, hctx, i)
309 		if (blk_mq_hw_queue_mapped(hctx))
310 			blk_mq_tag_wakeup_all(hctx->tags, true);
311 }
312 
313 void blk_rq_init(struct request_queue *q, struct request *rq)
314 {
315 	memset(rq, 0, sizeof(*rq));
316 
317 	INIT_LIST_HEAD(&rq->queuelist);
318 	rq->q = q;
319 	rq->__sector = (sector_t) -1;
320 	INIT_HLIST_NODE(&rq->hash);
321 	RB_CLEAR_NODE(&rq->rb_node);
322 	rq->tag = BLK_MQ_NO_TAG;
323 	rq->internal_tag = BLK_MQ_NO_TAG;
324 	rq->start_time_ns = blk_time_get_ns();
325 	rq->part = NULL;
326 	blk_crypto_rq_set_defaults(rq);
327 }
328 EXPORT_SYMBOL(blk_rq_init);
329 
330 /* Set start and alloc time when the allocated request is actually used */
331 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
332 {
333 	if (blk_mq_need_time_stamp(rq))
334 		rq->start_time_ns = blk_time_get_ns();
335 	else
336 		rq->start_time_ns = 0;
337 
338 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
339 	if (blk_queue_rq_alloc_time(rq->q))
340 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
341 	else
342 		rq->alloc_time_ns = 0;
343 #endif
344 }
345 
346 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
347 		struct blk_mq_tags *tags, unsigned int tag)
348 {
349 	struct blk_mq_ctx *ctx = data->ctx;
350 	struct blk_mq_hw_ctx *hctx = data->hctx;
351 	struct request_queue *q = data->q;
352 	struct request *rq = tags->static_rqs[tag];
353 
354 	rq->q = q;
355 	rq->mq_ctx = ctx;
356 	rq->mq_hctx = hctx;
357 	rq->cmd_flags = data->cmd_flags;
358 
359 	if (data->flags & BLK_MQ_REQ_PM)
360 		data->rq_flags |= RQF_PM;
361 	if (blk_queue_io_stat(q))
362 		data->rq_flags |= RQF_IO_STAT;
363 	rq->rq_flags = data->rq_flags;
364 
365 	if (data->rq_flags & RQF_SCHED_TAGS) {
366 		rq->tag = BLK_MQ_NO_TAG;
367 		rq->internal_tag = tag;
368 	} else {
369 		rq->tag = tag;
370 		rq->internal_tag = BLK_MQ_NO_TAG;
371 	}
372 	rq->timeout = 0;
373 
374 	rq->part = NULL;
375 	rq->io_start_time_ns = 0;
376 	rq->stats_sectors = 0;
377 	rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379 	rq->nr_integrity_segments = 0;
380 #endif
381 	rq->end_io = NULL;
382 	rq->end_io_data = NULL;
383 
384 	blk_crypto_rq_set_defaults(rq);
385 	INIT_LIST_HEAD(&rq->queuelist);
386 	/* tag was already set */
387 	WRITE_ONCE(rq->deadline, 0);
388 	req_ref_set(rq, 1);
389 
390 	if (rq->rq_flags & RQF_USE_SCHED) {
391 		struct elevator_queue *e = data->q->elevator;
392 
393 		INIT_HLIST_NODE(&rq->hash);
394 		RB_CLEAR_NODE(&rq->rb_node);
395 
396 		if (e->type->ops.prepare_request)
397 			e->type->ops.prepare_request(rq);
398 	}
399 
400 	return rq;
401 }
402 
403 static inline struct request *
404 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 {
406 	unsigned int tag, tag_offset;
407 	struct blk_mq_tags *tags;
408 	struct request *rq;
409 	unsigned long tag_mask;
410 	int i, nr = 0;
411 
412 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
413 	if (unlikely(!tag_mask))
414 		return NULL;
415 
416 	tags = blk_mq_tags_from_data(data);
417 	for (i = 0; tag_mask; i++) {
418 		if (!(tag_mask & (1UL << i)))
419 			continue;
420 		tag = tag_offset + i;
421 		prefetch(tags->static_rqs[tag]);
422 		tag_mask &= ~(1UL << i);
423 		rq = blk_mq_rq_ctx_init(data, tags, tag);
424 		rq_list_add(data->cached_rq, rq);
425 		nr++;
426 	}
427 	if (!(data->rq_flags & RQF_SCHED_TAGS))
428 		blk_mq_add_active_requests(data->hctx, nr);
429 	/* caller already holds a reference, add for remainder */
430 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 	data->nr_tags -= nr;
432 
433 	return rq_list_pop(data->cached_rq);
434 }
435 
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 	struct request_queue *q = data->q;
439 	u64 alloc_time_ns = 0;
440 	struct request *rq;
441 	unsigned int tag;
442 
443 	/* alloc_time includes depth and tag waits */
444 	if (blk_queue_rq_alloc_time(q))
445 		alloc_time_ns = blk_time_get_ns();
446 
447 	if (data->cmd_flags & REQ_NOWAIT)
448 		data->flags |= BLK_MQ_REQ_NOWAIT;
449 
450 	if (q->elevator) {
451 		/*
452 		 * All requests use scheduler tags when an I/O scheduler is
453 		 * enabled for the queue.
454 		 */
455 		data->rq_flags |= RQF_SCHED_TAGS;
456 
457 		/*
458 		 * Flush/passthrough requests are special and go directly to the
459 		 * dispatch list.
460 		 */
461 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 		    !blk_op_is_passthrough(data->cmd_flags)) {
463 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
464 
465 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466 
467 			data->rq_flags |= RQF_USE_SCHED;
468 			if (ops->limit_depth)
469 				ops->limit_depth(data->cmd_flags, data);
470 		}
471 	}
472 
473 retry:
474 	data->ctx = blk_mq_get_ctx(q);
475 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 	if (!(data->rq_flags & RQF_SCHED_TAGS))
477 		blk_mq_tag_busy(data->hctx);
478 
479 	if (data->flags & BLK_MQ_REQ_RESERVED)
480 		data->rq_flags |= RQF_RESV;
481 
482 	/*
483 	 * Try batched alloc if we want more than 1 tag.
484 	 */
485 	if (data->nr_tags > 1) {
486 		rq = __blk_mq_alloc_requests_batch(data);
487 		if (rq) {
488 			blk_mq_rq_time_init(rq, alloc_time_ns);
489 			return rq;
490 		}
491 		data->nr_tags = 1;
492 	}
493 
494 	/*
495 	 * Waiting allocations only fail because of an inactive hctx.  In that
496 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 	 * should have migrated us to an online CPU by now.
498 	 */
499 	tag = blk_mq_get_tag(data);
500 	if (tag == BLK_MQ_NO_TAG) {
501 		if (data->flags & BLK_MQ_REQ_NOWAIT)
502 			return NULL;
503 		/*
504 		 * Give up the CPU and sleep for a random short time to
505 		 * ensure that thread using a realtime scheduling class
506 		 * are migrated off the CPU, and thus off the hctx that
507 		 * is going away.
508 		 */
509 		msleep(3);
510 		goto retry;
511 	}
512 
513 	if (!(data->rq_flags & RQF_SCHED_TAGS))
514 		blk_mq_inc_active_requests(data->hctx);
515 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
516 	blk_mq_rq_time_init(rq, alloc_time_ns);
517 	return rq;
518 }
519 
520 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
521 					    struct blk_plug *plug,
522 					    blk_opf_t opf,
523 					    blk_mq_req_flags_t flags)
524 {
525 	struct blk_mq_alloc_data data = {
526 		.q		= q,
527 		.flags		= flags,
528 		.cmd_flags	= opf,
529 		.nr_tags	= plug->nr_ios,
530 		.cached_rq	= &plug->cached_rq,
531 	};
532 	struct request *rq;
533 
534 	if (blk_queue_enter(q, flags))
535 		return NULL;
536 
537 	plug->nr_ios = 1;
538 
539 	rq = __blk_mq_alloc_requests(&data);
540 	if (unlikely(!rq))
541 		blk_queue_exit(q);
542 	return rq;
543 }
544 
545 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
546 						   blk_opf_t opf,
547 						   blk_mq_req_flags_t flags)
548 {
549 	struct blk_plug *plug = current->plug;
550 	struct request *rq;
551 
552 	if (!plug)
553 		return NULL;
554 
555 	if (rq_list_empty(plug->cached_rq)) {
556 		if (plug->nr_ios == 1)
557 			return NULL;
558 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
559 		if (!rq)
560 			return NULL;
561 	} else {
562 		rq = rq_list_peek(&plug->cached_rq);
563 		if (!rq || rq->q != q)
564 			return NULL;
565 
566 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
567 			return NULL;
568 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
569 			return NULL;
570 
571 		plug->cached_rq = rq_list_next(rq);
572 		blk_mq_rq_time_init(rq, 0);
573 	}
574 
575 	rq->cmd_flags = opf;
576 	INIT_LIST_HEAD(&rq->queuelist);
577 	return rq;
578 }
579 
580 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
581 		blk_mq_req_flags_t flags)
582 {
583 	struct request *rq;
584 
585 	rq = blk_mq_alloc_cached_request(q, opf, flags);
586 	if (!rq) {
587 		struct blk_mq_alloc_data data = {
588 			.q		= q,
589 			.flags		= flags,
590 			.cmd_flags	= opf,
591 			.nr_tags	= 1,
592 		};
593 		int ret;
594 
595 		ret = blk_queue_enter(q, flags);
596 		if (ret)
597 			return ERR_PTR(ret);
598 
599 		rq = __blk_mq_alloc_requests(&data);
600 		if (!rq)
601 			goto out_queue_exit;
602 	}
603 	rq->__data_len = 0;
604 	rq->__sector = (sector_t) -1;
605 	rq->bio = rq->biotail = NULL;
606 	return rq;
607 out_queue_exit:
608 	blk_queue_exit(q);
609 	return ERR_PTR(-EWOULDBLOCK);
610 }
611 EXPORT_SYMBOL(blk_mq_alloc_request);
612 
613 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
614 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 {
616 	struct blk_mq_alloc_data data = {
617 		.q		= q,
618 		.flags		= flags,
619 		.cmd_flags	= opf,
620 		.nr_tags	= 1,
621 	};
622 	u64 alloc_time_ns = 0;
623 	struct request *rq;
624 	unsigned int cpu;
625 	unsigned int tag;
626 	int ret;
627 
628 	/* alloc_time includes depth and tag waits */
629 	if (blk_queue_rq_alloc_time(q))
630 		alloc_time_ns = blk_time_get_ns();
631 
632 	/*
633 	 * If the tag allocator sleeps we could get an allocation for a
634 	 * different hardware context.  No need to complicate the low level
635 	 * allocator for this for the rare use case of a command tied to
636 	 * a specific queue.
637 	 */
638 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
639 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
640 		return ERR_PTR(-EINVAL);
641 
642 	if (hctx_idx >= q->nr_hw_queues)
643 		return ERR_PTR(-EIO);
644 
645 	ret = blk_queue_enter(q, flags);
646 	if (ret)
647 		return ERR_PTR(ret);
648 
649 	/*
650 	 * Check if the hardware context is actually mapped to anything.
651 	 * If not tell the caller that it should skip this queue.
652 	 */
653 	ret = -EXDEV;
654 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
655 	if (!blk_mq_hw_queue_mapped(data.hctx))
656 		goto out_queue_exit;
657 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
658 	if (cpu >= nr_cpu_ids)
659 		goto out_queue_exit;
660 	data.ctx = __blk_mq_get_ctx(q, cpu);
661 
662 	if (q->elevator)
663 		data.rq_flags |= RQF_SCHED_TAGS;
664 	else
665 		blk_mq_tag_busy(data.hctx);
666 
667 	if (flags & BLK_MQ_REQ_RESERVED)
668 		data.rq_flags |= RQF_RESV;
669 
670 	ret = -EWOULDBLOCK;
671 	tag = blk_mq_get_tag(&data);
672 	if (tag == BLK_MQ_NO_TAG)
673 		goto out_queue_exit;
674 	if (!(data.rq_flags & RQF_SCHED_TAGS))
675 		blk_mq_inc_active_requests(data.hctx);
676 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
677 	blk_mq_rq_time_init(rq, alloc_time_ns);
678 	rq->__data_len = 0;
679 	rq->__sector = (sector_t) -1;
680 	rq->bio = rq->biotail = NULL;
681 	return rq;
682 
683 out_queue_exit:
684 	blk_queue_exit(q);
685 	return ERR_PTR(ret);
686 }
687 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688 
689 static void blk_mq_finish_request(struct request *rq)
690 {
691 	struct request_queue *q = rq->q;
692 
693 	if (rq->rq_flags & RQF_USE_SCHED) {
694 		q->elevator->type->ops.finish_request(rq);
695 		/*
696 		 * For postflush request that may need to be
697 		 * completed twice, we should clear this flag
698 		 * to avoid double finish_request() on the rq.
699 		 */
700 		rq->rq_flags &= ~RQF_USE_SCHED;
701 	}
702 }
703 
704 static void __blk_mq_free_request(struct request *rq)
705 {
706 	struct request_queue *q = rq->q;
707 	struct blk_mq_ctx *ctx = rq->mq_ctx;
708 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
709 	const int sched_tag = rq->internal_tag;
710 
711 	blk_crypto_free_request(rq);
712 	blk_pm_mark_last_busy(rq);
713 	rq->mq_hctx = NULL;
714 
715 	if (rq->tag != BLK_MQ_NO_TAG) {
716 		blk_mq_dec_active_requests(hctx);
717 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
718 	}
719 	if (sched_tag != BLK_MQ_NO_TAG)
720 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
721 	blk_mq_sched_restart(hctx);
722 	blk_queue_exit(q);
723 }
724 
725 void blk_mq_free_request(struct request *rq)
726 {
727 	struct request_queue *q = rq->q;
728 
729 	blk_mq_finish_request(rq);
730 
731 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
732 		laptop_io_completion(q->disk->bdi);
733 
734 	rq_qos_done(q, rq);
735 
736 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
737 	if (req_ref_put_and_test(rq))
738 		__blk_mq_free_request(rq);
739 }
740 EXPORT_SYMBOL_GPL(blk_mq_free_request);
741 
742 void blk_mq_free_plug_rqs(struct blk_plug *plug)
743 {
744 	struct request *rq;
745 
746 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
747 		blk_mq_free_request(rq);
748 }
749 
750 void blk_dump_rq_flags(struct request *rq, char *msg)
751 {
752 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
753 		rq->q->disk ? rq->q->disk->disk_name : "?",
754 		(__force unsigned long long) rq->cmd_flags);
755 
756 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
757 	       (unsigned long long)blk_rq_pos(rq),
758 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
759 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
760 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
761 }
762 EXPORT_SYMBOL(blk_dump_rq_flags);
763 
764 static void req_bio_endio(struct request *rq, struct bio *bio,
765 			  unsigned int nbytes, blk_status_t error)
766 {
767 	if (unlikely(error)) {
768 		bio->bi_status = error;
769 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
770 		/*
771 		 * Partial zone append completions cannot be supported as the
772 		 * BIO fragments may end up not being written sequentially.
773 		 */
774 		if (bio->bi_iter.bi_size != nbytes)
775 			bio->bi_status = BLK_STS_IOERR;
776 		else
777 			bio->bi_iter.bi_sector = rq->__sector;
778 	}
779 
780 	bio_advance(bio, nbytes);
781 
782 	if (unlikely(rq->rq_flags & RQF_QUIET))
783 		bio_set_flag(bio, BIO_QUIET);
784 	/* don't actually finish bio if it's part of flush sequence */
785 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
786 		bio_endio(bio);
787 }
788 
789 static void blk_account_io_completion(struct request *req, unsigned int bytes)
790 {
791 	if (req->part && blk_do_io_stat(req)) {
792 		const int sgrp = op_stat_group(req_op(req));
793 
794 		part_stat_lock();
795 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
796 		part_stat_unlock();
797 	}
798 }
799 
800 static void blk_print_req_error(struct request *req, blk_status_t status)
801 {
802 	printk_ratelimited(KERN_ERR
803 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
804 		"phys_seg %u prio class %u\n",
805 		blk_status_to_str(status),
806 		req->q->disk ? req->q->disk->disk_name : "?",
807 		blk_rq_pos(req), (__force u32)req_op(req),
808 		blk_op_str(req_op(req)),
809 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
810 		req->nr_phys_segments,
811 		IOPRIO_PRIO_CLASS(req->ioprio));
812 }
813 
814 /*
815  * Fully end IO on a request. Does not support partial completions, or
816  * errors.
817  */
818 static void blk_complete_request(struct request *req)
819 {
820 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
821 	int total_bytes = blk_rq_bytes(req);
822 	struct bio *bio = req->bio;
823 
824 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
825 
826 	if (!bio)
827 		return;
828 
829 #ifdef CONFIG_BLK_DEV_INTEGRITY
830 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
831 		req->q->integrity.profile->complete_fn(req, total_bytes);
832 #endif
833 
834 	/*
835 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
836 	 * bio_endio().  Therefore, the keyslot must be released before that.
