xref: /linux/block/blk-mq.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44 
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 		blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 		struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 			 struct io_comp_batch *iob, unsigned int flags);
55 
56 /*
57  * Check if any of the ctx, dispatch list or elevator
58  * have pending work in this hardware queue.
59  */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 	return !list_empty_careful(&hctx->dispatch) ||
63 		sbitmap_any_bit_set(&hctx->ctx_map) ||
64 			blk_mq_sched_has_work(hctx);
65 }
66 
67 /*
68  * Mark this ctx as having pending work in this hardware queue
69  */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 				     struct blk_mq_ctx *ctx)
72 {
73 	const int bit = ctx->index_hw[hctx->type];
74 
75 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 		sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78 
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 				      struct blk_mq_ctx *ctx)
81 {
82 	const int bit = ctx->index_hw[hctx->type];
83 
84 	sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86 
87 struct mq_inflight {
88 	struct block_device *part;
89 	unsigned int inflight[2];
90 };
91 
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 	struct mq_inflight *mi = priv;
95 
96 	if (rq->part && blk_do_io_stat(rq) &&
97 	    (!mi->part->bd_partno || rq->part == mi->part) &&
98 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 		mi->inflight[rq_data_dir(rq)]++;
100 
101 	return true;
102 }
103 
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 		struct block_device *part)
106 {
107 	struct mq_inflight mi = { .part = part };
108 
109 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 
111 	return mi.inflight[0] + mi.inflight[1];
112 }
113 
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 		unsigned int inflight[2])
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 	inflight[0] = mi.inflight[0];
121 	inflight[1] = mi.inflight[1];
122 }
123 
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 	mutex_lock(&q->mq_freeze_lock);
127 	if (++q->mq_freeze_depth == 1) {
128 		percpu_ref_kill(&q->q_usage_counter);
129 		mutex_unlock(&q->mq_freeze_lock);
130 		if (queue_is_mq(q))
131 			blk_mq_run_hw_queues(q, false);
132 	} else {
133 		mutex_unlock(&q->mq_freeze_lock);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 				     unsigned long timeout)
146 {
147 	return wait_event_timeout(q->mq_freeze_wq,
148 					percpu_ref_is_zero(&q->q_usage_counter),
149 					timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152 
153 /*
154  * Guarantee no request is in use, so we can change any data structure of
155  * the queue afterward.
156  */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 	/*
160 	 * In the !blk_mq case we are only calling this to kill the
161 	 * q_usage_counter, otherwise this increases the freeze depth
162 	 * and waits for it to return to zero.  For this reason there is
163 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 	 * exported to drivers as the only user for unfreeze is blk_mq.
165 	 */
166 	blk_freeze_queue_start(q);
167 	blk_mq_freeze_queue_wait(q);
168 }
169 
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 	/*
173 	 * ...just an alias to keep freeze and unfreeze actions balanced
174 	 * in the blk_mq_* namespace
175 	 */
176 	blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 	mutex_lock(&q->mq_freeze_lock);
183 	if (force_atomic)
184 		q->q_usage_counter.data->force_atomic = true;
185 	q->mq_freeze_depth--;
186 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 	if (!q->mq_freeze_depth) {
188 		percpu_ref_resurrect(&q->q_usage_counter);
189 		wake_up_all(&q->mq_freeze_wq);
190 	}
191 	mutex_unlock(&q->mq_freeze_lock);
192 }
193 
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	__blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199 
200 /*
201  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202  * mpt3sas driver such that this function can be removed.
203  */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&q->queue_lock, flags);
209 	if (!q->quiesce_depth++)
210 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 	spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217  * @set: tag_set to wait on
218  *
219  * Note: it is driver's responsibility for making sure that quiesce has
220  * been started on or more of the request_queues of the tag_set.  This
221  * function only waits for the quiesce on those request_queues that had
222  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223  */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 	if (set->flags & BLK_MQ_F_BLOCKING)
227 		synchronize_srcu(set->srcu);
228 	else
229 		synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232 
233 /**
234  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235  * @q: request queue.
236  *
237  * Note: this function does not prevent that the struct request end_io()
238  * callback function is invoked. Once this function is returned, we make
239  * sure no dispatch can happen until the queue is unquiesced via
240  * blk_mq_unquiesce_queue().
241  */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 	blk_mq_quiesce_queue_nowait(q);
245 	/* nothing to wait for non-mq queues */
246 	if (queue_is_mq(q))
247 		blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 
251 /*
252  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253  * @q: request queue.
254  *
255  * This function recovers queue into the state before quiescing
256  * which is done by blk_mq_quiesce_queue.
257  */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 	unsigned long flags;
261 	bool run_queue = false;
262 
263 	spin_lock_irqsave(&q->queue_lock, flags);
264 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 		;
266 	} else if (!--q->quiesce_depth) {
267 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 		run_queue = true;
269 	}
270 	spin_unlock_irqrestore(&q->queue_lock, flags);
271 
272 	/* dispatch requests which are inserted during quiescing */
273 	if (run_queue)
274 		blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 	struct request_queue *q;
281 
282 	mutex_lock(&set->tag_list_lock);
283 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 		if (!blk_queue_skip_tagset_quiesce(q))
285 			blk_mq_quiesce_queue_nowait(q);
286 	}
287 	blk_mq_wait_quiesce_done(set);
288 	mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 	struct request_queue *q;
295 
296 	mutex_lock(&set->tag_list_lock);
297 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 		if (!blk_queue_skip_tagset_quiesce(q))
299 			blk_mq_unquiesce_queue(q);
300 	}
301 	mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 	struct blk_mq_hw_ctx *hctx;
308 	unsigned long i;
309 
310 	queue_for_each_hw_ctx(q, hctx, i)
311 		if (blk_mq_hw_queue_mapped(hctx))
312 			blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314 
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 	memset(rq, 0, sizeof(*rq));
318 
319 	INIT_LIST_HEAD(&rq->queuelist);
320 	rq->q = q;
321 	rq->__sector = (sector_t) -1;
322 	INIT_HLIST_NODE(&rq->hash);
323 	RB_CLEAR_NODE(&rq->rb_node);
324 	rq->tag = BLK_MQ_NO_TAG;
325 	rq->internal_tag = BLK_MQ_NO_TAG;
326 	rq->start_time_ns = ktime_get_ns();
327 	rq->part = NULL;
328 	blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331 
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 	if (blk_mq_need_time_stamp(rq))
336 		rq->start_time_ns = ktime_get_ns();
337 	else
338 		rq->start_time_ns = 0;
339 
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 	if (blk_queue_rq_alloc_time(rq->q))
342 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 	else
344 		rq->alloc_time_ns = 0;
345 #endif
346 }
347 
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 		struct blk_mq_tags *tags, unsigned int tag)
350 {
351 	struct blk_mq_ctx *ctx = data->ctx;
352 	struct blk_mq_hw_ctx *hctx = data->hctx;
353 	struct request_queue *q = data->q;
354 	struct request *rq = tags->static_rqs[tag];
355 
356 	rq->q = q;
357 	rq->mq_ctx = ctx;
358 	rq->mq_hctx = hctx;
359 	rq->cmd_flags = data->cmd_flags;
360 
361 	if (data->flags & BLK_MQ_REQ_PM)
362 		data->rq_flags |= RQF_PM;
363 	if (blk_queue_io_stat(q))
364 		data->rq_flags |= RQF_IO_STAT;
365 	rq->rq_flags = data->rq_flags;
366 
367 	if (data->rq_flags & RQF_SCHED_TAGS) {
368 		rq->tag = BLK_MQ_NO_TAG;
369 		rq->internal_tag = tag;
370 	} else {
371 		rq->tag = tag;
372 		rq->internal_tag = BLK_MQ_NO_TAG;
373 	}
374 	rq->timeout = 0;
375 
376 	rq->part = NULL;
377 	rq->io_start_time_ns = 0;
378 	rq->stats_sectors = 0;
379 	rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 	rq->nr_integrity_segments = 0;
382 #endif
383 	rq->end_io = NULL;
384 	rq->end_io_data = NULL;
385 
386 	blk_crypto_rq_set_defaults(rq);
387 	INIT_LIST_HEAD(&rq->queuelist);
388 	/* tag was already set */
389 	WRITE_ONCE(rq->deadline, 0);
390 	req_ref_set(rq, 1);
391 
392 	if (rq->rq_flags & RQF_USE_SCHED) {
393 		struct elevator_queue *e = data->q->elevator;
394 
395 		INIT_HLIST_NODE(&rq->hash);
396 		RB_CLEAR_NODE(&rq->rb_node);
397 
398 		if (e->type->ops.prepare_request)
399 			e->type->ops.prepare_request(rq);
400 	}
401 
402 	return rq;
403 }
404 
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 	unsigned int tag, tag_offset;
409 	struct blk_mq_tags *tags;
410 	struct request *rq;
411 	unsigned long tag_mask;
412 	int i, nr = 0;
413 
414 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 	if (unlikely(!tag_mask))
416 		return NULL;
417 
418 	tags = blk_mq_tags_from_data(data);
419 	for (i = 0; tag_mask; i++) {
420 		if (!(tag_mask & (1UL << i)))
421 			continue;
422 		tag = tag_offset + i;
423 		prefetch(tags->static_rqs[tag]);
424 		tag_mask &= ~(1UL << i);
425 		rq = blk_mq_rq_ctx_init(data, tags, tag);
426 		rq_list_add(data->cached_rq, rq);
427 		nr++;
428 	}
429 	if (!(data->rq_flags & RQF_SCHED_TAGS))
430 		blk_mq_add_active_requests(data->hctx, nr);
431 	/* caller already holds a reference, add for remainder */
432 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 	data->nr_tags -= nr;
434 
435 	return rq_list_pop(data->cached_rq);
436 }
437 
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 	struct request_queue *q = data->q;
441 	u64 alloc_time_ns = 0;
442 	struct request *rq;
443 	unsigned int tag;
444 
445 	/* alloc_time includes depth and tag waits */
446 	if (blk_queue_rq_alloc_time(q))
447 		alloc_time_ns = ktime_get_ns();
448 
449 	if (data->cmd_flags & REQ_NOWAIT)
450 		data->flags |= BLK_MQ_REQ_NOWAIT;
451 
452 	if (q->elevator) {
453 		/*
454 		 * All requests use scheduler tags when an I/O scheduler is
455 		 * enabled for the queue.
456 		 */
457 		data->rq_flags |= RQF_SCHED_TAGS;
458 
459 		/*
460 		 * Flush/passthrough requests are special and go directly to the
461 		 * dispatch list.
462 		 */
463 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464 		    !blk_op_is_passthrough(data->cmd_flags)) {
465 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
466 
467 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468 
469 			data->rq_flags |= RQF_USE_SCHED;
470 			if (ops->limit_depth)
471 				ops->limit_depth(data->cmd_flags, data);
472 		}
473 	}
474 
475 retry:
476 	data->ctx = blk_mq_get_ctx(q);
477 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478 	if (!(data->rq_flags & RQF_SCHED_TAGS))
479 		blk_mq_tag_busy(data->hctx);
480 
481 	if (data->flags & BLK_MQ_REQ_RESERVED)
482 		data->rq_flags |= RQF_RESV;
483 
484 	/*
485 	 * Try batched alloc if we want more than 1 tag.
486 	 */
487 	if (data->nr_tags > 1) {
488 		rq = __blk_mq_alloc_requests_batch(data);
489 		if (rq) {
490 			blk_mq_rq_time_init(rq, alloc_time_ns);
491 			return rq;
492 		}
493 		data->nr_tags = 1;
494 	}
495 
496 	/*
497 	 * Waiting allocations only fail because of an inactive hctx.  In that
498 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
499 	 * should have migrated us to an online CPU by now.
500 	 */
501 	tag = blk_mq_get_tag(data);
502 	if (tag == BLK_MQ_NO_TAG) {
503 		if (data->flags & BLK_MQ_REQ_NOWAIT)
504 			return NULL;
505 		/*
506 		 * Give up the CPU and sleep for a random short time to
507 		 * ensure that thread using a realtime scheduling class
508 		 * are migrated off the CPU, and thus off the hctx that
509 		 * is going away.
510 		 */
511 		msleep(3);
512 		goto retry;
513 	}
514 
515 	if (!(data->rq_flags & RQF_SCHED_TAGS))
516 		blk_mq_inc_active_requests(data->hctx);
517 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518 	blk_mq_rq_time_init(rq, alloc_time_ns);
519 	return rq;
520 }
521 
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523 					    struct blk_plug *plug,
524 					    blk_opf_t opf,
525 					    blk_mq_req_flags_t flags)
526 {
527 	struct blk_mq_alloc_data data = {
528 		.q		= q,
529 		.flags		= flags,
530 		.cmd_flags	= opf,
531 		.nr_tags	= plug->nr_ios,
532 		.cached_rq	= &plug->cached_rq,
533 	};
534 	struct request *rq;
535 
536 	if (blk_queue_enter(q, flags))
537 		return NULL;
538 
539 	plug->nr_ios = 1;
540 
541 	rq = __blk_mq_alloc_requests(&data);
542 	if (unlikely(!rq))
543 		blk_queue_exit(q);
544 	return rq;
545 }
546 
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 						   blk_opf_t opf,
549 						   blk_mq_req_flags_t flags)
550 {
551 	struct blk_plug *plug = current->plug;
552 	struct request *rq;
553 
554 	if (!plug)
555 		return NULL;
556 
557 	if (rq_list_empty(plug->cached_rq)) {
558 		if (plug->nr_ios == 1)
559 			return NULL;
560 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561 		if (!rq)
562 			return NULL;
563 	} else {
564 		rq = rq_list_peek(&plug->cached_rq);
565 		if (!rq || rq->q != q)
566 			return NULL;
567 
568 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 			return NULL;
570 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571 			return NULL;
572 
573 		plug->cached_rq = rq_list_next(rq);
574 		blk_mq_rq_time_init(rq, 0);
575 	}
576 
577 	rq->cmd_flags = opf;
578 	INIT_LIST_HEAD(&rq->queuelist);
579 	return rq;
580 }
581 
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583 		blk_mq_req_flags_t flags)
584 {
585 	struct request *rq;
586 
587 	rq = blk_mq_alloc_cached_request(q, opf, flags);
588 	if (!rq) {
589 		struct blk_mq_alloc_data data = {
590 			.q		= q,
591 			.flags		= flags,
592 			.cmd_flags	= opf,
593 			.nr_tags	= 1,
594 		};
595 		int ret;
596 
597 		ret = blk_queue_enter(q, flags);
598 		if (ret)
599 			return ERR_PTR(ret);
600 
601 		rq = __blk_mq_alloc_requests(&data);
602 		if (!rq)
603 			goto out_queue_exit;
604 	}
605 	rq->__data_len = 0;
606 	rq->__sector = (sector_t) -1;
607 	rq->bio = rq->biotail = NULL;
608 	return rq;
609 out_queue_exit:
610 	blk_queue_exit(q);
611 	return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614 
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618 	struct blk_mq_alloc_data data = {
619 		.q		= q,
620 		.flags		= flags,
621 		.cmd_flags	= opf,
622 		.nr_tags	= 1,
623 	};
624 	u64 alloc_time_ns = 0;
625 	struct request *rq;
626 	unsigned int cpu;
627 	unsigned int tag;
628 	int ret;
629 
630 	/* alloc_time includes depth and tag waits */
631 	if (blk_queue_rq_alloc_time(q))
632 		alloc_time_ns = ktime_get_ns();
633 
634 	/*
635 	 * If the tag allocator sleeps we could get an allocation for a
636 	 * different hardware context.  No need to complicate the low level
637 	 * allocator for this for the rare use case of a command tied to
638 	 * a specific queue.
639 	 */
640 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642 		return ERR_PTR(-EINVAL);
643 
644 	if (hctx_idx >= q->nr_hw_queues)
645 		return ERR_PTR(-EIO);
646 
647 	ret = blk_queue_enter(q, flags);
648 	if (ret)
649 		return ERR_PTR(ret);
650 
651 	/*
652 	 * Check if the hardware context is actually mapped to anything.
653 	 * If not tell the caller that it should skip this queue.
654 	 */
655 	ret = -EXDEV;
656 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
657 	if (!blk_mq_hw_queue_mapped(data.hctx))
658 		goto out_queue_exit;
659 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660 	if (cpu >= nr_cpu_ids)
661 		goto out_queue_exit;
662 	data.ctx = __blk_mq_get_ctx(q, cpu);
663 
664 	if (q->elevator)
665 		data.rq_flags |= RQF_SCHED_TAGS;
666 	else
667 		blk_mq_tag_busy(data.hctx);
668 
669 	if (flags & BLK_MQ_REQ_RESERVED)
670 		data.rq_flags |= RQF_RESV;
671 
672 	ret = -EWOULDBLOCK;
673 	tag = blk_mq_get_tag(&data);
674 	if (tag == BLK_MQ_NO_TAG)
675 		goto out_queue_exit;
676 	if (!(data.rq_flags & RQF_SCHED_TAGS))
677 		blk_mq_inc_active_requests(data.hctx);
678 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679 	blk_mq_rq_time_init(rq, alloc_time_ns);
680 	rq->__data_len = 0;
681 	rq->__sector = (sector_t) -1;
682 	rq->bio = rq->biotail = NULL;
683 	return rq;
684 
685 out_queue_exit:
686 	blk_queue_exit(q);
687 	return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690 
691 static void blk_mq_finish_request(struct request *rq)
692 {
693 	struct request_queue *q = rq->q;
694 
695 	if (rq->rq_flags & RQF_USE_SCHED) {
696 		q->elevator->type->ops.finish_request(rq);
697 		/*
698 		 * For postflush request that may need to be
699 		 * completed twice, we should clear this flag
700 		 * to avoid double finish_request() on the rq.