837 	 */
838 	blk_crypto_rq_put_keyslot(req);
839 
840 	blk_account_io_completion(req, total_bytes);
841 
842 	do {
843 		struct bio *next = bio->bi_next;
844 
845 		/* Completion has already been traced */
846 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
847 
848 		if (req_op(req) == REQ_OP_ZONE_APPEND)
849 			bio->bi_iter.bi_sector = req->__sector;
850 
851 		if (!is_flush)
852 			bio_endio(bio);
853 		bio = next;
854 	} while (bio);
855 
856 	/*
857 	 * Reset counters so that the request stacking driver
858 	 * can find how many bytes remain in the request
859 	 * later.
860 	 */
861 	if (!req->end_io) {
862 		req->bio = NULL;
863 		req->__data_len = 0;
864 	}
865 }
866 
867 /**
868  * blk_update_request - Complete multiple bytes without completing the request
869  * @req:      the request being processed
870  * @error:    block status code
871  * @nr_bytes: number of bytes to complete for @req
872  *
873  * Description:
874  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
875  *     the request structure even if @req doesn't have leftover.
876  *     If @req has leftover, sets it up for the next range of segments.
877  *
878  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
879  *     %false return from this function.
880  *
881  * Note:
882  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
883  *      except in the consistency check at the end of this function.
884  *
885  * Return:
886  *     %false - this request doesn't have any more data
887  *     %true  - this request has more data
888  **/
889 bool blk_update_request(struct request *req, blk_status_t error,
890 		unsigned int nr_bytes)
891 {
892 	int total_bytes;
893 
894 	trace_block_rq_complete(req, error, nr_bytes);
895 
896 	if (!req->bio)
897 		return false;
898 
899 #ifdef CONFIG_BLK_DEV_INTEGRITY
900 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
901 	    error == BLK_STS_OK)
902 		req->q->integrity.profile->complete_fn(req, nr_bytes);
903 #endif
904 
905 	/*
906 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
907 	 * bio_endio().  Therefore, the keyslot must be released before that.
908 	 */
909 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
910 		__blk_crypto_rq_put_keyslot(req);
911 
912 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
913 		     !(req->rq_flags & RQF_QUIET)) &&
914 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
915 		blk_print_req_error(req, error);
916 		trace_block_rq_error(req, error, nr_bytes);
917 	}
918 
919 	blk_account_io_completion(req, nr_bytes);
920 
921 	total_bytes = 0;
922 	while (req->bio) {
923 		struct bio *bio = req->bio;
924 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
925 
926 		if (bio_bytes == bio->bi_iter.bi_size)
927 			req->bio = bio->bi_next;
928 
929 		/* Completion has already been traced */
930 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
931 		req_bio_endio(req, bio, bio_bytes, error);
932 
933 		total_bytes += bio_bytes;
934 		nr_bytes -= bio_bytes;
935 
936 		if (!nr_bytes)
937 			break;
938 	}
939 
940 	/*
941 	 * completely done
942 	 */
943 	if (!req->bio) {
944 		/*
945 		 * Reset counters so that the request stacking driver
946 		 * can find how many bytes remain in the request
947 		 * later.
948 		 */
949 		req->__data_len = 0;
950 		return false;
951 	}
952 
953 	req->__data_len -= total_bytes;
954 
955 	/* update sector only for requests with clear definition of sector */
956 	if (!blk_rq_is_passthrough(req))
957 		req->__sector += total_bytes >> 9;
958 
959 	/* mixed attributes always follow the first bio */
960 	if (req->rq_flags & RQF_MIXED_MERGE) {
961 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
962 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
963 	}
964 
965 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
966 		/*
967 		 * If total number of sectors is less than the first segment
968 		 * size, something has gone terribly wrong.
969 		 */
970 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
971 			blk_dump_rq_flags(req, "request botched");
972 			req->__data_len = blk_rq_cur_bytes(req);
973 		}
974 
975 		/* recalculate the number of segments */
976 		req->nr_phys_segments = blk_recalc_rq_segments(req);
977 	}
978 
979 	return true;
980 }
981 EXPORT_SYMBOL_GPL(blk_update_request);
982 
983 static inline void blk_account_io_done(struct request *req, u64 now)
984 {
985 	trace_block_io_done(req);
986 
987 	/*
988 	 * Account IO completion.  flush_rq isn't accounted as a
989 	 * normal IO on queueing nor completion.  Accounting the
990 	 * containing request is enough.
991 	 */
992 	if (blk_do_io_stat(req) && req->part &&
993 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
994 		const int sgrp = op_stat_group(req_op(req));
995 
996 		part_stat_lock();
997 		update_io_ticks(req->part, jiffies, true);
998 		part_stat_inc(req->part, ios[sgrp]);
999 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000 		part_stat_unlock();
1001 	}
1002 }
1003 
1004 static inline void blk_account_io_start(struct request *req)
1005 {
1006 	trace_block_io_start(req);
1007 
1008 	if (blk_do_io_stat(req)) {
1009 		/*
1010 		 * All non-passthrough requests are created from a bio with one
1011 		 * exception: when a flush command that is part of a flush sequence
1012 		 * generated by the state machine in blk-flush.c is cloned onto the
1013 		 * lower device by dm-multipath we can get here without a bio.
1014 		 */
1015 		if (req->bio)
1016 			req->part = req->bio->bi_bdev;
1017 		else
1018 			req->part = req->q->disk->part0;
1019 
1020 		part_stat_lock();
1021 		update_io_ticks(req->part, jiffies, false);
1022 		part_stat_unlock();
1023 	}
1024 }
1025 
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 {
1028 	if (rq->rq_flags & RQF_STATS)
1029 		blk_stat_add(rq, now);
1030 
1031 	blk_mq_sched_completed_request(rq, now);
1032 	blk_account_io_done(rq, now);
1033 }
1034 
1035 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1036 {
1037 	if (blk_mq_need_time_stamp(rq))
1038 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1039 
1040 	blk_mq_finish_request(rq);
1041 
1042 	if (rq->end_io) {
1043 		rq_qos_done(rq->q, rq);
1044 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 			blk_mq_free_request(rq);
1046 	} else {
1047 		blk_mq_free_request(rq);
1048 	}
1049 }
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1051 
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 {
1054 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 		BUG();
1056 	__blk_mq_end_request(rq, error);
1057 }
1058 EXPORT_SYMBOL(blk_mq_end_request);
1059 
1060 #define TAG_COMP_BATCH		32
1061 
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 					  int *tag_array, int nr_tags)
1064 {
1065 	struct request_queue *q = hctx->queue;
1066 
1067 	blk_mq_sub_active_requests(hctx, nr_tags);
1068 
1069 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1070 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1071 }
1072 
1073 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1074 {
1075 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1076 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1077 	struct request *rq;
1078 	u64 now = 0;
1079 
1080 	if (iob->need_ts)
1081 		now = blk_time_get_ns();
1082 
1083 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1084 		prefetch(rq->bio);
1085 		prefetch(rq->rq_next);
1086 
1087 		blk_complete_request(rq);
1088 		if (iob->need_ts)
1089 			__blk_mq_end_request_acct(rq, now);
1090 
1091 		blk_mq_finish_request(rq);
1092 
1093 		rq_qos_done(rq->q, rq);
1094 
1095 		/*
1096 		 * If end_io handler returns NONE, then it still has
1097 		 * ownership of the request.
1098 		 */
1099 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1100 			continue;
1101 
1102 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1103 		if (!req_ref_put_and_test(rq))
1104 			continue;
1105 
1106 		blk_crypto_free_request(rq);
1107 		blk_pm_mark_last_busy(rq);
1108 
1109 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1110 			if (cur_hctx)
1111 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1112 			nr_tags = 0;
1113 			cur_hctx = rq->mq_hctx;
1114 		}
1115 		tags[nr_tags++] = rq->tag;
1116 	}
1117 
1118 	if (nr_tags)
1119 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1120 }
1121 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1122 
1123 static void blk_complete_reqs(struct llist_head *list)
1124 {
1125 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1126 	struct request *rq, *next;
1127 
1128 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1129 		rq->q->mq_ops->complete(rq);
1130 }
1131 
1132 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1133 {
1134 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1135 }
1136 
1137 static int blk_softirq_cpu_dead(unsigned int cpu)
1138 {
1139 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1140 	return 0;
1141 }
1142 
1143 static void __blk_mq_complete_request_remote(void *data)
1144 {
1145 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1146 }
1147 
1148 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1149 {
1150 	int cpu = raw_smp_processor_id();
1151 
1152 	if (!IS_ENABLED(CONFIG_SMP) ||
1153 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1154 		return false;
1155 	/*
1156 	 * With force threaded interrupts enabled, raising softirq from an SMP
1157 	 * function call will always result in waking the ksoftirqd thread.
1158 	 * This is probably worse than completing the request on a different
1159 	 * cache domain.
1160 	 */
1161 	if (force_irqthreads())
1162 		return false;
1163 
1164 	/* same CPU or cache domain and capacity?  Complete locally */
1165 	if (cpu == rq->mq_ctx->cpu ||
1166 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1167 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1168 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1169 		return false;
1170 
1171 	/* don't try to IPI to an offline CPU */
1172 	return cpu_online(rq->mq_ctx->cpu);
1173 }
1174 
1175 static void blk_mq_complete_send_ipi(struct request *rq)
1176 {
1177 	unsigned int cpu;
1178 
1179 	cpu = rq->mq_ctx->cpu;
1180 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1181 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1182 }
1183 
1184 static void blk_mq_raise_softirq(struct request *rq)
1185 {
1186 	struct llist_head *list;
1187 
1188 	preempt_disable();
1189 	list = this_cpu_ptr(&blk_cpu_done);
1190 	if (llist_add(&rq->ipi_list, list))
1191 		raise_softirq(BLOCK_SOFTIRQ);
1192 	preempt_enable();
1193 }
1194 
1195 bool blk_mq_complete_request_remote(struct request *rq)
1196 {
1197 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1198 
1199 	/*
1200 	 * For request which hctx has only one ctx mapping,
1201 	 * or a polled request, always complete locally,
1202 	 * it's pointless to redirect the completion.
1203 	 */
1204 	if ((rq->mq_hctx->nr_ctx == 1 &&
1205 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1206 	     rq->cmd_flags & REQ_POLLED)
1207 		return false;
1208 
1209 	if (blk_mq_complete_need_ipi(rq)) {
1210 		blk_mq_complete_send_ipi(rq);
1211 		return true;
1212 	}
1213 
1214 	if (rq->q->nr_hw_queues == 1) {
1215 		blk_mq_raise_softirq(rq);
1216 		return true;
1217 	}
1218 	return false;
1219 }
1220 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1221 
1222 /**
1223  * blk_mq_complete_request - end I/O on a request
1224  * @rq:		the request being processed
1225  *
1226  * Description:
1227  *	Complete a request by scheduling the ->complete_rq operation.
1228  **/
1229 void blk_mq_complete_request(struct request *rq)
1230 {
1231 	if (!blk_mq_complete_request_remote(rq))
1232 		rq->q->mq_ops->complete(rq);
1233 }
1234 EXPORT_SYMBOL(blk_mq_complete_request);
1235 
1236 /**
1237  * blk_mq_start_request - Start processing a request
1238  * @rq: Pointer to request to be started
1239  *
1240  * Function used by device drivers to notify the block layer that a request
1241  * is going to be processed now, so blk layer can do proper initializations
1242  * such as starting the timeout timer.
1243  */
1244 void blk_mq_start_request(struct request *rq)
1245 {
1246 	struct request_queue *q = rq->q;
1247 
1248 	trace_block_rq_issue(rq);
1249 
1250 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1251 	    !blk_rq_is_passthrough(rq)) {
1252 		rq->io_start_time_ns = blk_time_get_ns();
1253 		rq->stats_sectors = blk_rq_sectors(rq);
1254 		rq->rq_flags |= RQF_STATS;
1255 		rq_qos_issue(q, rq);
1256 	}
1257 
1258 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259 
1260 	blk_add_timer(rq);
1261 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263 
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266 		q->integrity.profile->prepare_fn(rq);
1267 #endif
1268 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272 
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280 	if (plug->multiple_queues)
1281 		return BLK_MAX_REQUEST_COUNT * 2;
1282 	return BLK_MAX_REQUEST_COUNT;
1283 }
1284 
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287 	struct request *last = rq_list_peek(&plug->mq_list);
1288 
1289 	if (!plug->rq_count) {
1290 		trace_block_plug(rq->q);
1291 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292 		   (!blk_queue_nomerges(rq->q) &&
1293 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294 		blk_mq_flush_plug_list(plug, false);
1295 		last = NULL;
1296 		trace_block_plug(rq->q);
1297 	}
1298 
1299 	if (!plug->multiple_queues && last && last->q != rq->q)
1300 		plug->multiple_queues = true;
1301 	/*
1302 	 * Any request allocated from sched tags can't be issued to
1303 	 * ->queue_rqs() directly
1304 	 */
1305 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306 		plug->has_elevator = true;
1307 	rq->rq_next = NULL;
1308 	rq_list_add(&plug->mq_list, rq);
1309 	plug->rq_count++;
1310 }
1311 
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:		request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327 
1328 	WARN_ON(irqs_disabled());
1329 	WARN_ON(!blk_rq_is_passthrough(rq));
1330 
1331 	blk_account_io_start(rq);
1332 
1333 	/*
1334 	 * As plugging can be enabled for passthrough requests on a zoned
1335 	 * device, directly accessing the plug instead of using blk_mq_plug()
1336 	 * should not have any consequences.
1337 	 */
1338 	if (current->plug && !at_head) {
1339 		blk_add_rq_to_plug(current->plug, rq);
1340 		return;
1341 	}
1342 
1343 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347 
1348 struct blk_rq_wait {
1349 	struct completion done;
1350 	blk_status_t ret;
1351 };
1352 
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355 	struct blk_rq_wait *wait = rq->end_io_data;
1356 
1357 	wait->ret = ret;
1358 	complete(&wait->done);
1359 	return RQ_END_IO_NONE;
1360 }
1361 
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364 	if (!rq->mq_hctx)
1365 		return false;
1366 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367 		return false;
1368 	return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371 
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374 	do {
1375 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376 		cond_resched();
1377 	} while (!completion_done(wait));
1378 }
1379 
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:		request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393 	struct blk_rq_wait wait = {
1394 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395 	};
1396 
1397 	WARN_ON(irqs_disabled());
1398 	WARN_ON(!blk_rq_is_passthrough(rq));
1399 
1400 	rq->end_io_data = &wait;
1401 	rq->end_io = blk_end_sync_rq;
1402 
1403 	blk_account_io_start(rq);
1404 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405 	blk_mq_run_hw_queue(hctx, false);
1406 
1407 	if (blk_rq_is_poll(rq))
1408 		blk_rq_poll_completion(rq, &wait.done);
1409 	else
1410 		blk_wait_io(&wait.done);
1411 
1412 	return wait.ret;
1413 }
1414 EXPORT_SYMBOL(blk_execute_rq);
1415 
1416 static void __blk_mq_requeue_request(struct request *rq)
1417 {
1418 	struct request_queue *q = rq->q;
1419 
1420 	blk_mq_put_driver_tag(rq);
1421 
1422 	trace_block_rq_requeue(rq);
1423 	rq_qos_requeue(q, rq);
1424 
1425 	if (blk_mq_request_started(rq)) {
1426 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1427 		rq->rq_flags &= ~RQF_TIMED_OUT;
1428 	}
1429 }
1430 
1431 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1432 {
1433 	struct request_queue *q = rq->q;
1434 	unsigned long flags;
1435 
1436 	__blk_mq_requeue_request(rq);
1437 
1438 	/* this request will be re-inserted to io scheduler queue */
1439 	blk_mq_sched_requeue_request(rq);
1440 
1441 	spin_lock_irqsave(&q->requeue_lock, flags);
1442 	list_add_tail(&rq->queuelist, &q->requeue_list);
1443 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1444 
1445 	if (kick_requeue_list)
1446 		blk_mq_kick_requeue_list(q);
1447 }
1448 EXPORT_SYMBOL(blk_mq_requeue_request);
1449 
1450 static void blk_mq_requeue_work(struct work_struct *work)
1451 {
1452 	struct request_queue *q =
1453 		container_of(work, struct request_queue, requeue_work.work);
1454 	LIST_HEAD(rq_list);
1455 	LIST_HEAD(flush_list);
1456 	struct request *rq;
1457 
1458 	spin_lock_irq(&q->requeue_lock);
1459 	list_splice_init(&q->requeue_list, &rq_list);
1460 	list_splice_init(&q->flush_list, &flush_list);
1461 	spin_unlock_irq(&q->requeue_lock);
1462 
1463 	while (!list_empty(&rq_list)) {
1464 		rq = list_entry(rq_list.next, struct request, queuelist);
1465 		/*
1466 		 * If RQF_DONTPREP ist set, the request has been started by the
1467 		 * driver already and might have driver-specific data allocated
1468 		 * already.  Insert it into the hctx dispatch list to avoid
1469 		 * block layer merges for the request.
1470 		 */
1471 		if (rq->rq_flags & RQF_DONTPREP) {
1472 			list_del_init(&rq->queuelist);
1473 			blk_mq_request_bypass_insert(rq, 0);
1474 		} else {
1475 			list_del_init(&rq->queuelist);
1476 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1477 		}
1478 	}
1479 
1480 	while (!list_empty(&flush_list)) {
1481 		rq = list_entry(flush_list.next, struct request, queuelist);
1482 		list_del_init(&rq->queuelist);
1483 		blk_mq_insert_request(rq, 0);
1484 	}
1485 
1486 	blk_mq_run_hw_queues(q, false);
1487 }
1488 
1489 void blk_mq_kick_requeue_list(struct request_queue *q)
1490 {
1491 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1492 }
1493 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1494 
1495 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1496 				    unsigned long msecs)
1497 {
1498 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1499 				    msecs_to_jiffies(msecs));
1500 }
1501 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1502 
1503 static bool blk_is_flush_data_rq(struct request *rq)
1504 {
1505 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1506 }
1507 
1508 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1509 {
1510 	/*
1511 	 * If we find a request that isn't idle we know the queue is busy
1512 	 * as it's checked in the iter.
1513 	 * Return false to stop the iteration.
1514 	 *
1515 	 * In case of queue quiesce, if one flush data request is completed,
1516 	 * don't count it as inflight given the flush sequence is suspended,
1517 	 * and the original flush data request is invisible to driver, just
1518 	 * like other pending requests because of quiesce
1519 	 */
1520 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1521 				blk_is_flush_data_rq(rq) &&
1522 				blk_mq_request_completed(rq))) {
1523 		bool *busy = priv;
1524 
1525 		*busy = true;
1526 		return false;
1527 	}
1528 
1529 	return true;
1530 }
1531 
1532 bool blk_mq_queue_inflight(struct request_queue *q)
1533 {
1534 	bool busy = false;
1535 
1536 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1537 	return busy;
1538 }
1539 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1540 
1541 static void blk_mq_rq_timed_out(struct request *req)
1542 {
1543 	req->rq_flags |= RQF_TIMED_OUT;
1544 	if (req->q->mq_ops->timeout) {
1545 		enum blk_eh_timer_return ret;
1546 
1547 		ret = req->q->mq_ops->timeout(req);
1548 		if (ret == BLK_EH_DONE)
1549 			return;
1550 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1551 	}
1552 
1553 	blk_add_timer(req);
1554 }
1555 
1556 struct blk_expired_data {
1557 	bool has_timedout_rq;
1558 	unsigned long next;
1559 	unsigned long timeout_start;
1560 };
1561 
1562 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1563 {
1564 	unsigned long deadline;
1565 
1566 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1567 		return false;
1568 	if (rq->rq_flags & RQF_TIMED_OUT)
1569 		return false;
1570 
1571 	deadline = READ_ONCE(rq->deadline);
1572 	if (time_after_eq(expired->timeout_start, deadline))
1573 		return true;
1574 
1575 	if (expired->next == 0)
1576 		expired->next = deadline;
1577 	else if (time_after(expired->next, deadline))
1578 		expired->next = deadline;
1579 	return false;
1580 }
1581 
1582 void blk_mq_put_rq_ref(struct request *rq)
1583 {
1584 	if (is_flush_rq(rq)) {
1585 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1586 			blk_mq_free_request(rq);
1587 	} else if (req_ref_put_and_test(rq)) {
1588 		__blk_mq_free_request(rq);
1589 	}
1590 }
1591 
1592 static bool blk_mq_check_expired(struct request *rq, void *priv)
1593 {
1594 	struct blk_expired_data *expired = priv;
1595 
1596 	/*
1597 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1598 	 * be reallocated underneath the timeout handler's processing, then
1599 	 * the expire check is reliable. If the request is not expired, then
1600 	 * it was completed and reallocated as a new request after returning
1601 	 * from blk_mq_check_expired().
1602 	 */
1603 	if (blk_mq_req_expired(rq, expired)) {
1604 		expired->has_timedout_rq = true;
1605 		return false;
1606 	}
1607 	return true;
1608 }
1609 
1610 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1611 {
1612 	struct blk_expired_data *expired = priv;
1613 
1614 	if (blk_mq_req_expired(rq, expired))
1615 		blk_mq_rq_timed_out(rq);
1616 	return true;
1617 }
1618 
1619 static void blk_mq_timeout_work(struct work_struct *work)
1620 {
1621 	struct request_queue *q =
1622 		container_of(work, struct request_queue, timeout_work);
1623 	struct blk_expired_data expired = {
1624 		.timeout_start = jiffies,
1625 	};
1626 	struct blk_mq_hw_ctx *hctx;
1627 	unsigned long i;
1628 
1629 	/* A deadlock might occur if a request is stuck requiring a
1630 	 * timeout at the same time a queue freeze is waiting
1631 	 * completion, since the timeout code would not be able to
1632 	 * acquire the queue reference here.
1633 	 *
1634 	 * That's why we don't use blk_queue_enter here; instead, we use
1635 	 * percpu_ref_tryget directly, because we need to be able to
1636 	 * obtain a reference even in the short window between the queue
1637 	 * starting to freeze, by dropping the first reference in
1638 	 * blk_freeze_queue_start, and the moment the last request is
1639 	 * consumed, marked by the instant q_usage_counter reaches
1640 	 * zero.
1641 	 */
1642 	if (!percpu_ref_tryget(&q->q_usage_counter))
1643 		return;
1644 
1645 	/* check if there is any timed-out request */
1646 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1647 	if (expired.has_timedout_rq) {
1648 		/*
1649 		 * Before walking tags, we must ensure any submit started
1650 		 * before the current time has finished. Since the submit
1651 		 * uses srcu or rcu, wait for a synchronization point to
1652 		 * ensure all running submits have finished
1653 		 */
1654 		blk_mq_wait_quiesce_done(q->tag_set);
1655 
1656 		expired.next = 0;
1657 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1658 	}
1659 
1660 	if (expired.next != 0) {
1661 		mod_timer(&q->timeout, expired.next);
1662 	} else {
1663 		/*
1664 		 * Request timeouts are handled as a forward rolling timer. If
1665 		 * we end up here it means that no requests are pending and
1666 		 * also that no request has been pending for a while. Mark
1667 		 * each hctx as idle.
1668 		 */
1669 		queue_for_each_hw_ctx(q, hctx, i) {
1670 			/* the hctx may be unmapped, so check it here */
1671 			if (blk_mq_hw_queue_mapped(hctx))
1672 				blk_mq_tag_idle(hctx);
1673 		}
1674 	}
1675 	blk_queue_exit(q);
1676 }
1677 
1678 struct flush_busy_ctx_data {
1679 	struct blk_mq_hw_ctx *hctx;
1680 	struct list_head *list;
1681 };
1682 
1683 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1684 {
1685 	struct flush_busy_ctx_data *flush_data = data;
1686 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1687 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1688 	enum hctx_type type = hctx->type;
1689 
1690 	spin_lock(&ctx->lock);
1691 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1692 	sbitmap_clear_bit(sb, bitnr);
1693 	spin_unlock(&ctx->lock);
1694 	return true;
1695 }
1696 
1697 /*
1698  * Process software queues that have been marked busy, splicing them
1699  * to the for-dispatch
1700  */
1701 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1702 {
1703 	struct flush_busy_ctx_data data = {
1704 		.hctx = hctx,
1705 		.list = list,
1706 	};
1707 
1708 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1709 }
1710 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1711 
1712 struct dispatch_rq_data {
1713 	struct blk_mq_hw_ctx *hctx;
1714 	struct request *rq;
1715 };
1716 
1717 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1718 		void *data)
1719 {
1720 	struct dispatch_rq_data *dispatch_data = data;
1721 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1722 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1723 	enum hctx_type type = hctx->type;
1724 
1725 	spin_lock(&ctx->lock);
1726 	if (!list_empty(&ctx->rq_lists[type])) {
1727 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1728 		list_del_init(&dispatch_data->rq->queuelist);
1729 		if (list_empty(&ctx->rq_lists[type]))
1730 			sbitmap_clear_bit(sb, bitnr);
1731 	}
1732 	spin_unlock(&ctx->lock);
1733 
1734 	return !dispatch_data->rq;
1735 }
1736 
1737 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1738 					struct blk_mq_ctx *start)
1739 {
1740 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1741 	struct dispatch_rq_data data = {
1742 		.hctx = hctx,
1743 		.rq   = NULL,
1744 	};
1745 
1746 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1747 			       dispatch_rq_from_ctx, &data);
1748 
1749 	return data.rq;
1750 }
1751 
1752 bool __blk_mq_alloc_driver_tag(struct request *rq)
1753 {
1754 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1755 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1756 	int tag;
1757 
1758 	blk_mq_tag_busy(rq->mq_hctx);
1759 
1760 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1761 		bt = &rq->mq_hctx->tags->breserved_tags;
1762 		tag_offset = 0;
1763 	} else {
1764 		if (!hctx_may_queue(rq->mq_hctx, bt))
1765 			return false;
1766 	}
1767 
1768 	tag = __sbitmap_queue_get(bt);
1769 	if (tag == BLK_MQ_NO_TAG)
1770 		return false;
1771 
1772 	rq->tag = tag + tag_offset;
1773 	blk_mq_inc_active_requests(rq->mq_hctx);
1774 	return true;
1775 }
1776 
1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778 				int flags, void *key)
1779 {
1780 	struct blk_mq_hw_ctx *hctx;
1781 
1782 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783 
1784 	spin_lock(&hctx->dispatch_wait_lock);
1785 	if (!list_empty(&wait->entry)) {
1786 		struct sbitmap_queue *sbq;
1787 
1788 		list_del_init(&wait->entry);
1789 		sbq = &hctx->tags->bitmap_tags;
1790 		atomic_dec(&sbq->ws_active);
1791 	}
1792 	spin_unlock(&hctx->dispatch_wait_lock);
1793 
1794 	blk_mq_run_hw_queue(hctx, true);
1795 	return 1;
1796 }
1797 
1798 /*
1799  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801  * restart. For both cases, take care to check the condition again after
1802  * marking us as waiting.
1803  */
1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805 				 struct request *rq)
1806 {
1807 	struct sbitmap_queue *sbq;
1808 	struct wait_queue_head *wq;
1809 	wait_queue_entry_t *wait;
1810 	bool ret;
1811 
1812 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1814 		blk_mq_sched_mark_restart_hctx(hctx);
1815 
1816 		/*
1817 		 * It's possible that a tag was freed in the window between the
1818 		 * allocation failure and adding the hardware queue to the wait
1819 		 * queue.
1820 		 *
1821 		 * Don't clear RESTART here, someone else could have set it.
1822 		 * At most this will cost an extra queue run.
1823 		 */
1824 		return blk_mq_get_driver_tag(rq);
1825 	}
1826 
1827 	wait = &hctx->dispatch_wait;
1828 	if (!list_empty_careful(&wait->entry))
1829 		return false;
1830 
1831 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832 		sbq = &hctx->tags->breserved_tags;
1833 	else
1834 		sbq = &hctx->tags->bitmap_tags;
1835 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1836 
1837 	spin_lock_irq(&wq->lock);
1838 	spin_lock(&hctx->dispatch_wait_lock);
1839 	if (!list_empty(&wait->entry)) {
1840 		spin_unlock(&hctx->dispatch_wait_lock);
1841 		spin_unlock_irq(&wq->lock);
1842 		return false;
1843 	}
1844 
1845 	atomic_inc(&sbq->ws_active);
1846 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847 	__add_wait_queue(wq, wait);
1848 
1849 	/*
1850 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1851 	 * not imply barrier in case of failure.
1852 	 *
1853 	 * Order adding us to wait queue and allocating driver tag.
1854 	 *
1855 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1856 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1857 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1858 	 *
1859 	 * Otherwise, re-order of adding wait queue and getting driver tag
1860 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1861 	 * the waitqueue_active() may not observe us in wait queue.
1862 	 */
1863 	smp_mb();
1864 
1865 	/*
1866 	 * It's possible that a tag was freed in the window between the
1867 	 * allocation failure and adding the hardware queue to the wait
1868 	 * queue.
1869 	 */
1870 	ret = blk_mq_get_driver_tag(rq);
1871 	if (!ret) {
1872 		spin_unlock(&hctx->dispatch_wait_lock);
1873 		spin_unlock_irq(&wq->lock);
1874 		return false;
1875 	}
1876 
1877 	/*
1878 	 * We got a tag, remove ourselves from the wait queue to ensure
1879 	 * someone else gets the wakeup.
1880 	 */
1881 	list_del_init(&wait->entry);
1882 	atomic_dec(&sbq->ws_active);
1883 	spin_unlock(&hctx->dispatch_wait_lock);
1884 	spin_unlock_irq(&wq->lock);
1885 
1886 	return true;
1887 }
1888 
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891 /*
1892  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893  * - EWMA is one simple way to compute running average value
1894  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895  * - take 4 as factor for avoiding to get too small(0) result, and this
1896  *   factor doesn't matter because EWMA decreases exponentially
1897  */
1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899 {
1900 	unsigned int ewma;
1901 
1902 	ewma = hctx->dispatch_busy;
1903 
1904 	if (!ewma && !busy)
1905 		return;
1906 
1907 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908 	if (busy)
1909 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911 
1912 	hctx->dispatch_busy = ewma;
1913 }
1914 
1915 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916 
1917 static void blk_mq_handle_dev_resource(struct request *rq,
1918 				       struct list_head *list)
1919 {
1920 	list_add(&rq->queuelist, list);
1921 	__blk_mq_requeue_request(rq);
1922 }
1923 
1924 static void blk_mq_handle_zone_resource(struct request *rq,
1925 					struct list_head *zone_list)
1926 {
1927 	/*
1928 	 * If we end up here it is because we cannot dispatch a request to a
1929 	 * specific zone due to LLD level zone-write locking or other zone
1930 	 * related resource not being available. In this case, set the request
1931 	 * aside in zone_list for retrying it later.
1932 	 */
1933 	list_add(&rq->queuelist, zone_list);
1934 	__blk_mq_requeue_request(rq);
1935 }
1936 
1937 enum prep_dispatch {
1938 	PREP_DISPATCH_OK,
1939 	PREP_DISPATCH_NO_TAG,
1940 	PREP_DISPATCH_NO_BUDGET,
1941 };
1942 
1943 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1944 						  bool need_budget)
1945 {
1946 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1947 	int budget_token = -1;
1948 
1949 	if (need_budget) {
1950 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1951 		if (budget_token < 0) {
1952 			blk_mq_put_driver_tag(rq);
1953 			return PREP_DISPATCH_NO_BUDGET;
1954 		}
1955 		blk_mq_set_rq_budget_token(rq, budget_token);
1956 	}
1957 
1958 	if (!blk_mq_get_driver_tag(rq)) {
1959 		/*
1960 		 * The initial allocation attempt failed, so we need to
1961 		 * rerun the hardware queue when a tag is freed. The
1962 		 * waitqueue takes care of that. If the queue is run
1963 		 * before we add this entry back on the dispatch list,
1964 		 * we'll re-run it below.
1965 		 */
1966 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1967 			/*
1968 			 * All budgets not got from this function will be put
1969 			 * together during handling partial dispatch
1970 			 */
1971 			if (need_budget)
1972 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1973 			return PREP_DISPATCH_NO_TAG;
1974 		}
1975 	}
1976 
1977 	return PREP_DISPATCH_OK;
1978 }
1979 
1980 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1981 static void blk_mq_release_budgets(struct request_queue *q,
1982 		struct list_head *list)
1983 {
1984 	struct request *rq;
1985 
1986 	list_for_each_entry(rq, list, queuelist) {
1987 		int budget_token = blk_mq_get_rq_budget_token(rq);
1988 
1989 		if (budget_token >= 0)
1990 			blk_mq_put_dispatch_budget(q, budget_token);
1991 	}
1992 }
1993 
1994 /*
1995  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1996  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1997  * details)
1998  * Attention, we should explicitly call this in unusual cases:
1999  *  1) did not queue everything initially scheduled to queue
2000  *  2) the last attempt to queue a request failed
2001  */
2002 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2003 			      bool from_schedule)
2004 {
2005 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2006 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2007 		hctx->queue->mq_ops->commit_rqs(hctx);
2008 	}
2009 }
2010 
2011 /*
2012  * Returns true if we did some work AND can potentially do more.
2013  */
2014 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2015 			     unsigned int nr_budgets)
2016 {
2017 	enum prep_dispatch prep;
2018 	struct request_queue *q = hctx->queue;
2019 	struct request *rq;
2020 	int queued;
2021 	blk_status_t ret = BLK_STS_OK;
2022 	LIST_HEAD(zone_list);
2023 	bool needs_resource = false;
2024 
2025 	if (list_empty(list))
2026 		return false;
2027 
2028 	/*
2029 	 * Now process all the entries, sending them to the driver.
2030 	 */
2031 	queued = 0;
2032 	do {
2033 		struct blk_mq_queue_data bd;
2034 
2035 		rq = list_first_entry(list, struct request, queuelist);
2036 
2037 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2038 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2039 		if (prep != PREP_DISPATCH_OK)
2040 			break;
2041 
2042 		list_del_init(&rq->queuelist);
2043 
2044 		bd.rq = rq;
2045 		bd.last = list_empty(list);
2046 
2047 		/*
2048 		 * once the request is queued to lld, no need to cover the
2049 		 * budget any more
2050 		 */
2051 		if (nr_budgets)
2052 			nr_budgets--;
2053 		ret = q->mq_ops->queue_rq(hctx, &bd);
2054 		switch (ret) {
2055 		case BLK_STS_OK:
2056 			queued++;
2057 			break;
2058 		case BLK_STS_RESOURCE:
2059 			needs_resource = true;
2060 			fallthrough;
2061 		case BLK_STS_DEV_RESOURCE:
2062 			blk_mq_handle_dev_resource(rq, list);
2063 			goto out;
2064 		case BLK_STS_ZONE_RESOURCE:
2065 			/*
2066 			 * Move the request to zone_list and keep going through
2067 			 * the dispatch list to find more requests the drive can
2068 			 * accept.