701 		 */
702 		rq->rq_flags &= ~RQF_USE_SCHED;
703 	}
704 }
705 
706 static void __blk_mq_free_request(struct request *rq)
707 {
708 	struct request_queue *q = rq->q;
709 	struct blk_mq_ctx *ctx = rq->mq_ctx;
710 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711 	const int sched_tag = rq->internal_tag;
712 
713 	blk_crypto_free_request(rq);
714 	blk_pm_mark_last_busy(rq);
715 	rq->mq_hctx = NULL;
716 
717 	if (rq->tag != BLK_MQ_NO_TAG) {
718 		blk_mq_dec_active_requests(hctx);
719 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 	}
721 	if (sched_tag != BLK_MQ_NO_TAG)
722 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 	blk_mq_sched_restart(hctx);
724 	blk_queue_exit(q);
725 }
726 
727 void blk_mq_free_request(struct request *rq)
728 {
729 	struct request_queue *q = rq->q;
730 
731 	blk_mq_finish_request(rq);
732 
733 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734 		laptop_io_completion(q->disk->bdi);
735 
736 	rq_qos_done(q, rq);
737 
738 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739 	if (req_ref_put_and_test(rq))
740 		__blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746 	struct request *rq;
747 
748 	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749 		blk_mq_free_request(rq);
750 }
751 
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755 		rq->q->disk ? rq->q->disk->disk_name : "?",
756 		(__force unsigned long long) rq->cmd_flags);
757 
758 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
759 	       (unsigned long long)blk_rq_pos(rq),
760 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
762 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765 
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767 			  unsigned int nbytes, blk_status_t error)
768 {
769 	if (unlikely(error)) {
770 		bio->bi_status = error;
771 	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 		/*
773 		 * Partial zone append completions cannot be supported as the
774 		 * BIO fragments may end up not being written sequentially.
775 		 */
776 		if (bio->bi_iter.bi_size != nbytes)
777 			bio->bi_status = BLK_STS_IOERR;
778 		else
779 			bio->bi_iter.bi_sector = rq->__sector;
780 	}
781 
782 	bio_advance(bio, nbytes);
783 
784 	if (unlikely(rq->rq_flags & RQF_QUIET))
785 		bio_set_flag(bio, BIO_QUIET);
786 	/* don't actually finish bio if it's part of flush sequence */
787 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
788 		bio_endio(bio);
789 }
790 
791 static void blk_account_io_completion(struct request *req, unsigned int bytes)
792 {
793 	if (req->part && blk_do_io_stat(req)) {
794 		const int sgrp = op_stat_group(req_op(req));
795 
796 		part_stat_lock();
797 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
798 		part_stat_unlock();
799 	}
800 }
801 
802 static void blk_print_req_error(struct request *req, blk_status_t status)
803 {
804 	printk_ratelimited(KERN_ERR
805 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
806 		"phys_seg %u prio class %u\n",
807 		blk_status_to_str(status),
808 		req->q->disk ? req->q->disk->disk_name : "?",
809 		blk_rq_pos(req), (__force u32)req_op(req),
810 		blk_op_str(req_op(req)),
811 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
812 		req->nr_phys_segments,
813 		IOPRIO_PRIO_CLASS(req->ioprio));
814 }
815 
816 /*
817  * Fully end IO on a request. Does not support partial completions, or
818  * errors.
819  */
820 static void blk_complete_request(struct request *req)
821 {
822 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
823 	int total_bytes = blk_rq_bytes(req);
824 	struct bio *bio = req->bio;
825 
826 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
827 
828 	if (!bio)
829 		return;
830 
831 #ifdef CONFIG_BLK_DEV_INTEGRITY
832 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
833 		req->q->integrity.profile->complete_fn(req, total_bytes);
834 #endif
835 
836 	/*
837 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
838 	 * bio_endio().  Therefore, the keyslot must be released before that.
839 	 */
840 	blk_crypto_rq_put_keyslot(req);
841 
842 	blk_account_io_completion(req, total_bytes);
843 
844 	do {
845 		struct bio *next = bio->bi_next;
846 
847 		/* Completion has already been traced */
848 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
849 
850 		if (req_op(req) == REQ_OP_ZONE_APPEND)
851 			bio->bi_iter.bi_sector = req->__sector;
852 
853 		if (!is_flush)
854 			bio_endio(bio);
855 		bio = next;
856 	} while (bio);
857 
858 	/*
859 	 * Reset counters so that the request stacking driver
860 	 * can find how many bytes remain in the request
861 	 * later.
862 	 */
863 	if (!req->end_io) {
864 		req->bio = NULL;
865 		req->__data_len = 0;
866 	}
867 }
868 
869 /**
870  * blk_update_request - Complete multiple bytes without completing the request
871  * @req:      the request being processed
872  * @error:    block status code
873  * @nr_bytes: number of bytes to complete for @req
874  *
875  * Description:
876  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
877  *     the request structure even if @req doesn't have leftover.
878  *     If @req has leftover, sets it up for the next range of segments.
879  *
880  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881  *     %false return from this function.
882  *
883  * Note:
884  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885  *      except in the consistency check at the end of this function.
886  *
887  * Return:
888  *     %false - this request doesn't have any more data
889  *     %true  - this request has more data
890  **/
891 bool blk_update_request(struct request *req, blk_status_t error,
892 		unsigned int nr_bytes)
893 {
894 	int total_bytes;
895 
896 	trace_block_rq_complete(req, error, nr_bytes);
897 
898 	if (!req->bio)
899 		return false;
900 
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
903 	    error == BLK_STS_OK)
904 		req->q->integrity.profile->complete_fn(req, nr_bytes);
905 #endif
906 
907 	/*
908 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
909 	 * bio_endio().  Therefore, the keyslot must be released before that.
910 	 */
911 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
912 		__blk_crypto_rq_put_keyslot(req);
913 
914 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
915 		     !(req->rq_flags & RQF_QUIET)) &&
916 		     !test_bit(GD_DEAD, &req->q->disk->state)) {
917 		blk_print_req_error(req, error);
918 		trace_block_rq_error(req, error, nr_bytes);
919 	}
920 
921 	blk_account_io_completion(req, nr_bytes);
922 
923 	total_bytes = 0;
924 	while (req->bio) {
925 		struct bio *bio = req->bio;
926 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
927 
928 		if (bio_bytes == bio->bi_iter.bi_size)
929 			req->bio = bio->bi_next;
930 
931 		/* Completion has already been traced */
932 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
933 		req_bio_endio(req, bio, bio_bytes, error);
934 
935 		total_bytes += bio_bytes;
936 		nr_bytes -= bio_bytes;
937 
938 		if (!nr_bytes)
939 			break;
940 	}
941 
942 	/*
943 	 * completely done
944 	 */
945 	if (!req->bio) {
946 		/*
947 		 * Reset counters so that the request stacking driver
948 		 * can find how many bytes remain in the request
949 		 * later.
950 		 */
951 		req->__data_len = 0;
952 		return false;
953 	}
954 
955 	req->__data_len -= total_bytes;
956 
957 	/* update sector only for requests with clear definition of sector */
958 	if (!blk_rq_is_passthrough(req))
959 		req->__sector += total_bytes >> 9;
960 
961 	/* mixed attributes always follow the first bio */
962 	if (req->rq_flags & RQF_MIXED_MERGE) {
963 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
964 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
965 	}
966 
967 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
968 		/*
969 		 * If total number of sectors is less than the first segment
970 		 * size, something has gone terribly wrong.
971 		 */
972 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
973 			blk_dump_rq_flags(req, "request botched");
974 			req->__data_len = blk_rq_cur_bytes(req);
975 		}
976 
977 		/* recalculate the number of segments */
978 		req->nr_phys_segments = blk_recalc_rq_segments(req);
979 	}
980 
981 	return true;
982 }
983 EXPORT_SYMBOL_GPL(blk_update_request);
984 
985 static inline void blk_account_io_done(struct request *req, u64 now)
986 {
987 	trace_block_io_done(req);
988 
989 	/*
990 	 * Account IO completion.  flush_rq isn't accounted as a
991 	 * normal IO on queueing nor completion.  Accounting the
992 	 * containing request is enough.
993 	 */
994 	if (blk_do_io_stat(req) && req->part &&
995 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
996 		const int sgrp = op_stat_group(req_op(req));
997 
998 		part_stat_lock();
999 		update_io_ticks(req->part, jiffies, true);
1000 		part_stat_inc(req->part, ios[sgrp]);
1001 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1002 		part_stat_unlock();
1003 	}
1004 }
1005 
1006 static inline void blk_account_io_start(struct request *req)
1007 {
1008 	trace_block_io_start(req);
1009 
1010 	if (blk_do_io_stat(req)) {
1011 		/*
1012 		 * All non-passthrough requests are created from a bio with one
1013 		 * exception: when a flush command that is part of a flush sequence
1014 		 * generated by the state machine in blk-flush.c is cloned onto the
1015 		 * lower device by dm-multipath we can get here without a bio.
1016 		 */
1017 		if (req->bio)
1018 			req->part = req->bio->bi_bdev;
1019 		else
1020 			req->part = req->q->disk->part0;
1021 
1022 		part_stat_lock();
1023 		update_io_ticks(req->part, jiffies, false);
1024 		part_stat_unlock();
1025 	}
1026 }
1027 
1028 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1029 {
1030 	if (rq->rq_flags & RQF_STATS)
1031 		blk_stat_add(rq, now);
1032 
1033 	blk_mq_sched_completed_request(rq, now);
1034 	blk_account_io_done(rq, now);
1035 }
1036 
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 {
1039 	if (blk_mq_need_time_stamp(rq))
1040 		__blk_mq_end_request_acct(rq, ktime_get_ns());
1041 
1042 	blk_mq_finish_request(rq);
1043 
1044 	if (rq->end_io) {
1045 		rq_qos_done(rq->q, rq);
1046 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1047 			blk_mq_free_request(rq);
1048 	} else {
1049 		blk_mq_free_request(rq);
1050 	}
1051 }
1052 EXPORT_SYMBOL(__blk_mq_end_request);
1053 
1054 void blk_mq_end_request(struct request *rq, blk_status_t error)
1055 {
1056 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1057 		BUG();
1058 	__blk_mq_end_request(rq, error);
1059 }
1060 EXPORT_SYMBOL(blk_mq_end_request);
1061 
1062 #define TAG_COMP_BATCH		32
1063 
1064 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1065 					  int *tag_array, int nr_tags)
1066 {
1067 	struct request_queue *q = hctx->queue;
1068 
1069 	blk_mq_sub_active_requests(hctx, nr_tags);
1070 
1071 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074 
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 	struct request *rq;
1080 	u64 now = 0;
1081 
1082 	if (iob->need_ts)
1083 		now = ktime_get_ns();
1084 
1085 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 		prefetch(rq->bio);
1087 		prefetch(rq->rq_next);
1088 
1089 		blk_complete_request(rq);
1090 		if (iob->need_ts)
1091 			__blk_mq_end_request_acct(rq, now);
1092 
1093 		blk_mq_finish_request(rq);
1094 
1095 		rq_qos_done(rq->q, rq);
1096 
1097 		/*
1098 		 * If end_io handler returns NONE, then it still has
1099 		 * ownership of the request.
1100 		 */
1101 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 			continue;
1103 
1104 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 		if (!req_ref_put_and_test(rq))
1106 			continue;
1107 
1108 		blk_crypto_free_request(rq);
1109 		blk_pm_mark_last_busy(rq);
1110 
1111 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 			if (cur_hctx)
1113 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 			nr_tags = 0;
1115 			cur_hctx = rq->mq_hctx;
1116 		}
1117 		tags[nr_tags++] = rq->tag;
1118 	}
1119 
1120 	if (nr_tags)
1121 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124 
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 	struct request *rq, *next;
1129 
1130 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 		rq->q->mq_ops->complete(rq);
1132 }
1133 
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138 
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 	return 0;
1143 }
1144 
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149 
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 	int cpu = raw_smp_processor_id();
1153 
1154 	if (!IS_ENABLED(CONFIG_SMP) ||
1155 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 		return false;
1157 	/*
1158 	 * With force threaded interrupts enabled, raising softirq from an SMP
1159 	 * function call will always result in waking the ksoftirqd thread.
1160 	 * This is probably worse than completing the request on a different
1161 	 * cache domain.
1162 	 */
1163 	if (force_irqthreads())
1164 		return false;
1165 
1166 	/* same CPU or cache domain?  Complete locally */
1167 	if (cpu == rq->mq_ctx->cpu ||
1168 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 		return false;
1171 
1172 	/* don't try to IPI to an offline CPU */
1173 	return cpu_online(rq->mq_ctx->cpu);
1174 }
1175 
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 	unsigned int cpu;
1179 
1180 	cpu = rq->mq_ctx->cpu;
1181 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184 
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 	struct llist_head *list;
1188 
1189 	preempt_disable();
1190 	list = this_cpu_ptr(&blk_cpu_done);
1191 	if (llist_add(&rq->ipi_list, list))
1192 		raise_softirq(BLOCK_SOFTIRQ);
1193 	preempt_enable();
1194 }
1195 
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199 
1200 	/*
1201 	 * For request which hctx has only one ctx mapping,
1202 	 * or a polled request, always complete locally,
1203 	 * it's pointless to redirect the completion.
1204 	 */
1205 	if ((rq->mq_hctx->nr_ctx == 1 &&
1206 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 	     rq->cmd_flags & REQ_POLLED)
1208 		return false;
1209 
1210 	if (blk_mq_complete_need_ipi(rq)) {
1211 		blk_mq_complete_send_ipi(rq);
1212 		return true;
1213 	}
1214 
1215 	if (rq->q->nr_hw_queues == 1) {
1216 		blk_mq_raise_softirq(rq);
1217 		return true;
1218 	}
1219 	return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222 
1223 /**
1224  * blk_mq_complete_request - end I/O on a request
1225  * @rq:		the request being processed
1226  *
1227  * Description:
1228  *	Complete a request by scheduling the ->complete_rq operation.
1229  **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 	if (!blk_mq_complete_request_remote(rq))
1233 		rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236 
1237 /**
1238  * blk_mq_start_request - Start processing a request
1239  * @rq: Pointer to request to be started
1240  *
1241  * Function used by device drivers to notify the block layer that a request
1242  * is going to be processed now, so blk layer can do proper initializations
1243  * such as starting the timeout timer.
1244  */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 	struct request_queue *q = rq->q;
1248 
1249 	trace_block_rq_issue(rq);
1250 
1251 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252 		rq->io_start_time_ns = ktime_get_ns();
1253 		rq->stats_sectors = blk_rq_sectors(rq);
1254 		rq->rq_flags |= RQF_STATS;
1255 		rq_qos_issue(q, rq);
1256 	}
1257 
1258 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259 
1260 	blk_add_timer(rq);
1261 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1263 
1264 #ifdef CONFIG_BLK_DEV_INTEGRITY
1265 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1266 		q->integrity.profile->prepare_fn(rq);
1267 #endif
1268 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1269 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_request);
1272 
1273 /*
1274  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1275  * queues. This is important for md arrays to benefit from merging
1276  * requests.
1277  */
1278 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1279 {
1280 	if (plug->multiple_queues)
1281 		return BLK_MAX_REQUEST_COUNT * 2;
1282 	return BLK_MAX_REQUEST_COUNT;
1283 }
1284 
1285 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1286 {
1287 	struct request *last = rq_list_peek(&plug->mq_list);
1288 
1289 	if (!plug->rq_count) {
1290 		trace_block_plug(rq->q);
1291 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1292 		   (!blk_queue_nomerges(rq->q) &&
1293 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1294 		blk_mq_flush_plug_list(plug, false);
1295 		last = NULL;
1296 		trace_block_plug(rq->q);
1297 	}
1298 
1299 	if (!plug->multiple_queues && last && last->q != rq->q)
1300 		plug->multiple_queues = true;
1301 	/*
1302 	 * Any request allocated from sched tags can't be issued to
1303 	 * ->queue_rqs() directly
1304 	 */
1305 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1306 		plug->has_elevator = true;
1307 	rq->rq_next = NULL;
1308 	rq_list_add(&plug->mq_list, rq);
1309 	plug->rq_count++;
1310 }
1311 
1312 /**
1313  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1314  * @rq:		request to insert
1315  * @at_head:    insert request at head or tail of queue
1316  *
1317  * Description:
1318  *    Insert a fully prepared request at the back of the I/O scheduler queue
1319  *    for execution.  Don't wait for completion.
1320  *
1321  * Note:
1322  *    This function will invoke @done directly if the queue is dead.
1323  */
1324 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 {
1326 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1327 
1328 	WARN_ON(irqs_disabled());
1329 	WARN_ON(!blk_rq_is_passthrough(rq));
1330 
1331 	blk_account_io_start(rq);
1332 
1333 	/*
1334 	 * As plugging can be enabled for passthrough requests on a zoned
1335 	 * device, directly accessing the plug instead of using blk_mq_plug()
1336 	 * should not have any consequences.
1337 	 */
1338 	if (current->plug && !at_head) {
1339 		blk_add_rq_to_plug(current->plug, rq);
1340 		return;
1341 	}
1342 
1343 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1344 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1345 }
1346 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1347 
1348 struct blk_rq_wait {
1349 	struct completion done;
1350 	blk_status_t ret;
1351 };
1352 
1353 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1354 {
1355 	struct blk_rq_wait *wait = rq->end_io_data;
1356 
1357 	wait->ret = ret;
1358 	complete(&wait->done);
1359 	return RQ_END_IO_NONE;
1360 }
1361 
1362 bool blk_rq_is_poll(struct request *rq)
1363 {
1364 	if (!rq->mq_hctx)
1365 		return false;
1366 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1367 		return false;
1368 	return true;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1371 
1372 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1373 {
1374 	do {
1375 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1376 		cond_resched();
1377 	} while (!completion_done(wait));
1378 }
1379 
1380 /**
1381  * blk_execute_rq - insert a request into queue for execution
1382  * @rq:		request to insert
1383  * @at_head:    insert request at head or tail of queue
1384  *
1385  * Description:
1386  *    Insert a fully prepared request at the back of the I/O scheduler queue
1387  *    for execution and wait for completion.