2069 			 */
2070 			blk_mq_handle_zone_resource(rq, &zone_list);
2071 			needs_resource = true;
2072 			break;
2073 		default:
2074 			blk_mq_end_request(rq, ret);
2075 		}
2076 	} while (!list_empty(list));
2077 out:
2078 	if (!list_empty(&zone_list))
2079 		list_splice_tail_init(&zone_list, list);
2080 
2081 	/* If we didn't flush the entire list, we could have told the driver
2082 	 * there was more coming, but that turned out to be a lie.
2083 	 */
2084 	if (!list_empty(list) || ret != BLK_STS_OK)
2085 		blk_mq_commit_rqs(hctx, queued, false);
2086 
2087 	/*
2088 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2089 	 * that is where we will continue on next queue run.
2090 	 */
2091 	if (!list_empty(list)) {
2092 		bool needs_restart;
2093 		/* For non-shared tags, the RESTART check will suffice */
2094 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2095 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2096 			blk_mq_is_shared_tags(hctx->flags));
2097 
2098 		if (nr_budgets)
2099 			blk_mq_release_budgets(q, list);
2100 
2101 		spin_lock(&hctx->lock);
2102 		list_splice_tail_init(list, &hctx->dispatch);
2103 		spin_unlock(&hctx->lock);
2104 
2105 		/*
2106 		 * Order adding requests to hctx->dispatch and checking
2107 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2108 		 * in blk_mq_sched_restart(). Avoid restart code path to
2109 		 * miss the new added requests to hctx->dispatch, meantime
2110 		 * SCHED_RESTART is observed here.
2111 		 */
2112 		smp_mb();
2113 
2114 		/*
2115 		 * If SCHED_RESTART was set by the caller of this function and
2116 		 * it is no longer set that means that it was cleared by another
2117 		 * thread and hence that a queue rerun is needed.
2118 		 *
2119 		 * If 'no_tag' is set, that means that we failed getting
2120 		 * a driver tag with an I/O scheduler attached. If our dispatch
2121 		 * waitqueue is no longer active, ensure that we run the queue
2122 		 * AFTER adding our entries back to the list.
2123 		 *
2124 		 * If no I/O scheduler has been configured it is possible that
2125 		 * the hardware queue got stopped and restarted before requests
2126 		 * were pushed back onto the dispatch list. Rerun the queue to
2127 		 * avoid starvation. Notes:
2128 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2129 		 *   been stopped before rerunning a queue.
2130 		 * - Some but not all block drivers stop a queue before
2131 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2132 		 *   and dm-rq.
2133 		 *
2134 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2135 		 * bit is set, run queue after a delay to avoid IO stalls
2136 		 * that could otherwise occur if the queue is idle.  We'll do
2137 		 * similar if we couldn't get budget or couldn't lock a zone
2138 		 * and SCHED_RESTART is set.
2139 		 */
2140 		needs_restart = blk_mq_sched_needs_restart(hctx);
2141 		if (prep == PREP_DISPATCH_NO_BUDGET)
2142 			needs_resource = true;
2143 		if (!needs_restart ||
2144 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2145 			blk_mq_run_hw_queue(hctx, true);
2146 		else if (needs_resource)
2147 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2148 
2149 		blk_mq_update_dispatch_busy(hctx, true);
2150 		return false;
2151 	}
2152 
2153 	blk_mq_update_dispatch_busy(hctx, false);
2154 	return true;
2155 }
2156 
2157 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2158 {
2159 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2160 
2161 	if (cpu >= nr_cpu_ids)
2162 		cpu = cpumask_first(hctx->cpumask);
2163 	return cpu;
2164 }
2165 
2166 /*
2167  * It'd be great if the workqueue API had a way to pass
2168  * in a mask and had some smarts for more clever placement.
2169  * For now we just round-robin here, switching for every
2170  * BLK_MQ_CPU_WORK_BATCH queued items.
2171  */
2172 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2173 {
2174 	bool tried = false;
2175 	int next_cpu = hctx->next_cpu;
2176 
2177 	if (hctx->queue->nr_hw_queues == 1)
2178 		return WORK_CPU_UNBOUND;
2179 
2180 	if (--hctx->next_cpu_batch <= 0) {
2181 select_cpu:
2182 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2183 				cpu_online_mask);
2184 		if (next_cpu >= nr_cpu_ids)
2185 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2186 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2187 	}
2188 
2189 	/*
2190 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2191 	 * and it should only happen in the path of handling CPU DEAD.
2192 	 */
2193 	if (!cpu_online(next_cpu)) {
2194 		if (!tried) {
2195 			tried = true;
2196 			goto select_cpu;
2197 		}
2198 
2199 		/*
2200 		 * Make sure to re-select CPU next time once after CPUs
2201 		 * in hctx->cpumask become online again.
2202 		 */
2203 		hctx->next_cpu = next_cpu;
2204 		hctx->next_cpu_batch = 1;
2205 		return WORK_CPU_UNBOUND;
2206 	}
2207 
2208 	hctx->next_cpu = next_cpu;
2209 	return next_cpu;
2210 }
2211 
2212 /**
2213  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2214  * @hctx: Pointer to the hardware queue to run.
2215  * @msecs: Milliseconds of delay to wait before running the queue.
2216  *
2217  * Run a hardware queue asynchronously with a delay of @msecs.
2218  */
2219 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2220 {
2221 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2222 		return;
2223 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2224 				    msecs_to_jiffies(msecs));
2225 }
2226 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2227 
2228 /**
2229  * blk_mq_run_hw_queue - Start to run a hardware queue.
2230  * @hctx: Pointer to the hardware queue to run.
2231  * @async: If we want to run the queue asynchronously.
2232  *
2233  * Check if the request queue is not in a quiesced state and if there are
2234  * pending requests to be sent. If this is true, run the queue to send requests
2235  * to hardware.
2236  */
2237 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2238 {
2239 	bool need_run;
2240 
2241 	/*
2242 	 * We can't run the queue inline with interrupts disabled.
2243 	 */
2244 	WARN_ON_ONCE(!async && in_interrupt());
2245 
2246 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2247 
2248 	/*
2249 	 * When queue is quiesced, we may be switching io scheduler, or
2250 	 * updating nr_hw_queues, or other things, and we can't run queue
2251 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2252 	 *
2253 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2254 	 * quiesced.
2255 	 */
2256 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2257 		need_run = !blk_queue_quiesced(hctx->queue) &&
2258 		blk_mq_hctx_has_pending(hctx));
2259 
2260 	if (!need_run)
2261 		return;
2262 
2263 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2264 		blk_mq_delay_run_hw_queue(hctx, 0);
2265 		return;
2266 	}
2267 
2268 	blk_mq_run_dispatch_ops(hctx->queue,
2269 				blk_mq_sched_dispatch_requests(hctx));
2270 }
2271 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2272 
2273 /*
2274  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2275  * scheduler.
2276  */
2277 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2278 {
2279 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2280 	/*
2281 	 * If the IO scheduler does not respect hardware queues when
2282 	 * dispatching, we just don't bother with multiple HW queues and
2283 	 * dispatch from hctx for the current CPU since running multiple queues
2284 	 * just causes lock contention inside the scheduler and pointless cache
2285 	 * bouncing.
2286 	 */
2287 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2288 
2289 	if (!blk_mq_hctx_stopped(hctx))
2290 		return hctx;
2291 	return NULL;
2292 }
2293 
2294 /**
2295  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2296  * @q: Pointer to the request queue to run.
2297  * @async: If we want to run the queue asynchronously.
2298  */
2299 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2300 {
2301 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2302 	unsigned long i;
2303 
2304 	sq_hctx = NULL;
2305 	if (blk_queue_sq_sched(q))
2306 		sq_hctx = blk_mq_get_sq_hctx(q);
2307 	queue_for_each_hw_ctx(q, hctx, i) {
2308 		if (blk_mq_hctx_stopped(hctx))
2309 			continue;
2310 		/*
2311 		 * Dispatch from this hctx either if there's no hctx preferred
2312 		 * by IO scheduler or if it has requests that bypass the
2313 		 * scheduler.
2314 		 */
2315 		if (!sq_hctx || sq_hctx == hctx ||
2316 		    !list_empty_careful(&hctx->dispatch))
2317 			blk_mq_run_hw_queue(hctx, async);
2318 	}
2319 }
2320 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2321 
2322 /**
2323  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2324  * @q: Pointer to the request queue to run.
2325  * @msecs: Milliseconds of delay to wait before running the queues.
2326  */
2327 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2328 {
2329 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2330 	unsigned long i;
2331 
2332 	sq_hctx = NULL;
2333 	if (blk_queue_sq_sched(q))
2334 		sq_hctx = blk_mq_get_sq_hctx(q);
2335 	queue_for_each_hw_ctx(q, hctx, i) {
2336 		if (blk_mq_hctx_stopped(hctx))
2337 			continue;
2338 		/*
2339 		 * If there is already a run_work pending, leave the
2340 		 * pending delay untouched. Otherwise, a hctx can stall
2341 		 * if another hctx is re-delaying the other's work
2342 		 * before the work executes.
2343 		 */
2344 		if (delayed_work_pending(&hctx->run_work))
2345 			continue;
2346 		/*
2347 		 * Dispatch from this hctx either if there's no hctx preferred
2348 		 * by IO scheduler or if it has requests that bypass the
2349 		 * scheduler.
2350 		 */
2351 		if (!sq_hctx || sq_hctx == hctx ||
2352 		    !list_empty_careful(&hctx->dispatch))
2353 			blk_mq_delay_run_hw_queue(hctx, msecs);
2354 	}
2355 }
2356 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2357 
2358 /*
2359  * This function is often used for pausing .queue_rq() by driver when
2360  * there isn't enough resource or some conditions aren't satisfied, and
2361  * BLK_STS_RESOURCE is usually returned.
2362  *
2363  * We do not guarantee that dispatch can be drained or blocked
2364  * after blk_mq_stop_hw_queue() returns. Please use
2365  * blk_mq_quiesce_queue() for that requirement.
2366  */
2367 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2368 {
2369 	cancel_delayed_work(&hctx->run_work);
2370 
2371 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2372 }
2373 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2374 
2375 /*
2376  * This function is often used for pausing .queue_rq() by driver when
2377  * there isn't enough resource or some conditions aren't satisfied, and
2378  * BLK_STS_RESOURCE is usually returned.
2379  *
2380  * We do not guarantee that dispatch can be drained or blocked
2381  * after blk_mq_stop_hw_queues() returns. Please use
2382  * blk_mq_quiesce_queue() for that requirement.
2383  */
2384 void blk_mq_stop_hw_queues(struct request_queue *q)
2385 {
2386 	struct blk_mq_hw_ctx *hctx;
2387 	unsigned long i;
2388 
2389 	queue_for_each_hw_ctx(q, hctx, i)
2390 		blk_mq_stop_hw_queue(hctx);
2391 }
2392 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2393 
2394 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2395 {
2396 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2397 
2398 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2399 }
2400 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2401 
2402 void blk_mq_start_hw_queues(struct request_queue *q)
2403 {
2404 	struct blk_mq_hw_ctx *hctx;
2405 	unsigned long i;
2406 
2407 	queue_for_each_hw_ctx(q, hctx, i)
2408 		blk_mq_start_hw_queue(hctx);
2409 }
2410 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2411 
2412 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2413 {
2414 	if (!blk_mq_hctx_stopped(hctx))
2415 		return;
2416 
2417 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2418 	blk_mq_run_hw_queue(hctx, async);
2419 }
2420 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2421 
2422 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2423 {
2424 	struct blk_mq_hw_ctx *hctx;
2425 	unsigned long i;
2426 
2427 	queue_for_each_hw_ctx(q, hctx, i)
2428 		blk_mq_start_stopped_hw_queue(hctx, async ||
2429 					(hctx->flags & BLK_MQ_F_BLOCKING));
2430 }
2431 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2432 
2433 static void blk_mq_run_work_fn(struct work_struct *work)
2434 {
2435 	struct blk_mq_hw_ctx *hctx =
2436 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2437 
2438 	blk_mq_run_dispatch_ops(hctx->queue,
2439 				blk_mq_sched_dispatch_requests(hctx));
2440 }
2441 
2442 /**
2443  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2444  * @rq: Pointer to request to be inserted.
2445  * @flags: BLK_MQ_INSERT_*
2446  *
2447  * Should only be used carefully, when the caller knows we want to
2448  * bypass a potential IO scheduler on the target device.
2449  */
2450 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2451 {
2452 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2453 
2454 	spin_lock(&hctx->lock);
2455 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2456 		list_add(&rq->queuelist, &hctx->dispatch);
2457 	else
2458 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2459 	spin_unlock(&hctx->lock);
2460 }
2461 
2462 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2463 		struct blk_mq_ctx *ctx, struct list_head *list,
2464 		bool run_queue_async)
2465 {
2466 	struct request *rq;
2467 	enum hctx_type type = hctx->type;
2468 
2469 	/*
2470 	 * Try to issue requests directly if the hw queue isn't busy to save an
2471 	 * extra enqueue & dequeue to the sw queue.
2472 	 */
2473 	if (!hctx->dispatch_busy && !run_queue_async) {
2474 		blk_mq_run_dispatch_ops(hctx->queue,
2475 			blk_mq_try_issue_list_directly(hctx, list));
2476 		if (list_empty(list))
2477 			goto out;
2478 	}
2479 
2480 	/*
2481 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2482 	 * offline now
2483 	 */
2484 	list_for_each_entry(rq, list, queuelist) {
2485 		BUG_ON(rq->mq_ctx != ctx);
2486 		trace_block_rq_insert(rq);
2487 		if (rq->cmd_flags & REQ_NOWAIT)
2488 			run_queue_async = true;
2489 	}
2490 
2491 	spin_lock(&ctx->lock);
2492 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2493 	blk_mq_hctx_mark_pending(hctx, ctx);
2494 	spin_unlock(&ctx->lock);
2495 out:
2496 	blk_mq_run_hw_queue(hctx, run_queue_async);
2497 }
2498 
2499 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2500 {
2501 	struct request_queue *q = rq->q;
2502 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2503 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2504 
2505 	if (blk_rq_is_passthrough(rq)) {
2506 		/*
2507 		 * Passthrough request have to be added to hctx->dispatch
2508 		 * directly.  The device may be in a situation where it can't
2509 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2510 		 * them, which gets them added to hctx->dispatch.
2511 		 *
2512 		 * If a passthrough request is required to unblock the queues,
2513 		 * and it is added to the scheduler queue, there is no chance to
2514 		 * dispatch it given we prioritize requests in hctx->dispatch.
2515 		 */
2516 		blk_mq_request_bypass_insert(rq, flags);
2517 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2518 		/*
2519 		 * Firstly normal IO request is inserted to scheduler queue or
2520 		 * sw queue, meantime we add flush request to dispatch queue(
2521 		 * hctx->dispatch) directly and there is at most one in-flight
2522 		 * flush request for each hw queue, so it doesn't matter to add
2523 		 * flush request to tail or front of the dispatch queue.
2524 		 *
2525 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2526 		 * command, and queueing it will fail when there is any
2527 		 * in-flight normal IO request(NCQ command). When adding flush
2528 		 * rq to the front of hctx->dispatch, it is easier to introduce
2529 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2530 		 * compared with adding to the tail of dispatch queue, then
2531 		 * chance of flush merge is increased, and less flush requests
2532 		 * will be issued to controller. It is observed that ~10% time
2533 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2534 		 * drive when adding flush rq to the front of hctx->dispatch.
2535 		 *
2536 		 * Simply queue flush rq to the front of hctx->dispatch so that
2537 		 * intensive flush workloads can benefit in case of NCQ HW.
2538 		 */
2539 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2540 	} else if (q->elevator) {
2541 		LIST_HEAD(list);
2542 
2543 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2544 
2545 		list_add(&rq->queuelist, &list);
2546 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2547 	} else {
2548 		trace_block_rq_insert(rq);
2549 
2550 		spin_lock(&ctx->lock);
2551 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2552 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2553 		else
2554 			list_add_tail(&rq->queuelist,
2555 				      &ctx->rq_lists[hctx->type]);
2556 		blk_mq_hctx_mark_pending(hctx, ctx);
2557 		spin_unlock(&ctx->lock);
2558 	}
2559 }
2560 
2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562 		unsigned int nr_segs)
2563 {
2564 	int err;
2565 
2566 	if (bio->bi_opf & REQ_RAHEAD)
2567 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568 
2569 	rq->__sector = bio->bi_iter.bi_sector;
2570 	rq->write_hint = bio->bi_write_hint;
2571 	blk_rq_bio_prep(rq, bio, nr_segs);
2572 
2573 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2574 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2575 	WARN_ON_ONCE(err);
2576 
2577 	blk_account_io_start(rq);
2578 }
2579 
2580 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2581 					    struct request *rq, bool last)
2582 {
2583 	struct request_queue *q = rq->q;
2584 	struct blk_mq_queue_data bd = {
2585 		.rq = rq,
2586 		.last = last,
2587 	};
2588 	blk_status_t ret;
2589 
2590 	/*
2591 	 * For OK queue, we are done. For error, caller may kill it.
2592 	 * Any other error (busy), just add it to our list as we
2593 	 * previously would have done.
2594 	 */
2595 	ret = q->mq_ops->queue_rq(hctx, &bd);
2596 	switch (ret) {
2597 	case BLK_STS_OK:
2598 		blk_mq_update_dispatch_busy(hctx, false);
2599 		break;
2600 	case BLK_STS_RESOURCE:
2601 	case BLK_STS_DEV_RESOURCE:
2602 		blk_mq_update_dispatch_busy(hctx, true);
2603 		__blk_mq_requeue_request(rq);
2604 		break;
2605 	default:
2606 		blk_mq_update_dispatch_busy(hctx, false);
2607 		break;
2608 	}
2609 
2610 	return ret;
2611 }
2612 
2613 static bool blk_mq_get_budget_and_tag(struct request *rq)
2614 {
2615 	int budget_token;
2616 
2617 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2618 	if (budget_token < 0)
2619 		return false;
2620 	blk_mq_set_rq_budget_token(rq, budget_token);
2621 	if (!blk_mq_get_driver_tag(rq)) {
2622 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2623 		return false;
2624 	}
2625 	return true;
2626 }
2627 
2628 /**
2629  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2630  * @hctx: Pointer of the associated hardware queue.
2631  * @rq: Pointer to request to be sent.
2632  *
2633  * If the device has enough resources to accept a new request now, send the
2634  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2635  * we can try send it another time in the future. Requests inserted at this
2636  * queue have higher priority.
2637  */
2638 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2639 		struct request *rq)
2640 {
2641 	blk_status_t ret;
2642 
2643 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2644 		blk_mq_insert_request(rq, 0);
2645 		return;
2646 	}
2647 
2648 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2649 		blk_mq_insert_request(rq, 0);
2650 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2651 		return;
2652 	}
2653 
2654 	ret = __blk_mq_issue_directly(hctx, rq, true);
2655 	switch (ret) {
2656 	case BLK_STS_OK:
2657 		break;
2658 	case BLK_STS_RESOURCE:
2659 	case BLK_STS_DEV_RESOURCE:
2660 		blk_mq_request_bypass_insert(rq, 0);
2661 		blk_mq_run_hw_queue(hctx, false);
2662 		break;
2663 	default:
2664 		blk_mq_end_request(rq, ret);
2665 		break;
2666 	}
2667 }
2668 
2669 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2670 {
2671 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2672 
2673 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2674 		blk_mq_insert_request(rq, 0);
2675 		return BLK_STS_OK;
2676 	}
2677 
2678 	if (!blk_mq_get_budget_and_tag(rq))
2679 		return BLK_STS_RESOURCE;
2680 	return __blk_mq_issue_directly(hctx, rq, last);
2681 }
2682 
2683 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2684 {
2685 	struct blk_mq_hw_ctx *hctx = NULL;
2686 	struct request *rq;
2687 	int queued = 0;
2688 	blk_status_t ret = BLK_STS_OK;
2689 
2690 	while ((rq = rq_list_pop(&plug->mq_list))) {
2691 		bool last = rq_list_empty(plug->mq_list);
2692 
2693 		if (hctx != rq->mq_hctx) {
2694 			if (hctx) {
2695 				blk_mq_commit_rqs(hctx, queued, false);
2696 				queued = 0;
2697 			}
2698 			hctx = rq->mq_hctx;
2699 		}
2700 
2701 		ret = blk_mq_request_issue_directly(rq, last);
2702 		switch (ret) {
2703 		case BLK_STS_OK:
2704 			queued++;
2705 			break;
2706 		case BLK_STS_RESOURCE:
2707 		case BLK_STS_DEV_RESOURCE:
2708 			blk_mq_request_bypass_insert(rq, 0);
2709 			blk_mq_run_hw_queue(hctx, false);
2710 			goto out;
2711 		default:
2712 			blk_mq_end_request(rq, ret);
2713 			break;
2714 		}
2715 	}
2716 
2717 out:
2718 	if (ret != BLK_STS_OK)
2719 		blk_mq_commit_rqs(hctx, queued, false);
2720 }
2721 
2722 static void __blk_mq_flush_plug_list(struct request_queue *q,
2723 				     struct blk_plug *plug)
2724 {
2725 	if (blk_queue_quiesced(q))
2726 		return;
2727 	q->mq_ops->queue_rqs(&plug->mq_list);
2728 }
2729 
2730 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2731 {
2732 	struct blk_mq_hw_ctx *this_hctx = NULL;
2733 	struct blk_mq_ctx *this_ctx = NULL;
2734 	struct request *requeue_list = NULL;
2735 	struct request **requeue_lastp = &requeue_list;
2736 	unsigned int depth = 0;
2737 	bool is_passthrough = false;
2738 	LIST_HEAD(list);
2739 
2740 	do {
2741 		struct request *rq = rq_list_pop(&plug->mq_list);
2742 
2743 		if (!this_hctx) {
2744 			this_hctx = rq->mq_hctx;
2745 			this_ctx = rq->mq_ctx;
2746 			is_passthrough = blk_rq_is_passthrough(rq);
2747 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2748 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2749 			rq_list_add_tail(&requeue_lastp, rq);
2750 			continue;
2751 		}
2752 		list_add(&rq->queuelist, &list);
2753 		depth++;
2754 	} while (!rq_list_empty(plug->mq_list));
2755 
2756 	plug->mq_list = requeue_list;
2757 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758 
2759 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2760 	/* passthrough requests should never be issued to the I/O scheduler */
2761 	if (is_passthrough) {
2762 		spin_lock(&this_hctx->lock);
2763 		list_splice_tail_init(&list, &this_hctx->dispatch);
2764 		spin_unlock(&this_hctx->lock);
2765 		blk_mq_run_hw_queue(this_hctx, from_sched);
2766 	} else if (this_hctx->queue->elevator) {
2767 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2768 				&list, 0);
2769 		blk_mq_run_hw_queue(this_hctx, from_sched);
2770 	} else {
2771 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2772 	}
2773 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2774 }
2775 
2776 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2777 {
2778 	struct request *rq;
2779 
2780 	/*
2781 	 * We may have been called recursively midway through handling
2782 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2783 	 * To avoid mq_list changing under our feet, clear rq_count early and
2784 	 * bail out specifically if rq_count is 0 rather than checking
2785 	 * whether the mq_list is empty.
2786 	 */
2787 	if (plug->rq_count == 0)
2788 		return;
2789 	plug->rq_count = 0;
2790 
2791 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2792 		struct request_queue *q;
2793 
2794 		rq = rq_list_peek(&plug->mq_list);
2795 		q = rq->q;
2796 
2797 		/*
2798 		 * Peek first request and see if we have a ->queue_rqs() hook.
2799 		 * If we do, we can dispatch the whole plug list in one go. We
2800 		 * already know at this point that all requests belong to the
2801 		 * same queue, caller must ensure that's the case.
2802 		 */
2803 		if (q->mq_ops->queue_rqs) {
2804 			blk_mq_run_dispatch_ops(q,
2805 				__blk_mq_flush_plug_list(q, plug));
2806 			if (rq_list_empty(plug->mq_list))
2807 				return;
2808 		}
2809 
2810 		blk_mq_run_dispatch_ops(q,
2811 				blk_mq_plug_issue_direct(plug));
2812 		if (rq_list_empty(plug->mq_list))
2813 			return;
2814 	}
2815 
2816 	do {
2817 		blk_mq_dispatch_plug_list(plug, from_schedule);
2818 	} while (!rq_list_empty(plug->mq_list));
2819 }
2820 
2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2822 		struct list_head *list)
2823 {
2824 	int queued = 0;
2825 	blk_status_t ret = BLK_STS_OK;
2826 
2827 	while (!list_empty(list)) {
2828 		struct request *rq = list_first_entry(list, struct request,
2829 				queuelist);
2830 
2831 		list_del_init(&rq->queuelist);
2832 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2833 		switch (ret) {
2834 		case BLK_STS_OK:
2835 			queued++;
2836 			break;
2837 		case BLK_STS_RESOURCE:
2838 		case BLK_STS_DEV_RESOURCE:
2839 			blk_mq_request_bypass_insert(rq, 0);
2840 			if (list_empty(list))
2841 				blk_mq_run_hw_queue(hctx, false);
2842 			goto out;
2843 		default:
2844 			blk_mq_end_request(rq, ret);
2845 			break;
2846 		}
2847 	}
2848 
2849 out:
2850 	if (ret != BLK_STS_OK)
2851 		blk_mq_commit_rqs(hctx, queued, false);
2852 }
2853 
2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2855 				     struct bio *bio, unsigned int nr_segs)
2856 {
2857 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2858 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2859 			return true;
2860 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2861 			return true;
2862 	}
2863 	return false;
2864 }
2865 
2866 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2867 					       struct blk_plug *plug,
2868 					       struct bio *bio,
2869 					       unsigned int nsegs)
2870 {
2871 	struct blk_mq_alloc_data data = {
2872 		.q		= q,
2873 		.nr_tags	= 1,
2874 		.cmd_flags	= bio->bi_opf,
2875 	};
2876 	struct request *rq;
2877 
2878 	rq_qos_throttle(q, bio);
2879 
2880 	if (plug) {
2881 		data.nr_tags = plug->nr_ios;
2882 		plug->nr_ios = 1;
2883 		data.cached_rq = &plug->cached_rq;
2884 	}
2885 
2886 	rq = __blk_mq_alloc_requests(&data);
2887 	if (rq)
2888 		return rq;
2889 	rq_qos_cleanup(q, bio);
2890 	if (bio->bi_opf & REQ_NOWAIT)
2891 		bio_wouldblock_error(bio);
2892 	return NULL;
2893 }
2894 
2895 /*
2896  * Check if there is a suitable cached request and return it.
2897  */
2898 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2899 		struct request_queue *q, blk_opf_t opf)
2900 {
2901 	enum hctx_type type = blk_mq_get_hctx_type(opf);
2902 	struct request *rq;
2903 
2904 	if (!plug)
2905 		return NULL;
2906 	rq = rq_list_peek(&plug->cached_rq);
2907 	if (!rq || rq->q != q)
2908 		return NULL;
2909 	if (type != rq->mq_hctx->type &&
2910 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2911 		return NULL;
2912 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2913 		return NULL;
2914 	return rq;
2915 }
2916 
2917 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2918 		struct bio *bio)
2919 {
2920 	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2921 
2922 	/*
2923 	 * If any qos ->throttle() end up blocking, we will have flushed the
2924 	 * plug and hence killed the cached_rq list as well. Pop this entry
2925 	 * before we throttle.
2926 	 */
2927 	plug->cached_rq = rq_list_next(rq);
2928 	rq_qos_throttle(rq->q, bio);
2929 
2930 	blk_mq_rq_time_init(rq, 0);
2931 	rq->cmd_flags = bio->bi_opf;
2932 	INIT_LIST_HEAD(&rq->queuelist);
2933 }
2934 
2935 /**
2936  * blk_mq_submit_bio - Create and send a request to block device.
2937  * @bio: Bio pointer.
2938  *
2939  * Builds up a request structure from @q and @bio and send to the device. The
2940  * request may not be queued directly to hardware if:
2941  * * This request can be merged with another one
2942  * * We want to place request at plug queue for possible future merging
2943  * * There is an IO scheduler active at this queue
2944  *
2945  * It will not queue the request if there is an error with the bio, or at the
2946  * request creation.
2947  */
2948 void blk_mq_submit_bio(struct bio *bio)
2949 {
2950 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951 	struct blk_plug *plug = blk_mq_plug(bio);
2952 	const int is_sync = op_is_sync(bio->bi_opf);
2953 	struct blk_mq_hw_ctx *hctx;
2954 	unsigned int nr_segs = 1;
2955 	struct request *rq;
2956 	blk_status_t ret;
2957 
2958 	bio = blk_queue_bounce(bio, q);
2959 
2960 	/*
2961 	 * If the plug has a cached request for this queue, try use it.
2962 	 *
2963 	 * The cached request already holds a q_usage_counter reference and we
2964 	 * don't have to acquire a new one if we use it.
2965 	 */
2966 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2967 	if (!rq) {
2968 		if (unlikely(bio_queue_enter(bio)))
2969 			return;
2970 	}
2971 
2972 	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2973 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2974 		if (!bio)
2975 			goto queue_exit;
2976 	}
2977 	if (!bio_integrity_prep(bio))
2978 		goto queue_exit;
2979 
2980 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2981 		goto queue_exit;
2982 
2983 	if (!rq) {
2984 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2985 		if (unlikely(!rq))
2986 			goto queue_exit;
2987 	} else {
2988 		blk_mq_use_cached_rq(rq, plug, bio);
2989 	}
2990 
2991 	trace_block_getrq(bio);
2992 
2993 	rq_qos_track(q, rq, bio);
2994 
2995 	blk_mq_bio_to_request(rq, bio, nr_segs);
2996 
2997 	ret = blk_crypto_rq_get_keyslot(rq);
2998 	if (ret != BLK_STS_OK) {
2999 		bio->bi_status = ret;
3000 		bio_endio(bio);
3001 		blk_mq_free_request(rq);
3002 		return;
3003 	}
3004 
3005 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3006 		return;
3007 
3008 	if (plug) {
3009 		blk_add_rq_to_plug(plug, rq);
3010 		return;
3011 	}
3012 
3013 	hctx = rq->mq_hctx;
3014 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3015 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3016 		blk_mq_insert_request(rq, 0);
3017 		blk_mq_run_hw_queue(hctx, true);
3018 	} else {
3019 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3020 	}
3021 	return;
3022 
3023 queue_exit:
3024 	/*
3025 	 * Don't drop the queue reference if we were trying to use a cached
3026 	 * request and thus didn't acquire one.
3027 	 */
3028 	if (!rq)
3029 		blk_queue_exit(q);
3030 }
3031 
3032 #ifdef CONFIG_BLK_MQ_STACKING
3033 /**
3034  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3035  * @rq: the request being queued
3036  */
3037 blk_status_t blk_insert_cloned_request(struct request *rq)
3038 {
3039 	struct request_queue *q = rq->q;
3040 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3041 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3042 	blk_status_t ret;
3043 
3044 	if (blk_rq_sectors(rq) > max_sectors) {
3045 		/*
3046 		 * SCSI device does not have a good way to return if
3047 		 * Write Same/Zero is actually supported. If a device rejects
3048 		 * a non-read/write command (discard, write same,etc.) the
3049 		 * low-level device driver will set the relevant queue limit to
3050 		 * 0 to prevent blk-lib from issuing more of the offending
3051 		 * operations. Commands queued prior to the queue limit being
3052 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3053 		 * errors being propagated to upper layers.
3054 		 */
3055 		if (max_sectors == 0)
3056 			return BLK_STS_NOTSUPP;
3057 
3058 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3059 			__func__, blk_rq_sectors(rq), max_sectors);
3060 		return BLK_STS_IOERR;
3061 	}
3062 
3063 	/*
3064 	 * The queue settings related to segment counting may differ from the
3065 	 * original queue.
3066 	 */
3067 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3068 	if (rq->nr_phys_segments > max_segments) {
3069 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3070 			__func__, rq->nr_phys_segments, max_segments);
3071 		return BLK_STS_IOERR;
3072 	}
3073 
3074 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3075 		return BLK_STS_IOERR;
3076 
3077 	ret = blk_crypto_rq_get_keyslot(rq);
3078 	if (ret != BLK_STS_OK)
3079 		return ret;
3080 
3081 	blk_account_io_start(rq);
3082 
3083 	/*
3084 	 * Since we have a scheduler attached on the top device,
3085 	 * bypass a potential scheduler on the bottom device for
3086 	 * insert.
3087 	 */
3088 	blk_mq_run_dispatch_ops(q,
3089 			ret = blk_mq_request_issue_directly(rq, true));
3090 	if (ret)
3091 		blk_account_io_done(rq, blk_time_get_ns());
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3095 
3096 /**
3097  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3098  * @rq: the clone request to be cleaned up
3099  *
3100  * Description:
3101  *     Free all bios in @rq for a cloned request.
3102  */
3103 void blk_rq_unprep_clone(struct request *rq)
3104 {
3105 	struct bio *bio;
3106 
3107 	while ((bio = rq->bio) != NULL) {
3108 		rq->bio = bio->bi_next;
3109 
3110 		bio_put(bio);
3111 	}
3112 }
3113 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3114 
3115 /**
3116  * blk_rq_prep_clone - Helper function to setup clone request
3117  * @rq: the request to be setup
3118  * @rq_src: original request to be cloned
3119  * @bs: bio_set that bios for clone are allocated from
3120  * @gfp_mask: memory allocation mask for bio
3121  * @bio_ctr: setup function to be called for each clone bio.
3122  *           Returns %0 for success, non %0 for failure.
3123  * @data: private data to be passed to @bio_ctr
3124  *
3125  * Description:
3126  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3127  *     Also, pages which the original bios are pointing to are not copied
3128  *     and the cloned bios just point same pages.
3129  *     So cloned bios must be completed before original bios, which means
3130  *     the caller must complete @rq before @rq_src.