1388  * Return: The blk_status_t result provided to blk_mq_end_request().
1389  */
1390 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1391 {
1392 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1393 	struct blk_rq_wait wait = {
1394 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1395 	};
1396 
1397 	WARN_ON(irqs_disabled());
1398 	WARN_ON(!blk_rq_is_passthrough(rq));
1399 
1400 	rq->end_io_data = &wait;
1401 	rq->end_io = blk_end_sync_rq;
1402 
1403 	blk_account_io_start(rq);
1404 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1405 	blk_mq_run_hw_queue(hctx, false);
1406 
1407 	if (blk_rq_is_poll(rq)) {
1408 		blk_rq_poll_completion(rq, &wait.done);
1409 	} else {
1410 		/*
1411 		 * Prevent hang_check timer from firing at us during very long
1412 		 * I/O
1413 		 */
1414 		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1415 
1416 		if (hang_check)
1417 			while (!wait_for_completion_io_timeout(&wait.done,
1418 					hang_check * (HZ/2)))
1419 				;
1420 		else
1421 			wait_for_completion_io(&wait.done);
1422 	}
1423 
1424 	return wait.ret;
1425 }
1426 EXPORT_SYMBOL(blk_execute_rq);
1427 
1428 static void __blk_mq_requeue_request(struct request *rq)
1429 {
1430 	struct request_queue *q = rq->q;
1431 
1432 	blk_mq_put_driver_tag(rq);
1433 
1434 	trace_block_rq_requeue(rq);
1435 	rq_qos_requeue(q, rq);
1436 
1437 	if (blk_mq_request_started(rq)) {
1438 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1439 		rq->rq_flags &= ~RQF_TIMED_OUT;
1440 	}
1441 }
1442 
1443 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1444 {
1445 	struct request_queue *q = rq->q;
1446 	unsigned long flags;
1447 
1448 	__blk_mq_requeue_request(rq);
1449 
1450 	/* this request will be re-inserted to io scheduler queue */
1451 	blk_mq_sched_requeue_request(rq);
1452 
1453 	spin_lock_irqsave(&q->requeue_lock, flags);
1454 	list_add_tail(&rq->queuelist, &q->requeue_list);
1455 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1456 
1457 	if (kick_requeue_list)
1458 		blk_mq_kick_requeue_list(q);
1459 }
1460 EXPORT_SYMBOL(blk_mq_requeue_request);
1461 
1462 static void blk_mq_requeue_work(struct work_struct *work)
1463 {
1464 	struct request_queue *q =
1465 		container_of(work, struct request_queue, requeue_work.work);
1466 	LIST_HEAD(rq_list);
1467 	LIST_HEAD(flush_list);
1468 	struct request *rq;
1469 
1470 	spin_lock_irq(&q->requeue_lock);
1471 	list_splice_init(&q->requeue_list, &rq_list);
1472 	list_splice_init(&q->flush_list, &flush_list);
1473 	spin_unlock_irq(&q->requeue_lock);
1474 
1475 	while (!list_empty(&rq_list)) {
1476 		rq = list_entry(rq_list.next, struct request, queuelist);
1477 		/*
1478 		 * If RQF_DONTPREP ist set, the request has been started by the
1479 		 * driver already and might have driver-specific data allocated
1480 		 * already.  Insert it into the hctx dispatch list to avoid
1481 		 * block layer merges for the request.
1482 		 */
1483 		if (rq->rq_flags & RQF_DONTPREP) {
1484 			list_del_init(&rq->queuelist);
1485 			blk_mq_request_bypass_insert(rq, 0);
1486 		} else {
1487 			list_del_init(&rq->queuelist);
1488 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1489 		}
1490 	}
1491 
1492 	while (!list_empty(&flush_list)) {
1493 		rq = list_entry(flush_list.next, struct request, queuelist);
1494 		list_del_init(&rq->queuelist);
1495 		blk_mq_insert_request(rq, 0);
1496 	}
1497 
1498 	blk_mq_run_hw_queues(q, false);
1499 }
1500 
1501 void blk_mq_kick_requeue_list(struct request_queue *q)
1502 {
1503 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1504 }
1505 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1506 
1507 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1508 				    unsigned long msecs)
1509 {
1510 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1511 				    msecs_to_jiffies(msecs));
1512 }
1513 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1514 
1515 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1516 {
1517 	/*
1518 	 * If we find a request that isn't idle we know the queue is busy
1519 	 * as it's checked in the iter.
1520 	 * Return false to stop the iteration.
1521 	 */
1522 	if (blk_mq_request_started(rq)) {
1523 		bool *busy = priv;
1524 
1525 		*busy = true;
1526 		return false;
1527 	}
1528 
1529 	return true;
1530 }
1531 
1532 bool blk_mq_queue_inflight(struct request_queue *q)
1533 {
1534 	bool busy = false;
1535 
1536 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1537 	return busy;
1538 }
1539 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1540 
1541 static void blk_mq_rq_timed_out(struct request *req)
1542 {
1543 	req->rq_flags |= RQF_TIMED_OUT;
1544 	if (req->q->mq_ops->timeout) {
1545 		enum blk_eh_timer_return ret;
1546 
1547 		ret = req->q->mq_ops->timeout(req);
1548 		if (ret == BLK_EH_DONE)
1549 			return;
1550 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1551 	}
1552 
1553 	blk_add_timer(req);
1554 }
1555 
1556 struct blk_expired_data {
1557 	bool has_timedout_rq;
1558 	unsigned long next;
1559 	unsigned long timeout_start;
1560 };
1561 
1562 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1563 {
1564 	unsigned long deadline;
1565 
1566 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1567 		return false;
1568 	if (rq->rq_flags & RQF_TIMED_OUT)
1569 		return false;
1570 
1571 	deadline = READ_ONCE(rq->deadline);
1572 	if (time_after_eq(expired->timeout_start, deadline))
1573 		return true;
1574 
1575 	if (expired->next == 0)
1576 		expired->next = deadline;
1577 	else if (time_after(expired->next, deadline))
1578 		expired->next = deadline;
1579 	return false;
1580 }
1581 
1582 void blk_mq_put_rq_ref(struct request *rq)
1583 {
1584 	if (is_flush_rq(rq)) {
1585 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1586 			blk_mq_free_request(rq);
1587 	} else if (req_ref_put_and_test(rq)) {
1588 		__blk_mq_free_request(rq);
1589 	}
1590 }
1591 
1592 static bool blk_mq_check_expired(struct request *rq, void *priv)
1593 {
1594 	struct blk_expired_data *expired = priv;
1595 
1596 	/*
1597 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1598 	 * be reallocated underneath the timeout handler's processing, then
1599 	 * the expire check is reliable. If the request is not expired, then
1600 	 * it was completed and reallocated as a new request after returning
1601 	 * from blk_mq_check_expired().
1602 	 */
1603 	if (blk_mq_req_expired(rq, expired)) {
1604 		expired->has_timedout_rq = true;
1605 		return false;
1606 	}
1607 	return true;
1608 }
1609 
1610 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1611 {
1612 	struct blk_expired_data *expired = priv;
1613 
1614 	if (blk_mq_req_expired(rq, expired))
1615 		blk_mq_rq_timed_out(rq);
1616 	return true;
1617 }
1618 
1619 static void blk_mq_timeout_work(struct work_struct *work)
1620 {
1621 	struct request_queue *q =
1622 		container_of(work, struct request_queue, timeout_work);
1623 	struct blk_expired_data expired = {
1624 		.timeout_start = jiffies,
1625 	};
1626 	struct blk_mq_hw_ctx *hctx;
1627 	unsigned long i;
1628 
1629 	/* A deadlock might occur if a request is stuck requiring a
1630 	 * timeout at the same time a queue freeze is waiting
1631 	 * completion, since the timeout code would not be able to
1632 	 * acquire the queue reference here.
1633 	 *
1634 	 * That's why we don't use blk_queue_enter here; instead, we use
1635 	 * percpu_ref_tryget directly, because we need to be able to
1636 	 * obtain a reference even in the short window between the queue
1637 	 * starting to freeze, by dropping the first reference in
1638 	 * blk_freeze_queue_start, and the moment the last request is
1639 	 * consumed, marked by the instant q_usage_counter reaches
1640 	 * zero.
1641 	 */
1642 	if (!percpu_ref_tryget(&q->q_usage_counter))
1643 		return;
1644 
1645 	/* check if there is any timed-out request */
1646 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1647 	if (expired.has_timedout_rq) {
1648 		/*
1649 		 * Before walking tags, we must ensure any submit started
1650 		 * before the current time has finished. Since the submit
1651 		 * uses srcu or rcu, wait for a synchronization point to
1652 		 * ensure all running submits have finished
1653 		 */
1654 		blk_mq_wait_quiesce_done(q->tag_set);
1655 
1656 		expired.next = 0;
1657 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1658 	}
1659 
1660 	if (expired.next != 0) {
1661 		mod_timer(&q->timeout, expired.next);
1662 	} else {
1663 		/*
1664 		 * Request timeouts are handled as a forward rolling timer. If
1665 		 * we end up here it means that no requests are pending and
1666 		 * also that no request has been pending for a while. Mark
1667 		 * each hctx as idle.
1668 		 */
1669 		queue_for_each_hw_ctx(q, hctx, i) {
1670 			/* the hctx may be unmapped, so check it here */
1671 			if (blk_mq_hw_queue_mapped(hctx))
1672 				blk_mq_tag_idle(hctx);
1673 		}
1674 	}
1675 	blk_queue_exit(q);
1676 }
1677 
1678 struct flush_busy_ctx_data {
1679 	struct blk_mq_hw_ctx *hctx;
1680 	struct list_head *list;
1681 };
1682 
1683 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1684 {
1685 	struct flush_busy_ctx_data *flush_data = data;
1686 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1687 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1688 	enum hctx_type type = hctx->type;
1689 
1690 	spin_lock(&ctx->lock);
1691 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1692 	sbitmap_clear_bit(sb, bitnr);
1693 	spin_unlock(&ctx->lock);
1694 	return true;
1695 }
1696 
1697 /*
1698  * Process software queues that have been marked busy, splicing them
1699  * to the for-dispatch
1700  */
1701 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1702 {
1703 	struct flush_busy_ctx_data data = {
1704 		.hctx = hctx,
1705 		.list = list,
1706 	};
1707 
1708 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1709 }
1710 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1711 
1712 struct dispatch_rq_data {
1713 	struct blk_mq_hw_ctx *hctx;
1714 	struct request *rq;
1715 };
1716 
1717 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1718 		void *data)
1719 {
1720 	struct dispatch_rq_data *dispatch_data = data;
1721 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1722 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1723 	enum hctx_type type = hctx->type;
1724 
1725 	spin_lock(&ctx->lock);
1726 	if (!list_empty(&ctx->rq_lists[type])) {
1727 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1728 		list_del_init(&dispatch_data->rq->queuelist);
1729 		if (list_empty(&ctx->rq_lists[type]))
1730 			sbitmap_clear_bit(sb, bitnr);
1731 	}
1732 	spin_unlock(&ctx->lock);
1733 
1734 	return !dispatch_data->rq;
1735 }
1736 
1737 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1738 					struct blk_mq_ctx *start)
1739 {
1740 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1741 	struct dispatch_rq_data data = {
1742 		.hctx = hctx,
1743 		.rq   = NULL,
1744 	};
1745 
1746 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1747 			       dispatch_rq_from_ctx, &data);
1748 
1749 	return data.rq;
1750 }
1751 
1752 bool __blk_mq_alloc_driver_tag(struct request *rq)
1753 {
1754 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1755 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1756 	int tag;
1757 
1758 	blk_mq_tag_busy(rq->mq_hctx);
1759 
1760 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1761 		bt = &rq->mq_hctx->tags->breserved_tags;
1762 		tag_offset = 0;
1763 	} else {
1764 		if (!hctx_may_queue(rq->mq_hctx, bt))
1765 			return false;
1766 	}
1767 
1768 	tag = __sbitmap_queue_get(bt);
1769 	if (tag == BLK_MQ_NO_TAG)
1770 		return false;
1771 
1772 	rq->tag = tag + tag_offset;
1773 	blk_mq_inc_active_requests(rq->mq_hctx);
1774 	return true;
1775 }
1776 
1777 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1778 				int flags, void *key)
1779 {
1780 	struct blk_mq_hw_ctx *hctx;
1781 
1782 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1783 
1784 	spin_lock(&hctx->dispatch_wait_lock);
1785 	if (!list_empty(&wait->entry)) {
1786 		struct sbitmap_queue *sbq;
1787 
1788 		list_del_init(&wait->entry);
1789 		sbq = &hctx->tags->bitmap_tags;
1790 		atomic_dec(&sbq->ws_active);
1791 	}
1792 	spin_unlock(&hctx->dispatch_wait_lock);
1793 
1794 	blk_mq_run_hw_queue(hctx, true);
1795 	return 1;
1796 }
1797 
1798 /*
1799  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1800  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1801  * restart. For both cases, take care to check the condition again after
1802  * marking us as waiting.
1803  */
1804 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1805 				 struct request *rq)
1806 {
1807 	struct sbitmap_queue *sbq;
1808 	struct wait_queue_head *wq;
1809 	wait_queue_entry_t *wait;
1810 	bool ret;
1811 
1812 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1813 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1814 		blk_mq_sched_mark_restart_hctx(hctx);
1815 
1816 		/*
1817 		 * It's possible that a tag was freed in the window between the
1818 		 * allocation failure and adding the hardware queue to the wait
1819 		 * queue.
1820 		 *
1821 		 * Don't clear RESTART here, someone else could have set it.
1822 		 * At most this will cost an extra queue run.
1823 		 */
1824 		return blk_mq_get_driver_tag(rq);
1825 	}
1826 
1827 	wait = &hctx->dispatch_wait;
1828 	if (!list_empty_careful(&wait->entry))
1829 		return false;
1830 
1831 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1832 		sbq = &hctx->tags->breserved_tags;
1833 	else
1834 		sbq = &hctx->tags->bitmap_tags;
1835 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1836 
1837 	spin_lock_irq(&wq->lock);
1838 	spin_lock(&hctx->dispatch_wait_lock);
1839 	if (!list_empty(&wait->entry)) {
1840 		spin_unlock(&hctx->dispatch_wait_lock);
1841 		spin_unlock_irq(&wq->lock);
1842 		return false;
1843 	}
1844 
1845 	atomic_inc(&sbq->ws_active);
1846 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1847 	__add_wait_queue(wq, wait);
1848 
1849 	/*
1850 	 * It's possible that a tag was freed in the window between the
1851 	 * allocation failure and adding the hardware queue to the wait
1852 	 * queue.
1853 	 */
1854 	ret = blk_mq_get_driver_tag(rq);
1855 	if (!ret) {
1856 		spin_unlock(&hctx->dispatch_wait_lock);
1857 		spin_unlock_irq(&wq->lock);
1858 		return false;
1859 	}
1860 
1861 	/*
1862 	 * We got a tag, remove ourselves from the wait queue to ensure
1863 	 * someone else gets the wakeup.
1864 	 */
1865 	list_del_init(&wait->entry);
1866 	atomic_dec(&sbq->ws_active);
1867 	spin_unlock(&hctx->dispatch_wait_lock);
1868 	spin_unlock_irq(&wq->lock);
1869 
1870 	return true;
1871 }
1872 
1873 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1874 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1875 /*
1876  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1877  * - EWMA is one simple way to compute running average value
1878  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1879  * - take 4 as factor for avoiding to get too small(0) result, and this
1880  *   factor doesn't matter because EWMA decreases exponentially
1881  */
1882 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1883 {
1884 	unsigned int ewma;
1885 
1886 	ewma = hctx->dispatch_busy;
1887 
1888 	if (!ewma && !busy)
1889 		return;
1890 
1891 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1892 	if (busy)
1893 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1894 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1895 
1896 	hctx->dispatch_busy = ewma;
1897 }
1898 
1899 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1900 
1901 static void blk_mq_handle_dev_resource(struct request *rq,
1902 				       struct list_head *list)
1903 {
1904 	list_add(&rq->queuelist, list);
1905 	__blk_mq_requeue_request(rq);
1906 }
1907 
1908 static void blk_mq_handle_zone_resource(struct request *rq,
1909 					struct list_head *zone_list)
1910 {
1911 	/*
1912 	 * If we end up here it is because we cannot dispatch a request to a
1913 	 * specific zone due to LLD level zone-write locking or other zone
1914 	 * related resource not being available. In this case, set the request
1915 	 * aside in zone_list for retrying it later.
1916 	 */
1917 	list_add(&rq->queuelist, zone_list);
1918 	__blk_mq_requeue_request(rq);
1919 }
1920 
1921 enum prep_dispatch {
1922 	PREP_DISPATCH_OK,
1923 	PREP_DISPATCH_NO_TAG,
1924 	PREP_DISPATCH_NO_BUDGET,
1925 };
1926 
1927 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1928 						  bool need_budget)
1929 {
1930 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1931 	int budget_token = -1;
1932 
1933 	if (need_budget) {
1934 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1935 		if (budget_token < 0) {
1936 			blk_mq_put_driver_tag(rq);
1937 			return PREP_DISPATCH_NO_BUDGET;
1938 		}
1939 		blk_mq_set_rq_budget_token(rq, budget_token);
1940 	}
1941 
1942 	if (!blk_mq_get_driver_tag(rq)) {
1943 		/*
1944 		 * The initial allocation attempt failed, so we need to
1945 		 * rerun the hardware queue when a tag is freed. The
1946 		 * waitqueue takes care of that. If the queue is run
1947 		 * before we add this entry back on the dispatch list,
1948 		 * we'll re-run it below.