3131  */
3132 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3133 		      struct bio_set *bs, gfp_t gfp_mask,
3134 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3135 		      void *data)
3136 {
3137 	struct bio *bio, *bio_src;
3138 
3139 	if (!bs)
3140 		bs = &fs_bio_set;
3141 
3142 	__rq_for_each_bio(bio_src, rq_src) {
3143 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3144 				      bs);
3145 		if (!bio)
3146 			goto free_and_out;
3147 
3148 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3149 			goto free_and_out;
3150 
3151 		if (rq->bio) {
3152 			rq->biotail->bi_next = bio;
3153 			rq->biotail = bio;
3154 		} else {
3155 			rq->bio = rq->biotail = bio;
3156 		}
3157 		bio = NULL;
3158 	}
3159 
3160 	/* Copy attributes of the original request to the clone request. */
3161 	rq->__sector = blk_rq_pos(rq_src);
3162 	rq->__data_len = blk_rq_bytes(rq_src);
3163 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3164 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3165 		rq->special_vec = rq_src->special_vec;
3166 	}
3167 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3168 	rq->ioprio = rq_src->ioprio;
3169 	rq->write_hint = rq_src->write_hint;
3170 
3171 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3172 		goto free_and_out;
3173 
3174 	return 0;
3175 
3176 free_and_out:
3177 	if (bio)
3178 		bio_put(bio);
3179 	blk_rq_unprep_clone(rq);
3180 
3181 	return -ENOMEM;
3182 }
3183 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3184 #endif /* CONFIG_BLK_MQ_STACKING */
3185 
3186 /*
3187  * Steal bios from a request and add them to a bio list.
3188  * The request must not have been partially completed before.
3189  */
3190 void blk_steal_bios(struct bio_list *list, struct request *rq)
3191 {
3192 	if (rq->bio) {
3193 		if (list->tail)
3194 			list->tail->bi_next = rq->bio;
3195 		else
3196 			list->head = rq->bio;
3197 		list->tail = rq->biotail;
3198 
3199 		rq->bio = NULL;
3200 		rq->biotail = NULL;
3201 	}
3202 
3203 	rq->__data_len = 0;
3204 }
3205 EXPORT_SYMBOL_GPL(blk_steal_bios);
3206 
3207 static size_t order_to_size(unsigned int order)
3208 {
3209 	return (size_t)PAGE_SIZE << order;
3210 }
3211 
3212 /* called before freeing request pool in @tags */
3213 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3214 				    struct blk_mq_tags *tags)
3215 {
3216 	struct page *page;
3217 	unsigned long flags;
3218 
3219 	/*
3220 	 * There is no need to clear mapping if driver tags is not initialized
3221 	 * or the mapping belongs to the driver tags.
3222 	 */
3223 	if (!drv_tags || drv_tags == tags)
3224 		return;
3225 
3226 	list_for_each_entry(page, &tags->page_list, lru) {
3227 		unsigned long start = (unsigned long)page_address(page);
3228 		unsigned long end = start + order_to_size(page->private);
3229 		int i;
3230 
3231 		for (i = 0; i < drv_tags->nr_tags; i++) {
3232 			struct request *rq = drv_tags->rqs[i];
3233 			unsigned long rq_addr = (unsigned long)rq;
3234 
3235 			if (rq_addr >= start && rq_addr < end) {
3236 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3237 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3238 			}
3239 		}
3240 	}
3241 
3242 	/*
3243 	 * Wait until all pending iteration is done.
3244 	 *
3245 	 * Request reference is cleared and it is guaranteed to be observed
3246 	 * after the ->lock is released.
3247 	 */
3248 	spin_lock_irqsave(&drv_tags->lock, flags);
3249 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3250 }
3251 
3252 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3253 		     unsigned int hctx_idx)
3254 {
3255 	struct blk_mq_tags *drv_tags;
3256 	struct page *page;
3257 
3258 	if (list_empty(&tags->page_list))
3259 		return;
3260 
3261 	if (blk_mq_is_shared_tags(set->flags))
3262 		drv_tags = set->shared_tags;
3263 	else
3264 		drv_tags = set->tags[hctx_idx];
3265 
3266 	if (tags->static_rqs && set->ops->exit_request) {
3267 		int i;
3268 
3269 		for (i = 0; i < tags->nr_tags; i++) {
3270 			struct request *rq = tags->static_rqs[i];
3271 
3272 			if (!rq)
3273 				continue;
3274 			set->ops->exit_request(set, rq, hctx_idx);
3275 			tags->static_rqs[i] = NULL;
3276 		}
3277 	}
3278 
3279 	blk_mq_clear_rq_mapping(drv_tags, tags);
3280 
3281 	while (!list_empty(&tags->page_list)) {
3282 		page = list_first_entry(&tags->page_list, struct page, lru);
3283 		list_del_init(&page->lru);
3284 		/*
3285 		 * Remove kmemleak object previously allocated in
3286 		 * blk_mq_alloc_rqs().
3287 		 */
3288 		kmemleak_free(page_address(page));
3289 		__free_pages(page, page->private);
3290 	}
3291 }
3292 
3293 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3294 {
3295 	kfree(tags->rqs);
3296 	tags->rqs = NULL;
3297 	kfree(tags->static_rqs);
3298 	tags->static_rqs = NULL;
3299 
3300 	blk_mq_free_tags(tags);
3301 }
3302 
3303 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3304 		unsigned int hctx_idx)
3305 {
3306 	int i;
3307 
3308 	for (i = 0; i < set->nr_maps; i++) {
3309 		unsigned int start = set->map[i].queue_offset;
3310 		unsigned int end = start + set->map[i].nr_queues;
3311 
3312 		if (hctx_idx >= start && hctx_idx < end)
3313 			break;
3314 	}
3315 
3316 	if (i >= set->nr_maps)
3317 		i = HCTX_TYPE_DEFAULT;
3318 
3319 	return i;
3320 }
3321 
3322 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3323 		unsigned int hctx_idx)
3324 {
3325 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3326 
3327 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3328 }
3329 
3330 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3331 					       unsigned int hctx_idx,
3332 					       unsigned int nr_tags,
3333 					       unsigned int reserved_tags)
3334 {
3335 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3336 	struct blk_mq_tags *tags;
3337 
3338 	if (node == NUMA_NO_NODE)
3339 		node = set->numa_node;
3340 
3341 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3342 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3343 	if (!tags)
3344 		return NULL;
3345 
3346 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3347 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3348 				 node);
3349 	if (!tags->rqs)
3350 		goto err_free_tags;
3351 
3352 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3353 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3354 					node);
3355 	if (!tags->static_rqs)
3356 		goto err_free_rqs;
3357 
3358 	return tags;
3359 
3360 err_free_rqs:
3361 	kfree(tags->rqs);
3362 err_free_tags:
3363 	blk_mq_free_tags(tags);
3364 	return NULL;
3365 }
3366 
3367 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3368 			       unsigned int hctx_idx, int node)
3369 {
3370 	int ret;
3371 
3372 	if (set->ops->init_request) {
3373 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3374 		if (ret)
3375 			return ret;
3376 	}
3377 
3378 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3379 	return 0;
3380 }
3381 
3382 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3383 			    struct blk_mq_tags *tags,
3384 			    unsigned int hctx_idx, unsigned int depth)
3385 {
3386 	unsigned int i, j, entries_per_page, max_order = 4;
3387 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3388 	size_t rq_size, left;
3389 
3390 	if (node == NUMA_NO_NODE)
3391 		node = set->numa_node;
3392 
3393 	INIT_LIST_HEAD(&tags->page_list);
3394 
3395 	/*
3396 	 * rq_size is the size of the request plus driver payload, rounded
3397 	 * to the cacheline size
3398 	 */
3399 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3400 				cache_line_size());
3401 	left = rq_size * depth;
3402 
3403 	for (i = 0; i < depth; ) {
3404 		int this_order = max_order;
3405 		struct page *page;
3406 		int to_do;
3407 		void *p;
3408 
3409 		while (this_order && left < order_to_size(this_order - 1))
3410 			this_order--;
3411 
3412 		do {
3413 			page = alloc_pages_node(node,
3414 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3415 				this_order);
3416 			if (page)
3417 				break;
3418 			if (!this_order--)
3419 				break;
3420 			if (order_to_size(this_order) < rq_size)
3421 				break;
3422 		} while (1);
3423 
3424 		if (!page)
3425 			goto fail;
3426 
3427 		page->private = this_order;
3428 		list_add_tail(&page->lru, &tags->page_list);
3429 
3430 		p = page_address(page);
3431 		/*
3432 		 * Allow kmemleak to scan these pages as they contain pointers
3433 		 * to additional allocations like via ops->init_request().
3434 		 */
3435 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3436 		entries_per_page = order_to_size(this_order) / rq_size;
3437 		to_do = min(entries_per_page, depth - i);
3438 		left -= to_do * rq_size;
3439 		for (j = 0; j < to_do; j++) {
3440 			struct request *rq = p;
3441 
3442 			tags->static_rqs[i] = rq;
3443 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3444 				tags->static_rqs[i] = NULL;
3445 				goto fail;
3446 			}
3447 
3448 			p += rq_size;
3449 			i++;
3450 		}
3451 	}
3452 	return 0;
3453 
3454 fail:
3455 	blk_mq_free_rqs(set, tags, hctx_idx);
3456 	return -ENOMEM;
3457 }
3458 
3459 struct rq_iter_data {
3460 	struct blk_mq_hw_ctx *hctx;
3461 	bool has_rq;
3462 };
3463 
3464 static bool blk_mq_has_request(struct request *rq, void *data)
3465 {
3466 	struct rq_iter_data *iter_data = data;
3467 
3468 	if (rq->mq_hctx != iter_data->hctx)
3469 		return true;
3470 	iter_data->has_rq = true;
3471 	return false;
3472 }
3473 
3474 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3475 {
3476 	struct blk_mq_tags *tags = hctx->sched_tags ?
3477 			hctx->sched_tags : hctx->tags;
3478 	struct rq_iter_data data = {
3479 		.hctx	= hctx,
3480 	};
3481 
3482 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3483 	return data.has_rq;
3484 }
3485 
3486 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3487 		struct blk_mq_hw_ctx *hctx)
3488 {
3489 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3490 		return false;
3491 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3492 		return false;
3493 	return true;
3494 }
3495 
3496 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3497 {
3498 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3499 			struct blk_mq_hw_ctx, cpuhp_online);
3500 
3501 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3502 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3503 		return 0;
3504 
3505 	/*
3506 	 * Prevent new request from being allocated on the current hctx.
3507 	 *
3508 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3509 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3510 	 * seen once we return from the tag allocator.
3511 	 */
3512 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3513 	smp_mb__after_atomic();
3514 
3515 	/*
3516 	 * Try to grab a reference to the queue and wait for any outstanding
3517 	 * requests.  If we could not grab a reference the queue has been
3518 	 * frozen and there are no requests.
3519 	 */
3520 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3521 		while (blk_mq_hctx_has_requests(hctx))
3522 			msleep(5);
3523 		percpu_ref_put(&hctx->queue->q_usage_counter);
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3530 {
3531 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3532 			struct blk_mq_hw_ctx, cpuhp_online);
3533 
3534 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3535 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3536 	return 0;
3537 }
3538 
3539 /*
3540  * 'cpu' is going away. splice any existing rq_list entries from this
3541  * software queue to the hw queue dispatch list, and ensure that it
3542  * gets run.
3543  */
3544 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3545 {
3546 	struct blk_mq_hw_ctx *hctx;
3547 	struct blk_mq_ctx *ctx;
3548 	LIST_HEAD(tmp);
3549 	enum hctx_type type;
3550 
3551 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3552 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3553 		return 0;
3554 
3555 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3556 	type = hctx->type;
3557 
3558 	spin_lock(&ctx->lock);
3559 	if (!list_empty(&ctx->rq_lists[type])) {
3560 		list_splice_init(&ctx->rq_lists[type], &tmp);
3561 		blk_mq_hctx_clear_pending(hctx, ctx);
3562 	}
3563 	spin_unlock(&ctx->lock);
3564 
3565 	if (list_empty(&tmp))
3566 		return 0;
3567 
3568 	spin_lock(&hctx->lock);
3569 	list_splice_tail_init(&tmp, &hctx->dispatch);
3570 	spin_unlock(&hctx->lock);
3571 
3572 	blk_mq_run_hw_queue(hctx, true);
3573 	return 0;
3574 }
3575 
3576 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3577 {
3578 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3579 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3580 						    &hctx->cpuhp_online);
3581 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3582 					    &hctx->cpuhp_dead);
3583 }
3584 
3585 /*
3586  * Before freeing hw queue, clearing the flush request reference in
3587  * tags->rqs[] for avoiding potential UAF.
3588  */
3589 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3590 		unsigned int queue_depth, struct request *flush_rq)
3591 {
3592 	int i;
3593 	unsigned long flags;
3594 
3595 	/* The hw queue may not be mapped yet */
3596 	if (!tags)
3597 		return;
3598 
3599 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3600 
3601 	for (i = 0; i < queue_depth; i++)
3602 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3603 
3604 	/*
3605 	 * Wait until all pending iteration is done.
3606 	 *
3607 	 * Request reference is cleared and it is guaranteed to be observed
3608 	 * after the ->lock is released.
3609 	 */
3610 	spin_lock_irqsave(&tags->lock, flags);
3611 	spin_unlock_irqrestore(&tags->lock, flags);
3612 }
3613 
3614 /* hctx->ctxs will be freed in queue's release handler */
3615 static void blk_mq_exit_hctx(struct request_queue *q,
3616 		struct blk_mq_tag_set *set,
3617 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3618 {
3619 	struct request *flush_rq = hctx->fq->flush_rq;
3620 
3621 	if (blk_mq_hw_queue_mapped(hctx))
3622 		blk_mq_tag_idle(hctx);
3623 
3624 	if (blk_queue_init_done(q))
3625 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3626 				set->queue_depth, flush_rq);
3627 	if (set->ops->exit_request)
3628 		set->ops->exit_request(set, flush_rq, hctx_idx);
3629 
3630 	if (set->ops->exit_hctx)
3631 		set->ops->exit_hctx(hctx, hctx_idx);
3632 
3633 	blk_mq_remove_cpuhp(hctx);
3634 
3635 	xa_erase(&q->hctx_table, hctx_idx);
3636 
3637 	spin_lock(&q->unused_hctx_lock);
3638 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3639 	spin_unlock(&q->unused_hctx_lock);
3640 }
3641 
3642 static void blk_mq_exit_hw_queues(struct request_queue *q,
3643 		struct blk_mq_tag_set *set, int nr_queue)
3644 {
3645 	struct blk_mq_hw_ctx *hctx;
3646 	unsigned long i;
3647 
3648 	queue_for_each_hw_ctx(q, hctx, i) {
3649 		if (i == nr_queue)
3650 			break;
3651 		blk_mq_exit_hctx(q, set, hctx, i);
3652 	}
3653 }
3654 
3655 static int blk_mq_init_hctx(struct request_queue *q,
3656 		struct blk_mq_tag_set *set,
3657 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3658 {
3659 	hctx->queue_num = hctx_idx;
3660 
3661 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3662 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3663 				&hctx->cpuhp_online);
3664 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3665 
3666 	hctx->tags = set->tags[hctx_idx];
3667 
3668 	if (set->ops->init_hctx &&
3669 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3670 		goto unregister_cpu_notifier;
3671 
3672 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3673 				hctx->numa_node))
3674 		goto exit_hctx;
3675 
3676 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3677 		goto exit_flush_rq;
3678 
3679 	return 0;
3680 
3681  exit_flush_rq:
3682 	if (set->ops->exit_request)
3683 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3684  exit_hctx:
3685 	if (set->ops->exit_hctx)
3686 		set->ops->exit_hctx(hctx, hctx_idx);
3687  unregister_cpu_notifier:
3688 	blk_mq_remove_cpuhp(hctx);
3689 	return -1;
3690 }
3691 
3692 static struct blk_mq_hw_ctx *
3693 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3694 		int node)
3695 {
3696 	struct blk_mq_hw_ctx *hctx;
3697 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3698 
3699 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3700 	if (!hctx)
3701 		goto fail_alloc_hctx;
3702 
3703 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3704 		goto free_hctx;
3705 
3706 	atomic_set(&hctx->nr_active, 0);
3707 	if (node == NUMA_NO_NODE)
3708 		node = set->numa_node;
3709 	hctx->numa_node = node;
3710 
3711 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3712 	spin_lock_init(&hctx->lock);
3713 	INIT_LIST_HEAD(&hctx->dispatch);
3714 	hctx->queue = q;
3715 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3716 
3717 	INIT_LIST_HEAD(&hctx->hctx_list);
3718 
3719 	/*
3720 	 * Allocate space for all possible cpus to avoid allocation at
3721 	 * runtime
3722 	 */
3723 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3724 			gfp, node);
3725 	if (!hctx->ctxs)
3726 		goto free_cpumask;
3727 
3728 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3729 				gfp, node, false, false))
3730 		goto free_ctxs;
3731 	hctx->nr_ctx = 0;
3732 
3733 	spin_lock_init(&hctx->dispatch_wait_lock);
3734 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3735 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3736 
3737 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3738 	if (!hctx->fq)
3739 		goto free_bitmap;
3740 
3741 	blk_mq_hctx_kobj_init(hctx);
3742 
3743 	return hctx;
3744 
3745  free_bitmap:
3746 	sbitmap_free(&hctx->ctx_map);
3747  free_ctxs:
3748 	kfree(hctx->ctxs);
3749  free_cpumask:
3750 	free_cpumask_var(hctx->cpumask);
3751  free_hctx:
3752 	kfree(hctx);
3753  fail_alloc_hctx:
3754 	return NULL;
3755 }
3756 
3757 static void blk_mq_init_cpu_queues(struct request_queue *q,
3758 				   unsigned int nr_hw_queues)
3759 {
3760 	struct blk_mq_tag_set *set = q->tag_set;
3761 	unsigned int i, j;
3762 
3763 	for_each_possible_cpu(i) {
3764 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3765 		struct blk_mq_hw_ctx *hctx;
3766 		int k;
3767 
3768 		__ctx->cpu = i;
3769 		spin_lock_init(&__ctx->lock);
3770 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3771 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3772 
3773 		__ctx->queue = q;
3774 
3775 		/*
3776 		 * Set local node, IFF we have more than one hw queue. If
3777 		 * not, we remain on the home node of the device
3778 		 */
3779 		for (j = 0; j < set->nr_maps; j++) {
3780 			hctx = blk_mq_map_queue_type(q, j, i);
3781 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3782 				hctx->numa_node = cpu_to_node(i);
3783 		}
3784 	}
3785 }
3786 
3787 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3788 					     unsigned int hctx_idx,
3789 					     unsigned int depth)
3790 {
3791 	struct blk_mq_tags *tags;
3792 	int ret;
3793 
3794 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3795 	if (!tags)
3796 		return NULL;
3797 
3798 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3799 	if (ret) {
3800 		blk_mq_free_rq_map(tags);
3801 		return NULL;
3802 	}
3803 
3804 	return tags;
3805 }
3806 
3807 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3808 				       int hctx_idx)
3809 {
3810 	if (blk_mq_is_shared_tags(set->flags)) {
3811 		set->tags[hctx_idx] = set->shared_tags;
3812 
3813 		return true;
3814 	}
3815 
3816 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3817 						       set->queue_depth);
3818 
3819 	return set->tags[hctx_idx];
3820 }
3821 
3822 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3823 			     struct blk_mq_tags *tags,
3824 			     unsigned int hctx_idx)
3825 {
3826 	if (tags) {
3827 		blk_mq_free_rqs(set, tags, hctx_idx);
3828 		blk_mq_free_rq_map(tags);
3829 	}
3830 }
3831 
3832 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3833 				      unsigned int hctx_idx)
3834 {
3835 	if (!blk_mq_is_shared_tags(set->flags))
3836 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3837 
3838 	set->tags[hctx_idx] = NULL;
3839 }
3840 
3841 static void blk_mq_map_swqueue(struct request_queue *q)
3842 {
3843 	unsigned int j, hctx_idx;
3844 	unsigned long i;
3845 	struct blk_mq_hw_ctx *hctx;
3846 	struct blk_mq_ctx *ctx;
3847 	struct blk_mq_tag_set *set = q->tag_set;
3848 
3849 	queue_for_each_hw_ctx(q, hctx, i) {
3850 		cpumask_clear(hctx->cpumask);
3851 		hctx->nr_ctx = 0;
3852 		hctx->dispatch_from = NULL;
3853 	}
3854 
3855 	/*
3856 	 * Map software to hardware queues.
3857 	 *
3858 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3859 	 */
3860 	for_each_possible_cpu(i) {
3861 
3862 		ctx = per_cpu_ptr(q->queue_ctx, i);
3863 		for (j = 0; j < set->nr_maps; j++) {
3864 			if (!set->map[j].nr_queues) {
3865 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866 						HCTX_TYPE_DEFAULT, i);
3867 				continue;
3868 			}
3869 			hctx_idx = set->map[j].mq_map[i];
3870 			/* unmapped hw queue can be remapped after CPU topo changed */
3871 			if (!set->tags[hctx_idx] &&
3872 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3873 				/*
3874 				 * If tags initialization fail for some hctx,
3875 				 * that hctx won't be brought online.  In this
3876 				 * case, remap the current ctx to hctx[0] which
3877 				 * is guaranteed to always have tags allocated
3878 				 */
3879 				set->map[j].mq_map[i] = 0;
3880 			}
3881 
3882 			hctx = blk_mq_map_queue_type(q, j, i);
3883 			ctx->hctxs[j] = hctx;
3884 			/*
3885 			 * If the CPU is already set in the mask, then we've
3886 			 * mapped this one already. This can happen if
3887 			 * devices share queues across queue maps.
3888 			 */
3889 			if (cpumask_test_cpu(i, hctx->cpumask))
3890 				continue;
3891 
3892 			cpumask_set_cpu(i, hctx->cpumask);
3893 			hctx->type = j;
3894 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3895 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3896 
3897 			/*
3898 			 * If the nr_ctx type overflows, we have exceeded the
3899 			 * amount of sw queues we can support.
3900 			 */
3901 			BUG_ON(!hctx->nr_ctx);
3902 		}
3903 
3904 		for (; j < HCTX_MAX_TYPES; j++)
3905 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3906 					HCTX_TYPE_DEFAULT, i);
3907 	}
3908 
3909 	queue_for_each_hw_ctx(q, hctx, i) {
3910 		/*
3911 		 * If no software queues are mapped to this hardware queue,
3912 		 * disable it and free the request entries.
3913 		 */
3914 		if (!hctx->nr_ctx) {
3915 			/* Never unmap queue 0.  We need it as a
3916 			 * fallback in case of a new remap fails
3917 			 * allocation
3918 			 */
3919 			if (i)
3920 				__blk_mq_free_map_and_rqs(set, i);
3921 
3922 			hctx->tags = NULL;
3923 			continue;
3924 		}
3925 
3926 		hctx->tags = set->tags[i];
3927 		WARN_ON(!hctx->tags);
3928 
3929 		/*
3930 		 * Set the map size to the number of mapped software queues.
3931 		 * This is more accurate and more efficient than looping
3932 		 * over all possibly mapped software queues.
3933 		 */
3934 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3935 
3936 		/*
3937 		 * Initialize batch roundrobin counts
3938 		 */
3939 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3940 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3941 	}
3942 }
3943 
3944 /*
3945  * Caller needs to ensure that we're either frozen/quiesced, or that
3946  * the queue isn't live yet.
3947  */
3948 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3949 {
3950 	struct blk_mq_hw_ctx *hctx;
3951 	unsigned long i;
3952 
3953 	queue_for_each_hw_ctx(q, hctx, i) {
3954 		if (shared) {
3955 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3956 		} else {
3957 			blk_mq_tag_idle(hctx);
3958 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959 		}
3960 	}
3961 }
3962 
3963 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3964 					 bool shared)
3965 {
3966 	struct request_queue *q;
3967 
3968 	lockdep_assert_held(&set->tag_list_lock);
3969 
3970 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3971 		blk_mq_freeze_queue(q);
3972 		queue_set_hctx_shared(q, shared);
3973 		blk_mq_unfreeze_queue(q);
3974 	}
3975 }
3976 
3977 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3978 {
3979 	struct blk_mq_tag_set *set = q->tag_set;
3980 
3981 	mutex_lock(&set->tag_list_lock);
3982 	list_del(&q->tag_set_list);
3983 	if (list_is_singular(&set->tag_list)) {
3984 		/* just transitioned to unshared */
3985 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3986 		/* update existing queue */
3987 		blk_mq_update_tag_set_shared(set, false);
3988 	}
3989 	mutex_unlock(&set->tag_list_lock);
3990 	INIT_LIST_HEAD(&q->tag_set_list);
3991 }
3992 
3993 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3994 				     struct request_queue *q)
3995 {
3996 	mutex_lock(&set->tag_list_lock);
3997 
3998 	/*
3999 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4000 	 */
4001 	if (!list_empty(&set->tag_list) &&
4002 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4003 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4004 		/* update existing queue */
4005 		blk_mq_update_tag_set_shared(set, true);
4006 	}
4007 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4008 		queue_set_hctx_shared(q, true);
4009 	list_add_tail(&q->tag_set_list, &set->tag_list);
4010 
4011 	mutex_unlock(&set->tag_list_lock);
4012 }
4013 
4014 /* All allocations will be freed in release handler of q->mq_kobj */
4015 static int blk_mq_alloc_ctxs(struct request_queue *q)
4016 {
4017 	struct blk_mq_ctxs *ctxs;
4018 	int cpu;
4019 
4020 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4021 	if (!ctxs)
4022 		return -ENOMEM;
4023 
4024 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4025 	if (!ctxs->queue_ctx)
4026 		goto fail;
4027 
4028 	for_each_possible_cpu(cpu) {
4029 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4030 		ctx->ctxs = ctxs;
4031 	}
4032 
4033 	q->mq_kobj = &ctxs->kobj;
4034 	q->queue_ctx = ctxs->queue_ctx;
4035 
4036 	return 0;
4037  fail:
4038 	kfree(ctxs);
4039 	return -ENOMEM;
4040 }
4041 
4042 /*
4043  * It is the actual release handler for mq, but we do it from
4044  * request queue's release handler for avoiding use-after-free
4045  * and headache because q->mq_kobj shouldn't have been introduced,
4046  * but we can't group ctx/kctx kobj without it.
4047  */
4048 void blk_mq_release(struct request_queue *q)
4049 {
4050 	struct blk_mq_hw_ctx *hctx, *next;
4051 	unsigned long i;
4052 
4053 	queue_for_each_hw_ctx(q, hctx, i)
4054 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4055 
4056 	/* all hctx are in .unused_hctx_list now */
4057 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4058 		list_del_init(&hctx->hctx_list);
4059 		kobject_put(&hctx->kobj);
4060 	}
4061 
4062 	xa_destroy(&q->hctx_table);
4063 
4064 	/*
4065 	 * release .mq_kobj and sw queue's kobject now because
4066 	 * both share lifetime with request queue.
4067 	 */
4068 	blk_mq_sysfs_deinit(q);
4069 }
4070 
4071 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4072 		struct queue_limits *lim, void *queuedata)
4073 {
4074 	struct queue_limits default_lim = { };
4075 	struct request_queue *q;
4076 	int ret;
4077 
4078 	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4079 	if (IS_ERR(q))
4080 		return q;
4081 	q->queuedata = queuedata;
4082 	ret = blk_mq_init_allocated_queue(set, q);
4083 	if (ret) {
4084 		blk_put_queue(q);
4085 		return ERR_PTR(ret);
4086 	}
4087 	return q;
4088 }
4089 EXPORT_SYMBOL(blk_mq_alloc_queue);
4090 
4091 /**
4092  * blk_mq_destroy_queue - shutdown a request queue
4093  * @q: request queue to shutdown
4094  *
4095  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4096  * requests will be failed with -ENODEV. The caller is responsible for dropping
4097  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4098  *
4099  * Context: can sleep
4100  */
4101 void blk_mq_destroy_queue(struct request_queue *q)
4102 {
4103 	WARN_ON_ONCE(!queue_is_mq(q));
4104 	WARN_ON_ONCE(blk_queue_registered(q));
4105 
4106 	might_sleep();
4107 
4108 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4109 	blk_queue_start_drain(q);
4110 	blk_mq_freeze_queue_wait(q);
4111 
4112 	blk_sync_queue(q);
4113 	blk_mq_cancel_work_sync(q);
4114 	blk_mq_exit_queue(q);
4115 }
4116 EXPORT_SYMBOL(blk_mq_destroy_queue);
4117 
4118 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4119 		struct queue_limits *lim, void *queuedata,
4120 		struct lock_class_key *lkclass)
4121 {
4122 	struct request_queue *q;
4123 	struct gendisk *disk;
4124 
4125 	q = blk_mq_alloc_queue(set, lim, queuedata);
4126 	if (IS_ERR(q))
4127 		return ERR_CAST(q);
4128 
4129 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4130 	if (!disk) {
4131 		blk_mq_destroy_queue(q);
4132 		blk_put_queue(q);
4133 		return ERR_PTR(-ENOMEM);
4134 	}
4135 	set_bit(GD_OWNS_QUEUE, &disk->state);
4136 	return disk;
4137 }
4138 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4139 
4140 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4141 		struct lock_class_key *lkclass)
4142 {
4143 	struct gendisk *disk;
4144 
4145 	if (!blk_get_queue(q))
4146 		return NULL;
4147 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4148 	if (!disk)
4149 		blk_put_queue(q);
4150 	return disk;
4151 }
4152 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4153 
4154 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4155 		struct blk_mq_tag_set *set, struct request_queue *q,
4156 		int hctx_idx, int node)
4157 {
4158 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4159 
4160 	/* reuse dead hctx first */
4161 	spin_lock(&q->unused_hctx_lock);
4162 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4163 		if (tmp->numa_node == node) {
4164 			hctx = tmp;
4165 			break;
4166 		}
4167 	}
4168 	if (hctx)
4169 		list_del_init(&hctx->hctx_list);
4170 	spin_unlock(&q->unused_hctx_lock);
4171 
4172 	if (!hctx)
4173 		hctx = blk_mq_alloc_hctx(q, set, node);
4174 	if (!hctx)
4175 		goto fail;
4176 
4177 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4178 		goto free_hctx;
4179 
4180 	return hctx;
4181 
4182  free_hctx:
4183 	kobject_put(&hctx->kobj);
4184  fail:
4185 	return NULL;
4186 }
4187 
4188 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4189 						struct request_queue *q)
4190 {
4191 	struct blk_mq_hw_ctx *hctx;
4192 	unsigned long i, j;
4193 
4194 	/* protect against switching io scheduler  */
4195 	mutex_lock(&q->sysfs_lock);
4196 	for (i = 0; i < set->nr_hw_queues; i++) {
4197 		int old_node;
4198 		int node = blk_mq_get_hctx_node(set, i);
4199 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4200 
4201 		if (old_hctx) {
4202 			old_node = old_hctx->numa_node;
4203 			blk_mq_exit_hctx(q, set, old_hctx, i);
4204 		}
4205 
4206 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4207 			if (!old_hctx)
4208 				break;
4209 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4210 					node, old_node);
4211 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4212 			WARN_ON_ONCE(!hctx);
4213 		}
4214 	}
4215 	/*
4216 	 * Increasing nr_hw_queues fails. Free the newly allocated
4217 	 * hctxs and keep the previous q->nr_hw_queues.
4218 	 */
4219 	if (i != set->nr_hw_queues) {
4220 		j = q->nr_hw_queues;
4221 	} else {
4222 		j = i;
4223 		q->nr_hw_queues = set->nr_hw_queues;
4224 	}
4225 
4226 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4227 		blk_mq_exit_hctx(q, set, hctx, j);
4228 	mutex_unlock(&q->sysfs_lock);
4229 }
4230 
4231 static void blk_mq_update_poll_flag(struct request_queue *q)
4232 {
4233 	struct blk_mq_tag_set *set = q->tag_set;
4234 
4235 	if (set->nr_maps > HCTX_TYPE_POLL &&
4236 	    set->map[HCTX_TYPE_POLL].nr_queues)
4237 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4238 	else
4239 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4240 }
4241 
4242 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4243 		struct request_queue *q)
4244 {
4245 	/* mark the queue as mq asap */
4246 	q->mq_ops = set->ops;
4247 
4248 	if (blk_mq_alloc_ctxs(q))
4249 		goto err_exit;
4250 
4251 	/* init q->mq_kobj and sw queues' kobjects */
4252 	blk_mq_sysfs_init(q);
4253 
4254 	INIT_LIST_HEAD(&q->unused_hctx_list);
4255 	spin_lock_init(&q->unused_hctx_lock);
4256 
4257 	xa_init(&q->hctx_table);
4258 
4259 	blk_mq_realloc_hw_ctxs(set, q);
4260 	if (!q->nr_hw_queues)
4261 		goto err_hctxs;
4262 
4263 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4264 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4265 
4266 	q->tag_set = set;
4267 
4268 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4269 	blk_mq_update_poll_flag(q);
4270 
4271 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4272 	INIT_LIST_HEAD(&q->flush_list);
4273 	INIT_LIST_HEAD(&q->requeue_list);
4274 	spin_lock_init(&q->requeue_lock);
4275 
4276 	q->nr_requests = set->queue_depth;
4277 
4278 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4279 	blk_mq_add_queue_tag_set(set, q);
4280 	blk_mq_map_swqueue(q);
4281 	return 0;
4282 
4283 err_hctxs:
4284 	blk_mq_release(q);
4285 err_exit:
4286 	q->mq_ops = NULL;
4287 	return -ENOMEM;
4288 }
4289 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4290 
4291 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4292 void blk_mq_exit_queue(struct request_queue *q)
4293 {
4294 	struct blk_mq_tag_set *set = q->tag_set;
4295 
4296 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4297 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4298 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4299 	blk_mq_del_queue_tag_set(q);
4300 }
4301 
4302 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4303 {
4304 	int i;
4305 
4306 	if (blk_mq_is_shared_tags(set->flags)) {
4307 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4308 						BLK_MQ_NO_HCTX_IDX,
4309 						set->queue_depth);
4310 		if (!set->shared_tags)
4311 			return -ENOMEM;
4312 	}
4313 
4314 	for (i = 0; i < set->nr_hw_queues; i++) {
4315 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4316 			goto out_unwind;
4317 		cond_resched();
4318 	}
4319 
4320 	return 0;
4321 
4322 out_unwind:
4323 	while (--i >= 0)
4324 		__blk_mq_free_map_and_rqs(set, i);
4325 
4326 	if (blk_mq_is_shared_tags(set->flags)) {
4327 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4328 					BLK_MQ_NO_HCTX_IDX);
4329 	}
4330 
4331 	return -ENOMEM;
4332 }
4333 
4334 /*
4335  * Allocate the request maps associated with this tag_set. Note that this
4336  * may reduce the depth asked for, if memory is tight. set->queue_depth
4337  * will be updated to reflect the allocated depth.