1949 		 */
1950 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1951 			/*
1952 			 * All budgets not got from this function will be put
1953 			 * together during handling partial dispatch
1954 			 */
1955 			if (need_budget)
1956 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1957 			return PREP_DISPATCH_NO_TAG;
1958 		}
1959 	}
1960 
1961 	return PREP_DISPATCH_OK;
1962 }
1963 
1964 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1965 static void blk_mq_release_budgets(struct request_queue *q,
1966 		struct list_head *list)
1967 {
1968 	struct request *rq;
1969 
1970 	list_for_each_entry(rq, list, queuelist) {
1971 		int budget_token = blk_mq_get_rq_budget_token(rq);
1972 
1973 		if (budget_token >= 0)
1974 			blk_mq_put_dispatch_budget(q, budget_token);
1975 	}
1976 }
1977 
1978 /*
1979  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1980  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1981  * details)
1982  * Attention, we should explicitly call this in unusual cases:
1983  *  1) did not queue everything initially scheduled to queue
1984  *  2) the last attempt to queue a request failed
1985  */
1986 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1987 			      bool from_schedule)
1988 {
1989 	if (hctx->queue->mq_ops->commit_rqs && queued) {
1990 		trace_block_unplug(hctx->queue, queued, !from_schedule);
1991 		hctx->queue->mq_ops->commit_rqs(hctx);
1992 	}
1993 }
1994 
1995 /*
1996  * Returns true if we did some work AND can potentially do more.
1997  */
1998 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1999 			     unsigned int nr_budgets)
2000 {
2001 	enum prep_dispatch prep;
2002 	struct request_queue *q = hctx->queue;
2003 	struct request *rq;
2004 	int queued;
2005 	blk_status_t ret = BLK_STS_OK;
2006 	LIST_HEAD(zone_list);
2007 	bool needs_resource = false;
2008 
2009 	if (list_empty(list))
2010 		return false;
2011 
2012 	/*
2013 	 * Now process all the entries, sending them to the driver.
2014 	 */
2015 	queued = 0;
2016 	do {
2017 		struct blk_mq_queue_data bd;
2018 
2019 		rq = list_first_entry(list, struct request, queuelist);
2020 
2021 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2022 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2023 		if (prep != PREP_DISPATCH_OK)
2024 			break;
2025 
2026 		list_del_init(&rq->queuelist);
2027 
2028 		bd.rq = rq;
2029 		bd.last = list_empty(list);
2030 
2031 		/*
2032 		 * once the request is queued to lld, no need to cover the
2033 		 * budget any more
2034 		 */
2035 		if (nr_budgets)
2036 			nr_budgets--;
2037 		ret = q->mq_ops->queue_rq(hctx, &bd);
2038 		switch (ret) {
2039 		case BLK_STS_OK:
2040 			queued++;
2041 			break;
2042 		case BLK_STS_RESOURCE:
2043 			needs_resource = true;
2044 			fallthrough;
2045 		case BLK_STS_DEV_RESOURCE:
2046 			blk_mq_handle_dev_resource(rq, list);
2047 			goto out;
2048 		case BLK_STS_ZONE_RESOURCE:
2049 			/*
2050 			 * Move the request to zone_list and keep going through
2051 			 * the dispatch list to find more requests the drive can
2052 			 * accept.
2053 			 */
2054 			blk_mq_handle_zone_resource(rq, &zone_list);
2055 			needs_resource = true;
2056 			break;
2057 		default:
2058 			blk_mq_end_request(rq, ret);
2059 		}
2060 	} while (!list_empty(list));
2061 out:
2062 	if (!list_empty(&zone_list))
2063 		list_splice_tail_init(&zone_list, list);
2064 
2065 	/* If we didn't flush the entire list, we could have told the driver
2066 	 * there was more coming, but that turned out to be a lie.
2067 	 */
2068 	if (!list_empty(list) || ret != BLK_STS_OK)
2069 		blk_mq_commit_rqs(hctx, queued, false);
2070 
2071 	/*
2072 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2073 	 * that is where we will continue on next queue run.
2074 	 */
2075 	if (!list_empty(list)) {
2076 		bool needs_restart;
2077 		/* For non-shared tags, the RESTART check will suffice */
2078 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2079 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2080 			blk_mq_is_shared_tags(hctx->flags));
2081 
2082 		if (nr_budgets)
2083 			blk_mq_release_budgets(q, list);
2084 
2085 		spin_lock(&hctx->lock);
2086 		list_splice_tail_init(list, &hctx->dispatch);
2087 		spin_unlock(&hctx->lock);
2088 
2089 		/*
2090 		 * Order adding requests to hctx->dispatch and checking
2091 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2092 		 * in blk_mq_sched_restart(). Avoid restart code path to
2093 		 * miss the new added requests to hctx->dispatch, meantime
2094 		 * SCHED_RESTART is observed here.
2095 		 */
2096 		smp_mb();
2097 
2098 		/*
2099 		 * If SCHED_RESTART was set by the caller of this function and
2100 		 * it is no longer set that means that it was cleared by another
2101 		 * thread and hence that a queue rerun is needed.
2102 		 *
2103 		 * If 'no_tag' is set, that means that we failed getting
2104 		 * a driver tag with an I/O scheduler attached. If our dispatch
2105 		 * waitqueue is no longer active, ensure that we run the queue
2106 		 * AFTER adding our entries back to the list.
2107 		 *
2108 		 * If no I/O scheduler has been configured it is possible that
2109 		 * the hardware queue got stopped and restarted before requests
2110 		 * were pushed back onto the dispatch list. Rerun the queue to
2111 		 * avoid starvation. Notes:
2112 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2113 		 *   been stopped before rerunning a queue.
2114 		 * - Some but not all block drivers stop a queue before
2115 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2116 		 *   and dm-rq.
2117 		 *
2118 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2119 		 * bit is set, run queue after a delay to avoid IO stalls
2120 		 * that could otherwise occur if the queue is idle.  We'll do
2121 		 * similar if we couldn't get budget or couldn't lock a zone
2122 		 * and SCHED_RESTART is set.
2123 		 */
2124 		needs_restart = blk_mq_sched_needs_restart(hctx);
2125 		if (prep == PREP_DISPATCH_NO_BUDGET)
2126 			needs_resource = true;
2127 		if (!needs_restart ||
2128 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2129 			blk_mq_run_hw_queue(hctx, true);
2130 		else if (needs_resource)
2131 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2132 
2133 		blk_mq_update_dispatch_busy(hctx, true);
2134 		return false;
2135 	}
2136 
2137 	blk_mq_update_dispatch_busy(hctx, false);
2138 	return true;
2139 }
2140 
2141 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2142 {
2143 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2144 
2145 	if (cpu >= nr_cpu_ids)
2146 		cpu = cpumask_first(hctx->cpumask);
2147 	return cpu;
2148 }
2149 
2150 /*
2151  * It'd be great if the workqueue API had a way to pass
2152  * in a mask and had some smarts for more clever placement.
2153  * For now we just round-robin here, switching for every
2154  * BLK_MQ_CPU_WORK_BATCH queued items.
2155  */
2156 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2157 {
2158 	bool tried = false;
2159 	int next_cpu = hctx->next_cpu;
2160 
2161 	if (hctx->queue->nr_hw_queues == 1)
2162 		return WORK_CPU_UNBOUND;
2163 
2164 	if (--hctx->next_cpu_batch <= 0) {
2165 select_cpu:
2166 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2167 				cpu_online_mask);
2168 		if (next_cpu >= nr_cpu_ids)
2169 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2170 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2171 	}
2172 
2173 	/*
2174 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2175 	 * and it should only happen in the path of handling CPU DEAD.
2176 	 */
2177 	if (!cpu_online(next_cpu)) {
2178 		if (!tried) {
2179 			tried = true;
2180 			goto select_cpu;
2181 		}
2182 
2183 		/*
2184 		 * Make sure to re-select CPU next time once after CPUs
2185 		 * in hctx->cpumask become online again.
2186 		 */
2187 		hctx->next_cpu = next_cpu;
2188 		hctx->next_cpu_batch = 1;
2189 		return WORK_CPU_UNBOUND;
2190 	}
2191 
2192 	hctx->next_cpu = next_cpu;
2193 	return next_cpu;
2194 }
2195 
2196 /**
2197  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2198  * @hctx: Pointer to the hardware queue to run.
2199  * @msecs: Milliseconds of delay to wait before running the queue.
2200  *
2201  * Run a hardware queue asynchronously with a delay of @msecs.
2202  */
2203 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2204 {
2205 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2206 		return;
2207 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2208 				    msecs_to_jiffies(msecs));
2209 }
2210 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2211 
2212 /**
2213  * blk_mq_run_hw_queue - Start to run a hardware queue.
2214  * @hctx: Pointer to the hardware queue to run.
2215  * @async: If we want to run the queue asynchronously.
2216  *
2217  * Check if the request queue is not in a quiesced state and if there are
2218  * pending requests to be sent. If this is true, run the queue to send requests
2219  * to hardware.
2220  */
2221 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2222 {
2223 	bool need_run;
2224 
2225 	/*
2226 	 * We can't run the queue inline with interrupts disabled.
2227 	 */
2228 	WARN_ON_ONCE(!async && in_interrupt());
2229 
2230 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2231 
2232 	/*
2233 	 * When queue is quiesced, we may be switching io scheduler, or
2234 	 * updating nr_hw_queues, or other things, and we can't run queue
2235 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2236 	 *
2237 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2238 	 * quiesced.
2239 	 */
2240 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2241 		need_run = !blk_queue_quiesced(hctx->queue) &&
2242 		blk_mq_hctx_has_pending(hctx));
2243 
2244 	if (!need_run)
2245 		return;
2246 
2247 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2248 		blk_mq_delay_run_hw_queue(hctx, 0);
2249 		return;
2250 	}
2251 
2252 	blk_mq_run_dispatch_ops(hctx->queue,
2253 				blk_mq_sched_dispatch_requests(hctx));
2254 }
2255 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2256 
2257 /*
2258  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2259  * scheduler.
2260  */
2261 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2262 {
2263 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2264 	/*
2265 	 * If the IO scheduler does not respect hardware queues when
2266 	 * dispatching, we just don't bother with multiple HW queues and
2267 	 * dispatch from hctx for the current CPU since running multiple queues
2268 	 * just causes lock contention inside the scheduler and pointless cache
2269 	 * bouncing.
2270 	 */
2271 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2272 
2273 	if (!blk_mq_hctx_stopped(hctx))
2274 		return hctx;
2275 	return NULL;
2276 }
2277 
2278 /**
2279  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2280  * @q: Pointer to the request queue to run.
2281  * @async: If we want to run the queue asynchronously.
2282  */
2283 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2284 {
2285 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2286 	unsigned long i;
2287 
2288 	sq_hctx = NULL;
2289 	if (blk_queue_sq_sched(q))
2290 		sq_hctx = blk_mq_get_sq_hctx(q);
2291 	queue_for_each_hw_ctx(q, hctx, i) {
2292 		if (blk_mq_hctx_stopped(hctx))
2293 			continue;
2294 		/*
2295 		 * Dispatch from this hctx either if there's no hctx preferred
2296 		 * by IO scheduler or if it has requests that bypass the
2297 		 * scheduler.
2298 		 */
2299 		if (!sq_hctx || sq_hctx == hctx ||
2300 		    !list_empty_careful(&hctx->dispatch))
2301 			blk_mq_run_hw_queue(hctx, async);
2302 	}
2303 }
2304 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2305 
2306 /**
2307  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2308  * @q: Pointer to the request queue to run.
2309  * @msecs: Milliseconds of delay to wait before running the queues.
2310  */
2311 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2312 {
2313 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2314 	unsigned long i;
2315 
2316 	sq_hctx = NULL;
2317 	if (blk_queue_sq_sched(q))
2318 		sq_hctx = blk_mq_get_sq_hctx(q);
2319 	queue_for_each_hw_ctx(q, hctx, i) {
2320 		if (blk_mq_hctx_stopped(hctx))
2321 			continue;
2322 		/*
2323 		 * If there is already a run_work pending, leave the
2324 		 * pending delay untouched. Otherwise, a hctx can stall
2325 		 * if another hctx is re-delaying the other's work
2326 		 * before the work executes.
2327 		 */
2328 		if (delayed_work_pending(&hctx->run_work))
2329 			continue;
2330 		/*
2331 		 * Dispatch from this hctx either if there's no hctx preferred
2332 		 * by IO scheduler or if it has requests that bypass the
2333 		 * scheduler.
2334 		 */
2335 		if (!sq_hctx || sq_hctx == hctx ||
2336 		    !list_empty_careful(&hctx->dispatch))
2337 			blk_mq_delay_run_hw_queue(hctx, msecs);
2338 	}
2339 }
2340 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2341 
2342 /*
2343  * This function is often used for pausing .queue_rq() by driver when
2344  * there isn't enough resource or some conditions aren't satisfied, and
2345  * BLK_STS_RESOURCE is usually returned.
2346  *
2347  * We do not guarantee that dispatch can be drained or blocked
2348  * after blk_mq_stop_hw_queue() returns. Please use
2349  * blk_mq_quiesce_queue() for that requirement.
2350  */
2351 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2352 {
2353 	cancel_delayed_work(&hctx->run_work);
2354 
2355 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2356 }
2357 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2358 
2359 /*
2360  * This function is often used for pausing .queue_rq() by driver when
2361  * there isn't enough resource or some conditions aren't satisfied, and
2362  * BLK_STS_RESOURCE is usually returned.
2363  *
2364  * We do not guarantee that dispatch can be drained or blocked
2365  * after blk_mq_stop_hw_queues() returns. Please use
2366  * blk_mq_quiesce_queue() for that requirement.
2367  */
2368 void blk_mq_stop_hw_queues(struct request_queue *q)
2369 {
2370 	struct blk_mq_hw_ctx *hctx;
2371 	unsigned long i;
2372 
2373 	queue_for_each_hw_ctx(q, hctx, i)
2374 		blk_mq_stop_hw_queue(hctx);
2375 }
2376 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2377 
2378 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2379 {
2380 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2381 
2382 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2383 }
2384 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2385 
2386 void blk_mq_start_hw_queues(struct request_queue *q)
2387 {
2388 	struct blk_mq_hw_ctx *hctx;
2389 	unsigned long i;
2390 
2391 	queue_for_each_hw_ctx(q, hctx, i)
2392 		blk_mq_start_hw_queue(hctx);
2393 }
2394 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2395 
2396 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2397 {
2398 	if (!blk_mq_hctx_stopped(hctx))
2399 		return;
2400 
2401 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402 	blk_mq_run_hw_queue(hctx, async);
2403 }
2404 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2405 
2406 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2407 {
2408 	struct blk_mq_hw_ctx *hctx;
2409 	unsigned long i;
2410 
2411 	queue_for_each_hw_ctx(q, hctx, i)
2412 		blk_mq_start_stopped_hw_queue(hctx, async ||
2413 					(hctx->flags & BLK_MQ_F_BLOCKING));
2414 }
2415 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2416 
2417 static void blk_mq_run_work_fn(struct work_struct *work)
2418 {
2419 	struct blk_mq_hw_ctx *hctx =
2420 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2421 
2422 	blk_mq_run_dispatch_ops(hctx->queue,
2423 				blk_mq_sched_dispatch_requests(hctx));
2424 }
2425 
2426 /**
2427  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2428  * @rq: Pointer to request to be inserted.
2429  * @flags: BLK_MQ_INSERT_*
2430  *
2431  * Should only be used carefully, when the caller knows we want to
2432  * bypass a potential IO scheduler on the target device.
2433  */
2434 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2435 {
2436 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2437 
2438 	spin_lock(&hctx->lock);
2439 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2440 		list_add(&rq->queuelist, &hctx->dispatch);
2441 	else
2442 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2443 	spin_unlock(&hctx->lock);
2444 }
2445 
2446 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2447 		struct blk_mq_ctx *ctx, struct list_head *list,
2448 		bool run_queue_async)
2449 {
2450 	struct request *rq;
2451 	enum hctx_type type = hctx->type;
2452 
2453 	/*
2454 	 * Try to issue requests directly if the hw queue isn't busy to save an
2455 	 * extra enqueue & dequeue to the sw queue.
2456 	 */
2457 	if (!hctx->dispatch_busy && !run_queue_async) {
2458 		blk_mq_run_dispatch_ops(hctx->queue,
2459 			blk_mq_try_issue_list_directly(hctx, list));
2460 		if (list_empty(list))
2461 			goto out;
2462 	}
2463 
2464 	/*
2465 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2466 	 * offline now
2467 	 */
2468 	list_for_each_entry(rq, list, queuelist) {
2469 		BUG_ON(rq->mq_ctx != ctx);
2470 		trace_block_rq_insert(rq);
2471 		if (rq->cmd_flags & REQ_NOWAIT)
2472 			run_queue_async = true;
2473 	}
2474 
2475 	spin_lock(&ctx->lock);
2476 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2477 	blk_mq_hctx_mark_pending(hctx, ctx);
2478 	spin_unlock(&ctx->lock);
2479 out:
2480 	blk_mq_run_hw_queue(hctx, run_queue_async);
2481 }
2482 
2483 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2484 {
2485 	struct request_queue *q = rq->q;
2486 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2487 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2488 
2489 	if (blk_rq_is_passthrough(rq)) {
2490 		/*
2491 		 * Passthrough request have to be added to hctx->dispatch
2492 		 * directly.  The device may be in a situation where it can't
2493 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2494 		 * them, which gets them added to hctx->dispatch.
2495 		 *
2496 		 * If a passthrough request is required to unblock the queues,
2497 		 * and it is added to the scheduler queue, there is no chance to
2498 		 * dispatch it given we prioritize requests in hctx->dispatch.
2499 		 */
2500 		blk_mq_request_bypass_insert(rq, flags);
2501 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2502 		/*
2503 		 * Firstly normal IO request is inserted to scheduler queue or
2504 		 * sw queue, meantime we add flush request to dispatch queue(
2505 		 * hctx->dispatch) directly and there is at most one in-flight
2506 		 * flush request for each hw queue, so it doesn't matter to add
2507 		 * flush request to tail or front of the dispatch queue.
2508 		 *
2509 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2510 		 * command, and queueing it will fail when there is any
2511 		 * in-flight normal IO request(NCQ command). When adding flush
2512 		 * rq to the front of hctx->dispatch, it is easier to introduce
2513 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2514 		 * compared with adding to the tail of dispatch queue, then
2515 		 * chance of flush merge is increased, and less flush requests
2516 		 * will be issued to controller. It is observed that ~10% time
2517 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2518 		 * drive when adding flush rq to the front of hctx->dispatch.
2519 		 *
2520 		 * Simply queue flush rq to the front of hctx->dispatch so that
2521 		 * intensive flush workloads can benefit in case of NCQ HW.
2522 		 */
2523 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2524 	} else if (q->elevator) {
2525 		LIST_HEAD(list);
2526 
2527 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2528 
2529 		list_add(&rq->queuelist, &list);
2530 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2531 	} else {
2532 		trace_block_rq_insert(rq);
2533 
2534 		spin_lock(&ctx->lock);
2535 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2536 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2537 		else
2538 			list_add_tail(&rq->queuelist,
2539 				      &ctx->rq_lists[hctx->type]);
2540 		blk_mq_hctx_mark_pending(hctx, ctx);
2541 		spin_unlock(&ctx->lock);
2542 	}
2543 }
2544 
2545 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2546 		unsigned int nr_segs)
2547 {
2548 	int err;
2549 
2550 	if (bio->bi_opf & REQ_RAHEAD)
2551 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2552 
2553 	rq->__sector = bio->bi_iter.bi_sector;
2554 	blk_rq_bio_prep(rq, bio, nr_segs);
2555 
2556 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2557 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2558 	WARN_ON_ONCE(err);
2559 
2560 	blk_account_io_start(rq);
2561 }
2562 
2563 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2564 					    struct request *rq, bool last)
2565 {
2566 	struct request_queue *q = rq->q;
2567 	struct blk_mq_queue_data bd = {
2568 		.rq = rq,
2569 		.last = last,
2570 	};
2571 	blk_status_t ret;
2572 
2573 	/*
2574 	 * For OK queue, we are done. For error, caller may kill it.
2575 	 * Any other error (busy), just add it to our list as we
2576 	 * previously would have done.
2577 	 */
2578 	ret = q->mq_ops->queue_rq(hctx, &bd);
2579 	switch (ret) {
2580 	case BLK_STS_OK:
2581 		blk_mq_update_dispatch_busy(hctx, false);
2582 		break;
2583 	case BLK_STS_RESOURCE:
2584 	case BLK_STS_DEV_RESOURCE:
2585 		blk_mq_update_dispatch_busy(hctx, true);
2586 		__blk_mq_requeue_request(rq);
2587 		break;
2588 	default:
2589 		blk_mq_update_dispatch_busy(hctx, false);
2590 		break;
2591 	}
2592 
2593 	return ret;
2594 }
2595 
2596 static bool blk_mq_get_budget_and_tag(struct request *rq)
2597 {
2598 	int budget_token;
2599 
2600 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2601 	if (budget_token < 0)
2602 		return false;
2603 	blk_mq_set_rq_budget_token(rq, budget_token);
2604 	if (!blk_mq_get_driver_tag(rq)) {
2605 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2606 		return false;
2607 	}
2608 	return true;
2609 }
2610 
2611 /**
2612  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2613  * @hctx: Pointer of the associated hardware queue.
2614  * @rq: Pointer to request to be sent.
2615  *
2616  * If the device has enough resources to accept a new request now, send the
2617  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2618  * we can try send it another time in the future. Requests inserted at this
2619  * queue have higher priority.
2620  */
2621 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2622 		struct request *rq)
2623 {
2624 	blk_status_t ret;
2625 
2626 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2627 		blk_mq_insert_request(rq, 0);
2628 		return;
2629 	}
2630 
2631 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2632 		blk_mq_insert_request(rq, 0);
2633 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2634 		return;
2635 	}
2636 
2637 	ret = __blk_mq_issue_directly(hctx, rq, true);
2638 	switch (ret) {
2639 	case BLK_STS_OK:
2640 		break;
2641 	case BLK_STS_RESOURCE:
2642 	case BLK_STS_DEV_RESOURCE:
2643 		blk_mq_request_bypass_insert(rq, 0);
2644 		blk_mq_run_hw_queue(hctx, false);
2645 		break;
2646 	default:
2647 		blk_mq_end_request(rq, ret);
2648 		break;
2649 	}
2650 }
2651 
2652 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2653 {
2654 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2655 
2656 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2657 		blk_mq_insert_request(rq, 0);
2658 		return BLK_STS_OK;
2659 	}
2660 
2661 	if (!blk_mq_get_budget_and_tag(rq))
2662 		return BLK_STS_RESOURCE;
2663 	return __blk_mq_issue_directly(hctx, rq, last);
2664 }
2665 
2666 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2667 {
2668 	struct blk_mq_hw_ctx *hctx = NULL;
2669 	struct request *rq;
2670 	int queued = 0;
2671 	blk_status_t ret = BLK_STS_OK;
2672 
2673 	while ((rq = rq_list_pop(&plug->mq_list))) {
2674 		bool last = rq_list_empty(plug->mq_list);
2675 
2676 		if (hctx != rq->mq_hctx) {
2677 			if (hctx) {
2678 				blk_mq_commit_rqs(hctx, queued, false);
2679 				queued = 0;
2680 			}
2681 			hctx = rq->mq_hctx;
2682 		}
2683 
2684 		ret = blk_mq_request_issue_directly(rq, last);
2685 		switch (ret) {
2686 		case BLK_STS_OK:
2687 			queued++;
2688 			break;
2689 		case BLK_STS_RESOURCE:
2690 		case BLK_STS_DEV_RESOURCE:
2691 			blk_mq_request_bypass_insert(rq, 0);
2692 			blk_mq_run_hw_queue(hctx, false);
2693 			goto out;
2694 		default:
2695 			blk_mq_end_request(rq, ret);
2696 			break;
2697 		}
2698 	}
2699 
2700 out:
2701 	if (ret != BLK_STS_OK)
2702 		blk_mq_commit_rqs(hctx, queued, false);
2703 }
2704 
2705 static void __blk_mq_flush_plug_list(struct request_queue *q,
2706 				     struct blk_plug *plug)
2707 {
2708 	if (blk_queue_quiesced(q))
2709 		return;
2710 	q->mq_ops->queue_rqs(&plug->mq_list);
2711 }
2712 
2713 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2714 {
2715 	struct blk_mq_hw_ctx *this_hctx = NULL;
2716 	struct blk_mq_ctx *this_ctx = NULL;
2717 	struct request *requeue_list = NULL;
2718 	struct request **requeue_lastp = &requeue_list;
2719 	unsigned int depth = 0;
2720 	bool is_passthrough = false;
2721 	LIST_HEAD(list);
2722 
2723 	do {
2724 		struct request *rq = rq_list_pop(&plug->mq_list);
2725 
2726 		if (!this_hctx) {
2727 			this_hctx = rq->mq_hctx;
2728 			this_ctx = rq->mq_ctx;
2729 			is_passthrough = blk_rq_is_passthrough(rq);
2730 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2731 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2732 			rq_list_add_tail(&requeue_lastp, rq);
2733 			continue;
2734 		}
2735 		list_add(&rq->queuelist, &list);
2736 		depth++;
2737 	} while (!rq_list_empty(plug->mq_list));
2738 
2739 	plug->mq_list = requeue_list;
2740 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2741 
2742 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2743 	/* passthrough requests should never be issued to the I/O scheduler */
2744 	if (is_passthrough) {
2745 		spin_lock(&this_hctx->lock);
2746 		list_splice_tail_init(&list, &this_hctx->dispatch);
2747 		spin_unlock(&this_hctx->lock);
2748 		blk_mq_run_hw_queue(this_hctx, from_sched);
2749 	} else if (this_hctx->queue->elevator) {
2750 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2751 				&list, 0);
2752 		blk_mq_run_hw_queue(this_hctx, from_sched);
2753 	} else {
2754 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2755 	}
2756 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2757 }
2758 
2759 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2760 {
2761 	struct request *rq;
2762 
2763 	/*
2764 	 * We may have been called recursively midway through handling
2765 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2766 	 * To avoid mq_list changing under our feet, clear rq_count early and
2767 	 * bail out specifically if rq_count is 0 rather than checking
2768 	 * whether the mq_list is empty.
2769 	 */
2770 	if (plug->rq_count == 0)
2771 		return;
2772 	plug->rq_count = 0;
2773 
2774 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2775 		struct request_queue *q;
2776 
2777 		rq = rq_list_peek(&plug->mq_list);
2778 		q = rq->q;
2779 
2780 		/*
2781 		 * Peek first request and see if we have a ->queue_rqs() hook.
2782 		 * If we do, we can dispatch the whole plug list in one go. We
2783 		 * already know at this point that all requests belong to the
2784 		 * same queue, caller must ensure that's the case.
2785 		 */
2786 		if (q->mq_ops->queue_rqs) {
2787 			blk_mq_run_dispatch_ops(q,
2788 				__blk_mq_flush_plug_list(q, plug));
2789 			if (rq_list_empty(plug->mq_list))
2790 				return;
2791 		}
2792 
2793 		blk_mq_run_dispatch_ops(q,
2794 				blk_mq_plug_issue_direct(plug));
2795 		if (rq_list_empty(plug->mq_list))
2796 			return;
2797 	}
2798 
2799 	do {
2800 		blk_mq_dispatch_plug_list(plug, from_schedule);
2801 	} while (!rq_list_empty(plug->mq_list));
2802 }
2803 
2804 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805 		struct list_head *list)
2806 {
2807 	int queued = 0;
2808 	blk_status_t ret = BLK_STS_OK;
2809 
2810 	while (!list_empty(list)) {
2811 		struct request *rq = list_first_entry(list, struct request,
2812 				queuelist);
2813 
2814 		list_del_init(&rq->queuelist);
2815 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2816 		switch (ret) {
2817 		case BLK_STS_OK:
2818 			queued++;
2819 			break;
2820 		case BLK_STS_RESOURCE:
2821 		case BLK_STS_DEV_RESOURCE:
2822 			blk_mq_request_bypass_insert(rq, 0);
2823 			if (list_empty(list))
2824 				blk_mq_run_hw_queue(hctx, false);
2825 			goto out;
2826 		default:
2827 			blk_mq_end_request(rq, ret);
2828 			break;
2829 		}
2830 	}
2831 
2832 out:
2833 	if (ret != BLK_STS_OK)
2834 		blk_mq_commit_rqs(hctx, queued, false);
2835 }
2836 
2837 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2838 				     struct bio *bio, unsigned int nr_segs)
2839 {
2840 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2841 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2842 			return true;
2843 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2844 			return true;
2845 	}
2846 	return false;
2847 }
2848 
2849 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2850 					       struct blk_plug *plug,
2851 					       struct bio *bio,
2852 					       unsigned int nsegs)
2853 {
2854 	struct blk_mq_alloc_data data = {
2855 		.q		= q,
2856 		.nr_tags	= 1,
2857 		.cmd_flags	= bio->bi_opf,
2858 	};
2859 	struct request *rq;
2860 
2861 	if (unlikely(bio_queue_enter(bio)))
2862 		return NULL;
2863 
2864 	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2865 		goto queue_exit;
2866 
2867 	rq_qos_throttle(q, bio);
2868 
2869 	if (plug) {
2870 		data.nr_tags = plug->nr_ios;
2871 		plug->nr_ios = 1;
2872 		data.cached_rq = &plug->cached_rq;
2873 	}
2874 
2875 	rq = __blk_mq_alloc_requests(&data);
2876 	if (rq)
2877 		return rq;
2878 	rq_qos_cleanup(q, bio);
2879 	if (bio->bi_opf & REQ_NOWAIT)
2880 		bio_wouldblock_error(bio);
2881 queue_exit:
2882 	blk_queue_exit(q);
2883 	return NULL;
2884 }
2885 
2886 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2887 		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2888 {
2889 	struct request *rq;
2890 	enum hctx_type type, hctx_type;
2891 
2892 	if (!plug)
2893 		return NULL;
2894 	rq = rq_list_peek(&plug->cached_rq);
2895 	if (!rq || rq->q != q)
2896 		return NULL;
2897 
2898 	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2899 		*bio = NULL;
2900 		return NULL;
2901 	}
2902 
2903 	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2904 	hctx_type = rq->mq_hctx->type;
2905 	if (type != hctx_type &&
2906 	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2907 		return NULL;
2908 	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2909 		return NULL;
2910 
2911 	/*
2912 	 * If any qos ->throttle() end up blocking, we will have flushed the
2913 	 * plug and hence killed the cached_rq list as well. Pop this entry
2914 	 * before we throttle.
2915 	 */
2916 	plug->cached_rq = rq_list_next(rq);
2917 	rq_qos_throttle(q, *bio);
2918 
2919 	blk_mq_rq_time_init(rq, 0);
2920 	rq->cmd_flags = (*bio)->bi_opf;
2921 	INIT_LIST_HEAD(&rq->queuelist);
2922 	return rq;
2923 }
2924 
2925 static void bio_set_ioprio(struct bio *bio)
2926 {
2927 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2928 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2929 		bio->bi_ioprio = get_current_ioprio();
2930 	blkcg_set_ioprio(bio);
2931 }
2932 
2933 /**
2934  * blk_mq_submit_bio - Create and send a request to block device.
2935  * @bio: Bio pointer.
2936  *
2937  * Builds up a request structure from @q and @bio and send to the device. The
2938  * request may not be queued directly to hardware if:
2939  * * This request can be merged with another one
2940  * * We want to place request at plug queue for possible future merging
2941  * * There is an IO scheduler active at this queue
2942  *
2943  * It will not queue the request if there is an error with the bio, or at the
2944  * request creation.
2945  */
2946 void blk_mq_submit_bio(struct bio *bio)
2947 {
2948 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2949 	struct blk_plug *plug = blk_mq_plug(bio);
2950 	const int is_sync = op_is_sync(bio->bi_opf);
2951 	struct blk_mq_hw_ctx *hctx;
2952 	struct request *rq;
2953 	unsigned int nr_segs = 1;
2954 	blk_status_t ret;
2955 
2956 	bio = blk_queue_bounce(bio, q);
2957 	if (bio_may_exceed_limits(bio, &q->limits)) {
2958 		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2959 		if (!bio)
2960 			return;
2961 	}
2962 
2963 	if (!bio_integrity_prep(bio))
2964 		return;
2965 
2966 	bio_set_ioprio(bio);
2967 
2968 	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2969 	if (!rq) {
2970 		if (!bio)
2971 			return;
2972 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2973 		if (unlikely(!rq))
2974 			return;
2975 	}
2976 
2977 	trace_block_getrq(bio);
2978 
2979 	rq_qos_track(q, rq, bio);
2980 
2981 	blk_mq_bio_to_request(rq, bio, nr_segs);
2982 
2983 	ret = blk_crypto_rq_get_keyslot(rq);
2984 	if (ret != BLK_STS_OK) {
2985 		bio->bi_status = ret;
2986 		bio_endio(bio);
2987 		blk_mq_free_request(rq);
2988 		return;
2989 	}
2990 
2991 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2992 		return;
2993 
2994 	if (plug) {
2995 		blk_add_rq_to_plug(plug, rq);
2996 		return;
2997 	}
2998 
2999 	hctx = rq->mq_hctx;
3000 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3001 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3002 		blk_mq_insert_request(rq, 0);
3003 		blk_mq_run_hw_queue(hctx, true);
3004 	} else {
3005 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3006 	}
3007 }
3008 
3009 #ifdef CONFIG_BLK_MQ_STACKING
3010 /**
3011  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3012  * @rq: the request being queued
3013  */
3014 blk_status_t blk_insert_cloned_request(struct request *rq)
3015 {
3016 	struct request_queue *q = rq->q;
3017 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3018 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3019 	blk_status_t ret;
3020 
3021 	if (blk_rq_sectors(rq) > max_sectors) {
3022 		/*
3023 		 * SCSI device does not have a good way to return if
3024 		 * Write Same/Zero is actually supported. If a device rejects
3025 		 * a non-read/write command (discard, write same,etc.) the
3026 		 * low-level device driver will set the relevant queue limit to
3027 		 * 0 to prevent blk-lib from issuing more of the offending
3028 		 * operations. Commands queued prior to the queue limit being
3029 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3030 		 * errors being propagated to upper layers.
3031 		 */
3032 		if (max_sectors == 0)
3033 			return BLK_STS_NOTSUPP;
3034 
3035 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3036 			__func__, blk_rq_sectors(rq), max_sectors);
3037 		return BLK_STS_IOERR;
3038 	}
3039 
3040 	/*
3041 	 * The queue settings related to segment counting may differ from the
3042 	 * original queue.
3043 	 */
3044 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3045 	if (rq->nr_phys_segments > max_segments) {
3046 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3047 			__func__, rq->nr_phys_segments, max_segments);
3048 		return BLK_STS_IOERR;
3049 	}
3050 
3051 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3052 		return BLK_STS_IOERR;
3053 
3054 	ret = blk_crypto_rq_get_keyslot(rq);
3055 	if (ret != BLK_STS_OK)
3056 		return ret;
3057 
3058 	blk_account_io_start(rq);
3059 
3060 	/*
3061 	 * Since we have a scheduler attached on the top device,
3062 	 * bypass a potential scheduler on the bottom device for
3063 	 * insert.
3064 	 */
3065 	blk_mq_run_dispatch_ops(q,
3066 			ret = blk_mq_request_issue_directly(rq, true));
3067 	if (ret)
3068 		blk_account_io_done(rq, ktime_get_ns());
3069 	return ret;
3070 }
3071 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3072 
3073 /**
3074  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3075  * @rq: the clone request to be cleaned up
3076  *
3077  * Description:
3078  *     Free all bios in @rq for a cloned request.