4338  */
4339 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4340 {
4341 	unsigned int depth;
4342 	int err;
4343 
4344 	depth = set->queue_depth;
4345 	do {
4346 		err = __blk_mq_alloc_rq_maps(set);
4347 		if (!err)
4348 			break;
4349 
4350 		set->queue_depth >>= 1;
4351 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4352 			err = -ENOMEM;
4353 			break;
4354 		}
4355 	} while (set->queue_depth);
4356 
4357 	if (!set->queue_depth || err) {
4358 		pr_err("blk-mq: failed to allocate request map\n");
4359 		return -ENOMEM;
4360 	}
4361 
4362 	if (depth != set->queue_depth)
4363 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4364 						depth, set->queue_depth);
4365 
4366 	return 0;
4367 }
4368 
4369 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4370 {
4371 	/*
4372 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4373 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4374 	 * number of hardware queues.
4375 	 */
4376 	if (set->nr_maps == 1)
4377 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4378 
4379 	if (set->ops->map_queues) {
4380 		int i;
4381 
4382 		/*
4383 		 * transport .map_queues is usually done in the following
4384 		 * way:
4385 		 *
4386 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4387 		 * 	mask = get_cpu_mask(queue)
4388 		 * 	for_each_cpu(cpu, mask)
4389 		 * 		set->map[x].mq_map[cpu] = queue;
4390 		 * }
4391 		 *
4392 		 * When we need to remap, the table has to be cleared for
4393 		 * killing stale mapping since one CPU may not be mapped
4394 		 * to any hw queue.
4395 		 */
4396 		for (i = 0; i < set->nr_maps; i++)
4397 			blk_mq_clear_mq_map(&set->map[i]);
4398 
4399 		set->ops->map_queues(set);
4400 	} else {
4401 		BUG_ON(set->nr_maps > 1);
4402 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4403 	}
4404 }
4405 
4406 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4407 				       int new_nr_hw_queues)
4408 {
4409 	struct blk_mq_tags **new_tags;
4410 	int i;
4411 
4412 	if (set->nr_hw_queues >= new_nr_hw_queues)
4413 		goto done;
4414 
4415 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4416 				GFP_KERNEL, set->numa_node);
4417 	if (!new_tags)
4418 		return -ENOMEM;
4419 
4420 	if (set->tags)
4421 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4422 		       sizeof(*set->tags));
4423 	kfree(set->tags);
4424 	set->tags = new_tags;
4425 
4426 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4427 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4428 			while (--i >= set->nr_hw_queues)
4429 				__blk_mq_free_map_and_rqs(set, i);
4430 			return -ENOMEM;
4431 		}
4432 		cond_resched();
4433 	}
4434 
4435 done:
4436 	set->nr_hw_queues = new_nr_hw_queues;
4437 	return 0;
4438 }
4439 
4440 /*
4441  * Alloc a tag set to be associated with one or more request queues.
4442  * May fail with EINVAL for various error conditions. May adjust the
4443  * requested depth down, if it's too large. In that case, the set
4444  * value will be stored in set->queue_depth.
4445  */
4446 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4447 {
4448 	int i, ret;
4449 
4450 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4451 
4452 	if (!set->nr_hw_queues)
4453 		return -EINVAL;
4454 	if (!set->queue_depth)
4455 		return -EINVAL;
4456 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4457 		return -EINVAL;
4458 
4459 	if (!set->ops->queue_rq)
4460 		return -EINVAL;
4461 
4462 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4463 		return -EINVAL;
4464 
4465 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4466 		pr_info("blk-mq: reduced tag depth to %u\n",
4467 			BLK_MQ_MAX_DEPTH);
4468 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4469 	}
4470 
4471 	if (!set->nr_maps)
4472 		set->nr_maps = 1;
4473 	else if (set->nr_maps > HCTX_MAX_TYPES)
4474 		return -EINVAL;
4475 
4476 	/*
4477 	 * If a crashdump is active, then we are potentially in a very
4478 	 * memory constrained environment. Limit us to  64 tags to prevent
4479 	 * using too much memory.
4480 	 */
4481 	if (is_kdump_kernel())
4482 		set->queue_depth = min(64U, set->queue_depth);
4483 
4484 	/*
4485 	 * There is no use for more h/w queues than cpus if we just have
4486 	 * a single map
4487 	 */
4488 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4489 		set->nr_hw_queues = nr_cpu_ids;
4490 
4491 	if (set->flags & BLK_MQ_F_BLOCKING) {
4492 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4493 		if (!set->srcu)
4494 			return -ENOMEM;
4495 		ret = init_srcu_struct(set->srcu);
4496 		if (ret)
4497 			goto out_free_srcu;
4498 	}
4499 
4500 	ret = -ENOMEM;
4501 	set->tags = kcalloc_node(set->nr_hw_queues,
4502 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4503 				 set->numa_node);
4504 	if (!set->tags)
4505 		goto out_cleanup_srcu;
4506 
4507 	for (i = 0; i < set->nr_maps; i++) {
4508 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4509 						  sizeof(set->map[i].mq_map[0]),
4510 						  GFP_KERNEL, set->numa_node);
4511 		if (!set->map[i].mq_map)
4512 			goto out_free_mq_map;
4513 		set->map[i].nr_queues = set->nr_hw_queues;
4514 	}
4515 
4516 	blk_mq_update_queue_map(set);
4517 
4518 	ret = blk_mq_alloc_set_map_and_rqs(set);
4519 	if (ret)
4520 		goto out_free_mq_map;
4521 
4522 	mutex_init(&set->tag_list_lock);
4523 	INIT_LIST_HEAD(&set->tag_list);
4524 
4525 	return 0;
4526 
4527 out_free_mq_map:
4528 	for (i = 0; i < set->nr_maps; i++) {
4529 		kfree(set->map[i].mq_map);
4530 		set->map[i].mq_map = NULL;
4531 	}
4532 	kfree(set->tags);
4533 	set->tags = NULL;
4534 out_cleanup_srcu:
4535 	if (set->flags & BLK_MQ_F_BLOCKING)
4536 		cleanup_srcu_struct(set->srcu);
4537 out_free_srcu:
4538 	if (set->flags & BLK_MQ_F_BLOCKING)
4539 		kfree(set->srcu);
4540 	return ret;
4541 }
4542 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4543 
4544 /* allocate and initialize a tagset for a simple single-queue device */
4545 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4546 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4547 		unsigned int set_flags)
4548 {
4549 	memset(set, 0, sizeof(*set));
4550 	set->ops = ops;
4551 	set->nr_hw_queues = 1;
4552 	set->nr_maps = 1;
4553 	set->queue_depth = queue_depth;
4554 	set->numa_node = NUMA_NO_NODE;
4555 	set->flags = set_flags;
4556 	return blk_mq_alloc_tag_set(set);
4557 }
4558 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4559 
4560 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4561 {
4562 	int i, j;
4563 
4564 	for (i = 0; i < set->nr_hw_queues; i++)
4565 		__blk_mq_free_map_and_rqs(set, i);
4566 
4567 	if (blk_mq_is_shared_tags(set->flags)) {
4568 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4569 					BLK_MQ_NO_HCTX_IDX);
4570 	}
4571 
4572 	for (j = 0; j < set->nr_maps; j++) {
4573 		kfree(set->map[j].mq_map);
4574 		set->map[j].mq_map = NULL;
4575 	}
4576 
4577 	kfree(set->tags);
4578 	set->tags = NULL;
4579 	if (set->flags & BLK_MQ_F_BLOCKING) {
4580 		cleanup_srcu_struct(set->srcu);
4581 		kfree(set->srcu);
4582 	}
4583 }
4584 EXPORT_SYMBOL(blk_mq_free_tag_set);
4585 
4586 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4587 {
4588 	struct blk_mq_tag_set *set = q->tag_set;
4589 	struct blk_mq_hw_ctx *hctx;
4590 	int ret;
4591 	unsigned long i;
4592 
4593 	if (!set)
4594 		return -EINVAL;
4595 
4596 	if (q->nr_requests == nr)
4597 		return 0;
4598 
4599 	blk_mq_freeze_queue(q);
4600 	blk_mq_quiesce_queue(q);
4601 
4602 	ret = 0;
4603 	queue_for_each_hw_ctx(q, hctx, i) {
4604 		if (!hctx->tags)
4605 			continue;
4606 		/*
4607 		 * If we're using an MQ scheduler, just update the scheduler
4608 		 * queue depth. This is similar to what the old code would do.
4609 		 */
4610 		if (hctx->sched_tags) {
4611 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4612 						      nr, true);
4613 		} else {
4614 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4615 						      false);
4616 		}
4617 		if (ret)
4618 			break;
4619 		if (q->elevator && q->elevator->type->ops.depth_updated)
4620 			q->elevator->type->ops.depth_updated(hctx);
4621 	}
4622 	if (!ret) {
4623 		q->nr_requests = nr;
4624 		if (blk_mq_is_shared_tags(set->flags)) {
4625 			if (q->elevator)
4626 				blk_mq_tag_update_sched_shared_tags(q);
4627 			else
4628 				blk_mq_tag_resize_shared_tags(set, nr);
4629 		}
4630 	}
4631 
4632 	blk_mq_unquiesce_queue(q);
4633 	blk_mq_unfreeze_queue(q);
4634 
4635 	return ret;
4636 }
4637 
4638 /*
4639  * request_queue and elevator_type pair.
4640  * It is just used by __blk_mq_update_nr_hw_queues to cache
4641  * the elevator_type associated with a request_queue.
4642  */
4643 struct blk_mq_qe_pair {
4644 	struct list_head node;
4645 	struct request_queue *q;
4646 	struct elevator_type *type;
4647 };
4648 
4649 /*
4650  * Cache the elevator_type in qe pair list and switch the
4651  * io scheduler to 'none'
4652  */
4653 static bool blk_mq_elv_switch_none(struct list_head *head,
4654 		struct request_queue *q)
4655 {
4656 	struct blk_mq_qe_pair *qe;
4657 
4658 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4659 	if (!qe)
4660 		return false;
4661 
4662 	/* q->elevator needs protection from ->sysfs_lock */
4663 	mutex_lock(&q->sysfs_lock);
4664 
4665 	/* the check has to be done with holding sysfs_lock */
4666 	if (!q->elevator) {
4667 		kfree(qe);
4668 		goto unlock;
4669 	}
4670 
4671 	INIT_LIST_HEAD(&qe->node);
4672 	qe->q = q;
4673 	qe->type = q->elevator->type;
4674 	/* keep a reference to the elevator module as we'll switch back */
4675 	__elevator_get(qe->type);
4676 	list_add(&qe->node, head);
4677 	elevator_disable(q);
4678 unlock:
4679 	mutex_unlock(&q->sysfs_lock);
4680 
4681 	return true;
4682 }
4683 
4684 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4685 						struct request_queue *q)
4686 {
4687 	struct blk_mq_qe_pair *qe;
4688 
4689 	list_for_each_entry(qe, head, node)
4690 		if (qe->q == q)
4691 			return qe;
4692 
4693 	return NULL;
4694 }
4695 
4696 static void blk_mq_elv_switch_back(struct list_head *head,
4697 				  struct request_queue *q)
4698 {
4699 	struct blk_mq_qe_pair *qe;
4700 	struct elevator_type *t;
4701 
4702 	qe = blk_lookup_qe_pair(head, q);
4703 	if (!qe)
4704 		return;
4705 	t = qe->type;
4706 	list_del(&qe->node);
4707 	kfree(qe);
4708 
4709 	mutex_lock(&q->sysfs_lock);
4710 	elevator_switch(q, t);
4711 	/* drop the reference acquired in blk_mq_elv_switch_none */
4712 	elevator_put(t);
4713 	mutex_unlock(&q->sysfs_lock);
4714 }
4715 
4716 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4717 							int nr_hw_queues)
4718 {
4719 	struct request_queue *q;
4720 	LIST_HEAD(head);
4721 	int prev_nr_hw_queues = set->nr_hw_queues;
4722 	int i;
4723 
4724 	lockdep_assert_held(&set->tag_list_lock);
4725 
4726 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4727 		nr_hw_queues = nr_cpu_ids;
4728 	if (nr_hw_queues < 1)
4729 		return;
4730 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4731 		return;
4732 
4733 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4734 		blk_mq_freeze_queue(q);
4735 	/*
4736 	 * Switch IO scheduler to 'none', cleaning up the data associated
4737 	 * with the previous scheduler. We will switch back once we are done
4738 	 * updating the new sw to hw queue mappings.
4739 	 */
4740 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4741 		if (!blk_mq_elv_switch_none(&head, q))
4742 			goto switch_back;
4743 
4744 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4745 		blk_mq_debugfs_unregister_hctxs(q);
4746 		blk_mq_sysfs_unregister_hctxs(q);
4747 	}
4748 
4749 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4750 		goto reregister;
4751 
4752 fallback:
4753 	blk_mq_update_queue_map(set);
4754 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4755 		blk_mq_realloc_hw_ctxs(set, q);
4756 		blk_mq_update_poll_flag(q);
4757 		if (q->nr_hw_queues != set->nr_hw_queues) {
4758 			int i = prev_nr_hw_queues;
4759 
4760 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4761 					nr_hw_queues, prev_nr_hw_queues);
4762 			for (; i < set->nr_hw_queues; i++)
4763 				__blk_mq_free_map_and_rqs(set, i);
4764 
4765 			set->nr_hw_queues = prev_nr_hw_queues;
4766 			goto fallback;
4767 		}
4768 		blk_mq_map_swqueue(q);
4769 	}
4770 
4771 reregister:
4772 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4773 		blk_mq_sysfs_register_hctxs(q);
4774 		blk_mq_debugfs_register_hctxs(q);
4775 	}
4776 
4777 switch_back:
4778 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4779 		blk_mq_elv_switch_back(&head, q);
4780 
4781 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4782 		blk_mq_unfreeze_queue(q);
4783 
4784 	/* Free the excess tags when nr_hw_queues shrink. */
4785 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4786 		__blk_mq_free_map_and_rqs(set, i);
4787 }
4788 
4789 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4790 {
4791 	mutex_lock(&set->tag_list_lock);
4792 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4793 	mutex_unlock(&set->tag_list_lock);
4794 }
4795 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4796 
4797 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4798 			 struct io_comp_batch *iob, unsigned int flags)
4799 {
4800 	long state = get_current_state();
4801 	int ret;
4802 
4803 	do {
4804 		ret = q->mq_ops->poll(hctx, iob);
4805 		if (ret > 0) {
4806 			__set_current_state(TASK_RUNNING);
4807 			return ret;
4808 		}
4809 
4810 		if (signal_pending_state(state, current))
4811 			__set_current_state(TASK_RUNNING);
4812 		if (task_is_running(current))
4813 			return 1;
4814 
4815 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4816 			break;
4817 		cpu_relax();
4818 	} while (!need_resched());
4819 
4820 	__set_current_state(TASK_RUNNING);
4821 	return 0;
4822 }
4823 
4824 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4825 		struct io_comp_batch *iob, unsigned int flags)
4826 {
4827 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4828 
4829 	return blk_hctx_poll(q, hctx, iob, flags);
4830 }
4831 
4832 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4833 		unsigned int poll_flags)
4834 {
4835 	struct request_queue *q = rq->q;
4836 	int ret;
4837 
4838 	if (!blk_rq_is_poll(rq))
4839 		return 0;
4840 	if (!percpu_ref_tryget(&q->q_usage_counter))
4841 		return 0;
4842 
4843 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4844 	blk_queue_exit(q);
4845 
4846 	return ret;
4847 }
4848 EXPORT_SYMBOL_GPL(blk_rq_poll);
4849 
4850 unsigned int blk_mq_rq_cpu(struct request *rq)
4851 {
4852 	return rq->mq_ctx->cpu;
4853 }
4854 EXPORT_SYMBOL(blk_mq_rq_cpu);
4855 
4856 void blk_mq_cancel_work_sync(struct request_queue *q)
4857 {
4858 	struct blk_mq_hw_ctx *hctx;
4859 	unsigned long i;
4860 
4861 	cancel_delayed_work_sync(&q->requeue_work);
4862 
4863 	queue_for_each_hw_ctx(q, hctx, i)
4864 		cancel_delayed_work_sync(&hctx->run_work);
4865 }
4866 
4867 static int __init blk_mq_init(void)
4868 {
4869 	int i;
4870 
4871 	for_each_possible_cpu(i)
4872 		init_llist_head(&per_cpu(blk_cpu_done, i));
4873 	for_each_possible_cpu(i)
4874 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4875 			 __blk_mq_complete_request_remote, NULL);
4876 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4877 
4878 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4879 				  "block/softirq:dead", NULL,
4880 				  blk_softirq_cpu_dead);
4881 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4882 				blk_mq_hctx_notify_dead);
4883 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4884 				blk_mq_hctx_notify_online,
4885 				blk_mq_hctx_notify_offline);
4886 	return 0;
4887 }
4888 subsys_initcall(blk_mq_init);
4889