3079  */
3080 void blk_rq_unprep_clone(struct request *rq)
3081 {
3082 	struct bio *bio;
3083 
3084 	while ((bio = rq->bio) != NULL) {
3085 		rq->bio = bio->bi_next;
3086 
3087 		bio_put(bio);
3088 	}
3089 }
3090 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3091 
3092 /**
3093  * blk_rq_prep_clone - Helper function to setup clone request
3094  * @rq: the request to be setup
3095  * @rq_src: original request to be cloned
3096  * @bs: bio_set that bios for clone are allocated from
3097  * @gfp_mask: memory allocation mask for bio
3098  * @bio_ctr: setup function to be called for each clone bio.
3099  *           Returns %0 for success, non %0 for failure.
3100  * @data: private data to be passed to @bio_ctr
3101  *
3102  * Description:
3103  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3104  *     Also, pages which the original bios are pointing to are not copied
3105  *     and the cloned bios just point same pages.
3106  *     So cloned bios must be completed before original bios, which means
3107  *     the caller must complete @rq before @rq_src.
3108  */
3109 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3110 		      struct bio_set *bs, gfp_t gfp_mask,
3111 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3112 		      void *data)
3113 {
3114 	struct bio *bio, *bio_src;
3115 
3116 	if (!bs)
3117 		bs = &fs_bio_set;
3118 
3119 	__rq_for_each_bio(bio_src, rq_src) {
3120 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3121 				      bs);
3122 		if (!bio)
3123 			goto free_and_out;
3124 
3125 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3126 			goto free_and_out;
3127 
3128 		if (rq->bio) {
3129 			rq->biotail->bi_next = bio;
3130 			rq->biotail = bio;
3131 		} else {
3132 			rq->bio = rq->biotail = bio;
3133 		}
3134 		bio = NULL;
3135 	}
3136 
3137 	/* Copy attributes of the original request to the clone request. */
3138 	rq->__sector = blk_rq_pos(rq_src);
3139 	rq->__data_len = blk_rq_bytes(rq_src);
3140 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3141 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3142 		rq->special_vec = rq_src->special_vec;
3143 	}
3144 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3145 	rq->ioprio = rq_src->ioprio;
3146 
3147 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3148 		goto free_and_out;
3149 
3150 	return 0;
3151 
3152 free_and_out:
3153 	if (bio)
3154 		bio_put(bio);
3155 	blk_rq_unprep_clone(rq);
3156 
3157 	return -ENOMEM;
3158 }
3159 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3160 #endif /* CONFIG_BLK_MQ_STACKING */
3161 
3162 /*
3163  * Steal bios from a request and add them to a bio list.
3164  * The request must not have been partially completed before.
3165  */
3166 void blk_steal_bios(struct bio_list *list, struct request *rq)
3167 {
3168 	if (rq->bio) {
3169 		if (list->tail)
3170 			list->tail->bi_next = rq->bio;
3171 		else
3172 			list->head = rq->bio;
3173 		list->tail = rq->biotail;
3174 
3175 		rq->bio = NULL;
3176 		rq->biotail = NULL;
3177 	}
3178 
3179 	rq->__data_len = 0;
3180 }
3181 EXPORT_SYMBOL_GPL(blk_steal_bios);
3182 
3183 static size_t order_to_size(unsigned int order)
3184 {
3185 	return (size_t)PAGE_SIZE << order;
3186 }
3187 
3188 /* called before freeing request pool in @tags */
3189 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3190 				    struct blk_mq_tags *tags)
3191 {
3192 	struct page *page;
3193 	unsigned long flags;
3194 
3195 	/*
3196 	 * There is no need to clear mapping if driver tags is not initialized
3197 	 * or the mapping belongs to the driver tags.
3198 	 */
3199 	if (!drv_tags || drv_tags == tags)
3200 		return;
3201 
3202 	list_for_each_entry(page, &tags->page_list, lru) {
3203 		unsigned long start = (unsigned long)page_address(page);
3204 		unsigned long end = start + order_to_size(page->private);
3205 		int i;
3206 
3207 		for (i = 0; i < drv_tags->nr_tags; i++) {
3208 			struct request *rq = drv_tags->rqs[i];
3209 			unsigned long rq_addr = (unsigned long)rq;
3210 
3211 			if (rq_addr >= start && rq_addr < end) {
3212 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3213 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3214 			}
3215 		}
3216 	}
3217 
3218 	/*
3219 	 * Wait until all pending iteration is done.
3220 	 *
3221 	 * Request reference is cleared and it is guaranteed to be observed
3222 	 * after the ->lock is released.
3223 	 */
3224 	spin_lock_irqsave(&drv_tags->lock, flags);
3225 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3226 }
3227 
3228 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3229 		     unsigned int hctx_idx)
3230 {
3231 	struct blk_mq_tags *drv_tags;
3232 	struct page *page;
3233 
3234 	if (list_empty(&tags->page_list))
3235 		return;
3236 
3237 	if (blk_mq_is_shared_tags(set->flags))
3238 		drv_tags = set->shared_tags;
3239 	else
3240 		drv_tags = set->tags[hctx_idx];
3241 
3242 	if (tags->static_rqs && set->ops->exit_request) {
3243 		int i;
3244 
3245 		for (i = 0; i < tags->nr_tags; i++) {
3246 			struct request *rq = tags->static_rqs[i];
3247 
3248 			if (!rq)
3249 				continue;
3250 			set->ops->exit_request(set, rq, hctx_idx);
3251 			tags->static_rqs[i] = NULL;
3252 		}
3253 	}
3254 
3255 	blk_mq_clear_rq_mapping(drv_tags, tags);
3256 
3257 	while (!list_empty(&tags->page_list)) {
3258 		page = list_first_entry(&tags->page_list, struct page, lru);
3259 		list_del_init(&page->lru);
3260 		/*
3261 		 * Remove kmemleak object previously allocated in
3262 		 * blk_mq_alloc_rqs().
3263 		 */
3264 		kmemleak_free(page_address(page));
3265 		__free_pages(page, page->private);
3266 	}
3267 }
3268 
3269 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3270 {
3271 	kfree(tags->rqs);
3272 	tags->rqs = NULL;
3273 	kfree(tags->static_rqs);
3274 	tags->static_rqs = NULL;
3275 
3276 	blk_mq_free_tags(tags);
3277 }
3278 
3279 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3280 		unsigned int hctx_idx)
3281 {
3282 	int i;
3283 
3284 	for (i = 0; i < set->nr_maps; i++) {
3285 		unsigned int start = set->map[i].queue_offset;
3286 		unsigned int end = start + set->map[i].nr_queues;
3287 
3288 		if (hctx_idx >= start && hctx_idx < end)
3289 			break;
3290 	}
3291 
3292 	if (i >= set->nr_maps)
3293 		i = HCTX_TYPE_DEFAULT;
3294 
3295 	return i;
3296 }
3297 
3298 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3299 		unsigned int hctx_idx)
3300 {
3301 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3302 
3303 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3304 }
3305 
3306 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3307 					       unsigned int hctx_idx,
3308 					       unsigned int nr_tags,
3309 					       unsigned int reserved_tags)
3310 {
3311 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3312 	struct blk_mq_tags *tags;
3313 
3314 	if (node == NUMA_NO_NODE)
3315 		node = set->numa_node;
3316 
3317 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3318 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3319 	if (!tags)
3320 		return NULL;
3321 
3322 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3323 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3324 				 node);
3325 	if (!tags->rqs)
3326 		goto err_free_tags;
3327 
3328 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3329 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3330 					node);
3331 	if (!tags->static_rqs)
3332 		goto err_free_rqs;
3333 
3334 	return tags;
3335 
3336 err_free_rqs:
3337 	kfree(tags->rqs);
3338 err_free_tags:
3339 	blk_mq_free_tags(tags);
3340 	return NULL;
3341 }
3342 
3343 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3344 			       unsigned int hctx_idx, int node)
3345 {
3346 	int ret;
3347 
3348 	if (set->ops->init_request) {
3349 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3350 		if (ret)
3351 			return ret;
3352 	}
3353 
3354 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3355 	return 0;
3356 }
3357 
3358 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3359 			    struct blk_mq_tags *tags,
3360 			    unsigned int hctx_idx, unsigned int depth)
3361 {
3362 	unsigned int i, j, entries_per_page, max_order = 4;
3363 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3364 	size_t rq_size, left;
3365 
3366 	if (node == NUMA_NO_NODE)
3367 		node = set->numa_node;
3368 
3369 	INIT_LIST_HEAD(&tags->page_list);
3370 
3371 	/*
3372 	 * rq_size is the size of the request plus driver payload, rounded
3373 	 * to the cacheline size
3374 	 */
3375 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3376 				cache_line_size());
3377 	left = rq_size * depth;
3378 
3379 	for (i = 0; i < depth; ) {
3380 		int this_order = max_order;
3381 		struct page *page;
3382 		int to_do;
3383 		void *p;
3384 
3385 		while (this_order && left < order_to_size(this_order - 1))
3386 			this_order--;
3387 
3388 		do {
3389 			page = alloc_pages_node(node,
3390 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3391 				this_order);
3392 			if (page)
3393 				break;
3394 			if (!this_order--)
3395 				break;
3396 			if (order_to_size(this_order) < rq_size)
3397 				break;
3398 		} while (1);
3399 
3400 		if (!page)
3401 			goto fail;
3402 
3403 		page->private = this_order;
3404 		list_add_tail(&page->lru, &tags->page_list);
3405 
3406 		p = page_address(page);
3407 		/*
3408 		 * Allow kmemleak to scan these pages as they contain pointers
3409 		 * to additional allocations like via ops->init_request().
3410 		 */
3411 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3412 		entries_per_page = order_to_size(this_order) / rq_size;
3413 		to_do = min(entries_per_page, depth - i);
3414 		left -= to_do * rq_size;
3415 		for (j = 0; j < to_do; j++) {
3416 			struct request *rq = p;
3417 
3418 			tags->static_rqs[i] = rq;
3419 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3420 				tags->static_rqs[i] = NULL;
3421 				goto fail;
3422 			}
3423 
3424 			p += rq_size;
3425 			i++;
3426 		}
3427 	}
3428 	return 0;
3429 
3430 fail:
3431 	blk_mq_free_rqs(set, tags, hctx_idx);
3432 	return -ENOMEM;
3433 }
3434 
3435 struct rq_iter_data {
3436 	struct blk_mq_hw_ctx *hctx;
3437 	bool has_rq;
3438 };
3439 
3440 static bool blk_mq_has_request(struct request *rq, void *data)
3441 {
3442 	struct rq_iter_data *iter_data = data;
3443 
3444 	if (rq->mq_hctx != iter_data->hctx)
3445 		return true;
3446 	iter_data->has_rq = true;
3447 	return false;
3448 }
3449 
3450 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3451 {
3452 	struct blk_mq_tags *tags = hctx->sched_tags ?
3453 			hctx->sched_tags : hctx->tags;
3454 	struct rq_iter_data data = {
3455 		.hctx	= hctx,
3456 	};
3457 
3458 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3459 	return data.has_rq;
3460 }
3461 
3462 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3463 		struct blk_mq_hw_ctx *hctx)
3464 {
3465 	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3466 		return false;
3467 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3468 		return false;
3469 	return true;
3470 }
3471 
3472 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3473 {
3474 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3475 			struct blk_mq_hw_ctx, cpuhp_online);
3476 
3477 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3478 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3479 		return 0;
3480 
3481 	/*
3482 	 * Prevent new request from being allocated on the current hctx.
3483 	 *
3484 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3485 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3486 	 * seen once we return from the tag allocator.
3487 	 */
3488 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3489 	smp_mb__after_atomic();
3490 
3491 	/*
3492 	 * Try to grab a reference to the queue and wait for any outstanding
3493 	 * requests.  If we could not grab a reference the queue has been
3494 	 * frozen and there are no requests.
3495 	 */
3496 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3497 		while (blk_mq_hctx_has_requests(hctx))
3498 			msleep(5);
3499 		percpu_ref_put(&hctx->queue->q_usage_counter);
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3506 {
3507 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3508 			struct blk_mq_hw_ctx, cpuhp_online);
3509 
3510 	if (cpumask_test_cpu(cpu, hctx->cpumask))
3511 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3512 	return 0;
3513 }
3514 
3515 /*
3516  * 'cpu' is going away. splice any existing rq_list entries from this
3517  * software queue to the hw queue dispatch list, and ensure that it
3518  * gets run.
3519  */
3520 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3521 {
3522 	struct blk_mq_hw_ctx *hctx;
3523 	struct blk_mq_ctx *ctx;
3524 	LIST_HEAD(tmp);
3525 	enum hctx_type type;
3526 
3527 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3528 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3529 		return 0;
3530 
3531 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3532 	type = hctx->type;
3533 
3534 	spin_lock(&ctx->lock);
3535 	if (!list_empty(&ctx->rq_lists[type])) {
3536 		list_splice_init(&ctx->rq_lists[type], &tmp);
3537 		blk_mq_hctx_clear_pending(hctx, ctx);
3538 	}
3539 	spin_unlock(&ctx->lock);
3540 
3541 	if (list_empty(&tmp))
3542 		return 0;
3543 
3544 	spin_lock(&hctx->lock);
3545 	list_splice_tail_init(&tmp, &hctx->dispatch);
3546 	spin_unlock(&hctx->lock);
3547 
3548 	blk_mq_run_hw_queue(hctx, true);
3549 	return 0;
3550 }
3551 
3552 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3553 {
3554 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3555 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3556 						    &hctx->cpuhp_online);
3557 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3558 					    &hctx->cpuhp_dead);
3559 }
3560 
3561 /*
3562  * Before freeing hw queue, clearing the flush request reference in
3563  * tags->rqs[] for avoiding potential UAF.
3564  */
3565 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3566 		unsigned int queue_depth, struct request *flush_rq)
3567 {
3568 	int i;
3569 	unsigned long flags;
3570 
3571 	/* The hw queue may not be mapped yet */
3572 	if (!tags)
3573 		return;
3574 
3575 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3576 
3577 	for (i = 0; i < queue_depth; i++)
3578 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3579 
3580 	/*
3581 	 * Wait until all pending iteration is done.
3582 	 *
3583 	 * Request reference is cleared and it is guaranteed to be observed
3584 	 * after the ->lock is released.
3585 	 */
3586 	spin_lock_irqsave(&tags->lock, flags);
3587 	spin_unlock_irqrestore(&tags->lock, flags);
3588 }
3589 
3590 /* hctx->ctxs will be freed in queue's release handler */
3591 static void blk_mq_exit_hctx(struct request_queue *q,
3592 		struct blk_mq_tag_set *set,
3593 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3594 {
3595 	struct request *flush_rq = hctx->fq->flush_rq;
3596 
3597 	if (blk_mq_hw_queue_mapped(hctx))
3598 		blk_mq_tag_idle(hctx);
3599 
3600 	if (blk_queue_init_done(q))
3601 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3602 				set->queue_depth, flush_rq);
3603 	if (set->ops->exit_request)
3604 		set->ops->exit_request(set, flush_rq, hctx_idx);
3605 
3606 	if (set->ops->exit_hctx)
3607 		set->ops->exit_hctx(hctx, hctx_idx);
3608 
3609 	blk_mq_remove_cpuhp(hctx);
3610 
3611 	xa_erase(&q->hctx_table, hctx_idx);
3612 
3613 	spin_lock(&q->unused_hctx_lock);
3614 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3615 	spin_unlock(&q->unused_hctx_lock);
3616 }
3617 
3618 static void blk_mq_exit_hw_queues(struct request_queue *q,
3619 		struct blk_mq_tag_set *set, int nr_queue)
3620 {
3621 	struct blk_mq_hw_ctx *hctx;
3622 	unsigned long i;
3623 
3624 	queue_for_each_hw_ctx(q, hctx, i) {
3625 		if (i == nr_queue)
3626 			break;
3627 		blk_mq_exit_hctx(q, set, hctx, i);
3628 	}
3629 }
3630 
3631 static int blk_mq_init_hctx(struct request_queue *q,
3632 		struct blk_mq_tag_set *set,
3633 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3634 {
3635 	hctx->queue_num = hctx_idx;
3636 
3637 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3638 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3639 				&hctx->cpuhp_online);
3640 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3641 
3642 	hctx->tags = set->tags[hctx_idx];
3643 
3644 	if (set->ops->init_hctx &&
3645 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3646 		goto unregister_cpu_notifier;
3647 
3648 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3649 				hctx->numa_node))
3650 		goto exit_hctx;
3651 
3652 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3653 		goto exit_flush_rq;
3654 
3655 	return 0;
3656 
3657  exit_flush_rq:
3658 	if (set->ops->exit_request)
3659 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3660  exit_hctx:
3661 	if (set->ops->exit_hctx)
3662 		set->ops->exit_hctx(hctx, hctx_idx);
3663  unregister_cpu_notifier:
3664 	blk_mq_remove_cpuhp(hctx);
3665 	return -1;
3666 }
3667 
3668 static struct blk_mq_hw_ctx *
3669 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3670 		int node)
3671 {
3672 	struct blk_mq_hw_ctx *hctx;
3673 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3674 
3675 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3676 	if (!hctx)
3677 		goto fail_alloc_hctx;
3678 
3679 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3680 		goto free_hctx;
3681 
3682 	atomic_set(&hctx->nr_active, 0);
3683 	if (node == NUMA_NO_NODE)
3684 		node = set->numa_node;
3685 	hctx->numa_node = node;
3686 
3687 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3688 	spin_lock_init(&hctx->lock);
3689 	INIT_LIST_HEAD(&hctx->dispatch);
3690 	hctx->queue = q;
3691 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3692 
3693 	INIT_LIST_HEAD(&hctx->hctx_list);
3694 
3695 	/*
3696 	 * Allocate space for all possible cpus to avoid allocation at
3697 	 * runtime
3698 	 */
3699 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3700 			gfp, node);
3701 	if (!hctx->ctxs)
3702 		goto free_cpumask;
3703 
3704 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3705 				gfp, node, false, false))
3706 		goto free_ctxs;
3707 	hctx->nr_ctx = 0;
3708 
3709 	spin_lock_init(&hctx->dispatch_wait_lock);
3710 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3711 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3712 
3713 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3714 	if (!hctx->fq)
3715 		goto free_bitmap;
3716 
3717 	blk_mq_hctx_kobj_init(hctx);
3718 
3719 	return hctx;
3720 
3721  free_bitmap:
3722 	sbitmap_free(&hctx->ctx_map);
3723  free_ctxs:
3724 	kfree(hctx->ctxs);
3725  free_cpumask:
3726 	free_cpumask_var(hctx->cpumask);
3727  free_hctx:
3728 	kfree(hctx);
3729  fail_alloc_hctx:
3730 	return NULL;
3731 }
3732 
3733 static void blk_mq_init_cpu_queues(struct request_queue *q,
3734 				   unsigned int nr_hw_queues)
3735 {
3736 	struct blk_mq_tag_set *set = q->tag_set;
3737 	unsigned int i, j;
3738 
3739 	for_each_possible_cpu(i) {
3740 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3741 		struct blk_mq_hw_ctx *hctx;
3742 		int k;
3743 
3744 		__ctx->cpu = i;
3745 		spin_lock_init(&__ctx->lock);
3746 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3747 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3748 
3749 		__ctx->queue = q;
3750 
3751 		/*
3752 		 * Set local node, IFF we have more than one hw queue. If
3753 		 * not, we remain on the home node of the device
3754 		 */
3755 		for (j = 0; j < set->nr_maps; j++) {
3756 			hctx = blk_mq_map_queue_type(q, j, i);
3757 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3758 				hctx->numa_node = cpu_to_node(i);
3759 		}
3760 	}
3761 }
3762 
3763 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3764 					     unsigned int hctx_idx,
3765 					     unsigned int depth)
3766 {
3767 	struct blk_mq_tags *tags;
3768 	int ret;
3769 
3770 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3771 	if (!tags)
3772 		return NULL;
3773 
3774 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3775 	if (ret) {
3776 		blk_mq_free_rq_map(tags);
3777 		return NULL;
3778 	}
3779 
3780 	return tags;
3781 }
3782 
3783 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3784 				       int hctx_idx)
3785 {
3786 	if (blk_mq_is_shared_tags(set->flags)) {
3787 		set->tags[hctx_idx] = set->shared_tags;
3788 
3789 		return true;
3790 	}
3791 
3792 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3793 						       set->queue_depth);
3794 
3795 	return set->tags[hctx_idx];
3796 }
3797 
3798 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3799 			     struct blk_mq_tags *tags,
3800 			     unsigned int hctx_idx)
3801 {
3802 	if (tags) {
3803 		blk_mq_free_rqs(set, tags, hctx_idx);
3804 		blk_mq_free_rq_map(tags);
3805 	}
3806 }
3807 
3808 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3809 				      unsigned int hctx_idx)
3810 {
3811 	if (!blk_mq_is_shared_tags(set->flags))
3812 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3813 
3814 	set->tags[hctx_idx] = NULL;
3815 }
3816 
3817 static void blk_mq_map_swqueue(struct request_queue *q)
3818 {
3819 	unsigned int j, hctx_idx;
3820 	unsigned long i;
3821 	struct blk_mq_hw_ctx *hctx;
3822 	struct blk_mq_ctx *ctx;
3823 	struct blk_mq_tag_set *set = q->tag_set;
3824 
3825 	queue_for_each_hw_ctx(q, hctx, i) {
3826 		cpumask_clear(hctx->cpumask);
3827 		hctx->nr_ctx = 0;
3828 		hctx->dispatch_from = NULL;
3829 	}
3830 
3831 	/*
3832 	 * Map software to hardware queues.
3833 	 *
3834 	 * If the cpu isn't present, the cpu is mapped to first hctx.
3835 	 */
3836 	for_each_possible_cpu(i) {
3837 
3838 		ctx = per_cpu_ptr(q->queue_ctx, i);
3839 		for (j = 0; j < set->nr_maps; j++) {
3840 			if (!set->map[j].nr_queues) {
3841 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3842 						HCTX_TYPE_DEFAULT, i);
3843 				continue;
3844 			}
3845 			hctx_idx = set->map[j].mq_map[i];
3846 			/* unmapped hw queue can be remapped after CPU topo changed */
3847 			if (!set->tags[hctx_idx] &&
3848 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3849 				/*
3850 				 * If tags initialization fail for some hctx,
3851 				 * that hctx won't be brought online.  In this
3852 				 * case, remap the current ctx to hctx[0] which
3853 				 * is guaranteed to always have tags allocated
3854 				 */
3855 				set->map[j].mq_map[i] = 0;
3856 			}
3857 
3858 			hctx = blk_mq_map_queue_type(q, j, i);
3859 			ctx->hctxs[j] = hctx;
3860 			/*
3861 			 * If the CPU is already set in the mask, then we've
3862 			 * mapped this one already. This can happen if
3863 			 * devices share queues across queue maps.
3864 			 */
3865 			if (cpumask_test_cpu(i, hctx->cpumask))
3866 				continue;
3867 
3868 			cpumask_set_cpu(i, hctx->cpumask);
3869 			hctx->type = j;
3870 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3871 			hctx->ctxs[hctx->nr_ctx++] = ctx;
3872 
3873 			/*
3874 			 * If the nr_ctx type overflows, we have exceeded the
3875 			 * amount of sw queues we can support.
3876 			 */
3877 			BUG_ON(!hctx->nr_ctx);
3878 		}
3879 
3880 		for (; j < HCTX_MAX_TYPES; j++)
3881 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3882 					HCTX_TYPE_DEFAULT, i);
3883 	}
3884 
3885 	queue_for_each_hw_ctx(q, hctx, i) {
3886 		/*
3887 		 * If no software queues are mapped to this hardware queue,
3888 		 * disable it and free the request entries.
3889 		 */
3890 		if (!hctx->nr_ctx) {
3891 			/* Never unmap queue 0.  We need it as a
3892 			 * fallback in case of a new remap fails
3893 			 * allocation
3894 			 */
3895 			if (i)
3896 				__blk_mq_free_map_and_rqs(set, i);
3897 
3898 			hctx->tags = NULL;
3899 			continue;
3900 		}
3901 
3902 		hctx->tags = set->tags[i];
3903 		WARN_ON(!hctx->tags);
3904 
3905 		/*
3906 		 * Set the map size to the number of mapped software queues.
3907 		 * This is more accurate and more efficient than looping
3908 		 * over all possibly mapped software queues.
3909 		 */
3910 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3911 
3912 		/*
3913 		 * Initialize batch roundrobin counts
3914 		 */
3915 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3916 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3917 	}
3918 }
3919 
3920 /*
3921  * Caller needs to ensure that we're either frozen/quiesced, or that
3922  * the queue isn't live yet.
3923  */
3924 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3925 {
3926 	struct blk_mq_hw_ctx *hctx;
3927 	unsigned long i;
3928 
3929 	queue_for_each_hw_ctx(q, hctx, i) {
3930 		if (shared) {
3931 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3932 		} else {
3933 			blk_mq_tag_idle(hctx);
3934 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3935 		}
3936 	}
3937 }
3938 
3939 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3940 					 bool shared)
3941 {
3942 	struct request_queue *q;
3943 
3944 	lockdep_assert_held(&set->tag_list_lock);
3945 
3946 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3947 		blk_mq_freeze_queue(q);
3948 		queue_set_hctx_shared(q, shared);
3949 		blk_mq_unfreeze_queue(q);
3950 	}
3951 }
3952 
3953 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3954 {
3955 	struct blk_mq_tag_set *set = q->tag_set;
3956 
3957 	mutex_lock(&set->tag_list_lock);
3958 	list_del(&q->tag_set_list);
3959 	if (list_is_singular(&set->tag_list)) {
3960 		/* just transitioned to unshared */
3961 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3962 		/* update existing queue */
3963 		blk_mq_update_tag_set_shared(set, false);
3964 	}
3965 	mutex_unlock(&set->tag_list_lock);
3966 	INIT_LIST_HEAD(&q->tag_set_list);
3967 }
3968 
3969 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3970 				     struct request_queue *q)
3971 {
3972 	mutex_lock(&set->tag_list_lock);
3973 
3974 	/*
3975 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3976 	 */
3977 	if (!list_empty(&set->tag_list) &&
3978 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3979 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3980 		/* update existing queue */
3981 		blk_mq_update_tag_set_shared(set, true);
3982 	}
3983 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3984 		queue_set_hctx_shared(q, true);
3985 	list_add_tail(&q->tag_set_list, &set->tag_list);
3986 
3987 	mutex_unlock(&set->tag_list_lock);
3988 }
3989 
3990 /* All allocations will be freed in release handler of q->mq_kobj */
3991 static int blk_mq_alloc_ctxs(struct request_queue *q)
3992 {
3993 	struct blk_mq_ctxs *ctxs;
3994 	int cpu;
3995 
3996 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3997 	if (!ctxs)
3998 		return -ENOMEM;
3999 
4000 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4001 	if (!ctxs->queue_ctx)
4002 		goto fail;
4003 
4004 	for_each_possible_cpu(cpu) {
4005 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4006 		ctx->ctxs = ctxs;
4007 	}
4008 
4009 	q->mq_kobj = &ctxs->kobj;
4010 	q->queue_ctx = ctxs->queue_ctx;
4011 
4012 	return 0;
4013  fail:
4014 	kfree(ctxs);
4015 	return -ENOMEM;
4016 }
4017 
4018 /*
4019  * It is the actual release handler for mq, but we do it from
4020  * request queue's release handler for avoiding use-after-free
4021  * and headache because q->mq_kobj shouldn't have been introduced,
4022  * but we can't group ctx/kctx kobj without it.
4023  */
4024 void blk_mq_release(struct request_queue *q)
4025 {
4026 	struct blk_mq_hw_ctx *hctx, *next;
4027 	unsigned long i;
4028 
4029 	queue_for_each_hw_ctx(q, hctx, i)
4030 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4031 
4032 	/* all hctx are in .unused_hctx_list now */
4033 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4034 		list_del_init(&hctx->hctx_list);
4035 		kobject_put(&hctx->kobj);
4036 	}
4037 
4038 	xa_destroy(&q->hctx_table);
4039 
4040 	/*
4041 	 * release .mq_kobj and sw queue's kobject now because
4042 	 * both share lifetime with request queue.
4043 	 */
4044 	blk_mq_sysfs_deinit(q);
4045 }
4046 
4047 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4048 		void *queuedata)
4049 {
4050 	struct request_queue *q;
4051 	int ret;
4052 
4053 	q = blk_alloc_queue(set->numa_node);
4054 	if (!q)
4055 		return ERR_PTR(-ENOMEM);
4056 	q->queuedata = queuedata;
4057 	ret = blk_mq_init_allocated_queue(set, q);
4058 	if (ret) {
4059 		blk_put_queue(q);
4060 		return ERR_PTR(ret);
4061 	}
4062 	return q;
4063 }
4064 
4065 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4066 {
4067 	return blk_mq_init_queue_data(set, NULL);
4068 }
4069 EXPORT_SYMBOL(blk_mq_init_queue);
4070 
4071 /**
4072  * blk_mq_destroy_queue - shutdown a request queue
4073  * @q: request queue to shutdown
4074  *
4075  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4076  * requests will be failed with -ENODEV. The caller is responsible for dropping
4077  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4078  *
4079  * Context: can sleep
4080  */
4081 void blk_mq_destroy_queue(struct request_queue *q)
4082 {
4083 	WARN_ON_ONCE(!queue_is_mq(q));
4084 	WARN_ON_ONCE(blk_queue_registered(q));
4085 
4086 	might_sleep();
4087 
4088 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4089 	blk_queue_start_drain(q);
4090 	blk_mq_freeze_queue_wait(q);
4091 
4092 	blk_sync_queue(q);
4093 	blk_mq_cancel_work_sync(q);
4094 	blk_mq_exit_queue(q);
4095 }
4096 EXPORT_SYMBOL(blk_mq_destroy_queue);
4097 
4098 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4099 		struct lock_class_key *lkclass)
4100 {
4101 	struct request_queue *q;
4102 	struct gendisk *disk;
4103 
4104 	q = blk_mq_init_queue_data(set, queuedata);
4105 	if (IS_ERR(q))
4106 		return ERR_CAST(q);
4107 
4108 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4109 	if (!disk) {
4110 		blk_mq_destroy_queue(q);
4111 		blk_put_queue(q);
4112 		return ERR_PTR(-ENOMEM);
4113 	}
4114 	set_bit(GD_OWNS_QUEUE, &disk->state);
4115 	return disk;
4116 }
4117 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4118 
4119 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4120 		struct lock_class_key *lkclass)
4121 {
4122 	struct gendisk *disk;
4123 
4124 	if (!blk_get_queue(q))
4125 		return NULL;
4126 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4127 	if (!disk)
4128 		blk_put_queue(q);
4129 	return disk;
4130 }
4131 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4132 
4133 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4134 		struct blk_mq_tag_set *set, struct request_queue *q,
4135 		int hctx_idx, int node)
4136 {
4137 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4138 
4139 	/* reuse dead hctx first */
4140 	spin_lock(&q->unused_hctx_lock);
4141 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4142 		if (tmp->numa_node == node) {
4143 			hctx = tmp;
4144 			break;
4145 		}
4146 	}
4147 	if (hctx)
4148 		list_del_init(&hctx->hctx_list);
4149 	spin_unlock(&q->unused_hctx_lock);
4150 
4151 	if (!hctx)
4152 		hctx = blk_mq_alloc_hctx(q, set, node);
4153 	if (!hctx)
4154 		goto fail;
4155 
4156 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4157 		goto free_hctx;
4158 
4159 	return hctx;
4160 
4161  free_hctx:
4162 	kobject_put(&hctx->kobj);
4163  fail:
4164 	return NULL;
4165 }
4166 
4167 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4168 						struct request_queue *q)
4169 {
4170 	struct blk_mq_hw_ctx *hctx;
4171 	unsigned long i, j;
4172 
4173 	/* protect against switching io scheduler  */
4174 	mutex_lock(&q->sysfs_lock);
4175 	for (i = 0; i < set->nr_hw_queues; i++) {
4176 		int old_node;
4177 		int node = blk_mq_get_hctx_node(set, i);
4178 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4179 
4180 		if (old_hctx) {
4181 			old_node = old_hctx->numa_node;
4182 			blk_mq_exit_hctx(q, set, old_hctx, i);
4183 		}
4184 
4185 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4186 			if (!old_hctx)
4187 				break;
4188 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4189 					node, old_node);
4190 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4191 			WARN_ON_ONCE(!hctx);
4192 		}
4193 	}
4194 	/*
4195 	 * Increasing nr_hw_queues fails. Free the newly allocated
4196 	 * hctxs and keep the previous q->nr_hw_queues.
4197 	 */
4198 	if (i != set->nr_hw_queues) {
4199 		j = q->nr_hw_queues;
4200 	} else {
4201 		j = i;
4202 		q->nr_hw_queues = set->nr_hw_queues;
4203 	}
4204 
4205 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4206 		blk_mq_exit_hctx(q, set, hctx, j);
4207 	mutex_unlock(&q->sysfs_lock);
4208 }
4209 
4210 static void blk_mq_update_poll_flag(struct request_queue *q)
4211 {
4212 	struct blk_mq_tag_set *set = q->tag_set;
4213 
4214 	if (set->nr_maps > HCTX_TYPE_POLL &&
4215 	    set->map[HCTX_TYPE_POLL].nr_queues)
4216 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4217 	else
4218 		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4219 }
4220 
4221 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4222 		struct request_queue *q)
4223 {
4224 	/* mark the queue as mq asap */
4225 	q->mq_ops = set->ops;
4226 
4227 	if (blk_mq_alloc_ctxs(q))
4228 		goto err_exit;
4229 
4230 	/* init q->mq_kobj and sw queues' kobjects */
4231 	blk_mq_sysfs_init(q);
4232 
4233 	INIT_LIST_HEAD(&q->unused_hctx_list);
4234 	spin_lock_init(&q->unused_hctx_lock);
4235 
4236 	xa_init(&q->hctx_table);
4237 
4238 	blk_mq_realloc_hw_ctxs(set, q);
4239 	if (!q->nr_hw_queues)
4240 		goto err_hctxs;
4241 
4242 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4243 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4244 
4245 	q->tag_set = set;
4246 
4247 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4248 	blk_mq_update_poll_flag(q);
4249 
4250 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4251 	INIT_LIST_HEAD(&q->flush_list);
4252 	INIT_LIST_HEAD(&q->requeue_list);
4253 	spin_lock_init(&q->requeue_lock);
4254 
4255 	q->nr_requests = set->queue_depth;
4256 
4257 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4258 	blk_mq_add_queue_tag_set(set, q);
4259 	blk_mq_map_swqueue(q);
4260 	return 0;
4261 
4262 err_hctxs:
4263 	blk_mq_release(q);
4264 err_exit:
4265 	q->mq_ops = NULL;
4266 	return -ENOMEM;
4267 }
4268 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4269 
4270 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4271 void blk_mq_exit_queue(struct request_queue *q)
4272 {
4273 	struct blk_mq_tag_set *set = q->tag_set;
4274 
4275 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4276 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4277 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4278 	blk_mq_del_queue_tag_set(q);
4279 }
4280 
4281 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4282 {
4283 	int i;
4284 
4285 	if (blk_mq_is_shared_tags(set->flags)) {
4286 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4287 						BLK_MQ_NO_HCTX_IDX,
4288 						set->queue_depth);
4289 		if (!set->shared_tags)
4290 			return -ENOMEM;
4291 	}
4292 
4293 	for (i = 0; i < set->nr_hw_queues; i++) {
4294 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4295 			goto out_unwind;
4296 		cond_resched();
4297 	}
4298 
4299 	return 0;
4300 
4301 out_unwind:
4302 	while (--i >= 0)
4303 		__blk_mq_free_map_and_rqs(set, i);
4304 
4305 	if (blk_mq_is_shared_tags(set->flags)) {
4306 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4307 					BLK_MQ_NO_HCTX_IDX);
4308 	}
4309 
4310 	return -ENOMEM;
4311 }
4312 
4313 /*
4314  * Allocate the request maps associated with this tag_set. Note that this
4315  * may reduce the depth asked for, if memory is tight. set->queue_depth
4316  * will be updated to reflect the allocated depth.
4317  */
4318 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4319 {
4320 	unsigned int depth;
4321 	int err;
4322 
4323 	depth = set->queue_depth;
4324 	do {
4325 		err = __blk_mq_alloc_rq_maps(set);
4326 		if (!err)
4327 			break;
4328 
4329 		set->queue_depth >>= 1;
4330 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4331 			err = -ENOMEM;
4332 			break;
4333 		}
4334 	} while (set->queue_depth);
4335 
4336 	if (!set->queue_depth || err) {
4337 		pr_err("blk-mq: failed to allocate request map\n");
4338 		return -ENOMEM;
4339 	}
4340 
4341 	if (depth != set->queue_depth)
4342 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4343 						depth, set->queue_depth);
4344 
4345 	return 0;
4346 }
4347 
4348 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4349 {
4350 	/*
4351 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4352 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4353 	 * number of hardware queues.
4354 	 */
4355 	if (set->nr_maps == 1)
4356 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4357 
4358 	if (set->ops->map_queues && !is_kdump_kernel()) {
4359 		int i;
4360 
4361 		/*
4362 		 * transport .map_queues is usually done in the following
4363 		 * way:
4364 		 *
4365 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4366 		 * 	mask = get_cpu_mask(queue)
4367 		 * 	for_each_cpu(cpu, mask)
4368 		 * 		set->map[x].mq_map[cpu] = queue;
4369 		 * }
4370 		 *
4371 		 * When we need to remap, the table has to be cleared for
4372 		 * killing stale mapping since one CPU may not be mapped
4373 		 * to any hw queue.
4374 		 */
4375 		for (i = 0; i < set->nr_maps; i++)
4376 			blk_mq_clear_mq_map(&set->map[i]);
4377 
4378 		set->ops->map_queues(set);
4379 	} else {
4380 		BUG_ON(set->nr_maps > 1);
4381 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4382 	}
4383 }
4384 
4385 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4386 				       int new_nr_hw_queues)
4387 {
4388 	struct blk_mq_tags **new_tags;
4389 	int i;
4390 
4391 	if (set->nr_hw_queues >= new_nr_hw_queues)
4392 		goto done;
4393 
4394 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4395 				GFP_KERNEL, set->numa_node);
4396 	if (!new_tags)
4397 		return -ENOMEM;
4398 
4399 	if (set->tags)
4400 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4401 		       sizeof(*set->tags));
4402 	kfree(set->tags);
4403 	set->tags = new_tags;
4404 
4405 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4406 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4407 			while (--i >= set->nr_hw_queues)
4408 				__blk_mq_free_map_and_rqs(set, i);
4409 			return -ENOMEM;
4410 		}
4411 		cond_resched();
4412 	}
4413 
4414 done:
4415 	set->nr_hw_queues = new_nr_hw_queues;
4416 	return 0;
4417 }
4418 
4419 /*
4420  * Alloc a tag set to be associated with one or more request queues.
4421  * May fail with EINVAL for various error conditions. May adjust the
4422  * requested depth down, if it's too large. In that case, the set
4423  * value will be stored in set->queue_depth.
4424  */
4425 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4426 {
4427 	int i, ret;
4428 
4429 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4430 
4431 	if (!set->nr_hw_queues)
4432 		return -EINVAL;
4433 	if (!set->queue_depth)
4434 		return -EINVAL;
4435 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4436 		return -EINVAL;
4437 
4438 	if (!set->ops->queue_rq)
4439 		return -EINVAL;
4440 
4441 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4442 		return -EINVAL;
4443 
4444 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4445 		pr_info("blk-mq: reduced tag depth to %u\n",
4446 			BLK_MQ_MAX_DEPTH);
4447 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4448 	}
4449 
4450 	if (!set->nr_maps)
4451 		set->nr_maps = 1;
4452 	else if (set->nr_maps > HCTX_MAX_TYPES)
4453 		return -EINVAL;
4454 
4455 	/*
4456 	 * If a crashdump is active, then we are potentially in a very
4457 	 * memory constrained environment. Limit us to 1 queue and
4458 	 * 64 tags to prevent using too much memory.
4459 	 */
4460 	if (is_kdump_kernel()) {
4461 		set->nr_hw_queues = 1;
4462 		set->nr_maps = 1;
4463 		set->queue_depth = min(64U, set->queue_depth);
4464 	}
4465 	/*
4466 	 * There is no use for more h/w queues than cpus if we just have
4467 	 * a single map
4468 	 */
4469 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4470 		set->nr_hw_queues = nr_cpu_ids;
4471 
4472 	if (set->flags & BLK_MQ_F_BLOCKING) {
4473 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4474 		if (!set->srcu)
4475 			return -ENOMEM;
4476 		ret = init_srcu_struct(set->srcu);
4477 		if (ret)
4478 			goto out_free_srcu;
4479 	}
4480 
4481 	ret = -ENOMEM;
4482 	set->tags = kcalloc_node(set->nr_hw_queues,
4483 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4484 				 set->numa_node);
4485 	if (!set->tags)
4486 		goto out_cleanup_srcu;
4487 
4488 	for (i = 0; i < set->nr_maps; i++) {
4489 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4490 						  sizeof(set->map[i].mq_map[0]),
4491 						  GFP_KERNEL, set->numa_node);
4492 		if (!set->map[i].mq_map)
4493 			goto out_free_mq_map;
4494 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4495 	}
4496 
4497 	blk_mq_update_queue_map(set);
4498 
4499 	ret = blk_mq_alloc_set_map_and_rqs(set);
4500 	if (ret)
4501 		goto out_free_mq_map;
4502 
4503 	mutex_init(&set->tag_list_lock);
4504 	INIT_LIST_HEAD(&set->tag_list);
4505 
4506 	return 0;
4507 
4508 out_free_mq_map:
4509 	for (i = 0; i < set->nr_maps; i++) {
4510 		kfree(set->map[i].mq_map);
4511 		set->map[i].mq_map = NULL;
4512 	}
4513 	kfree(set->tags);
4514 	set->tags = NULL;
4515 out_cleanup_srcu:
4516 	if (set->flags & BLK_MQ_F_BLOCKING)
4517 		cleanup_srcu_struct(set->srcu);
4518 out_free_srcu:
4519 	if (set->flags & BLK_MQ_F_BLOCKING)
4520 		kfree(set->srcu);
4521 	return ret;
4522 }
4523 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4524 
4525 /* allocate and initialize a tagset for a simple single-queue device */
4526 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4527 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4528 		unsigned int set_flags)
4529 {
4530 	memset(set, 0, sizeof(*set));
4531 	set->ops = ops;
4532 	set->nr_hw_queues = 1;
4533 	set->nr_maps = 1;
4534 	set->queue_depth = queue_depth;
4535 	set->numa_node = NUMA_NO_NODE;
4536 	set->flags = set_flags;
4537 	return blk_mq_alloc_tag_set(set);
4538 }
4539 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4540 
4541 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4542 {
4543 	int i, j;
4544 
4545 	for (i = 0; i < set->nr_hw_queues; i++)
4546 		__blk_mq_free_map_and_rqs(set, i);
4547 
4548 	if (blk_mq_is_shared_tags(set->flags)) {
4549 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4550 					BLK_MQ_NO_HCTX_IDX);
4551 	}
4552 
4553 	for (j = 0; j < set->nr_maps; j++) {
4554 		kfree(set->map[j].mq_map);
4555 		set->map[j].mq_map = NULL;
4556 	}
4557 
4558 	kfree(set->tags);
4559 	set->tags = NULL;
4560 	if (set->flags & BLK_MQ_F_BLOCKING) {
4561 		cleanup_srcu_struct(set->srcu);
4562 		kfree(set->srcu);
4563 	}
4564 }
4565 EXPORT_SYMBOL(blk_mq_free_tag_set);
4566 
4567 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4568 {
4569 	struct blk_mq_tag_set *set = q->tag_set;
4570 	struct blk_mq_hw_ctx *hctx;
4571 	int ret;
4572 	unsigned long i;
4573 
4574 	if (!set)
4575 		return -EINVAL;
4576 
4577 	if (q->nr_requests == nr)
4578 		return 0;
4579 
4580 	blk_mq_freeze_queue(q);
4581 	blk_mq_quiesce_queue(q);
4582 
4583 	ret = 0;
4584 	queue_for_each_hw_ctx(q, hctx, i) {
4585 		if (!hctx->tags)
4586 			continue;
4587 		/*
4588 		 * If we're using an MQ scheduler, just update the scheduler
4589 		 * queue depth. This is similar to what the old code would do.
4590 		 */
4591 		if (hctx->sched_tags) {
4592 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4593 						      nr, true);
4594 		} else {
4595 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4596 						      false);
4597 		}
4598 		if (ret)
4599 			break;
4600 		if (q->elevator && q->elevator->type->ops.depth_updated)
4601 			q->elevator->type->ops.depth_updated(hctx);
4602 	}
4603 	if (!ret) {
4604 		q->nr_requests = nr;
4605 		if (blk_mq_is_shared_tags(set->flags)) {
4606 			if (q->elevator)
4607 				blk_mq_tag_update_sched_shared_tags(q);
4608 			else
4609 				blk_mq_tag_resize_shared_tags(set, nr);
4610 		}
4611 	}
4612 
4613 	blk_mq_unquiesce_queue(q);
4614 	blk_mq_unfreeze_queue(q);
4615 
4616 	return ret;
4617 }
4618 
4619 /*
4620  * request_queue and elevator_type pair.
4621  * It is just used by __blk_mq_update_nr_hw_queues to cache
4622  * the elevator_type associated with a request_queue.
4623  */
4624 struct blk_mq_qe_pair {
4625 	struct list_head node;
4626 	struct request_queue *q;
4627 	struct elevator_type *type;
4628 };
4629 
4630 /*
4631  * Cache the elevator_type in qe pair list and switch the
4632  * io scheduler to 'none'
4633  */
4634 static bool blk_mq_elv_switch_none(struct list_head *head,
4635 		struct request_queue *q)
4636 {
4637 	struct blk_mq_qe_pair *qe;
4638 
4639 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4640 	if (!qe)
4641 		return false;
4642 
4643 	/* q->elevator needs protection from ->sysfs_lock */
4644 	mutex_lock(&q->sysfs_lock);
4645 
4646 	/* the check has to be done with holding sysfs_lock */
4647 	if (!q->elevator) {
4648 		kfree(qe);
4649 		goto unlock;
4650 	}
4651 
4652 	INIT_LIST_HEAD(&qe->node);
4653 	qe->q = q;
4654 	qe->type = q->elevator->type;
4655 	/* keep a reference to the elevator module as we'll switch back */
4656 	__elevator_get(qe->type);
4657 	list_add(&qe->node, head);
4658 	elevator_disable(q);
4659 unlock:
4660 	mutex_unlock(&q->sysfs_lock);
4661 
4662 	return true;
4663 }
4664 
4665 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4666 						struct request_queue *q)
4667 {
4668 	struct blk_mq_qe_pair *qe;
4669 
4670 	list_for_each_entry(qe, head, node)
4671 		if (qe->q == q)
4672 			return qe;
4673 
4674 	return NULL;
4675 }
4676 
4677 static void blk_mq_elv_switch_back(struct list_head *head,
4678 				  struct request_queue *q)
4679 {
4680 	struct blk_mq_qe_pair *qe;
4681 	struct elevator_type *t;
4682 
4683 	qe = blk_lookup_qe_pair(head, q);
4684 	if (!qe)
4685 		return;
4686 	t = qe->type;
4687 	list_del(&qe->node);
4688 	kfree(qe);
4689 
4690 	mutex_lock(&q->sysfs_lock);
4691 	elevator_switch(q, t);
4692 	/* drop the reference acquired in blk_mq_elv_switch_none */
4693 	elevator_put(t);
4694 	mutex_unlock(&q->sysfs_lock);
4695 }
4696 
4697 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4698 							int nr_hw_queues)
4699 {
4700 	struct request_queue *q;
4701 	LIST_HEAD(head);
4702 	int prev_nr_hw_queues = set->nr_hw_queues;
4703 	int i;
4704 
4705 	lockdep_assert_held(&set->tag_list_lock);
4706 
4707 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4708 		nr_hw_queues = nr_cpu_ids;
4709 	if (nr_hw_queues < 1)
4710 		return;
4711 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4712 		return;
4713 
4714 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4715 		blk_mq_freeze_queue(q);
4716 	/*
4717 	 * Switch IO scheduler to 'none', cleaning up the data associated
4718 	 * with the previous scheduler. We will switch back once we are done
4719 	 * updating the new sw to hw queue mappings.
4720 	 */
4721 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4722 		if (!blk_mq_elv_switch_none(&head, q))
4723 			goto switch_back;
4724 
4725 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4726 		blk_mq_debugfs_unregister_hctxs(q);
4727 		blk_mq_sysfs_unregister_hctxs(q);
4728 	}
4729 
4730 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4731 		goto reregister;
4732 
4733 fallback:
4734 	blk_mq_update_queue_map(set);
4735 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736 		blk_mq_realloc_hw_ctxs(set, q);
4737 		blk_mq_update_poll_flag(q);
4738 		if (q->nr_hw_queues != set->nr_hw_queues) {
4739 			int i = prev_nr_hw_queues;
4740 
4741 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4742 					nr_hw_queues, prev_nr_hw_queues);
4743 			for (; i < set->nr_hw_queues; i++)
4744 				__blk_mq_free_map_and_rqs(set, i);
4745 
4746 			set->nr_hw_queues = prev_nr_hw_queues;
4747 			goto fallback;
4748 		}
4749 		blk_mq_map_swqueue(q);
4750 	}
4751 
4752 reregister:
4753 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4754 		blk_mq_sysfs_register_hctxs(q);
4755 		blk_mq_debugfs_register_hctxs(q);
4756 	}
4757 
4758 switch_back:
4759 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4760 		blk_mq_elv_switch_back(&head, q);
4761 
4762 	list_for_each_entry(q, &set->tag_list, tag_set_list)
4763 		blk_mq_unfreeze_queue(q);
4764 
4765 	/* Free the excess tags when nr_hw_queues shrink. */
4766 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4767 		__blk_mq_free_map_and_rqs(set, i);
4768 }
4769 
4770 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4771 {
4772 	mutex_lock(&set->tag_list_lock);
4773 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4774 	mutex_unlock(&set->tag_list_lock);
4775 }
4776 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4777 
4778 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4779 			 struct io_comp_batch *iob, unsigned int flags)
4780 {
4781 	long state = get_current_state();
4782 	int ret;
4783 
4784 	do {
4785 		ret = q->mq_ops->poll(hctx, iob);
4786 		if (ret > 0) {
4787 			__set_current_state(TASK_RUNNING);
4788 			return ret;
4789 		}
4790 
4791 		if (signal_pending_state(state, current))
4792 			__set_current_state(TASK_RUNNING);
4793 		if (task_is_running(current))
4794 			return 1;
4795 
4796 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4797 			break;
4798 		cpu_relax();
4799 	} while (!need_resched());
4800 
4801 	__set_current_state(TASK_RUNNING);
4802 	return 0;
4803 }
4804 
4805 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4806 		struct io_comp_batch *iob, unsigned int flags)
4807 {
4808 	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4809 
4810 	return blk_hctx_poll(q, hctx, iob, flags);
4811 }
4812 
4813 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4814 		unsigned int poll_flags)
4815 {
4816 	struct request_queue *q = rq->q;
4817 	int ret;
4818 
4819 	if (!blk_rq_is_poll(rq))
4820 		return 0;
4821 	if (!percpu_ref_tryget(&q->q_usage_counter))
4822 		return 0;
4823 
4824 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4825 	blk_queue_exit(q);
4826 
4827 	return ret;
4828 }
4829 EXPORT_SYMBOL_GPL(blk_rq_poll);
4830 
4831 unsigned int blk_mq_rq_cpu(struct request *rq)
4832 {
4833 	return rq->mq_ctx->cpu;
4834 }
4835 EXPORT_SYMBOL(blk_mq_rq_cpu);
4836 
4837 void blk_mq_cancel_work_sync(struct request_queue *q)
4838 {
4839 	struct blk_mq_hw_ctx *hctx;
4840 	unsigned long i;
4841 
4842 	cancel_delayed_work_sync(&q->requeue_work);
4843 
4844 	queue_for_each_hw_ctx(q, hctx, i)
4845 		cancel_delayed_work_sync(&hctx->run_work);
4846 }
4847 
4848 static int __init blk_mq_init(void)
4849 {
4850 	int i;
4851 
4852 	for_each_possible_cpu(i)
4853 		init_llist_head(&per_cpu(blk_cpu_done, i));
4854 	for_each_possible_cpu(i)
4855 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4856 			 __blk_mq_complete_request_remote, NULL);
4857 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4858 
4859 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4860 				  "block/softirq:dead", NULL,
4861 				  blk_softirq_cpu_dead);
4862 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4863 				blk_mq_hctx_notify_dead);
4864 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4865 				blk_mq_hctx_notify_online,
4866 				blk_mq_hctx_notify_offline);
4867 	return 0;
4868 }
4869 subsys_initcall(blk_mq_init);
4870